WorldWideScience

Sample records for oxygen enhancement ratio

  1. Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local oxygenation changes

    DEFF Research Database (Denmark)

    Antonovic, Laura; Lindblom, Emely; Dasu, Alexandru

    2014-01-01

    , using the repairable–conditionally repairable (RCR) damage model with parameters for human salivary gland tumor cells. The clinical oxygen enhancement ratio (OER) was defined as the ratio of doses required for a tumor control probability of 50% for hypoxic and well-oxygenated tumors. The resulting OER...... was well above unity for all fractionations. For the hypoxic tumor, the tumor control probability was considerably higher if LOCs were assumed, rather than static oxygenation. The beneficial effect of LOCs increased with the number of fractions. However, for very low fraction doses, the improvement related...... to LOCs did not compensate for the increase in total dose required for tumor control. In conclusion, our results suggest that hypoxia can influence the outcome of carbon ion radiotherapy because of the non-negligible oxygen effect at the low LETs in the SOBP. However, if LOCs occur, a relatively high...

  2. Oxygen enhancement ratio for negative pi mesons

    International Nuclear Information System (INIS)

    Hall, E.J.; Astor, M.

    1979-01-01

    Experiments were performed at the Los Alamos Meson Physics Facility (LAMPF) to determine the oxygen enhancement ratio (OER) for the clinically used beam of negative pi mesons. V79 Chinese hamster cells, cultured in vitro, were used as the biological test system; hypoxia was produced by metabolic depletion as a result of sealing 2 million cells in 1 ml glass ampules. The Bragg peak of the pion depth dose curve was spread out to cover 10 cm by using a dynamic range shifter. Cells were irradiated at the center of the spead out Bragg peak, where the dose/rate was 0.1 Gy/min over a 6 x 6 cm field. The OER obtained was 2.2, compared with 3.8 obtained for γ rays under the same conditions

  3. Oxygen enhancement ratios in synchronous HeLa cells exposed to low-LET radiation

    International Nuclear Information System (INIS)

    Sapozink, M.D.

    1977-01-01

    HeLa cells were synchronized by the mitotic selection method and rendered hypoxic by coincubation with an excess of heavily irradiated, but metabolically active, feeder cells. An oxygen enhancement ratio (OER) of about 3 was obtained in interphase HeLa cells irradiated with x or gamma rays. A significantly lower OER was obtained with cells in, or close to, mitosis. The significance of this decrease in the oxygen effect in mitotic cells is discussed

  4. Reduced oxygen enhancement ratio at low doses

    International Nuclear Information System (INIS)

    Palcic, B.; Skarsgard, L.D.

    1984-01-01

    The oxygen depletion rate in cell suspensions was measured using a Clark electrode. It was found that under experimental conditions used in this laboratory for hypoxic irradiations, the oxygen levels before the start of irradiation are always below 0.1μm, the levels which could give any significant enhancement to radiation inactivation by x-rays. The measured O/sub 2/ depletion rates were comparable to those reported in the literature. Chinese hamster cells (CHO) were made hypoxic by gas exchange, combined with metabolic consumption of oxygen by cells at 37 0 C. Full survival curves were determined in the dose range 0 to 3Gy using the low dose survival assay. The results confirmed the authors' earlier finding that the OER decreases at low doses. The authors therefore believe that the dose-dependent OER is a true radiobiological phenomenon and not an artifact of the experimental method used in the low dose survival assay

  5. The effects of cellular glutathione elevation on the oxygen enhancement ratio

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Russo, A.

    1984-01-01

    It has recently been demonstrated for Chinese hamster and human A549 cells that depletion of cellular glutathione (GSH) by buthionine sulfoximine sensitizes both aerated and hypoxic cells to X-rays. While the extent of sensitization was minimal for both conditions, there was no overall reduction in the oxygen enhancement ratio (OER). The authors have investigated the effect of cellular GSH elevation on the OER by treating cells for 2 hours with 10 mM L-2-oxothiazolidine-4-carboxylate (OTZ) or face 24 hours with 0.06 mM cobalt chloride (CoCl/sub 2/) in complete medium. These treatments resulted in cellular concentrations of GSH to approximately 150-250% for OTZ and 150-300% for CoCl/sub 2/ when compared to controls. X-ray survival curves were determined following these treatments for aerated and hypoxic conditions. Hypoxia was induced by metabolic utilization of oxygen at high cell densities (10/sup 8//ml) in glass syringes. For both methods of GSH elevation, there was no protection observed for either aerated or hypoxic cells and consequently no change in the OER when compared to controls. These data are discussed in the context of the radical-scavenging hypothesis involving chemical repair following X-rays of compounds such as GSH

  6. Oxygen enhancement ratio (OER) to Neutron and Co-60 γ ray

    International Nuclear Information System (INIS)

    Kim, Mi Sook; Ji, Young Hoon; Lee, Yong Min; Kim Kyeoung Jung

    1997-01-01

    Experiments in vitro, using human cell lines was carried out in order to establish whether or not there was a difference between oxygen enhancement ratio (OER) of neutron and Co-60 γ-ray and to determine OER dependence on radiation dose. MG-63 cell line and H-460 cell line were defined as the most sensitive cell line to neutron among our laboratory holding cell lines through preliminary study. Anoxia as was produced in glove box. The box was flushed for one hour with a mixture of 5 % CO 2 in ultrapure N 2 (total oxygen concentration < 10 ppm) and irradiated with neutron and Co-60 γ-ray. Oxic condition was same as anoxic condition except being irradiated in general air condition. The lower OER was observed in neutron than in Co-60 γ-ray. The dose dependence of OER was observed in neutron and Co-60 γ-ray all. But the dose dependence of the OER is somewhat larger for Co-60 γ-ray than for neutron. In the range of 1 to 8 Gy, the OER for photon and neutron range from 1.54 to 1.94 and 1.23 to 1.26 in MG-63 cell line. In case of H-460 the OER for Co-60 γ-ray and neutron range from 1.24 to 1.60 and 1.06 to 1.07 respectively. (author). 19 refs., 5 tabs., 5 figs

  7. Measurement of oxygen enhancement ratio for sub-lethal region using saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Nairy, Rajesha K.; Anjaria, K.B.; Bhat, Nagesh N.; Chaurasia, Rajesh K.; Balakrishnan, Sreedevi; Yerol, Narayana

    2013-01-01

    Oxygen is one of the best known modifiers of radiation sensitivity and the biological effects is greater in the presence of oxygen, and significant modifying effect will be observed only for low LET radiations. The reduced oxygen availability is sensed which trigger homeostatic responses, which impact on virtually all areas of biology and medicine. Failure to achieve complete response following radiotherapy of large tumors is attributed to the presence of radio-resistant hypoxic cells, therefore clarifying the mechanism of the oxygen effect is important. In the present study, a mutant type diploid yeast strain, Saccharomyces cerevisiae D7 was used to study Oxygen Enhancement Ratio (OER) using 60 Co gamma radiation. Cells were washed thrice by centrifugation (2000 g for 5 min) and re-suspended to a cell concentration of 1x108 cells mL-1 in a sterile polypropylene vial for irradiation (sub-lethal dose range, 0-100 Gy). Hypoxic conditions were achieved by incubating the cells in airtight vials at 30℃ for 30 min prior to irradiation. The gene conversion and back mutation analysis were carried out according to the standard protocol. Gene conversion is the radio-sensitive biological endpoint, that can be studied in Saccharomyces cerevisiae D7 yeast cells at trp locus in tryptophan (Trp- medium) deficient medium. The dose response relation at euoxic and hypoxic condition in sub-lethal doses are found to be linear and is represented by Y (Euoxic) = (6.54±0.102) D with R2=0.999 and for hypoxic condition Y(Hypoxic) = (3.346±0.033) D with R2=0.996. The OER can be calculated by dividing the euoxic slope with hypoxic slope, and is 1.95. Back mutation, which is a result of reversion of Isoleucine auxotrophs to prototrophs gives very good information at sub-lethal doses. The dose response relation between back mutated cells and radiation doses at Euoxic and hypoxic condition can be represented as Y(Euoxic) = (2.85±0.126) D with R2= 0.976 and for hypoxic condition Y

  8. Study of gamma radiation induced damages and variation of oxygen enhancement ratio with radiation dose using Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Nairy, R.K.; Yerol Narayana; Bhat, N.N.; Anjaria, K.B.; Sreedevi, B.; Sapra, B.K.

    2014-01-01

    In the present study, an attempt has been made to quantify Oxygen Enhancement Ratio (OER) and variation of OER as a function of dose with experimental and theoretical formulations using Saccharomyces cerevisiae D7, X2180 and rad 52. The study confirms that, the variation of OER with dose depends upon type of cell and repair proficiency of cells. A theoretical model has been formulated to estimate OER values. With the help of this model, OER value for any dose can be calculated in the exponential region of the survival curve without actually extending the experiment in that dose region. (author)

  9. Theoretical analysis of the dose dependence of the oxygen enhancement ratio and its relevance for clinical applications

    International Nuclear Information System (INIS)

    Wenzl, Tatiana; Wilkens, Jan J

    2011-01-01

    The increased resistance of hypoxic cells to ionizing radiation is usually believed to be the primary reason for treatment failure in tumors with oxygen-deficient areas. This oxygen effect can be expressed quantitatively by the oxygen enhancement ratio (OER). Here we investigate theoretically the dependence of the OER on the applied local dose for different types of ionizing irradiation and discuss its importance for clinical applications in radiotherapy for two scenarios: small dose variations during hypoxia-based dose painting and larger dose changes introduced by altered fractionation schemes. Using the widespread Alper-Howard-Flanders and standard linear-quadratic (LQ) models, OER calculations are performed for T1 human kidney and V79 Chinese hamster cells for various dose levels and various hypoxic oxygen partial pressures (pO2) between 0.01 and 20 mmHg as present in clinical situations in vivo. Our work comprises the analysis for both low linear energy transfer (LET) treatment with photons or protons and high-LET treatment with heavy ions. A detailed analysis of experimental data from the literature with respect to the dose dependence of the oxygen effect is performed, revealing controversial opinions whether the OER increases, decreases or stays constant with dose. The behavior of the OER with dose per fraction depends primarily on the ratios of the LQ parameters alpha and beta under hypoxic and aerobic conditions, which themselves depend on LET, pO2 and the cell or tissue type. According to our calculations, the OER variations with dose in vivo for low-LET treatments are moderate, with changes in the OER up to 11% for dose painting (1 or 3 Gy per fraction compared to 2 Gy) and up to 22% in hyper-/hypofractionation (0.5 or 20 Gy per fraction compared to 2 Gy) for oxygen tensions between 0.2 and 20 mmHg typically measured clinically in hypoxic tumors. For extremely hypoxic cells (0.01 mmHg), the dose dependence of the OER becomes more pronounced (up to 36

  10. Variation of oxygen enhancement ratio with radiation dose studies using 8 MeV electron beam

    International Nuclear Information System (INIS)

    Yerol, Narayana; Nairy, Rajesha K.; Sanjeev, Ganesh

    2014-01-01

    The radiobiological effects can be modified by physical, chemical and biological factors. Oxygen is one of the best known modifiers, and the biological effects are greater in the presence of oxygen. Failure to achieve complete response following radiotherapy of large tumors is attributed to the presence of radio-resistant hypoxic cells; therefore clarifying the mechanism of the oxygen effect is important. In the present study, an attempt was made to quantify Oxygen Enhancement Ratio (OER) and variation of OER as a function of dose with experimental and theoretical formulations using Saccharomyces cerevisiae D7, X2180 and rad 52 and 8 MeV electron beam from Microtron accelerator. The single cell stationary-phase cultures were obtained by growing the cells in Yeast extract: Peptone: Dextrose (YEPD) (1%:2%:2%) medium for several generations in stationary phase to a density of approximately 3 x 10 8 cells mL -1 . Cells were washed thrice by centrifugation and re-suspended to a cell concentration of 1 x 10 8 cells mL -1 in a sterile polypropylene vial for irradiation. Hypoxic conditions were achieved by incubating the samples in air tight vials at 30℃ for 30 min prior to irradiation. For euoxic samples, a cell suspension of 1 x 10 6 cells mL -1 was prepared and was thoroughly aerated by mixing before irradiation. Treated and untreated samples were suitably diluted and plated in quadruplicate on YEPD agar medium. Plates were incubated for 2-3 days at 30℃ in dark and normal atmospheric conditions and the colonies were counted. The study confirmed that, the variation of OER with dose depends upon type of cell and repair proficiency of cells. For repair proficient cells OER value has been found to increase with dose, while remain constant for repair deficient cell lines. A theoretical model has been formulated to estimate OER values. The OER value varies from 1.51 to 2.53 for D7, 2.02 to 2.98 for X2180, and 2.58 for rad 52. (author)

  11. Improvement of AD Biosynthesis Response to Enhanced Oxygen Transfer by Oxygen Vectors in Mycobacterium neoaurum TCCC 11979.

    Science.gov (United States)

    Su, Liqiu; Shen, Yanbing; Gao, Tian; Luo, Jianmei; Wang, Min

    2017-08-01

    In steroid biotransformation, soybean oil can improve the productivity of steroids by increasing substrate solubility and strengthen the cell membrane permeability. However, little is known of its role as oxygen carrier and its mechanism of promoting the steroid biotransformation. In this work, soybean oil used as oxygen vector for the enhancement of androst-4-ene-3,17-dione (AD) production by Mycobacterium neoaurum TCCC 11979 (MNR) was investigated. Upon the addition of 16% (v/v) soybean oil, the volumetric oxygen transfer coefficient (K L a) value increased by 44%, and the peak molar yield of AD (55.76%) was achieved. Analysis of intracellular cofactor levels showed high NAD + , ATP level, and a low NADH/NAD + ratio. Meanwhile, the two key enzymes of the tricarboxylic acid (TCA) cycle, namely, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, were upregulated after incubation with soybean oil. These enhancements induced by the increasing of oxygen supply showed positive effects on phytosterol (PS) bioconversion. Results could contribute to the understanding of effects of soybean oil as oxygen vector on steroid biotransformation and provided a convenient method for enhancing the efficiency of aerobic steroid biocatalysis.

  12. Oxygen-enhanced MRI of the lungs. Intraindividual comparison between 1.5 and 3 Tesla

    International Nuclear Information System (INIS)

    Dietrich, Olaf; Thieme, S.F.; Maxien, D.; Nikolaou, K.; Reiser, M.; Schoenberg, S.O.; Fink, C.

    2011-01-01

    Purpose: To assess the feasibility of oxygen-enhanced MRI of the lung at 3 Tesla and to compare signal characteristics with 1.5 Tesla. Materials and Methods: 13 volunteers underwent oxygen-enhanced lung MRI at 1.5 and 3 T with a T 1-weighted single-slice non-selective inversion-recovery single-shot half-Fourier fast-spin-echo sequence with simultaneous respiratory and cardiac triggering in coronal orientation. 40 measurements were acquired during room air breathing and subsequently during oxygen breathing (15 L/min, close-fitting face-mask). The signal-to-noise ratio (SNR) of the lung tissue was determined with a difference image method. The image quality of all acquisitions was visually assessed. The mean values of the oxygen-induced relative signal enhancement and its regional coefficient of variation were calculated and the signal enhancement was displayed as color-coded parameter maps. Oxygen-enhancement maps were visually assessed with respect to the distribution and heterogeneity of the oxygen-related signal enhancement at both field strengths. Results: The mean relative signal enhancement due to oxygen breathing was 13 % (± 5.6 %) at 1.5 T and of 9.0 % (± 8.0 %) at 3 T. The regional coefficient of variation was significantly higher at 3 T. Visual and quantitative assessment of the enhancement maps showed considerably less homogeneous distribution of the signal enhancement at 3 T. The SNR was not significantly different but showed a trend to slightly higher values (increase of about 10 %) at 3 T. Conclusion: Oxygen-enhanced pulmonary MRI is feasible at 3 Tesla. However, signal enhancement is currently more heterogeneous and slightly lower at 3 T. (orig.)

  13. Effects of the differentiating agents sodium butyrate and N-methylformamide on the oxygen enhancement ratio of human colon tumor cells

    International Nuclear Information System (INIS)

    Hallows, K.R.; Bliven, S.F.; Leith, J.T.

    1988-01-01

    We have previously shown that chronic adaptation of human tumor cells to the differentiation-inducing agents N-methylformamide (NMF) and sodium butyrate (NAB) increases the sensitivity of oxic cells to graded single doses of X rays. These studies were carried out to define the sensitivity of hypoxic cells after adaptation. Clone A colon tumor cells were grown for three passages in medium containing 170 mM NMF or 2 mM NAB and irradiated in suspension culture, after gassing with either oxygen (60 min) or ultrapure nitrogen (90 min), and complete survival curves were generated. Using the linear-quadratic equation to describe the data, it was found that NMF and NAB produced increased X-ray killing of hypoxic cells. At the 10% level of survival, the dose-modifying factors were about 1.20 and 1.25 for NMF- and NAB-adapted hypoxic cells, respectively, as compared to hypoxic control cells. However, since both oxic and hypoxic cells exhibited increased sensitivity after NMF and NAB adaptation, there was no major change in the oxygen enhancement ratio

  14. UV Enhanced Oxygen Response Resistance Ratio of ZnO Prepared by Thermally Oxidized Zn on Sapphire Substrate

    Directory of Open Access Journals (Sweden)

    Cheng-Chang Yu

    2013-01-01

    Full Text Available ZnO thin film was fabricated by thermally oxidized Zn at 600°C for 1 h. A surface containing nanostructured dumbbell and lines was observed by scanning electron microscope (SEM. The ZnO resistor device was formed after the following Ti/Au metallization. The device resistance was characterized at different oxygen pressure environment in the dark and under ultraviolet (UV light illumination coming from the mercury lamp with a short pass filter. The resistance increases with the increase of oxygen pressure. The resistance decreases and response increases with the increase of light intensity. Models considering the barrier height variation caused by the adsorbed oxygen related species were used to explain these results. The UV light illumination technology shows an effective method to enhance the detection response for this ZnO resistor oxygen sensor.

  15. Oxygen enhancement ratios for glutathione-deficient human fibroblasts determined from the frequency of radiation induced micronuclei

    International Nuclear Information System (INIS)

    Midander, J.

    1982-01-01

    The yield of micronuclei (MN) was determined to study the radiosensitizing effect of oxygen on three human fibroblast strains, characterized by genetically defined differences in their glutathione (GSH) level. Cells were irradiated in paired experiments with x-ray doses of 2.66 and 6.65 gy in their exponential growth phase in a monolayer under oxic and anoxic conditions. Results indicated a reduced oxygen effect for the GSH deficient cells, the reduction of o.e.r. being most pronounced in the case of GSHsup(-/-) cells, when it was close to unity. The o.e.r. value was intermediate for the GSHsup(+/-) in comparison with the two other cell strains. It is concluded that the data indicate a correlation between the cellular content of GSH and the oxygen enhancement of the formation of micronuclei after irradiation. (U.K.)

  16. Dynamic oxygen-enhanced MRI of cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Taha M Mehemed

    Full Text Available Oxygen causes an increase in the longitudinal relaxation rate of tissues through its T1-shortening effect owing to its paramagnetic properties. Due to such effects, MRI has been used to study oxygen-related signal intensity changes in various body parts including cerebrospinal fluid (CSF space. Oxygen enhancement of CSF has been mainly studied using MRI sequences with relatively longer time resolution such as FLAIR, and T1 value calculation. In this study, fifteen healthy volunteers were scanned using fast advanced spin echo MRI sequence with and without inversion recovery pulse in order to dynamically track oxygen enhancement of CSF. We also focused on the differences of oxygen enhancement at sulcal and ventricular CSF. Our results revealed that CSF signal after administration of oxygen shows rapid signal increase in both sulcal CSF and ventricular CSF on both sequences, with statistically significant predominant increase in sulcal CSF compared with ventricular CSF. CSF is traditionally thought to mainly form from the choroid plexus in the ventricles and is absorbed at the arachnoid villi, however, it is also believed that cerebral arterioles contribute to the production and absorption of CSF, and controversy remains in terms of the precise mechanism. Our results demonstrated rapid oxygen enhancement in sulcal CSF, which may suggest inhaled oxygen may diffuse into sulcal CSF space rapidly probably due to the abundance of pial arterioles on the brain sulci.

  17. Oxygen enhancement ratio as a function of neutron energy with mammalian cells in culture

    International Nuclear Information System (INIS)

    Rini, F.J.; Hall, E.J.; Marino, S.A.

    1979-01-01

    Chinese hamster cells (V79) in culture under oxic and hypoxic conditions were irradiated with several neutron beams spanning a wide energy range to determine the oxygen enhancement ratio (OER). Eight essentially monoenergetic neutron beams, ranging from 0.22 to 13.6 MeV and a 0.11-MeV neutron spectrum, were produced at the Radiological Research Accelerator Facility (RARAF) at Brookhaven National Laboratory. Additional experiments were performed at the Naval Research Laboratory, Washington, DC, where neutrons are produced for radiotherapy by bombarding a beryllium target with 35-MeV deuterons. This beam has a broad energy spectrum with a mean energy of about 15 MeV. A maximum OER of about 1.9 was observed for 13.6-MeV neutrons. The OER values of the monoenergetic neutrons decreased with energy, plateaued at about 1.45 for the energy range from 0.22 to 2.0 MeV and increased slightly to about 1.55 for lower energy spectrum. In the light of microdosimetric data obtained for the neutron beams at RARAF, the OER appears to depend primarily on the intermediate-LET secondaries produced by neutrons in tissue, such as protons, while in contrast high LET-secondaries, such as α-particles and recoil ions, play a minor role. The studies using the NRL neutron beam resulted in a lower OER of about 1.67 as compared to the monoenergetic 13.6-MeV beam. This is a consequence of the fact that more of the dose is deposited by intermediate LET secondaries for the NRL neutron beam

  18. Basics concepts and clinical applications of oxygen-enhanced MR imaging

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto

    2007-01-01

    Oxygen-enhanced MR imaging is a new technique, and its physiological significance has not yet been fully elucidated. This review article covers (1) the theory of oxygen enhancement and its relationship with respiratory physiology; (2) design for oxygen-enhanced MR imaging sequencing; (3) a basic study of oxygen-enhanced MR imaging in animal models and humans; (4) a clinical study of oxygen-enhanced MR imaging; and (5) a comparison of advantages and disadvantages of this technique with those of hyperpolarized noble gas MR ventilation imaging. Oxygen-enhanced MR imaging provides not only the ventilation-related, but also respiration-related information. Oxygen-enhanced MR imaging has the potential to replace nuclear medicine studies for the identification of regional pulmonary function, and many investigators are now attempting to adapt this technique for routine clinical studies. We believe that further basic studies as well as clinical applications of this new technique will define the real significance of oxygen-enhanced MR imaging for the future of pulmonary functional imaging and its usefulness for diagnostic radiology and pulmonary medicine

  19. Oxygen-enhanced magnetic resonance ventilation imaging of lung

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Chen Qun; Hatabu, Hiroto

    2001-01-01

    The oxygen-enhanced magnetic resonance (MR) ventilation imaging is a new technique, and the full extent of its physiological significance has not been elucidated. This review article includes background on (1) respiratory physiology; (2) mechanism and optimization of oxygen-enhanced MR imaging technique; (3) recent applications in animal and human models; and (4) merits and demerits of the technique in comparison with hyperpolarized noble gas MR ventilation imaging. Application of oxygen-enhanced MR ventilation imaging to patients with pulmonary diseases has been very limited. However, we believe that further basic studies, as well as clinical applications of this new technique will define the real significance of oxygen-enhanced MR ventilation imaging in the future of pulmonary functional imaging and its usefulness for diagnostic radiology

  20. Measurements of Relative Biological Effectiveness and Oxygen Enhancement Ratio of Fast Neutrons of Different Energies

    Energy Technology Data Exchange (ETDEWEB)

    Barendsen, G. W.; Broerse, J. J. [Radiobiological Institute of the Health Research Council TNO, Rijswijk (ZH) (Netherlands)

    1968-03-15

    Impairment of the reproductive capacity of cultured cells of human kidney origin (T-l{sub g} cells) has been measured by the Puck cloning technique. From the dose-survival curves obtained in these experiments by irradiation of cells in equilibrium with air and nitrogen, respectively, the relative biological effectiveness (RBE) and the oxygen enhancement ratios (OER) were determined for different beams of fast neutrons. Monoenergetic neutrons of 3 and 15 MeV energy, fission spectrum fast neutrons (mean energy about 1.5 MeV), neutrons produced by bombarding Be with cyclotron-accelerated 16 MeV deuterons (mean energy about 6 MeV) and neutrons produced by bombarding Be with cyclotron- accelerated 20 MeV {sup 3}He ions (mean energy about 10 MeV) have been compared with 250 kVp X-rays as a standard reference. The RBE for 50% cell survival varies from 4.7 for fission-spectrum fast neutrons to 2.7 for 15 MeV monoenergetic neutrons. The OER is not strongly dependent on the neutron energy for the various beams investigated. For the neutrons with the highest and lowest energies used OER values of 1.6 {+-} 0.2 and 1.5 {+-} 0.1 were measured. An interpretation of these data on the basis of the shapes of the LET spectra is proposed and an approximate verification of this hypothesis is provided from measurements in which secondary particle equilibrium was either provided for or deliberately eliminated. (author)

  1. CARBON-TO-OXYGEN RATIOS IN M DWARFS AND SOLAR-TYPE STARS

    International Nuclear Information System (INIS)

    Nakajima, Tadashi; Sorahana, Satoko

    2016-01-01

    It has been suggested that high C/O ratios (>0.8) in circumstellar disks lead to the formation of carbon-dominated planets. Based on the expectation that elemental abundances in the stellar photospheres give the initial abundances in the circumstellar disks, the frequency distributions of C/O ratios of solar-type stars have been obtained by several groups. The results of these investigations are mixed. Some find C/O > 0.8 in more than 20% of stars, and C/O > 1.0 in more than 6%. Others find C/O > 0.8 in none of the sample stars. These works on solar-type stars are all differential abundance analyses with respect to the Sun and depend on the adopted C/O ratio in the Sun. Recently, a method of molecular line spectroscopy of M dwarfs, in which carbon and oxygen abundances are derived respectively from CO and H 2 O lines in the K band, has been developed. The resolution of the K- band spectrum is 20,000. Carbon and oxygen abundances of 46 M dwarfs have been obtained by this nondifferential abundance analysis. Carbon-to-oxygen ratios in M dwarfs derived by this method are more robust than those in solar-type stars derived from neutral carbon and oxygen lines in the visible spectra because of the difficulty in the treatment of oxygen lines. We have compared the frequency distribution of C/O distributions in M dwarfs with those of solar-type stars and have found that the low frequency of high-C/O ratios is preferred.

  2. CARBON-TO-OXYGEN RATIOS IN M DWARFS AND SOLAR-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Tadashi [Astrobiology Center, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Sorahana, Satoko, E-mail: tadashi.nakajima@nao.ac.jp, E-mail: sorahana@astron.s.u-tokyo.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2016-10-20

    It has been suggested that high C/O ratios (>0.8) in circumstellar disks lead to the formation of carbon-dominated planets. Based on the expectation that elemental abundances in the stellar photospheres give the initial abundances in the circumstellar disks, the frequency distributions of C/O ratios of solar-type stars have been obtained by several groups. The results of these investigations are mixed. Some find C/O > 0.8 in more than 20% of stars, and C/O > 1.0 in more than 6%. Others find C/O > 0.8 in none of the sample stars. These works on solar-type stars are all differential abundance analyses with respect to the Sun and depend on the adopted C/O ratio in the Sun. Recently, a method of molecular line spectroscopy of M dwarfs, in which carbon and oxygen abundances are derived respectively from CO and H{sub 2}O lines in the K band, has been developed. The resolution of the K- band spectrum is 20,000. Carbon and oxygen abundances of 46 M dwarfs have been obtained by this nondifferential abundance analysis. Carbon-to-oxygen ratios in M dwarfs derived by this method are more robust than those in solar-type stars derived from neutral carbon and oxygen lines in the visible spectra because of the difficulty in the treatment of oxygen lines. We have compared the frequency distribution of C/O distributions in M dwarfs with those of solar-type stars and have found that the low frequency of high-C/O ratios is preferred.

  3. Correlating oxygen vacancies and phase ratio/interface with efficient photocatalytic activity in mixed phase TiO2

    International Nuclear Information System (INIS)

    Verma, Ranjana; Samdarshi, S.K.

    2015-01-01

    Graphical abstract: The correlation of interfacial behavior and oxygen vacancies in mixed phase titania nanoparticles on their performance as photocatalyst has been investigated to explain the impact of photoactivity under UV and visible irradiation compared to pristine counterparts. The defects at the junction effectively reduce the band gap as well decrease the carrier recombination to enhance the photocatalytic activity. - Highlights: • Pristine and mixed phases (A/R ratio) TiO 2 synthesized by sol gel route. • Photoactivity variation has been correlated with the changes in the phase ratio. • Enhanced UV and visible activity attributable to oxygen vacancy present at the interface. • Role of A/R ratio and oxygen vacancy in the photoactivity of mixed TiO 2 depicted through a model. - Abstract: The photocatalytic activity is a result of the synergy of a succession of phenomena-photogeneration, separation, and participation of the charge carriers in redox reaction at the catalyst surface. While the extent of photogeneration is assessable in terms of absorption spectrum (band gap), the redox reaction can be correlated to specific surface area. However the respective change in the photocatalytic activity has not been rationally and consistently correlated with the above mentioned parameters. A satisfactory explanation of suppression of recombination based on separation of carriers due to differential mobility/diffusivity in the material phase(s) and/or intrinsic potential barrier exists but its correlation with common identifiable parameter/characteristics is still elusive. This paper attempts to address this issue by correlating the carrier separation with the phase ratio (phase interface) in mixed phase titania and generalizing it with the presence of oxygen vacancy at the phase interface. It essentially appears to complete the quest for identifiable parameters in the sequence of phenomena, which endow a photocatalyst with an efficient activity level. It has

  4. Oxygen isotope ratios of the Icelandic crust

    International Nuclear Information System (INIS)

    Hattori, K.; Muehlenbachs, K.

    1982-01-01

    Oxygen isotope ratios of hydrothermally altered basalts from depth of up to approx.3 km are reported from three localities in Iceland: International Research Drilling Project (IRDP) core at Reydarfjordur, eastern Iceland (Tertiary age); drill cuttings from Reykjavik (Plio-Pleistocene age); and Halocene drill cuttings from the active Krafla central volcano. Whole rock samples from these three localities have delta 18 O values averaging +3.9 +- 1.3, +2.4 +- 1.1, and -7.7 +- 2.4%, respectively. The observed values in the deeper samples from Krafla are as low as the values for any rocks previously reported. There seems to be a slight negative gradient in delta 18 O with depth at the former two localities and a more pronounced one at Krafla. Oxygen isotope fractionations between epidote and quartz and those between calcite and fluid suggests that the basalts were altered at temperatures of 300 0 --400 0 C. Low deltaD and delta 18 O of epidote and low delta 34 S of anhydrite indicate that the altering fluids in all three areas originated as meteoric waters and have undergone varied 'oxygen shifts'. Differences in the 18 O shift of the fluids are attributed to differences in hydrothermal systems; low water/rock ratios ( 5) at Krafla. The convective hydrothermal activity, which is probably driven by silicic magma beneath the central volcanoes, has caused strong subsolidus depletion of 18 O in the rocks. The primary-magnetic delta 18 O value of the rocks in the Tertiary IRDP core was about +3.9%, which is lower than that obtained for fresh basalt from other places. Such exceptionally low delta 18 O magmas are common in Iceland and may occur as the result of oxygen isotope exchange with or assimilation of altered rocks that form a thick sequence beneath the island due to isostatic subsidence

  5. Stable isotope ratio measurements in hydrogen, nitrogen, and oxygen using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.; Milanovich, F.P.

    1975-01-01

    A method for measuring stable isotope ratios using laser Raman scattering was developed which may prove of significant utility and benefit in stable isotope tracer studies. Crude isotope ratio measurements obtained with a low-power laser indicate that with current technology it should be possible to construct an isotope ratio measurement system using laser Raman scattering that is capable of performing 0.1 percent accuracy isotope ratio measurements of 16 O/ 18 O in natural abundance oxygen gas or 14 N/ 15 N in natural abundance nitrogen gas in times less than two minutes per sample. Theory pertinent to the technique, designs of specific isotope ratio spectrometer systems, and data relating to isotope ratio measurements in hydrogen, nitrogen, and oxygen are presented. In addition, the current status of several studies utilizing this technique is discussed. (auth)

  6. Hydrogen and oxygen isotope ratios of geothermal waters in the southern hachimantai area

    International Nuclear Information System (INIS)

    Matsubaya, Osamu; Etchu, Hiroshi; Takenaka, Teruo; Yoshida, Yutaka.

    1985-01-01

    Geothermal waters from the Matsukawa and Kakkonda Geothermal Plants, wells at Amihari-Motoyu, and Nyuto and Tazawako areas were isotopically studied. The geothermal waters from Mutsukawa, Kakkonda and Amihari-Motoyu have hydrogen isotope ratios similar to the local meteoric waters, while have higher oxygen isotope ratios than the local meteoric waters. This relationship of hydrogen and oxygen isotope ratios, that is called ''oxygen shift'', means that these geothermal waters are meteoric waters undergone the oxygen isotope exchange with rocks at high temperature of underground. The exygen shifts are 2 -- 3 per mil in Matsukawa and Kakkonda, and 7 per mil in Amihari-Motoyu. This difference may be important to understand the processe of water-rock interaction in this area. The geothermal waters at Nyuto and Tazawako areas also show 2 -- 3 per mil oxygen shift. The steam from the Tazawako-cho well and the hot spring water form the Tsurunoyu are estimated to be vapor and liquid phases separated form a single geothermal water of NaCl type, though the hot water from the Tsurunoyu is diluted with shallow meteoric water. (author)

  7. How the oxygen isotope ratio of rain water influences the isotope ratio of chicken eggshell carbonate

    Science.gov (United States)

    Price, Gregory; Grimes, Stephen

    2015-04-01

    The stable oxygen isotope ratio of chicken eggshell carbonate was analysed from chicken eggs laid under free range, and organic farming regimes from across the UK. The eggshell carbonate oxygen isotope data shows a clear depletion in delta18O distribution from the southwest to the northeast. Although consistently offset by around 1 permil, the same isotopic distribution as that seen in eggshell carbonate is observed in the delta18O ratio of rainfall and groundwater from across the UK. This distribution is related to the Rayleigh distillation of rainfall driven by westerly winds across the UK landmass. The clear relationship observed between eggshell delta18O values and that of rainwater presumably reflects the nature of free range chickens which must be drinking locally derived rainwater and supplementing their diet and water intake with locally derived food. These results suggest that the oxygen isotope value of chicken eggshells can be used as a forensic tool to identify the locality that free range and organic eggs were laid within the UK. Furthermore, if suitable material is preserved in the archaeological and geological record then such a relationship can potentially be used to establish the oxygen isotope value of rainwater from which ancient and / or ancestral birds lived.

  8. Enhanced Photocatalytic Activity of Vacuum-activated TiO2 Induced by Oxygen Vacancies.

    Science.gov (United States)

    Dong, Guoyan; Wang, Xin; Chen, Zhiwu; Lu, Zhenya

    2018-05-01

    TiO 2 (Degussa P25) photocatalysts harboring abundant oxygen vacancies (Vacuum P25) were manufactured using a simple and economic Vacuum deoxidation process. Control experiments showed that temperature and time of vacuum deoxidation had a significant effect on Vacuum P25 photocatalytic activity. After 240 min of visible light illumination, the optimal Vacuum P25 photocatalysts (vacuum deoxidation treated at 330 °C for 3 h) reach as high as 94% and 88% of photodegradation efficiency for rhodamine B (RhB) and tetracycline, respectively, which are around 4.5 and 4.9 times as that of pristine P25. The XPS, PL and EPR analyses indicated that the oxygen vacancies were produced in the Vacuum P25 during the vacuum deoxidation process. The oxygen vacancy states can produce vacancy energy level located below the conduction band minimum, which resulting in the bandgap narrowing, thus extending the photoresponse wavelength range of Vacuum P25. The positron annihilation analysis indicated that the concentrations ratio of bulk and surface oxygen vacancies could be adjusted by changing the vacuum deoxidation temperature and time. Decreasing the ratio of bulk and surface oxygen vacancies was shown to improve photogenerated electron-hole pair separation efficiency, which leads to an obvious enhancement of the visible photocatalytic activities of Vacuum P25. © 2017 The American Society of Photobiology.

  9. A Plant-Based Proxy for the Oxygen Isotope Ratio of Atmospheric Water Vapor

    Science.gov (United States)

    Helliker, B.

    2007-12-01

    Atmospheric water vapor is a major component of the global hydrological cycle, but the isotopic balance of vapor is largely unknown. It is shown here that the oxygen isotope ratio of leaf water in the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides (Spanish Moss) is controlled by the oxygen isotope ratio of atmospheric water vapor in both field and lab studies. Assuming that the leaf-water isotopic signature (and hence the atmospheric water vapor signature) is recorded in plant organic material, the atmospheric water vapor oxygen isotope ratios for Miami, Florida (USA) were reconstructed for several years from 1878 to 2005 using contemporary and herbarium specimens. T. usneoides ranges from Virginia, USA southwards through the tropics to Argentina, and the CAM epiphytic lifeform is widespread in other species. Therefore, epiphytes may be used to reconstruct the isotope ratio of atmospheric water for spatial scales that span over 60° of latitude and temporal scales that cover the last century of global temperature increase.

  10. Determination of the oxygen-metal-ratio of uranium-americium mixed oxides

    International Nuclear Information System (INIS)

    Bartscher, W.

    1982-01-01

    During the dissolution of uranium-americium mixed oxides in phosphoric acid under nitrogen tetravalent uranium is oxidized by tetravalent americium. The obtained hexavalent uranium is determined by constant potential coulometry. The coulombs measured are equivalent to the oxygen in excess of the minimum composition of UO 2 x AmO 1 . 5 . The total uranium content of the sample is determined in a subsequent coulometric titration. The oxygen-metal ratio of the sample can be calculated for a given uranium-americium ratio. An excess of uranium dioxide is necessary in order to suppress the oxidation of water by tetravalent americium. The standard deviation of the method is 0.0017 O/M units. (orig.) [de

  11. Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation

    DEFF Research Database (Denmark)

    Madsen, P L; Hasselbalch, S G; Hagemann, L P

    1995-01-01

    fraction of the activation-induced excess glucose uptake. These data confirm earlier reports that brain activation can induce resetting of the cerebral oxygen/glucose consumption ratio, and indicate that the resetting persists for a long period after cerebral activation has been terminated and physiologic......Global cerebral blood flow (CBF), global cerebral metabolic rates for oxygen (CMRO2), and for glucose (CMRglc), and lactate efflux were measured during rest and during cerebral activation induced by the Wisconsin card sorting test. Measurements were performed in healthy volunteers using the Kety......-Schmidt technique. Global CMRO2 was unchanged during cerebral activation, whereas global CBF and global CMRglc both increased by 12%, reducing the molar ratio of oxygen to glucose consumption from 6.0 during baseline conditions to 5.4 during activation. Data obtained in the period following cerebral activation...

  12. Flame structure of methane/oxygen shear coaxial jet with velocity ratio using high-speed imaging and OH*, CH* chemiluminescence

    Science.gov (United States)

    Shim, Myungbo; Noh, Kwanyoung; Yoon, Woongsup

    2018-06-01

    In this study, the effects of gaseous methane/oxygen injection velocity ratio on the shear coaxial jet flame structure are analyzed using high-speed imaging along with OH* and CH* chemiluminescence. The images show that, as the velocity ratio is increased, the visual flame length increases and wrinkles of the flame front are developed further downstream. The region near the equivalence ratio 1 condition in the flame could be identified by the maximum OH* position, and this region is located further downstream as the velocity ratio is increased. The dominant CH* chemiluminescence is found in the near-injector region. As the velocity ratio is decreased, the signal intensity is higher at the same downstream distance in each flame. From the results, as the velocity ratio is decreased, there is increased entrainment of the external jet, the mixing of the two jets is enhanced, the region near the stoichiometric mixture condition is located further upstream, and consequently, the flame length decreases.

  13. Preliminary Study of Oxygen-Enhanced Longitudinal Relaxation in MRI: A Potential Novel Biomarker of Oxygenation Changes in Solid Tumors

    International Nuclear Information System (INIS)

    O'Connor, James P.B.; Naish, Josephine H.; Parker, Geoff J.M.; Waterton, John C.; Watson, Yvonne; Jayson, Gordon C.; Buonaccorsi, Giovanni A.; Cheung, Sue; Buckley, David L.; McGrath, Deirdre M.; West, Catharine M.L.; Davidson, Susan E.; Roberts, Caleb; Mills, Samantha J.; Mitchell, Claire L.; Hope, Lynn; Ton, N. Chan; Jackson, Alan

    2009-01-01

    Purpose: There is considerable interest in developing non-invasive methods of mapping tumor hypoxia. Changes in tissue oxygen concentration produce proportional changes in the magnetic resonance imaging (MRI) longitudinal relaxation rate (R 1 ). This technique has been used previously to evaluate oxygen delivery to healthy tissues and is distinct from blood oxygenation level-dependent (BOLD) imaging. Here we report application of this method to detect alteration in tumor oxygenation status. Methods and materials: Ten patients with advanced cancer of the abdomen and pelvis underwent serial measurement of tumor R 1 while breathing medical air (21% oxygen) followed by 100% oxygen (oxygen-enhanced MRI). Gadolinium-based dynamic contrast-enhanced MRI was then performed to compare the spatial distribution of perfusion with that of oxygen-induced ΔR 1 . Results: ΔR 1 showed significant increases of 0.021 to 0.058 s -1 in eight patients with either locally recurrent tumor from cervical and hepatocellular carcinomas or metastases from ovarian and colorectal carcinomas. In general, there was congruency between perfusion and oxygen concentration. However, regional mismatch was observed in some tumor cores. Here, moderate gadolinium uptake (consistent with moderate perfusion) was associated with low area under the ΔR 1 curve (consistent with minimal increase in oxygen concentration). Conclusions: These results provide evidence that oxygen-enhanced longitudinal relaxation can monitor changes in tumor oxygen concentration. The technique shows promise in identifying hypoxic regions within tumors and may enable spatial mapping of change in tumor oxygen concentration.

  14. Preliminary results of oxygen isotope ratio measurement with a particle-gamma coincidence method

    Energy Technology Data Exchange (ETDEWEB)

    Borysiuk, Maciek, E-mail: maciek.borysiuk@pixe.lth.se; Kristiansson, Per; Ros, Linus; Abdel, Nassem S.; Elfman, Mikael; Nilsson, Charlotta; Pallon, Jan

    2015-04-01

    The possibility to study variations in the oxygen isotopic ratio with photon tagged nuclear reaction analysis (pNRA) is evaluated in the current work. The experiment described in the article was performed at Lund Ion Beam Analysis Facility (LIBAF) with a 2 MeV deuteron beam. Isotopic fractionation of light elements such as carbon, oxygen and nitrogen is the basis of many analytical tools in hydrology, geology, paleobiology and paleogeology. IBA methods provide one possible tool for measurement of isotopic content. During this experimental run we focused on measurement of the oxygen isotopic ratio. The measurement of stable isotopes of oxygen has a number of applications; the particular one driving the current investigation belongs to the field of astrogeology and specifically evaluation of fossil extraterrestrial material. There are three stable isotopes of oxygen: {sup 16}O, {sup 17}O and {sup 18}O. We procured samples highly enriched with all three isotopes. Isotopes {sup 16}O and {sup 18}O were easily detected in the enriched samples, but no significant signal from {sup 17}O was detected in the same samples. The measured yield was too low to detect {sup 18}O in a sample with natural abundances of oxygen isotopes, at least in the current experimental setup, but the spectral line from the reaction with {sup 16}O was clearly visible.

  15. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance.

    Science.gov (United States)

    Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai

    2017-01-01

    Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment ( p Multitasking performance was also significantly enhanced in HBO environment ( p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  16. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance

    Directory of Open Access Journals (Sweden)

    Dor Vadas

    2017-09-01

    Full Text Available Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, <10% of the brain is active at any given time, it utilizes almost all the oxygen delivered. In order to perform complex tasks or more than one task (multitasking, the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities.Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking. Participants were randomized to perform the tasks in two environments: (a normobaric air (1 ATA 21% oxygen (b HBO (2 ATA 100% oxygen. Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance.Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment (p < 0.001 for both. Multitasking performance was also significantly enhanced in HBO environment (p = 0.006 for the cognitive part and p = 0.02 for the motor part.Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  17. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    Science.gov (United States)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  18. Light-triggered liposomal cargo delivery platform incorporating photosensitizers and gold nanoparticles for enhanced singlet oxygen generation and increased cytotoxicity

    Science.gov (United States)

    Kautzka, Zofia; Clement, Sandhya; Goldys, Ewa M.; Deng, Wei

    2018-02-01

    We developed light-triggered liposomes incorporating gold nanoparticles and Rose Bengal (RB), a well-known photosensitizer used for photodynamic therapy. Singlet oxygen generated by these liposomes with 532 nm light illumination was characterized by adjusting the molar ratio of lipids and gold nanoparticles while keeping the amount of RB constant. Gold nanoparticles were found to enhance the singlet oxygen generation rate, with a maximum enhancement factor of 1.75 obtained for the molar ratio of HSPC: PE-NH2: gold of 57:5:17 compared with liposomes loaded with RB alone. The experimental results could be explained by the local electric field enhancement caused by gold nanoparticles. We further assessed cellular cytotoxicity of these liposomes by encapsulating an antitumor drug, doxorubicin (Dox); such Dox loaded liposomes were applied to human colorectal cancer cells, HCT116, and exposed to light. Gold-loaded liposomes containing RB and Dox where Dox release was triggered by light were found to exhibit higher cytotoxicity, compared to the liposomes loaded with RB and Dox alone. Our results indicate that gold-loaded liposomes incorporating photosensitizers may have improved therapeutic efficacy in photodynamic therapy and chemotherapy.

  19. The oxygen enhancement ratio for single- and double-strand breaks induced by tritium incorporated in DNA of cultured human T1 cells. Impact of the transmutation effect.

    Science.gov (United States)

    Tisljar-Lentulis, G; Henneberg, P; Feinendegen, L E; Commerford, S L

    1983-04-01

    The effect of oxygen, expressed as the oxygen enhancement ratio (OER), on the number of single-strand breaks (SSB) and double-strand breaks (DSB) induced in DNA by the radioactive decay of tritium was measured in human T1 cells whose DNA had been labeled with tritium at carbon atom number 6 of thymidine. Decays were accumulated in vivo under aerobic conditions at 0-1 degrees C and at -196 degrees C and in a nitrogen atmosphere at 0-1 degrees C. The number of SSB and DSB produced was analyzed by sucrose gradient centrifugation. For each tritium decay there were 0.25 DSB in cells exposed to air at 0-1 degrees C and 0.07 in cells kept under nitrogen, indicating an OER of 3.6, a value expected for such low-LET radiation. However, for each tritium decay there were 1.25 SSB in cells exposed to air at 0-1 degrees C and 0.76 in cells kept under nitrogen indicating an OER of only 1.7. The corresponding values for 60Co gamma radiation, expressed as SSB per 100 eV absorbed energy, were 4.5 and 1.0, giving an OER of 4.5. The low OER value found for SSB induced by tritium decay can be explained if 31% of the total SSB produced in air result from transmutation by a mechanism which does not produce DSB and is unaffected by oxygen.

  20. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: Simultaneous oxygen and pH monitoring

    International Nuclear Information System (INIS)

    Liu, Rui; Xiao, Teng; Cui, Weipan; Shinar, Joseph; Shinar, Ruth

    2013-01-01

    Graphical abstract: -- Highlights: •Novel simply-fabricated all-organic electronics pH and oxygen optical monitor. •Excitation sources: directionally emitting, narrowed multicolor microcavity OLEDs. •Photodetectors: small molecule- or polymer-based with selective spectral responses. •Sensor film: structured high molecular weight polystyrene:polyethylene glycol blend. •×1.9 sensitivity enhancement and ×2.7 increase in the photoluminescence for oxygen. -- Abstract: Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs’ broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ∼20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ 0 /τ 100 (PL decay time τ at 0% O 2 /τ at 100% O 2 ) that is often used to express S

  1. Analysis of oxygen-enhanced combustion of gas power cycle

    Energy Technology Data Exchange (ETDEWEB)

    Maidana, Cristiano Frandalozo; Carotenuto, Adriano; Schneider, Paulo Smith [Universidade Federal do Rio Grande do Sul (GESTE/UFRGS), Porto Alegre, RS (Brazil). Grupo de Estudos Termicos e Energeticos], E-mails: cristiano.maidana@ufrgs.br, pss@mecanica.ufrgs.br

    2010-07-01

    The majority of combustion processes use air as oxidant, roughly taken as 21% O{sub 2} and 79% N{sub 2}, by volume. In many cases, these processes can be enhanced by using an oxidant that contains higher proportion of O{sub 2} than in air. This is known as oxygen-enhanced combustion or OEC, and can bring important benefits like higher thermal efficiencies, lower exhaust gas volumes, higher heat transfer efficiency, reduction fuel consumption, reduced equipment costs and substantially pollutant emissions reduction. Within this scenario, this paper aims to investigate the influence of 21-30% oxygen concentration on the performance of a air-fired natural gas fueled power plant. This power plant operates under a Brayton cycle with models with the help of an air flow splitter after the compressor output in order to dose the oxygen rate of combustion and to keep the flue gas intake of the turbine at a prescribed temperature. Simulations shows that the enhancing of the oxidant stream reduced fuel consumption of about 10%, driven by higher adiabatic flame temperatures, which improves thermal and heat transfer efficiencies. A conclusion obtained is that the use of oxygen in higher proportions can be a challenge to retrofit existing air-fired natural gas power turbine cycles, because of the technological limitation of its materials with higher flame temperatures. (author)

  2. Tumour control in ion beam radiotherapy with different ions in the presence of hypoxia: an oxygen enhancement ratio model based on the microdosimetric kinetic model

    Science.gov (United States)

    Strigari, L.; Torriani, F.; Manganaro, L.; Inaniwa, T.; Dalmasso, F.; Cirio, R.; Attili, A.

    2018-03-01

    Few attempts have been made to include the oxygen enhancement ratio (OER) in treatment planning for ion beam therapy, and systematic studies to evaluate the impact of hypoxia in treatment with the beam of different ion species are sorely needed. The radiobiological models used to quantify the OER in such studies are mainly based on the dose-averaged LET estimates, and do not explicitly distinguish between the ion species and fractionation schemes. In this study, a new type of OER modelling, based on the microdosimetric kinetic model, taking into account the specificity of the different ions, LET spectra, tissues and fractionation schemes, has been developed. The model has been benchmarked with published in vitro data, HSG, V79 and CHO cells in aerobic and hypoxic conditions, for different ion irradiation. The model has been included in the simulation of treatments for a clinical case (brain tumour) using proton, lithium, helium, carbon and oxygen ion beams. A study of the tumour control probability (TCP) as a function of oxygen partial pressure, dose per fraction and primary ion type has been performed. The modelled OER depends on both the LET and ion type, also showing a decrease for an increased dose per fraction with a slope that depends on the LET and ion type, in good agreement with the experimental data. In the investigated clinical case, a significant increase in TCP has been found upon increasing the ion charge. Higher OER variations as a function of dose per fraction have also been found for low-LET ions (up to 15% varying from 2 to 8 Gy(RBE) for protons). This model could be exploited in the identification of treatment condition optimality in the presence of hypoxia, including fractionation and primary particle selection.

  3. Oxygen enhancement of groundwater using an oxygen releasing compound in a funnel-and-gate system

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D G

    1994-01-01

    ORC is a fine white MgO[sub 2] powder treated with a patented process so that a slow, relatively steady release of oxygen occurs when the powder is in contact with water. Recent work suggests ORC could potentially be used to increase the dissolved oxygen (DO) concentration of ground water, thereby enhancing the biodegradation of dissolved phase contaminants such as benzene and toluene from gasoline spills. Field and laboratory tests were performed to evaluate the oxygen release characteristics of ORC when mixed with filter sand and exposed to groundwater from an aquifer in Ontario. Quasi steady state oxygen release rates of 0.013-0.030 and 0.030 mg O[sub 2]/d per g of ORC were determined from the column and field tests respectively. The column tests indicated that steady state oxygen release conditions from the ORC required ca 90 d after initial contact with water, but field data indicated that oxygen release rate may continue to decrease. Falling head permeameter tests indicated that a maximum drop in hydraulic conductivity occurred within the first 48 h of exposure of ORC to water. Both laboratory and field studies indicated that ORC-contacted water increased in pH. Field studies further suggested an inverse correlation between pH increases and the ability of ORC to enhance DO concentration of ground water. The use of ORC in a funnel-and-gate scheme appears to be an effective means of increasing the DO concentration in ground water, thereby stimulating the in-situ bioremediation of many organic contaminants. 30 refs., 17 figs., 12 tabs.

  4. Spot Scanning and Passive Scattering Proton Therapy: Relative Biological Effectiveness and Oxygen Enhancement Ratio in Cultured Cells.

    Science.gov (United States)

    Iwata, Hiromitsu; Ogino, Hiroyuki; Hashimoto, Shingo; Yamada, Maho; Shibata, Hiroki; Yasui, Keisuke; Toshito, Toshiyuki; Omachi, Chihiro; Tatekawa, Kotoha; Manabe, Yoshihiko; Mizoe, Jun-etsu; Shibamoto, Yuta

    2016-05-01

    To determine the relative biological effectiveness (RBE), oxygen enhancement ratio (OER), and contribution of the indirect effect of spot scanning proton beams, passive scattering proton beams, or both in cultured cells in comparison with clinically used photons. The RBE of passive scattering proton beams at the center of the spread-out Bragg peak (SOBP) was determined from dose-survival curves in 4 cell lines using 6-MV X rays as controls. Survival of 2 cell lines after spot scanning and passive scattering proton irradiation was then compared. Biological effects at the distal end region of the SOBP were also investigated. The OER of passive scattering proton beams and 6 MX X rays were investigated in 2 cell lines. The RBE and OER values were estimated at a 10% cell survival level. The maximum degree of protection of radiation effects by dimethyl sulfoxide was determined to estimate the contribution of the indirect effect against DNA damage. All experiments comparing protons and X rays were made under the same biological conditions. The RBE values of passive scattering proton beams in the 4 cell lines examined were 1.01 to 1.22 (average, 1.14) and were almost identical to those of spot scanning beams. Biological effects increased at the distal end of the SOBP. In the 2 cell lines examined, the OER was 2.74 (95% confidence interval, 2.56-2.80) and 3.08 (2.84-3.11), respectively, for X rays, and 2.39 (2.38-2.43) and 2.72 (2.69-2.75), respectively, for protons (Pcells between X rays and protons). The maximum degree of protection was significantly higher for X rays than for proton beams (P<.05). The RBE values of spot scanning and passive scattering proton beams were almost identical. The OER was lower for protons than for X rays. The lower contribution of the indirect effect may partly account for the lower OER of protons. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Controls of oxygen isotope ratios of nitrate formed during nitrification in soils

    International Nuclear Information System (INIS)

    Mayer, B.; Bollwerk, S.M.; Vorhoff, B.; Mansfeldt, T.; Veizer, J.

    1999-01-01

    The isotopic composition of nitrate is increasingly used to determine sources and transformations of nitrogen in terrestrial and aquatic ecosystems. Oxygen isotope ratios of nitrate appear to be particularly useful, since they allow the differentiation between nitrate from atmospheric deposition (δ 18 O nitrate between +25 and +70 per mille), nitrate from fertilizers (δ 18 O nitrate +23 per mille), and nitrate derived from nitrification processes in soils (δ 18 O nitrate 3 molecule derive from H 2 O (with negative δ 18 O values dependent upon location) and one oxygen derives from atmospheric O 2 (δ 18 O = +23.5 per mille).. The objective of this study was to experimentally determine the extent to which water oxygen controls the δ 18 O value of nitrate, which is formed during nitrification in soils

  6. Enhancing Activity for the Oxygen Evolution Reaction

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Busch, Michael; Halck, Niels Bendtsen

    2014-01-01

    Electrochemical production of hydrogen, facilitated in electrolyzers, holds great promise for energy storage and solar fuel production. A bottleneck in the process is the catalysis of the oxygen evolution reaction, involving the transfer of four electrons. The challenge is that the binding energies...... of all reaction intermediates cannot be optimized individually. However, experimental investigations have shown that drastic improvements can be realized for manganese and cobalt-based oxides if gold is added to the surface or used as substrate. We propose an explanation for these enhancements based...... that the oxygen evolution reaction overpotential decreases by 100–300 mV for manganese oxides and 100 mV for cobalt oxides....

  7. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: Simultaneous oxygen and pH monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Xiao, Teng; Cui, Weipan [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Joseph, E-mail: jshinar@iastate.edu [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Ruth, E-mail: rshinar@iastate.edu [Microelectronics Research Center and Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States)

    2013-05-17

    Graphical abstract: -- Highlights: •Novel simply-fabricated all-organic electronics pH and oxygen optical monitor. •Excitation sources: directionally emitting, narrowed multicolor microcavity OLEDs. •Photodetectors: small molecule- or polymer-based with selective spectral responses. •Sensor film: structured high molecular weight polystyrene:polyethylene glycol blend. •×1.9 sensitivity enhancement and ×2.7 increase in the photoluminescence for oxygen. -- Abstract: Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs’ broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ∼20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ{sub 0}/τ{sub 100} (PL decay time τ at 0% O{sub 2}/τ at 100% O{sub 2}) that is often used

  8. Transformer ratio enhancement experiment

    International Nuclear Information System (INIS)

    Gai, W.; Power, J. G.; Kanareykin, A.; Neasheva, E.; Altmark, A.

    2004-01-01

    Recently, a multibunch scheme for efficient acceleration based on dielectric wakefield accelerator technology was outlined in J.G. Power, W. Gai, A. Kanareykin, X. Sun. PAC 2001 Proceedings, pp. 114-116, 2002. In this paper we present an experimental program for the design, development and demonstration of an Enhanced Transformer Ratio Dielectric Wakefield Accelerator (ETR-DWA). The principal goal is to increase the transformer ratio R, the parameter that characterizes the energy transfer efficiency from the accelerating structure to the accelerated electron beam. We present here an experimental design of a 13.625 GHz dielectric loaded accelerating structure, a laser multisplitter producing a ramped bunch train, and simulations of the bunch train parameters required. Experimental results of the accelerating structure bench testing and ramped pulsed train generation with the laser multisplitter are shown as well. Using beam dynamic simulations, we also obtain the focusing FODO lattice parameters

  9. Comparison of the oxygen enhancement ratio for γ-ray-induced double-strand breaks in the DNA of bacteriophage T7 as determined by two different methods of analysis

    International Nuclear Information System (INIS)

    Schans, G.P. van der; Drift, A.C.M. van der.

    1975-01-01

    Bacteriophage T7 was irradiated in a protecting medium under nitrogen and oxygen with 60 Co gamma rays. Double-strand breaks were measured by sucrose gradient sedimentation and by boundary sedimentation analysis. Both methods showed that the presence of oxygen during irradiation enhances the production of double-strand breaks. This is in contrast to a recent report which suggests that boundary sedimentation analysis does not show the effect of oxygen. The discrepancy must be ascribed to differences in the interpretation of the sedimentation data

  10. Mult-Pollutant Control Through Novel Approaches to Oxygen Enhanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Richard Axelbaum; Pratim Biswas

    2009-02-28

    Growing concerns about global climate change have focused effortss on identifying approaches to stabilizing carbon dioxide levels in the atmosphere. One approach utilizes oxy-fuel combustion to produce a concentrated flue gas that will enable economical CO{sub 2} capture by direct methods. Oxy-fuel combustion rewuires an Air Separation Unit (ASU) to provide a high-purity stream of oxygen as well as a Compression and Purification Unit (CPU) to clean and compress the CO{sub 2} for long term storage. Overall plant efficiency will suffer from the parasitic load of both the ASU and CPU and researchers are investigating techniques to enhance other aspects of the combustion and gas cleanup proceses to improve the benefit-to-cost ratio. This work examines the influence of oxy-fuel combustion and non-carbon based sorbents on the formation and fate of multiple combustion pollutants both numerically and experimentally.

  11. Oxygen-enhanced MRI vs. quantitatively assessed thin-section CT: Pulmonary functional loss assessment and clinical stage classification of asthmatics

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Koyama, Hisanobu; Matsumoto, Keiko; Onishi, Yumiko; Nogami, Munenobu; Takenaka, Daisuke; Matsumoto, Sumiaki; Sugimura, Kazuro

    2011-01-01

    Purpose: The purpose of this study was to prospectively compare the efficacy of oxygen-enhanced MR imaging (O 2 -enhanced MRI) and CT for pulmonary functional loss assessment and clinical stage classification of asthmatics. Materials and methods: O 2 -enhanced MRI, CT and %FEV 1 measurement were used 34 consecutive asthmatics classified into four stages ('Mild Intermittent [n = 7]', 'Mild Persistent [n = 8], 'Moderate Persistent [n = 14]' and 'Severe Persistent [n = 5]'). Relative enhancement ratio maps for every subject were generated, and determine mean relative enhancement ratios (MRERs). Mean lung density (MLD) and the airway wall area (WA) corrected by body surface area (WA/BSA) were also measured on CT. To compare the efficacy of the two methods for pulmonary functional loss assessment, all indexes were correlated with %FEV 1 . To determine the efficacy of the two methods for clinical stage classification, all parameters for the four clinical stages were statistically compared. Results: %FEV 1 showed fair or moderate correlation with all parameters (0.15 ≤ r 2 ≤ 0.30, p 2 -enhanced MRI is as effective as CT for pulmonary functional loss assessment and clinical stage classification of asthmatics.

  12. Differences in mortality based on worsening ratio of partial pressure of oxygen to fraction of inspired oxygen corrected for immune system status and respiratory support.

    Science.gov (United States)

    Miles, Lachlan F; Bailey, Michael; Young, Paul; Pilcher, David V

    2012-03-01

    To define the relationship between worsening oxygenation status (worst PaO(2)/FiO(2) ratio in the first 24 hours after intensive care unit admission) and mortality in immunosuppressed and immunocompetent ICU patients in the presence and absence of mechanical ventilation. Retrospective cohort study. Data were extracted from the Australian and New Zealand Intensive Care Society Adult Patient Database. Adult patients admitted to 129 ICUs in Australasia, 2000-2010. In hospital and ICU mortality; relationship between mortality and declining PaO(2)/FiO(2) ratio by ventilation status and immune status. 457 750 patient records were analysed. Worsening oxygenation status was associated with increasing mortality in all groups. Higher mortality was seen in immunosuppressed patients than immunocompetent patients. After multivariate analysis, in mechanically ventilated patients, declining PaO(2)/FiO(2) ratio in the first 24 hours of ICU admission was associated with a more rapidly rising mortality rate in immunosuppressed patients than non-immunosuppressed patients. Immunosuppression did not affect the relationship between oxygenation status and mortality in non-ventilated patients. Immunosuppression increases the risk of mortality with progressively worsening oxygenation status, but only in the presence of mechanical ventilation. Further research into the impact of mechanical ventilation in immunosuppressed patients is required.

  13. Incorporating Oxygen-Enhanced MRI into Multi-Parametric Assessment of Human Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Heling Zhou

    2017-08-01

    Full Text Available Hypoxia is associated with prostate tumor aggressiveness, local recurrence, and biochemical failure. Magnetic resonance imaging (MRI offers insight into tumor pathophysiology and recent reports have related transverse relaxation rate (R2* and longitudinal relaxation rate (R1 measurements to tumor hypoxia. We have investigated the inclusion of oxygen-enhanced MRI for multi-parametric evaluation of tumor malignancy. Multi-parametric MRI sequences at 3 Tesla were evaluated in 10 patients to investigate hypoxia in prostate cancer prior to radical prostatectomy. Blood oxygen level dependent (BOLD, tissue oxygen level dependent (TOLD, dynamic contrast enhanced (DCE, and diffusion weighted imaging MRI were intercorrelated and compared with the Gleason score. The apparent diffusion coefficient (ADC was significantly lower in tumor than normal prostate. Baseline R2* (BOLD-contrast was significantly higher in tumor than normal prostate. Upon the oxygen breathing challenge, R2* decreased significantly in the tumor tissue, suggesting improved vascular oxygenation, however changes in R1 were minimal. R2* of contralateral normal prostate decreased in most cases upon oxygen challenge, although the differences were not significant. Moderate correlation was found between ADC and Gleason score. ADC and R2* were correlated and trends were found between Gleason score and R2*, as well as maximum-intensity-projection and area-under-the-curve calculated from DCE. Tumor ADC and R2* have been associated with tumor hypoxia, and thus the correlations are of particular interest. A multi-parametric approach including oxygen-enhanced MRI is feasible and promises further insights into the pathophysiological information of tumor microenvironment.

  14. Oxygen transport enhancement by functionalized magnetic nanoparticles (FMP) in bioprocesses

    Science.gov (United States)

    Ataide, Filipe Andre Prata

    The enhancement of fluid properties, namely thermal conductivity and mass diffusivity for a wide range of applications, through the use of nanosized particles' suspensions has been gathering increasing interest in the scientific community. In previous studies, Olle et al. (2006) showed an enhancement in oxygen absorption to aqueous solutions of up to 6-fold through the use of functionalized nanosized magnetic particles with oleic acid coating. Krishnamurthy et al. (2006) showed a remarkable 26-fold enhancement in dye diffusion in water. These two publications are landmarks in mass transfer enhancement in chemical systems through the use of nanoparticles. The central goal of this Ph.D. thesis was to develop functionalized magnetic nanoparticles to enhance oxygen transport in bioprocesses. The experimental protocol for magnetic nanoparticles synthesis and purification adopted in this thesis is a modification of that reported by Olle et al. (2006). This is facilitated by employing twice the quantity of ammonia, added at a slower rate, and by filtering the final nanoparticle solution in a cross-flow filtration modulus against 55 volumes of distilled water. This modification in the protocol resulted in improved magnetic nanoparticles with measurably higher mass transfer enhancement. Magnetic nanoparticles with oleic acid and Hitenol-BC coating were screened for oxygen transfer enhancement, since these particles are relatively inexpensive and easy to synthesize. A glass 0.5-liter reactor was custom manufactured specifically for oxygen transport studies in magnetic nanoparticles suspensions. The reactor geometry, baffles and Rushton impeller are of standard dimensions. Mass transfer tests were conducted through the use of the sulphite oxidation method, applying iodometric back-titration. A 3-factor central composite circumscribed design (CCD) was adopted for design of experiments in order to generate sufficiently informative data to model the effect of magnetic

  15. Photosensitized Oxygenations of Hexamethylbenzene in Phase Contact Enhanced Microreactor

    International Nuclear Information System (INIS)

    Park, Chan Yi; Park, Jeong Hyeon; Lim Hyo Jin; Hwang, Geumsook; Park, Chan Pil

    2014-01-01

    Activated singlet oxygen ( 1 O 2 ) has successfully been utilized in production of various compounds including fragrances, pharmaceuticals, and fine chemicals. However, the traditional reaction required a prolonged reaction time due to the difficulty of introducing adequate light and oxygen into the solution. Low contact probability between four species of oxygen, photosensitizer, light, and reagent is an inherent drawback of the traditional photoreaction. Molecular diffusion distance is the most important factor in the heterogeneous reactions including gas-liquid, gassolid, liquid-solid, and immiscible liquid-liquid. Therefore, rates of reaction are closely depended on the distance. Microreactor has provided a distinct advantage in the short molecular diffusion distance due to the high surface-to-volume ratio driven by narrow fluidic channels

  16. Exercise capacity in the Bidirectional Glenn physiology: Coupling cardiac index, ventricular function and oxygen extraction ratio.

    Science.gov (United States)

    Vallecilla, Carolina; Khiabani, Reza H; Trusty, Phillip; Sandoval, Néstor; Fogel, Mark; Briceño, Juan Carlos; Yoganathan, Ajit P

    2015-07-16

    In Bi-directional Glenn (BDG) physiology, the superior systemic circulation and pulmonary circulation are in series. Consequently, only blood from the superior vena cava is oxygenated in the lungs. Oxygenated blood then travels to the ventricle where it is mixed with blood returning from the lower body. Therefore, incremental changes in oxygen extraction ratio (OER) could compromise exercise tolerance. In this study, the effect of exercise on the hemodynamic and ventricular performance of BDG physiology was investigated using clinical patient data as inputs for a lumped parameter model coupled with oxygenation equations. Changes in cardiac index, Qp/Qs, systemic pressure, oxygen extraction ratio and ventricular/vascular coupling ratio were calculated for three different exercise levels. The patient cohort (n=29) was sub-grouped by age and pulmonary vascular resistance (PVR) at rest. It was observed that the changes in exercise tolerance are significant in both comparisons, but most significant when sub-grouped by PVR at rest. Results showed that patients over 2 years old with high PVR are above or close to the upper tolerable limit of OER (0.32) at baseline. Patients with high PVR at rest had very poor exercise tolerance while patients with low PVR at rest could tolerate low exercise conditions. In general, ventricular function of SV patients is too poor to increase CI and fulfill exercise requirements. The presented mathematical model provides a framework to estimate the hemodynamic performance of BDG patients at different exercise levels according to patient specific data. Published by Elsevier Ltd.

  17. Enhanced oxygen delivery induced by perfluorocarbon emulsions in capillary tube oxygenators.

    Science.gov (United States)

    Vaslef, S N; Goldstick, T K

    1994-01-01

    Previous studies showed that a new generation of perfluorocarbon (PFC) emulsions increased tissue PO2 in the cat retina to a degree that could not be explained by the small increase in arterial O2 content seen after the infusion of low doses of 1 g PFC/kg body weight. It seems that increased O2 delivery at the tissue level after PFC infusion is caused by a local effect in the microcirculation. The authors studies this effect in vitro at steady state in a closed loop circuit, consisting of one of two types of capillary tube oxygenators, deoxygenator(s), a reservoir bag filled with anticoagulated bovine blood or saline (control), and a roller pump, to see if the addition of PFC would have an effect on the PO2 difference (delta PO2) across the capillary tube membrane oxygenator at a blood flow rate of 3 l/min. Perfluorocarbon was added in three incremental doses, each giving about 0.7 vol% of PFC. The delta PO2 across the oxygenator was measured before and after each dose. The mean percent increases in delta PO2 in blood for two types of oxygenators were 19.2 +/- 8% (mean +/- SD, n = 6, P = 0.002) and 9.9 +/- 4% (n = 3, P = 0.05), respectively, whereas the mean percent change in delta PO2 in saline was -4.9 +/- 2% (n = 2, P = 0.2). Inlet PO2s to the oxygenator were only minimally increased. The authors conclude that O2 delivery was significantly enhanced after injection of PFC in blood in this capillary tube model. A near wall excess of PFC particles may account for the augmentation of O2 diffusion in this model.

  18. Convective mixing length and the galactic carbon to oxygen ratio

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, A; Peimbert, M [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia

    1981-01-01

    We have studied chemical evolution models, assuming instantaneous recycling, and considering: a) the effects of mass loss both in massive stars and in intermediate mass stars, and b) the initial mass function of the solar neighbourhood (Serrano 1978). From these models we have derived the yields of carbon and oxygen. It is concluded that the condition C/O approximately 0.58 in the solar neighbourhood can only be satisfied if, during advanced stages of stellar evolution of intermediate mass stars, the ratio of the convective mixing length to the pressure scale height is > approximately 2.

  19. Enhanced nitrogen removal from piggery wastewater with high NH4+ and low COD/TN ratio in a novel upflow microaerobic biofilm reactor.

    Science.gov (United States)

    Meng, Jia; Li, Jiuling; Li, Jianzheng; Antwi, Philip; Deng, Kaiwen; Nan, Jun; Xu, Pianpian

    2018-02-01

    To enhance nutrient removal more cost-efficiently in microaerobic process treating piggery wastewater characterized by high ammonium (NH 4 + -N) and low chemical oxygen demand (COD) to total nitrogen (TN) ratio, a novel upflow microaerobic biofilm reactor (UMBR) was constructed and the efficiency in nutrient removal was evaluated with various influent COD/TN ratios and reflux ratios. The results showed that the biofilm on the carriers had increased the biomass in the UMBR and enhanced the enrichment of slow-growth-rate bacteria such as nitrifiers, denitrifiers and anammox bacteria. The packed bed allowed the microaerobic biofilm process perform well at a low reflux ratio of 35 with a NH 4 + -N and TN removal as high as 93.1% and 89.9%, respectively. Compared with the previously developed upflow microaerobic sludge reactor, the UMBR had not changed the dominant anammox approach to nitrogen removal, but was more cost-efficiently in treating organic wastewater with high NH 4 + -N and low COD/TN ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Enhancement by platelets of oxygen radical responses of human neutrophils

    International Nuclear Information System (INIS)

    McCulloch, K.K.; Powell, J.; Johnson, K.J.; Ward, P.A.

    1986-01-01

    When human blood neutrophils were incubated with immune complexes (consisting of IgG antibody) in the presence of platelets, there was a 2 to 10 fold enhancement in the generation of O- 2 and H 2 O 2 . This enhancement phenomenon was proportional to the dose of immune complex added and the number of platelets present. The response was not agonist specific since similar enhancement also occurred with the following agonists: phorbol myristate acetate, opsonized zymosan particles and the chemotactic peptide N-formyl-met-leu-phe. The platelet related phenomenon of enhanced O- 2 generation could not be reproduced by the addition of serotonin, histamine or platelet-derived growth factor and was not affected by prior treatment of platelets with cyclooxygenase inhibitors (indomethacin, piroxicam) or lipoxygenase inhibitors (nafazatrom, BW755C or nordihydroguaiaretic acid). However, activation of platelets by thrombin caused release into the platelet supernatant fluid of a factor that, only in the presence of immune complexes, caused enhanced O- 2 responses to neutrophils. These data indicate that platelets potentiate oxygen radical responses of human neutrophils and suggest a mechanisms by which platelets may participate in tissue injury which is mediated by oxygen radical products from activated neutrophils

  1. Permafrost oxygen isotope ratios and chronology of three cores from Antarctica

    International Nuclear Information System (INIS)

    Stuiver, M.; Yang, I.C.; Denton, G.H.

    1976-01-01

    It is stated that permafrost core sediments, associated with the last intrusion of the Ross Ice Shelf in the New Harbour region, were deposited in marine (0 - 85 m deep) as well as freshwater environments (100 - 125 m). Oxygen isotope ratio measurements on these cores provide palaeoclimatic information and show that the extension of the Ross Ice Shelf predates 150,000 yr BP, whereas the radiocarbon date of its retreat is about 5,800 yr b.p. (author)

  2. Analytical techniques for determination of framework oxygen isotope ratio of wairakite

    International Nuclear Information System (INIS)

    Noto, Masami; Kusakabe, Minoru; Uchida, Tetsuo.

    1990-01-01

    Dehydration techniques were developed for the analysis of isotopic ratios of framework oxygen of wairakite, one of calcium zeolites often encountered in geothermal systems. Channel water in wairakite were separated from aluminosilicate framework by dehydration in vacuum at 300 deg, 400 deg, 450 deg, 500 deg, 550 deg, 650 deg, 750 deg, 850 deg, and 950 degC, and by stepwise heating at temperatures from 300 deg to 700 degC. The oxygen isotopic analyses of the separated channel water and the residual aluminosilicate framework of wairakite indicated that dehydration at temperatures higher than 400 degC is accompanied by isotopic exchang between the framework oxygen and dehydrating water vapor. The isotopic exchange during the high temperature dehydration makes the δ 18 O of framework oxygen lower and that of channel water higher than those obtained by dehydration at 300 degC. These results are consistent with dehydration behavior of wairakite under vacuum that the maximum rate of dehydration of channel water is attained at about 400 degC. Consequently it is recommended to dehydrate wairakite at a temperature as low as possible in order to avoid the effect of the isotopic exchange. Time required to attain complete dehydration becomes longer with lowering the temperature of dehydration. To compromise these conflicting effects, the optimum conditions of dehydration have been found that most of the channel water is dehydrated at 300 degC for 24 hours, followed by stepwise heating for additional 17 hours up to 700 degC. We obtained a better than ± 0.1 reproducibility for the framework oxygen isotopic determinations with this technique. (author)

  3. Enhancement by platelets of oxygen radical responses of human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, K.K.; Powell, J.; Johnson, K.J.; Ward, P.A.

    1986-03-01

    When human blood neutrophils were incubated with immune complexes (consisting of IgG antibody) in the presence of platelets, there was a 2 to 10 fold enhancement in the generation of O-/sub 2/ and H/sub 2/O/sub 2/. This enhancement phenomenon was proportional to the dose of immune complex added and the number of platelets present. The response was not agonist specific since similar enhancement also occurred with the following agonists: phorbol myristate acetate, opsonized zymosan particles and the chemotactic peptide N-formyl-met-leu-phe. The platelet related phenomenon of enhanced O-/sub 2/ generation could not be reproduced by the addition of serotonin, histamine or platelet-derived growth factor and was not affected by prior treatment of platelets with cyclooxygenase inhibitors (indomethacin, piroxicam) or lipoxygenase inhibitors (nafazatrom, BW755C or nordihydroguaiaretic acid). However, activation of platelets by thrombin caused release into the platelet supernatant fluid of a factor that, only in the presence of immune complexes, caused enhanced O-/sub 2/ responses to neutrophils. These data indicate that platelets potentiate oxygen radical responses of human neutrophils and suggest a mechanisms by which platelets may participate in tissue injury which is mediated by oxygen radical products from activated neutrophils.

  4. Measurements of the 18O/16O ratio of dissolved oxygen in the North Sea during FLEX 76

    International Nuclear Information System (INIS)

    Foerstel, H.; Zielke, H.

    1978-01-01

    In spring 1976 a special part of the North Sea was the subject of research by a group of international scientists in the so-called 'Fladenground Experiment 1976 (FLEX 76). The team participated aboard the research ship Planet in an attempt to study the oxygen exchange between sea and atmosphere and the mixing within the water column. The water samples were taken in a small area during a period of two weeks. The water depth did not exceed 140 m. The dissolved oxygen was extracted using a vacuum system, and stored after adsorption on a molecular sieve. In the laboratory the oxygen was burned to carbon dioxide and the 18 O/ 16 O ratio was determined with a mass spectrometer. At the surface the sea water was saturated with air and showed the 18 O/ 16 O ratio of atmospheric oxygen. Towards the deeper layers the oxygen was consumed, and as a result the heavier isotope 18 O was enriched. This enrichment can be seen in a very marked manner even in the upper 100 m of the sea. In our case the 18 O enrichment indicates that the mixing processes did not exchange the oxygen of the layers beneath the surface rapidly. (Auth.)

  5. Enhancement of aerobic biodegradation in an oxygen-limiting environment using a saponin-based microbubble suspension

    International Nuclear Information System (INIS)

    Choi, Yong Ju; Kim, Young-Jin; Nam, Kyoungphile

    2009-01-01

    This study investigated the ability of a saponin-based microbubble suspension to enhance aerobic biodegradation of phenanthrene by subsurface delivery. As the microbubble suspension flowed through a sand column pressure buildup and release was repeatedly observed, which delivered oxygen to the less permeable regions. Burkholderia cepacia RPH1, a phenanthrene-degrading bacterium, was mainly transported in a suspended form in the microbubble suspension. When three pore volumes of the microbubble suspension containing B. cepacia RPH1 was introduced into a column contaminated with phenanthrene (100 mg/kg), the oxygen content declined to 5% from an initial value of 20% within 5 days and correspondingly, 34.4% of initial phenanthrene was removed in 8 days. The addition of two further three pore volumes enhanced the biodegradation efficiency by a factor of 2.2. Our data suggest that a saponin-based microbubble suspension could be a potential carrier for enhancing the aerobic biodegradation under an oxygen-limiting environment. - Microbubble suspension can enhance the phenanthrene biodegradation under an oxygen-limiting condition.

  6. Enhancement of aerobic biodegradation in an oxygen-limiting environment using a saponin-based microbubble suspension

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Ju; Kim, Young-Jin [Department of Civil and Environmental Engineering, Seoul National University, Shillim-dong, Gwanak-gu, Seoul (Korea, Republic of); Nam, Kyoungphile, E-mail: kpnam@snu.ac.k [Department of Civil and Environmental Engineering, Seoul National University, Shillim-dong, Gwanak-gu, Seoul (Korea, Republic of)

    2009-08-15

    This study investigated the ability of a saponin-based microbubble suspension to enhance aerobic biodegradation of phenanthrene by subsurface delivery. As the microbubble suspension flowed through a sand column pressure buildup and release was repeatedly observed, which delivered oxygen to the less permeable regions. Burkholderia cepacia RPH1, a phenanthrene-degrading bacterium, was mainly transported in a suspended form in the microbubble suspension. When three pore volumes of the microbubble suspension containing B. cepacia RPH1 was introduced into a column contaminated with phenanthrene (100 mg/kg), the oxygen content declined to 5% from an initial value of 20% within 5 days and correspondingly, 34.4% of initial phenanthrene was removed in 8 days. The addition of two further three pore volumes enhanced the biodegradation efficiency by a factor of 2.2. Our data suggest that a saponin-based microbubble suspension could be a potential carrier for enhancing the aerobic biodegradation under an oxygen-limiting environment. - Microbubble suspension can enhance the phenanthrene biodegradation under an oxygen-limiting condition.

  7. CARBON AND OXYGEN ISOTOPIC RATIOS FOR NEARBY MIRAS

    Energy Technology Data Exchange (ETDEWEB)

    Hinkle, Kenneth H. [National Optical Astronomy Observatory P.O. Box 26732, Tucson, AZ 85726 (United States); Lebzelter, Thomas [Department of Astrophysics, University of Vienna Türkenschanzstrasse 17, A-1180 Vienna (Austria); Straniero, Oscar, E-mail: khinkle@noao.edu, E-mail: thomas.lebzelter@univie.ac.at, E-mail: straniero@oa-teramo.inaf.it [INAF, Osservatorio Astronomico di Collurania I-64100 Teramo (Italy)

    2016-07-01

    Carbon and oxygen isotopic ratios are reported for a sample of 46 Mira and SRa-type variable asymptotic giant branch (AGB) stars. Vibration–rotation first and second-overtone CO lines in 1.5–2.5 μ m spectra were measured to derive isotopic ratios for {sup 12}C/{sup 13}C, {sup 16}O/{sup 17}O, and {sup 16}O/{sup 18}O. Comparisons with previous measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of M-stars have main sequence masses ≤2 M {sub ⊙} and have not experienced sizable third dredge-up (TDU) episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the six C-stars in the sample three have clear evidence relating their origin to the occurrence of TDU. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars, as represented by our sample of long period variables (LPVs), shows a large spread of {sup 16}O/{sup 17}O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2–2 M {sub ⊙} stars after the first dredge-up. In contrast, the {sup 16}O/{sup 18}O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This is most probably a consequence of the the decrease with time of the {sup 16}O/{sup 18}O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extra-mixing. This may indicate that the extra-mixing process is hampered at high metallicity, or, equivalently, favored at low metallicity. Similarly to O

  8. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Science.gov (United States)

    Chou, Chia-Man; Lai, Chih-Chang; Chang, Chih-Wei; Wen, Kai-Shin; Hsiao, Vincent K. S.

    2017-07-01

    We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO)-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD) incorporated with radio-frequency (r.f.)-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD)-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC) structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr). High oxygen vapor pressure (150 mTorr) and low r.f. power (10 W) are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  9. Combined Effect of Contraction Ratio and Chamber Pressure on the Performance of a Gaseous Hydrogen-Liquid-Oxygen Combustor for a Given Propellant Weight Flow and Oxidant-Fuel Ratio

    Science.gov (United States)

    Hersch, Martin

    1961-01-01

    The effect of contraction ratio and chamber pressure on the combustion performance of a gaseous-hydrogen-liquid-oxygen combustor was investigated analytically and experimentally. The experiment was conducted with a "two-dimensional" gaseous-hydrogen-liquid-oxygen engine of about 150-pound thrust. The contraction ratio was varied from 1.5 to 6 by changing the nozzle throat area. This variation resulted in a chamber pressure variation of about 25 to 120 pounds per square inch. The experimental results were corrected for heat transfer to the engine walls and momentum pressure losses. The experimental performance, as evaluated in terms of characteristic exhaust velocity, was 98 percent of theoretical at contraction ratios greater than 3 but decreased very rapidly at smaller contraction ratios. The heat-transfer rate increased with increasing contraction ratio and chamber pressure; it was about 1 Btu per square inch per second at a contraction ratio of 1.5 and increased to about 3 at a contraction ratio of 6. The combined effects of contraction-ratio and chamber-pressure changes on performance were investigated analytically with a mixing model and a vaporization model. The mixing model predicted very poor mixing at contraction ratios below 3 and almost perfect mixing at higher contraction ratios. The performance predicted by the vaporization model was very close to 100 percent for all contraction ratios. From these results, it was concluded that the performance was limited by poor mixing at low contraction ratios and chamber pressures.

  10. Radiosensitization of mammalian cells by misonidazole and oxygen: DNA damage exposed by Micrococcus luteus enzymes

    International Nuclear Information System (INIS)

    Skov, K.A.; Palcic, B.; Skarsgard, L.D.

    1979-01-01

    When misonidazole is present during irradiation of hypoxic mammalian cells, an enhancement of single-strand breaks (SSB) in DNA is observed. Oxygen also enhances SSB, presumably in a manner similar to that of misonidazole. The dose-modifying factor (DMF) for 15 mM misonidazole was found to be 3.4, compared to an oxygen enhancement ratio (OER) of 3.5. Another class of DNA damage, namely, sites exposed by an extract of Micrococcus luteus, was examined. Radiation-induced M. luteus extract-sensitive sites (MLS) were also found to be enhanced by the presence of misonidazole or molecular oxygen. The DMF for this damage by 15 mM misonidazole was 1.6 while the OER was 2.5. The ratio of MLS to SSB is approximately 1.25 under hypoxia, 0.9 in the presence of oxygen, and 0.6 in the presence of 15 mM misonidazole under hypoxic conditions. Incubation with misonidazole under conditions which are toxic to mammalian cells (37 0 C, hypoxia), and which result in many SSB, produces no detectable lesions sensitive to the M. luteus extract

  11. Pilot-scale incineration testing of an oxygen-enhanced combustion system

    International Nuclear Information System (INIS)

    Waterland, L.R.; Lee, J.W.; Staley, L.J.

    1989-01-01

    This paper discusses a series of demonstration tests of the American Combustion, Inc., Thermal Destruction System performed under the Superfund innovative technology evaluation (SITE) program. This oxygen-enhanced combustion system was retrofit to the pilot-scale rotary kiln incinerator at EPA's Combustion Research Facility. This system's performance was tested firing contaminated soil from the Stringfellow Superfund Site, both alone and mixed with a hazardous coal tar waste (decanter tank tar sludge form coking operations - K087). Comparative performance with conventional incinerator operation was tested. Test results show that compliance with the hazardous waste incinerator performance standards of 99.99 percent principal organic hazardous constituent (POHC) destruction and removal efficiency (DRE) and particulate emissions of less than 180 mg/dscm at 7 percent O 2 was achieved for all tests. The Pyretron oxygen-enhanced combustion system allowed in-compliance operation at double the mixed waste feedrate possible with conventional incineration, and with a 60 percent increase in charge weight than possible with conventional incineration

  12. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Directory of Open Access Journals (Sweden)

    Chia-Man Chou

    2017-07-01

    Full Text Available We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD incorporated with radio-frequency (r.f.-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr. High oxygen vapor pressure (150 mTorr and low r.f. power (10 W are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  13. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: simultaneous oxygen and pH monitoring.

    Science.gov (United States)

    Liu, Rui; Xiao, Teng; Cui, Weipan; Shinar, Joseph; Shinar, Ruth

    2013-05-17

    Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs' broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ~20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ0/τ100 (PL decay time τ at 0% O2/τ at 100% O2) that is often used to express S increases ×1.9 to 20.7 relative to the lower molecular weight PS, where this ratio is 11.0. This increase reduces to ×1.7 when the PEG is added (τ0/τ100=18.2), but the latter results in an increase ×2.7 in the PL intensity. The sensor's response time is <10s in all cases. The microporous structure of these blended films, with PEG decorating PS pores, serves a dual purpose. It results in light scattering that reduces the EL that is waveguided in the substrate of the OLEDs and

  14. Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes

    KAUST Repository

    Wu, Xiao-Yu

    2015-01-01

    © the Owner Societies. Hydrogen production from water thermolysis can be enhanced by the use of perovskite-type mixed ionic and electronic conducting (MIEC) membranes, through which oxygen permeation is driven by a chemical potential gradient. In this work, water thermolysis experiments were performed using 0.9 mm thick La0.9Ca0.1FeO3-δ (LCF-91) perovskite membranes at 990 °C in a lab-scale button-cell reactor. We examined the effects of the operating conditions such as the gas species concentrations and flow rates on the feed and sweep sides on the water thermolysis rate and oxygen flux. A single step reaction mechanism is proposed for surface reactions, and three-resistance permeation models are derived. Results show that water thermolysis is facilitated by the LCF-91 membrane especially when a fuel is added to the sweep gas. Increasing the gas flow rate and water concentration on the feed side or the hydrogen concentration on the sweep side enhances the hydrogen production rate. In this work, hydrogen is used as the fuel by construction, so that a single-step surface reaction mechanism can be developed and water thermolysis rate parameters can be derived. Both surface reaction rate parameters for oxygen incorporation/dissociation and hydrogen-oxygen reactions are fitted at 990 °C. We compare the oxygen fluxes in water thermolysis and air separation experiments, and identify different limiting steps in the processes involving various oxygen sources and sweep gases for this 0.9 mm thick LCF-91 membrane. In the air feed-inert sweep case, the bulk diffusion and sweep side surface reaction are the two limiting steps. In the water feed-inert sweep case, surface reaction on the feed side dominates the oxygen permeation process. Yet in the water feed-fuel sweep case, surface reactions on both the feed and sweep sides are rate determining when hydrogen concentration in the sweep side is in the range of 1-5 vol%. Furthermore, long term studies show that the surface

  15. Oxygenated hemoglobin diffuse reflectance ratio for in vitro detection of human gastric pre-cancer

    Science.gov (United States)

    Li, L. Q.; Wei, H. J.; Guo, Z. Y.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Zhong, H. Q.; Li, X. Y.; Zhao, Q. L.; Guo, X.

    2010-07-01

    Oxygenated hemoglobin diffuse reflectance (DR) ratio (R540/R575) method based on DR spectral signatures is used for early diagnosis of malignant lesions of human gastric epithelial tissues in vitro. The DR spectra for four different kinds of gastric epithelial tissues were measured using a spectrometer with an integrating sphere detector in the spectral range from 400 to 650 nm. The results of measurement showed that the average DR spectral intensity for the epithelial tissues of normal stomach is higher than that for the epithelial tissues of chronic and malignant stomach and that for the epithelial tissues of chronic gastric ulcer is higher than that for the epithelial tissues of malignant stomach. The average DR spectra for four different kinds of gastric epithelial tissues show dips at 542 and 577 nm owing to absorption from oxygenated Hemoglobin (HbO2). The differences in the mean R540/R575 ratios of HbO2 bands are 6.84% between the epithelial tissues of normal stomach and chronic gastric ulcer, 14.7% between the epithelial tissues of normal stomach and poorly differentiated gastric adenocarcinoma and 22.6% between the epithelial tissues of normal stomach and undifferentiated gastric adenocarcinoma. It is evident from results that there were significant differences in the mean R540/R575 ratios of HbO2 bands for four different kinds of gastric epithelial tissues in vitro ( P < 0.01).

  16. The analysis of irradiated nuclear fuel and cladding materials, determination of carbon, hydrogen and oxygen/metal ratio

    International Nuclear Information System (INIS)

    Jones, I.G.

    1976-02-01

    Equipment has been developed for the determination of carbon, hydrogen and oxygen/metal ratio on irradiated fuels, of carbon in stainless steel cladding materials and in graphite rich deposits, and of hydrogen in zircaloy. Carbon is determined by combustion to carbon dioxide which is collected and measured manometrically, hydrogen by vacuum extraction followed by diffusion through a palladium thimble, and oxygen/metal ratio by CO/CO 2 equilibration. A single set of equipment was devised in order to minimise the time and work involved in changing to a different set of equipment in a separate box, for each type of analysis. For each kind of analysis, alterations to the apparatus are involved but these can be carried out with the basic set in position in a shielded cell, although to do so it is necessary to obtain access via the gloves on the fibre-glass inner glove box. This requires a removal of samples emitting radiation, by transfer to an adjoining cell. A single vacuum system is employed. This is connected through a plug in the lead wall of the shielded cell, and couplings in the glove box wall to the appropriate furnaces. Carbon may be determined, in stainless steel containing 400 to 800 ppm C, with a coefficient of variation of +- 2%. On deposits containing carbon, the coefficient of variation is better than +- 1% for 2 to 30 mg of carbon. Hydrogen, at levels between 30 and 200 ppm in titanium can be determined with a coefficient of variation of better than +- 5%. Titanium has been used in lieu of zircaloy since standardised zircaloy specimens are not available. The precision for oxygen/metal ratio is estimated to be +- 0.001 Atoms oxygen. Sample weights of 200 mg are adequate for most analyses. (author)

  17. Oxygen-enhanced MRI vs. quantitatively assessed thin-section CT: Pulmonary functional loss assessment and clinical stage classification of asthmatics

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Koyama, Hisanobu [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Matsumoto, Keiko [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Department of Radiology, University of Yamanashi, 1100, Shimogatou, Chuo, Yamanashi, 409-3898 (Japan); Onishi, Yumiko [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Nogami, Munenobu [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Division of Image-Based Medicine, Institute of Biomedical Research and Innovation, 2-2 Minatojima Minamimachi Chuo-ku, Kobe, Hyogo, 650-0047 (Japan); Takenaka, Daisuke; Matsumoto, Sumiaki; Sugimura, Kazuro [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan)

    2011-01-15

    Purpose: The purpose of this study was to prospectively compare the efficacy of oxygen-enhanced MR imaging (O{sub 2}-enhanced MRI) and CT for pulmonary functional loss assessment and clinical stage classification of asthmatics. Materials and methods: O{sub 2}-enhanced MRI, CT and %FEV{sub 1} measurement were used 34 consecutive asthmatics classified into four stages ('Mild Intermittent [n = 7]', 'Mild Persistent [n = 8], 'Moderate Persistent [n = 14]' and 'Severe Persistent [n = 5]'). Relative enhancement ratio maps for every subject were generated, and determine mean relative enhancement ratios (MRERs). Mean lung density (MLD) and the airway wall area (WA) corrected by body surface area (WA/BSA) were also measured on CT. To compare the efficacy of the two methods for pulmonary functional loss assessment, all indexes were correlated with %FEV{sub 1}. To determine the efficacy of the two methods for clinical stage classification, all parameters for the four clinical stages were statistically compared. Results: %FEV{sub 1} showed fair or moderate correlation with all parameters (0.15 {<=} r{sup 2} {<=} 0.30, p < 0.05). WA, WA/BSA and MRER of the 'Severe Persistent' group were significantly larger than those of 'Mild Intermittent' and 'Mild Persistent' groups (p < 0.05), and MRER of the 'Moderate Persistent' group significantly lower than that of the 'Mild Intermittent' group (p < 0.05). Conclusion: O{sub 2}-enhanced MRI is as effective as CT for pulmonary functional loss assessment and clinical stage classification of asthmatics.

  18. Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Changhua [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China); College of Chemistry and Biology, Beihua University, Jilin 132013 (China); Zhang, Xintong, E-mail: xtzhang@nenu.edu.cn [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China); Liu, Yichun [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China)

    2015-12-15

    Highlights: • Oxygen reduction reaction (ORR) in photocatalysis process is focused. • Multi-electron transfer ORR is reviewed. • This review provides a guide to access to enhanced photocatalysis via multi-electron transfer. - Abstract: Semiconductor photocatalysis has attracted significant interest for solar light induced environmental remediation and solar fuel generation. As is well known, photocatalytic performance is determined by three steps: photoexcitation, separation and transport of photogenerated charge carriers, and surface reactions. To achieve higher efficiency, significant efforts have been made on improvement of efficiency of above first two steps, which have been well documented in recent review articles. In contrast, this review intends to focus on strategies moving onto the third step of improvement for enhanced photocatalysis wherein active oxygen species including superoxide radical, hydrogen peroxide, hydroxyl radical are in situ detected. Particularly, surface electron-transfer reduction of oxygen over single component photocatalysts is reviewed and systems enabling multi-electron transfer induced oxygen reduction reaction (ORR) are highlighted. It is expected this review could provide a guideline for readers to better understand the critical role of ORR over photocatalyst in charge carrier separation and transfer and obtain reliable results for enhanced aerobic photocatalysis.

  19. OH radicals from the indirect actions of X-rays induce cell lethality and mediate the majority of the oxygen enhancement effect.

    Science.gov (United States)

    Hirayama, Ryoichi; Ito, Atsushi; Noguchi, Miho; Matsumoto, Yoshitaka; Uzawa, Akiko; Kobashi, Gen; Okayasu, Ryuichi; Furusawa, Yoshiya

    2013-11-01

    We examined OH radical-mediated indirect actions from X irradiation on cell killing in wild-type Chinese hamster ovary cell lines (CHO and AA8) under oxic and hypoxic conditions, and compared the contribution of direct and indirect actions under both conditions. The contribution of indirect action on cell killing can be estimated from the maximum degree of protection by dimethylsulfoxide, which suppresses indirect action by quenching OH radicals without affecting the direct action of X rays on cell killing. The contributions of indirect action on cell killing of CHO cells were 76% and 50% under oxic and hypoxic conditions, respectively, and those for AA8 cells were 85% and 47%, respectively. Therefore, the indirect action on cell killing was enhanced by oxygen during X irradiation in both cell lines tested. Oxygen enhancement ratios (OERs) at the 10% survival level (D10 or LD90) for CHO and AA8 cells were 2.68 ± 0.15 and 2.76 ± 0.08, respectively. OERs were evaluated separately for indirect and direct actions, which gave the values of 3.75 and 2.01 for CHO, and 4.11 and 1.32 for AA8 cells, respectively. Thus the generally accepted OER value of ∼3 is best understood as the average of the OER values for both indirect and direct actions. These results imply that both indirect and direct actions on cell killing require oxygen for the majority of lethal DNA damage, however, oxygen plays a larger role in indirect than for direct effects. Conversely, the lethal damage induced by the direct action of X rays are less affected by oxygen concentration.

  20. Removal method of fluorescent dyes as pretreatment for measurement of major ion concentrations and hydrogen and oxygen isotopic ratios

    International Nuclear Information System (INIS)

    Nakata, Kotaro; Hasegawa, Takuma; Kashiwaya, Koki; Kodama, Hiroki; Miyajima, Tohru

    2011-01-01

    The major ion concentration and isotope ratio of hydrogen and oxygen can provide important information for migration of groundwater. Sometimes, quantitative estimation of these chemical and isotopic characteristics of solution is necessary for groundwater containing fluorescent dyes, which are used in drilling borehole and tracer experiments. However, sometimes correct estimation is disturbed by dyes and they become a cause of troubles for measurement equipments. Thus development of method to remove dyes is required so that the characteristics of groundwater can be estimated without the negative effect of dyes on measurement or equipments. In this study, removal of four representative dyes (Uranin, Eosin, Naphthalenesulfonic acid sodium(NAP) and Amino G acid potassium salt (AG)) was investigated. Uranin and Eosin were found to be removed by non-ionic synthetic resin: HP2MG. 99.99% of the dyes were removed from initial solutions containing dyes with 10 mg/L after contact with resin, while the contact had little effect on ion concentrations and oxygen and hydrogen isotope ratios. Thus the chemical and isotopic characteristics of groundwater samples containing Uranin and Eosin can be obtained by using the HP2MG resin. On the other hand, the NAP and AG were found to be difficult to remove by the HP2MG resin but they were able to be removed by anion exchange resin (Dowex 1x8). Though contact of solution with Dowex 1x8 did not affect cation concentrations and hydrogen and oxygen isotope ratios, anion concentrations were changed by the contact. Therefore the Dowex 1x8 is only applicable to estimation of the cation concentrations and isotope ratio of hydrogen and oxygen. When both anion and cation concentrations from the samples were necessary, Uranin or Eosin were recommended as a tracer in drilling or tracer experiments. (author)

  1. Efficacy of liver parenchymal enhancement and liver volume to standard liver volume ratio on Gd-EOB-DTPA-enhanced MRI for estimation of liver function

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Tomohide; Fukukura, Yoshihiko; Kamimura, Kiyohisa; Takumi, Koji; Umanodan, Aya; Nakajo, Masayuki [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Radiology, Kagoshima City (Japan); Ueno, Shinichi [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Surgical Oncology and Digestive Surgery, Kagoshima City (Japan)

    2014-04-15

    We aimed to develop and assess the efficacy of a liver function index that combines liver enhancement and liver volume to standard liver volume (LV/SLV) ratio on gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MRI. In all, 111 patients underwent a Gd-EOB-DTPA-enhanced MRI, including T1 mapping, before and 20 min after Gd-EOB-DTPA administration. We calculated the following Gd-EOB-DTPA-enhanced MRI-based liver function indices: relative enhancement of the liver, corrected enhancement of the liver-to-spleen ratio, LSC{sub N}20, increase rate of the liver-to-muscle ratio, reduction rate of T1 relaxation time of the liver, ΔR1 of the liver and K{sub Hep}; the indices were multiplied by the LV/SLV ratio. We calculated the correlations between an indocyanine green (ICG) clearance and the Gd-EOB-DTPA-enhanced MRI-based liver function indices multiplied by the LV/SLV ratio, by using Pearson correlation analysis. There were significant correlations between all Gd-EOB-DTPA-enhanced MRI-based liver function indices and ICG clearance (r = -0.354 to -0.574, P < 0.001). All Gd-EOB-DTPA-enhanced MRI-based liver function indices multiplied by the LV/SLV ratio (r = -0.394 to -0.700, P < 0.001) were more strongly correlated with the ICG clearance than those without multiplication by the LV/SLV ratio. Gd-EOB-DTPA-enhanced MRI-based liver function indices that combine liver enhancement and the LV/SLV ratio may more reliably estimate liver function. (orig.)

  2. Synthesis of surface oxygen-deficient BiPO{sub 4} nanocubes with enhanced visible light induced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Bingtao; Yin, Haoyong; Li, Tao; Gong, Jianying; Lv, Shumei; Nie, Qiulin, E-mail: yhy@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou (China)

    2017-05-15

    The visible light driven BiPO{sub 4} nanocubes with sufficient surface oxygen deficiency were fabricated by a hydrothermal process and subsequently ultrasonic assistant Fe reduction process. The products were characterized by XRD, DRS, XPS, SEM and TEM which showed that the BiPO{sub 4} had cuboid-like shape with a smooth surface and clear edges and the oxygen vacancies were successfully introduced on the surface of the BiPO{sub 4} nanocubes. The as prepared oxygen-deficient BiPO{sub 4} nanocubes showed greatly enhanced visible light induced photocatalytic activity in degradation of Rhodamine B. The enhanced photocatalytic performance and expanded visible light response of BiPO{sub 4} may be due to the introduction of surface oxygen vacancies which can generate the oxygen vacancies mid-gap states lower to the conduction band of BiPO{sub 4}. (author)

  3. Oxygen-to-metal ratio control during fabrication of mixed oxide fast breeder reactor fuel pellets

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Benecke, M.W.; Jentzen, W.R.; McCord, R.B.

    1979-05-01

    Oxygen-to-metal ratio (O/M) of mixed oxide fuel pellets can be controlled during fabrication by proper selection of binder (type and content) and sintering conditions. Sintering condition adjustments involved the passing of Ar--8% H 2 sintering gas across a cryostat ice bath controlled to temperatures ranging from -5 to -60 0 C to control as-sintered pellet O/M ratio. As-sintered fuel pellet O/M decreased with increasing Sterotex binder and PuO 2 concentrations, increasing sintering temperature, and decreasing sintering gas dew point. Approximate relationships between Sterotex binder level and O/M were established for PuO 2 --UO 2 and PuO 2 --ThO 2 fuels. O/M was relatively insensitive to Carbowax binder concentration. Several methods of increasing O/M using post-sintering pellet heat treatments were demonstrated, with the most reliable being a two-step process of first raising the O/M to 2.00 (stoichiometric) at 650 0 C in Ar--8% H 2 bubbled through H 2 O, followed by hydrogen reduction to specification O/M in oxygen-gettered Ar-8% H 2 at temperatures ranging from 1200 to 1690 0 C

  4. Dual temperature effects on oxygen isotopic ratio of shallow-water coral skeleton: Consequences on seasonal and interannual records

    Science.gov (United States)

    Juillet-Leclerc, A.; Reynaud, S.

    2009-04-01

    Oxygen isotopic ratio from coral skeleton is regarded for a long time as promising climate archives at seasonal scale. Although in isotopic disequilibrium relative to seawater, it is supposed to obey to the isotope thermometer. Indeed, coral oxygen isotopic records are strongly temperature dependent, but d18O-temperature calibrations derived from different corals are highly variable. The isotope thermometer assumption does not take into account vital effects due to biogenic origin of the mineral. Corals are animals living in symbiosis with algae (zooxanthellae). Interactions between symbiont photosynthesis and coral skeleton carbonation have been abundantly observed but they remain poorly understood and the effects of photosynthesis on coral growth and skeleton oxygen ratio are ignored. Coral cultured under two light conditions enabled to relate metabolic parameters and oxygen isotopic variability with photosynthetic activity. By examining responses provided by each colony they revealed that photosynthesis significantly affected d18O, by an opposite sense compared with the sole temperature influence. Since temperature and light changes are associated during seasonal variations, this complicates the interpretation of seasonal record. Additionally, this complexity is amplified because photosynthetic activity is also directly impacted by temperature variability. Thus, the annual isotopic amplitude due to the "physical" temperature influence is partly compensated through photosynthesis. Similar opposite effect is also shown by extension rate of the cultured colonies. First, we will examine and quantify consequences of photosynthesis on growth rate and oxygen isotopic signature, from cultured corals. Second, we will consider the consequences of this vital effect on data series, at seasonal and interannual time scales.

  5. Enhanced Hydrophilicity and Biocompatibility of Dental Zirconia Ceramics by Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Ching-Chou Wu

    2015-02-01

    Full Text Available Surface properties play a critical role in influencing cell responses to a biomaterial. The objectives of this study were (1 to characterize changes in surface properties of zirconia (ZrO2 ceramic after oxygen plasma treatment; and (2 to determine the effect of such changes on biological responses of human osteoblast-like cells (MG63. The results indicated that the surface morphology was not changed by oxygen plasma treatment. In contrast, oxygen plasma treatment to ZrO2 not only resulted in an increase in hydrophilicity, but also it retained surface hydrophilicity after 5-min treatment time. More importantly, surface properties of ZrO2 modified by oxygen plasma treatment were beneficial for cell growth, whereas the surface roughness of the materials did not have a significant efficacy. It is concluded that oxygen plasma treatment was certified to be effective in modifying the surface state of ZrO2 and has the potential in the creation and maintenance of hydrophilic surfaces and the enhancement of cell proliferation and differentiation.

  6. Diffusion Limitation and Hyperoxic Enhancement of Oxygen Consumption in Zooxanthellate Sea Anemones, Zoanthids, and Corals.

    Science.gov (United States)

    Shick, J M

    1990-08-01

    Depending on their size and morphology, anthozoan polyps and colonies may be diffusion-limited in their oxygen consumption, even under well-stirred, air-saturated conditions. This is indicated by an enhancement of oxygen consumption under steady-state hyperoxic conditions that simulate the levels of O2 produced photosynthetically by zooxanthellae in the hosts' tissues. Such hyperoxia in the tissues of zooxanthellate species negates the effect of the diffusive boundary layer, and increases the rate of oxygen consumption; thus, in many cases, the rate of respiration measured under normoxia in the dark may not be representative of the rate during the day when the zooxanthellae are photosynthesizing and when the supply of oxygen for respiration is in the tissues themselves, not from the environment. These results have implications in respirometric methodology and in calculating the rate of gross photosynthesis in energetic studies. The activity of cytochrome c oxidase is higher in aposymbiotic than in zooxanthellate specimens of the sea anemone Aiptasia pulchella, and this may indicate a compensation for the relative hypoxia in the tissues of the former, enhancing the delivery of oxygen to the mitochondria from the environment.

  7. Detection of Molecular Oxygen at Low Concentrations Using Quartz Enhanced Photoacoustic Spectroscopy

    Directory of Open Access Journals (Sweden)

    Andreas Pohlkötter

    2010-09-01

    Full Text Available Molecular oxygen is detected at low concentrations using photoacoustic spectroscopy despite its unfavorable photoacoustic properties. The system consists of a seed laser diode, a tapered amplifier and a quartz tuning fork based spectrophone, thus employing quartz enhanced photoacoustic spectroscopy (QEPAS. With this system a detection limit of 13 ppm is reached with a compact and long term stable setup. Further improvement of the detection limit is possible by adding suitable gases to the sample gas that promote the radiationless de-excitation of the oxygen molecules.

  8. Carbon and oxygen abundances in cool metal-rich exoplanet hosts: A case study of the C/O ratio of 55 Cancri

    International Nuclear Information System (INIS)

    Teske, Johanna K.; Cunha, Katia; Schuler, Simon C.; Griffith, Caitlin A.; Smith, Verne V.

    2013-01-01

    The super-Earth exoplanet 55 Cnc e, the smallest member of a five-planet system, has recently been observed to transit its host star. The radius estimates from transit observations, coupled with spectroscopic determinations of mass, provide constraints on its interior composition. The composition of exoplanetary interiors and atmospheres are particularly sensitive to elemental C/O ratio, which to first order can be estimated from the host stars. Results from a recent spectroscopic study analyzing the 6300 Å [O I] line and two C I lines suggest that 55 Cnc has a carbon-rich composition (C/O = 1.12 ± 0.09). However, oxygen abundances derived using the 6300 Å [O I] line are highly sensitive to a Ni I blend, particularly in metal-rich stars such as 55 Cnc ([Fe/H] =0.34 ± 0.18). Here, we further investigate 55 Cnc's composition by deriving the carbon and oxygen abundances from these and additional C and O absorption features. We find that the measured C/O ratio depends on the oxygen lines used. The C/O ratio that we derive based on the 6300 Å [O I] line alone is consistent with the previous value. Yet, our investigation of additional abundance indicators results in a mean C/O ratio of 0.78 ± 0.08. The lower C/O ratio of 55 Cnc determined here may place this system at the sensitive boundary between protoplanetary disk compositions giving rise to planets with high (>0.8) versus low (<0.8) C/O ratios. This study illustrates the caution that must applied when determining planet host star C/O ratios, particularly in cool, metal-rich stars.

  9. Optimization of cereal-legume blend ratio to enhance the nutritional ...

    African Journals Online (AJOL)

    Optimization of cereal-legume blend ratio to enhance the nutritional quality and functional property of complementary food. ... Ethiopian Journal of Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current ...

  10. Hydrogen and oxygen stable isotope ratios of milk in the United States.

    Science.gov (United States)

    Chesson, Lesley A; Valenzuela, Luciano O; O'Grady, Shannon P; Cerling, Thure E; Ehleringer, James R

    2010-02-24

    Models of hydrogen and oxygen incorporation in human tissues recognize the impact of geographic location on the isotopic composition of fluid intake, but inputs can include nonlocal beverages, such as milk. Milk and cow drinking water were collected from dairies, and commercially available milk was purchased from supermarkets and fast food restaurants. It was hypothesized that milk water delta(2)H and delta(18)O values record geographic location information. Correlations between milk water isotope ratios and purchase location tap water were significant. However, the amount of variation in milk delta(2)H and delta(18)O values explained by tap water was low, suggesting a single estimation of fluid input isotope ratios may not always be adequate in studies. The delta(2)H and delta(18)O values of paired milk and cow drinking water were related, suggesting potential for geographical origin assignment using stable isotope analysis. As an application example, milk water delta(18)O values were used to predict possible regions of origin for restaurant samples.

  11. Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate: inoculum ratios.

    Science.gov (United States)

    Hobbs, Shakira R; Landis, Amy E; Rittmann, Bruce E; Young, Michelle N; Parameswaran, Prathap

    2018-01-01

    Food waste has a high energy potential that can be converted into useful energy in the form of methane via anaerobic digestion. Biochemical Methane Potential assays (BMPs) were conducted to quantify the impacts on methane production of different ratios of food waste. Anaerobic digester sludge (ADS) was used as the inoculum, and BMPs were performed at food waste:inoculum ratios of 0.42, 1.42, and 3.0g chemical oxygen demand/g volatile solids (VS). The 1.42 ratio had the highest CH 4 -COD recovery: 90% of the initial total chemical oxygen demand (TCOD) was from food waste, followed by ratios 0.42 and 3.0 at 69% and 57%, respectively. Addition of food waste above 0.42 caused a lag time for CH 4 production that increased with higher ratios, which highlighted the negative impacts of overloading with food waste. The Gompertz equation was able to represent the results well, and it gave lag times of 0, 3.6 and 30days and maximum methane productions of 370, 910, and 1950mL for ratios 0.42, 1.42 and 3.0, respectively. While ratio 3.0 endured a long lag phase and low VSS destruction, ratio 1.42 achieved satisfactory results for all performance criteria. These results provide practical guidance on food-waste-to-inoculum ratios that can lead to optimizing methanogenic yield. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Enhancement of 67Ga tumor-to-blood ratios by chelating agent

    International Nuclear Information System (INIS)

    Saji, Hideo; Yokoyama, Akira; Hata, Naotaka; Misaki, Atsushi; Tanaka, Hisashi.

    1980-01-01

    Chelating agent, such as, CaEDTA, CaDTPA, D-penicillamine, DMSA, desferoxamine, NTA, cysteine ethyl ester, BAL, α-MPG, phthalein complexone, were tested as a possible contrast enhancing agent for tumor imaging with 67 Ga-citrate. The intravenous administration of a chelating agent to Ehrlich's tumor bearing mice, one hour after the injection of 67 Ga-citrate, accelerated the blood clearance with only a very slight change of activity in the target, increasing the tumor-to-blood ratio, and consequently achieving a better visualization. Among the tested chelating agents, D-penicillamine showed the highest target-to-nontarget ratio at a shorter time: a good tumor-to-blood ratio, performed after 24 hr with non-treated animals, was achieved in only 1-3 hr with post-treated animals. Thus, D-penicillamine hold a considerable promise as a contrast enhancing agent for future clinical use. (author)

  13. Determination of oxygen potentials and O/M ratios of oxide nuclear reactor fuels by means of an automated solid state galvanic cell

    International Nuclear Information System (INIS)

    Toci, F.; Cambini, M.

    1987-01-01

    An automated version of the electromotive force (emf) cell for the determination of oxygen activities and oxygen to metal ratios of oxide nuclear reactor fuel, irradiated or not, is reported together with some measurements. 9 figs., 17 refs. In appendix a method is described for preparing suitable electrolyte crucibles

  14. Optimization of cereal-legume blend ratio to enhance the nutritional ...

    African Journals Online (AJOL)

    Optimization of cereal-legume blend ratio to enhance the nutritional quality and functional ... The collected data were subjected to analysis of variance using SPSS ... Mean separation result showed that protein, fat, energy, crude fibre and ash ...

  15. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro.

    Science.gov (United States)

    McCord, Amy M; Jamal, Muhammad; Shankavaram, Uma T; Shankavarum, Uma T; Lang, Frederick F; Camphausen, Kevin; Tofilon, Philip J

    2009-04-01

    In vitro investigations of tumor stem-like cells (TSC) isolated from human glioblastoma (GB) surgical specimens have been done primarily at an atmospheric oxygen level of 20%. To determine whether an oxygen level more consistent with in situ conditions affects their stem cell-like characteristics, we compared GB TSCs grown under conditions of 20% and 7% oxygen. Growing CD133(+) cells sorted from three GB neurosphere cultures at 7% O(2) reduced their doubling time and increased the self-renewal potential as reflected by clonogenicity. Furthermore, at 7% oxygen, the cultures exhibited an enhanced capacity to differentiate along both the glial and neuronal pathways. As compared with 20%, growth at 7% oxygen resulted in an increase in the expression levels of the neural stem cell markers CD133 and nestin as well as the stem cell markers Oct4 and Sox2. In addition, whereas hypoxia inducible factor 1alpha was not affected in CD133(+) TSCs grown at 7% O(2), hypoxia-inducible factor 2alpha was expressed at higher levels as compared with 20% oxygen. Gene expression profiles generated by microarray analysis revealed that reducing oxygen level to 7% resulted in the up-regulation and down-regulation of a significant number of genes, with more than 140 being commonly affected among the three CD133(+) cultures. Furthermore, Gene Ontology categories up-regulated at 7% oxygen included those associated with stem cells or GB TSCs. Thus, the data presented indicate that growth at the more physiologically relevant oxygen level of 7% enhances the stem cell-like phenotype of CD133(+) GB cells.

  16. Oxygen isotopic ratios in quartz as an indicator of provenance of dust

    International Nuclear Information System (INIS)

    Jackson, M.L.

    1977-01-01

    Quartz was isolated in the long range aerosol size range (fine silt, 1-10 μm in diameter) from atmospheric aerosols, wind-erosive soils, soil silts, shales, and Pacific pelagic sediments of the Northern and Southern Hemispheres, to trace their provenance or origin, as part of a study of dust mineral sequestering of 137 Cs and other products of nuclear fission. The oxygen isotopic ratio ( 18 O/ 16 O) was determined by mass spectrometry. The provenance has been established for this fine silt fraction which reflects the relative proportion of two classes of quartz source: (a) weathering of igneous and metamorphic rocks (high temperature origin and low 18 O/ 16 O ratio) and (b) of quartz crystallized in cherts and overgrowths (low temperature origin and high 18 O/ 16 O ratio). This quartz mixing ratio is a basic model or paradigm. Analyses of present day atmospheric aerosols and eolian-derived soils, Pacific pelagic sediments, and now-raised Phanerozoic marine sediments show that the Northern and Southern Hemispheres have separate large-scale reservoirs of the fine grain sizes that contribute to aerosol dusts. These can be identified by distinctive values of 18 O/ 16 O ratios of the quartz therein. The difference in quartz delta 18 O value in parts per thousand per ml ( 0 / 00 of about 12 +- 2 0 / 00 in Southern Hemisphere mixed detrital sediments and about 19 +- 2 0 / 00 in those of the Northern Hemisphere (for constant size, the 1-10 μm size fraction) results from the presence of a considerably larger proportion of quartz having low-temperature origin and higher delta 18 O values (chert, silica overgrowths, etc.) in the Northern Hemisphere reservoirs. The early paleoclimatic and paleogeochemical differences remain the control of the North-South Hemisphere difference in delta 18 O values in long-range aerosol sized quartz

  17. Enhancement of oxygen reduction at Fe tetrapyridyl porphyrin by pyridyl-N coordination to transition metal ions

    International Nuclear Information System (INIS)

    Maruyama, Jun; Baier, Claudia; Wolfschmidt, Holger; Bele, Petra; Stimming, Ulrich

    2012-01-01

    One of the promising candidates as noble-metal-free electrode catalysts for polymer electrolyte fuel cells (PEFCs) is a carbon material with nitrogen atoms coordinating iron ions embedded on the surface (Fe-N x moiety) as the active site, although the activity is insufficient compared to conventional platinum-based electrocatalysts. In order to obtain fundamental information on the activity enhancement, a simple model of the Fe-N x active site was formed by adsorbing 5,10,15,20-Tetrakis(4-pyridyl)-21H,23H-porphine iron(III) chloride (FeTPyPCl) on the basal plane of highly oriented pyrolytic graphite (HOPG), and cathodic oxygen reduction was investigated on the surface in 0.1 M HClO 4 . The catalytic activity for oxygen reduction was enhanced by loading transition metal ions (Co 2+ , Ni 2+ , Cu 2+ ) together with FeTPyPCl. The X-ray photoelectron spectrum of the surface suggested that the metal was coordinated by the pyridine-N. The enhancement effect of the transition metals was supported by two different measurements: oxygen reduction at HOPG in 0.1 M HClO 4 dissolving FeTPyPCl and the metal ions; oxygen reduction in 0.1 M HClO 4 at the subsequently well-rinsed and dried HOPG. The ultraviolet–visible spectrum for the solution also suggested the coordination between the pyridyl-N and the metal ions. The oxygen reduction enhancement was attributed to the electronic interaction between the additional transition metal and the Fe center of the porphyrin through the coordination bonds. These results implied that the improvement of the activity of the noble-metal-free catalyst would be possible by the proper introduction of the transition metal ions around the active site.

  18. Root Effect Haemoglobins in Fish May Greatly Enhance General Oxygen Delivery Relative to Other Vertebrates.

    Directory of Open Access Journals (Sweden)

    Jodie L Rummer

    Full Text Available The teleost fishes represent over half of all extant vertebrates; they occupy nearly every body of water and in doing so, occupy a diverse array of environmental conditions. We propose that their success is related to a unique oxygen (O2 transport system involving their extremely pH-sensitive haemoglobin (Hb. A reduction in pH reduces both Hb-O2 affinity (Bohr effect and carrying capacity (Root effect. This, combined with a large arterial-venous pH change (ΔpHa-v relative to other vertebrates, may greatly enhance tissue oxygen delivery in teleosts (e.g., rainbow trout during stress, beyond that in mammals (e.g., human. We generated oxygen equilibrium curves (OECs at five different CO2 tensions for rainbow trout and determined that, when Hb-O2 saturation is 50% or greater, the change in oxygen partial pressure (ΔPO2 associated with ΔpHa-v can exceed that of the mammalian Bohr effect by at least 3-fold, but as much as 21-fold. Using known ΔpHa-v and assuming a constant arterial-venous PO2 difference (Pa-vO2, Root effect Hbs can enhance O2 release to the tissues by 73.5% in trout; whereas, the Bohr effect alone is responsible for enhancing O2 release by only 1.3% in humans. Disequilibrium states are likely operational in teleosts in vivo, and therefore the ΔpHa-v, and thus enhancement of O2 delivery, could be even larger. Modeling with known Pa-vO2 in fish during exercise and hypoxia indicates that O2 release from the Hb and therefore potentially tissue O2 delivery may double during exercise and triple during some levels of hypoxia. These characteristics may be central to performance of athletic fish species such as salmonids, but may indicate that general tissue oxygen delivery may have been the incipient function of Root effect Hbs in fish, a trait strongly associated with the adaptive radiation of teleosts.

  19. Oxygen isotopic ratio of the diatom siliceous valves: development of a new method in quantitative paleoclimatology

    International Nuclear Information System (INIS)

    Labeyrie, Laurent.

    1979-07-01

    This paper describes a new method allowing the measurement of the 18 O/ 16 O ratio of the biogenic silica oxygen, which takes into account the effects due to the organic matter and hydration water associated with this type of silica. By isotopic exchange with enriched water, we have been able to fix a treatment which eliminate all contamination and memory effects. This has permitted us to study the temperature dependance of the hydrated silica-water oxygen isotopic fractionation. As application, we present a study of the variations of the delta 18 O of fossil diatoms valves along an Equatorial Pacific sediment core covering the last 20.000 years. The results demonstrate the usefulness of the delta 18 O of the diatom silica for paleoclimatic investigations [fr

  20. Evaluation of I/Ca ratios in benthic foraminifera from the Peruvian oxygen minimum zone as proxy for redox conditions in the ambient water masses

    Science.gov (United States)

    Glock, N.; Liebetrau, V.; Eisenhauer, A.

    2014-12-01

    Tropical oxygen minimum zones (OMZs) are most important areas of oxygen depletion in today´s oceans and nutrient cycling in these regions has a large socio-economic impact because they account for about 17% of the global commercial fish catches(1). Possibly increasing magnitude and area of oxygen depletion in these regions, might endanger rich pelagic fish habitats in the future threatening the global marine food supply. By the use of a quantitative redox proxy in OMZs, reconstruction of the temporal variation in OMZ extension eventually providing information about past and future changes in oxygenation and the anthropogenic role in the recent trend of expanding OMZs(2). Recent work has shown that iodine/calcium (I/Ca) ratios in marine carbonates are a promising proxy for ambient oxygen concentration(3). Our study explores the correlation of I/Ca ratios in four benthic foraminiferal species (three calcitic, one aragonitic) from the Peruvian OMZ to bottom water oxygen concentrations ([O2]BW) and evaluates foraminiferal I/Ca ratios as a possible redox proxy for the ambient water masses. Our results show that all species have a positive trend in the I/Ca ratios as a function of [O2]BW. Only for the aragonitic species Hoeglundina elegans this trend is not significant. The highest significance has been found for Uvigerina striata (I/Ca = 0.032(±0.004).[O2]BW + 0.29(±0.03), R² = 0.61, F = 75, P solutions, (ii) a species dependency of the I/Ca-[O2]BW relationship which is either related to a strong vital effect or toa species dependency on the calcification depth within sediment, and (iii) the inter-test variability of I/Ca between different specimens from the same species and habitat. (1): FAO FishStat: Fisheries and aquaculture software. In: FAO Fisheries and Aquaculture Department[online]. Rome. Updated 28 Nov. 2013. (2): Stramma et al.: Expanding Oxygen-Minimum Zones in the Tropical Oceans, Science, 320, 655-658, 2008. (3): Lu et al.: Iodine to calcium ratios in

  1. Direct evaluation of electrical dipole moment and oxygen density ratio at high-k dielectrics/SiO2 interface by X-ray photoelectron spectroscopy analysis

    Science.gov (United States)

    Fujimura, Nobuyuki; Ohta, Akio; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-04-01

    The electrical dipole moment at an ultrathin high-k (HfO2, Al2O3, TiO2, Y2O3, and SrO)/SiO2 interface and its correlation with the oxygen density ratio at the interface have been directly evaluated by X-ray photoelectron spectroscopy (XPS) under monochromatized Al Kα radiation. The electrical dipole moment at the high-k/SiO2 interface has been measured from the change in the cut-off energy of secondary photoelectrons. Moreover, the oxygen density ratio at the interface between high-k and SiO2 has been estimated from cation core-line signals, such as Hf 4f, Al 2p, Y 3d, Ti 2p, Sr 3d, and Si 2p. We have experimentally clarified the relationship between the measured electrical dipole moment and the oxygen density ratio at the high-k/SiO2 interface.

  2. The oxygen effect in E.coli K-12 cells of various repair genotypes exposed to neutrons and gamma rays

    International Nuclear Information System (INIS)

    Komova, O.V.; Golovacheva, E.V.

    1988-01-01

    The oxygen enchancement ratio, as estimated after the effect of 137 Cs-γ-quanta, depends on the repair genotype of E. coli K-12 cells and increases in the studied strains in the following order: recA - uvrA - →recA - →wild type→polA - . These variations are levelled with the effect of fast neutrons of divison spectrum (0.75 MeV); the oxygen enhancement ratio for the strains under study decrease, while the oxygen effect is virtually absent in recA - uvrA - -mutant

  3. Oxygen effect and influence of the anoxic radiosensitizing agent TAN on the induction of λ-prophage in polA and wild type E.coli strains after gamma irradiation

    International Nuclear Information System (INIS)

    Bonev, M.N.; Sivriev, I.K.; Kolev, S.D.

    1998-01-01

    The modification effect of both oxygen and radiosensitizing agent TAN on the λ-prophage induction in polA mutant and wild type E.coli cells after γ-irradiation was studied. The oxygen and TAN enhancement ratio concerning the cell sensitivity is more significant in polA mutant cells as compared to that in the wild type ones. The same behaviour has been observed for the oxygen and TAN enhancement ratio for the λ-prophage induction. The TAN effect on the survival and on the λ-induction was smaller than the oxygen effect. The bigger efficiency of oxygen and DNA-radicals are more difficult to repair than those created by an interaction of TAN and DNA-radicals

  4. Effect of oxygen on the bias-enhanced nucleation of diamond on silicon

    DEFF Research Database (Denmark)

    Schreck, M.; Christensen, Carsten; Stritzker, B.

    1999-01-01

    The influence of traces of oxygen in the process gas on the bias-enhanced nucleation (BEN) of diamond on silicon has been studied in the present work. CO2 in concentrations ranging from 0 to 3000 ppm was added during the nucleation procedure at U-bias = -200 V in microwave plasma chemical vapour...

  5. Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment

    KAUST Repository

    Cottrill, Anton L.; Wang, Song; Liu, Albert Tianxiang; Wang, Wen-Jun; Strano, Michael S.

    2018-01-01

    Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane-impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH-O) and a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.

  6. Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment

    KAUST Repository

    Cottrill, Anton L.

    2018-01-15

    Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane-impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH-O) and a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.

  7. Enhanced deep ocean ventilation and oxygenation with global warming

    Science.gov (United States)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  8. Dynamic oxygen-enhanced magnetic resonance imaging of the lung in asthma—Initial experience

    International Nuclear Information System (INIS)

    Zhang, Wei-Juan; Niven, Robert M.; Young, Simon S.; Liu, Yu-Zhen; Parker, Geoffrey J.M.; Naish, Josephine H.

    2015-01-01

    Highlights: • Oxygen-enhanced MRI may have a role in the estimation of disease severity in asthma. • Heterogeneity of parameter maps reflects localized functional impairment in asthma. • OE-MRI provides non-ionising, spatial and temporal information on oxygen delivery. - Abstract: Objectives: To prospectively estimate the feasibility and reproducibility of dynamic oxygen-enhanced magnetic resonance imaging (OE-MRI) in the assessment of regional oxygen delivery, uptake and washout in asthmatic lungs. Materials and methods: The study was approved by the National Research Ethics Committee and written informed consent was obtained. Dynamic OE-MRI was performed twice at one month apart on four mild asthmatic patients (23 ± 5 years old, FEV 1 = 96 ± 3% of predicted value) and six severe asthmatic patients (41 ± 12 years old, FEV 1 = 60 ± 14% of predicted value) on a 1.5 T MR scanner using a two-dimensional T 1 -weighted inversion-recovery turbo spin echo sequence. The enhancing fraction (EF), the maximal change in the partial pressure of oxygen in lung tissue (ΔPO 2max l ) and arterial blood of the aorta (ΔPO 2max a ), and the oxygen wash-in (τ up l , τ up a ) and wash-out (τ down l , τ down a ) time constants were extracted and compared between groups using the independent-samples t-test (two-tailed). Correlations between imaging readouts and clinical measurements were assessed by Pearson's correlation analysis. Bland–Altman analysis was used to estimate the levels of agreement between the repeat scans and the intra-observer agreement in the MR imaging readouts. Results: The severe asthmatic group had significantly smaller EF (70 ± 16%) and median ΔPO 2max l (156 ± 52 mmHg) and significantly larger interquartile range of τ up l (0.84 ± 0.26 min) than the mild asthmatic group (95 ± 3%, P = 0.014; 281 ± 40 mmHg, P = 0.004; 0.20 ± 0.07 min, P = 0.001, respectively). EF, median ΔPO 2max l and τ down l and the interquartile range of τ up l

  9. Relationship between iodine-123-beta-methyl-p-iodophenyl-pentadecanoic acid washout ratio and oxygen consumption in normal and ischemic myocardium

    International Nuclear Information System (INIS)

    Saito, Kimimasa; Okamoto, Ryuji; Saito, Yasuhiro

    1997-01-01

    The relationship between oxygen consumption and iodine-123-beta-methyl-p-iodophenyl-pentadecanoic acid ( 123 I-BMIPP) washout at rest and after exercise was investigated in normal and ischemic myocardium. Sixteen healthy volunteers and 14 patients with ischemic heart disease were examined. After injection of 111 MBq of 123 I-BMIPP, serial single photon emission computed tomography imaging was performed to evaluate washout ratio after 30 min and 1 hour of rest and after exercise. In the volunteers, the mean washout ratio was 3.3±3.5% after 1 hour of rest and increased during exercise. The exercise washout ratio showed a better correlation with net pressure rate product (net PRP: cumulative values of PRP during exercise) than with the peak PRP. The exercise washout ratio showed a strong correlation with the net PRP in the range from 180 to 300x10 3 mmHg·beat/min and a plateau of 10-15%. In the nine ischemic patients with net PRP≥300x10 3 mmHg·beat/min, the exercise washout ratio values were significantly elevated in normal segments relative to ischemic segments (10.1±1.9% vs 4.7±2.9%, p 3 mmHg·beat/min, washout ratio at rest and after exercise did not differ significantly between normal and ischemic segments. 123 I-BMIPP washout ratio increased with increased oxygen consumption during exercise in normal myocardium but not in ischemic myocardium. The patient must exercise before fatty acid metabolism can be compared between normal and ischemic myocardium. (author)

  10. A spatio-temporal simulation model of the response of solid tumours to radiotherapy in vivo: parametric validation concerning oxygen enhancement ratio and cell cycle duration

    International Nuclear Information System (INIS)

    Antipas, Vassilis P; Stamatakos, Georgios S; Uzunoglu, Nikolaos K; Dionysiou, Dimitra D; Dale, Roger G

    2004-01-01

    Advanced bio-simulation methods are expected to substantially improve radiotherapy treatment planning. To this end a novel spatio-temporal patient-specific simulation model of the in vivo response of malignant tumours to radiotherapy schemes has been recently developed by our group. This paper discusses recent improvements to the model: an optimized algorithm leading to conformal shrinkage of the tumour as a response to radiotherapy, the introduction of the oxygen enhancement ratio (OER), a realistic initial cell phase distribution and finally an advanced imaging-based algorithm simulating the neovascularization field. A parametric study of the influence of the cell cycle duration T c , OER, OER β for the beta LQ parameter on tumour growth, shrinkage and response to irradiation under two different fractionation schemes has been made. The model has been applied to two glioblastoma multiforme (GBM) cases, one with wild type (wt) and another one with mutated (mt) p53 gene. Furthermore, the model has been applied to a hypothetical GBM tumour with α and β values corresponding to those of generic radiosensitive tumours. According to the model predictions, a whole tumour with shorter T c tends to repopulate faster, as is to be expected. Furthermore, a higher OER value for the dormant cells leads to a more radioresistant whole tumour. A small variation of the OER β value does not seem to play a major role in the tumour response. Accelerated fractionation proved to be superior to the standard scheme for the whole range of the OER values considered. Finally, the tumour with mt p53 was shown to be more radioresistant compared to the tumour with wt p53. Although all simulation predictions agree at least qualitatively with the clinical experience and literature, a long-term clinical adaptation and quantitative validation procedure is in progress

  11. Role of oxygen in enhancement in repair of radiation injuries in Tribolium

    International Nuclear Information System (INIS)

    Ng, M.C.

    1977-01-01

    The oxygen enhancement ratio (OER) was determined for various biological responses in Tribolium confusum McGill Black. The biological responses included acute lethality of the adults and larvae; sexual sterilization of the male and female adults; fecundity of the females and hatchability of their eggs as well as the competitiveness of the males. The OER for acute lethality for the male and female adults was found to be 2.25-2.38, regardless of the type of inert gas used to achieve anaerobiosis. Acute lethality for the larvae showed an OER of 2.79. The OER for male and female sexual sterilization was 2.35 and 3.37 respectively. With irradiation carried out in oxygen, the results suggested that at the tissue level of the adults and the male reproductive organ, there is a certain degree of hypoxia. Sexual sterilization of the males by radiation is attributed to the induction of dominant lethal mutation in the sperms, and that of the females involves a combination of dominant lethals and decreased egg production. The OER for egg hatchability at a hatchability level of 50% of the control for irradiated females was 4.0, a surprisingly higher value than that of any other biological responses studied. The OER for fecundity of irradiated females and for male competitiveness were roughly estimated to be 2.8 and 2.3-2.7 respectively. Since the OER for male sexual sterilization is basically the same as that for acute lethality for adults, it is expected that the competitiveness, which depends on the amount of somatic damage by radiation, will not be protected to a much greater extent by anaerobic irradiation than sterilization. It is clearly demonstrated that OER values are specific for the particular end point scored. Even within the same organism, different OER can be obtained with different biological responses

  12. Photoluminescence of colloidal CdSe nano-tetrapods and quantum dots in oxygenic and oxygen-free environments

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lijuan [Donghua University, Applied Physics Department, Shanghai (China); Hong Kong University of Science and Technology, Physics Department and the Institute of Nano-Science and Technology, Hong Kong (China); Pang, Qi; Ge, Weikun; Wang, Jiannong [Hong Kong University of Science and Technology, Physics Department and the Institute of Nano-Science and Technology, Hong Kong (China); Yang, Shihe [Hong Kong University of Science and Technology, Chemistry Department and the Institute of Nano-Science and Technology, Hong Kong (China)

    2011-05-15

    The effects of oxygenic versus oxygen-free environments on colloidal CdSe nano-tetrapods and quantum dots (QDs) were studied using both continuous and time-resolved photoluminescence (PL) measurements. The decays of PL intensities for tetrapods and QDs in oxygen-free solution (chloroform) and in air (on silicon) can be well fitted by a bi-exponential function. Based on the emission-energy dependence of carrier lifetimes and the amplitude ratio of the fast-decay component to the slow-decay component, the fast and slow PL decays of CdSe nanocrystals are attributed to the recombination of delocalized carriers in the core states and localized carriers in the surface states, respectively. The PL intensities of CdSe nano-tetrapods and QDs were found to be five times and an order of magnitude higher in air than in vacuum, respectively, which is explained by the passivation of surface defects by the polar gas (oxygen) absorption. The lower enhancement in PL intensities of CdSe nano-tetrapods is explained by the special morphology of the tetrapods. (orig.)

  13. Oxygen vacancies induced enhancement of photoconductivity of La0.5Sr0.5CoO3 - δ thin film

    Science.gov (United States)

    Gao, R. L.; Fu, C. L.; Cai, W.; Chen, G.; Deng, X. L.; Yang, H. W.; Sun, J. R.; Zhao, Y. G.; Shen, B. G.

    2014-09-01

    Effects of light and electrical current on the electrical transport properties and photovoltaic properties of oxygen-stoichiometric La0.5Sr0.5CoO3 and oxygen-deficient La0.5Sr0.5CoO3 - δ films prepared by pulsed laser deposition have been investigated. Oxygen-deficient films annealed in a vacuum show an obvious increase of resistance and lattice parameter. Besides, a direct correlation between the magnitude of the photoconductivity and oxygen vacancies in La0.5Sr0.5CoO3 - δ films has been observed. The light illumination causes a resistance drop to show the photoconductivity effect. Moreover, the photoconductivity can be remarkably enhanced by increasing the electrical current, that is, it exhibits current-enhanced photoconductivity (CEPC) effect. Oxygen deficiency in the annealed film leads to the formation of a structural disorder in the Co-O-Co conduction channel due to the accumulated oxygen vacancies and hence is believed to be responsible for the increase in higher photoconductivity. These results may be important for practical applications in photoelectric devices.

  14. Orbital Kondo effect due to assisted hopping: Superconductivity, mass enhancement in Cooper oxides with apical oxygen

    International Nuclear Information System (INIS)

    Zawadowski, A.; Penc, K.; Zimanyi, G.

    1991-07-01

    Orbital Kondo effect is treated in a model, where additional to the conduction band there are localized orbitals with energy not very far from the Fermi energy. If the hopping between the conduction band and the localized heavy orbitals depends on the occupation of the conduction band orbital then orbital Kondo correlation occurs. The assisted hopping vertex is enhanced due to the Coulomb interaction between the heavy orbital and the conduction band. The enhanced hopping results in mass enhancement and attractive interaction in the conduction band. The superconductivity transition temperature is calculated. The models of this type can be applied to the high-T c superconductors where the non-bonding oxygen orbitals of the apical oxygens play the role of heavy orbitals. For an essential range of the parameters the T c obtained is about 100K. (author). 22 refs, 9 figs

  15. Cisplatin toxicity reduced in human cultured renal tubular cells by oxygen pretreatment.

    Science.gov (United States)

    Kaeidi, Ayat; Rasoulian, Bahram; Hajializadeh, Zahra; Pourkhodadad, Soheila; Rezaei, Maryam

    2013-01-01

    Cisplatin is an effective and widely used chemotherapy agent and its side effects, particularly nephrotoxicity, limit its usage and related platinum-based drugs. Cisplatin nephrotoxicity is mainly due to extremely increase in reactive oxygen species (ROS) generation leading to kidney tubular cell death. Preconditioning with oxidative stress has been demonstrated to stimulate the cellular adaptation to subsequent severe oxidative stress. Short term oxygen pre-exposure as a mild oxidative stress may enhance some endogenous defense mechanisms, so its effect on Cisplatin induced cell death was investigated in present research. We studied the effects of hyperoxic environment pre-exposure on Cisplatin toxicity in an in-vitro model of cultured human embryonic tubular epithelial cells (AD293). Viability of AD293 cells, as evaluated by MTT-assay, was affected by Cisplatin in a time (1-4 h) dependent model. Biochemical markers of cell apoptosis were evaluated using immunoblotting. Pretreatment with nearly pure oxygen (≥90%) for 2 h significantly reduced the level of cell damage. Activated caspase 3 and Bax/Bcl-2 ratio were significantly increased in Cisplatin-treated cells. Oxygen pretreatment inhibited caspase 3 activation and decreased Bax/Bcl-2 ratio. Oxygen pre-treatment itself not showed any cytotoxicity in exposure times up to 3 h. Our data indicate that hyperoxic preconditioning reduces Cisplatin toxicity in cultured human tubular epithelial cells. The exact mechanism of protection is unclear, though enhancement of some endogenous defense mechanisms and subsequently scavenging of free oxygen radicals may play an important role.

  16. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios.

    Science.gov (United States)

    Keedakkadan, Habeeb Rahman; Abe, Osamu

    2015-04-30

    The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic

  17. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO2 nanostructures with enhanced activity.

    Science.gov (United States)

    He, Weiwei; Cai, Junhui; Jiang, Xiumei; Yin, Jun-Jie; Meng, Qingbo

    2018-06-13

    The combination of semiconductor and plasmonic nanostructures, endowed with high efficiency light harvesting and surface plasmon confinement, has been a promising way for efficient utilization of solar energy. Although the surface plasmon resonance (SPR) assisted photocatalysis has been extensively studied, the photochemical mechanism, e.g. the effect of SPR on the generation of reactive oxygen species and charge carriers, is not well understood. In this study, we take Au@TiO2 nanostructures as a plasmonic photocatalyst to address this critical issue. The Au@TiO2 core/shell nanostructures with tunable SPR property were synthesized by the templating method with post annealing thermal treatment. It was found that Au@TiO2 nanostructures exhibit enhanced photocatalytic activity in either sunlight or visible light (λ > 420 nm). Electron spin resonance spectroscopy with spin trapping and spin labeling was used to investigate the enhancing effect of Au@TiO2 on the photo-induced reactive oxygen species and charge carriers. The formation of Au@TiO2 core/shell nanostructures resulted in a dramatic increase in light-induced generation of hydroxyl radicals, singlet oxygen, holes and electrons, as compared with TiO2 alone. This enhancement under visible light (λ > 420 nm) irradiation may be dominated by SPR induced local electrical field enhancement, while the enhancement under sunlight irradiation is dominated by the higher electron transfer from TiO2 to Au. These results unveiled that the superior photocatalytic activity of Au@TiO2 nanostructures correlates with enhanced generation of reactive oxygen species and charge carriers.

  18. Oxygen as a product of water radiolysis in high-LET tracks. II. Radiobiological implications

    International Nuclear Information System (INIS)

    Baverstock, K.F.; Burns, W.G.

    1981-01-01

    Consideration is given to the possibility that molecular oxygen generated in the tracks of energetic heavy ions is responsible for the reduction in oxygen enhancement ratio (OER) with increasing linear energy transfer (LET) observed for the loss of reproductive capacity caused by radiation in many cellular organisms. Yields of oxygen relationship of OER to LET for two organisms, Chlamydomonas reinhardii and Shigella flexneri, using a simple diffusion kinetic model for radiobiological action which takes account of the diffusion of oxygen after its formation. The results of these calculations show that the model accounts well for the shape of the OER vs. LET relationship

  19. Influence of argon and oxygen pressure ratio on bipolar-resistive switching characteristics of CeO2- x thin films deposited at room temperature

    Science.gov (United States)

    Ismail, Muhammad; Ullah, Rehmat; Hussain, Riaz; Talib, Ijaz; Rana, Anwar Manzoor; Hussain, Muhammad; Mahmood, Khalid; Hussain, Fayyaz; Ahmed, Ejaz; Bao, Dinghua

    2018-02-01

    Cerium oxide (CeO2-x) film was deposited on Pt/Ti/SiO2/Si substrate by rf magnetron sputtering at room temperature. Resistive switching characteristics of these ceria films have been improved by increasing oxygen content during deposition process. Endurance and statistical analyses indicate that the operating stability of CeO2-x-based memory is highly dependent on the oxygen content. Results indicate that CeO2-x film-based RRAM devices exhibit optimum performance when fabricated at an argon/oxygen ratio of 6:24. An increase in the oxygen content introduced during CeO2-x film deposition not only stabilizes the conventional bipolar RS but also improves excellent switching uniformity such as large ON/OFF ratio (102), excellent switching device-to-device uniformity and good sweep endurance over 500 repeated RS cycles. Conduction in the low-resistance state (LRS) as well as in the low bias field region in the high-resistance state (HRS) is found to be Ohmic and thus supports the conductive filament (CF) theory. In the high voltage region of HRS, space charge limited conduction (SCLC) and Schottky emission are found to be the dominant conduction mechanisms. A feasible filamentary RS mechanism based on the movement of oxygen ions/vacancies under the bias voltage has been discussed.

  20. Retrievable micro-inserts containing oxygen sensors for monitoring tissue oxygenation using EPR oximetry

    International Nuclear Information System (INIS)

    Dinguizli, M; Beghein, N; Gallez, B

    2008-01-01

    Tissue oxygenation is a crucial parameter in various physiopathological situations and can influence the therapeutic response of tumours. EPR oximetry is a reliable method for assessing and monitoring oxygen levels in vivo over long periods of time. Among the different paramagnetic oxygen sensors available for EPR oximetry, lithium phthalocyanine (LiPc) is a serious candidate for in vivo applications because of its narrow linewidth and its high signal-to-noise ratio. To enhance the biocompatibility of the sensors, fluoropolymer Teflon AF2400 was used to make cylindrical micro-inserts containing LiPc crystals. This new micro-pellet design has several advantages for in vivo studies, including the possibility of being able to choose the implant size, a high sensor content, the facility of in vivo insertion and complete protection with preservation of the oxygen sensor's characteristics. The response to oxygen and the kinetics of this response were tested using in vivo EPR: no differences were observed between micro-inserts and uncoated LiPc crystals. Pellets implanted in vivo in muscles conserved their responsiveness over a long period of time (∼two months), which is much longer than the few days of stability observed using LiPc crystals without protection by the implant. Finally, evaluation of the biocompatibility of the implants revealed no inflammatory reaction around the implantation area

  1. Radiosensitization of mouse skin by oxygen and depletion of glutathione

    International Nuclear Information System (INIS)

    Stevens, Graham; Joiner, Michael; Joiner, Barbara; Johns, Helen; Denekamp, Juliana

    1995-01-01

    Purpose: To determine the oxygen enhancement ratio (OER) and shape of the oxygen sensitization curve of mouse foot skin, the extent to which glutathione (GSH) depletion radiosensitized skin, and the dependence of such sensitization on the ambient oxygen tension. Methods and Materials: The feet of WHT mice were irradiated with single doses of 240 kVp x-rays while mice were exposed to carbogen or gases with oxygen/nitrogen mixtures containing 8-100% O 2 . The anoxic response was obtained by occluding the blood supply to the leg of anesthetized mice with a tourniquet, surrounding the foot with nitrogen, and allowing the mice to breathe 10% O 2 . Further experiments were performed to assess the efficacy of this method to obtain an anoxic response. Radiosensitivity of skin was assessed using the acute skin-reaction assay. Glutathione levels were modified using two schedules of dl-buthionine sulphoximine (BSO) and diethylmaleate (DEM), which were considered to produce extensive and intermediate levels of GSH depletion in the skin of the foot during irradiation. Results: Carbogen caused the greatest radiosensitization of skin, with a reproducible enhancement of 2.2 relative to the anoxic response. The OER of 2.2 is lower than other reports for mouse skin. This may indicate that the extremes of oxygenation were not produced, although there was no direct evidence for this. When skin radiosensitivity was plotted against the logarithm of the oxygen tension in the ambient gas, a sigmoid curve with a K value of 17-21% O 2 in the ambient gas was obtained. Depletion of GSH caused minimal radiosensitization when skin was irradiated under anoxic or well-oxygenated conditions. Radiosensitization by GSH depletion was maximal at intermediate oxygen tensions of 10-21% O 2 in the ambient gas. Increasing the extent of GSH depletion led to increasing radiosensitization, with sensitization enhancement ratios of 1.2 and 1.1, respectively, for extensive and intermediate levels of GSH

  2. Dynamic oxygen-enhanced magnetic resonance imaging of the lung in asthma—Initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei-Juan, E-mail: weijuan.zhang@postgrad.manchester.ac.uk [Centre for Imaging Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Biomedical Imaging Institute, The University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Niven, Robert M., E-mail: robert.niven@uhsm.nhs.uk [North West Lung Research Centre, University Hospital of South Manchester, Southmoor Road, Manchester M23 9LT (United Kingdom); Young, Simon S., E-mail: Simon.Young1@astrazeneca.com [Personalised Healthcare and Biomarkers, AstraZeneca R and D, Alderley Park, Macclesfield SK10 4TF (United Kingdom); Liu, Yu-Zhen, E-mail: yu-zhen.liu@astrazeneca.com [Personalised Healthcare and Biomarkers, AstraZeneca R and D, Alderley Park, Macclesfield SK10 4TF (United Kingdom); Parker, Geoffrey J.M., E-mail: Geoff.parker@manchester.ac.uk [Centre for Imaging Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Biomedical Imaging Institute, The University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Bioxydyn Limited, Rutherford House, Pencroft Way, Manchester M15 6SZ (United Kingdom); Naish, Josephine H., E-mail: Josephine.naish@manchester.ac.uk [Centre for Imaging Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Biomedical Imaging Institute, The University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom)

    2015-02-15

    Highlights: • Oxygen-enhanced MRI may have a role in the estimation of disease severity in asthma. • Heterogeneity of parameter maps reflects localized functional impairment in asthma. • OE-MRI provides non-ionising, spatial and temporal information on oxygen delivery. - Abstract: Objectives: To prospectively estimate the feasibility and reproducibility of dynamic oxygen-enhanced magnetic resonance imaging (OE-MRI) in the assessment of regional oxygen delivery, uptake and washout in asthmatic lungs. Materials and methods: The study was approved by the National Research Ethics Committee and written informed consent was obtained. Dynamic OE-MRI was performed twice at one month apart on four mild asthmatic patients (23 ± 5 years old, FEV{sub 1} = 96 ± 3% of predicted value) and six severe asthmatic patients (41 ± 12 years old, FEV{sub 1} = 60 ± 14% of predicted value) on a 1.5 T MR scanner using a two-dimensional T{sub 1}-weighted inversion-recovery turbo spin echo sequence. The enhancing fraction (EF), the maximal change in the partial pressure of oxygen in lung tissue (ΔPO{sub 2max{sub l}}) and arterial blood of the aorta (ΔPO{sub 2max{sub a}}), and the oxygen wash-in (τ{sub up{sub l}}, τ{sub up{sub a}}) and wash-out (τ{sub down{sub l}}, τ{sub down{sub a}}) time constants were extracted and compared between groups using the independent-samples t-test (two-tailed). Correlations between imaging readouts and clinical measurements were assessed by Pearson's correlation analysis. Bland–Altman analysis was used to estimate the levels of agreement between the repeat scans and the intra-observer agreement in the MR imaging readouts. Results: The severe asthmatic group had significantly smaller EF (70 ± 16%) and median ΔPO{sub 2max{sub l}} (156 ± 52 mmHg) and significantly larger interquartile range of τ{sub up{sub l}} (0.84 ± 0.26 min) than the mild asthmatic group (95 ± 3%, P = 0.014; 281 ± 40 mmHg, P = 0.004; 0.20 ± 0.07 min, P = 0

  3. Influence of oxygen-metal ratio on mixed-oxide fuel performance

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Leggett, R.D.

    1979-04-01

    The fuel oxygen-to-metal ratio (O/M) is recognized as an important consideration for performance of uranium--plutonium oxide fuels. An overview of the effects of differing O/M's on the irradiation performance of reference design mixed-oxide fuel in the areas of chemical and mechanical behavior, thermal performance, and fission gas behavior is presented. The pellet fuel has a nominal composition of 75 wt% UO 2 + 25 wt% PuO 2 at a pellet density of approx. 90% TD. for nominal conditions this results in a smeared density of approx. 85%. The cladding in all cases is 20% CW type 316 stainless steel with an outer diameter of 5.84 to 6.35 mm. O/M has been found to significantly influence fuel pin chemistry, mainly FCCI and fission product and fuel migration. It has little effect on thermal performance and overall mechanical behavior or fission gas release. The effects of O/M (ranging from 1.938 to 1.984) in the areas of fuel pin chemistry, to date, have not resulted in any reduction in fuel pin performance capability to goal burnups of approx. 8 atom% or more

  4. High Selectivity Oxygen Delignification

    Energy Technology Data Exchange (ETDEWEB)

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  5. Pretreatment of Parsley (Petroselinum crispum L.) Suspension Cultures with Methyl Jasmonate Enhances Elicitation of Activated Oxygen Species.

    Science.gov (United States)

    Kauss, H.; Jeblick, W.; Ziegler, J.; Krabler, W.

    1994-01-01

    Suspension-cultured cells of parsley (Petroselinum crispum L.) were used to demonstrate an influence of jasmonic acid methyl ester (JAME) on the elicitation of activated oxygen species. Preincubation of the cell cultures for 1 d with JAME greatly enhanced the subsequent induction by an elicitor preparation from cell walls of Phytophtora megasperma f. sp. glycinea (Pmg elicitor) and by the polycation chitosan. Shorter preincubation times with JAME were less efficient, and the effect was saturated at about 5 [mu]M JAME. Treatment of the crude Pmg elicitor with trypsin abolished induction of activated oxygen species, an effect similar to that seen with elicitation of coumarin secretion. These results suggest that JAME conditioned the parsley suspension cells in a time-dependent manner to become more responsive to elicitation, reminiscent of developmental effects caused by JAME in whole plants. It is interesting that pretreatment of the parsley cultures with 2,6-dichloroisonicotinic and 5-chlorosalicylic acid only slightly enhanced the elicitation of activated oxygen species, whereas these substances greatly enhanced the elicitation of coumarin secretion. Therefore, these presumed inducers of systemic acquired resistance exhibit a specificity different from JAME. PMID:12232189

  6. Cathodic current enhancement via manganese and oxygen related reactions in marine biofilms

    Science.gov (United States)

    Strom, Matthew James

    Corrosion is a threat that has economic, and environmental impacts worldwide. Many types of corrosive attack are the subject of ongoing research. One of these areas of research is microbiologically influenced corrosion, which is the enhancement and/or initiation of corrosion events caused by microorganisms. It is well known that colonies of microorganisms can enhance cathodic currents through biofilm formation. The aim of the present work was to elucidate the role of manganese in enhancing cathodic currents in the presence of biofilms. Repeated polarizations conducted in Delaware Bay waters, on biofilm coated Cr identified potentially sustainable reduction reactions. The reduction of MnO2 and the enhancement of the oxygen reduction reaction (ORR) were proven to be factors that influence cathodic current enhancement. The removal of ambient oxygen during polarizations resulted in a shutdown of cathodic current enhancement. These field data led to an exploration of the synergistic relationship between MnO2 and the ORR. Laboratory studies of the catalysis of peroxide disproportionation by MnO2 were monitored using a hanging mercury drop electrode. Experiments were run at an ambient sweater pH of 8 and pH 9, which simulated the near-surface conditions typical of cathodes immersed in seawater. Rapid reoxidation at the more basic pH was shown to allow manganese to behave as a persistent catalyst under the typical electrochemical surface conditions of a cathode. As a result a mechanism for ORR enhancement by manganese was proposed as a unique mechanism for cathodic current enhancement in biofilms. A separate field study of Delaware biofilms on stainless steel coupled to a sacrificial Al anode was carried out to identify the ORR enhancement mechanism and sustainable redox reactions at the cathode. Chemical treatments of glutaraldehyde and formaldoxime were applied to cathodes with biofilms to distinguish between enzymatic and MnO2 related ORR enhancement. The results ruled

  7. Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo sequence: improvement of the image quality of oxygen-enhanced MRI

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto; Higashino, Takanori; Kawamitsu, Hideaki; Watanabe, Hirokazu; Takenaka, Daisuke; Cauteren, Marc van; Sugimura, Kazuro

    2004-01-01

    Purpose: The purpose of the study presented here was to determine the improvement in image quality of oxygen-enhanced magnetic resonance (MR) subtraction imaging obtained with a centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence compared with that obtained with a conventional sequentially reordered inversion recovery single-shot HASTE (s-IR-HASTE) sequence for pulmonary imaging. Materials and methods: Oxygen-enhanced MR imaging using a 1.5 T whole body scanner was performed on 12 healthy, non-smoking volunteers. Oxygen-enhanced MR images were obtained with the coronal two-dimensional (2D) c-IR-HASTE sequence and 2D s-IR-HASTE sequence combined with respiratory triggering. For a 256x256 matrix, 132 phase-encoding steps were acquired including four steps for phase correction. Inter-echo spacing for each sequence was 4.0 ms. The effective echo time (TE) for c-IR-HASTE was 4.0 ms, and 16 ms for s-IR-HASTE. The inversion time (TI) was 900 ms. To determine the improvement in oxygen-enhanced MR subtraction imaging by c-IR-HASTE, CNRs of subtraction image, overall image quality, and image degradation of the c-IR-HASTE and s-IR-HASTE techniques were statistically compared. Results: CNR, overall image quality, and image degradation of c-IR-HASTE images showed significant improvement compared to those s-IR-HASTE images (P<0.05). Conclusion: Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence enhanced the signal from the lung and improved the image quality of oxygen-enhanced MR subtraction imaging

  8. Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension

    DEFF Research Database (Denmark)

    Jensen, Pia; Gramsbergen, Jan-Bert; Zimmer, Jens

    2011-01-01

    Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation o...... enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells....... of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than......, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH...

  9. Survival curves of irradiated glutathione-deficient human fibroblasts: indication of a reduced enhancement of radiosensitivity by oxygen and misonidazole

    International Nuclear Information System (INIS)

    Midander, J.; Deschavanne, P.J.; Malaise, E.P.; Revesz, L.

    1982-01-01

    Fibroblasts derived from a patient with 5-oxoprolinuria are genetically deficient in glutathione synthetase. This deficiency causes a dramatic decrease in intracellular glutathione (GSH) level. The radiosensitivity of GSH deficient cells (GSH) was studied in vitro using colony forming ability as an endpoint. Cells with normal GSH level, obtained from the healthy brother of the patient, were used as controls. When irradiated in 95% air-5% CO 2 , GSH - cells are slightly but significantly more radiosensitive than GSH + controls (dose modifying factor (DMF) of 1.2). When irradiated in argon, the survival curve of GSH - cells indicates an oxygen enhancement ratio (OER) of 1.5 when compared to the curve obtained in oxic conditions. The OER of control cells in the same conditions is 2.9. In comparison to results obtained in air, 100% oxygen moderately increases the radiosensitivity of GSH + cells (DMF 1,23), while it has a very low effect on GSH - cells (DMF 1.06). These results suggest that intracellular GSH plays an essential protective role in hypoxia, its effect is reduced in air and practically disappears in 100% oxygen. When cells are incubated with 8 mM misonidazole 2 hours before irradiation, the drug has a much greater sensitizing effect on GSH + cells (DMF 2.33) than on GSH - cells (DMF 1.55). The results demonstrate that intracellular GSH level plays a major role in the response of hypoxic cells, irradiated either alone or in the presence of misonidazole

  10. Catalytic Activity Enhancement for Oxygen Reduction on Epitaxial Perovskite Thin Films for Solid-Oxide Fuel Cells

    KAUST Repository

    la O', Gerardo Jose; Ahn, Sung-Jin; Crumlin, Ethan; Orikasa, Yuki; Biegalski, Michael D.; Christen, Hans M.; Shao-Horn, Yang

    2010-01-01

    Figure Presented The active ingredient: La0.8Sr 0.2CoO3-δ (LSC) epitaxial thin films are prepared on (001 )-oriented yttria-stabilized zirconia (YSZ) single crystals with a gadolinium-doped ceria (GDC) buffer layer (see picture). The LSC epitaxial films exhibit better oxygen reduction kinetics than bulk LSC. The enhanced activity is attributed in part to higher oxygen nonstoichiometry. © 2010 Wiley-VCH Verlag GmbH & Co. KCaA, Weinheim.

  11. Catalytic Activity Enhancement for Oxygen Reduction on Epitaxial Perovskite Thin Films for Solid-Oxide Fuel Cells

    KAUST Repository

    la O', Gerardo Jose

    2010-06-22

    Figure Presented The active ingredient: La0.8Sr 0.2CoO3-δ (LSC) epitaxial thin films are prepared on (001 )-oriented yttria-stabilized zirconia (YSZ) single crystals with a gadolinium-doped ceria (GDC) buffer layer (see picture). The LSC epitaxial films exhibit better oxygen reduction kinetics than bulk LSC. The enhanced activity is attributed in part to higher oxygen nonstoichiometry. © 2010 Wiley-VCH Verlag GmbH & Co. KCaA, Weinheim.

  12. Investigation of radiation-enhanced oxygen diffusion in Li-Ti ferrites

    International Nuclear Information System (INIS)

    Surzhikov, A.P.; Pritulov, A.M.; Gyngazov, S.A.; Lysenko, E.N.

    1999-01-01

    The radiation-enhanced oxygen diffusion in polycrystalline Li-Ti ferrites was investigated. The electron accelerator ELV-6 (Institute of Nuclear Physics, Russian Academy of Sciences) was used to generate the radiothermal annealing. The radiation effects were established by comparison of diffusion profiles of the samples, which were radiothermally treated, and data obtained during the thermal annealing in the resistance furnace. It was discovered that there was an increase of numerical values of Ed (activation diffusion energy) and Do (preexponential factor) during the radiothermal annealing, if compared with the thermal one. The investigations were financed by the Russian Fundamental Research Fund

  13. Anomalous cosmic ray carbon and oxygen tracks in CN-Kodak.

    Science.gov (United States)

    Kondratyeva, M A; Tretyakova, C A; Tretyakova, S P; Zhuravlev, D A

    2001-06-01

    For observation of low energy cosmic ray particles we used CN-Kodak nuclear track detectors on Cosmos satellites. In solar quiet periods during solar minima conditions the detectors registered anomalous cosmic rays (ACRs). The ACRs are characterized by flux enhancements of several elements and it is known that the carbon enhancement is small compared with that of oxygen. In all of our quiet-time exposures the relation between carbon and oxygen was extremely small (C/O ~ 0.03). But in two quiet-time periods of 14.03.96-11.06.96 and of 15.12.97-14.04.98 we have identified many tracks as carbon in a L-R diagram. As a result the observed C/O ratio appears to be more than 0.5, whereas other experiments show no evidence of enhanced flux of carbon during these periods. The reason for the unexpected response of CN-Kodak is discussed. c2001 Elsevier Science Ltd. All rights reserved.

  14. Oxygen-independent direct deoxyribonucleic acid backbone breakage caused by rose bengal and visible light

    Energy Technology Data Exchange (ETDEWEB)

    Peak, M J; Peak, J G; Foote, C S; Krinsky, N I

    1984-01-01

    An oxygen enhancement ratio of 10 for the induction of backbone single-strand breaks (SSBs) in purified deoxyribonucleic acid (DNA) by monochromatic 365 nm UV radiation was obtained. Similarly, a dose reduction factor of 10 was observed when the DNA was irradiated in the presence of 0.1 M diazabicyclo(2.2.2)octane (DABCO). To determine whether this breakage of DNA was due to the action of a reactive oxygen species such as singlet oxygen, we used the photosensitizing dye Rose Bengal and visible light as a system for generating singlet oxygen. Treatment of the DNA with Rose Bengal and 545 nm monochromatic light enhanced the rate of induction of SSBs six times, compared with the rate we obtained when the light was used alone. Elimination of oxygen or addition of 0.1 M DABCO during the 545 nm irradiation in the presence of Rose Bengal did not alter the enhancement of SSBs in the DNA caused by Rose Bengal and 545 nm radiation. The induction of SSBs in the DNA caused by irradiation of the DNA by 545 nm light in the presence of Rose Bengal was not enhanced by the use of D/sub 2/O instead of H/sub 2/O as a solvent. The results indicate that Rose Bengal plus visible light can cause biological damage without the intermediacy of reactive oxygen species, i.e. Rose Bengal and visible light can react directly with biological material, in reactions that appear to be type I photosensitized processes, independent of singlet oxygen as an intermediate.

  15. Oxygen-enhanced MRI for patients with connective tissue diseases: Comparison with thin-section CT of capability for pulmonary functional and disease severity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Nishio, Mizuho [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Koyama, Hisanobu [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Yoshikawa, Takeshi; Matsumoto, Sumiaki [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Seki, Shinichiro [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Tsubakimoto, Maho [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nakagami-Gun, Okinawa (Japan); Sugimura, Kazuro [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan)

    2014-02-15

    Purpose: To prospectively and directly compare oxygen-enhanced (O{sub 2}-enhanced) MRI with thin-section CT for pulmonary functional loss and disease severity assessment in connective tissue disease (CTD) patients with interstitial lung disease (ILD). Materials and methods: Thin-section CT, O{sub 2}-enhanced MRI, pulmonary function test and serum KL-6 were administered to 36 CTD patients with ILD (23 men, 13 women; mean age: 63.9 years) and nine CTD patients without ILD (six men, and three women; mean age: 62.0 years). A relative-enhancement ratio (RER) map was generated from O{sub 2}-enhanced MRI and mean relative enhancement ratio (MRER) for each subject was calculated from all ROI measurements. CT-assessed disease severity was evaluated with a visual scoring system from each of the thin-section CT data. MRER and CT-assessed disease severities of CTD patients with and without ILD were then statistically compared. To assess capability for pulmonary functional loss and disease severity assessment in CTD patients, correlations of MRER and CT-assessed disease severity with pulmonary functional parameters and serum KL-6 in all subjects were statistically determined. Results: MRER and CT-assessed disease severity showed significant differences between CTD patients with (MRER: 0.15 ± 0.08, CT-assessed disease severity: 13.0 ± 7.4%) and without ILD (MRER: 0.25 ± 0.06, p = 0.0011; CT-assessed disease severity: 1.6 ± 1.6%, p < 0.0001). MRER and CT-assessed disease severity correlated significantly with pulmonary functional parameters and serum KL-6 in all subjects (0.61 ≤ r ≤ 0.79, p < 0.05). Conclusion: O{sub 2}-enhanced MRI was found to be as useful as thin-section CT for pulmonary functional loss and disease severity assessment of CTD patients with ILD.

  16. Oxygen-enhanced MRI for patients with connective tissue diseases: Comparison with thin-section CT of capability for pulmonary functional and disease severity assessment

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Seki, Shinichiro; Tsubakimoto, Maho; Sugimura, Kazuro

    2014-01-01

    Purpose: To prospectively and directly compare oxygen-enhanced (O 2 -enhanced) MRI with thin-section CT for pulmonary functional loss and disease severity assessment in connective tissue disease (CTD) patients with interstitial lung disease (ILD). Materials and methods: Thin-section CT, O 2 -enhanced MRI, pulmonary function test and serum KL-6 were administered to 36 CTD patients with ILD (23 men, 13 women; mean age: 63.9 years) and nine CTD patients without ILD (six men, and three women; mean age: 62.0 years). A relative-enhancement ratio (RER) map was generated from O 2 -enhanced MRI and mean relative enhancement ratio (MRER) for each subject was calculated from all ROI measurements. CT-assessed disease severity was evaluated with a visual scoring system from each of the thin-section CT data. MRER and CT-assessed disease severities of CTD patients with and without ILD were then statistically compared. To assess capability for pulmonary functional loss and disease severity assessment in CTD patients, correlations of MRER and CT-assessed disease severity with pulmonary functional parameters and serum KL-6 in all subjects were statistically determined. Results: MRER and CT-assessed disease severity showed significant differences between CTD patients with (MRER: 0.15 ± 0.08, CT-assessed disease severity: 13.0 ± 7.4%) and without ILD (MRER: 0.25 ± 0.06, p = 0.0011; CT-assessed disease severity: 1.6 ± 1.6%, p < 0.0001). MRER and CT-assessed disease severity correlated significantly with pulmonary functional parameters and serum KL-6 in all subjects (0.61 ≤ r ≤ 0.79, p < 0.05). Conclusion: O 2 -enhanced MRI was found to be as useful as thin-section CT for pulmonary functional loss and disease severity assessment of CTD patients with ILD

  17. Oxygen plasma assisted end-opening and field emission enhancement in vertically aligned multiwall carbon nanotubes

    International Nuclear Information System (INIS)

    Mathur, A.; Roy, S.S.; Hazra, K.S.; Wadhwa, S.; Ray, S.C.; Mitra, S.K.; Misra, D.S.; McLaughlin, J.A.

    2012-01-01

    Highlights: ► We showed Ar/O 2 plasma can be effective for the end opening of aligned CNTs. ► The field emission property was dramatically enhanced after plasma modification. ► Microstructures were clearly understood by Raman and SEM analysis. ► Surface wet-ability at various functionalised conditions was studied. - Abstract: This paper highlights the changes in micro-structural and field emission properties of vertically aligned carbon nanotubes (VACNTs) via oxygen plasma treatment. We find that exposure of very low power oxygen plasma (6 W) at 13.56 MHz for 15–20 min, opens the tip of vertically aligned CNTs. Scanning electron microscopy and transmission electron microscopy images were used to identify the quality and micro-structural changes of the nanotube morphology and surfaces. Raman spectra showed that the numbers of defects were increased throughout the oxygen plasma treatment process. In addition, the hydrophobic nature of the VACNTs is altered significantly and the contact angle decreases drastically from 110° to 40°. It was observed that the electron field emission (EFE) characteristics are significantly enhanced. The turn-on electric field (ETOE) of CNTs decreased from ∼0.80 V μm −1 (untreated) to ∼0.60 V μm −1 (oxygen treated). We believe that the open ended VACNTs would be immensely valuable for applications such as micro/nanofluidic based filtering elements and display devices.

  18. Oxygen plasma assisted end-opening and field emission enhancement in vertically aligned multiwall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, A. [NIBEC, School of Engineering, University of Ulster, Jordanstown, BT37 0QB (United Kingdom); Roy, S.S., E-mail: sinharoy@ualberta.ca [Department of Mechanical Engineering, University of Alberta, Edmonton, T6T 2G8 (Canada); Hazra, K.S. [Department of Physics, IIT Bombay, Powai, Mumbai-400076 (India); Wadhwa, S. [NIBEC, School of Engineering, University of Ulster, Jordanstown, BT37 0QB (United Kingdom); Ray, S.C. [School of Physics, University of the Witwatersrand, WITS 2050, Johannesburg (South Africa); Mitra, S.K. [Department of Mechanical Engineering, University of Alberta, Edmonton, T6T 2G8 (Canada); Misra, D.S. [Department of Physics, IIT Bombay, Powai, Mumbai-400076 (India); McLaughlin, J.A. [NIBEC, School of Engineering, University of Ulster, Jordanstown, BT37 0QB (United Kingdom)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We showed Ar/O{sub 2} plasma can be effective for the end opening of aligned CNTs. Black-Right-Pointing-Pointer The field emission property was dramatically enhanced after plasma modification. Black-Right-Pointing-Pointer Microstructures were clearly understood by Raman and SEM analysis. Black-Right-Pointing-Pointer Surface wet-ability at various functionalised conditions was studied. - Abstract: This paper highlights the changes in micro-structural and field emission properties of vertically aligned carbon nanotubes (VACNTs) via oxygen plasma treatment. We find that exposure of very low power oxygen plasma (6 W) at 13.56 MHz for 15-20 min, opens the tip of vertically aligned CNTs. Scanning electron microscopy and transmission electron microscopy images were used to identify the quality and micro-structural changes of the nanotube morphology and surfaces. Raman spectra showed that the numbers of defects were increased throughout the oxygen plasma treatment process. In addition, the hydrophobic nature of the VACNTs is altered significantly and the contact angle decreases drastically from 110 Degree-Sign to 40 Degree-Sign . It was observed that the electron field emission (EFE) characteristics are significantly enhanced. The turn-on electric field (ETOE) of CNTs decreased from {approx}0.80 V {mu}m{sup -1} (untreated) to {approx}0.60 V {mu}m{sup -1} (oxygen treated). We believe that the open ended VACNTs would be immensely valuable for applications such as micro/nanofluidic based filtering elements and display devices.

  19. The Ratio of Partial Pressure Arterial Oxygen and Fraction of Inspired Oxygen 1 Day After Acute Respiratory Distress Syndrome Onset Can Predict the Outcomes of Involving Patients.

    Science.gov (United States)

    Lai, Chih-Cheng; Sung, Mei-I; Liu, Hsiao-Hua; Chen, Chin-Ming; Chiang, Shyh-Ren; Liu, Wei-Lun; Chao, Chien-Ming; Ho, Chung-Han; Weng, Shih-Feng; Hsing, Shu-Chen; Cheng, Kuo-Chen

    2016-04-01

    The initial hypoxemic level of acute respiratory distress syndrome (ARDS) defined according to Berlin definition might not be the optimal predictor for prognosis. We aimed to determine the predictive validity of the stabilized ratio of partial pressure arterial oxygen and fraction of inspired oxygen (PaO2/FiO2 ratio) following standard ventilator setting in the prognosis of patients with ARDS.This prospective observational study was conducted in a single tertiary medical center in Taiwan and compared the stabilized PaO2/FiO2 ratio (Day 1) following standard ventilator settings and the PaO2/FiO2 ratio on the day patients met ARDS Berlin criteria (Day 0). Patients admitted to intensive care units and in accordance with the Berlin criteria for ARDS were collected between December 1, 2012 and May 31, 2015. Main outcome was 28-day mortality. Arterial blood gas and ventilator setting on Days 0 and 1 were obtained.A total of 238 patients met the Berlin criteria for ARDS were enrolled, and they were classified as mild (n = 50), moderate (n = 125), and severe (n = 63) ARDS, respectively. Twelve (5%) patients who originally were classified as ARDS did not continually meet the Berlin definition, and a total of 134 (56%) patients had the changes regarding the severity of ARDS from Day 0 to Day 1. The 28-day mortality rate was 49.1%, and multivariate analysis identified age, PaO2/FiO2 on Day 1, number of organ failures, and positive fluid balance within 5 days as significant risk factors of death. Moreover, the area under receiver-operating curve for mortality prediction using PaO2/FiO2 on Day 1 was significant higher than that on Day 0 (P = 0.016).PaO2/FiO2 ratio on Day 1 after applying mechanical ventilator is a better predictor of outcomes in patients with ARDS than those on Day 0.

  20. Seasonal Variations in Stable Isotope Ratios of Oxygen and Hydrogen in Two Tundra Rivers in NE European Russia

    Energy Technology Data Exchange (ETDEWEB)

    Huitu, E.; Arvola, L. [Lammi Biological Station, University of Helsinki (Finland); Sonninen, E. [Radiocarbon Dating Laboratory, University of Helsinki (Finland)

    2013-07-15

    The variability in stable isotope ratios of oxygen and hydrogen ({delta} {sup 18}O and {delta}{sup 2}H values) in river waters in northeast European Russia was studied for the period from July 2007 to october 2008. Exceptional isotope composition in precipitation obtained during the sampling period was clearly traced in the composition of river waters. Water from permafrost thawing did not make a great contribution to river flow. (author)

  1. The vanadium/oxygen system in the analysis of sodium for oxygen

    International Nuclear Information System (INIS)

    Walker, J.A.J.; Price, W.B.

    1981-05-01

    An investigation of the V-O-Na system at 1023 K is described for oxygen in sodium contents of 5 to 25 ppm. Electron spectroscopy combined with depth profiling is used to determine the vanadium/oxygen ratios inwards from the surface of vanadium foil and these ratios are compared with theoretical predictions. The validity of the vanadium wire technique as an analytical method is examined and a model for the vanadium oxidation is suggested. (author)

  2. Oxygen potentials, oxygen diffusion coefficients and defect equilibria of nonstoichiometric (U,Pu)O{sub 2±x}

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masato, E-mail: kato.masato@jaea.go.jp [Fukushima Fuels and Materials Department, Japan Atomic Energy Agency, 4002 Narita-chou, O-arai machi, Ibaraki 311-1919 (Japan); Fast Reactor Fuel Cycle Technology Development Division, Japan Atomic Energy Agency, 4-33 Muramatsu Tokai-mura, Ibaraki 319-1194 (Japan); Watanabe, Masashi [Fukushima Fuels and Materials Department, Japan Atomic Energy Agency, 4002 Narita-chou, O-arai machi, Ibaraki 311-1919 (Japan); Fast Reactor Fuel Cycle Technology Development Division, Japan Atomic Energy Agency, 4-33 Muramatsu Tokai-mura, Ibaraki 319-1194 (Japan); Matsumoto, Taku; Hirooka, Shun; Akashi, Masatoshi [Fast Reactor Fuel Cycle Technology Development Division, Japan Atomic Energy Agency, 4-33 Muramatsu Tokai-mura, Ibaraki 319-1194 (Japan)

    2017-04-15

    Oxygen potential of (U,Pu)O{sub 2±x} was evaluated based on defect chemistry using an updated experimental data set. The relationship between oxygen partial pressure and deviation x in (U,Pu)O{sub 2±x} was analyzed, and equilibrium constants of defect formation were determined as functions of Pu content and temperature. Brouwer's diagrams were constructed using the determined equilibrium constants, and a relational equation to determine O/M ratio was derived as functions of O/M ratio, Pu content and temperature. In addition, relationship between oxygen potential and oxygen diffusion coefficients were described. - Highlights: •Brouwer’s diagrams for (U,Pu)O2 were constructed using the updated oxygen potential experimental data set. •Equilibrium constants of defect formation were determined as functions of Pu content and temperature. •Oxygen potential, oxygen diffusion coefficients, point defect concentration were described as functions of O/M ratio, Pu content and temperature.

  3. Oxygen consumption rates in hovering hummingbirds reflect substrate-dependent differences in P/O ratios: carbohydrate as a 'premium fuel'.

    Science.gov (United States)

    Welch, Kenneth C; Altshuler, Douglas L; Suarez, Raul K

    2007-06-01

    The stoichiometric relationship of ATP production to oxygen consumption, i.e. the P/O ratio, varies depending on the nature of the metabolic substrate used. The latest estimates reveal a P/O ratio approximately 15% higher when glucose is oxidized compared with fatty acid oxidation. Because the energy required to produce aerodynamic lift for hovering is independent of the metabolic fuel oxidized, we hypothesized that the rate of oxygen consumption, VO2, should decline as the respiratory quotient, RQ (VCO2/VO2), increases from 0.71 to 1.0 as hummingbirds transition from a fasted to a fed state. Here, we show that hovering VO2 values in rufous (Selasphorus rufus) and Anna's hummingbirds (Calypte anna) are significantly greater when fats are metabolized (RQ=0.71) than when carbohydrates are used (RQ=1.0). Because hummingbirds gained mass during our experiments, making mass a confounding variable, we estimated VO2 per unit mechanical power output. Expressed in this way, the difference in VO2 when hummingbirds display an RQ=0.71 (fasted) and an RQ=1.0 (fed) is between 16 and 18%, depending on whether zero or perfect elastic energy storage is assumed. These values closely match theoretical expectations, indicating that a combination of mechanical power estimates and ;indirect calorimetry', i.e. the measurement of rates of gas exchange, enables precise estimates of ATP turnover and metabolic flux rates in vivo. The requirement for less oxygen when oxidizing carbohydrate suggests that carbohydrate oxidation may facilitate hovering flight in hummingbirds at high altitude.

  4. Exploring the possibility to store the mixed oxygen-hydrogen cluster in clathrate hydrate in molar ratio 1:2 (O2+2H2).

    Science.gov (United States)

    Qin, Yan; Du, Qi-Shi; Xie, Neng-Zhong; Li, Jian-Xiu; Huang, Ri-Bo

    2017-05-01

    An interesting possibility is explored: storing the mixture of oxygen and hydrogen in clathrate hydrate in molar ratio 1:2. The interaction energies between oxygen, hydrogen, and clathrate hydrate are calculated using high level quantum chemical methods. The useful conclusion points from this study are summarized as follows. (1) The interaction energies of oxygen-hydrogen mixed cluster are larger than the energies of pure hydrogen molecular cluster. (2) The affinity of oxygen molecules with water molecules is larger than that of the hydrogen molecules with water molecules. (3) The dimension of O 2 -2H 2 interaction structure is smaller than the dimension of CO 2 -2H 2 interaction structure. (4) The escaping energy of oxygen molecules from the hydrate cell is larger than that of the hydrogen molecules. (5) The high affinity of the oxygen molecules with both the water molecules and the hydrogen molecules may promote the stability of oxygen-hydrogen mixture in the clathrate hydrate. Therefore it is possible to store the mixed (O 2 +2H 2 ) cluster in clathrate hydrate. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The change of longitudinal relaxation rate in oxygen enhanced pulmonary MRI depends on age and BMI but not diffusing capacity of carbon monoxide in healthy never-smokers.

    Directory of Open Access Journals (Sweden)

    Simon Sven Ivan Kindvall

    Full Text Available Oxygen enhanced pulmonary MRI is a promising modality for functional lung studies and has been applied to a wide range of pulmonary conditions. The purpose of this study was to characterize the oxygen enhancement effect in the lungs of healthy, never-smokers, in light of a previously established relationship between oxygen enhancement and diffusing capacity of carbon monoxide in the lung (DL,CO in patients with lung disease.In 30 healthy never-smoking volunteers, an inversion recovery with gradient echo read-out (Snapshot-FLASH was used to quantify the difference in longitudinal relaxation rate, while breathing air and 100% oxygen, ΔR1, at 1.5 Tesla. Measurements were performed under multiple tidal inspiration breath-holds.In single parameter linear models, ΔR1 exhibit a significant correlation with age (p = 0.003 and BMI (p = 0.0004, but not DL,CO (p = 0.33. Stepwise linear regression of ΔR1 yields an optimized model including an age-BMI interaction term.In this healthy, never-smoking cohort, age and BMI are both predictors of the change in MRI longitudinal relaxation rate when breathing oxygen. However, DL,CO does not show a significant correlation with the oxygen enhancement. This is possibly because oxygen transfer in the lung is not diffusion limited at rest in healthy individuals. This work stresses the importance of using a physiological model to understand results from oxygen enhanced MRI.

  6. Effects of glutathione depletion by buthionine sulfoximine on radiosensitization by oxygen and misonidazole in vitro

    International Nuclear Information System (INIS)

    Shrieve, D.C.; Denekamp, J.; Minchinton, A.I.

    1985-01-01

    Buthionine sulfoximine (BSO) has been used to deplete glutathione (GSH) in V79-379A cells in vitro, and the effect on the efficiency of oxygen and misonidazole (MISO) as radiosensitizers has been determined. Treatment with 50 or 500 μM BSO caused a rapid decline in GSH content to less than 5% of control values after 10 hr of exposure. Removal of BSO resulted in a rapid regeneration of GSH after 50 μM BSO, but little regeneration was observed over the subsequent 10-hr period after 500 μM. Cells irradiated in monolayer on glass had an oxygen enhancement ratio (OER) of 3.1. After 10-14 hr pretreatment with 50 μM BSO, washed cells were radiosensitized by GSH depletion at all oxygen tensions tested. The OER was reduced to 2.6, due to greater radiosensitization of hypoxic cells than aerated ones by GSH depletion. In similar experiments performed with MISO, an enhancement ratio of 2.0 could be achieved with 0.2 mM MISO in anoxic BSO-pretreated cells, compared to 2.7 mM MISO in non-BSO-treated cells. These apparent increases in radiosensitizer efficiency in GSH-depleted cells could be explained on the basis of radiosensitization of hypoxic cells by GSH depletion alone. These results are consistent with hypoxic cell radiosensitization by GSH depletion and by MISO or oxygen acting by separate mechanisms

  7. Optimal oxygen feeding policy to maximize the production of Maleic anhydride in unsteady state fixed bed catalytic reactors

    Directory of Open Access Journals (Sweden)

    E. Ali

    2017-07-01

    Full Text Available The effect of different oxygen feeding scenarios in a fixed bed reactor for the production of Maleic anhydride (MA is studied. Two reactor configurations were examined. In the first configuration, a cross flow reactor (CFR with 4 discrete feeding points is considered. Another configuration is the conventional packed-bed reactor (PBR with a single feed. Nonlinear Model Predictive Controller (NLMPC was used as optimal controller to operate the CFR in dynamic mode and to optimize the multiple feed dosages in order to enhance the MA yield. The simulation results indicated that different combinations of the four feed ratios can operate the reactor at the best value for the yield provided the first feeding point is kept as low as possible. For the packed bed reactor configuration, a single oxygen feed is considered and is optimized transiently by NLMPC. The simulation outcomes showed that the reactor performance in terms of the produced MA mole fraction can also be enhanced to the same magnitude obtained by CFR configuration. This improvement requires decreasing the oxygen ratio in the reactor single feed by 70%.

  8. Carbon-Coated Perovskite BaMnO3 Porous Nanorods with Enhanced Electrocatalytic Perporites for Oxygen Reduction and Oxygen Evolution

    International Nuclear Information System (INIS)

    Xu, Yujiao; Tsou, Alvin; Fu, Yue; Wang, Jin; Tian, Jing-Hua; Yang, Ruizhi

    2015-01-01

    A thin carbon layer has been introduced to coat on the perovskite BaMnO 3 nanorods by a facile method, which exhibit significantly enhanced electrocatalytic activity for both the ORR and OER with excellent stability. - Highlights: • A non-rare-earth element based perovskite BaMnO 3 nanorods as an active electrocatalyst for the ORR and OER have been prepared and investigated for the first time. • A thin carbon-coating layer with thickness of approximately 10 nm has been successfully introduced to enhance the electrical conductivity and the electrocatalytic activities of the bare perovskite for both ORR and OER. • The stabilities of bare BaMnO 3 nanorods for both ORR and OER have also been improved dramatically with the help of carbon coating, especially for the OER process. - Abstract: Highly efficient, low-cost catalysts, especially with bifunctional electrocatalytic capabilities for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are vital for the wide commercialization of fuel cells and metal-air batteries. In this study, BaMnO 3 - a non-rare-earth element based perovskite nanorods have been prepared and investigated for the first time, and a thin carbon-coating with a thickness of approximately 10 nm has been successfully introduced to enhance the electrical conductivity of the bare perovskite. Electrochemical tests reveal that bare BaMnO 3 nanorods exhibit very good catalytic activity. More interestingly, a remarkably enhanced ORR activity for the perovskite BaMnO 3 nanorods was observed after coating with a thin layer of carbon, which dominated with a direct four-electron pathway. Meanwhile, the OER process has also been enhanced extraordinarily with the carbon-coating, reaching a maximum of 14.8 mA cm −2 at 1.0 V (vs. Ag/AgCl), which is far superior to both the bare BaMnO 3 nanorods and commercial Pt/C (20 wt%) catalysts. Furthermore, the stabilities of bare BaMnO 3 nanorods for both ORR and OER have also been improved

  9. Classifying organic materials by oxygen-to-carbon elemental ratio to predict the activation regime of Cloud Condensation Nuclei (CCN

    Directory of Open Access Journals (Sweden)

    M. Kuwata

    2013-05-01

    Full Text Available The governing highly soluble, slightly soluble, or insoluble activation regime of organic compounds as cloud condensation nuclei (CCN was examined as a function of oxygen-to-carbon elemental ratio (O : C. New data were collected for adipic, pimelic, suberic, azelaic, and pinonic acids. Secondary organic materials (SOMs produced by α-pinene ozonolysis and isoprene photo-oxidation were also included in the analysis. The saturation concentrations C of the organic compounds in aqueous solutions served as the key parameter for delineating regimes of CCN activation, and the values of C were tightly correlated to the O : C ratios. The highly soluble, slightly soluble, and insoluble regimes of CCN activation were found to correspond to ranges of [O : C] > 0.6, 0.2 < [O : C] < 0.6, and [O : C] < 0.2, respectively. These classifications were evaluated against CCN activation data of isoprene-derived SOM (O : C = 0.69–0.72 and α-pinene-derived SOM (O : C = 0.38–0.48. Isoprene-derived SOM had highly soluble activation behavior, consistent with its high O : C ratio. For α-pinene-derived SOM, although CCN activation can be modeled as a highly soluble mechanism, this behavior was not predicted by the O : C ratio, for which a slightly soluble mechanism was anticipated. Complexity in chemical composition, resulting in continuous water uptake and the absence of a deliquescence transition that can thermodynamically limit CCN activation, might explain the difference in the behavior of α-pinene-derived SOM compared to that of pure organic compounds. The present results suggest that atmospheric particles dominated by hydrocarbon-like organic components do not activate (i.e., insoluble regime whereas those dominated by oxygenated organic components activate (i.e., highly soluble regime for typical atmospheric cloud life cycles.

  10. Determination Of Oxygen Isotope Ratio (18O-/16O) and Sulfur (34S-/32S) Value Of BaSO4 Din 5033 For Internal Standard

    International Nuclear Information System (INIS)

    Evarista Ristin, P.I.; Sidauruk, Paston; Wibagoyo; Djiono; Satrio

    2000-01-01

    It has been done an experiment to determine of oxygen( 18 O-/ 16 O) and Sulfur ( 34 S-/ 32 S) ) isotop value of BaSO 4 DIN 5033 (merck) for internal standard. The used technique for preparation of CO 2 gas to measure oxygen isotop ratio ratio (stated as deltaδ 18 O) is based on Rafter on Rafte method using graphite for reduction of BaSO 4 . Where the used technique for preparation of SO 2 gas to measure isotope sulphur ratio (started as δ 34 S) is based on Robinson - Kasakabe method using Cupro oxide to oxidize Ag 2 S. The result of this experiment is 11,48±0,41 0/00 and 5,00 plus minus ±0,33 o/oo for deltaδ 18 O and δ 34 S value respectively. Based on this experiment. BaSO 4 DIN 5033 can be used as internal standard because is values both oxygen and sulphur lie in the middle of range of its variation in nature. The result of interlab comparison shows that the value of this experiment is nearly similar to the value obtained from laboratorium of Pinstech-Pakistan. To acquire the result, it is necessary to carry out more interlab comparison

  11. Pharmaceutical micelles featured with singlet oxygen-responsive cargo release and mitochondrial targeting for enhanced photodynamic therapy

    Science.gov (United States)

    Zhang, Xin; Yan, Qi; Naer Mulatihan, Di; Zhu, Jundong; Fan, Aiping; Wang, Zheng; Zhao, Yanjun

    2018-06-01

    The efficacy of nanoparticulate photodynamic therapy is often compromised by the short life time and limited diffusion radius of singlet oxygen as well as uncontrolled intracellular distribution of photosensitizer. It was hypothesized that rapid photosensitizer release upon nanoparticle internalization and its preferred accumulation in mitochondria would address the above problems. Hence, the aim of this study was to engineer a multifunctional micellar nanosystem featured with singlet oxygen-responsive cargo release and mitochondria-targeting. An imidazole-bearing amphiphilic copolymer was employed as the micelle building block to encapsulate triphenylphosphonium-pyropheophorbide a (TPP-PPa) conjugate or PPa. Upon laser irradiation, the singlet oxygen produced by TPP-PPa/PPa oxidized the imidazole moiety to produce hydrophilic urea, leading to micelle disassembly and rapid cargo release. The co-localization analysis showed that the TPP moiety significantly enhanced the photosensitizer uptake by mitochondria, improved mitochondria depolarization upon irradiation, and hence boosted the cytotoxicity in 4T1 cells. The targeting strategy also dramatically reduced the intracellular ATP concentration as a consequence of mitochondria injury. The mitochondria damage was accompanied with the activation of the apoptosis signals (caspase 3 and caspase 9), whose level was directly correlated to the apoptosis extent. The current work provides a facile and robust means to enhance the efficacy of photodynamic therapy.

  12. HIGH PERFORMANCE CERIA BASED OXYGEN MEMBRANE

    DEFF Research Database (Denmark)

    2014-01-01

    The invention describes a new class of highly stable mixed conducting materials based on acceptor doped cerium oxide (CeO2-8 ) in which the limiting electronic conductivity is significantly enhanced by co-doping with a second element or co- dopant, such as Nb, W and Zn, so that cerium and the co......-dopant have an ionic size ratio between 0.5 and 1. These materials can thereby improve the performance and extend the range of operating conditions of oxygen permeation membranes (OPM) for different high temperature membrane reactor applications. The invention also relates to the manufacturing of supported...

  13. Changes in signal-to-noise ratios and contrast-to-noise ratios of hypervascular hepatocellular carcinomas on ferucarbotran-enhanced dynamic MR imaging

    International Nuclear Information System (INIS)

    Park, Yulri; Choi, Dongil; Kim, Seong Hyun; Kim, Seung Hoon; Kim, Min Ju; Lee, Jongmee; Lim, Jae Hoon; Lee, Won Jae; Lim, Hyo K.

    2006-01-01

    Purpose: To verify changes in the signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) of hypervascular hepatocellular carcinomas (HCCs) on ferucarbotran-enhanced dynamic T1-weighted MR imaging. Materials and methods: Fifty-two patients with 61 hypervascular HCCs underwent ferucarbotran-enhanced dynamic MR imaging, and then hepatic resection. Hypervascular HCCs were identified when definite enhancement was noted during the arterial dominant phase of three-phase MDCT. Dynamic MR Images with T1-weighted fast multiplanar spoiled gradient-recalled echo sequence (TR200/TE4.2) were obtained before and 20 s, and 1, 3, 5, and 10 min, after bolus injection of ferucarbotran. We estimated the signal intensities of tumors and livers, and calculated the SNRs and CNRs of the tumors. Results: On ferucarbotran-enhanced dynamic MR imaging, SNR measurements showed a fluctuating pattern, namely, an increase in SNR followed by a decrease and a subsequent increase (or a decrease in SNR followed by a increase and a subsequent decrease) in 50 (82.0%) of 61 tumors, a single-peak SNR pattern (highest SNR on 20 s, 1, 3, or 5 min delayed images followed by a decrease) in seven (11.5%), and a decrease in SNR followed by an increase in four (6.6%). Maximum absolute CNRs with positive value were noted on 10 min delayed images in 41 (67.2%) tumors, and maximum absolute CNRs with negative value were observed on 20 s delayed images in 12 (19.7%) and on 1 min delayed images in eight (13.1%). Conclusion: Despite showing various SNR and CNR changes, the majority of hypervascular HCCs demonstrated a fluctuating SNR pattern on ferucarbotran-enhanced dynamic MR imaging and a highest CNR on 10 min delayed image, which differed from the classic enhancement pattern on multiphasic CT

  14. Ion microprobe analyses of oxygen three-isotope ratios of chondrules from the Sayh al Uhaymir 290 CH chondrite using a multiple-hole disk

    Digital Repository Service at National Institute of Oceanography (India)

    Nakashima, D.; Ushikubo, T.; Gowda, R.N.; Kita, N.T.; Valley, J.W.; Naga, K.

    Author version: Meteorit. Planet. Sci., vol.46(6); 2011; 857-874 Ion microprobe analyses of oxygen three isotope ratios of chondrules from the Sayh al Uhaymir 290 CH chondrite using a multiple-hole disk Daisuke Nakashima 1,2,* , Takayuki Ushikubo...

  15. XPS analysis of UxCe1-xO2±δ and determination of oxygen to metal ratio

    International Nuclear Information System (INIS)

    Bera, Santanu; Mittal, V.K.; Venkata Krishnan, R.; Saravanan, T.; Velmurugan, S.; Nagarajan, K.; Narasimhan, S.V.

    2009-01-01

    The chemical states of U and Ce in the solid solutions of UO 2 and CeO 2 are studied using the X-ray photoelectron spectroscopy. A detailed analyses on U 4f and Ce 3d photoelectron peaks revealed the presence of Ce 3+ and U 5+ /U 6+ states in the mixed oxides. The oxygen to metal ratios in different compositions of mixed oxides were estimated from the quantity of different chemical states of U and Ce present in mixed oxides.

  16. Overexpression of Genes Encoding Glycolytic Enzymes in Corynebacterium glutamicum Enhances Glucose Metabolism and Alanine Production under Oxygen Deprivation Conditions

    Science.gov (United States)

    Yamamoto, Shogo; Gunji, Wataru; Suzuki, Hiroaki; Toda, Hiroshi; Suda, Masako; Jojima, Toru; Inui, Masayuki

    2012-01-01

    We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159–165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD+ ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses. PMID

  17. Single-dose relative biological effectiveness and toxicity studies under conditions of hypothermia and hyperbaric oxygen

    International Nuclear Information System (INIS)

    Hering, E.R.; Blekkenhorst, G.; Harrison, G.G.; Morrell, D.; Korrubel, J.; Gregory, A.; Phillips, J.; Manca, V.; Sealy, R.; Cape Town Univ.

    1986-01-01

    An approach to using hyperbaric oxygen with radiation in a clinical situation has been described in the preceding paper in this issue. To ascertain whether there might be a change in the relative biological effectiveness of radiation on normal mammalian tissue treated under conditions of hypothermia and hyperbaric oxygen, the acute reaction to radiation of pig skin was studied. A single dose enhancement ratio at the erythema reaction level of 1.4+-0.08 was obtained when compared with irradiation at normal body temperature in air. The authors studied also a series of antioxidant enzymes in rat liver and lung after exposure to hypothermia and hyperbaric oxygen. Enzyme changes were such as to combat oxygen toxicity which might develop as a result of the pre-treatment. (author)

  18. Surgery-induced reactive oxygen species enhance colon carcinoma cell binding by disrupting the liver endothelial cell lining

    NARCIS (Netherlands)

    Gül, N.; Bögels, M.; Grewal, S.; van der Meer, A.J.; Rojas, L.B.; Fluitsma, D.M.; van den Tol, M.P.; Hoeben, K.A.; van Marle, J.; de Vries, H.E.; Beelen, R.H.J.; van Egmond, M.

    2011-01-01

    Objective: Resection of primary colorectal cancer is associated with enhanced risk of development of liver metastases. It was previously demonstrated that surgery initiated an early inflammatory response resulting in elevated tumour cell adhesion in the liver. Because reactive oxygen species (ROS)

  19. Surgery-induced reactive oxygen species enhance colon carcinoma cell binding by disrupting the liver endothelial cell lining

    NARCIS (Netherlands)

    Gul, N.; Bogels, M.; Grewal, S.; van der Meer, A.J.; Rojas, L.B.; Fluitsma, D.M.; van den Tol, M.P.; Hoeben, K.A.; van Marle, J.; de Vries, H.E.; Beelen, R.H.J.; van Egmond, M.

    2011-01-01

    Objective Resection of primary colorectal cancer is associated with enhanced risk of development of liver metastases. It was previously demonstrated that surgery initiated an early inflammatory response resulting in elevated tumour cell adhesion in the liver. Because reactive oxygen species (ROS)

  20. Light-enhanced oxygen respiration in benthic phototrophic communities

    DEFF Research Database (Denmark)

    Epping, EHG; Jørgensen, BB

    1996-01-01

    Two microelectrode studies demonstrate the effect of Light intensity and photosynthesis on areal oxygen respiration in a hypersaline mat at Guerrero Negro, Mexico, and in an intertidal sediment at Texel, The Netherlands. The hypersaline mat was studied in the laboratory at light intensities of 0...... the day at prevailing light intensities. A 1-dimensional diffusion-reaction model was used to estimate gross photosynthesis and oxygen respiration per volume of sediment, as well as the euphotic depth and the sediment-water interface concentration of oxygen. Areal gross photosynthesis ranged from 9...

  1. Oxygen isotopic ratios of quartz from wind-erosive soils of southwestern United States in relation to aerosol dust

    Energy Technology Data Exchange (ETDEWEB)

    Sridhar, K.; Jackson, M.L.; Clayton, R.N.; Gillette, D.A.; Hawley, J.W.

    1978-01-01

    The oxygen isotopic ratios (expressed as parts per thousand relative to mean ocean water, SMOW, delta/sup 18/O) of the quartz from 13 soils undergoing much wind erosion during the study period of 1972-1975 in four southwestern states and from comparison areas were determined. The delta/sup 18/O for quartz from eight Texas (TX) and Arizona (AZ) soils range from 13.0 to 15.9 /sup 0///sub 00/. The quartz of the sands and silts coarser than 20 ..mu..m from three of the soils had delta/sup 18/O values ranging from 13.1 to 15.1 /sup 0///sub 00/, characteristic of an ultimate igneous-metamorphic origin. The delta/sup 18/O values increase greatly with decreasing particle size of quartz from three soils ranging from loamy fine sand to loam to clay in texture. The delta/sup 18/O of the 1-10 ..mu..m quartz fraction (aerosol size) ranged from 19.2 to 20.2 /sup 0///sub 00/ (19.55 +- 0.28 /sup 0///sub 00/; +- sigma) for the thirteen soils most affected by dust storms. The oxygen isotopic ratios of 1-10 ..mu..m quartz from three Hawaiian soils and two sediments from Lake Waiau occurring at 3,970 m altitude on the Mauna Kea summit on the Island of Hawaii give a delta/sup 18/O mean of 18.3 +- 0.2 /sup 0///sub 00/.

  2. Postnatal follow-up of the oxygenation index, arterial to alveolar oxygen tension ratio and alveolar arterial oxygen tension difference values in neonates with the respiratory distress syndrome treated with conventional ventilatory support.

    Science.gov (United States)

    Atanasov, A; Despotova-Toleva, L

    1997-01-01

    Recent development of sophisticated intensive care technique for use in newborn infants with the respiratory distress syndrome (RDS) has resulted in changes in the therapeutic strategies and moved the problem of neonatal survival into the realm of new therapeutic realities. At present, the mechanical ventilation methods form an integral part of the intensive care strategy of infants with RDS. They have come to the forefront of infant care because of their successful use in ventilatory support and children survival where other therapeutic modalities have failed. The present prospective observational longitudinal study was designed to assess the real-time convenience, reliability and accuracy of the changes in the oxygenation index (OI), arterial-to-alveolar oxygen tension ratio (a/A PO2) and alveolar-arterial oxygen gradient (A-a)DO2 in ventilator-dependent neonates with RDS, to analyze their feasibility and potential information yield in oxygen inhalation therapy as well as their prognostic implications and predictive value. Twenty neonates with RDS, heralded by respiratory failure which necessitated the initiation of oxygen inhalation therapy and ventilatory support within 24 hours of birth, were enrolled in the study. Ten of the infants survived and the remaining ten died. OI, (a/A PO2) and (A-a)DO2 were followed up sequentially and thoroughly analyzed as the primary outcome measures of the study. The indices were calculated on the basis of the complete monitoring of the ventilatory equipment parameters and acid-base status carried out on an hourly basis. Our results show that: 1. The combination of three indexes (OI, (a/A)PO2 and (A-a)DO2 we propose is a useful discriminating predictor of neonatal lung maturity reflecting arterial blood gas status in ventilator-dependent neonates with RDS. 2. The indices detect the efficacy of the modern conventional ventilatory support with real-time convenience and reliable accuracy forming the cornerstone of clinical decision

  3. Surgery-induced reactive oxygen species enhance colon carcinoma cell binding by disrupting the liver endothelial cell lining

    NARCIS (Netherlands)

    Gül, Nuray; Bögels, Marijn; Grewal, Simran; van der Meer, Anne Jan; Rojas, Lucy Baldeon; Fluitsma, Donna M.; van den Tol, M. Petrousjka; Hoeben, Kees A.; van Marle, Jan; de Vries, Helga E.; Beelen, Robert H. J.; van Egmond, Marjolein

    2011-01-01

    Resection of primary colorectal cancer is associated with enhanced risk of development of liver metastases. It was previously demonstrated that surgery initiated an early inflammatory response resulting in elevated tumour cell adhesion in the liver. Because reactive oxygen species (ROS) are shown to

  4. Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes

    Science.gov (United States)

    Yu, Anthony S.

    Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two

  5. The neutrophil to lymphocyte ratio in patients supported with extracorporeal membrane oxygenation.

    Science.gov (United States)

    Yost, Gardner; Bhat, Geetha; Pappas, Patroklos; Tatooles, Antone

    2018-04-01

    The neutrophil to lymphocyte ratio (NLR) has proven to be a robust predictor of mortality in a wide range of cardiovascular diseases. This study investigated the predictive value of the NLR in patients supported by extracorporeal membrane oxygenation (ECMO) systems. This study included 107 patients who underwent ECMO implantation for cardiogenic shock. Median preoperative NLR was used to divide the cohort, with Group 1 NLR <14.2 and Group 2 with NLR ≥14.2. Survival, the primary outcome, was compared between groups. The study cohort was composed of 64 (60%) males with an average age 53.1 ± 14.9 years. Patients in Group 1 had an average NLR of 7.5 ± 3.5 compared to 27.1 ± 19.9 in Group 2. Additionally, those in Group 2 had significantly higher preoperative blood urea nitrogen (BUN) and age. Survival analysis indicated a thirty-day survival of 56.2%, with significantly worsened mortality in patients with NLR greater than 14.2, p=0.047. Our study shows the NLR has prognostic value in patients undergoing ECMO implantation. Leukocytes are known contributors to myocardial damage and neutrophil infiltration is associated with damage caused by myocardial ischemia.

  6. Oxygen enhances phosphine toxicity for postharvest pest control.

    Science.gov (United States)

    Liu, Yong-Biao

    2011-10-01

    Phosphine fumigations under superatmospheric oxygen levels (oxygenated phosphine fumigations) were significantly more effective than the fumigations under the normal 20.9% atmospheric oxygen level against western flower thrips [Frankliniella occidentalis (Pergande)] adults and larvae, leafminer Liriomyza langei Frick pupae, grape mealybug [Pseudococcus maritimus (Ehrhorn)] eggs, and Indianmeal moth [Plodia interpunctella (Hübner)] eggs and pupae. In 5-h fumigations with 1,000 ppm phosphine at 5 degrees C, mortalities of western flower thrips increased significantly from 79.5 to 97.7% when oxygen was increased from 20.9 to 40% and reached 99.3% under 80% O2. Survivorships of leafminer pupae decreased significantly from 71.2% under 20.9% O2 to 16.2% under 40% O2 and reached 1.1% under 80% O2 in 24-h fumigations with 500 ppm phosphine at 5 degrees C. Complete control of leafminer pupae was achieved in 24-h fumigations with 1,000 ppm phosphine at 5 degrees C under 60% O2 or higher. Survivorships of grape mealybug eggs also decreased significantly in 48-h fumigations with 1,000 ppm phosphine at 2 degrees C under 60% O2 compared with the fumigations under 20.9% O2. Indian meal moth egg survivorships decreased significantly from 17.4 to 0.5% in responses to an oxygen level increase from 20.9 to 40% in 48-h fumigations with 1,000 ppm phosphine at 10 degrees C and reached 0.2% in fumigations under 80% O2. When the oxygen level was reduced from 20.9 to 15 and 10% in fumigations, survivorships of Indianmeal moth eggs increased significantly from 17.4 to 32.9 and 39.9%, respectively. Increased O2 levels also resulted in significantly lower survival rates of Indianmeal moth pupae in response to 24-h fumigations with 500 and 1,000 ppm phosphine at 10 degrees C and a complete control was achieved in the 1,000 ppm phosphine fumigations under 60% O2. Oxygenated phosphine fumigations have marked potential to improve insecticidal efficacy. Advantages and limitations of oxygenated

  7. Electron mobility enhancement in (100) oxygen-inserted silicon channel

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Nuo; King Liu, Tsu-Jae [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Takeuchi, Hideki; Hytha, Marek; Cody, Nyles W.; Stephenson, Robert J.; Mears, Robert J. [Mears Technologies, Inc., Wellesley Hills, Massachusetts 02481 (United States); Kwak, Byungil; Cha, Seon Yong [SK Hynix, Icheon-si, Gyeonggi-do 467-701 (Korea, Republic of)

    2015-09-21

    High performance improvement (+88% in peak G{sub m} and >30% in linear and saturation region drain currents) was observed for N-MOSFETs with Oxygen-Inserted (OI) Si channel. From TCAD analysis of the C-V measurement data, the improvement was confirmed to be due to electron mobility enhancement of the OI Si channel (+75% at N{sub inv} = 4.0 × 10{sup 12} cm{sup −2} and +25% at N{sub inv} = 8.0 × 10{sup 12} cm{sup −2}). Raman and high-resolution Rutherford backscattering measurements confirmed that negligible strain is induced in the OI Si layer, and hence, it cannot be used to explain the origin of mobility improvement. Poisson-Schrödinger based quantum mechanical simulation was performed, taking into account phonon, surface roughness and Coulomb scatterings. The OI layer was modeled as a “quasi barrier” region with reference to the Si conduction band edge to confine inversion electrons. Simulation explains the measured electron mobility enhancement as the confinement effect of inversion electrons while the formation of an super-steep retrograde well doping profile in the channel (as a result of dopant diffusion blocking effect accompanied by introduction of the OI layer) also contributes 50%–60% of the mobility improvement.

  8. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Directory of Open Access Journals (Sweden)

    Yoichi Takakusagi

    Full Text Available BACKGROUND: TH-302 is a hypoxia-activated prodrug (HAP of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. METHODOLOGY/RESULTS: The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2, with minimal effect under aerobic conditions (21% O2. Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3. Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3, significantly delayed tumor growth. CONCLUSIONS/SIGNIFICANCE: Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the

  9. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Science.gov (United States)

    Takakusagi, Yoichi; Matsumoto, Shingo; Saito, Keita; Matsuo, Masayuki; Kishimoto, Shun; Wojtkowiak, Jonathan W; DeGraff, William; Kesarwala, Aparna H; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Munasinghe, Jeeva P; Gillies, Robert J; Mitchell, James B; Hart, Charles P; Krishna, Murali C

    2014-01-01

    TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR) oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2), with minimal effect under aerobic conditions (21% O2). Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3). Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3)), significantly delayed tumor growth. Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the appropriate tumor size and oxygen concentration.

  10. Benthic phosphorus cycling in the Peruvian oxygen minimum zone

    Science.gov (United States)

    Lomnitz, Ulrike; Sommer, Stefan; Dale, Andrew W.; Löscher, Carolin R.; Noffke, Anna; Wallmann, Klaus; Hensen, Christian

    2016-03-01

    Oxygen minimum zones (OMZs) that impinge on continental margins favor the release of phosphorus (P) from the sediments to the water column, enhancing primary productivity and the maintenance or expansion of low-oxygen waters. A comprehensive field program in the Peruvian OMZ was undertaken to identify the sources of benthic P at six stations, including the analysis of particles from the water column, surface sediments, and pore fluids, as well as in situ benthic flux measurements. A major fraction of solid-phase P was bound as particulate inorganic P (PIP) both in the water column and in sediments. Sedimentary PIP increased with depth in the sediment at the expense of particulate organic P (POP). The ratio of particulate organic carbon (POC) to POP exceeded the Redfield ratio both in the water column (202 ± 29) and in surface sediments (303 ± 77). However, the POC to total particulate P (TPP = POP + PIP) ratio was close to Redfield in the water column (103 ± 9) and in sediment samples (102 ± 15). This suggests that the relative burial efficiencies of POC and TPP are similar under low-oxygen conditions and that the sediments underlying the anoxic waters on the Peru margin are not depleted in P compared to Redfield. Benthic fluxes of dissolved P were extremely high (up to 1.04 ± 0.31 mmol m-2 d-1), however, showing that a lack of oxygen promotes the intensified release of dissolved P from sediments, whilst preserving the POC / TPP burial ratio. Benthic dissolved P fluxes were always higher than the TPP rain rate to the seabed, which is proposed to be caused by transient P release by bacterial mats that had stored P during previous periods when bottom waters were less reducing. At one station located at the lower rim of the OMZ, dissolved P was taken up by the sediments, indicating ongoing phosphorite formation. This is further supported by decreasing porewater phosphate concentrations with sediment depth, whereas solid-phase P concentrations were comparatively

  11. Nature of oxygen donors and radiation defects in oxygen-doped germanium

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Atobe, Kozo; Honda, Makoto; Matsuda, Koji.

    1991-01-01

    The nature of oxygen donors and radiation defects in oxygen-doped germanium were studied through measurements of the infrared absorption spectrum, deep level transient spectroscopy spectrum and carrier concentration. It is revealed that a new donor is not formed in oxygen-doped germanium. An A-center (interstitial oxygen-vacancy pair) forms a complex with a thermal donor in its annealing stage at 60degC-140degC. The introduction rate of defects by 1.5 MeV electron irradiation was enhanced in thermal-donor-doped samples. (author)

  12. Enhanced safety margins during wet transport of irradiated fuel by catalytic recombination of radiolysis hydrogen and oxygen

    International Nuclear Information System (INIS)

    Spencer, J.T.; Bankhead, M.; Hodge, N.A.

    2004-01-01

    BNFL has developed and tested a new method for use in wet transport of irradiated fuel. The method uses a catalyst to recombine the hydrogen and oxygen produced from radiolysis. The catalyst is installed in the nitrogen ullage gas region. It has twin benefits as it eliminates a gas mixture that could, in principle, exceed the safe target levels set to ensure safety during Transport, and it also reduces overall gas pressure. Pure water radiolysis predictions, from experiment and theory, indicate very low levels of hydrogen and oxygen generation. BNFL's historic experience is that in some transport packages it is possible to produce higher levels of hydrogen and oxygen. This drives the need to improve on our existing ullage gas remediation technology. Our studies of the radiolysis science and our flask data suggest it is the interaction of the liquors and material surfaces that is giving rise to the enhanced levels of hydrogen and/or oxygen. This technical paper demonstrates the performance of the recombiner catalyst under normal and extreme conditions of transport. The paper will present experimental data that shows the recombiner catalyst working to manage the hydrogen and oxygen levels

  13. 2D ultrathin core-shell Pd@Ptmonolayer nanosheets: defect-mediated thin film growth and enhanced oxygen reduction performance

    Science.gov (United States)

    Wang, Wenxin; Zhao, Yunfeng; Ding, Yi

    2015-07-01

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured d@Ptmonolayer nanosheets (thickness below 5 nm) exhibit nearly seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured d@Ptmonolayer nanosheets (thickness below 5 nm) exhibit nearly seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst. Electronic supplementary information (ESI) available: Sample preparation, physical and electrochemical characterization, Fig. S1 to S11. See DOI: 10.1039/c5nr02748a

  14. GOME-2 observations of oxygenated VOCs: what can we learn from the ratio glyoxal to formaldehyde on a global scale?

    Directory of Open Access Journals (Sweden)

    M. Vrekoussis

    2010-11-01

    Full Text Available Collocated data sets of glyoxal (CHO.CHO and formaldehyde (HCHO were retrieved for the first time from measurements of the Global Ozone Monitoring Experiment-2 (GOME-2 during the first two years of operation in 2007 and 2008. Both oxygenated Volatile Organic Compounds, OVOC, are key intermediate species produced during the oxidation of precursor hydrocarbons. Their short lifetime of a few hours in the lower troposphere links them to emission sources and makes them useful tracers of photochemical activity. The global composite maps of GOME-2 HCHO and CHO.CHO have strong similarities confirming their common atmospheric and/or surface sources. The highest column amounts of these OVOCs are recorded over regions with enhance biogenic emissions (e.g. tropical forests in South America, Africa and Indonesia. Enhanced OVOC values are also present over areas of anthropogenic activity and biomass burning (e.g. over China, N. America, Europe and Australia. The ratio of CHO.CHO to HCHO, RGF, has been used, for the first time on a global scale, to classify the sources according to biogenic and/or anthropogenic emissions of the precursors; RGF between 0.040 to 0.060 point to the existence of biogenic emissions with the highest values being observed at the highest Enhanced Vegetation Index, EVI. RGFs below 0.040 are indicative of anthropogenic emissions and associated with high levels of NO2. This decreasing tendency of RGF with increasing NO2 is also observed when analyzing data for individual large cities, indicating that it is a common feature. The results obtained for RGF from GOME-2 data are compared with the findings based on regional SCIAMACHY observations showing good agreement. This is explained by the excellent correlation of the global retrieved column amounts of CHO.CHO and HCHO from the GOME-2 and SCIAMACHY instruments for the period 2007

  15. Linear theory period ratios for surface helium enhanced double-mode Cepheids

    International Nuclear Information System (INIS)

    Cox, A.N.; Hodson, S.W.; King, D.S.

    1979-01-01

    Linear nonadiabatic theory period ratios for models of double-mode Cepheids with their two periods between 1 and 7 days have been computed, assuming differing amounts and depths of surface helium enhancement. Evolution theory masses and luminosities are found to be consistent with the observed periods. All models give Pi 1 /Pi 0 approx. =0.70 as observed for the 11 known variables, contrary to previous theoretical conclusions. The composition structure that best fits the period ratios has the helium mass fraction in the outer 10 -3 of the stellar mass (T< or =250,000 K) as 0.65, similar to a previous model for the triple-mode pulsator AC And. This enrichment can be established by a Cepheid wind and downward inverted μ gradient instability mixing in the lifetime of these low-mass classical Cepheids

  16. Kinetics of the oxygen effect in yeast irradiated in dry and wet conditions

    International Nuclear Information System (INIS)

    Kiefer, J.; Schoepfer, F.; Luggen-Hoelscher, J.

    1981-01-01

    There are indications that the radiobiological oxygen-effect consists of more than one component: in dry bacterial spores three different classes can be separated depending on exposure- and after-treatment conditions, the dependence of the oxygen-enhancement ratio (OER) on oxygen concentration shows breaks in various systems, and it has been suggested that type O and type N damage are localized in different parts of the cells. These questions were studied in the simple eucaryote Saccharomyces cerevisiae using two approaches: the dependence of OER on oxygen tension was determined both for survivial and mutation induction. Since a forward mutation was used a haploid strain had to be employed in this case. In order to assess whether also in yeast cells more than one component may exist, the techniques originally developed for bacterial spores were adapted for dried diploid yeast cells. The results show that the dependence on oxygen concentration is the same for survival and mutation within error limits, implicating DNA as the main target and that also in our system three classes of oxygen dependent damage exist

  17. Chemical Oxygen Demand abatement in sewage using Micro-Aeration Enhanced Ecological Floating Bed

    Science.gov (United States)

    Shi, Hongle; Zhou, Gaofeng; Liu, Yiqing; Tan, Jiancong; Fu, Yongsheng

    2018-02-01

    The traditional ecological floating bed combined with micro-aeration system and artificial medium was developed for the removal of contaminants and remediation of surface water. This micro-aeration enhanced ecological floating bed (MAEEFB) consisted of aeration unit, microbial processing unit and aquatic plant unit. Batch experiments were conducted in different operating conditions on the removal of chemical oxygen demand (COD) in the sewage using MAEEFB. The removal rate of COD by MAEEFB, enhanced ecological floating bed (EEFB) and traditional ecological floating bed (TEFB) in the same reaction conditions was 59.2%, 56.9% and 30.6%, respectively, indicating that the combination of micro-aeration system and artificial medium could enhance the removal efficiency of COD in TEFB. In MAEEFB, the aeration intensity should be designed reasonablely considering both treatment efficiency and operation cost. Only increasing the specific surface area of the packing cannot effectively improve the purification efficiency of water. Factors like packing material, ability of intercepting organics and complicated extent of microorganisms attaching on the packing should also be considered.

  18. Influence of variable oxygen concentration on the response of cells to heat or x irradiation

    International Nuclear Information System (INIS)

    Gerweck, L.E.; Richards, B.; Jennings, M.

    1981-01-01

    The influence of oxygen concentration on the lethal response of cells exposed to 43 0 C hyperthermia was determined and compared to the response of cells exposed to radiation under equivalent culturing and environmental conditions. Chinese hamster ovary (CHO) cells were heated or irradiated 0.5 h after induction of hypoxia and then reoxygenated following treatment. The oxygen enhancement ratio (OER) for heat or radiation was determined at the 1% survival level from least-squares fit of survival curves. A maximum OER of 3.1 +- 0.2 was observed in the 20 to 95% oxygen concentration range. The OER for heat, however, was 1.0 +- 0.1 irrespective of the gas-phase oxygen concentration. These results show that the lethal effects of heat are not influenced by the oxygen concentration at the time of treatment in CHO cells exposed to 43 0 C hyperthermia

  19. Enhanced decomposition of dimethyl phthalate via molecular oxygen activated by Fe-Fe{sub 2}O{sub 3}/AC under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiling [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China); Ai, Zhihui, E-mail: jennifer.ai@mail.ccnu.edu.cn [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China); Zhang, Lizhi [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Microwave irradiation induces the electrons transferring from AC to Fe-Fe{sub 2}O{sub 3} and reacts with molecular oxygen. Black-Right-Pointing-Pointer Microwave heating accelerates the electron transferring from AC to Fe-Fe{sub 2}O{sub 3} to generate reactive oxygen species. Black-Right-Pointing-Pointer This environmental remediation method is feasible for aqueous organic pollutants treatment. - Abstract: In this study, we demonstrate that the decomposition of dimethyl phthalate under microwave irradiation could be greatly enhanced over Fe-Fe{sub 2}O{sub 3} nanowires supported on activated carbon (Fe-Fe{sub 2}O{sub 3}/AC). The great enhanced decomposition of dimethyl phthalate could be attributed to a unique microwave induced molecular oxygen activation process. Upon microwave irradiation, electrons could be transferred from activated carbon to zero-valent iron, and then react with molecular oxygen to form O{sub 2}{center_dot}{sup -} and {center_dot}OH radicals for the decomposition of dimethyl phthalate. The deactivation and the regeneration of Fe-Fe{sub 2}O{sub 3}/AC catalyst were systematically studied. We also found that microwave heating could accelerate the electron transferring from AC to Fe-Fe{sub 2}O{sub 3} to generate more reactive oxygen species for the decomposition of DMP than conventional oil bath heating. This novel molecular oxygen activation approach may find applications for wastewater treatment and drinking water purification.

  20. Nuclear energy - Uranium dioxide powder and sintered pellets - Determination of oxygen/uranium atomic ratio by the amperometric method. 2. ed.

    International Nuclear Information System (INIS)

    2007-01-01

    This International Standard specifies an analytical method for the determination of the oxygen/uranium atomic ratio in uranium dioxide powder and sintered pellets. The method is applicable to reactor grade samples of hyper-stoichiometric uranium dioxide powder and pellets. The presence of reducing agents or residual organic additives invalidates the procedure. The test sample is dissolved in orthophosphoric acid, which does not oxidize the uranium(IV) from UO 2 molecules. Thus, the uranium(VI) that is present in the dissolved solution is from UO 3 and/or U 3 O 8 molecules only, and is proportional to the excess oxygen in these molecules. The uranium(VI) content of the solution is determined by titration with a previously standardized solution of ammonium iron(II) sulfate hexahydrate in orthophosphoric acid. The end-point of the titration is determined amperometrically using a pair of polarized platinum electrodes. The oxygen/uranium ratio is calculated from the uranium(VI) content. A portion, weighing about 1 g, of the test sample is dissolved in orthophosphoric acid. The dissolution is performed in an atmosphere of nitrogen or carbon dioxide when sintered material is being analysed. When highly sintered material is being analysed, the dissolution is performed at a higher temperature in purified phosphoric acid from which the water has been partly removed. The cooled solution is titrated with an orthophosphoric acid solution of ammonium iron(II) sulfate, which has previously been standardized against potassium dichromate. The end-point of the titration is detected by the sudden increase of current between a pair of polarized platinum electrodes on the addition of an excess of ammonium iron(II) sulfate solution. The paper provides information about scope, principle, reactions, reagents, apparatus, preparation of test sample, procedure (uranium dioxide powder, sintered pellets of uranium dioxide, highly sintered pellets of uranium dioxide and determination

  1. Relationship of microstructure properties to oxygen impurities in nanocrystalline silicon photovoltaic materials

    Science.gov (United States)

    Xu, H.; Wen, C.; Liu, H.; Li, Z. P.; Shen, W. Z.

    2013-03-01

    We have fully investigated the correlation of microstructure properties and oxygen impurities in hydrogenated nanocrystalline silicon photovoltaic films. The achievement has been realized through a series of different hydrogen dilution ratio treatment by plasma enhanced chemical vapor deposition system. Raman scattering, x-ray diffraction, and ultraviolet-visible transmission techniques have been employed to characterize the physical structural characterization and to elucidate the structure evolution. The bonding configuration of the oxygen impurities was investigated by x-ray photoelectron spectroscopy and the Si-O stretching mode of infrared-transmission, indicating that the films were well oxidized in SiO2 form. Based on the consistence between the proposed structure factor and the oxygen content, we have demonstrated that there are two dominant disordered structure regions closely related to the post-oxidation contamination: plate-like configuration and clustered microvoids.

  2. Does oxygen enhance the radiation: induced inactivation of penicillinase. Progress report, December 1, 1979-November 30, 1980

    International Nuclear Information System (INIS)

    Samuni, A.; Kalkstein, A.; Czapski, G.

    1980-01-01

    The radiation-induced inactivation of penicillinase in dilute aqueous solutions buffered with phosphate was studied, by examining enzyme radiosensitivity in the presence of various gases (He, O 2 , H 2 , N 2 O, N 2 O + O 2 ). The introduction of either N 2 O or O 2 was found to reduce the radiodamage. On the other hand H 2 or N 2 O + O 2 gas-mixture enhanced the radiosensitivity. In the presence of formate and oxygen, no enzyme inactivation was detected. The results indicated that the specific damaging efficiency of H atoms is almost four-fold higher than that of OH radical; therefore in phosphate buffer, where more than half of the free radicals are H atoms, it is the H radicals that are responsible for the majority of the damage. The superoxide radicals appeared to be completely inactive and did not contribute toward enzyme inactivation. Oxygen was shown to affect the radiosensitivity in two ways. On one side, it protected by converting e - /sub aq/ and H radicals into harmless O 2 - radicals. On the other side it increased the inactivation by enhancing the damage brought about by OH radicals (OER = 2.8). In the present case the oxygen effect of protection exceeded that of sensitization, thus giving rise to a moderate overall protection effect

  3. Determination of oxygen to metal ratio for varying UO2 content in sintered (U,Th)O2 pellet by oxidation-reduction method using thermo-gravimetric analyser

    International Nuclear Information System (INIS)

    Mahanty, B.N.; Khan, F.A.; Karande, A.P.; Prakash, A.; Afzal, Md.; Panakkal, J.P.

    2009-01-01

    Experiments were carried out to determine oxygen to metal ratio in 4%, 6%, 10%, 20%, 50% and 80% UO 2 in sintered (U, Th) O 2 pellets by oxidation-reduction method using thermo gravimetric analyser. (author)

  4. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  5. Measuring oxygen yields of a thermal conversion/elemental analyzer-isotope ratio mass spectrometer for organic and inorganic materials through injection of CO.

    Science.gov (United States)

    Yin, Xijie; Chen, Zhigang

    2014-12-01

    The thermal conversion/elemental analyzer-isotope ratio mass spectrometer (TC/EA-IRMS) is widely used to measure the δ(18) O value of various substances. A premise for accurate δ(18) O measurement is that the oxygen in the sample can be converted into carbon monoxide (CO) quantitatively or at least proportionally. Therefore, a precise method to determine the oxygen yield of TC/EA-IRMS measurements is needed. Most studies have used the CO peak area obtained from a known amount of a solid reference material (for example, benzoic acid) to calibrate the oxygen yield of the sample. Although it was assumed that the oxygen yield of the solid reference material is 100%, no direct evidence has been provided. As CO is the analyte gas for δ(18) O measurement by IRMS, in this study, we use a six-port valve to inject CO gas into the TC/EA. The CO is carried to the IRMS by the He carrier gas and the CO peak area is measured by the IRMS. The CO peak area thus obtained from a known amount of the injected CO is used to calibrate the oxygen yield of the sample. The oxygen yields of commonly used organic and inorganic reference materials such as benzoic acid (C6 H5 COOH), silver phosphate (Ag3 PO4 ), calcium carbonate (CaCO3 ) and silicon dioxide (SiO2 ) are investigated at different reactor temperatures and sample sizes. We obtained excellent linear correlation between the peak area for the injected CO and its oxygen atom amount. C6 H5 COOH has the highest oxygen yield, followed by Ag3 PO4 , CaCO3 and SiO2 . The oxygen yields of TC/EA-IRMS are less than 100% for both organic and inorganic substances, but the yields are relatively stable at the specified reactor temperature and for a given quantity of sample. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Effects of blood transfusion on oxygen extraction ratio and central venous saturation in children after cardiac surgery.

    Science.gov (United States)

    Nasser, Bana; Tageldein, Mohmad; AlMesned, Abdulrahman; Kabbani, Mohammad

    2017-01-01

    Red blood cell transfusion is common in critically ill children after cardiac surgery. Since the threshold for hemoglobin (Hb) transfusion need is not well defined, the threshold Hb level at which dependent critical oxygen uptake-to-delivery (VO2-DO2) status compensation is uncertain. To assess the effects of blood transfusion on the oxygen extraction ratio (O2ER) and central venous oxygen saturation (ScvO2) to identify a critical O2ER value that could help us determine the critical need for blood transfusion. Prospective, observational cohort study. Cardiac Surgical Intensive Care Unit at Prince Sultan Cardiac Center in Qassim, Saudi Arabia. Between January 2013 and December 2015, we included all children with cardiac disease who underwent surgery and needed a blood transfusion. Demographic and laboratory data with physiological parameters before and 1 and 6 hours after transfusion were recorded and O2ER before and 6 hours after transfusion was computed. Cases were divided into two groups based on O2ER: Patients with increased O2ER (O2ER > 40%) and normal patients without increased O2ER (O2ER transfusion. Changes in O2ER and ScvO2 following blood transfusion. Of 103 patients who had blood transfusion, 75 cases had normal O2ER before transfusion while 28 cases had increased O2ER before transfusion. Following blood transfusion, O2ER and ScvO2 improved in the group that had increased O2ER before transfusion, but not in the group that had normal O2ER before transfusion. The clinical and hemodynamic indicators O2ER and ScvO2 may be considered as markers that can indicate a need for blood transfusion. The limitation of this study is the small number of patients that had increased O2ER before transfusion. There were few available variables to assess oxygen consumption.

  7. Effect of oxygen atoms dissociated by non-equilibrium plasma on flame of methane oxygen and argon pre-mixture gas

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi

    2014-10-01

    For more efficient way of combustion, plasma-assisted combustion has been investigated by many researchers. But it is very difficult to clarify the effect of plasma even on the flame of methane. Because there are many complex chemical reactions in combustion system. Sasaki et al. has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power. They also measured emission from Second Positive Band System of nitrogen during the irradiation. The emission indicates existence of high energy electrons which are accelerated by the microwave. The high energy electrons also dissociate oxygen molecules easily and oxygen atom would have some effects on the flame. But the dissociation ratio of oxygen molecules by the non-equilibrium plasma is significantly low, compared to that in the combustion reaction. To clarify the effect of dissociated oxygen atoms on the flame, dependence of dissociation ratio of oxygen on the flame has been examined using CHEMKIN. It is found that in the case of low dissociation ratio of 10-6, the ignition of the flame becomes slightly earlier. It is also found that in the case of high dissociation ratio of 10-3, the ignition time becomes significantly earlier by almost half. This work was supported by KAKENHI (22340170).

  8. Effects of Water Vapor on the Data Quality of the Stable Oxygen Isotopic Ratio of Atmospheric Carbon Dioxide

    Science.gov (United States)

    Evans, C. U.; White, J. W.; Vaughn, B.; Tans, P. P.; Pardo, L.

    2007-12-01

    The stable oxygen isotopic ratio of carbon dioxide can potentially track fundamental indicators of environmental change such as the balance between photosynthesis and respiration on regional to global scales. The Stable Isotope Laboratory (SIL) at the Institute of Arctic and Alpine Research (INSTAAR), University of Colorado at Boulder, has measured the stable isotopes of atmospheric carbon dioxide from more than 60 NOAA/Earth System Research Laboratory (ESRL) air flask-sampling sites since the early 1990s. If air is sampled without drying, oxygen can exchange between carbon dioxide and water in the flasks, entirely masking the desired signal. An attempt to investigate how water vapor is affecting the δ18O signal is accomplished by comparing the SIL measurements with specific humidity, calculated from the National Climatic Data Center (NCDC) global integrated surface hourly temperature and dew point database, at the time of sampling. Analysis of sites where samples have been collected initially without drying, and subsequently with a drying kit, in conjunction with the humidity data, has led to several conclusions. Samples that initially appear isotopically unaltered, in that their δ18O values are within the expected range, are being subtly influenced by the water vapor in the air. At Bermuda and other tropical to semi-tropical sites, the 'wet' sampling values have a seasonal cycle that is strongly anti-correlated to the specific humidity, while the 'dry' values have a seasonal cycle that is shifted earlier than the specific humidity cycle by 1-2 months. The latter phasing is expected given the seasonal phasing between climate over the ocean and land, while the former is consistent with a small, but measurable isotope exchange in the flasks. In addition, we note that there is a strong (r > 0.96) correlation between the average specific humidity and the percent of rejected samples for 'wet' sampling. This presents an opportunity for determining a threshold of

  9. Enhanced native acceptor-related blue emission of ZnO thin films annealed in an oxygen ambient

    International Nuclear Information System (INIS)

    Shim, Eunhee; Lee, Choeun; Jung, Eiwhan; Lee, Jinyong; Kim, Doosoo; Lee, Youngmin; Kim, Deukyoung; Lee, Sejoon

    2012-01-01

    The thermodynamic behaviors of charged point defects in unintentionally-doped ZnO thin films were investigated. The as-grown sample displayed two different types of blue-emission bands: one at ∼2.95 eV from native-donor zinc interstitial (Zn i ) and the other at ∼3.17 eV from native acceptor zinc vacancies (V Zn ). In the samples annealed at oxygen ambience, V Zn -related emission was dramatically enhanced, and Zn i -related emission was drastically reduced. The behavior was observed to become more apparent when the annealing temperature was increased. The results can be explained by both the increased generation probability and the lowered formation enthalpy of V Zn in an oxygen-rich environment, particularly at higher temperatures.

  10. Enhanced native acceptor-related blue emission of ZnO thin films annealed in an oxygen ambient

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Eunhee; Lee, Choeun; Jung, Eiwhan; Lee, Jinyong; Kim, Doosoo; Lee, Youngmin; Kim, Deukyoung; Lee, Sejoon [Dongguk University, Seoul (Korea, Republic of)

    2012-06-15

    The thermodynamic behaviors of charged point defects in unintentionally-doped ZnO thin films were investigated. The as-grown sample displayed two different types of blue-emission bands: one at ∼2.95 eV from native-donor zinc interstitial (Zn{sub i}) and the other at ∼3.17 eV from native acceptor zinc vacancies (V{sub Zn}). In the samples annealed at oxygen ambience, V{sub Zn}-related emission was dramatically enhanced, and Zn{sub i}-related emission was drastically reduced. The behavior was observed to become more apparent when the annealing temperature was increased. The results can be explained by both the increased generation probability and the lowered formation enthalpy of V{sub Zn} in an oxygen-rich environment, particularly at higher temperatures.

  11. Numerical study of the enhancement of combustion performance in a scramjet combustor due to injection of electric-discharge-activated oxygen molecules

    International Nuclear Information System (INIS)

    Starik, A M; Bezgin, L V; Kopchenov, V I; Loukhovitski, B I; Sharipov, A S; Titova, N S

    2013-01-01

    A comprehensive analysis of the efficiency of an approach based on the injection of a thin oxygen stream, subjected to a tailored electric discharge, into a supersonic H 2 –air flow to enhance the combustion performance in the mixing layer and in the scramjet combustor is conducted. It is shown that for such an approach there exist optimal values of reduced electric field E/N and transversal dimension d of the injected oxygen stream, which provide the minimal length of induction zone in the mixing layer. The optimal values of E/N and d depend on air flow parameters and the specific energy put into the oxygen. The injection of a thin oxygen stream (d = 1 mm) subjected to an electric discharge with E/N = 50–100 Td, which produces mostly singlet oxygen O 2 (a  1 Δ g ) and O 2 (b 1 Σ g + ) molecules and atomic oxygen, allows one to arrange stable combustion in a scramjet duct at an extremely low air temperature T air  = 900 K and pressure P air  = 0.3 bar even at a small specific energy put into the oxygen E s  = 0.2 J ncm −3 , and to provide rather high combustion completeness η = 0.73. The advance in the energy released during combustion is much higher (hundred times), in this case, than the energy supplied to the oxygen stream in the electric discharge. This approach also makes it possible to ensure the rather high combustion completeness in the scramjet combustor with reduced length. The main reason for the combustion enhancement of the H 2 –air mixture in the scramjet duct is the intensification of chain-branching reactions due to the injection of a small amount of cold non-equilibrium oxygen plasma comprising highly reactive species, O 2 (a  1 Δ g ) and O 2 (b 1 Σ g + ) molecules and O atoms, into the H 2 –air supersonic flow. (paper)

  12. Communication: Enhanced oxygen reduction reaction and its underlying mechanism in Pd-Ir-Co trimetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Hyung Chul; Hwang, Gyeong S., E-mail: gshwang@che.utexas.edu [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Manogaran, Dhivya [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Lee, Kang Hee; Jin, Seon-ah; You, Dae Jong; Pak, Chanho [Energy Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon (Korea, Republic of); Kwon, Kyungjung [Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 143-747 (Korea, Republic of)

    2013-11-28

    Based on a combined density functional theory and experimental study, we present that the electrochemical activity of Pd{sub 3}Co alloy catalysts toward oxygen reduction reaction (ORR) can be enhanced by adding a small amount of Ir. While Ir tends to favorably exist in the subsurface layers, the underlying Ir atoms are found to cause a substantial modification in the surface electronic structure. As a consequence, we find that the activation barriers of O/OH hydrogenation reactions are noticeably lowered, which would be mainly responsible for the enhanced ORR activity. Furthermore, our study suggests that the presence of Ir in the near-surface region can suppress Co out-diffusion from the Pd{sub 3}Co substrate, thereby improving the durability of Pd-Ir-Co catalysts. We also discuss the relative roles played by Ir and Co in enhancing the ORR activity relative to monometallic Pd catalysts.

  13. Communication: Enhanced oxygen reduction reaction and its underlying mechanism in Pd-Ir-Co trimetallic alloys

    International Nuclear Information System (INIS)

    Ham, Hyung Chul; Hwang, Gyeong S.; Manogaran, Dhivya; Lee, Kang Hee; Jin, Seon-ah; You, Dae Jong; Pak, Chanho; Kwon, Kyungjung

    2013-01-01

    Based on a combined density functional theory and experimental study, we present that the electrochemical activity of Pd 3 Co alloy catalysts toward oxygen reduction reaction (ORR) can be enhanced by adding a small amount of Ir. While Ir tends to favorably exist in the subsurface layers, the underlying Ir atoms are found to cause a substantial modification in the surface electronic structure. As a consequence, we find that the activation barriers of O/OH hydrogenation reactions are noticeably lowered, which would be mainly responsible for the enhanced ORR activity. Furthermore, our study suggests that the presence of Ir in the near-surface region can suppress Co out-diffusion from the Pd 3 Co substrate, thereby improving the durability of Pd-Ir-Co catalysts. We also discuss the relative roles played by Ir and Co in enhancing the ORR activity relative to monometallic Pd catalysts

  14. Validation of chlorine and oxygen isotope ratio analysis to differentiate perchlorate sources and to document perchlorate biodegradation

    Science.gov (United States)

    Paul B. Hatzinger,; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua

    2013-01-01

    Increased health concerns about perchlorate (ClO4-) during the past decade and subsequent regulatory considerations have generated appreciable interest in source identification. The key objective of the isotopic techniques described in this guidance manual is to provide evidence concerning the origin of ClO4- in soils and groundwater and, more specifically, whether that ClO4- is synthetic or natural. Chlorine and oxygen isotopic analyses of ClO4- provide the primary direct approach whereby different sources of ClO4- can be distinguished from each other. These techniques measure the relative abundances of the stable isotopes of chlorine (37Cl and 35Cl) and oxygen (18O, 17O, and 16O) in ClO4- using isotope-ratio mass spectrometry (IRMS). In addition, the relative abundance of the radioactive chlorine isotope 36Cl is measured using accelerator mass spectrometry (AMS). Taken together, these measurements provide four independent quantities that can be used to distinguish natural and synthetic ClO4- sources, to discriminate different types of natural ClO4-, and to detect ClO4- biodegradation in the environment. Other isotopic, chemical, and geochemical techniques that can be applied in conjunction with isotopic analyses of ClO4- to provide supporting data in forensic studies are also described.

  15. Pitfalls with the use of enhancement ratios or normalized excess mixing ratios measured in plumes to characterize pollution sources and aging

    Directory of Open Access Journals (Sweden)

    R. J. Yokelson

    2013-08-01

    Full Text Available Normalized excess mixing ratios (NEMRs, also known as enhancement ratios, are a common way to characterize plumes of pollution in atmospheric research. As single-source pollutant plumes disperse in the atmosphere, they are diluted by mixing with the adjacent background air. Changes in the composition of this background air can cause large changes to the NEMR that is subsequently measured by remote-sensing, airborne, or ground-based instruments. This scenario is common when boundary layer plumes enter the free troposphere and could also impact long-range transport or plumes near the top of the troposphere. We provide a context for these issues and an example showing that neglect of this effect could lead to serious errors in data interpretation.

  16. Optimum O2:CH4 Ratio Promotes the Synergy between Aerobic Methanotrophs and Denitrifiers to Enhance Nitrogen Removal

    Directory of Open Access Journals (Sweden)

    Jing Zhu

    2017-06-01

    Full Text Available The O2:CH4 ratio significantly effects nitrogen removal in mixed cultures where aerobic methane oxidation is coupled with denitrification (AME-D. The goal of this study was to investigate nitrogen removal of the AME-D process at four different O2:CH4 ratios [0, 0.05, 0.25, and 1 (v/v]. In batch tests, the highest denitrifying activity was observed when the O2:CH4 ratio was 0.25. At this ratio, the methanotrophs produced sufficient carbon sources for denitrifiers and the oxygen level did not inhibit nitrite removal. The results indicated that the synergy between methanotrophs and denitrifiers was significantly improved, thereby achieving a greater capacity of nitrogen removal. Based on thermodynamic and chemical analyses, methanol, butyrate, and formaldehyde could be the main trophic links of AME-D process in our study. Our research provides valuable information for improving the practical application of the AME-D systems.

  17. Oxygen requirements of the earliest animals

    DEFF Research Database (Denmark)

    Mills, Daniel Brady; Ward, Lewis M.; Jones, CarriAyne

    2014-01-01

    likely exhibited a physiology and morphology similar to that of a modern sponge, its oxygen demands may have been met well before the enhanced oxygenation of the Ediacaran Period. Therefore, the origin of animals may not have been triggered by a contemporaneous rise in the oxygen content...

  18. Stabilization of the coupled oxygen and phosphorus cycles by the evolution of bioturbation

    DEFF Research Database (Denmark)

    Boyle, Richard; Dahl, Tais Wittchen; Dale, A. W.

    2014-01-01

    Animal burrowing and sediment-mixing (bioturbation) began during the run up to the Ediacaran/Cambrian boundary(1-3), initiating a transition(4,5) between the stratified Precambrian(6) and more well-mixed Phanerozoic(7) sedimentary records, against the backdrop of a variable(8,9) global oxygen...... reservoir probably smaller in size than present(10,11). Phosphorus is the long-term(12) limiting nutrient for oxygen production via burial of organic carbon(13), and its retention (relative to carbon) within organic matter in marine sediments is enhanced by bioturbation(14-18). Here we explore...... the biogeochemical implications of a bioturbation-induced organic phosphorus sink in a simple model. We show that increased bioturbation robustly triggers a net decrease in the size of the global oxygen reservoir-the magnitude of which is contingent upon the prescribed difference in carbon to phosphorus ratios...

  19. Coupling between the blood lactate-to-pyruvate ratio and MCA Vmean at the onset of exercise in humans

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Madsen, Camilla A; Nielsen, Henning B

    2009-01-01

    Activation-induced increase in cerebral blood flow is coupled to enhanced metabolic activity, maybe with brain tissue redox state and oxygen tension as key modulators. To evaluate this hypothesis at the onset of exercise in humans, blood was sampled at 0.1 to 0.2 Hz from the radial artery and right...... internal jugular vein, while middle cerebral artery mean flow velocity (MCA V(mean)) was recorded. Both the arterial and venous lactate-to-pyruvate ratio increased after 10 s (P capillary...... state and oxygenation as potential modulators of an increase in cerebral blood flow at the onset of exercise....

  20. Development of theoretical oxygen saturation calibration curve based on optical density ratio and optical simulation approach

    Science.gov (United States)

    Jumadi, Nur Anida; Beng, Gan Kok; Ali, Mohd Alauddin Mohd; Zahedi, Edmond; Morsin, Marlia

    2017-09-01

    The implementation of surface-based Monte Carlo simulation technique for oxygen saturation (SaO2) calibration curve estimation is demonstrated in this paper. Generally, the calibration curve is estimated either from the empirical study using animals as the subject of experiment or is derived from mathematical equations. However, the determination of calibration curve using animal is time consuming and requires expertise to conduct the experiment. Alternatively, an optical simulation technique has been used widely in the biomedical optics field due to its capability to exhibit the real tissue behavior. The mathematical relationship between optical density (OD) and optical density ratios (ODR) associated with SaO2 during systole and diastole is used as the basis of obtaining the theoretical calibration curve. The optical properties correspond to systolic and diastolic behaviors were applied to the tissue model to mimic the optical properties of the tissues. Based on the absorbed ray flux at detectors, the OD and ODR were successfully calculated. The simulation results of optical density ratio occurred at every 20 % interval of SaO2 is presented with maximum error of 2.17 % when comparing it with previous numerical simulation technique (MC model). The findings reveal the potential of the proposed method to be used for extended calibration curve study using other wavelength pair.

  1. Evaluation and Enhancement of the Oxygen Reduction Reaction Activity on Hafnium Oxide Nanoparticles Assisted by L(+)-lysine

    International Nuclear Information System (INIS)

    Chisaka, Mitsuharu; Itagaki, Noriaki

    2016-01-01

    Evaluation of the oxygen reduction reaction (ORR) on oxide compounds is difficult owing to the insulating nature of oxides. In this study, various amounts of L(+)-lysine were added to the precursor dispersion for the hydrothermal synthesis of hafnium oxide nanoparticles on reduced graphene oxide sheets (HfO_x–rGO) to coat the HfO_x catalysts with layers of carbon, thereby increasing the conductivity and number of active sites. When the mass ratio of L(+)-lysine to GO, R, was above 26, carbon layers were formed and the amount monotonically increased with increasing R, as noted by cyclic voltammogrametry. X-ray photoelectron spectroscopy and rotating disk electrode analyses revealed that pyrolysis produced ORR-active oxygen defects, whose formation was proposed to involve carbothermal reduction. When 53 ≤ R ≤ 210, HfO_x–rGO contained a similar amount of oxygen defects and ORR activity, as represented by an onset potential of 0.9 V versus the reversible hydrogen electrode in 0.1 mol dm"−"3 H_2SO_4. However, the number of active sites depended on R due to the amount of L(+)-lysine-derived carbon layers that increased both the number of active sites and resistivity towards oxygen diffusion.

  2. Hydrogen-Enhanced Lunar Oxygen Extraction and Storage Using Only Solar Power

    Science.gov (United States)

    Burton, rodney; King, Darren

    2013-01-01

    The innovation consists of a thermodynamic system for extracting in situ oxygen vapor from lunar regolith using a solar photovoltaic power source in a reactor, a method for thermally insulating the reactor, a method for protecting the reactor internal components from oxidation by the extracted oxygen, a method for removing unwanted chemical species produced in the reactor from the oxygen vapor, a method for passively storing the oxygen, and a method for releasing high-purity oxygen from storage for lunar use. Lunar oxygen exists in various types of minerals, mostly silicates. The energy required to extract the oxygen from the minerals is 30 to 60 MJ/kg O. Using simple heating, the extraction rate depends on temperature. The minimum temperature is approximately 2,500 K, which is at the upper end of available oven temperatures. The oxygen is released from storage in a purified state, as needed, especially if for human consumption. This method extracts oxygen from regolith by treating the problem as a closed batch cycle system. The innovation works equally well in Earth or Lunar gravity fields, at low partial pressure of oxygen, and makes use of in situ regolith for system insulation. The innovation extracts oxygen from lunar regolith using a method similar to vacuum pyrolysis, but with hydrogen cover gas added stoichiometrically to react with the oxygen as it is produced by radiatively heating regolith to 2,500 K. The hydrogen flows over and through the heating element (HE), protecting it from released oxygen. The H2 O2 heat of reaction is regeneratively recovered to assist the heating process. Lunar regolith is loaded into a large-diameter, low-height pancake reactor powered by photovoltaic cells. The reactor lid contains a 2,500 K HE that radiates downward onto the regolith to heat it and extract oxygen, and is shielded above by a multi-layer tungsten radiation shield. Hydrogen cover gas percolates through the perforated tungsten shielding and HE, preventing

  3. Enhanced dimethyl phthalate biodegradation by accelerating phthalic acid di-oxygenation.

    Science.gov (United States)

    Tang, Yingxia; Zhang, Yongming; Jiang, Ling; Yang, Chao; Rittmann, Bruce E

    2017-12-01

    The aerobic biodegradation of dimethyl phthalate (DMP) is initiated with two hydrolysis reactions that generate an intermediate, phthalic acid (PA), that is further biodegraded through a two-step di-oxygenation reaction. DMP biodegradation is inhibited when PA accumulates, but DMP's biodegradation can be enhanced by adding an exogenous electron donor. We evaluated the effect of adding succinate, acetate, or formate as an exogenous electron donor. PA removal rates were increased by 15 and 30% for initial PA concentrations of 0.3 and 0.6 mM when 0.15 and 0.30 mM succinate, respectively, were added as exogenous electron donor. The same electron-equivalent additions of acetate and formate had the same acceleration impacts on PA removal. Consequently, the DMP-removal rate, even PA coexisting with DMP simultaneously, was accelerated by 37% by simultaneous addition of 0.3 mM succinate. Thus, lowering the accumulation of PA by addition of an electron increased the rate of DMP biodegradation.

  4. Enhancement of the Signal-to-Noise Ratio in Sonic Logging Waveforms by Seismic Interferometry

    KAUST Repository

    Aldawood, Ali

    2012-04-01

    Sonic logs are essential tools for reliably identifying interval velocities which, in turn, are used in many seismic processes. One problem that arises, while logging, is irregularities due to washout zones along the borehole surfaces that scatters the transmitted energy and hence weakens the signal recorded at the receivers. To alleviate this problem, I have extended the theory of super-virtual refraction interferometry to enhance the signal-to-noise ratio (SNR) sonic waveforms. Tests on synthetic and real data show noticeable signal-to-noise ratio (SNR) enhancements of refracted P-wave arrivals in the sonic waveforms. The theory of super-virtual interferometric stacking is composed of two redatuming steps followed by a stacking procedure. The first redatuming procedure is of correlation type, where traces are correlated together to get virtual traces with the sources datumed to the refractor. The second datuming step is of convolution type, where traces are convolved together to dedatum the sources back to their original positions. The stacking procedure following each step enhances the signal to noise ratio of the refracted P-wave first arrivals. Datuming with correlation and convolution of traces introduces severe artifacts denoted as correlation artifacts in super-virtual data. To overcome this problem, I replace the datuming with correlation step by datuming with deconvolution. Although the former datuming method is more robust, the latter one reduces the artifacts significantly. Moreover, deconvolution can be a noise amplifier which is why a regularization term is utilized, rendering the datuming with deconvolution more stable. Tests of datuming with deconvolution instead of correlation with synthetic and real data examples show significant reduction of these artifacts. This is especially true when compared with the conventional way of applying the super-virtual refraction interferometry method.

  5. Enhancement of oxygen diffusion process on a rotating disk electrode for the electro-Fenton degradation of tetracycline

    International Nuclear Information System (INIS)

    Zhang, Yan; Gao, Ming-Ming; Wang, Xin-Hua; Wang, Shu-Guang; Liu, Rui-Ting

    2015-01-01

    An electro-Fenton process was developed for wastewater treatment in which hydrogen peroxide was generated in situ with a rotating graphite disk electrode as cathode. The maximum H 2 O 2 generation rate for the RDE reached 0.90 mg/L/h/cm 2 under the rotation speed of 400 rpm at pH 3, and −0.8 V vs SCE. The performance of this electro-Fenton reactor was assessed by tetracycline degradation in an aqueous solution. Experimental results showed the rotation of disk cathode resulted in the efficient production of H 2 O 2 without oxygen aeration, and excellent ability for degrading organic pollutants compared to the electro-Fenton system with fixed cathode. Tetracycline of 50 mg/L was degraded completely within 2 h with the addition of ferrous ion (1.0 mM). The chronoamperometry analysis was employed to investigate the oxygen diffusion on the rotating cathode. The results demonstrated that the diffusion coefficients of dissolved oxygen is 19.45 × 10 −5 cm 2 /s, which is greater than that reported in the literature. Further calculation indicated that oxygen is able to diffuse through the film on the rotating cathode within the contact time in each circle. This study proves that enhancement of oxygen diffusion on RDE is benefit for H 2 O 2 generation, thus provides a promising method for organic pollutants degradation by the combination of RDE with electro-Fenton reactor and offers a new insight on the oxygen transform process in this new system.

  6. An experimental study on the alteration of thermal enhancement ratio by combination of split dose hyperthermia irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ok; Kim, Hee Seup [Ewha Womens University College of Medicine, Seoul (Korea, Republic of)

    1983-06-15

    The study was undertaken to evaluate the alteration of thermal enhancement ratio as a function of time intervals between two split dose hyperthermias followed by irradiation. For the experiments, 330 mice were divided into 3 groups; the first, 72 mice were used to evaluate the heat reaction by single dose hyperthermia and heat resistance by split dose hyperthermia, the second, 36 mice were used to evaluate the radiation reaction by irradiation only, and the third, 222 mice were used for TER observation by combination of single dose hyperthermia and irradiation, and TER alteration by combination of split dose hyperthermia and irradiation. For each group the skin reaction score of mouse tail was used for observation and evaluation of the result of heat and irradiation. The results obtained are summarized as follows: 1. The heating time resulting 50% necrosis (ND{sub 5}0) Was 101 minutes in 43 .deg. C and 24 minutes in 45 .deg. C hyperthermia, which indicated that three is reciprocal proportion between temperature and heating time. 2. Development of heat resistance was observed by split dose hyperthermia. 3. The degree of skin reaction by irradiation only was increased proportionally as a function of radiation dose, and calculated radiation dose corresponding to skin score 1.5 (D{sub 1}.5) was 4,137 rads. 4. Obtained thermal enhancement ratio by combination of single dose hyperthermia and irradiation was increased proportionally as a function of heating time. 5. Thermal enhancement ratio was decreased by combination of split dose hyperthermia and irradiation, which was less intense and lasted longer than development of heat resistance. In summary, these studies indicate that the alteration of thermal enhancement ratio has influence on heat resistance by split dose hyperthermia and irradiation.

  7. Enhanced reactive oxygen species through direct copper sulfide nanoparticle-doxorubicin complexation

    Science.gov (United States)

    Li, Yajuan; Cupo, Michela; Guo, Liangran; Scott, Julie; Chen, Yi-Tzai; Yan, Bingfang; Lu, Wei

    2017-12-01

    CuS-based nanostructures loading the chemotherapeutic agent doxorubicin (DOX) exerted excellent cancer photothermal chemotherapy under multi-external stimuli. The DOX loading was generally designed through electrostatic interaction or chemical linkers. However, the interaction between DOX molecules and CuS nanoparticles has not been investigated. In this work, we use PEGylated hollow copper sulfide nanoparticles (HCuSNPs) to directly load DOX through the DOX/Cu2+ chelation process. Distinctively, the synthesized PEG-HCuSNPs-DOX release the DOX/Cu2+ complexes into surrounding environment, which generate significant reactive oxygen species (ROS) in a controlled manner by near-infrared laser. The CuS nanoparticle-mediated photothermal ablation facilitates the ROS-induced cancer cell killing effect. Our current work reveals a DOX/Cu2+-mediated ROS-enhanced cell-killing effect in addition to conventional photothermal chemotherapy through the direct CuS nanoparticle-DOX complexation.

  8. Oxygen effect of E.coli K-12 with different repair genotype at the bombardment by neutrons and γ-rays

    International Nuclear Information System (INIS)

    Komova, O.V.; Golovacheva, E.V.

    1986-01-01

    It is shown that the value of oxygen enhancement ratio (OER) depends essentually on repair possibilities of cells E.coli K-12 at 137 Cs - γ-irradiation. It increases in a range of investigated strains rec A - uvr A - → rec A - → wild type → pol A - . These differences disappear under action of fast neutron fission spectra with 0.75 MeV mean energy. OER values for all strains have been reduced in this case, and double mutant rec A - uvr A - practically has not any oxygen effects

  9. Mid-depth respired carbon storage and oxygenation of the eastern equatorial Pacific over the last 25,000 years

    Science.gov (United States)

    Umling, Natalie E.; Thunell, Robert C.

    2018-06-01

    A growing body of evidence suggests that respired carbon was stored in mid-depth waters (∼1-3 km) during the last glacial maximum (LGM) and released to the atmosphere from upwelling regions during deglaciation. Decreased ventilation, enhanced productivity, and enhanced carbonate dissolution are among the mechanisms that have been cited as possible drivers of glacial CO2 drawdown. However, the relative importance of each of these mechanisms is poorly understood. New approaches to quantitatively constrain bottom water carbonate chemistry and oxygenation provide methods for estimating historic changes in respired carbon storage. While increased CO2 drawdown during the LGM should have resulted in decreased oxygenation and a shift in dissolved inorganic carbon (DIC) speciation towards lower carbonate ion concentrations, this is complicated by the interplay of carbonate compensation, export productivity, and circulation. To disentangle these processes, we use a multiproxy approach that includes boron to calcium (B/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentrations ([CO32-]) and the uranium to calcium (U/Ca) ratio of foraminiferal coatings in combination with benthic foraminiferal carbon isotopes to reconstruct changes in bottom water oxygen concentrations ([O2]) and organic carbon export. Our records indicate that LGM [CO32-] and [O2] was reduced at mid water depths of the eastern equatorial Pacific (EEP), consistent with increased respired carbon storage. Furthermore, our results suggest enhanced mixing of lower Circumpolar Deep Water (LCDW) to EEP mid water depths and provide evidence for the importance of circulation for oceanic-atmospheric CO2 exchange.

  10. Pair Distribution Function Analysis of Structural Disorder by Nb5+ Inclusion in Ceria: Evidence for Enhanced Oxygen Storage Capacity from Under-Coordinated Oxide.

    Science.gov (United States)

    Hiley, Craig I; Playford, Helen Y; Fisher, Janet M; Felix, Noelia Cortes; Thompsett, David; Kashtiban, Reza J; Walton, Richard I

    2018-02-07

    Partial substitution of Ce 4+ by Nb 5+ is possible in CeO 2 by coinclusion of Na + to balance the charge, via hydrothermal synthesis in sodium hydroxide solution. Pair distribution function analysis using reverse Monte Carlo refinement reveals that the small pentavalent substituent resides in irregular coordination positions in an average fluorite lattice, displaced away from the ideal cubic coordination toward four oxygens. This results in under-coordinated oxygen, which explains significantly enhanced oxygen storage capacity of the materials of relevance to redox catalysis used in energy and environmental applications.

  11. Flexible Self-Powered GaN Ultraviolet Photoswitch with Piezo-Phototronic Effect Enhanced On/Off Ratio.

    Science.gov (United States)

    Peng, Mingzeng; Liu, Yudong; Yu, Aifang; Zhang, Yang; Liu, Caihong; Liu, Jingyu; Wu, Wei; Zhang, Ke; Shi, Xieqing; Kou, Jinzong; Zhai, Junyi; Wang, Zhong Lin

    2016-01-26

    Flexible self-powered sensing is urgently needed for wearable, portable, sustainable, maintenance-free and long-term applications. Here, we developed a flexible and self-powered GaN membrane-based ultraviolet (UV) photoswitch with high on/off ratio and excellent sensitivity. Even without any power supply, the driving force of UV photogenerated carriers can be well boosted by the combination of both built-in electric field and piezoelectric polarization field. The asymmetric metal-semiconductor-metal structure has been elaborately utilized to enhance the carrier separation and transport for highly sensitive UV photoresponse. Its UV on/off ratio and detection sensitivity reach to 4.67 × 10(5) and 1.78 × 10(12) cm·Hz(0.5) W(1-), respectively. Due to its excellent mechanical flexibility, the piezoelectric polarization field in GaN membrane can be easily tuned/controlled based on piezo-phototronic effect. Under 1% strain, a stronger and broader depletion region can be obtained to further enhance UV on/off ratio up to 154%. As a result, our research can not only provide a deep understanding of local electric field effects on self-powered optoelectronic detection, but also promote the development of self-powered flexible optoelectronic devices and integrated systems.

  12. Quantum dots as enhancers of the efficacy of bacterial lethal photosensitization

    International Nuclear Information System (INIS)

    Narband, N; Parkin, I P; Mubarak, M; Nair, S P; Wilson, M; Ready, D; Green, M A; Beeby, A

    2008-01-01

    Because of the increasing resistance of bacteria to antibiotics there is considerable interest in light-activated antimicrobial agents (LAAAs) as alternatives to antibiotics for treating localized infections. The purpose of this study was to determine whether CdSe/ZnS quantum dots (QD) could enhance the antibacterial activity of the LAAA, toluidine blue O (TBO). Suspensions of Staphylococcus aureus and Streptococcus pyogenes were exposed to white light (3600 lux) and TBO (absorbance maximum = 630 nm) in the presence and absence of 25 nm diameter QD (emission maximum = 627 nm). When the TBO:QD ratio was 2667:1, killing of Staph. aureus was enhanced by 1.72log 10 units. In the case of Strep. pyogenes, an enhanced kill of 1.55log 10 units was achieved using TBO and QD in the ratio 267:1. Singlet oxygen and fluorescence measurements showed that QD suppress the formation of singlet oxygen from TBO and that QD fluorescence is significantly quenched in the presence of TBO (70-90%). Enhanced killing appears to be attributable to a non-Foerster resonance energy transfer mechanism, whereby the QD converts part of the incident light to the absorption maximum for TBO; hence more light energy is harvested, resulting in increased concentrations of bactericidal radicals. QD may, therefore, be useful in improving the efficacy of antimicrobial photodynamic therapy.

  13. Reclaimed wastewater quality enhancement by oxygen injection during transportation.

    Science.gov (United States)

    Rodríguez-Gómez, L E; Alvarez, M; Rodríguez-Sevilla, J; Marrero, M C; Hernández, A

    2011-01-01

    In-sewer treatments have been studied in sewer systems, but few have been carried out on reclaimed wastewater systems. A study of oxygen injection has been performed in a completely filled gravity pipe, 0.6 m in diameter and 62 km long, in cast iron with concrete inside coating, which is part of the reclaimed wastewater reuse scheme of Tenerife (Spain). A high pressure oxygen injection system was installed at 16.0 km from pipe inlet and a constant dosage of 30 mg/L O(2) has been injected during six months, under three different operational modes (low COD, 63 mg/L; high COD, 91 mg/L; and partially nitrified water). Oxygen has been consumed in nitrification and organic matter reduction. Generally, nitrification is clearly favored instead of the organic matter oxidation. Nitrification occurs, in general, with nitrite accumulation due to the presence of free ammonia above 1 mg/L. Denitrification is in all cases incomplete due to a limitation of easily biodegradable organic matter content, inhibiting the appearance of anaerobic conditions and sulfide generation. A notable reduction of organic matter parameters is achieved (TSS below 10 mg/L), which is significantly higher than that observed under the ordinary transport conditions without oxygen. This leads to a final cost reduction, and the oxygen injection system helps water reuse managers to maintain a final good water quality in the case of a treatment plant malfunction.

  14. Gd-EOB-DTPA enhanced MRI of the liver: Correlation of relative hepatic enhancement, relative renal enhancement, and liver to kidneys enhancement ratio with serum hepatic enzyme levels and eGFR

    Energy Technology Data Exchange (ETDEWEB)

    Talakic, Emina; Steiner, Jürgen; Kalmar, Peter; Lutfi, Andre [Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz (Austria); Quehenberger, Franz [Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz (Austria); Reiter, Ursula; Fuchsjäger, Michael [Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz (Austria); Schöllnast, Helmut, E-mail: helmut.schoellnast@medunigraz.at [Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz (Austria)

    2014-04-15

    Objectives: To assess the correlation of relative hepatic enhancement (RHE), relative renal enhancement (RRE) and liver to kidneys enhancement ratio (LKR) with serum hepatic enzyme levels and eGFR in Gd-EOB-DTPA enhanced MRI of the liver and to assess threshold levels for predicting enhancement of the liver parenchyma. Methods: Data of 75 patients who underwent Gd-EOB-DTPA enhanced MRI of the liver were collected. Images were obtained before contrast injection, during the early arterial phase, late arterial phase, venous phase, delayed phase, and hepatobiliary phase which was 20 min after Gd-EOB-DTPA administration. Signal intensity of the liver and the kidneys in all phases was defined using region-of-interest measurements for relative enhancement calculation. Serum hepatic enzyme levels and eGFR were available in all patients. Spearman correlation test was used to test the correlation of RHE, RRE and LKR with serum hepatic enzyme levels and eGFR. Results: In the hepatobiliary phase all serum hepatic enzymes were significantly correlated with RHE; total bilirubin (TBIL) and cholin esterase (CHE) showed strongest correlations. TBIL and CHE were significantly correlated with RRE in the arterial phases. TBIL and CHE were significantly correlated with LKR in the arterial phase and hepatobiliary phase. eGFR showed no correlation. Conclusions: In Gd-EOB-DTPA enhanced MRI, TBIL and CHE levels may predict RHE, RRE and LKR.

  15. The correlation between HCN/H2O flux ratios and disk mass: evidence for protoplanet formation

    Science.gov (United States)

    Rose, Caitlin; Salyk, Colette

    2017-01-01

    We analyze hydrogen cyanide (HCN) and water vapor flux ratios in protoplanetary disks as a way to trace planet formation. Analyzing only disks in the Taurus molecular cloud, Najita et al. (2013) found a tentative correlation between protoplanetary disk mass and the HCN/H2O line flux ratio in Spitzer-IRS emission spectra. They interpret this correlation to be a consequence of more massive disks forming planetesimals more efficiently than smaller disks, as the formation of large planetesimals may lock up water ice in the cool outer disk region and prevent it from migrating, drying out the inner disk. The sequestering of water (and therefore oxygen) in the outer disk may also increase the carbon-to- oxygen ratio in the inner disk, leading to enhanced organic molecule (e.g. HCN) emission. To confirm this trend, we expand the Najita et al. sample by calculating HCN/H2O line flux ratios for 8 more sources with known disk masses from clusters besides Taurus. We find agreement with the Najita et al. trend, suggesting that this is a widespread phenomenon. In addition, we find HCN/H2O line flux ratios for 17 more sources that await disk mass measurements, which should become commonplace in the ALMA era. Finally, we investigate linear fits and outliers to this trend, and discuss possible causes.

  16. Enhanced thermoelectric property of oxygen deficient nickel doped SnO2 for high temperature application

    Science.gov (United States)

    Paulson, Anju; Sabeer, N. A. Muhammad; Pradyumnan, P. P.

    2018-04-01

    Motivated by the detailed investigation on the thermoelectric performance of oxide materials our work concentrated on the influence of acceptor dopants and defect density in the lattice plane for the enhancement of thermoelectric power. The series of Sn1‑x Nix O2 (0.01 ≤ x ≤ 0.05) compositions were prepared by solid state reaction mechanism and found that 3 atomic percentage Ni doped SnO2 can be considered as a good candidate due to its promising electrical and transport properties. Defect lattices were introduced in the sample and the deviation from oxygen stochiometry was ensured using photoluminescence measurement. High power factor was obtained for the 3 atomic percentage nickel doped SnO2 due to the effective number of charge carrier concentration and the depletion of oxygen rich layers. Defect centered and acceptor doped SnO2 lattice opens a new door for energy harvesting at higher temperatures.

  17. 2D Ultrathin Core-shell Pd@Ptmonolayer Nanosheets: Defect-Mediated Thin Film Growth and Enhanced Oxygen Reduction Performance

    KAUST Repository

    Wang, Wenxin

    2015-06-16

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured Pd@Ptmonolayer nanosheets (thickness below 5 nm) exhibit a seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.

  18. 2D Ultrathin Core-shell Pd@Ptmonolayer Nanosheets: Defect-Mediated Thin Film Growth and Enhanced Oxygen Reduction Performance

    KAUST Repository

    Wang, Wenxin; Zhao, Yunfeng; Ding, Yi

    2015-01-01

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured Pd@Ptmonolayer nanosheets (thickness below 5 nm) exhibit a seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.

  19. Formation of oxygen-related defects enhanced by fluorine in BF{sub 2}{sup +}-implanted Si studied by a monoenergetic positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Moriya, Tsuyoshi; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kawano, Takao; Nagai, Ryo; Umeda, Kazunori

    1995-12-01

    Defects in 25-keV BF{sub 2}{sup +}- or As{sup +}-implanted Si specimens were probed by a monoenergetic positron beam. For the As{sup +}-implanted specimen, the depth profile of defects was obtained from measurements of Doppler broadening profiles as a function of incident positron energy. The major species of the defects was identified as divacancies. For ion-implanted specimens after annealing treatment, oxygen-related defects were found to be formed. For the BF{sub 2}{sup +}-implanted specimen before annealing treatment, such defects were formed in the subsurface region, where oxygen atoms were implanted by recoil from oxide films. This was attributed to enhanced formation of oxygen-related defects by the presence of F atoms. (author)

  20. Enhancement of Jc of MgB2 thin films by introduction of oxygen during deposition

    International Nuclear Information System (INIS)

    Mori, Zon; Doi, Toshiya; Hakuraku, Yoshinori; Kitaguchi, Hitoshi

    2006-01-01

    The introduction of various pinning center are examined as the effective means for improvement of J c of MgB 2 thin films. We have investigated the effects of introduction of oxygen during deposition on the superconducting properties of MgB 2 thin films. MgB 2 thin films were prepared on polished sapphire C(0001) single crystal substrates by using electron beam evaporation technique (EB) without any post-annealing. The background pressure was less than 1.3x10 -6 Pa. The evaporation flux ratio of Mg was set at 30 times as high as that of B, and the growth rate of MgB 2 film was 1nm/s. The film thickness was typically 300nm at 5min deposition. The substrate temperature was 245 deg. C. Under these conditions, we controlled the oxygen partial pressure (P O 2 ) within the range from 1.3x10 -6 to 1.3x10 -3 Pa by using a quadrapole mass spectrometer. Although T c of deposited thin film decreased in order of P O 2 , ΔM in the magnetization hysteresis loops measured from 0 to 6T at 4.2K increased up to 1.3x10 -5 . On the other hand, thin film prepared under P O 2 of 1.3x10 -3 Pa does not show superconducting transition. Between these films, there is no difference in the crystal structure from X-ray diffraction (XRD). These results suggest that the pinning center in the thin films increased by introduction of oxygen. Extremely small amount of oxygen introduction has enabled the control of growth of oxide

  1. Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells

    KAUST Repository

    Crumlin, Ethan J.

    2010-11-04

    Heterostructured interfaces of oxides, which can exhibit transport and reactivity characteristics remarkably different from those of bulk oxides, are interesting systems to explore in search of highly active cathodes for the oxygen reduction reaction (ORR). Here, we show that the ORR of ∼85 nm thick La0.8Sr0.2CoO3-δ (LSC113) films prepared by pulsed laser deposition on (001)-oriented yttria-stabilized zirconia (YSZ) substrates is dramatically enhanced (∼3-4 orders of magnitude above bulk LSC113) by surface decorations of (La 0.5Sr0.5)2CoO4±δ (LSC214) with coverage in the range from ∼0.1 to ∼15 nm. Their surface and atomic structures were characterized by atomic force, scanning electron, and scanning transmission electron microscopy, and the ORR kinetics were determined by electrochemical impedance spectroscopy. Although the mechanism for ORR enhancement is not yet fully understood, our results to date show that the observed ORR enhancement can be attributed to highly active interfacial LSC113/LSC214 regions, which were shown to be atomically sharp. © 2010 American Chemical Society.

  2. Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells

    KAUST Repository

    Crumlin, Ethan J.; Mutoro, Eva; Ahn, Sung-Jin; la O’ , Gerardo Jose; Leonard, Donovan N.; Borisevich, Albina; Biegalski, Michael D.; Christen, Hans M.; Shao-Horn, Yang

    2010-01-01

    Heterostructured interfaces of oxides, which can exhibit transport and reactivity characteristics remarkably different from those of bulk oxides, are interesting systems to explore in search of highly active cathodes for the oxygen reduction reaction (ORR). Here, we show that the ORR of ∼85 nm thick La0.8Sr0.2CoO3-δ (LSC113) films prepared by pulsed laser deposition on (001)-oriented yttria-stabilized zirconia (YSZ) substrates is dramatically enhanced (∼3-4 orders of magnitude above bulk LSC113) by surface decorations of (La 0.5Sr0.5)2CoO4±δ (LSC214) with coverage in the range from ∼0.1 to ∼15 nm. Their surface and atomic structures were characterized by atomic force, scanning electron, and scanning transmission electron microscopy, and the ORR kinetics were determined by electrochemical impedance spectroscopy. Although the mechanism for ORR enhancement is not yet fully understood, our results to date show that the observed ORR enhancement can be attributed to highly active interfacial LSC113/LSC214 regions, which were shown to be atomically sharp. © 2010 American Chemical Society.

  3. Balancing carbon/nitrogen ratio to improve nutrients removal and algal biomass production in piggery and brewery wastewaters.

    Science.gov (United States)

    Zheng, Hongli; Liu, Mingzhi; Lu, Qian; Wu, Xiaodan; Ma, Yiwei; Cheng, Yanling; Addy, Min; Liu, Yuhuan; Ruan, Roger

    2018-02-01

    To improve nutrients removal from wastewaters and enhance algal biomass production, piggery wastewater was mixed with brewery wastewaters. The results showed that it was a promising way to cultivate microalga in piggery and brewery wastewaters by balancing the carbon/nitrogen ratio. The optimal treatment condition for the mixed piggery-brewery wastewater using microalga was piggery wastewater mixed with brewery packaging wastewater by 1:5 at pH 7.0, resulting in carbon/nitrogen ratio of 7.9, with the biomass concentration of 2.85 g L -1 , and the removal of 100% ammonia, 96% of total nitrogen, 90% of total phosphorus, and 93% of chemical oxygen demand. The application of the established strategies can enhance nutrient removal efficiency of the wastewaters while reducing microalgal biomass production costs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells

    Science.gov (United States)

    Kung, Mei-Lang; Hsieh, Shu-Ling; Wu, Chih-Chung; Chu, Tian-Huei; Lin, Yu-Chun; Yeh, Bi-Wen; Hsieh, Shuchen

    2015-01-01

    Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively. Cellular fluorescence intensity using DCFH-DA staining analysis revealed significant intracellular reactive oxygen species (ROS) generation of up to 242% in SK-Hep-1 cells, compared with 86% in HepG2 cells. HPLC analysis demonstrated that a CuO NP treatment caused cellular GSH depletion of 58% and a GSH/GSSG ratio decrease to ~0.1 in SK-Hep-1 cells. The oxidative stress caused by enhanced superoxide anion production was observed in both HepG2 (146%) and SK-Hep-1 (192%) cells. The Griess assay verified that CuO NPs induced NO production (170%) in SK-Hep-1 cells. Comet assay and western blot further demonstrated that CuO NPs induced severe DNA strand breakage (70%) in SK-Hep-1 cells and caused DNA damage via increased γ-H2AX levels. These results suggest that well-differentiated HepG2 cells possess a robust antioxidant defense system against CuO NP-induced ROS stress and exhibit more tolerance to oxidative stress. Conversely, poorly differentiated SK-Hep-1 cells exhibited a deregulated antioxidant defense system that allowed accumulation of CuO NP-induced ROS and resulted in severe cytotoxicity.Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively

  5. Vaporization study on vanadium-oxygen solid solution by mass spectrometric method

    International Nuclear Information System (INIS)

    Banchorndhevakul, W.; Matsui, Tsuneo; Naito, Keiji

    1986-01-01

    The vapor pressures over vanadium-oxygen solid solution (0.001 ≤ O/V ≤ 0.145) were measured by mass-spectrometric method in the temperature range of 1,855 ∼ 2,117 K. The main vapor species were observed to be V(g) and VO(g). The vapor pressure of V(g) is higher than that of VO(g) over the solid solutions with all O/V ratios except for O/V = 0.145. The vapor pressure of V(g) is nearly independent of O/V ratio. The vapor pressure of VO(g) decreases with decreasing O/V ratio. The oxygen partial pressure was calculated as a function of temperature and O/V ratio from the vapor pressures of V(g) and VO(g), from which the partial molar enthalpy and entropy of oxygen in the solid solution were determined. The partial molar enthalpy of oxygen was observed to be independent of composition, suggesting the presence of very weak interaction between interstitial oxygens. The compositional dependence of the partial molar entropy of oxygen can be explained by assuming the occupation of the octahedral site in bcc vanadium lattice by the interstitial oxygens. The excess partial molar entropy of oxygen was compared with the value derived from the sum of the contributions from the volume expansion, electronic heat capacity and vibrational terms. (author)

  6. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption.

    Science.gov (United States)

    He, D; Kou, X; Luo, Q; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; Zeng, M; Gan, Y; Zhou, Y

    2015-01-01

    Mechanical force-induced orthodontic root resorption is a major clinical challenge in orthodontic treatment. Macrophages play an important role in orthodontic root resorption, but the underlying mechanism remains unclear. In this study, we examined the mechanism by which the ratio of M1 to M2 macrophage polarization affects root resorption during orthodontic tooth movement. Root resorption occurred when nickel-titanium coil springs were applied on the upper first molars of rats for 3 to 14 d. Positively stained odontoclasts or osteoclasts with tartrate-resistant acid phosphatase were found in resorption areas. Meanwhile, M1-like macrophages positive for CD68 and inducible nitric oxide synthase (iNOS) persistently accumulated on the compression side of periodontal tissues. In addition, the expressions of the M1 activator interferon-γ and the M1-associated pro-inflammatory cytokine tumor necrosis factor (TNF)-α were upregulated on the compression side of periodontal tissues. When the coil springs were removed at the 14th day after orthodontic force application, root resorption was partially rescued. The number of CD68(+)CD163(+) M2-like macrophages gradually increased on the compression side of periodontal tissues. The levels of M2 activator interleukin (IL)-4 and the M2-associated anti-inflammatory cytokine IL-10 also increased. Systemic injection of the TNF-α inhibitor etanercept or IL-4 attenuated the severity of root resorption and decreased the ratio of M1 to M2 macrophages. These data imply that the balance between M1 and M2 macrophages affects orthodontic root resorption. Root resorption was aggravated by an enhanced M1/M2 ratio but was partially rescued by a reduced M1/M2 ratio. © International & American Associations for Dental Research 2014.

  7. Extinction ratio enhancement of SOA-based delayed-interference signal converter using detuned filtering

    Science.gov (United States)

    Zhang, B.; Kumar, S.; Yan, L.-S.; Willner, A. E.

    2007-12-01

    We demonstrate experimentally >3 dB extinction ratio improvement at the output of SOA-based delayed-interference signal converter (DISC) using optical off-centered filtering. Through careful modeling of the carrier and the phase dynamics, we explain in detail the origin of sub-pulses in the wavelength converted output, with an emphasis on the time-resolved frequency chirping of the output signal. Through our simulations we conclude that the sub-pulses and the main-pulses are oppositely chirped, which is also verified experimentally by analyzing the output with a chirp form analyzer. We propose and demonstrate an optical off-center filtering technique which effectively suppresses these sub-pulses. The effects of filter detuning and phase bias adjustment in the delayed-interferometer are experimentally characterized and optimized, leading to a >3 dB extinction ratio enhancement of the output signal.

  8. Enhanced activity and stability of La-doped CeO2 monolithic catalysts for lean-oxygen methane combustion.

    Science.gov (United States)

    Zhu, Wenjun; Jin, Jianhui; Chen, Xiao; Li, Chuang; Wang, Tonghua; Tsang, Chi-Wing; Liang, Changhai

    2018-02-01

    Effective utilization of coal bed methane is very significant for energy utilization and environment protection. Catalytic combustion of methane is a promising way to eliminate trace amounts of oxygen in the coal bed methane and the key to this technology is the development of high-efficiency catalysts. Herein, we report a series of Ce 1-x La x O 2-δ (x = 0-0.8) monolithic catalysts for the catalytic combustion of methane, which are prepared by citric acid method. The structural characterization shows that the substitution of La enhance the oxygen vacancy concentration and reducibility of the supports and promote the migration of the surface oxygen, as a result improve the catalytic activity of CeO 2 . M-Ce 0.8 La 0.2 O 2-δ (monolithic catalyst, Ce 0.8 La 0.2 O 2-δ coated on cordierite honeycomb) exhibits outstanding activity for methane combustion, and the temperature for 10 and 90% methane conversion are 495 and 580 °C, respectively. Additionally, Ce 0.8 La 0.2 O 2-δ monolithic catalyst presents excellent stability at high temperature. These Ce 1-x La x O 2-δ monolithic materials with a small amount of La incorporation therefore show promises as highly efficient solid solution catalysts for lean-oxygen methane combustion. Graphical abstract ᅟ.

  9. Internal-reference solid-electrolyte oxygen sensor

    International Nuclear Information System (INIS)

    Haaland, D.M.

    1977-01-01

    A new solid-electrolyte oxygen sensor has been developed that eliminates the conventional oxygen reference in previous solid-electrolyte oxygen sensor designs and is, therefore, ideally suited as an insertion device for remote oxygen monitoring applications. It is constructed with two cells of stabilized zirconia sealed into a small unit using a new high-temperature platinum-zirconia seal. One electrochemical cell monitors the ratio of oxygen partial pressures inside and outside the sensor while the other solid-electrolyte cell is used for quantitative electrochemical pumping of oxygen. The internal oxygen reference is generated by initially pumping all oxygen out of the known internal volume of the sensor and then quantitatively pumping oxygen back in until oxygen partial pressures are equal inside and out. This information is used with the ideal gas law to calculate oxygen partial pressures. Tests were conducted from 400 to 1000 0 C in mixtures of oxygen and nitrogen spanning approximately 0.2 to 21 percent oxygen concentration range. Sensors with sputtered platinum and porous platinum paste electrodes were compared

  10. Oxygen as a factor in eukaryote evolution - Some effects of low levels of oxygen on Saccharomyces cerevisiae

    Science.gov (United States)

    Jahnke, L.; Klein, H. P.

    1979-01-01

    A comparative study of the effects of varying levels of oxygen on some of the metabolic functions of the primitive eukaryote, Saccharomyces cerevisiae, has shown that these cells are responsive to very low levels of oxygen: the level of palmitoyl-Co A desaturase was greatly enhanced by only 0.03 vol % oxygen. Similarly, an acetyl-CoA synthetase associated predominantly with anaerobic growth was stimulated by as little as 0.1% oxygen, while an isoenzyme correlated with aerobic growth was maximally active at much higher oxygen levels (greater than 1%). Closely following this latter pattern were three mitochondrial enzymes that attained maximal activity only under atmospheric levels of oxygen.

  11. Analysis of gas turbine engines using water and oxygen injection to achieve high Mach numbers and high thrust

    Science.gov (United States)

    Henneberry, Hugh M.; Snyder, Christopher A.

    1993-01-01

    An analysis of gas turbine engines using water and oxygen injection to enhance performance by increasing Mach number capability and by increasing thrust is described. The liquids are injected, either separately or together, into the subsonic diffuser ahead of the engine compressor. A turbojet engine and a mixed-flow turbofan engine (MFTF) are examined, and in pursuit of maximum thrust, both engines are fitted with afterburners. The results indicate that water injection alone can extend the performance envelope of both engine types by one and one-half Mach numbers at which point water-air ratios reach 17 or 18 percent and liquid specific impulse is reduced to some 390 to 470 seconds, a level about equal to the impulse of a high energy rocket engine. The envelope can be further extended, but only with increasing sacrifices in liquid specific impulse. Oxygen-airflow ratios as high as 15 percent were investigated for increasing thrust. Using 15 percent oxygen in combination with water injection at high supersonic Mach numbers resulted in thrust augmentation as high as 76 percent without any significant decrease in liquid specific impulse. The stoichiometric afterburner exit temperature increased with increasing oxygen flow, reaching 4822 deg R in the turbojet engine at a Mach number of 3.5. At the transonic Mach number of 0.95 where no water injection is needed, an oxygen-air ratio of 15 percent increased thrust by some 55 percent in both engines, along with a decrease in liquid specific impulse of 62 percent. Afterburner temperature was approximately 4700 deg R at this high thrust condition. Water and/or oxygen injection are simple and straightforward strategies to improve engine performance and they will add little to engine weight. However, if large Mach number and thrust increases are required, liquid flows become significant, so that operation at these conditions will necessarily be of short duration.

  12. (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species

    KAUST Repository

    Fang, Caihong; Jia, Henglei; Chang, Shuai; Ruan, Qifeng; Wang, Peng; Chen, Tao; Wang, Jianfang

    2014-01-01

    Integration of gold and titania in a nanoscale core/shell architecture can offer large active metal/semiconductor interfacial areas and avoid aggregation and reshaping of the metal nanocrystal core. Such hybrid nanostructures are very useful for studying plasmon-enhanced/enabled processes and have great potential in light-harvesting applications. Herein we report on a facile route to (gold nanocrystal core)/(titania shell) nanostructures with their plasmon band synthetically variable from ∼700 nm to over 1000 nm. The coating method has also been applied to other mono- and bi-metallic Pd, Pt, Au nanocrystals. The gold/titania nanostructures have been employed as the scattering layer in dye-sensitized solar cells, with the resultant cells exhibiting a 13.3% increase in the power conversion efficiency and a 75% decrease in the scattering-layer thickness. Moreover, under resonant excitation, the gold/titania nanostructures can efficiently utilize low-energy photons to generate reactive oxygen species, including singlet oxygen and hydroxyl radicals.

  13. Enhanced Conductivity at the Interface of Li2O ratio B2O3 Nanocomposites: Atomistic Models

    International Nuclear Information System (INIS)

    Islam, Mazharul M.; Bredow, Thomas; Indris, Sylvio; Heitjans, Paul

    2007-01-01

    A theoretical investigation at density-functional level of Li ion conduction at the interfaces in Li 2 O ratio B 2 O 3 nanocomposites is presented. The structural disorder at the Li 2 O(111) ratio B 2 O 3 (001) interface leads to reduced defect formation energies for Li vacancies and Frenkel defects compared to Li 2 O surfaces. The average activation energy for Li + diffusion in the interface region is in the range of the values for Li 2 O. It is therefore concluded that the enhanced Li conductivity of Li 2 O ratio B 2 O 3 nanocomposites is mainly due to the increased defect concentration

  14. Measurement of oxygen chemical diffusion in PuO2-x and analysis of oxygen diffusion in PuO2-x and (Pu,U)O2-x

    International Nuclear Information System (INIS)

    Kato, Masato; Uchida, Teppei; Sunaoshi, Takeo

    2013-01-01

    Oxygen chemical diffusion in PuO 2-x was investigated in the temperature range of 1473-1873 K by thermogravimetry as functions of oxygen-to-metal (O/M) ratios and temperatures. The oxygen chemical diffusion coefficients, D were determined assuming that the reduction curves were dominated by a diffusion process. The O/M ratio and Pu content dependence on the chemical diffusion coefficients were evaluated. The chemical diffusion coefficient had its minimum value at around O/M=1.98 and decreased with increasing Pu content in (U,Pu)O 2-x . The self-diffusion coefficients were evaluated. A model for describing the relationship among O/M ratio, oxygen chemical diffusion, and self-diffusion was proposed based on defect chemistry. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Numerical Study of the Rib Arrangements for Enhancing Heat Transfer in a Two-pass Channel of Large Aspect Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sol; Choi, Seok Min; Sohn, Ho-Seong; Cho, Hyung Hee [Yonsei Univ., Seoul (Korea, Republic of)

    2017-03-15

    The present study investigated the effect of the rib arrangement and a guide vane for enhancing internal cooling of the blade. Two types of rib arrangements were used in the first and second passage in parallel. Aspect ratio of the channel was 5 and a fixed Reynolds number based on hydraulic diameter was 10,000. The attack angle of rib was 60°, rib pitch-to-height ratio (p/e) was 10, and the rib height-to-hydraulic-diameter ratio (e/D{sub n}) was 0.075. The effect of an interaction between Dean vortices and the secondary vortices from the first passage was observed. Overall, the attack angle of rib in the first passage was dominant factor to heat transfer and flow patterns in turning region. Also, the channel with a guide vane showed enhanced heat transfer at the tip surface with reducing flow separation and recirculation.

  16. Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro.

    Science.gov (United States)

    Co, C; Vickaryous, M K; Koch, T G

    2014-03-01

    Ongoing research is aimed at increasing cartilage tissue yield and quality from multipotent mesenchymal stromal cells (MSC) for the purpose of treating cartilage damage in horses. Low oxygen culture has been shown to enhance chondrogenesis, and novel membrane culture has been proposed to increase tissue yield and homogeneity. The objective of this study was to evaluate and compare the effect of reduced oxygen and membrane culture during in vitro chondrogenesis of equine cord blood (CB) MSC. CB-MSC (n = 5 foals) were expanded at 21% oxygen prior to 3-week differentiation in membrane or pellet culture at 5% and 21% oxygen. Assessment included histological examination (H&E, toluidine Blue, immunohistochemistry (IHC) for collagen type I and II), protein quantification by hydroxyproline assay and dimethylmethylene assay, and mRNA analysis for collagen IA1, collagen IIA1, collagen XA1, HIF1α and Sox9. Among treatment groups, 5% membrane culture produced neocartilage most closely resembling hyaline cartilage. Membrane culture resulted in increased wet mass, homogenous matrix morphology and an increase in total collagen content, while 5% oxygen culture resulted in higher GAG and type II collagen content. No significant differences were observed for mRNA analysis. Membrane culture at 5% oxygen produces a comparatively larger amount of higher quality neocartilage. Matrix homogeneity is attributed to a uniform diffusion gradient and reduced surface tension. Membrane culture holds promise for scale-up for therapeutic purposes, for cellular preconditioning prior to cytotherapeutic applications, and for modeling system for gas-dependent chondrogenic differentiation studies. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  17. Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxide fuel cells

    KAUST Repository

    Mutoro, Eva; Crumlin, Ethan J.; Biegalski, Michael D.; Christen, Hans M.; Shao-Horn, Yang

    2011-01-01

    Surface-decoration of perovskites can strongly affect the oxygen reduction activity, and therefore is a new and promising approach to improve SOFC cathode materials. In this study, we demonstrate that a small amount of secondary phase on a (001) La 0.8Sr 0.2CoO 3-δ (LSC) surface can either significantly activate or passivate the electrode. LSC (001) microelectrodes prepared by pulsed laser deposition on a (001)-oriented yttria-stabilized zirconia (YSZ) substrate were decorated with La-, Co-, and Sr-(hydr)oxides/carbonates. "Sr"-decoration with nanoparticle coverage in the range from 50% to 80% of the LSC surface enhanced the surface exchange coefficient, k q, by an order of magnitude while "La"- decoration and "Co"-decoration led to no change and reduction in k q, respectively. Although the physical origin for the enhancement is not fully understood, results from atomic force microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy suggest that the observed k q enhancement for "Sr"-decorated surfaces can be attributed largely to catalytically active interface regions between surface Sr-enriched particles and the LSC surface. © 2011 The Royal Society of Chemistry.

  18. A latitudinal study of oxygen isotopes within horsehair

    Science.gov (United States)

    Thompson, E.; Bronk Ramsey, C.; McConnell, J. R.

    2016-12-01

    This study aims to explore the hypothesis that 'if oxygen isotope ratios deplete with decreasing temperature then a study of oxygen isotope ratios within horsehair from Oxfordshire to Iceland will show a latitudinal depletion gradient'. By looking at oxygen isotope values at different geographical positions, we can track the relationship with latitude and with different regional climate features. This will provide a firmer understanding of how to compare climate records from different locations. Additionally, a comparison of the horse breeds from this study to those analysed within previous studies will create an even better understanding of the intra-species variation within the δ18O values of horsehair. A total of 24 horses were sampled on the 7th March from Thordale Stud in Shetland, the Icelandic Food And Veterinary Authority in Iceland, the Exmoor Pony Centre in Exmoor and the Pigeon House Equestrian Centre in Oxfordshire. By starting the sampling process from the most recent growth at the follicle, the sampling date becomes a chronological marker, temporally fixing the first sample within a sequential set of data points extending for one year or longer, depending on the length of each individual hair. The samples were analysed for oxygen isotope values using an IRMS coupled within a Sercon HTEA. Preliminary results show a latitudinal gradient is evident on comparison between the locations, consistent with the findings of Darling and Talbot's study of fresh water isotopes in the British Isles (2003). These results support the hypothesis, showing that a study of oxygen isotope ratios within horse hair from Oxfordshire to Iceland showing a latitudinal depletion gradient, consistent with a depletion of oxygen isotope ratios due to decreasing temperatures. Darling, W. and Talbot, J. (2003). The O and H stable isotope composition of freshwaters in the British Isles. 1. Rainfall. Hydrol. Earth System Science, 7(2), pp.163-181.

  19. Oxygen abundance in metal-poor dwarfs, derived from the forbidden line

    Science.gov (United States)

    Spite, M.; Spite, F.

    1991-12-01

    The oxygen abundance is redetermined in a few metal-poor dwarfs, using the oxygen forbidden line at 630 nm rather than the oxygen triplet at 777 nm previously used by Abia and Rebolo (1989). The ratios form O/Fe are clearly lower than the previous ones and are in agreement with the ratios found in the metal-poor red giants, suggesting that no real difference exists between dwarfs and giants. Finally, it can be argued that, pending the acquisition of additional information, the oxygen abundances derived from the forbidden line are more reliable than the abundances found from the triplet.

  20. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    Science.gov (United States)

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  1. Hormonal modulation of novelty processing in women: Enhanced under working memory load with high dehydroepiandrosterone-sulfate-to-dehydroepiandrosterone ratios.

    Science.gov (United States)

    do Vale, Sónia; Selinger, Lenka; Martins, João Martin; Bicho, Manuel; do Carmo, Isabel; Escera, Carles

    2016-11-10

    Several studies have suggested that dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEAS) may enhance working memory and attention, yet current evidence is still inconclusive. The balance between both forms of the hormone might be crucial regarding the effects that DHEA and DHEAS exert on the central nervous system. To test the hypothesis that higher DHEAS-to-DHEA ratios might enhance working memory and/or involuntary attention, we studied the DHEAS-to-DHEA ratio in relation to involuntary attention and working memory processing by recording the electroencephalogram of 22 young women while performing a working memory load task and a task without working memory load in an audio-visual oddball paradigm. DHEA and DHEAS were measured in saliva before each task. We found that a higher DHEAS-to-DHEA ratio was related to enhanced auditory novelty-P3 amplitudes during performance of the working memory task, indicating an increased processing of the distracter, while on the other hand there was no difference in the processing of the visual target. These results suggest that the balance between DHEAS and DHEA levels modulates involuntary attention during the performance of a task with cognitive load without interfering with the processing of the task-relevant visual stimulus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Meridional distribution and seasonal variation of stable oxygen isotope ratio of precipitation in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    Kayo Nakamura

    2010-07-01

    Full Text Available The stable oxygen isotope ratio(δ^O in precipitation is known to have important meridional and seasonal variations, but there are almost no measurements of δ^O in precipitation over polar oceans. The present research took advantage of 4 opportunities for in situ observations in summer and winter at high latitudes in the Southern Ocean. In addition, we analyzed samples of precipitation at Syowa Station in 2008 to obtain year-round data. Based on these data, we consider the meridional and seasonal variations of δ^O in precipitation over the Southern Ocean. In general, δ^O decreases with increasing latitude, and is lower in winter than in summer. The latitude gradient is stronger in winter. At 60°S, δ^O is -5.4‰ and -11.3‰ in summer and winter, respectively, while the corresponding figures at 66°S are -10.5‰ and -20.8‰. These results will help us understand the mechanisms of the salinity distribution and its variation in the Antarctic Ocean.

  3. Identification of Bottled Zam Zam Water in Malaysian Market using Hydrogen and Oxygen Stable Isotobe Ratios (δ2H and δ18O)

    International Nuclear Information System (INIS)

    Roslanzairi Mostapa; Abdul Kadir Ishak; Kamaruzaman Mohamad; Rohaimah Demanah

    2014-01-01

    The water drawn from the well of Zam Zam is believed by the adherents of Islam to be blessed and capable of treating a variety of ailments. The water originates from a well in an alluvium area, located in Mecca, Saudi Arabia and has been in use since 4000 years ago. Due to the religious significance of the water drawn from this well, bottled versions are very popular among Malaysians. Unfortunately, this disproportionate popularity may entice some unscrupulous dealers to engage in fraudulent behaviour, such as selling ordinary water purported to be Zam Zam water. This unethical practice might very well pose a physical and economical hazard to consumers. Therefore, for the purpose of this preliminary study, five samples of Zam Zam bottled water from different brands were purchased and analyzed using Isotope Ratio Mass Spectrometer (IRMS). For comparison purpose, four samples of zam zam water from Mecca, and two more types of water samples originating from Malaysian were also analyzed, namely, bottled drinking water and tap water. The sources of these water samples are from groundwater and surface water (river), respectively. Results of hydrogen (ε 2 H) and oxygen (ε 18 O) isotope ratios of zam zam water from mecca are in the range of -13.62 % to -10.60 %, and -2.17 % to 0.06 %, respectively, while the hydrogen (ε 2 H) and oxygen (δ 18 O) isotope ratios of five samples from the bottled Zam Zam water are within the range of -50.74 % to -7.95 % to -5.39 %, respectively. The results from the measured values of all the water samples, and might be immensely useful for the purpose of regulatory monitoring of bottled water products. (author)

  4. Theory and development of fluorescence-based optochemical oxygen sensors: oxygen optodes.

    Science.gov (United States)

    Opitz, N; Lübbers, D W

    1987-01-01

    range of PO2 values, resulting in a higher resolution. Use of suitable polymer alloys as indicator matrices can even enhance oxygen sensitivity; therefore, the application of optodes for trace analysis of oxygen might be possible, especially with regard to the application of highly oxygen-sensitive phosphorescent indicators. Finally, owing to the reversibility of fluorescence quenching, monitoring of oxygen by fluorescence optical sensors allows a continuous and remote control of biomedical parameters as well as regulation of biotechnological processes.(ABSTRACT TRUNCATED AT 400 WORDS)

  5. Production of perhydroxy radical (HO2) and oxygen in the radiolysis of aqueous solution and the LET effects

    International Nuclear Information System (INIS)

    Imamura, Masashi

    1987-01-01

    This article aims to review the results concerning the production of perhydroxy radical (HO 2 ) and oxygen from irradiated aqueous solutions and the LET effects on these products, beginning with a brief introduction to the elementary primary processes in radiolysis of aqueous solution. Oxygen, if produced in the radiolysis of aqueous solution, may be considered responsible for the decreased oxygen enhancement ratio (OER) in biological systems exposed to high LET radiation. A Harwell's group has determined oxygen generated from aqueous ferrous solutions irradiated with heavy ions and concluded that the oxygen is a precursor of perhydroxy radicals. The LET-dependent yields for perhydroxy radical have been determined by LaVerne and Schuler; the analysis of their results sheds light into the reactions taking place in high-LET track cores. In conjunction with these results, the possible contributions to the LET effects are pointed out and discussed of the energetic secondary electrons ejected from the track core by knock-on collision with heavy ions and of the variation in the track core size with energy of the heavy particles. (author)

  6. Simple method to enhance positive bias stress stability of In-Ga-Zn-O thin-film transistors using a vertically graded oxygen-vacancy active layer.

    Science.gov (United States)

    Park, Ji Hoon; Kim, Yeong-Gyu; Yoon, Seokhyun; Hong, Seonghwan; Kim, Hyun Jae

    2014-12-10

    We proposed a simple method to deposit a vertically graded oxygen-vacancy active layer (VGA) to enhance the positive bias stress (PBS) stability of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). We deposited a-IGZO films by sputtering (target composition; In2O3:Ga2O3:ZnO = 1:1:1 mol %), and the oxygen partial pressure was varied during deposition so that the front channel of the TFTs was fabricated with low oxygen partial pressure and the back channel with high oxygen partial pressure. Using this method, we were able to control the oxygen vacancy concentration of the active layer so that it varied with depth. As a result, the turn-on voltage shift following a 10 000 s PBS of optimized VGA TFT was drastically improved from 12.0 to 5.6 V compared with a conventional a-IGZO TFT, without a significant decrease in the field effect mobility. These results came from the self-passivation effect and decrease in oxygen-vacancy-related trap sites of the VGA TFTs.

  7. Generation mechanism of L-value dependence of oxygen flux enhancements during substorms

    Science.gov (United States)

    Nakayama, Y.; Ebihara, Y.; Tanaka, T.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.; Kistler, L. M.; Kletzing, C.

    2015-12-01

    The Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument measures charged particles with an energy range from ~eV to ~ tens of keV. The observation shows that the energy flux of the particles increases inside the geosynchronous orbit during substorms. For some night-side events around the apogee, the energy flux of O+ ion enhances below ~10 keV at lower L shell, whereas the flux below ~8 keV sharply decreases at higher L shells. This structure of L-energy spectrogram of flux is observed only for the O+ ions. The purpose of this study is to investigate the generation mechanism of the structure by using numerical simulations. We utilized the global MHD simulation developed by Tanaka et al (2010, JGR) to simulate the electric and magnetic fields during substorms. We performed test particle simulation under the electric and magnetic fields by applying the same model introduced by Nakayama et al. (2015, JGR). In the test particle simulation each test particle carries the real number of particles in accordance with the Liouville theorem. Using the real number of particles, we reconstructed 6-dimensional phase space density and differential flux of O+ ions in the inner magnetosphere. We obtained the following results. (1) Just after the substorm onset, the dawn-to-dusk electric field is enhanced to ~ 20 mV/m in the night side tail region at L > 7. (2) The O+ ions are accelerated and transported to the inner region (L > ~5.5) by the large-amplitude electric field. (3) The reconstructed L-energy spectrogram shows a similar structure to the Van Allen Probes observation. (4) The difference in the flux enhancement between at lower L shell and higher L shells is due to two distinct acceleration processes: adiabatic and non-adiabatic. We will discuss the relationship between the particle acceleration and the structure of L-energy spectrogram of flux enhancement in detail.

  8. Effect of amylose:amylopectin ratio and rice bran addition on starch films properties.

    Science.gov (United States)

    Cano, Amalia; Jiménez, Alberto; Cháfer, Maite; Gónzalez, Chelo; Chiralt, Amparo

    2014-10-13

    The influence of the amylose:amylopectin ratio on the properties of pea, potato and cassava starch films and the effect of the incorporation of rice bran of two different particle sizes were studied. The structural, mechanical, optical and barrier properties of the films were analyzed after 1 and 5 weeks. The high content of amylose gave rise to stiffer, more resistant to fracture, but less stretchable films, with lower oxygen permeability and greater water binding capacity. Although no changes in the water vapour permeability values of the films were observed during storage, their oxygen permeability decreased. Throughout storage, films became stiffer, more resistant to break, but less stretchable. Rice bran with the smallest particles improved the elastic modulus of the films, especially in high amylose content films, but reduced the film stretchability and its barrier properties, due to the enhancement of the water binding capacity and the introduction of discontinuities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Takahashi, Yutaka, E-mail: takahash@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Cellular senescence plays an important role in tumorigenesis and aging process. Black-Right-Pointing-Pointer We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. Black-Right-Pointing-Pointer IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. Black-Right-Pointing-Pointer These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated {beta}-galactosidase (SA-{beta}-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, {gamma}H2AX, the increased levels of p53 and p21 proteins, and activated SA-{beta}-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-{beta}-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

  10. IGF-I enhances cellular senescence via the reactive oxygen species–p53 pathway

    International Nuclear Information System (INIS)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro; Takahashi, Yutaka

    2012-01-01

    Highlights: ► Cellular senescence plays an important role in tumorigenesis and aging process. ► We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. ► IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. ► These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated β-galactosidase (SA-β-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, γH2AX, the increased levels of p53 and p21 proteins, and activated SA-β-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-β-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

  11. Characterization of carbonaceous solids by oxygen chemisorption

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Palmer, A.; Duguay, D.G.; McConnell, D.G.; Henson, D.E.

    1988-06-01

    Oxygen chemisorption of high and low carbon carbonaceous solids was measured in an electro-microbalance at 200 degrees C in air. A linear correlation between the amount of chemisorbed oxygen and H/C ratio as well as aromaticity was established for the high carbon solids. For the low carbon solids a linear correlation was established between the amount of chemisorbed oxygen and the content of organic matter. Experimental observations are discussed in terms of structural aspects of the solids. Oxygen chemisorption is a suitable technique for a rapid characterization of carbonaceous solids including coal. 15 refs., 7 figs., 3 tabs.

  12. Pseudomonas syringae enhances herbivory by suppressing the reactive oxygen burst in Arabidopsis.

    Science.gov (United States)

    Groen, Simon C; Humphrey, Parris T; Chevasco, Daniela; Ausubel, Frederick M; Pierce, Naomi E; Whiteman, Noah K

    2016-01-01

    Plant-herbivore interactions have evolved in the presence of plant-colonizing microbes. These microbes can have important third-party effects on herbivore ecology, as exemplified by drosophilid flies that evolved from ancestors feeding on plant-associated microbes. Leaf-mining flies in the genus Scaptomyza, which is nested within the paraphyletic genus Drosophila, show strong associations with bacteria in the genus Pseudomonas, including Pseudomonas syringae. Adult females are capable of vectoring these bacteria between plants and larvae show a preference for feeding on P. syringae-infected leaves. Here we show that Scaptomyza flava larvae can also vector P. syringae to and from feeding sites, and that they not only feed more, but also develop faster on plants previously infected with P. syringae. Our genetic and physiological data show that P. syringae enhances S. flava feeding on infected plants at least in part by suppressing anti-herbivore defenses mediated by reactive oxygen species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Measurement of oxygen chemical diffusion in PuO{sub 2-x} and analysis of oxygen diffusion in PuO{sub 2-x} and (Pu,U)O{sub 2-x}

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masato; Uchida, Teppei [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Ibaraki 319-1194 (Japan); Sunaoshi, Takeo [Inspection Development Company Ltd., 4-33 Muramatsu, Tokai-mura, Ibaraki 319-1194 (Japan)

    2013-02-15

    Oxygen chemical diffusion in PuO{sub 2-x} was investigated in the temperature range of 1473-1873 K by thermogravimetry as functions of oxygen-to-metal (O/M) ratios and temperatures. The oxygen chemical diffusion coefficients, D were determined assuming that the reduction curves were dominated by a diffusion process. The O/M ratio and Pu content dependence on the chemical diffusion coefficients were evaluated. The chemical diffusion coefficient had its minimum value at around O/M=1.98 and decreased with increasing Pu content in (U,Pu)O{sub 2-x}. The self-diffusion coefficients were evaluated. A model for describing the relationship among O/M ratio, oxygen chemical diffusion, and self-diffusion was proposed based on defect chemistry. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Enhancement of the oxygen reduction on nitride stabilized pt-M (M=Fe, Co, and Ni) core–shell nanoparticle electrocatalysts

    KAUST Repository

    Kuttiyiel, Kurian A.; Choi, YongMan; Hwang, Sun-Mi; Park, Gu-Gon; Yang, Tae-Hyun; Su, Dong; Sasaki, Kotaro; Liu, Ping; Adzic, Radoslav R.

    2015-01-01

    Given the harsh operating conditions in hydrogen/oxygen fuel cells, the stability of catalysts is one of the critical questions affecting their commercialization. We describe a distinct class of oxygen reduction (ORR) core–shell electrocatalysts comprised of nitride metal cores enclosed by thin Pt shells that is easily synthesized. The synthesis is reproducible and amenable to scale up. Our theoretical analysis and the experimental data indicate that metal nitride nanoparticle cores could significantly enhance the ORR activity as well as the durability of the core–shell catalysts as a consequence of combined geometrical, electronic and segregation effects on the Pt shells. In addition to its fuel cells application, this class of catalysts holds promise to significantly contribute in resolving the problem of platinum scarcity and furthermore indicates the guidelines for future research and development.

  15. Enhancement of the oxygen reduction on nitride stabilized pt-M (M=Fe, Co, and Ni) core–shell nanoparticle electrocatalysts

    KAUST Repository

    Kuttiyiel, Kurian A.

    2015-04-01

    Given the harsh operating conditions in hydrogen/oxygen fuel cells, the stability of catalysts is one of the critical questions affecting their commercialization. We describe a distinct class of oxygen reduction (ORR) core–shell electrocatalysts comprised of nitride metal cores enclosed by thin Pt shells that is easily synthesized. The synthesis is reproducible and amenable to scale up. Our theoretical analysis and the experimental data indicate that metal nitride nanoparticle cores could significantly enhance the ORR activity as well as the durability of the core–shell catalysts as a consequence of combined geometrical, electronic and segregation effects on the Pt shells. In addition to its fuel cells application, this class of catalysts holds promise to significantly contribute in resolving the problem of platinum scarcity and furthermore indicates the guidelines for future research and development.

  16. Considerable Enhancement of Field Emission of SnO2Nanowires by Post-Annealing Process in Oxygen at High Temperature

    Directory of Open Access Journals (Sweden)

    Fang XS

    2009-01-01

    Full Text Available Abstract The field emission properties of SnO2nanowires fabricated by chemical vapor deposition with metallic catalyst-assistance were investigated. For the as-fabricated SnO2nanowires, the turn-on and threshold field were 4.03 and 5.4 V/μm, respectively. Considerable enhancement of field emission of SnO2nanowires was obtained by a post-annealing process in oxygen at high temperature. When the SnO2nanowires were post-annealed at 1,000 °C in oxygen, the turn-on and threshold field were decreased to 3.77 and 4.4 V/μm, respectively, and the current density was increased to 6.58 from 0.3 mA/cm2at the same applied electric field of 5.0 V/μm.

  17. Modification of radiation-induced DNA lesions by oxygen

    International Nuclear Information System (INIS)

    Meyn, R.E.; Jenkins, W.T.

    1984-01-01

    The efficiency of DNA strand break production by radiation under aerated and hypoxic conditions was determined in CHO cells using the technique of alkaline elution. The resulting oxygen enhancement ratio was surprisingly high, 7.8. When the pH of the elution was increased from 12.1, the normally used pH, to 12.8, a substantial increase in the strand breaks produced in the hypoxic cells was observed, resulting in an OER of 4.8. This difference in susceptibility of DNA strand break detection as a function of pH suggested a difference in the type of lesions produced in DNA when irradiated under aerated and hypoxic conditions. Further experiments to examine the DNA-protein crosslinks produced by radiation suggested that the apparent lower level of strand breaks in hypoxic cells may be due to a higher level of DNA-protein crosslinks produced under hypoxic conditions. Thus, oxygen may not only act by modifying the quantity of radiation-induced DNA lesions but may also cause qualitative changes. If the different types of DNA lesions have different contributions to lethality, the OER for cell survival may represent a complex composite of these changes at the molecular level

  18. Cloned Hemoglobin Genes Enhance Growth Of Cells

    Science.gov (United States)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.

  19. The effect of oxygen-doping on the electrical resistivity of vanadium

    International Nuclear Information System (INIS)

    Lang, E.; Bressers, J.

    1975-01-01

    High-purity vanadium single crystals characterized by resistance ratios in the range of 1,100 were doped to different oxygen levels and their electrical resistivity increase was measured as a function of the oxygen concentration. In the temperature range investigated, 77 to 293 K, the Matthiessen rule is obeyed. The increase in electrical resistivity per atomic percent oxygen is shown to be 5.16 μΩcm. For the ideal resistivity ratio rhosub(i) (77 K)/rhosub(i) (293 K) a value of 0.116 could be determined. (orig.) [de

  20. Type of precursor and synthesis of silicon oxycarbide (SiOxCyH) thin films with a surfatron microwave oxygen/argon plasma

    International Nuclear Information System (INIS)

    Walkiewicz-Pietrzykowska, Agnieszka; Espinos, J. P.; Gonzalez-Elipe, Agustin R.

    2006-01-01

    Siliconelike thin films (i.e., SiO x C y H z ) were prepared in a microwave plasma enhanced chemical vapor deposition reactor from structurally different organosilicon precursors [i.e., hexamethyldisiloxane (HMDSO), dimethylsilane (DMS), and tetramethylsilane (TMS)]. The films were deposited at room temperature by using different oxygen/argon ratios in the plasma gas. By changing the type of precursor and the relative concentration of oxygen in the plasma, thin films with different compositions (i.e., O/C ratio) and properties are obtained. In general, raising the oxygen concentration in the plasma produces the progressive removal of the organic moieties from the films whose composition and structure then approach those of silicon dioxide. The deposition rate was highly dependent on the type of precursor, following the order HMDSO>>DMS>TMS. The polarizabilities, optical band gaps, and surface free energy of the films also depended on the thin film composition and structure. It is proposed that the Si-O bonds existing in HMDSO is the main factor controlling the distinct reactivity of this precursor and is also responsible for the different compositions and properties of the SiO x C y H z thin films prepared with very low or no oxygen in the plasma gas

  1. ODH, oxygen deficiency hazard cryogenic analysis

    International Nuclear Information System (INIS)

    Augustynowicz, S.D.

    1994-01-01

    An oxygen deficiency exists when the concentration of oxygen, by volume, drops to a level at which atmosphere supplying respiratory protection must be provided. Since liquid cryogens can expand by factors of 700 (LN 2 ) to 850 (LH e ), the uncontrolled release into an enclosed space can easily cause an oxygen-deficient condition. An oxygen deficiency hazard (ODH) fatality rate per hour (OE) is defined as: OE = Σ N i P i F i , where N i = number of components, P i = probability of failure or operator error, and F i = fatality factor. ODHs range from open-quotes unclassifiedclose quotes (OE -9 1/h) to class 4, which is the most hazardous (OE>10 -1 1/h). For Superconducting Super Collider Laboratory (SSCL) buildings where cryogenic systems exist, failure rate, fatality factor, reduced oxygen ratio, and fresh air circulation are examined

  2. Enhancement of the static extinction ratio by using a dual-section distributed feedback laser integrated with an electro-absorption modulator

    Science.gov (United States)

    Cho, Chun-Hyung; Kim, Jongseong; Sung, Hyuk-Kee

    2016-09-01

    We report on the enhancement of the static extinction ratio by using a dual-section distributed feedback laser diode integrated with an electro-absorption modulator. A directly- modulated dual-section laser can provide improved modulation performance under a low bias level ( i.e., below the threshold level) compared with a standard directly-modulated laser. By combining the extinction ratio from a dual-section laser with that from an electro-absorption modulator section, a total extinction ratio of 49.6. dB are successfully achieved.

  3. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water.

    Science.gov (United States)

    Mass, Tali; Genin, Amatzia; Shavit, Uri; Grinstein, Mor; Tchernov, Dan

    2010-02-09

    Worldwide, many marine coastal habitats are facing rapid deterioration due in part to human-driven changes in habitat characteristics, including changes in flow patterns, a factor known to greatly affect primary production in corals, algae, and seagrasses. The effect of flow traditionally is attributed to enhanced influx of nutrients and dissolved inorganic carbon (DIC) across the benthic boundary layer from the water to the organism however, here we report that the organism's photosynthetic response to changes in the flow is nearly instantaneous, and that neither nutrients nor DIC limits this rapid response. Using microelectrodes, dual-pulse amplitude-modulated fluorometry, particle image velocimetry, and real time mass-spectrometry with the common scleractinian coral Favia veroni, the alga Gracilaria cornea, and the seagrass Halophila stipulacea, we show that this augmented photosynthesis is due to flow-driven enhancement of oxygen efflux from the organism to the water, which increases the affinity of the RuBisCO to CO(2). No augmentation of photosynthesis was found in the absence of flow or when flow occurred, but the ambient concentration of oxygen was artificially elevated. We suggest that water motion should be considered a fundamental factor, equivalent to light and nutrients, in determining photosynthesis rates in marine benthic autotrophs.

  4. Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction

    Science.gov (United States)

    Liu, Hui; Zhao, Qingshan; Liu, Jingyan; Ma, Xiao; Rao, Yuan; Shao, Xiaodong; Li, Zhongtao; Wu, Wenting; Ning, Hui; Wu, Mingbo

    2017-11-01

    With rapid dissociative adsorption of oxygen, nitrogen-doped carbon nanomaterials have been demonstrated to be efficient alternative catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we developed a mild hydrothermal strategy to construct nitrogen-doped carbon dots/graphene (NCDs-NG) composites towards ORR. Carbon dots (CDs) were derived from petroleum coke via acid oxidation while graphene oxide (GO) was obtained from graphite by modified Hummer's method. Graphene was employed as a conductive substrate to disperse CDs during hydrothermal reducing reaction while ammonia was utilized as N source to dope both graphene and CDs. The synergistic effects, i.e. CDs as pillars for graphene and catalytic sites for ORR, the high conductivity of graphene, the quick O2 adsorption on doped pyridinic nitrogen endow the NCDs-NG composites with enhanced ORR catalytic performance in alkaline electrolyte. The onset potential of -95 mV and kinetic current density of 12.7 mA cm-2 at -0.7 V (vs. Ag/AgCl) can be compared to those of the commercial 20 wt% Pt/C catalyst. The electron transfer number is about 3.9, revealing a four-electron pathway for ORR. The optimal NCDs-NG catalyst shows superior durability and methanol tolerance than 20 wt% Pt/C. This work demonstrates a feasible and effective strategy to prepare metal-free efficient ORR electrocatalysts for fuel cell applications.

  5. RECENT PROGRESS OF OXYGEN/NITROGEN SEPARATION USING MEMBRANE TECHNOLOGY

    OpenAIRE

    K. C. CHONG; S. O. LAI; H. S. THIAM; H. C. TEOH; S. L. HENG

    2016-01-01

    The oxygen-enriched air is highly demanded for various industrial applications such as medical, chemical and enhanced combustion processes. The conventional oxygen/nitrogen production is either cryogenic distillation or pressure swing adsorption (PSA). Both of these techniques possess the production capability of 20 to 300 tonnes of oxygen per day and oxygen purity of more than 95%. However, these techniques are energy intensive. Alternatively, membrane technology is an emerging technology...

  6. Biogeochemical modelling of dissolved oxygen in a changing ocean

    Science.gov (United States)

    Andrews, Oliver; Buitenhuis, Erik; Le Quéré, Corinne; Suntharalingam, Parvadha

    2017-08-01

    Secular decreases in dissolved oxygen concentration have been observed within the tropical oxygen minimum zones (OMZs) and at mid- to high latitudes over the last approximately 50 years. Earth system model projections indicate that a reduction in the oxygen inventory of the global ocean, termed ocean deoxygenation, is a likely consequence of on-going anthropogenic warming. Current models are, however, unable to consistently reproduce the observed trends and variability of recent decades, particularly within the established tropical OMZs. Here, we conduct a series of targeted hindcast model simulations using a state-of-the-art global ocean biogeochemistry model in order to explore and review biases in model distributions of oceanic oxygen. We show that the largest magnitude of uncertainty is entrained into ocean oxygen response patterns due to model parametrization of pCO2-sensitive C : N ratios in carbon fixation and imposed atmospheric forcing data. Inclusion of a pCO2-sensitive C : N ratio drives historical oxygen depletion within the ocean interior due to increased organic carbon export and subsequent remineralization. Atmospheric forcing is shown to influence simulated interannual variability in ocean oxygen, particularly due to differences in imposed variability of wind stress and heat fluxes. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  7. Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode.

    Science.gov (United States)

    Zhang, Xiaomin; Liu, Li; Zhao, Zhe; Tu, Baofeng; Ou, Dingrong; Cui, Daan; Wei, Xuming; Chen, Xiaobo; Cheng, Mojie

    2015-03-11

    Reluctant oxygen-reduction-reaction (ORR) activity has been a long-standing challenge limiting cell performance for solid oxide fuel cells (SOFCs) in both centralized and distributed power applications. We report here that this challenge has been tackled with coloading of (La,Sr)MnO3 (LSM) and Y2O3 stabilized zirconia (YSZ) nanoparticles within a porous YSZ framework. This design dramatically improves ORR activity, enhances fuel cell output (200-300% power improvement), and enables superior stability (no observed degradation within 500 h of operation) from 600 to 800 °C. The improved performance is attributed to the intimate contacts between nanoparticulate YSZ and LSM particles in the three-phase boundaries in the cathode.

  8. Optimization of burners in oxygen-gas fired glass furnace

    NARCIS (Netherlands)

    Kersbergen, M.J. van; Beerkens, R.G.C.; Sarmiento-Darkin, W.; Kobayashi, H.

    2012-01-01

    The energy efficiency performance, production stability and emissions of oxygen-fired glass furnaces are influenced by the type of burner, burner nozzle sizes, burner positions, burner settings, oxygen-gas ratios and the fuel distribution among all the burners. These parameters have been optimized

  9. Oxygen abundances in unevolved metal-poor stars - Interpretation and consequences

    International Nuclear Information System (INIS)

    Abia, C.; Rebolo, R.

    1989-01-01

    The oxygen abundance has been determined by analysis of the O I infrared triplet in 30 unevolved field stars of metallicities in the range Fe/H abundance ratio between -0.2 and -3.5. The data show that the O/Fe abundance ratio increases monotonically as metallicity decreases from solar, reaching values in the range 1.0-1.2 at an Fe/H abundance ratio of about -2. The results, when compared with those already published for metal-deficient red giants, suggest that oxygen could have been depleted in the latter. A discussion of the O/Fe abundance ratios in connection with the chemical evolution of the Galaxy is also presented. 83 refs

  10. Role of plasma enhanced atomic layer deposition reactor wall conditions on radical and ion substrate fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Mark J., E-mail: msowa@ultratech.com [Ultratech/Cambridge NanoTech, 130 Turner Street, Building 2, Waltham, Massachusetts 02453 (United States)

    2014-01-15

    Chamber wall conditions, such as wall temperature and film deposits, have long been known to influence plasma source performance on thin film processing equipment. Plasma physical characteristics depend on conductive/insulating properties of chamber walls. Radical fluxes depend on plasma characteristics as well as wall recombination rates, which can be wall material and temperature dependent. Variations in substrate delivery of plasma generated species (radicals, ions, etc.) impact the resulting etch or deposition process resulting in process drift. Plasma enhanced atomic layer deposition is known to depend strongly on substrate radical flux, but film properties can be influenced by other plasma generated phenomena, such as ion bombardment. In this paper, the chamber wall conditions on a plasma enhanced atomic layer deposition process are investigated. The downstream oxygen radical and ion fluxes from an inductively coupled plasma source are indirectly monitored in temperature controlled (25–190 °C) stainless steel and quartz reactors over a range of oxygen flow rates. Etch rates of a photoresist coated quartz crystal microbalance are used to study the oxygen radical flux dependence on reactor characteristics. Plasma density estimates from Langmuir probe ion saturation current measurements are used to study the ion flux dependence on reactor characteristics. Reactor temperature was not found to impact radical and ion fluxes substantially. Radical and ion fluxes were higher for quartz walls compared to stainless steel walls over all oxygen flow rates considered. The radical flux to ion flux ratio is likely to be a critical parameter for the deposition of consistent film properties. Reactor wall material, gas flow rate/pressure, and distance from the plasma source all impact the radical to ion flux ratio. These results indicate maintaining chamber wall conditions will be important for delivering consistent results from plasma enhanced atomic layer deposition

  11. Benthic foraminiferal Mn / Ca ratios reflect microhabitat preferences

    Science.gov (United States)

    Koho, Karoliina A.; de Nooijer, Lennart J.; Fontanier, Christophe; Toyofuku, Takashi; Oguri, Kazumasa; Kitazato, Hiroshi; Reichart, Gert-Jan

    2017-06-01

    The Mn / Ca of calcium carbonate tests of living (rose-Bengal-stained) benthic foraminifera (Elphidium batialis, Uvigerina spp., Bolivina spissa, Nonionellina labradorica and Chilostomellina fimbriata) were determined in relation to pore water manganese (Mn) concentrations for the first time along a bottom water oxygen gradient across the continental slope along the NE Japan margin (western Pacific). The local bottom water oxygen (BWO) gradient differs from previous field study sites focusing on foraminiferal Mn / Ca and redox chemistry, therefore allowing further resolution of previously observed trends. The Mn / Ca ratios were analysed using laser ablation inductively coupled plasma-mass spectrometer (ICP-MS), allowing single-chamber determination of Mn / Ca. The incorporation of Mn into the carbonate tests reflects environmental conditions and is not influenced by ontogeny. The inter-species variability in Mn / Ca reflected foraminiferal in-sediment habitat preferences and associated pore water chemistry but also showed large interspecific differences in Mn partitioning. At each station, Mn / Ca ratios were always lower in the shallow infaunal E. batialis, occupying relatively oxygenated sediments, compared to intermediate infaunal species, Uvigerina spp. and B. spissa, which were typically found at greater depth, under more reducing conditions. The highest Mn / Ca was always recorded by the deep infaunal species N. labradorica and C. fimbriata. Our results suggest that although partitioning differs, Mn / Ca ratios in the intermediate infaunal taxa are promising tools for palaeoceanographic reconstructions as their microhabitat exposes them to higher variability in pore water Mn, thereby making them relatively sensitive recorders of redox conditions and/or bottom water oxygenation.

  12. Electronic and ionic transport in Ce0.8PrxTb0.2-xO2-δ and evaluation of performance as oxygen permeation membranes

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Hendriksen, Peter Vang

    2012-01-01

    is significantly enhanced relative to that of a Ce0.9Gd0.1O1.95-δ membrane at high oxygen activities of the permeate gas (aO2 an > 10-15) due to the enhanced electronic conductivity of the Ce0.8PrxTb0.2-xO2-δ compounds. Interference between the ionic and electronic flows has a significant positive effect......The electronic conductivity of Ce0.8PrxTb0.2-xO2-δ (x = 0, 0.05, 0.10, 0.15, 0.20) was determined in the oxygen activity range aO2 ≈ 103 to aO2 ≈ 10-17 at 700- 900 °C by means of Hebb-Wagner polarisation. The electronic conductivity of all the Ce0.8PrxTb0.2-xO2-δ compositions was significantly...... enhanced as compared to that of Ce0.9Gd0.1O1.95-δ, and its value was found to increase with increasing Pr/Tb ratio. The ionic mobility of Ce0.8PrxTb0.2-xO2-δ is similar to that of Ce1- 2δGd2δO2-δ at the same oxygen vacancy concentration. The calculated oxygen flux of a Ce0.8PrxTb0.2-xO2-δ membrane...

  13. Potential application of oxygen containing gases to enhance gravity drainage in heavy oil bearing reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, I. [Hungarian Academy of Sciences, Miscolc (Hungary). Lab. for Mining Chemistry; Bauer, K. [Hungarian Academy of Sciences, Miscolc (Hungary). Lab. for Mining Chemistry; Lakatos-Szabo, J. [Hungarian Academy of Sciences, Miscolc (Hungary). Lab. for Mining Chemistry

    1997-06-01

    In the frame of laboratory studies the effect of air/natural CO{sub 2} mixtures on chemical composition of crude oil and gas phase, the rheological and interfacial properties, the flow mechanism and the safety measures were analyzed. The tests were performed at reservoir conditions (200 bar and 109 C) using natural rock, oil and gas samples. The oxygen content of the gas phase and the gas/oil ratio varied within wide limits. Both crude and asphaltene-free oil were used to determine the consequences of the low temperature oxidation. On the basis of the experimental results it was found that the oxygen content of the cap gas had been completely consumed by the chemical reactions (oxidation, condensation and water formation) before the asphaltene content set in equilibrium. Nearly 9% excess asphaltene formation was observed in both the crude and the asphaltene-free oils. The substantial increase in asphaltene content and the presence of colloidal water results in a measurable change in rheological and interfacial properties. Despite these factors the flow and displacement mechanism is only slightly influenced if the reservoir is of fractured character. On the other hand the in-situ oxidation of this heavy crude oil improves the efficiency of bitumen production and the quality of product used mostly for road construction. As a final statement, it was concluded that replacing the CO{sub 2} with oxygen containing inert gas, the chemical reactions can be in-situ regulated without jeopardizing the recovery efficiency. Application of the artificial gas cap concept opens new perspectives in EOR technology of karstic and fractured reservoirs containing medium and heavy crude oils in those cases where CO{sub 2} or CH gas is not available. (orig./MSK)

  14. Oxygen-dependent radiosensitivity of Escherichia coli and mitigation in lethality by superoxide dismutase

    International Nuclear Information System (INIS)

    Niwa, Taeko; Yamaguchi, Hikoyuki; Yano, Keiji

    1978-01-01

    Oxygen-dependent radiosensitivity of Escherichia coli W3623 his - was confirmed. Regarding cellular superoxide dismutase (SOD), cells grown oxically gained higher activity than those anoxically, however, the reinforced enzyme level could not compensate the oxygen effect, i.e., the enhanced lethal effect of oxic γ-irradiation. Rather, the enhancement of oxygen effect was found in cells grown oxically compared with those anoxically. Oxygen enhanced lethality was mitigated to the extent by the amount of added SOD into the cell suspension to be irradiated. The results supported a proposal that superoxide anion, O 2 - , is involved in the oxygen effect, with the most likely site of the damage in the outer structure of cell but not in the cell matrix. Reverse oxygen effect could be found with lambda phage DNA in transfecting ability. Added SOD protected phage DNA somewhat in oxic irradiation. While considerable protections were found in anoxic one with the added SOD even autoclaved but their function was still unknown. (auth.)

  15. Activation-induced resetting of cerebral oxygen and glucose uptake in the rat

    DEFF Research Database (Denmark)

    Madsen, P L; Linde, R; Hasselbalch, S G

    1998-01-01

    In the clinical setting it has been shown that activation will increase cerebral glucose uptake in excess of cerebral oxygen uptake. To study this phenomenon further, this study presents an experimental setup that enables precise determination of the ratio between cerebral uptake of glucose...... and oxygen in the awake rat. Global CBF was measured by the Kety-Schmidt technique, and the ratio between cerebral uptake rates for oxygen, glucose, and lactate was calculated from cerebral arterial-venous differences. During baseline conditions, rats were kept in a closed box designed to minimize...... interference. During baseline conditions CBF was 1.08 +/- 0.25 mL x g(-1) x minute(-1), and the cerebral oxygen to glucose uptake ratio was 5.5. Activation was induced by opening the sheltering box for 6 minutes. Activation increased CBF to 1.81 mL x g(-1) x minute(-1). During activation cerebral glucose...

  16. Determination of enhancement ratios of HCOOH relative to CO in biomass burning plumes by the Infrared Atmospheric Sounding Interferometer (IASI)

    Science.gov (United States)

    Pommier, Matthieu; Clerbaux, Cathy; Coheur, Pierre-Francois

    2017-09-01

    Formic acid (HCOOH) concentrations are often underestimated by models, and its chemistry is highly uncertain. HCOOH is, however, among the most abundant atmospheric volatile organic compounds, and it is potentially responsible for rain acidity in remote areas. HCOOH data from the Infrared Atmospheric Sounding Interferometer (IASI) are analyzed from 2008 to 2014 to estimate enhancement ratios from biomass burning emissions over seven regions. Fire-affected HCOOH and CO total columns are defined by combining total columns from IASI, geographic location of the fires from Moderate Resolution Imaging Spectroradiometer (MODIS), and the surface wind speed field from the European Centre for Medium-Range Weather Forecasts (ECMWF). Robust correlations are found between these fire-affected HCOOH and CO total columns over the selected biomass burning regions, allowing the calculation of enhancement ratios equal to 7.30 × 10-3 ± 0.08 × 10-3 mol mol-1 over Amazonia (AMA), 11.10 × 10-3 ± 1.37 × 10-3 mol mol-1 over Australia (AUS), 6.80 × 10-3 ± 0.44 × 10-3 mol mol-1 over India (IND), 5.80 × 10-3 ± 0.15 × 10-3 mol mol-1 over Southeast Asia (SEA), 4.00 × 10-3 ± 0.19 × 10-3 mol mol-1 over northern Africa (NAF), 5.00 × 10-3 ± 0.13 × 10-3 mol mol-1 over southern Africa (SAF), and 4.40 × 10-3 ± 0.09 × 10-3 mol mol-1 over Siberia (SIB), in a fair agreement with previous studies. In comparison with referenced emission ratios, it is also shown that the selected agricultural burning plumes captured by IASI over India and Southeast Asia correspond to recent plumes where the chemistry or the sink does not occur. An additional classification of the enhancement ratios by type of fuel burned is also provided, showing a diverse origin of the plumes sampled by IASI, especially over Amazonia and Siberia. The variability in the enhancement ratios by biome over the different regions show that the levels of HCOOH and CO do not only depend on the fuel types.

  17. Net Community and Gross Photosynthetic Production Rates in the Eastern Tropical South Pacific, as Determined from O2/AR Ratios and Triple Oxygen Isotopic Composition of Dissolved O2

    Science.gov (United States)

    Prokopenko, M. G.; Yeung, L. Y.; Berelson, W.; Fleming, J.; Rollins, N.; Young, E. D.; Haskell, W. Z.; Hammond, D. E.; Capone, D. G.

    2010-12-01

    This study assesses the rates of ocean carbon production and its fate with respect to recycling or export in the Eastern Tropical South Pacific (ETSP). ETSP has been previously identified as a region where N2 fixation and denitrification may be spatially coupled; this is also a region of localized CO2 outgassing. Using an Equilibrated Inlet Mass Spectrometer (EIMS) system, we obtained continuous measurements of the biological O2 supersaturation in the mixed layer along the ship track encompassing a region bounded by 10-20° S and 80-100° W in January - March, 2010. Vertical profiles were also taken at selected stations and analyzed for dissolved O2/Ar ratios on EIMS and triple oxygen isotope composition (17O excess) on a multi-collector IRMS (Isotope Ratio Mass Spectrometer) at UCLA. Gas exchange rates were estimated using two approaches: the Rn-222 deficit method and the wind parameterization method, which utilized wind speeds extracted from ASCAT satellite database. Oxygen Net Community Production (O-NCP) rates calculated based on biological O2 supersaturation ranged from slightly negative to ~ 0.3 - 15 mmol/m2d, with higher rates along the northern part of the transect. Oxygen Gross Community Production (O-GPP) rates calculated from 17O excess were between 50 ± 20 and 200 ± 40 mmol/m2d, with higher rates observed along the northern cruise transect as well. Notably, the NCP/GPP ratios along the northern transect were higher by the factor of 2 to 3 than their southern counterparts. The O2/Ar-based NCP rates were comparable to POC flux measured with floating traps deployed at the southern stations, but exceeded by a factor of 5-10 the trap POC fluxes obtained at the northern stations. A one-dimensional box model has been constructed to quantify the magnitude of oxygen primary production below the mixed layer. The results of this work will be integrated with measurements of 15-N2 uptake that are in progress, to constrain the potential contribution of N2 fixation

  18. Analysis of enhanced modal damping ratio in porous materials using an acoustic-structure interaction model

    DEFF Research Database (Denmark)

    Kook, Junghwan; Jensen, Jakob Søndergaard

    2014-01-01

    The aim of this paper is to investigate the enhancement of the damping ratio of a structure with embedded microbeam resonators in air-filled internal cavities. In this context, we discuss theoretical aspects in the framework of the effective modal damping ratio (MDR) and derive an approximate...... relation expressing how an increased damping due to the acoustic medium surrounding the microbeam affect the MDR of the macrobeam. We further analyze the effect of including dissipation of the acoustic medium by using finite element (FE) analysis with acoustic-structure interaction (ASI) using a simple...... phenomenological acoustic loss model. An eigenvalue analysis is carried out to demonstrate the improvement of the damping characteristic of the macrobeam with the resonating microbeam in the lossy air and the results are compared to a forced vibration analysis for a macrobeam with one or multiple embedded...

  19. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors

    Science.gov (United States)

    Sun, Zhijuan; Cai, Chenxin; Guo, Fei; Ye, Changhuai; Luo, Yingwu; Ye, Shuming; Luo, Jianchao; Zhu, Fan; Jiang, Chunyue

    2018-04-01

    Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor’s work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.

  20. Enhancement of oxygen transfer and nitrogen removal in a membrane separation bioreactor for domestic wastewater treatment.

    Science.gov (United States)

    Chiemchaisri, C; Yamamoto, K

    2005-01-01

    Biological nitrogen removal in a membrane separation bioreactor developed for on-site domestic wastewater treatment was investigated. The bioreactor employed hollow fiber membrane modules for solid-liquid separation so that the biomass could be completely retained within the system. Intermittent aeration was supplied with 90 minutes on and off cycle to achieve nitrification and denitrification reaction for nitrogen removal. High COD and nitrogen removal of more than 90% were achieved under a moderate temperature of 25 degrees C. As the temperature was stepwise decreased from 25 to 5 degrees C, COD removal in the system could be constantly maintained while nitrogen removal was deteriorated. Nevertheless, increasing aeration supply could enhance nitrification at low temperature with benefit from complete retention of nitrifying bacteria within the system by membrane separation. At low operating temperature range of 5 degrees C, nitrogen removal could be recovered to more than 85%. A mathematical model considering diffusion resistance of limiting substrate into the bio-particle is applied to describe nitrogen removal in a membrane separation bioreactor. The simulation suggested that limitation of the oxygen supply was the major cause of inhibition of nitrification during temperature decrease. Nevertheless, increasing aeration could promote oxygen diffusion into the bio-particle. Sufficient oxygen was supplied to the nitrifying bacteria and the nitrification could proceed. In the membrane separation bioreactor, biomass concentration under low temperature operation was allowed to increase by 2-3 times of that of moderate temperature to compensate for the loss of bacterial activities so that the temperature effect was masked.

  1. Oxygen pressure-tuned epitaxy and magnetic properties of magnetite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junran [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Liu, Wenqing [York-Nanjing Joint Centre (YNJC) for Spintronics and Nanoengineering, Department of Electronics, The University of York, YO10 3DD (United Kingdom); Zhang, Minhao; Zhang, Xiaoqian; Niu, Wei; Gao, Ming [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Wang, Xuefeng, E-mail: xfwang@nju.edu.cn [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Du, Jun [School of Physics, Nanjing University, Nanjing 210093 (China); Zhang, Rong [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Xu, Yongbing, E-mail: ybxu@nju.edu.cn [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); York-Nanjing Joint Centre (YNJC) for Spintronics and Nanoengineering, Department of Electronics, The University of York, YO10 3DD (United Kingdom)

    2017-06-15

    Highlights: • Quasi-2D Fe{sub 3}O{sub 4} films were obtained by PLD. • RHEED under different oxygen pressure were observed. • Influence of oxygen pressure on Fe{sub 3}O{sub 4} films were investigated. • Epitaxy and magnetic properties were tuned by oxygen pressure. • The ratio of Fe{sup 2+}/Fe{sup 3+} fitted by XPS is the tuned factor of M{sub s}. - Abstract: Quasi-two-dimensional magnetite epitaxial thin films have been synthesized by pulsed laser deposition technique at various oxygen pressures. The saturation magnetizations of the magnetite films were found to decrease from 425 emu/cm{sup 3}, which is close to the bulk value, to 175 emu/cm{sup 3} as the growth atmospheres varying from high vacuum (∼1 × 10{sup −8} mbar) to oxygen pressure of 1 × 10{sup −3} mbar. The ratio of the Fe{sup 3+} to Fe{sup 2+} increases from 2 to 2.7 as oxygen pressure increasing shown by XPS fitting, which weakens the net magnetic moment generated by Fe{sup 2+} at octahedral sites as the spins of the Fe{sup 3+} ions at octahedral and tetrahedral sites are aligned in antiparallel. The results offer direct experimental evidence of the influence to the Fe{sup 3+}/Fe{sup 2+} ratio and the magnetic moment in magnetite epitaxy films by oxygen pressure, which is significant for spintronic applications.

  2. Effects of laser wavelengths and pulse energy ratio on the emission enhancement in dual pulse LIBS

    International Nuclear Information System (INIS)

    Ahmed, Rizwan; Iqbal, Javed; Baig, M Aslam

    2015-01-01

    We present new studies on the effects of laser wavelengths, pulse energy ratio and interpulse delay between two laser pulses in the collinear dual pulse configuration of laser-induced breakdown spectroscopy (LIBS) on an iron sample in air using the fundamental (1064 nm) and the second harmonics (532 nm) of Nd:YAG lasers. In the dual pulse LIBS, an optimum value of interpulse delay with an appropriate combination of laser wavelengths, and laser pulse energy ratio, yields a 30 times signal intensity enhancement in the neutral iron lines as compared with single pulse LIBS. A comparison in the spatial variations of electron temperature along the axis of the plume expansion in single and double pulse LIBS has also been studied. (letter)

  3. IASI-derived NH3 enhancement ratios relative to CO for the tropical biomass burning regions

    Science.gov (United States)

    Whitburn, Simon; Van Damme, Martin; Clarisse, Lieven; Hurtmans, Daniel; Clerbaux, Cathy; Coheur, Pierre-François

    2017-10-01

    Vegetation fires are a major source of ammonia (NH3) in the atmosphere. Their emissions are mainly estimated using bottom-up approaches that rely on uncertain emission factors. In this study, we derive new biome-specific NH3 enhancement ratios relative to carbon monoxide (CO), ERNH3 / CO (directly related to the emission factors), from the measurements of the IASI sounder onboard the Metop-A satellite. This is achieved for large tropical regions and for an 8-year period (2008-2015). We find substantial differences in the ERNH3 / CO ratios between the biomes studied, with calculated values ranging from 7 × 10-3 to 23 × 10-3. For evergreen broadleaf forest these are typically 50-75 % higher than for woody savanna and savanna biomes. This variability is attributed to differences in fuel types and size and is in line with previous studies. The analysis of the spatial and temporal distribution of the ERNH3 / CO ratio also reveals a (sometimes large) within-biome variability. On a regional level, woody savanna shows, for example, a mean ERNH3 / CO ratio for the region of Africa south of the Equator that is 40-75 % lower than in the other five regions studied, probably reflecting regional differences in fuel type and burning conditions. The same variability is also observed on a yearly basis, with a peak in the ERNH3 / CO ratio observed for the year 2010 for all biomes. These results highlight the need for the development of dynamic emission factors that take into better account local variations in fuel type and fire conditions. We also compare the IASI-derived ERNH3 / CO ratio with values reported in the literature, usually calculated from ground-based or airborne measurements. We find general good agreement in the referenced ERNH3 / CO ratio except for cropland, for which the ERNH3 / CO ratio shows an underestimation of about 2-2.5 times.

  4. Unravelling chemical priming machinery in plants: the role of reactive oxygen-nitrogen-sulfur species in abiotic stress tolerance enhancement.

    Science.gov (United States)

    Antoniou, Chrystalla; Savvides, Andreas; Christou, Anastasis; Fotopoulos, Vasileios

    2016-10-01

    Abiotic stresses severely limit crop yield and their detrimental effects are aggravated by climate change. Chemical priming is an emerging field in crop stress management. The exogenous application of specific chemical agents before stress events results in tolerance enhancement and reduction of stress impacts on plant physiology and growth. However, the molecular mechanisms underlying the remarkable effects of chemical priming on plant physiology remain to be elucidated. Reactive oxygen, nitrogen and sulfur species (RONSS) are molecules playing a vital role in the stress acclimation of plants. When applied as priming agents, RONSS improve stress tolerance. This review summarizes the recent knowledge on the role of RONSS in cell signalling and gene regulation contributing to abiotic stress tolerance enhancement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Enhanced oxygen dissociation in a propagating constricted discharge formed in a self-pulsing atmospheric pressure microplasma jet

    Science.gov (United States)

    Schröder, Daniel; Burhenn, Sebastian; Kirchheim, Dennis; Schulz-von der Gathen, Volker

    2013-11-01

    We report on the propagation of a constricted discharge feature in a repetitively self-pulsing microplasma jet operated in helium with a 0.075 vol% molecular oxygen admixture in ambient air environment. The constricted discharge is about 1 mm in width and repetitively ignites at the point of smallest electrode distance in a wedge-shaped electrode configuration, propagates through the discharge channel towards the nozzle, extinguishes, and re-ignites at the inlet at frequencies in the kHz range. It co-exists with a homogeneous, volume-dominated low temperature (T ⋍ 300 K) α-mode glow. Time-resolved measurements of nitrogen molecule C-state and nitrogen molecule ion B-state emission bands reveal an increase of the rotational temperature within the constricted discharge to about 600 K within 50 µs. Its propagation velocity was determined by phase-resolved diagnostics to be similar to the gas velocity, in the order of 40 m s-1. Two-photon absorption laser-induced fluorescence spectroscopy synchronized to the self-pulsing reveals spatial regions of increased oxygen atom densities co-propagating with the constricted discharge feature. The generated oxygen pulse density is about ten times higher than in the co-existing homogeneous α-mode. Densities reach about 1.5 × 1016 cm-3 at average temperatures of 450 K at the nozzle. This enhanced dissociation of about 80% is attributed to the continuous interaction of the constricted discharge to the co-propagating gas volume.

  6. Oxygen concentrators performance with nitrous oxide at 50:50 volume

    Directory of Open Access Journals (Sweden)

    Jorge Ronaldo Moll

    2014-06-01

    Full Text Available Background and objectives: Few investigations have addressed the safety of oxygen from concentrators for use in anesthesia in association with nitrous oxide. This study evaluated the percent of oxygen from a concentrator in association with nitrous oxide in a semi-closed rebreathing circuit. Methods: Adult patients undergoing low risk surgery were randomly allocated into two groups, receiving a fresh gas flow of oxygen from concentrators (O293 or of oxygen from concentrators and nitrous oxide (O293N2O. The fraction of inspired oxygen and the percentage of oxygen from fresh gas flow were measured every 10 min. The ratio of FiO2/oxygen concentration delivered was compared at various time intervals and between the groups. Results: Thirty patients were studied in each group. There was no difference in oxygen from concentrators over time for both groups, but there was a significant improvement in the FiO2 (p < 0.001 for O293 group while a significant decline (p < 0.001 for O293N2O. The FiO2/oxygen ratio varied in both groups, reaching a plateau in the O293 group. Pulse oximetry did not fall below 98.5% in either group. Conclusion: The FiO2 in the mixture of O293 and nitrous oxide fell during the observation period although oxygen saturation was higher than 98.5% throughout the study. Concentrators can be considered a stable source of oxygen for use during short anesthetic procedures, either pure or in association with nitrous oxide at 50:50 volume.

  7. Global Carbon Reservoir Oxidative Ratios

    Science.gov (United States)

    Masiello, C. A.; Gallagher, M. E.; Hockaday, W. C.

    2010-12-01

    Photosynthesis and respiration move carbon and oxygen between the atmosphere and the biosphere at a ratio that is characteristic of the biogeochemical processes involved. This ratio is called the oxidative ratio (OR) of photosynthesis and respiration, and is defined as the ratio of moles of O2 per moles of CO2. This O2/CO2 ratio is a characteristic of biosphere-atmosphere gas fluxes, much like the 13C signature of CO2 transferred between the biosphere and the atmosphere has a characteristic signature. OR values vary on a scale of 0 (CO2) to 2 (CH4), with most ecosystem values clustered between 0.9 and 1.2. Just as 13C can be measured for both carbon fluxes and carbon pools, OR can also be measured for fluxes and pools and can provide information about the processes involved in carbon and oxygen cycling. OR values also provide information about reservoir organic geochemistry because pool OR values are proportional to the oxidation state of carbon (Cox) in the reservoir. OR may prove to be a particularly valuable biogeochemical tracer because of its ability to couple information about ecosystem gas fluxes with ecosystem organic geochemistry. We have developed 3 methods to measure the OR of ecosystem carbon reservoirs and intercalibrated them to assure that they yield accurate, intercomparable data. Using these tools we have built a large enough database of biomass and soil OR values that it is now possible to consider the implications of global patterns in ecosystem OR values. Here we present a map of the natural range in ecosystem OR values and begin to consider its implications. One striking pattern is an apparent offset between soil and biospheric OR values: soil OR values are frequently higher than that of their source biomass. We discuss this trend in the context of soil organic geochemistry and gas fluxes.

  8. The puzzle of the CNO isotope ratios in asymptotic giant branch carbon stars

    Science.gov (United States)

    Abia, C.; Hedrosa, R. P.; Domínguez, I.; Straniero, O.

    2017-03-01

    Context. The abundance ratios of the main isotopes of carbon, nitrogen and oxygen are modified by the CNO-cycle in the stellar interiors. When the different dredge-up events mix the burning material with the envelope, valuable information on the nucleosynthesis and mixing processes can be extracted by measuring these isotope ratios. Aims: Previous determinations of the oxygen isotopic ratios in asymptotic giant branch (AGB) carbon stars were at odds with the existing theoretical predictions. We aim to redetermine the oxygen ratios in these stars using new spectral analysis tools and further develop discussions on the carbon and nitrogen isotopic ratios in order to elucidate this problem. Methods: Oxygen isotopic ratios were derived from spectra in the K-band in a sample of galactic AGB carbon stars of different spectral types and near solar metallicity. Synthetic spectra calculated in local thermodynamic equillibrium (LTE) with spherical carbon-rich atmosphere models and updated molecular line lists were used. The CNO isotope ratios derived in a homogeneous way, were compared with theoretical predictions for low-mass (1.5-3 M⊙) AGB stars computed with the FUNS code assuming extra mixing both during the RGB and AGB phases. Results: For most of the stars the 16O/17O/18O ratios derived are in good agreement with theoretical predictions confirming that, for AGB stars, are established using the values reached after the first dredge-up (FDU) according to the initial stellar mass. This fact, as far as the oxygen isotopic ratios are concerned, leaves little space for the operation of any extra mixing mechanism during the AGB phase. Nevertheless, for a few stars with large 16O/17O/18O, the operation of such a mechanism might be required, although their observed 12C/13C and 14N/15N ratios would be difficult to reconcile within this scenario. Furthermore, J-type stars tend to have lower 16O/17O ratios than the normal carbon stars, as already indicated in previous studies

  9. Using hyperentanglement to enhance resolution, signal-to-noise ratio, and measurement time

    Science.gov (United States)

    Smith, James F.

    2017-03-01

    A hyperentanglement-based atmospheric imaging/detection system involving only a signal and an ancilla photon will be considered for optical and infrared frequencies. Only the signal photon will propagate in the atmosphere and its loss will be classical. The ancilla photon will remain within the sensor experiencing low loss. Closed form expressions for the wave function, normalization, density operator, reduced density operator, symmetrized logarithmic derivative, quantum Fisher information, quantum Cramer-Rao lower bound, coincidence probabilities, probability of detection, probability of false alarm, probability of error after M measurements, signal-to-noise ratio, quantum Chernoff bound, time-on-target expressions related to probability of error, and resolution will be provided. The effect of noise in every mode will be included as well as loss. The system will provide the basic design for an imaging/detection system functioning at optical or infrared frequencies that offers better than classical angular and range resolution. Optimization for enhanced resolution will be included. The signal-to-noise ratio will be increased by a factor equal to the number of modes employed during the hyperentanglement process. Likewise, the measurement time can be reduced by the same factor. The hyperentanglement generator will typically make use of entanglement in polarization, energy-time, orbital angular momentum and so on. Mathematical results will be provided describing the system's performance as a function of loss mechanisms and noise.

  10. Downhole microseismic signal-to-noise ratio enhancement via strip matching shearlet transform

    Science.gov (United States)

    Li, Juan; Ji, Shuo; Li, Yue; Qian, Zhihong; Lu, Weili

    2018-04-01

    Shearlet transform has been proved effective in noise attenuation. However, because of the low magnitude and high frequency of downhole microseismic signals, the coefficient values of valid signals and noise are similar in the shearlet domain. As a result, it is hard to suppress the noise. In this paper, we present a novel signal-to-noise ratio enhancement scheme called strip matching shearlet transform. The method takes into account the directivity of microseismic events and shearlets. Through strip matching, the matching degree in direction between them has been promoted. Then the coefficient values of valid signals are much larger than those of the noise. Consequently, we can separate them well with the help of thresholding. The experimental results on both synthetic records and field data illustrate that our proposed method preserves the useful components and attenuates the noise well.

  11. Feasibility assessment of using oxygen-enhanced magnetic resonance imaging for evaluating the effect of pharmacological treatment in COPD

    International Nuclear Information System (INIS)

    Morgan, Alexandra R.; Parker, Geoff J.M.; Roberts, Caleb; Buonaccorsi, Giovanni A.; Maguire, Niall C.; Hubbard Cristinacce, Penny L.; Singh, Dave; Vestbo, Jørgen; Bjermer, Leif; Jögi, Jonas; Taib, Ziad; Sarv, Janeli; Bruijnzeel, Piet L.B.; Olsson, Lars E.; Bondesson, Eva; Nihlén, Ulf; McGrath, Deirdre M.; Young, Simon S.

    2014-01-01

    Highlights: • We investigate physiologic response to standard COPD treatment regimes using OE-MRI. • We assess the potential role of OE-MRI in future drug development studies. • In COPD, OE-MRI parameters showed response to single-dose formoterol. • OE-MRI parameters showed response to 8-week formoterol/budesonide treatment. • OE-MRI measurements are feasible in a small-scale multi-center trial setting. - Abstract: Objectives: Oxygen-enhanced MRI (OE-MRI) biomarkers have potential value in assessment of COPD, but need further evaluation before treatment-induced changes can be interpreted. The objective was to evaluate how OE-MRI parameters of regional ventilation and oxygen uptake respond to standard pharmacological interventions in COPD, and how the response compares to that of gold standard pulmonary function tests. Materials and methods: COPD patients (n = 40), mean FEV 1 58% predicted normal, received single-dose inhaled formoterol 9 μg, or placebo, followed by 8 weeks treatment bid with a combination of budesonide and formoterol Turbuhaler ® 320/9 μg or formoterol Turbuhaler ® . OE-MRI biomarkers were obtained, as well as X-ray computed tomography (CT) biomarkers and pulmonary function tests, in a two-center study. An ANCOVA statistical model was used to assess effect size of intervention measurable in OE-MRI parameters of lung function. Results: OE-MRI data were successfully acquired at both study sites. 8-week treatment with budesonide/formoterol significantly decreased lung wash-out time by 31% (p < 0.01), decreased the change in lung oxygen level upon breathing pure oxygen by 13% (p < 0.05) and increased oxygen extraction from the lung by 58% (p < 0.01). Single-dose formoterol increased both lung wash-out time (+47%, p < 0.05) and lung oxygenation time (+47%, p < 0.05). FEV 1 was improved by single-dose formoterol (+12%, p < 0.001) and 8 weeks of budesonide/formoterol (+ 18%, p < 0.001), consistent with published studies. Conclusions: In COPD

  12. Feasibility assessment of using oxygen-enhanced magnetic resonance imaging for evaluating the effect of pharmacological treatment in COPD

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Alexandra R., E-mail: alex.morgan@bioxydyn.com [Bioxydyn Ltd, Manchester (United Kingdom); Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester (United Kingdom); Parker, Geoff J.M.; Roberts, Caleb [Bioxydyn Ltd, Manchester (United Kingdom); Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester (United Kingdom); Buonaccorsi, Giovanni A.; Maguire, Niall C. [Bioxydyn Ltd, Manchester (United Kingdom); Hubbard Cristinacce, Penny L. [Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester (United Kingdom); Singh, Dave; Vestbo, Jørgen [University of Manchester, Medicines Evaluation Unit, Manchester Academic Health Sciences Centre, University Hospital of South Manchester, Manchester (United Kingdom); Bjermer, Leif [Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund (Sweden); Jögi, Jonas [Department of Clinical Physiology, Skåne University Hospital and Lund University, Lund (Sweden); Taib, Ziad; Sarv, Janeli; Bruijnzeel, Piet L.B.; Olsson, Lars E.; Bondesson, Eva [AstraZeneca R and D, Mölndal (Sweden); Nihlén, Ulf [Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund (Sweden); AstraZeneca R and D, Mölndal (Sweden); McGrath, Deirdre M. [Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester (United Kingdom); Young, Simon S. [AstraZeneca R and D, Alderley Park (United Kingdom); and others

    2014-11-15

    Highlights: • We investigate physiologic response to standard COPD treatment regimes using OE-MRI. • We assess the potential role of OE-MRI in future drug development studies. • In COPD, OE-MRI parameters showed response to single-dose formoterol. • OE-MRI parameters showed response to 8-week formoterol/budesonide treatment. • OE-MRI measurements are feasible in a small-scale multi-center trial setting. - Abstract: Objectives: Oxygen-enhanced MRI (OE-MRI) biomarkers have potential value in assessment of COPD, but need further evaluation before treatment-induced changes can be interpreted. The objective was to evaluate how OE-MRI parameters of regional ventilation and oxygen uptake respond to standard pharmacological interventions in COPD, and how the response compares to that of gold standard pulmonary function tests. Materials and methods: COPD patients (n = 40), mean FEV{sub 1} 58% predicted normal, received single-dose inhaled formoterol 9 μg, or placebo, followed by 8 weeks treatment bid with a combination of budesonide and formoterol Turbuhaler{sup ®} 320/9 μg or formoterol Turbuhaler{sup ®}. OE-MRI biomarkers were obtained, as well as X-ray computed tomography (CT) biomarkers and pulmonary function tests, in a two-center study. An ANCOVA statistical model was used to assess effect size of intervention measurable in OE-MRI parameters of lung function. Results: OE-MRI data were successfully acquired at both study sites. 8-week treatment with budesonide/formoterol significantly decreased lung wash-out time by 31% (p < 0.01), decreased the change in lung oxygen level upon breathing pure oxygen by 13% (p < 0.05) and increased oxygen extraction from the lung by 58% (p < 0.01). Single-dose formoterol increased both lung wash-out time (+47%, p < 0.05) and lung oxygenation time (+47%, p < 0.05). FEV{sub 1} was improved by single-dose formoterol (+12%, p < 0.001) and 8 weeks of budesonide/formoterol (+ 18%, p < 0.001), consistent with published studies

  13. Low noise signal-to-noise ratio enhancing readout circuit for current-mediated active pixel sensors

    International Nuclear Information System (INIS)

    Ottaviani, Tony; Karim, Karim S.; Nathan, Arokia; Rowlands, John A.

    2006-01-01

    Diagnostic digital fluoroscopic applications continuously expose patients to low doses of x-ray radiation, posing a challenge to both the digital imaging pixel and readout electronics when amplifying small signal x-ray inputs. Traditional switch-based amorphous silicon imaging solutions, for instance, have produced poor signal-to-noise ratios (SNRs) at low exposure levels owing to noise sources from the pixel readout circuitry. Current-mediated amorphous silicon pixels are an improvement over conventional pixel amplifiers with an enhanced SNR across the same low-exposure range, but whose output also becomes nonlinear with increasing dosage. A low-noise SNR enhancing readout circuit has been developed that enhances the charge gain of the current-mediated active pixel sensor (C-APS). The solution takes advantage of the current-mediated approach, primarily integrating the signal input at the desired frequency necessary for large-area imaging, while adding minimal noise to the signal readout. Experimental data indicates that the readout circuit can detect pixel outputs over a large bandwidth suitable for real-time digital diagnostic x-ray fluoroscopy. Results from hardware testing indicate that the minimum achievable C-APS output current that can be discerned at the digital fluoroscopic output from the enhanced SNR readout circuit is 0.341 nA. The results serve to highlight the applicability of amorphous silicon current-mediated pixel amplifiers for large-area flat panel x-ray imagers

  14. Poster 9: Isotopic Ratios of Carbon and Oxygen in Titan's CO using ALMA

    Science.gov (United States)

    Serigano, Joseph; Nixion, Conor A.; Cordiner, Martin A.; Irwin, Patrick G. J.; Teanby, Nick A.; Charnley, Steven B.; Lindberg, Johan E.

    2016-06-01

    The advent of the Atacama Large Millimeter/Submillimeter Array (ALMA) has provided a new and powerful facility for probing the atmospheres of solar system targets at long wavelengths (84-720 GHz) where the rotational lines of small, polar molecules are prominent. In the complex atmosphere of Titan, photochemical processes dissociate and ionize molecular nitrogen and methane in the upper atmosphere, creating a complex inventory of trace hydrocarbons and nitriles. Additionally, the existence of oxygen on Titan facilitates the synthesis of molecules of potential astrobiological importance. Utilization of ground-based submillimeter observations of Titan has proven to be a powerful tool to complement results from spacecraft observations. ALMA provides the ability to probe this region in greater detail with unprecedented spectral and spatial resolution at high sensitivity, allowing for the derivation of vertical mixing profiles, molecular detections, and observations of latitudinal and seasonal variations. Recent ALMA studies of Titan have presented spectrally and spatially-resolved maps of HNC and HC3N emission (Cordiner et al. 2014), as well as the first spectroscopic detection of ethyl cyanide (C2H5CN) in Titan's atmosphere (Cordiner et al. 2015). This poster will focus on ALMA observations of carbon monoxide (CO) and its isotopologues 13CO, C18O, and C 17O in Titan's atmosphere. Molecular abundances and the vertical atmospheric temperature profile were derived by modeling the observed emission line profiles using NEMESIS, a line-by-line radiative transfer code (Irwin et al. 2008). This study reports the first spectroscopic detection of 17O in the outer solar system with C17O detected at >8σ confidence. The abundances of these molecules and isotopic ratios of 12C/13C, 16O/18O, and 16O/17O will be presented. General implications for the history of Titan from these measurements will be discussed.

  15. Kazinol Q from Broussonetia kazinoki Enhances Cell Death Induced by Cu(ll through Increased Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Hsue-Yin Hsu

    2011-04-01

    Full Text Available The ability of the flavan kazinol Q (KQ to induce DNA breakage in the presence of Cu(II was examined by agarose gel electrophoresis using supercoiled plasmid DNA. In KQ-mediated DNA breakage reaction, the involvement of reactive oxygen species (ROS, H2O2 and O2 - was established by the inhibition of DNA breakage by catalase and revealed DNA breakage by superoxide dismutase (SOD. The cell viability of gastric carcinoma SCM-1 cells treated with various concentrations of KQ was significantly decreased by cotreatment with Cu(II. Treatment of SCM-1 cells with 300 μM Cu(II enhanced the necrosis induced by 100 μM KQ. Treatment of SCM-1 cells with 100 mM KQ in the presence of 300 mM Cu(II increased the generation of H2O2. Taken together, the above finding suggested that KQ cotreatment with Cu(II produced increased amounts of H2O2, thus enhancing subsequent cell death due to necrosis.

  16. Hyperbaric oxygen therapy. Promoting healing in difficult cases

    International Nuclear Information System (INIS)

    Cohn, G.H.

    1986-01-01

    Inhalation of pressurized 100% oxygen is a helpful adjunctive treatment for certain patients, because the increased oxygen carried by the blood to the tissue enhances new growth of microcirculation and, thus, healing. Patients with tissue breakdown after radiation therapy, refractory osteomyelitis, gas gangrene, soft-tissue infection with necrosis from mixed aerobic and anaerobic organisms, crush injuries resulting in acute ischemia, and compromised skin grafts or non-healing wounds are likely to benefit from hyperbaric oxygen therapy

  17. Hepatocellular carcinoma: IVIM diffusion quantification for prediction of tumor necrosis compared to enhancement ratios

    International Nuclear Information System (INIS)

    Kakite, Suguru; Dyvorne, Hadrien A.; Lee, Karen M.; Jajamovich, Guido H.; Knight-Greenfield, Ashley; Taouli, Bachir

    2015-01-01

    To correlate intra voxel incoherent motion (IVIM) diffusion parameters of liver parenchyma and hepatocellular carcinoma (HCC) with degree of liver/tumor enhancement and necrosis; and to assess the diagnostic performance of diffusion parameters vs. enhancement ratios (ER) for prediction of complete tumor necrosis. In this IRB approved HIPAA compliant study, we included 46 patients with HCC who underwent IVIM diffusion-weighted (DW) MRI in addition to routine sequences at 3.0 T. True diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (PF) and apparent diffusion coefficient (ADC) were quantified in tumors and liver parenchyma. Tumor ER were calculated using contrast-enhanced imaging, and degree of tumor necrosis was assessed using post-contrast image subtraction. IVIM parameters and ER were compared between HCC and background liver and between necrotic and viable tumor components. ROC analysis for prediction of complete tumor necrosis was performed. 79 HCCs were assessed (mean size 2.5 cm). D, PF and ADC were significantly higher in HCC vs. liver (p < 0.0001). There were weak significant negative/positive correlations between D/PF and ER, and significant correlations between D/PF/ADC and tumor necrosis (for D, r 0.452, p < 0.001). Among diffusion parameters, D had the highest area under the curve (AUC 0.811) for predicting complete tumor necrosis. ER outperformed diffusion parameters for prediction of complete tumor necrosis (AUC > 0.95, p < 0.002). D has a reasonable diagnostic performance for predicting complete tumor necrosis, however lower than that of contrast-enhanced imaging

  18. The role of oxygen in the uptake of deuterium in lithiated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C. N.; Luitjohan, K. E. [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Dadras, J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37998 (United States); Allain, J. P. [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, West Lafayette, Indiana 47907 (United States); Krstic, P. S. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37998 (United States); Joint Institute of Computational Sciences, University of Tennessee, Knoxville, Tennessee 37998 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Skinner, C. H. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2013-12-14

    We investigate the mechanism of deuterium retention by lithiated graphite and its relationship to the oxygen concentration through surface sensitive experiments and atomistic simulations. Deposition of lithium on graphite yielded 5%–8% oxygen surface concentration and when subsequently irradiated with D ions at energies between 500 and 1000 eV/amu and fluences over 10{sup 16} cm{sup −2} the oxygen concentration rose to between 25% and 40%. These enhanced oxygen levels were reached in a few seconds compared to about 300 h when the lithiated graphite was allowed to adsorb oxygen from the ambient environment under equilibrium conditions. Irradiating graphite without lithium deposition, however, resulted in complete removal of oxygen to levels below the detection limit of XPS (e.g., <1%). These findings confirm the predictions of atomistic simulations, which had concluded that oxygen was the primary component for the enhanced hydrogen retention chemistry on the lithiated graphite surface.

  19. The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man

    International Nuclear Information System (INIS)

    Jones, T.; Chesler, D.A.; Ter-Pogossian, M.M.

    1976-01-01

    A non-invasive steady-state method for studying the regional accumulation of oxygen in the brain by continuously inhaling oxygen-15 has been investigated. Oxygen respiration by tissue results in the formation of water of metabolism which may be considered as the 'exhaust product' of respiration. In turn the steady-state distribution of this product may be related to that of oxygen utilization. It has been found in monkeys than an appreciable component of the signal, recorded over the head during the inhalation of 15 O 2 , was attributable to the local production of 15 O-labelled water of metabolism. In man the distribution of radioactivity recorded over the head during 15 O 2 inhalation clearly related to active cerebal tissue. Theoretically the respiration product is linearly dependent on the oxygen extraction ratio of the tissue, and at normal cerebal perfusion it is less sensitive to changes in blood flow. At low rates of perfusion a more linear dependence on flow is shown. The dual dependence on blood flow and oxygen extraction limited the interpretation of the cerebal distribution obtained with this technique. Means for obtaining more definitive measurements with this approach are discussed. (author)

  20. Oxygen isotopic composition of mammal bones as a new tool for studying ratios of paleoenvironmental water and paleoclimates

    International Nuclear Information System (INIS)

    Longinelli, A.

    1984-04-01

    The purpose of this study is to try to establish quantitative relationships between the average oxygen isotopic composition of local meteoric water, the oxygen isotopic composition of mammal body water and the oxygen isotopic composition of phosphate in mammal bones. These relationships, after calibration of the method on living specimens, would allow quantitative paleoclimatological research based on the measurement of delta 18 O(PO 4 3- ) of fossil mammal bones

  1. Oxygen Issue in Core Collapse Supernovae

    Science.gov (United States)

    Elmhamdi, A.

    2011-06-01

    We study the spectroscopic properties of a selected sample of 26 events within Core Collapse Supernovae (CCSNe) family. Special attention is paid to the nebular oxygen forbidden line [OI] 6300, 6364 Å doublet. We analyze the line flux ratio F6300/F6364 and infer information about the optical depth evolution, densities, volume-filling factors in the oxygen emitting zones. The line luminosity is measured for the sample events and its evolution is discussed on the basis of the bolometric light curve properties in type II and in type Ib-c SNe. The luminosities are then translated into oxygen abundances using two different methods. The results are combined with the determined 56Ni masses and compared with theoretical models by means of the [O/Fe] vs. Mms diagram. Two distinguishable and continuous populations, corresponding to Ib-c and type II SNe, are found. The higher mass nature of the ejecta in type II objects is also imprinted in the [CaII] 7291, 7324Å to [OI] 6300, 6364Å luminosity ratios. Our results may be used as input parameters for theoretical models studying the chemical enrichment of galaxies.

  2. Automated system measuring triple oxygen and nitrogen isotope ratios in nitrate using the bacterial method and N2 O decomposition by microwave discharge.

    Science.gov (United States)

    Hattori, Shohei; Savarino, Joel; Kamezaki, Kazuki; Ishino, Sakiko; Dyckmans, Jens; Fujinawa, Tamaki; Caillon, Nicolas; Barbero, Albane; Mukotaka, Arata; Toyoda, Sakae; Well, Reinhard; Yoshida, Naohiro

    2016-12-30

    Triple oxygen and nitrogen isotope ratios in nitrate are powerful tools for assessing atmospheric nitrate formation pathways and their contribution to ecosystems. N 2 O decomposition using microwave-induced plasma (MIP) has been used only for measurements of oxygen isotopes to date, but it is also possible to measure nitrogen isotopes during the same analytical run. The main improvements to a previous system are (i) an automated distribution system of nitrate to the bacterial medium, (ii) N 2 O separation by gas chromatography before N 2 O decomposition using the MIP, (iii) use of a corundum tube for microwave discharge, and (iv) development of an automated system for isotopic measurements. Three nitrate standards with sample sizes of 60, 80, 100, and 120 nmol were measured to investigate the sample size dependence of the isotope measurements. The δ 17 O, δ 18 O, and Δ 17 O values increased with increasing sample size, although the δ 15 N value showed no significant size dependency. Different calibration slopes and intercepts were obtained with different sample amounts. The slopes and intercepts for the regression lines in different sample amounts were dependent on sample size, indicating that the extent of oxygen exchange is also dependent on sample size. The sample-size-dependent slopes and intercepts were fitted using natural log (ln) regression curves, and the slopes and intercepts can be estimated to apply to any sample size corrections. When using 100 nmol samples, the standard deviations of residuals from the regression lines for this system were 0.5‰, 0.3‰, and 0.1‰, respectively, for the δ 18 O, Δ 17 O, and δ 15 N values, results that are not inferior to those from other systems using gold tube or gold wire. An automated system was developed to measure triple oxygen and nitrogen isotopes in nitrate using N 2 O decomposition by MIP. This system enables us to measure both triple oxygen and nitrogen isotopes in nitrate with comparable precision

  3. Limiting density ratios in piston-driven compressions

    International Nuclear Information System (INIS)

    Lee, S.

    1985-07-01

    By using global energy and pressure balance applied to a shock model it is shown that for a piston-driven fast compression, the maximum compression ratio is not dependent on the absolute magnitude of the piston power, but rather on the power pulse shape. Specific cases are considered and a maximum density compression ratio of 27 is obtained for a square-pulse power compressing a spherical pellet with specific heat ratio of 5/3. Double pulsing enhances the density compression ratio to 1750 in the case of linearly rising compression pulses. Using this method further enhancement by multiple pulsing becomes obvious. (author)

  4. The influence of systemic hemodynamics and oxygen transport on cerebral oxygen saturation in neonates after the Norwood procedure.

    Science.gov (United States)

    Li, Jia; Zhang, Gencheng; Holtby, Helen; Guerguerian, Anne-Marie; Cai, Sally; Humpl, Tilman; Caldarone, Christopher A; Redington, Andrew N; Van Arsdell, Glen S

    2008-01-01

    Ischemic brain injury is an important morbidity in neonates after the Norwood procedure. Its relationship to systemic hemodynamic oxygen transport is poorly understood. Sixteen neonates undergoing the Norwood procedure were studied. Continuous cerebral oxygen saturation was measured by near-infrared spectroscopy. Continuous oxygen consumption was measured by respiratory mass spectrometry. Pulmonary and systemic blood flow, systemic vascular resistance, oxygen delivery, and oxygen extraction ratio were derived with measurements of arterial, and superior vena cava and pulmonary venous gases and pressures at 2- to 4-hour intervals during the first 72 hours in the intensive care unit. Mean cerebral oxygen saturation was 66% +/- 12% before the operation, reduced to 51% +/- 13% on arrival in the intensive care unit, and remained low during the first 8 hours; it increased to 56% +/- 9% at 72 hours, still significantly lower than the preoperative level (P blood flow and oxygen delivery (P blood flow (P = .001) and hemoglobin (P = .02) and negatively correlated with systemic vascular resistance (P = .003). It was not correlated with oxygen consumption (P > .05). Cerebral oxygen saturation decreased significantly in neonates during the early postoperative period after the Norwood procedure and was significantly influenced by systemic hemodynamic and metabolic events. As such, hemodynamic interventions to modify systemic oxygen transport may provide further opportunities to reduce the risk of cerebral ischemia and improve neurodevelopmental outcomes.

  5. [Regional cerebral oxygen saturation as a marker of hemodynamic state following cardiac surgery].

    Science.gov (United States)

    García-Hernández, J A; Aldemira-Liz, A; Martínez-López, A I; Cayuela, A; Charlo-Molina, M T; Cano-Franco, J; Loscertales-Abril, M

    2013-10-01

    Regional cerebral oxygen saturation (rSO₂) is a measure of the general state of perfusion and oxygenation. We aim to analyze the relationship between this and various hemodynamic and respiratory parameters. Forty-three patients, operated on between October 2011 and July 2012, were included in this prospective observational descriptive study. The following parameters were measured: mean arterial pressure, both arterial and central venous oxygen saturation and partial pressures of oxygen and carbon dioxide, and lactate levels. From these parameters, the oxygenation index and the oxygen extraction ratio were calculated. These measurements were studied to evaluate whether rSO₂ correlated significantly with the other parameters. The average age and weight of the patients were 27.3 months and 9.2 kg, respectively. The rSO₂ correlated positively with both central venous oxygen saturation (r=0.73, P 0.4) between the rSO₂ and central venous oxygen saturation, and between the rSO₂ and oxygen extraction ratio. Regional cerebral oxygen saturation correlates well with hemodynamic parameters - mean arterial pressure, venous saturation, and the tissue oxygen extraction. However, it does not correlate with respiratory parameters. Copyright © 2012 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  6. Apparatus for simultaneously measuring electrical conductivity and oxygen fugacity

    Energy Technology Data Exchange (ETDEWEB)

    Netherton, R.; Duba, A.

    1978-01-31

    Electrical conductivity studies of silicates are useful in determining temperature vs depth in the earth. Realistic laboratory measurements of conduction mechanisms require that exact determinations of oxygen fugacity (fo{sub 2}) be made in the experimental environment. An apparatus is described that monitors system fo{sub 2} with a calcia-doped zirconia-oxygen cell while measuring electrical conductivity of iron-bearing silicates at high temperature (greater than 1000 K). The fo{sub 2} calculated thermodynamically from CO/CO{sub 2} mixing ratios agreed well with measurements made with the zirconia cell at 1473 K, except for fo{sub 2} greater than 10{sup -4} Pa, where, on a log{sub 10} scale, mixing-ratio errors were as large as +- 0.2. These errors are attributed to oxygen contamination in the CO{sub 2} and to mobile carbon deposits that formed in the apparatus.

  7. Photochemistry Saturn's Atmosphere. 2; Effects of an Influx of External Oxygen

    Science.gov (United States)

    Moses, Julianne I.; Lellouch, Emmanuel; Bezard, Bruno; Gladstone, G. Randall; Allen, Mark

    2000-01-01

    We use a one-dimensional diurnally averaged model of photochemistry and diffusion in Saturn's stratosphere to investigate the influence of extraplanetary debris on atmospheric chemistry. In particular, we consider the effects of an influx of oxygen from micrometeoroid ablation or from ring-particle diffusion; the contribution from cometary impacts, satellite debris, or ring vapor is deemed to be less important. The photochemical model results are compared directly with Infrared Space Observatory (ISO) observations to constrain the influx of extraplanetary oxygen to Saturn. From the ISO observations, we determine that the column densities of CO2 and H2O above 10 mbar in Saturn's atmosphere are (6.3 +/- 1) x 10(exp 14) and (1.4 +/- 0.4) x 10(exp 15)/ square cm, respectively; our models indicate that a globally averaged oxygen influx of (4+/-2) x 10(exp 6) O atoms /sq cm/s is required to explain these observations. Models with a locally enhanced influx of H20 operating over a small fraction of the projected area do not provide as good a fit to the ISO H2O observations. If volatile oxygen compounds comprise one-third to one-half of the exogenic source by mass, then Saturn is currently being bombarded with (3 +/- 2) x 10(exp -16) g/square cm/s of extraplanetary material. To reproduce the observed CO2/H2O ratio in Saturn's stratosphere, some of the exogenic oxygen must arrive in the form of a carbon-oxygen bonded species such as CO or CO2. An influx consistent with the composition of cometary ices fails to reproduce the high observed CO2/H2O ratio, suggesting that (i) the material has ices that are slightly more carbon-rich than is typical for comets, (ii) a contribution from an organic-rich component is required, or (iii) some of the hydrogen-oxygen bonded material is converted to carbon-oxygen bonded material without photochemistry (e.g., during the ablation process). We have also reanalyzed the 5-micron CO observations of Noll and Larson and determine that the CO

  8. Batch culture of Azotobacter vinelandii under oxygen limitation conditionS

    Energy Technology Data Exchange (ETDEWEB)

    Camacho Rubio, F.; Martinez Nieto, L.; Fernandez Serrano, M.; Jimenez Moleon, M.C. [Departamento de Ingenieria Quimica, Universidad de Granada, Granada (Spain)

    1996-12-01

    The batch culture of Azotobacter vinealandii on glucose under nitrogen-fixing conditions, seeking oxygen limitation conditions, has been studied in order to use it as a Biological Test System for the experimental study of oxygen transfer enhancement methods in aerobic fermenters. overall kinetic parameters for exponential growth and for linear growth (under oxygen limitation) have been determined. It was noted an appreciable influence of the oxygen transfer rate on glucose and oxygen uptake, which seems to be due to alginate production, excreted as a nitrogenase protection mechanisms. (Author) 12 refs.

  9. Hyperbaric oxygen therapy in periodontal diseases

    Directory of Open Access Journals (Sweden)

    Swapna A. Mahale

    2013-01-01

    Full Text Available Hyperbaric oxygen (HBO 2 has been successfully used in several medical fields. The therapeutic effect is related to elevated partial oxygen pressure in the tissues. The pressure itself enhances oxygen solubility in the tissue fluids. HBO 2 has shown to affect angiogenesis, bone metabolism and bone turnover. Studies have been conducted to analyze the effects of HBO 2 therapy on periodontal disease. HBO 2 increases local oxygen distribution, especially at the base of the periodontal pocket, which inhibits the growth of anaerobic bacteria and allows the ischemic tissues to receive an adequate intake of oxygen sufficient for a rapid recovery of cell metabolism. It is increasingly being accepted as a beneficial adjunct to diverse clinical conditions. Nonhealing ulcers, chronic wounds and refractory osteomyelitis are a few conditions for which HBO therapy (HBOT has been extensively tried out. The dental surgeons have found a good ally in HBOT in managing dental condition.

  10. Oxygen flooding and sample cooling during depth profiling of HfSiON thin films

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, Shiro [Materials Analysis Center, Materials Laboratories, Sony Corporation, 4-16-1 Okata, Atsugi 243-0021 (Japan)], E-mail: Shiro.Miwa@jp.sony.com

    2008-12-15

    A combination of oxygen flooding and. Cs primary ion bombardment can suppress the enhancement of the secondary ion signal at the surface and at the interface of a thin HfSiON layer on a Si substrate. The surface concentration of both Cs and O during Cs primary ion bombardment with oxygen flooding was higher than that without oxygen flooding, as confirmed by X-ray photoelectron spectroscopy. When the sample was cooled to about -150 deg. C, the enhancement of the secondary ion signal could be suppressed at a lower oxygen pressure.

  11. The enhanced cytotoxicity of misonidazole in the thiol depleted state - An oxygen dependent mechanism

    International Nuclear Information System (INIS)

    Tuttle, S.W.; Varnes, M.E.; Donahue, L.; Biaglow, J.E.

    1985-01-01

    Incubating A549 cells in the presence of L-buthionine-S, R-sulfoximine and misonidazole under aerobic conditions results in lowered rates of cell growth and greater cytotoxicity than is seen with either drug alone. The authors previously demonstrated the accumulation of hydrogen peroxide from cells treated with misonidazole following the inhibition of GSH-peroxidase with thiol depleting agents. They hypothesize that the enhancement of misonidazole toxicity by L-BSO results from the increased exposure to hydrogen peroxide, and the possible formation of the highly reactive hydroxyl radical in the presence of trace metals via Fenton chemistry. Support for this hypothesis comes from their observations that addition of radical scavengers (such as SOD and catalase) and nutritional antioxidants (vitamin E) to the culture medium will partially inhibit the cytotoxic effects. Further work is being done to measure the products of reaction of toxic oxygen species with cellular macromolecules, i.e. lipids

  12. Atomic Oxygen Erosion Yield Dependence Upon Texture Development in Polymers

    Science.gov (United States)

    Banks, Bruce A.; Loftus, Ryan J.; Miller, Sharon K.

    2016-01-01

    The atomic oxygen erosion yield (volume of a polymer that is lost due to oxidation per incident atom) of polymers is typically assumed to be reasonably constant with increasing fluence. However polymers containing ash or inorganic pigments, tend to have erosion yields that decrease with fluence due to an increasing presence of protective particles on the polymer surface. This paper investigates two additional possible causes for erosion yields of polymers that are dependent upon atomic oxygen. These are the development of surface texture which can cause the erosion yield to change with fluence due to changes in the aspect ratio of the surface texture that develops and polymer specific atomic oxygen interaction parameters. The surface texture development under directed hyperthermal attack produces higher aspect ratio surface texture than isotropic thermal energy atomic oxygen attack. The fluence dependence of erosion yields is documented for low Kapton H (DuPont, Wilmington, DE) effective fluences for a variety of polymers under directed hyperthermal and isotropic thermal energy attack.

  13. Effect of oxygen on formation of micronuclei and binucleated cells and cell survival in γ-irradiated 3T3 cells

    International Nuclear Information System (INIS)

    Zhang Peng; Zheng Xiulong

    1991-01-01

    Formation of micronuclei and binucleate cells and their relationships with cell survival were studied in the aerobically- and anaerobically-irradiated 3T3 cells. The results showed taht frequency of micronuclei, percentage of micronucleus cells and percentage of binucleate cells increased linearly with the radiation dose in certain range. Oxygen enhancement ratios (OER) of micronucleus frequency, percentage of micronucleus cells, percentage of binucleate cells and cell survival were 2.02, 1.96, 1.87 and 1.83 respectively. The percentage of micronucleus cells or the percentage of micronucleus cells plus binucleate cells correlated negatively well with cell survival. The mechanism of oxygen effect in the radiation response of 3T3 cells and the significance of formation of micronuclei and binucleate cells were discussed

  14. Multiple taxon multiple locality approach to providing oxygen isotope evidence for warm-blooded theropod dinosaurs

    Science.gov (United States)

    Fricke, Henry C.; Rogers, Raymond R.

    2000-09-01

    Oxygen isotope ratios of fossil remains of coexisting taxa from several different localities can be used to help investigate dinosaur thermoregulation. Focusing on the Late Cretaceous, oxygen isotope ratios of crocodile tooth enamel from four separate localities exhibit less of a decrease with latitude than do ratios of tooth enamel from coexisting theropod dinosaurs. A shallower latitudinal gradient for crocodiles is consistent with how oxygen isotope ratios should vary for heterothermic animals having body temperatures coupled with their environments (“cold blooded”), while a steeper gradient for theropods is consistent with how these ratios should vary for homeothermic animals having constant body temperatures independent of their environments (“warm blooded”). This inferred homoethermy in theropods is likely due to higher rates of metabolic heat production relative to crocodiles and is not an artifact of body size.

  15. Method of purification of rare gases from oxygen

    International Nuclear Information System (INIS)

    Aleshin, Eh.G.; Goryashchenko, S.S.; Slovetskaya, K.I.; Rubinshtejn, A.M.; Nefedov, B.K.; Konoval'chikov, L.D.

    1989-01-01

    A method of thorough purification of inert gases from oxygen is suggested. High-silicon zeolite of the ZSM-5 type with the ratio SiO 2 /Al 2 O 3 =40 in case of chromium content 1.3-3.5 mass % is used as oxygen sorbent, which ensures increased absorbability. The method permits to realize multiple regeneration of sorbent without considerable loss of absorbability. 1 tab

  16. Steady-state oxygen-solubility in niobium

    International Nuclear Information System (INIS)

    Schulze, K.; Jehn, H.

    1977-01-01

    During annealing of niobium in oxygen in certain temperature and pressure ranges steady states are established between the absorption of molecular oxygen and the evaporation of volatile oxides. The oxygen concentration in the niobium-oxygen α-solid solution is a function of oxygen pressure and temperature and has been redetermined in the ranges 10 -5 - 10 -2 Pa O 2 and 2,070 - 2,470 K. It follows differing from former results the equation csub(o) = 9.1 x 10 -6 x sub(po2) x exp (502000/RT) with csub(o) in at.-ppm, sub(po2) in Pa, T in K, R = 8.31 J x mol -1 x K -1 . The existence of steady states is limited to a temperature range from 1870 to 2470 K and to oxygen concentrations below the solubility limit given by solidus and solvus lines in the T-c diagram. In the experiments high-purity niobium wires with a specific electrical ratio rho (273 K)/rho(4.2 K) > 5,000 have been gassed under isothermal-isobaric conditions until the steady state has been reached. The oxygen concentration has been determined analytically by vacuum fusion extraction with platinum-flux technique as well as by electrical residual resistivity measurements at 4.2 K. (orig.) [de

  17. Numerical study of effect of oxygen fraction on local entropy ...

    Indian Academy of Sciences (India)

    This study considers numerical simulation of the combustion of methane with air, including oxygen and nitrogen, in a burner and the numerical solution of local entropy generation rate due to high temperature and velocity gradients in the combustion chamber. The effects of equivalence ratio () and oxygen percentage () ...

  18. Positron emission tomography in cerebrovascular disease: The relationship between regional cerebral blood flow, blood volume and oxygen metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Herold, S.

    1985-03-01

    Positron emission tomography in cerebrovascular disease has demonstrated the importance of the relationship between regional cerebral blood flow and the cerebral metabolic activity. In acute stroke it has been found that within the first hours after the onset of symptoms cerebral blood flow in the affected area is more depressed than cerebral oxygen utilisation. This relative preservation of oxygen utilisation results from an increase in the oxygen extraction ratio far above its normal value. However, the oxygen extraction fraction subsequently falls in the following days indicating the transition from a situation of possibly reversible ischaemia to irreversible infarction. In patients with carotid occlusive disease an increase in the oxygen extraction ratio has been observed only in very few cases. It has been shown, however, that at an earlier stage the relationship between CBF and CBV (as CBF/CBV-ratio) provides a sensitive measure of diminished perfusion pressure which could be helpful for the selection of patients for EC-IC bypass surgery. In patients with sickle cell anaemia it has been found that oxygen delivery to the brain is maintained by an increase in cerebral blood flow, whereas the oxygen extraction ratio is not increased despite the presence of a low oxygen affinity haemoglobin. Preliminary observations in classical migraine suggest an ischaemic situation during the attack.

  19. Oxygenation and cracking in melt-textured YBCO bulk superconductors

    International Nuclear Information System (INIS)

    Kracunovska, S; Diko, P; Litzkendorf, D; Habisreuther, T; Bierlich, J; Gawalek, W

    2005-01-01

    Microstructural changes during the oxygenation of YBCO bulks were studied. It was shown that a lower temperature of oxygenation leads to the formation of a denser structure of a/b- and c-macrocracks and causes faster and more homogeneous oxygenation of the sample. The opening of created macrocracks is the way in which the macroscopic stresses induced by macroscopic 211 particle concentration inhomogeneity are released. This is very important, because it prevents the formation of fatal c-macrocracks, which divide the sample into more domains, during cooling from oxygenation temperature or during sample performance. Oxygenation with a multistage programme causes the oxygen concentration difference between the oxygenated layer and the tetragonal matrix to be smaller, and consequently fewer macrocracks are formed. This leads to the prolongation of oxygenation times for full oxygenation and to the insufficient release of macroscopic stresses. 211 low concentration regions and pores also enhance the oxygenation rate of YBCO bulks

  20. WE-FG-BRA-03: Oxygen Interplay in Hypofractionated Radiotherapy: A Hidden Opportunity

    Energy Technology Data Exchange (ETDEWEB)

    Kissick, M; Campos, D; Desai, V; Che Fru, L [University of Wisconsin Madison, Madison, WI (United States)

    2016-06-15

    Purpose: Local oxygen during a radiotherapy fraction has been shown to change over a full range of the oxygen enhancement ratio (OER) during the same time scale as the treatment fraction. Interplay with local oxygen is then likely a concern, especially for hypofractionation. Our experiments that show a strong role for metabolic dynamics suggesting one could manipulate this interplay for more efficacious treatments. Methods: Two published experiments are presented with the same human head and neck cancer cell line (UM-SCC-22B). One is a cell-specific in vitro prompt response to a 10 Gy dose of orthovotage radiation using fluorescence lifetime imaging (FLIM), benchmarked with a Seahorse assay. The other in vivo study uses autocorrelation analysis with blood oxygen level dependent magnetic resonance imaging (MRI-BOLD) on xenografts. In vivo results are verified with diffuse optics using spectra fitting and photoacoustic measurements. All these measurements are at high time resolution: sampling is one per minute. Results: Interplay happens when the radiosensitivity modulates at the same time scale as the radiation. These results show dynamics at these time scales. 1. The dominant time scale of the acute hypoxia in cell line xenografts is shown to be on the order of minutes to tens of minutes: similar to a metabolic oscillation known as the ‘glycolytic oscillator.’ 2. The radiation dose itself alters metabolism within minutes to tens of minutes also. Conclusion: These results vary with cell type. There is a possibility that special timing and dose levels could be used for radiation. Gating could be used for maximal oxygen during treatment. There is an analogy to the interplay discussions with tumor motion, except that an oxygen interplay could more likely be patient-specific at a more fundamental level.

  1. WE-FG-BRA-03: Oxygen Interplay in Hypofractionated Radiotherapy: A Hidden Opportunity

    International Nuclear Information System (INIS)

    Kissick, M; Campos, D; Desai, V; Che Fru, L

    2016-01-01

    Purpose: Local oxygen during a radiotherapy fraction has been shown to change over a full range of the oxygen enhancement ratio (OER) during the same time scale as the treatment fraction. Interplay with local oxygen is then likely a concern, especially for hypofractionation. Our experiments that show a strong role for metabolic dynamics suggesting one could manipulate this interplay for more efficacious treatments. Methods: Two published experiments are presented with the same human head and neck cancer cell line (UM-SCC-22B). One is a cell-specific in vitro prompt response to a 10 Gy dose of orthovotage radiation using fluorescence lifetime imaging (FLIM), benchmarked with a Seahorse assay. The other in vivo study uses autocorrelation analysis with blood oxygen level dependent magnetic resonance imaging (MRI-BOLD) on xenografts. In vivo results are verified with diffuse optics using spectra fitting and photoacoustic measurements. All these measurements are at high time resolution: sampling is one per minute. Results: Interplay happens when the radiosensitivity modulates at the same time scale as the radiation. These results show dynamics at these time scales. 1. The dominant time scale of the acute hypoxia in cell line xenografts is shown to be on the order of minutes to tens of minutes: similar to a metabolic oscillation known as the ‘glycolytic oscillator.’ 2. The radiation dose itself alters metabolism within minutes to tens of minutes also. Conclusion: These results vary with cell type. There is a possibility that special timing and dose levels could be used for radiation. Gating could be used for maximal oxygen during treatment. There is an analogy to the interplay discussions with tumor motion, except that an oxygen interplay could more likely be patient-specific at a more fundamental level.

  2. Controlled growth of carbon nanofibers using plasma enhanced chemical vapor deposition: Effect of catalyst thickness and gas ratio

    International Nuclear Information System (INIS)

    Saidin, M.A.R.; Ismail, A.F.; Sanip, S.M.; Goh, P.S.; Aziz, M.; Tanemura, M.

    2012-01-01

    The characteristics of carbon nanofibers (CNFs) grown, using direct current plasma enhanced chemical vapor deposition system reactor under various acetylene to ammonia gas ratios and different catalyst thicknesses were studied. Nickel/Chromium-glass (Ni/Cr-glass) thin film catalyst was employed for the growth of CNF. The grown CNFs were then characterized using Raman spectroscopy, field emission scanning electron microscopy and transmission electron microscopy (TEM). Raman spectroscopy showed that the Ni/Cr-glass with thickness of 15 nm and gas ratio acetylene to ammonia of 1:3 produced CNFs with the lowest I D /I G value (the relative intensity of D-band to G-band). This indicated that this catalyst thickness and gas ratio value is the optimum combination for the synthesis of CNFs under the conditions studied. TEM observation pointed out that the CNFs produced have 104 concentric walls and the residual catalyst particles were located inside the tubes of CNFs. It was also observed that structural morphology of the grown CNFs was influenced by acetylene to ammonia gas ratio and catalyst thickness.

  3. Controlled growth of carbon nanofibers using plasma enhanced chemical vapor deposition: Effect of catalyst thickness and gas ratio

    Energy Technology Data Exchange (ETDEWEB)

    Saidin, M.A.R. [Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Ismail, A.F., E-mail: afauzi@utm.my [Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Sanip, S.M.; Goh, P.S.; Aziz, M. [Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Tanemura, M. [Department of Frontier Material, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2012-01-31

    The characteristics of carbon nanofibers (CNFs) grown, using direct current plasma enhanced chemical vapor deposition system reactor under various acetylene to ammonia gas ratios and different catalyst thicknesses were studied. Nickel/Chromium-glass (Ni/Cr-glass) thin film catalyst was employed for the growth of CNF. The grown CNFs were then characterized using Raman spectroscopy, field emission scanning electron microscopy and transmission electron microscopy (TEM). Raman spectroscopy showed that the Ni/Cr-glass with thickness of 15 nm and gas ratio acetylene to ammonia of 1:3 produced CNFs with the lowest I{sub D}/I{sub G} value (the relative intensity of D-band to G-band). This indicated that this catalyst thickness and gas ratio value is the optimum combination for the synthesis of CNFs under the conditions studied. TEM observation pointed out that the CNFs produced have 104 concentric walls and the residual catalyst particles were located inside the tubes of CNFs. It was also observed that structural morphology of the grown CNFs was influenced by acetylene to ammonia gas ratio and catalyst thickness.

  4. Oxygen tension is a determinant of the matrix-forming phenotype of cultured human meniscal fibrochondrocytes.

    Directory of Open Access Journals (Sweden)

    Adetola B Adesida

    Full Text Available BACKGROUND: Meniscal cartilage displays a poor repair capacity, especially when injury is located in the avascular region of the tissue. Cell-based tissue engineering strategies to generate functional meniscus substitutes is a promising approach to treat meniscus injuries. Meniscus fibrochondrocytes (MFC can be used in this approach. However, MFC are unable to retain their phenotype when expanded in culture. In this study, we explored the effect of oxygen tension on MFC expansion and on their matrix-forming phenotype. METHODOLOGY/PRINCIPAL FINDINGS: MFC were isolated from human menisci followed by basic fibroblast growth factor (FGF-2 mediated cell expansion in monolayer culture under normoxia (21%O(2 or hypoxia (3%O(2. Normoxia and hypoxia expanded MFC were seeded on to a collagen scaffold. The MFC seeded scaffolds (constructs were cultured in a serum free chondrogenic medium for 3 weeks under normoxia and hypoxia. Constructs containing normoxia-expanded MFC were subsequently cultured under normoxia while those formed from hypoxia-expanded MFC were subsequently cultured under hypoxia. After 3 weeks of in vitro culture, the constructs were assessed biochemically, histologically and for gene expression via real-time reverse transcription-PCR assays. The results showed that constructs under normoxia produced a matrix with enhanced mRNA ratio (3.5-fold higher; p<0.001 of collagen type II to I. This was confirmed by enhanced deposition of collagen II using immuno-histochemistry. Furthermore, the constructs under hypoxia produced a matrix with higher mRNA ratio of aggrecan to versican (3.5-fold, p<0.05. However, both constructs had the same capacity to produce a glycosaminoglycan (GAG -specific extracellular matrix. CONCLUSIONS: Our data provide evidence that oxygen tension is a key player in determining the matrix phenotype of cultured MFC. These findings suggest that the use of normal and low oxygen tension during MFC expansion and subsequent neo

  5. Benthic foraminiferal Mn / Ca ratios reflect microhabitat preferences

    Directory of Open Access Journals (Sweden)

    K. A. Koho

    2017-06-01

    Full Text Available The Mn / Ca of calcium carbonate tests of living (rose-Bengal-stained benthic foraminifera (Elphidium batialis, Uvigerina spp., Bolivina spissa, Nonionellina labradorica and Chilostomellina fimbriata were determined in relation to pore water manganese (Mn concentrations for the first time along a bottom water oxygen gradient across the continental slope along the NE Japan margin (western Pacific. The local bottom water oxygen (BWO gradient differs from previous field study sites focusing on foraminiferal Mn / Ca and redox chemistry, therefore allowing further resolution of previously observed trends. The Mn / Ca ratios were analysed using laser ablation inductively coupled plasma-mass spectrometer (ICP-MS, allowing single-chamber determination of Mn / Ca. The incorporation of Mn into the carbonate tests reflects environmental conditions and is not influenced by ontogeny. The inter-species variability in Mn / Ca reflected foraminiferal in-sediment habitat preferences and associated pore water chemistry but also showed large interspecific differences in Mn partitioning. At each station, Mn / Ca ratios were always lower in the shallow infaunal E. batialis, occupying relatively oxygenated sediments, compared to intermediate infaunal species, Uvigerina spp. and B. spissa, which were typically found at greater depth, under more reducing conditions. The highest Mn / Ca was always recorded by the deep infaunal species N. labradorica and C. fimbriata. Our results suggest that although partitioning differs, Mn / Ca ratios in the intermediate infaunal taxa are promising tools for palaeoceanographic reconstructions as their microhabitat exposes them to higher variability in pore water Mn, thereby making them relatively sensitive recorders of redox conditions and/or bottom water oxygenation.

  6. Late Archean Surface Ocean Oxygenation (Invited)

    Science.gov (United States)

    Kendall, B.; Reinhard, C.; Lyons, T. W.; Kaufman, A. J.; Anbar, A. D.

    2009-12-01

    Oxygenic photosynthesis must have evolved by 2.45-2.32 Ga, when atmospheric oxygen abundances first rose above 0.001% present atmospheric level (Great Oxidation Event; GOE). Biomarker evidence for a time lag between the evolution of cyanobacterial oxygenic photosynthesis and the GOE continues to be debated. Geochemical signatures from sedimentary rocks (redox-sensitive trace metal abundances, sedimentary Fe geochemistry, and S isotopes) represent an alternative tool for tracing the history of Earth surface oxygenation. Integrated high-resolution chemostratigraphic profiles through the 2.5 Ga Mt. McRae Shale (Pilbara Craton, Western Australia) suggest a ‘whiff’ of oxygen in the surface environment at least 50 M.y. prior to the GOE. However, the geochemical data from the Mt. McRae Shale does not uniquely constrain the presence or extent of Late Archean ocean oxygenation. Here, we present high-resolution chemostratigraphic profiles from 2.6-2.5 Ga black shales (upper Campbellrand Subgroup, Kaapvaal Craton, South Africa) that provide the earliest direct evidence for an oxygenated ocean water column. On the slope beneath the Campbellrand - Malmani carbonate platform (Nauga Formation), a mildly oxygenated water column (highly reactive iron to total iron ratios [FeHR/FeT] ≤ 0.4) was underlain by oxidizing sediments (low Re and Mo abundances) or mildly reducing sediments (high Re but low Mo abundances). After drowning of the carbonate platform (Klein Naute Formation), the local bottom waters became anoxic (FeHR/FeT > 0.4) and intermittently sulphidic (pyrite iron to highly reactive iron ratios [FePY/FeHR] > 0.8), conducive to enrichment of both Re and Mo in sediments, followed by anoxic and Fe2+-rich (ferruginous) conditions (high FeT, FePY/FeHR near 0). Widespread surface ocean oxygenation is suggested by Re enrichment in the broadly correlative Klein Naute Formation and Mt. McRae Shale, deposited ~1000 km apart in the Griqualand West and Hamersley basins

  7. Enhanced activity and stability of Pt–La and Pt–Ce alloys for oxygen electroreduction: the elucidation of the active surface phase

    DEFF Research Database (Denmark)

    Malacrida, Paolo; Escribano, Maria Escudero; Verdaguer Casadevall, Arnau

    2014-01-01

    Three different Pt-lanthanide metal alloys (Pt5La, Pt5Ce and Pt3La) have been studied as oxygen reduction reaction (ORR) electrocatalysts. Sputter-cleaned polycrystalline Pt5La and Pt5Ce exhibit more than a 3-fold activity enhancement compared to polycrystalline Pt at 0.9 V, while Pt3La heavily c......, suggesting that these alloys hold promise as cathode catalysts in Proton Exchange Membrane Fuel Cells (PEMFCs)....

  8. Oxygen potential of uranium--plutonium oxide as determined by controlled-atmosphere thermogravimetry

    International Nuclear Information System (INIS)

    Swanson, G.C.

    1975-10-01

    The oxygen-to-metal atom ratio, or O/M, of solid solution uranium-plutonium oxide reactor fuel is a measure of the concentration of crystal defects in the oxide which affect many fuel properties, particularly, fuel oxygen potential. Fabrication of a high-temperature oxygen electrode, employing an electro-active tip of oxygen-deficient solid-state electrolyte, intended to confirm gaseous oxygen potentials is described. Uranium oxide and plutonium oxide O/M reference materials were prepared by in situ oxidation of high purity metals in the thermobalance. A solid solution uranium-plutonium oxide O/M reference material was prepared by alloying the uranium and plutonium metals in a yttrium oxide crucible at 1200 0 C and oxidizing with moist He at 250 0 C. The individual and solid solution oxides were isothermally equilibrated with controlled oxygen potentials between 800 and 1300 0 C and the equilibrated O/M ratios calculated with corrections for impurities and buoyancy effects. Use of a reference oxygen potential of -100 kcal/mol to produce an O/M of 2.000 is confirmed by these results. However, because of the lengthy equilibration times required for all oxides, use of the O/M reference materials rather than a reference oxygen potential is recommended for O/M analysis methods calibrations. (auth)

  9. A model study of warming-induced phosphorus-oxygen feedbacks in open-ocean oxygen minimum zones on millennial timescales

    Science.gov (United States)

    Niemeyer, Daniela; Kemena, Tronje P.; Meissner, Katrin J.; Oschlies, Andreas

    2017-05-01

    Observations indicate an expansion of oxygen minimum zones (OMZs) over the past 50 years, likely related to ongoing deoxygenation caused by reduced oxygen solubility, changes in stratification and circulation, and a potential acceleration of organic matter turnover in a warming climate. The overall area of ocean sediments that are in direct contact with low-oxygen bottom waters also increases with expanding OMZs. This leads to a release of phosphorus from ocean sediments. If anthropogenic carbon dioxide emissions continue unabated, higher temperatures will cause enhanced weathering on land, which, in turn, will increase the phosphorus and alkalinity fluxes into the ocean and therefore raise the ocean's phosphorus inventory even further. A higher availability of phosphorus enhances biological production, remineralisation and oxygen consumption, and might therefore lead to further expansions of OMZs, representing a positive feedback. A negative feedback arises from the enhanced productivity-induced drawdown of carbon and also increased uptake of CO2 due to weathering-induced alkalinity input. This feedback leads to a decrease in atmospheric CO2 and weathering rates. Here, we quantify these two competing feedbacks on millennial timescales for a high CO2 emission scenario. Using the University of Victoria (UVic) Earth System Climate Model of intermediate complexity, our model results suggest that the positive benthic phosphorus release feedback has only a minor impact on the size of OMZs in the next 1000 years. The increase in the marine phosphorus inventory under assumed business-as-usual global warming conditions originates, on millennial timescales, almost exclusively (> 80 %) from the input via terrestrial weathering and causes a 4- to 5-fold expansion of the suboxic water volume in the model.

  10. A model study of warming-induced phosphorus–oxygen feedbacks in open-ocean oxygen minimum zones on millennial timescales

    Directory of Open Access Journals (Sweden)

    D. Niemeyer

    2017-05-01

    Full Text Available Observations indicate an expansion of oxygen minimum zones (OMZs over the past 50 years, likely related to ongoing deoxygenation caused by reduced oxygen solubility, changes in stratification and circulation, and a potential acceleration of organic matter turnover in a warming climate. The overall area of ocean sediments that are in direct contact with low-oxygen bottom waters also increases with expanding OMZs. This leads to a release of phosphorus from ocean sediments. If anthropogenic carbon dioxide emissions continue unabated, higher temperatures will cause enhanced weathering on land, which, in turn, will increase the phosphorus and alkalinity fluxes into the ocean and therefore raise the ocean's phosphorus inventory even further. A higher availability of phosphorus enhances biological production, remineralisation and oxygen consumption, and might therefore lead to further expansions of OMZs, representing a positive feedback. A negative feedback arises from the enhanced productivity-induced drawdown of carbon and also increased uptake of CO2 due to weathering-induced alkalinity input. This feedback leads to a decrease in atmospheric CO2 and weathering rates. Here, we quantify these two competing feedbacks on millennial timescales for a high CO2 emission scenario. Using the University of Victoria (UVic Earth System Climate Model of intermediate complexity, our model results suggest that the positive benthic phosphorus release feedback has only a minor impact on the size of OMZs in the next 1000 years. The increase in the marine phosphorus inventory under assumed business-as-usual global warming conditions originates, on millennial timescales, almost exclusively (> 80 % from the input via terrestrial weathering and causes a 4- to 5-fold expansion of the suboxic water volume in the model.

  11. Solid oxide fuel cell cathode with oxygen-reducing layer

    Science.gov (United States)

    Surdoval, Wayne A.; Berry, David A.; Shultz, Travis

    2018-04-03

    The disclosure provides a SOFC comprised of an electrolyte, anode, and cathode, where the cathode comprises an MIEC and an oxygen-reducing layer. The oxygen-reducing layer is in contact with the MIEC, and the MIEC is generally between and separating the oxygen-reducing layer and the electrolyte. The oxygen-reducing layer is comprised of single element oxides, single element carbonates, or mixtures thereof, and has a thickness of less than about 30 nm. In a particular embodiment, the thickness is less than 5 nm. In another embodiment, the thickness is about 3 monolayers or less. The oxygen-reducing layer may be a continuous film or a discontinuous film with various coverage ratios. The oxygen-reducing layer at the thicknesses described may be generated on the MIEC surface using means known in the art such as, for example, ALD processes.

  12. The experimental study of oxygen contrast MR ventilation imaging

    International Nuclear Information System (INIS)

    Yang Jian; Guo Youmin; Wu Xiaoming; Xi Nong; Wang Jianguo; Zhu Li; Lei Xiaoyan; Xie Enyi

    2003-01-01

    Objective: To study the feasibility and basic technology of the oxygen contrast MR ventilation imaging in lung. Methods: Six canine lungs were scanned by using inversion recovery pulse sequence with turbo spin echo acquisition before and after inhalation of the 100% oxygen as T 1 contrast agent, and the T 1 values were measured. The contrast-to-noise ratio (CNR) for each inversion recovery time was compared and the relationship between arterial blood oxygen pressure (PaO 2 ) and T 1 relaxation rate was observed. Subtraction technique was employed in the postprocessing of pre- and post-oxygen conditions. Results: Molecular oxygen could shorten the pulmonary T 1 value (average 13.37%, t=2.683, P 1 value of pre- and post-oxygen conditions. The relaxtivity of T 1 resulted in excellent linear correlation (r 2 =0.9974) with PaO 2 . Through the subtraction of pre- and post-oxygen image, the oxygen contrast MR ventilation -image was obtained. Conclusion: The oxygen contrast MR ventilation imaging has the feasibility and clinical potential for the assessment of regional pulmonary function

  13. Enhancement of stability for lithium oxygen batteries by employing electrolytes gelled by poly(vinylidene fluoride-co-hexafluoropropylene) and tetraethylene glycol dimethyl ether

    International Nuclear Information System (INIS)

    Zhang, Jinqiang; Sun, Bing; Xie, Xiuqiang; Kretschmer, Katja; Wang, Guoxiu

    2015-01-01

    Free-standing gel polymer electrolytes with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix plasticized with tetraethylene glycol dimethyl ether (TEGDME) were prepared and investigated. The as-prepared gel polymer electrolytes exhibited large operating window and acceptable ionic conductivity. When applied in lithium oxygen batteries, the gel polymer electrolyte could support a high initial discharge capacity of 2988 mAh g −1 when a carbon black electrode without catalyst was used as cathode. Furthermore, the battery with gel polymer electrolyte can last at least 50 cycles in the fixed capacity cycling, displaying an excellent stability. Detailed study reveals that the gelling process is essential for the cycling stability enhancement. With excellent electrochemical properties, the free-standing gel polymer electrolyte presented in this investigation has great application potentials in long-life lithium oxygen batteries.

  14. The influence of the maximal value and peak enhancement value of arterial and venous enhancement curve on CT perfusion parameters and signal-to-noise ratio

    International Nuclear Information System (INIS)

    Ju Haiyue; Gao Sijia; Xu Ke; Wang Qiang

    2007-01-01

    Objective: To explore the influence of the maximal value and peak enhancement value of arterial and venous enhancement curve on CT perfusion parameters and signal-to-noise ratio (SNR). Methods: Seventeen patients underwent brain CT perfusion scanning. All row data were analyzed with perfusion software for 6 times, and get different arterial and venous enhancement curves for each patient. The maximal values and peak enhancement values of each arterial and venous enhancement curves, as well as mean perfusion parameters including cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), permeability surface area product (PS), and their standard deviations (SD) in homolateral white and gray matter were measured and recorded. SNR was calculated by dividing the mean perfusion parameter value by its SD. Pearson correlation analysis and two-tailed paired Student t test were used for statistics. Results: The maximal values and peak enhancement values of arterial and venous curves were correlated with mean SNR CBF , SNR CBV and SNR MTT in both white matter and gray matters (r value range: 0.332-0.922, P PS in white matter(r=0.256, P PS (in both white matter and gray matters) and arterial peak enhancement values, the maximal values and venous peak enhancement values, or between SNR PS (in gray matter) and the maximal values of venous curve(r value range: -0.058-0.210, P>0.05). (2) Mean CBF, CBV and PS values in the group with low venous peak enhancement values were significantly different from the group with high venous peak enhancement values in both white and gray matters (t value range: 3.830-5.337, P 0.05). Conclusions: The mean perfusion parameters and SNR are influenced by the maximal values and peak enhancement values of the arterial and venous curves. Peak enhancement of arterial and venous curves should be adjusted to higher level to make parameter values more reliable and increase the SNR. (authors)

  15. Decommissioning Combustible Waste Treatment using Oxygen-Enriched Incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byungyoun; Lee, Yoonji; Yun, Gyoungsu; Lee, Kiwon; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The aim of the paper is current status of treatment for the decommissioning combustible waste in KAERI and for the purpose of the volume reduction and clearance for decommissioning combustible wastes generated by the decommissioning projects. The incineration technology has been selected for the treatment of combustible wastes. About 34 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. Temperature, pressure of major components, stack gas concentration, i. e., SOx, NOx, CO, CO{sub 2} and HCl, and the residual oxygen were measured. Measured major parameters during normal operation were sustained on a stable status within a criteria operation condition. Oxygen enriched air, 22vol. % (dry basis) was used for stable incineration. The volume reduction ratio has achieved about 1/117. The incineration with decommissioning radioactive combustible waste is possible with moderate oxygen enrichment of 22 vol.% (dry basis) into the supply air. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas. The pressure, off-gas flow and temperature of major components remained constant within the range specified. The measures gases and particulate materials in stack were considerably below the regulatory limits. The achieved volume reduction ratio through incineration is about 1/117.

  16. Bulk Oxygen Isotopic Composition of Ultracarbonaceous Antarctic Micrometeorites with the NanoSIMS

    Science.gov (United States)

    Kakazu, Y.; Engrand, C.; Duprat, J.; Briani, G.; Bardin, N.; Mostefaoui, S.; Duhamel, R.; Remusat, L.

    2014-09-01

    We analyzed the carbon and oxygen isotope ratios of two UCAMMs with the NanoSIMS in order to understand the origin and formation of UCAMMs. One UCAMM has 16O-rich composition and a highly heterogeneous oxygen isotopic distribution.

  17. Synthesis and Characterization of Pt-Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction.

    Science.gov (United States)

    Yang, Xuan; Roling, Luke T; Vara, Madeline; Elnabawy, Ahmed O; Zhao, Ming; Hood, Zachary D; Bao, Shixiong; Mavrikakis, Manos; Xia, Younan

    2016-10-12

    Engineering the elemental composition of metal nanocrystals offers an effective strategy for the development of catalysts or electrocatalysts with greatly enhanced activity. Herein, we report the synthesis of Pt-Ag alloy nanocages with an outer edge length of 18 nm and a wall thickness of about 3 nm. Such nanocages with a composition of Pt 19 Ag 81 could be readily prepared in one step through the galvanic replacement reaction between Ag nanocubes and a Pt(II) precursor. After 10 000 cycles of potential cycling in the range of 0.60-1.0 V as in an accelerated durability test, the composition of the nanocages changed to Pt 56 Ag 44 , together with a specific activity of 1.23 mA cm -2 toward oxygen reduction, which was 3.3 times that of a state-of-the-art commercial Pt/C catalyst (0.37 mA cm -2 ) prior to durability testing. Density functional theory calculations attributed the increased activity to the stabilization of the transition state for breaking the O-O bond in molecular oxygen. Even after 30 000 cycles of potential cycling, the mass activity of the nanocages only dropped from 0.64 to 0.33 A mg -1 Pt , which was still about two times that of the pristine Pt/C catalyst (0.19 A mg -1 Pt ).

  18. Oxygen-implanted induced formation of oxide layer enhances blood compatibility on titanium for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Wei-Chiang [School of Oral Hygiene, Taipei Medical University, Taipei 110, Taiwan (China); Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Chang, Fang-Mo [School of Dentistry, Taipei Medical University, Taipei 110, Taiwan (China); Yang, Tzu-Sen [Master Program in Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan (China); Ou, Keng-Liang [School of Dentistry, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Department of Dentistry, Taipei Medical University-Shuang-Ho Hospital, Taipei 235, Taiwan (China); Lin, Che-Tong [School of Dentistry, Taipei Medical University, Taipei 110, Taiwan (China); Peng, Pei-Wen, E-mail: apon@tmu.edu.tw [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China)

    2016-11-01

    Titanium dioxide (TiO{sub 2}) layers were prepared on a Ti substrate by using oxygen plasma immersion ion implantation (oxygen PIII). The surface chemical states, structure, and morphology of the layers were studied using X-ray photoelectron spectroscopy, X-ray diffraction, Raman microscopy, atomic force microscopy and scanning electron microscope. The mechanical properties, such as the Young's modulus and hardness, of the layers were investigated using nanoindentation testing. The Ti{sup 4+} chemical state was determined to be present on oxygen-PIII-treated surfaces, which consisted of nanocrystalline TiO{sub 2} with a rutile structure. Compared with Ti substrates, the oxygen-PIII-treated surfaces exhibited decreased Young's moduli and hardness. Parameters indicating the blood compatibility of the oxygen-PIII-treated surfaces, including the clotting time and platelet adhesion and activation, were studied in vitro. Clotting time assays indicated that the clotting time of oxygen-PIII-treated surfaces was longer than that of the Ti substrate, which was associated with decreased fibrinogen adsorption. In conclusion, the surface characteristics and the blood compatibility of Ti implants can be modified and improved using oxygen PIII. - Highlights: • The Ti{sup 4+} chemical state was determined to be present on oxygen-PIII-treated surfaces. • The nanocrystalline TiO{sub 2} with a rutile structure was formed on titanium surfaces. • A nanoporous TiO{sub 2} layer in the rutile phase prepared using oxygen PIII treatment can be used to prolong blood clot formation.

  19. Hyperbaric oxygen and radiotherapy

    International Nuclear Information System (INIS)

    Mayer, R.; Hamilton-Farrell, M.R.; Kleij, A.J. van der

    2005-01-01

    Background: Hyperbaric oxygen (HBO) therapy is the inhalation of 100% oxygen at a pressure of at least 1.5 atmospheres absolute (150 kPa). It uses oxygen as a drug by dissolving it in the plasma and delivering it to the tissues independent of hemoglobin. For a variety of organ systems, HBO is known to promote new vessel growth into areas with reduced oxygen tension due to poor vascularity, and therewith promotes wound healing and recovery of radiation-injured tissue. Furthermore, tumors may be sensitized to irradiation by raising intratumoral oxygen tensions. Methods: A network of hyperbaric facilities exists in Europe, and a number of clinical studies are ongoing. The intergovernmental framework COST B14 action 'Hyperbaric Oxygen Therapy' started in 1999. The main goal of the Working Group Oncology is preparation and actual implementation of prospective study protocols in the field of HBO and radiation oncology in Europe. Results: In this paper a short overview on HBO is given and the following randomized clinical studies are presented: (a) reirradiation of recurrent squamous cell carcinoma of the head and neck after HBO sensitization; (b) role of HBO in enhancing radiosensitivity on glioblastoma multiforme; (c) osseointegration in irradiated patients; adjunctive HBO to prevent implant failures; (d) the role of HBO in the treatment of late irradiation sequelae in the pelvic region. The two radiosensitization protocols (a, b) allow a time interval between HBO and subsequent irradiation of 10-20 min. Conclusion: Recruitment of centers and patients is being strongly encouraged, detailed information is given on www.oxynet.org. (orig.)

  20. Methanol Droplet Combustion in Oxygen-Inert Environments in Microgravity

    Science.gov (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2013-01-01

    The Flame Extinguishment (FLEX) experiment that is currently underway in the Combustion Integrated Rack facility onboard the International Space Station is aimed at understanding the effects of inert diluents on the flammability of condensed phase fuels. To this end, droplets of various fuels, including alkanes and alcohols, are burned in a quiescent microgravity environment with varying amounts of oxygen and inert diluents to determine the limiting oxygen index (LOI) for these fuels. In this study we report experimental observations of methanol droplets burning in oxygen-nitrogen-carbon dioxide and oxygen-nitrogen-helium gas mixtures at 0.7 and 1 atmospheric pressures. The initial droplet size varied between approximately 1.5 mm and 4 mm to capture both diffusive extinction brought about by insufficient residence time at the flame and radiative extinction caused by excessive heat loss from the flame zone. The ambient oxygen concentration varied from a high value of 30% by volume to as low as 12%, approaching the limiting oxygen index for the fuel. The inert dilution by carbon dioxide and helium varied over a range of 0% to 70% by volume. In these experiments, both freely floated and tethered droplets were ignited using symmetrically opposed hot-wire igniters and the burning histories were recorded onboard using digital cameras, downlinked later to the ground for analysis. The digital images yielded droplet and flame diameters as functions of time and subsequently droplet burning rate, flame standoff ratio, and initial and extinction droplet diameters. Simplified theoretical models correlate the measured burning rate constant and the flame standoff ratio reasonably well. An activation energy asymptotic theory accounting for time-dependent water dissolution or evaporation from the droplet is shown to predict the measured diffusive extinction conditions well. The experiments also show that the limiting oxygen index for methanol in these diluent gases is around 12% to

  1. TURBULENT OXYGEN FLAMES IN TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Aspden, A. J.; Bell, J. B.; Woosley, S. E.

    2011-01-01

    In previous studies, we examined turbulence-flame interactions in carbon-burning thermonuclear flames in Type Ia supernovae. In this study, we consider turbulence-flame interactions in the trailing oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen flame. Scaling arguments analogous to the carbon flames are presented and then compared against three-dimensional simulations for a range of Damkoehler numbers (Da 16 ) at a fixed Karlovitz number. The simulations suggest that turbulence does not significantly affect the oxygen flame when Da 16 16 >1, turbulence enhances heat transfer and drives the propagation of a flame that is narrower than the corresponding inductive flame would be. Furthermore, burning under these conditions appears to occur as part of a combined carbon-oxygen turbulent flame with complex compound structure. The simulations do not appear to support the possibility of a transition to detonation in the oxygen flame, but do not preclude it either.

  2. Estimation of contribution ratios of pollutant sources to a specific section based on an enhanced water quality model.

    Science.gov (United States)

    Cao, Bibo; Li, Chuan; Liu, Yan; Zhao, Yue; Sha, Jian; Wang, Yuqiu

    2015-05-01

    Because water quality monitoring sections or sites could reflect the water quality status of rivers, surface water quality management based on water quality monitoring sections or sites would be effective. For the purpose of improving water quality of rivers, quantifying the contribution ratios of pollutant resources to a specific section is necessary. Because physical and chemical processes of nutrient pollutants are complex in water bodies, it is difficult to quantitatively compute the contribution ratios. However, water quality models have proved to be effective tools to estimate surface water quality. In this project, an enhanced QUAL2Kw model with an added module was applied to the Xin'anjiang Watershed, to obtain water quality information along the river and to assess the contribution ratios of each pollutant source to a certain section (the Jiekou state-controlled section). Model validation indicated that the results were reliable. Then, contribution ratios were analyzed through the added module. Results show that among the pollutant sources, the Lianjiang tributary contributes the largest part of total nitrogen (50.43%), total phosphorus (45.60%), ammonia nitrogen (32.90%), nitrate (nitrite + nitrate) nitrogen (47.73%), and organic nitrogen (37.87%). Furthermore, contribution ratios in different reaches varied along the river. Compared with pollutant loads ratios of different sources in the watershed, an analysis of contribution ratios of pollutant sources for each specific section, which takes the localized chemical and physical processes into consideration, was more suitable for local-regional water quality management. In summary, this method of analyzing the contribution ratios of pollutant sources to a specific section based on the QUAL2Kw model was found to support the improvement of the local environment.

  3. Effects of hyperbaric oxygen and normobaric carbogen on the radiation response of the rat rhabdomyosarcoma R1H

    International Nuclear Information System (INIS)

    Hartmann, K. Axel; Kleij, Ad J. van der; Carl, Ulrich M.; Hulshof, Maarten C.C.M.; Willers, Reinhart; Sminia, Peter

    2001-01-01

    Purpose: Hypoxic tumor cells are an important factor of radioresistance. Hyperbaric oxygen (HBO) and normobaric carbogen (95% oxygen, 5% carbon dioxide) increase the oxygen delivery to tumors. This study was performed to explore changes of tumor oxygenation during a course of fractionated irradiation and to determine the effectiveness of normobaric carbogen and HBO during the final phase of the radiation treatment. Methods and Materials: Experiments were performed on the rhabdomyosarcoma R1H growing on WAG/Rij rats. After 20 X-ray fractions of 2 Gy within 4 weeks, oxygen partial pressure (pO 2 ) was measured using the Eppendorf oxygen electrode under ambient conditions, with normobaric carbogen or HBO at a pressure of 240 kPa. Following the 4-week radiation course, a top-up dose of 10-50 Gy was applied in 2-10 fractions of 5 Gy with or without hyperoxygenation. Results: HBO but not carbogen significantly increased the median pO 2 in irradiated tumors. The radiation doses to control 50% of tumors were 38.0 Gy, 29.5 Gy, and 25.0 Gy for air, carbogen, and HBO, respectively. Both high oxygen content gas inspirations led to significantly improved tumor responses with oxygen enhancement ratios (OERs) of 1.3 for normobaric carbogen and 1.5 for HBO (air vs. carbogen: p=0.044; air vs. HBO: p=0.02; carbogen vs. HBO: p=0.048). Conclusion: Both normobaric carbogen and HBO significantly improved the radiation response of R1H tumors. HBO appeared to be more effective than normobaric carbogen, both with regard to tumor oxygenation and response to irradiation

  4. An algorithm for sensing venous oxygenation using ultrasound-modulated light enhanced by microbubbles

    Science.gov (United States)

    Honeysett, Jack E.; Stride, Eleanor; Deng, Jing; Leung, Terence S.

    2012-02-01

    Near-infrared spectroscopy (NIRS) can provide an estimate of the mean oxygen saturation in tissue. This technique is limited by optical scattering, which reduces the spatial resolution of the measurement, and by absorption, which makes the measurement insensitive to oxygenation changes in larger deep blood vessels relative to that in the superficial tissue. Acousto-optic (AO) techniques which combine focused ultrasound (US) with diffuse light have been shown to improve the spatial resolution as a result of US-modulation of the light signal, however this technique still suffers from low signal-to-noise when detecting a signal from regions of high optical absorption. Combining an US contrast agent with this hybrid technique has been proposed to amplify an AO signal. Microbubbles are a clinical contrast agent used in diagnostic US for their ability to resonate in a sound field: in this work we also make use of their optical scattering properties (modelled using Mie theory). A perturbation Monte Carlo (pMC) model of light transport in a highly absorbing blood vessel containing microbubbles surrounded by tissue is used to calculate the AO signal detected on the top surface of the tissue. An algorithm based on the modified Beer-Lambert law is derived which expresses intravenous oxygen saturation in terms of an AO signal. This is used to determine the oxygen saturation in the blood vessel from a dual wavelength microbubble-contrast AO measurement. Applying this algorithm to the simulation data shows that the venous oxygen saturation is accurately recovered, and this measurement is robust to changes in the oxygenation of the superficial tissue layer.

  5. ON THE CARBON-TO-OXYGEN RATIO MEASUREMENT IN NEARBY SUN-LIKE STARS: IMPLICATIONS FOR PLANET FORMATION AND THE DETERMINATION OF STELLAR ABUNDANCES

    International Nuclear Information System (INIS)

    Fortney, Jonathan J.

    2012-01-01

    Recent high-resolution spectroscopic analysis of nearby FGK stars suggests that a high C/O ratio of greater than 0.8, or even 1.0, is relatively common. Two published catalogs find C/O > 0.8 in 25%-30% of systems, and C/O > 1.0 in ∼6%-10%. It has been suggested that in protoplanetary disks with C/O > 0.8 that the condensation pathways to refractory solids will differ from what occurred in our solar system, where C/O = 0.55. The carbon-rich disks are calculated to make carbon-dominated rocky planets, rather than oxygen-dominated ones. Here we suggest that the derived stellar C/O ratios are overestimated. One constraint on the frequency of high C/O is the relative paucity of carbon dwarf stars (10 –3 -10 –5 ) found in large samples of low-mass stars. We suggest reasons for this overestimation, including a high C/O ratio for the solar atmosphere model used for differential abundance analysis, the treatment of a Ni blend that affects the O abundance, and limitations of one-dimensional LTE stellar atmosphere models. Furthermore, from the estimated errors on the measured stellar C/O ratios, we find that the significance of the high C/O tail is weakened, with a true measured fraction of C/O > 0.8 in 10%-15% of stars, and C/O > 1.0 in 1%-5%, although these are still likely overestimates. We suggest that infrared T-dwarf spectra could show how common high C/O is in the stellar neighborhood, as the chemistry and spectra of such objects would differ compared to those with solar-like abundances. While possible at C/O > 0.8, we expect that carbon-dominated rocky planets are rarer than others have suggested.

  6. Oxygen ingress : a practical look at typical ingress mechanisms and the consequences

    Energy Technology Data Exchange (ETDEWEB)

    Lerbscher, J. [Baker Hughes Canada, Calgary, AB (Canada); Marlowe, D. [ChevronTexaco, Kenai, AK (United States); Thomas, J. [Baker Hughes, Edmonton, AB (Canada)

    2008-07-01

    This paper discussed methods of identifying and treating oxygen corrosion in hydrocarbon processing facilities. Oxygen corrosion is often misdiagnosed during the course of corrosion failure analyses. Measures to find the source of ingress are only typically initiated when test results demonstrate significant sources of oxygen within processing systems. The iron oxides produced as byproducts from oxygen reactions increase pitting and corrosion rates, and most of the chemical inhibitors used in oil and gas processing are not designed to work in the presence of oxygen. Oxygen reacts with hydrogen sulfide (H{sub 2}S) to form elemental sulfur. The high pressures used in processing facilities enhance the thermodynamic and kinetic tendencies of the chemical reactions with oxygen. Sulfur particles are known to enhance corrosion rates by an order of magnitude, and can also cause fouling and flow restrictions. Oxygen ingress can occur via vapor recovery unit, vacuum excursions, and liquid storage tanks. Symptoms that indicate oxygen ingress can include the presence of iron compounds in solid samples; the presence of sulfur; fouling of wet gas transmission lines; the presence of ionic polysulfides in the aqueous phase; higher corrosion rates than predicted; and the degradation of glycols in dehydration units. Portable gas chromatography, oxygen detection vials, and X-ray diffraction analysis techniques are used to detect oxygen ingress. Real time oxygen monitors are also connected to SCADA systems. It was concluded that oxygen testing should be conducted periodically in order to identify and eliminate its source of entry. A technical summary of corrosive species was included. 1 tab., 15 figs.

  7. Bulk manufacture of concentrated oxygen gas-filled microparticles for intravenous oxygen delivery.

    Science.gov (United States)

    Kheir, John N; Polizzotti, Brian D; Thomson, Lindsay M; O'Connell, Daniel W; Black, Katherine J; Lee, Robert W; Wilking, James N; Graham, Adam C; Bell, David C; McGowan, Francis X

    2013-08-01

    Self-assembling, concentrated, lipid-based oxygen microparticles (LOMs) have been developed to administer oxygen gas when injected intravenously, preventing organ injury and death from systemic hypoxemia in animal models. Distinct from blood substitutes, LOMs are a one-way oxygen carrier designed to rescue patients who experience life-threatening hypoxemia, as caused by airway obstruction or severe lung injury. Here, we describe methods to manufacture large quantities of LOMs using an in-line, recycling, high-shear homogenizer, which can create up to 4 liters of microparticle emulsion in 10 minutes, with particles containing a median diameter of 0.93 microns and 60 volume% of gas phase. Using this process, we screen 30 combinations of commonly used excipients for their ability to form stable LOMs. LOMs composed of DSPC and cholesterol in a 1:1 molar ratio are stable for a 100 day observation period, and the number of particles exceeding 10 microns in diameter does not increase over time. When mixed with blood in vitro, LOMs fully oxygenate blood within 3.95 seconds of contact, and do not cause hemolysis or complement activation. LOMs can be manufactured in bulk by high shear homogenization, and appear to have a stability and size profile which merit further testing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Phosphorescent probes for two-photon microscopy of oxygen (Conference Presentation)

    Science.gov (United States)

    Vinogradov, Sergei A.; Esipova, Tatiana V.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is much needed in many areas of biological research. Our laboratory has been developing the phosphorescence quenching technique for biological oximetry - an optical method that possesses intrinsic microscopic capability. In the past we have developed dendritically protected oxygen probes for quantitative imaging of oxygen in tissue. More recently we expanded our design on special two-photon enhanced phosphorescent probes. These molecules brought about first demonstrations of the two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new information for neouroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as sub-optimal brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. In this paper we discuss principles of 2PLM and address the interplay between the probe chemistry, photophysics and spatial and temporal imaging resolution. We then present a new approach to brightly phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to a new generation of 2PLM probes.

  9. Neodymium isotope ratios in fish debris as a tracer for a low oxygen water mass in the equatorial Pacific across the last glacial termination.

    Science.gov (United States)

    Reimi Sipala, M. A.; Marcantonio, F.

    2017-12-01

    The deep ocean has long been suggested as a potential sink of carbon during the LGM, providing storage for the drawdown of atmospheric CO2 observed in the climate record. However, the exact location, origin and pathway of this respired carbon pool remains largely unconstrained. The equatorial Pacific is an important player in the ocean biogeochemical cycling of carbon, with many researchers focusing on the changes in iron-limited systems and potential micronutrient supply changes throughout the Pleistocene glaciation. Here we attempt to isolate the role of deep water circulation changes that may be associated with changing bottom water oxygen conditions in the Central Equatorial Pacific during the last deglaciation. We measure the variability of the Nd isotopic composition of fish debris from three sites in the Central Equatorial Pacific (CEP) along a meridional transect at approximately 160° W -- 0° 28' N (ML1208-17PC), 4° 41' N (ML1208-31BB), and 7 ° 2'N (ML1208-31BB). Nd isotopic values in fish debris reflect the Nd isotopic composition of bottom water at the time of deposition and are insensitive to moderate changes in redox conditions or pore water oxygen levels. Nd isotope ratios can, therefore, be used as an effective deep-ocean water mass tracer. This work attempts to illuminate our current understanding of changes in bottom water oxygenation conditions throughout the Equatorial Pacific over the past 25 kyr. High authigenic U concentrations during peak glacial conditions have been attributed to deep-water suboxic conditions potentially associated with increased respired carbon storage. However, it is still unclear if these changes originate in the Southern Ocean, and propagate to the equatorial Pacific through an increased in penetration of Southern Ocean Intermediate water, or if they represent a change in the efficiency of the biological pump, permitting a drawdown of oxygen in bottom water without increased nutrient availability.

  10. Enhanced resistive switching and multilevel behavior in bilayered HfAlO/HfAlO{sub x} structures for non-volatile memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Faita, F. L., E-mail: fabriciofaita@gmail.com [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Departamento de Física, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Silva, J. P. B., E-mail: josesilva@fisica.uminho.pt [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto (Portugal); Pereira, M.; Gomes, M. J. M. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-12-14

    In this work, hafnium aluminum oxide (HfAlO) thin films were deposited by ion beam sputtering deposition technique on Si substrate. The presence of oxygen vacancies in the HfAlO{sub x} layer deposited in oxygen deficient environment is evidenced from the photoluminescence spectra. Furthermore, HfAlO(oxygen rich)/HfAlO{sub x}(oxygen poor) bilayer structures exhibit multilevel resistive switching (RS), and the switching ratio becomes more prominent with increasing the HfAlO layer thickness. The bilayer structure with HfAlO/HfAlO{sub x} thickness of 30/40 nm displays the enhanced multilevel resistive switching characteristics, where the high resistance state/intermediate resistance state (IRS) and IRS/low resistance state resistance ratios are ≈10{sup 2} and ≈5 × 10{sup 5}, respectively. The switching mechanisms in the bilayer structures were investigated by the temperature dependence of the three resistance states. This study revealed that the multilevel RS is attributed to the coupling of ionic conduction and the metallic conduction, being the first associated to the formation and rupture of conductive filaments related to oxygen vacancies and the second with the formation of a metallic filament. Moreover, the bilayer structures exhibit good endurance and stability in time.

  11. Nuclear medicine markers of tumor oxygenation and radioresistance

    International Nuclear Information System (INIS)

    Chapman, J. Donald; Schneider, R.H.; Stobbe, C.C.; Kim, E.; Engelhardt, E.L.; Coia, L.

    1996-01-01

    Purpose/Objective: The objective of this research project was to synthesize, purify, radiolabel and characterize second-generation nuclear medicine markers of tissue oxygenation with properties superior to iodoazomycin arabinoside (IAZA) and to validate the hypoxia-marking activity of optimal compounds by independent measurements of tumor oxygenation and tumor radioresistance. Materials and Methods: Six hypoxic markers of the iodoazomycin nucleoside class with water solubilities greater than IAZA were synthesized by published procedures. The markers were purified, chemically characterized and labeled with Iodine-125 or Iodine-131. Absolute rates of marker ligation to the macromolecules of hypoxic EMT-6 tumor cells in vitro were determined as a function of marker concentration and used to establish relative marker effectiveness. Hypoxic marking activity in tumors was determined from tumor/blood (T/B) and tumor/muscle (T/M) ratios of radiolabelled marker in EMT-6 tumor-bearing C.B17/Icr scid mice. The optimal marker was administered to R3327-H and R3327-AT tumor-bearing Fischer X Copenhagen rats for estimates of tumor oxygenation by T/B and T/M ratios. Oxygen distributions in the same tumors were obtained with the Eppendorf pO 2 Histograph. The radioresistance of individual tumors was determined from in vitro plating efficiencies of cells released from tumors which had been irradiated in vivo with 20 Gy Cs-137 γ-rays. Results: Of the six iodinated azomycin nucleosides investigated, five were novel markers and all had water solubilities higher than IAZA. Iodinated azomycin xylopyranoside (β-D-IAZXP) was selected as the optimal marker of this class since it 1) exhibited the highest absolute rate of ligation to hypoxic tumor cells in vitro, 2) had the fastest plasma clearance rate in tumor-bearing mice and 3) yielded high T/B ratios in both the mouse and rat tumor models employed in this study. Planar nuclear medicine images of (I-131) β-D-IAZXP in tumor-bearing rats

  12. Scavenging of oxygen vacancies at modulation-doped oxide interfaces: Evidence from oxygen isotope tracing

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Döbeli, M.; Pomjakushina, E.

    2017-01-01

    , the mechanisms underlying the extreme mobility enhancement remain elusive. Herein, we used 18O isotope exchanged SrTi18O3 as substrates to create 2DEG at room temperature with and without the LSMO buffer layer. By mapping the oxygen profile across the interface between STO18 and disordered LaAlO3 or yttria...

  13. The enhanced activity of mass-selected PtxGd nanoparticles for oxygen electroreduction

    DEFF Research Database (Denmark)

    Velazquez-Palenzuela, Amado Andres; Masini, Federico; Pedersen, Anders Filsøe

    2015-01-01

    Mass-selected platinum–gadolinium alloy nanoparticles (PtxGd NPs) are synthesized for the first time as oxygen reduction reaction (ORR) electrocatalysts using the gas aggregation technique, under ultrahigh vacuum (UHV) conditions. The morphology of the PtxGd catalysts is characterized, and their ......Mass-selected platinum–gadolinium alloy nanoparticles (PtxGd NPs) are synthesized for the first time as oxygen reduction reaction (ORR) electrocatalysts using the gas aggregation technique, under ultrahigh vacuum (UHV) conditions. The morphology of the PtxGd catalysts is characterized...

  14. Oxygenated Organic Chemicals in the Pacific Troposphere: Distribution, Sources and Chemistry

    Science.gov (United States)

    Singh, Hanwant B.; Salas, L.; Chatfield, R.; Czech, E.; Fried, A.; Evans, M.; Jacob, D. J.; Blake, D.; Heikes, B.; Talbot, R.

    2003-01-01

    Airborne measurements of a large number of oxygenated organic chemicals (Oxorgs) were carried out in the Pacific troposphere (0.1-12 km) in the Spring of 2001 (Feb. 24-April 10). Specifically these measuremen ts included acetone, methylethyl ketone (MEK), methanol, ethanol, ace taldehyde, propionaldehyde, PANS, and organic nitrates. Complementary measurements of formaldehyde, organic peroxides, and tracers were al so available. Ox-orgs were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Their mixing ratios were typically highest in the lower troposphere and declined toward s the upper troposphere and the lowermost stratosphere. Their total a bundance (Ox-orgs) significantly exceeded that of NMHC (C2-C8 NMHC). A comparison of these data with observations collected some seven yea rs earlier (Feb.-March, 1994), did not reveal any significant changes . Throughout the troposphere mixing ratios of Ox-orgs were strongly c orrelated with each other as well as with tracers of fossil and bioma sshiof'uel combustion. Analysis of the relative enhancement of selected Oxorgs with respect to CH3Cl and CO in twelve sampled plumes, origi nating from fires, is used to assess their primary and secondary sour ces from biomass combustion. The composition of these plumes also ind icates a large shift of reactive nitrogen into the PAN reservoir ther eby limiting ozone formation. The Harvard 3-D photochemical model, th at uses state of the art chemistry and source information, is used to compare simulated and observed mixing ratios of selected species. A 1 -D model is used to explore the chemistry of aldehydes. These results will be presented.

  15. HYPERBARIC OXYGENATION AND AEROBIC PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Irvine D. Prather

    2004-03-01

    Full Text Available The continuing desire to improve performance, particularly at the national and international levels, has led to the use of ergogenic aids. Ergogenic aids are defined as 'a procedure or agent that provides the athlete with a competitive edge beyond that obtained via normal training methods'. Random drug testing has been implemented in an effort to minimize an athlete's ability to gain an unfair advantage. However, other means of improving performance have been tried. Blood doping has been used to enhance endurance performance by improving oxygen delivery to working muscles. As oxygen is carried in combination with the hemoglobin, it seems logical that increasing the number of red blood cells (RBC's in the body would increase the oxygen carrying capacity to the tissues and result in improved performance. The first experiments of removing and then reinfusing blood showed a significant improvement in performance time

  16. The use of Sphagnum cellulose oxygen isotope ratios in ombrotrophic peatlands as a proxy for paleoclimate.

    Science.gov (United States)

    Taylor, M.; Pendall, E.; Jackson, S.; Booth, R. K.; Nichols, J. E.; Huang, Y.

    2006-12-01

    Developing proxies for discerning paleoclimate that are independent of the pollen record can provide insight into various aspects of climate variability and improve confidence in the interpretation of climate-vegetation interactions. To date, proxies including plant macrofossils, humification indices, testate amoebae, and ratios of n-alkane abundances have been used to infer past climate variability from temperate ombrotrophic peatlands in upper Midwestern North America. These proxies are used to infer past changes in surface-moisture conditions, which in ombrotrophic peatlands is primarily a function of precipitation and temperature. This study investigates the potential uses of stable oxygen isotopes to complement hydrologic proxies. δ18O of surface water and Sphagnum moss cellulose from bogs throughout North America indicates a correlation between average growing season temperatures and δ18O-values. The existence of a modern temperature signal in moss cellulose suggests that δ18O-derived records will not only complement paleohydrological records, but also help assess relative changes in precipitation and temperature. Humification and testate amoebae data from two cores taken from Minden and Irwin Smith Bogs in central and northeastern Michigan have recorded several extreme drought events during the Holocene, including one at 1000 YBP. Comparison of δ18O-values of picked Sphagnum remains to down-core humification and testate amoebae data suggest good temporal correspondence, with the δ18O-values around 1000 YBP indicating a warmer growing season.

  17. Oxygen Partial Pressure Impact on Characteristics of Indium Titanium Zinc Oxide Thin Film Transistor Fabricated via RF Sputtering.

    Science.gov (United States)

    Hsu, Ming-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn; Wu, Wei-Ting; Li, Jyun-Yi

    2017-06-26

    Indium titanium zinc oxide (InTiZnO) as the channel layer in thin film transistor (TFT) grown by RF sputtering system is proposed in this work. Optical and electrical properties were investigated. By changing the oxygen flow ratio, we can suppress excess and undesirable oxygen-related defects to some extent, making it possible to fabricate the optimized device. XPS patterns for O 1s of InTiZnO thin films indicated that the amount of oxygen vacancy was apparently declined with the increasing oxygen flow ratio. The fabricated TFTs showed a threshold voltage of -0.9 V, mobility of 0.884 cm²/Vs, on-off ratio of 5.5 × 10⁵, and subthreshold swing of 0.41 V/dec.

  18. Effects of hyperbaric oxygen therapy in enhancing expressions of e-NOS, TNF-α and VEGF in wound healing

    Science.gov (United States)

    Susilo, Imam; Devi, Anita; Purwandhono, Azham; Hadi Warsito, Sunaryo

    2017-05-01

    Wound healing is a physiological process that occurs progressively through overlapping phases. Tissue oxygenation is an important part of the complex regulation for wound healing. Hyperbaric Oxygen (HBO) therapy is a method of increasing oxygen delivery to tissues. The therapy improves tissue oxygenation and stimulates the formation of H2O2 as a secondary messenger for Tumour Necrosis Factor alpha (TNF α), e-NOS, VEGF and Nuclear Factor Kappa Beta phosphorylation (NF-Kb) which play an important role in the rapid transcription of a wide variety of genes in response to extracellular stimuli. This study aims to determine the effects of Hyperbaric Oxygen therapy in enhancing the expressions of e-NOS, TNF-α, VEGF and wound healing. This study is an animal study with a ‘randomized control group of pre-test and post test design’ on 28 Wistar rats. Randomly, the rats were divided into 4 groups with 7 rats in each group. The HBO treatment group 1 received 5 sessions of HBO 2.4 ATA in 3 × 30 minutes; the HBO treatment group 2 received 10 sessions of HBO 2.4 ATA in 3 × 30 minutes; and each of the control groups were without HBO. Each of the 28 male rats were given a full thickness excisional wound of 1 × 1cm. Examinations of e-NOS, TNF-α, VEGF expressions and wound healing were performed on day-0 (pre-HBO) and day-5 HBO or on day-0 (pre-HBO) and day-10 HBO. The resultsshowthat the Hyperbaric Oxygen therapy can improve e-NOS (p=0.02), TNF-α (p= 0.02), VEGF expression (p=0.02) and wound healing (p=0.002) significantly in the provision of HBO 2.4 ATA for 3 × 30 minutes in 5 sessions over 5 consecutive days. While the 10 sessions of HBO 2.4 ATA for 3 × 30 minutes over 10 consecutive days only increase e-NOS (p=0.02), TNF-α (p=0.04), VEGF expression significantly (p=0.03) but do not improve wound healing significantly (p=0.3) compared with no HBO. The study concludes that HBO can improve the expressions of e-NOS, TNF-α, VEGF and wound healing in the provision of HBO

  19. Determination of enhancement ratios of HCOOH relative to CO in biomass burning plumes by the Infrared Atmospheric Sounding Interferometer (IASI

    Directory of Open Access Journals (Sweden)

    M. Pommier

    2017-09-01

    Full Text Available Formic acid (HCOOH concentrations are often underestimated by models, and its chemistry is highly uncertain. HCOOH is, however, among the most abundant atmospheric volatile organic compounds, and it is potentially responsible for rain acidity in remote areas. HCOOH data from the Infrared Atmospheric Sounding Interferometer (IASI are analyzed from 2008 to 2014 to estimate enhancement ratios from biomass burning emissions over seven regions. Fire-affected HCOOH and CO total columns are defined by combining total columns from IASI, geographic location of the fires from Moderate Resolution Imaging Spectroradiometer (MODIS, and the surface wind speed field from the European Centre for Medium-Range Weather Forecasts (ECMWF. Robust correlations are found between these fire-affected HCOOH and CO total columns over the selected biomass burning regions, allowing the calculation of enhancement ratios equal to 7.30  ×  10−3 ± 0.08  ×  10−3 mol mol−1 over Amazonia (AMA, 11.10  ×  10−3 ± 1.37  ×  10−3 mol mol−1 over Australia (AUS, 6.80  ×  10−3 ± 0.44  ×  10−3 mol mol−1 over India (IND, 5.80  ×  10−3 ± 0.15  ×  10−3 mol mol−1 over Southeast Asia (SEA, 4.00  ×  10−3 ± 0.19  ×  10−3 mol mol−1 over northern Africa (NAF, 5.00  ×  10−3 ± 0.13  ×  10−3 mol mol−1 over southern Africa (SAF, and 4.40  ×  10−3 ± 0.09  ×  10−3 mol mol−1 over Siberia (SIB, in a fair agreement with previous studies. In comparison with referenced emission ratios, it is also shown that the selected agricultural burning plumes captured by IASI over India and Southeast Asia correspond to recent plumes where the chemistry or the sink does not occur. An additional classification of the enhancement ratios by type of fuel burned is also provided, showing a diverse

  20. Planned Enhanced Wakefield Transformer Ratio Experiment at Argonne Wakefield Accelerator

    CERN Document Server

    Kanareykin, Alex; Gai, Wei; Jing, Chunguang; Konecny, Richard; Power, John G

    2005-01-01

    In this paper, we present a preliminary experimental study of a wakefield accelerating scheme that uses a carefully spaced and current ramped electron pulse train to produce wakefields that increases the transformer ratio much higher than 2. A dielectric structure was designed and fabricated to operate at 13.625 GHz with dielectric constant of 15.7. The structure will be initially excited by two beams with first and second beam charge ratio of 1:3. The expected transformer ratio is 3 and the setup can be easily extend to 4 pulses which leads to a transformer ratio of more than 6. The dielectric structure cold test results show the tube is within the specification. A set of laser splitters was also tested to produce ramped bunch train of 2 - 4 pulses. Overall design of the experiment and initial results will be presented.

  1. Enhanced biogas production from anaerobic co-digestion of pig slurry and horse manure with mechanical pre-treatment.

    Science.gov (United States)

    Lopes, Madalena; Baptista, Patrícia; Duarte, Elizabeth; Moreira, António L N

    2018-01-02

    Enhanced biogas production from anaerobic co-digestion of pig slurry and horse manure with mechanical pre-treatment. In this study, co-digestion of horse manure and pig slurry was investigated in a continuously stirred tank reactor, with a mechanical pre-treatment. Experiments were conducted at 37°C, with hydraulic retention times of 23 days and increasing shares of horse manure, corresponding to different horse manure to pig slurry ratios (HM:PS) equal to 0:100, 10:90, 13:87 and 20:80, in terms of percentage of inlet volatile solids (%VS inlet). The results show that the best synergetic effect between the microbial consortia of pig slurry and the high Carbon to Nitrogen ratio (C/N) of horse manure is obtained for the mixture of 20:80%VS inlet, yielding the highest specific methane production (SMP = 142.6 L kg TCOD -1 ) and the highest soluble chemical oxygen demand (SCOD) reduction (68.5%), due to the high volatile dissolved solids content and soluble chemical oxygen demand to total chemical oxygen demand ratio (SCOD/TCOD). Thus, co-digestion of horse manure and pig slurry is shown to be a promising approach for biogas production and as a waste treatment solution. Furthermore, the analysis provides a methodology for the pre-treatment of these substrates and to investigate into the best combination for improved biogas production.

  2. Detection of Enhanced Central Mass-to-light Ratios in Low-mass Early-type Galaxies: Evidence for Black Holes?

    Science.gov (United States)

    Pechetti, Renuka; Seth, Anil; Cappellari, Michele; McDermid, Richard; den Brok, Mark; Mieske, Steffen; Strader, Jay

    2017-11-01

    We present dynamical measurements of the central mass-to-light ratio (M/L) of a sample of 27 low-mass early-type {{ATLAS}}3{{D}} galaxies. We consider all {{ATLAS}}3{{D}} galaxies with 9.7 text{}}M/L{{s}} are higher than dynamical {\\text{}}M/L{{s}} derived at larger radii and stellar population estimates of the galaxy centers in ˜80% of galaxies, with a median enhancement of ˜14% and a statistical significance of 3.3σ. We show that the enhancement in the central M/L is best described either by the presence of black holes in these galaxies or by radial initial mass function variations. Assuming a black hole model, we derive black hole masses for the sample of galaxies. In two galaxies, NGC 4458 and NGC 4660, the data suggest significantly overmassive black holes, while in most others only upper limits are obtained. We also show that the level of M/L enhancements we see in these early-type galaxy nuclei are consistent with the larger enhancements seen in ultracompact dwarf galaxies (UCDs), supporting the scenario where massive UCDs are created by stripping galaxies of these masses.

  3. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability.

    Science.gov (United States)

    Jackson, Ariel; Strickler, Alaina; Higgins, Drew; Jaramillo, Thomas Francisco

    2018-01-12

    Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1 ), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.

  4. On the winter anomaly of the night-to-day ratio of ozone in the middle to upper mesosphere in middle to high latitudes

    Science.gov (United States)

    Sonnemann, G. R.; Hartogh, P.; Jarchow, Ch.; Grygalashvyly, M.; Berger, U.

    Long-term measurements of ozone by means of the microwave technique performed at Lindau (51.66°N, 10.13°E), Germany, revealed a winter anomaly of the night-to-day ratio (NDR) which is more clearly pronounced as the so-called tertiary nighttime ozone maximum. The domain of occurrence also differs somewhat from that of the nighttime ozone enhancement. The maximum winter-to-summer ratio amounts to a value of two to three in 70 km height. The annual variation of the NDR is modulated by oscillations of planetary time scale. 3D-calculations on the basis of the advanced GCM LIMA essentially reflect the observations but also show some typical differences which probably result from a somewhat too humid model atmosphere in middle latitudes. We analyzed the most important impacts on the middle mesospheric ozone. The strongest impacts are connected with the annual variation of water vapor and the so-called Doppler-Sonnemann effect considering the influence of the zonal wind on the chemistry due to the fact that ozone is subjected to an effective dissociation longer than molecular oxygen for an increasing solar zenith angle. Because of that the net odd oxygen production decreases faster than the formation of atomic oxygen from ozone which is involved in an odd oxygen destructing catalytic cycle. A shortening of the time of sunset by a west wind regime increases the nighttime ozone level relatively, whereas the daytime ozone is less influenced by the zonal wind in the domain considered.

  5. Induction of apoptosis in human multiple myeloma cell lines by ebselen via enhancing the endogenous reactive oxygen species production.

    Science.gov (United States)

    Zhang, Liang; Zhou, Liwei; Du, Jia; Li, Mengxia; Qian, Chengyuan; Cheng, Yi; Peng, Yang; Xie, Jiayin; Wang, Dong

    2014-01-01

    Ebselen a selenoorganic compound showing glutathione peroxidase like activity is an anti-inflammatory and antioxidative agent. Its cytoprotective activity has been investigated in recent years. However, experimental evidence also shows that ebselen causes cell death in several cancer cell types whose mechanism has not yet been elucidated. In this study, we examined the effect of ebselen on multiple myeloma (MM) cell lines in vitro. The results showed that ebselen significantly enhanced the production of reactive oxygen species (ROS) accompanied by cell viability decrease and apoptosis rate increase. Further studies revealed that ebselen can induce Bax redistribution from the cytosol to mitochondria leading to mitochondrial membrane potential ΔΨm changes and cytochrome C release from the mitochondria to cytosol. Furtherly, we found that exogenous addition of N-acetyl cysteine (NAC) completely diminished the cell damage induced by ebselen. This result suggests that relatively high concentration of ebselen can induce MM cells apoptosis in culture by enhancing the production of endogenous ROS and triggering mitochondria mediated apoptotic pathway.

  6. Oxygen Storage Capacity and Oxygen Mobility of Co-Mn-Mg-Al Mixed Oxides and Their Relation in the VOC Oxidation Reaction

    Directory of Open Access Journals (Sweden)

    María Haidy Castaño

    2015-05-01

    Full Text Available Co-Mn-Mg-Al oxides were synthesized using auto-combustion and co-precipitation techniques. Constant ratios were maintained with (Co + Mn + Mg/Al equal to 3.0, (Co + Mn/Mg equal to 1.0 and Co/Mn equal to 0.5. The chemical and structural composition, redox properties, oxygen storage capacity and oxygen mobility were analyzed using X-ray fluorescence (XRF, X-ray diffraction (XRD, Raman spectroscopy, scanning electron microscopy (SEM, temperature-programmed reduction of hydrogen (H2-TPR, oxygen storage capacity (OSC, oxygen storage complete capacity (OSCC and isotopic exchange, respectively. The catalytic behavior of the oxides was evaluated in the total oxidation of a mixture of 250 ppm toluene and 250 ppm 2-propanol. The synthesis methodology affected the crystallite size, redox properties, OSC and oxide oxygen mobility, which determined the catalytic behavior. The co-precipitation method got the most active oxide in the oxidation of the volatile organic compound (VOC mixture because of the improved mobility of oxygen and ability to favor redox processes in the material structure.

  7. The Origin of Tc Enhancement in Heterostructure Cuprate Superconductors

    Directory of Open Access Journals (Sweden)

    Doron L. Bergman

    2011-10-01

    Full Text Available Recent experiments on heterostructures composed of two or more films of cuprate superconductors of different oxygen doping levels have shown a remarkable Tc enhancement (up to 50% relative to single compound films. We provide a simple explanation of the enhancement which arises naturally from a collection of experimental works. We show that the enhancement could be caused by a structural change in the lattice, namely an increase in the distance of the apical oxygen from the copper-oxygen plane. This increase modifies the effective off-site interaction in the plane which in turn enhances the d-wave superconductivity order parameter. To illustrate this point we study the extended Hubbard model using the fluctuation exchange approximation.

  8. Diffuse reflectance spectroscopy for the measurement of tissue oxygen saturation

    International Nuclear Information System (INIS)

    Sircan-Kucuksayan, A; Canpolat, M; Uyuklu, M

    2015-01-01

    Tissue oxygen saturation (StO 2 ) is a useful parameter for medical applications. A spectroscopic method has been developed to detect pathologic tissues, due to a lack of normal blood circulation, by measuring StO 2 . In this study, human blood samples with different levels of oxygen saturation have been prepared and spectra were acquired using an optical fiber probe to investigate the correlation between the oxygen saturation levels and the spectra. A linear correlation between the oxygen saturation and ratio of the intensities (760 nm to 790 nm) of the spectra acquired from blood samples has been found. In a validation study, oxygen saturations of the blood samples were estimated from the spectroscopic measurements with an error of 2.9%. It has also been shown that the linear dependence between the ratio and the oxygen saturation of the blood samples was valid for the blood samples with different hematocrits. Spectra were acquired from the forearms of 30 healthy volunteers to estimate StO 2 prior to, at the beginning of, after 2 min, and at the release of total vascular occlusion. The average StO 2 of a forearm before and after the two minutes occlusion was significantly different. The results suggested that optical reflectance spectroscopy is a sensitive method to estimate the StO 2 levels of human tissue. The technique developed to measure StO 2 has potential to detect ischemia in real time. (paper)

  9. Rapid determination of oxygen saturation and vascularity for cancer detection.

    Directory of Open Access Journals (Sweden)

    Fangyao Hu

    Full Text Available A rapid heuristic ratiometric analysis for estimating tissue hemoglobin concentration and oxygen saturation from measured tissue diffuse reflectance spectra is presented. The analysis was validated in tissue-mimicking phantoms and applied to clinical measurements in head and neck, cervical and breast tissues. The analysis works in two steps. First, a linear equation that translates the ratio of the diffuse reflectance at 584 nm and 545 nm to estimate the tissue hemoglobin concentration using a Monte Carlo-based lookup table was developed. This equation is independent of tissue scattering and oxygen saturation. Second, the oxygen saturation was estimated using non-linear logistic equations that translate the ratio of the diffuse reflectance spectra at 539 nm to 545 nm into the tissue oxygen saturation. Correlations coefficients of 0.89 (0.86, 0.77 (0.71 and 0.69 (0.43 were obtained for the tissue hemoglobin concentration (oxygen saturation values extracted using the full spectral Monte Carlo and the ratiometric analysis, for clinical measurements in head and neck, breast and cervical tissues, respectively. The ratiometric analysis was more than 4000 times faster than the inverse Monte Carlo analysis for estimating tissue hemoglobin concentration and oxygen saturation in simulated phantom experiments. In addition, the discriminatory power of the two analyses was similar. These results show the potential of such empirical tools to rapidly estimate tissue hemoglobin in real-time spectral imaging applications.

  10. Effects of oxygen on intrinsic radiation sensitivity: A test of the relationship between aerobic and hypoxic linear-quadratic (LQ) model parameters

    International Nuclear Information System (INIS)

    Carlson, David J.; Stewart, Robert D.; Semenenko, Vladimir A.

    2006-01-01

    The poor treatment prognosis for tumors with high levels of hypoxia is usually attributed to the decreased sensitivity of hypoxic cells to ionizing radiation. Mechanistic considerations suggest that linear quadratic (LQ) survival model radiosensitivity parameters for hypoxic (H) and aerobic (A) cells are related by α H =α A /oxygen enhancement ratio (OER) and (α/β) H =OER(α/β) A . The OER parameter may be interpreted as the ratio of the dose to the hypoxic cells to the dose to the aerobic cells required to produce the same number of DSBs per cell. The validity of these expressions is tested against survival data for mammalian cells irradiated in vitro with low- and high-LET radiation. Estimates of hypoxic and aerobic radiosensitivity parameters are derived from independent and simultaneous least-squares fits to the survival data. An external bootstrap procedure is used to test whether independent fits to the survival data give significantly better predictions than simultaneous fits to the aerobic and hypoxic data. For low-LET radiation, estimates of the OER derived from the in vitro data are between 2.3 and 3.3 for extreme levels of hypoxia. The estimated range for the OER is similar to the oxygen enhancement ratios reported in the literature for the initial yield of DSBs. The half-time for sublethal damage repair was found to be independent of oxygen concentration. Analysis of patient survival data for cervix cancer suggests an average OER less than or equal to 1.5, which corresponds to a pO 2 of 5 mm Hg (0.66%) in the in vitro experiments. Because the OER derived from the cervix cancer data is averaged over cells at all oxygen levels, cells irradiated in vivo under extreme levels of hypoxia (<0.5 mm Hg) may have an OER substantially higher than 1.5. The reported analyses of in vitro data, as well as mechanistic considerations, provide strong support for the expressions relating hypoxic and aerobic radiosensitivity parameters. The formulas are also useful

  11. Equilibrium chemistry down to 100 K. Impact of silicates and phyllosilicates on the carbon to oxygen ratio

    Science.gov (United States)

    Woitke, P.; Helling, Ch.; Hunter, G. H.; Millard, J. D.; Turner, G. E.; Worters, M.; Blecic, J.; Stock, J. W.

    2018-06-01

    We have introduced a fast and versatile computer code, GGCHEM, to determine the chemical composition of gases in thermo-chemical equilibrium down to 100 K, with or without equilibrium condensation. We have reviewed the data for molecular equilibrium constants, kp(T), from several sources and discussed which functional fits are most suitable for low temperatures. We benchmarked our results against another chemical equilibrium code. We collected Gibbs free energies, ΔGf⊖, for about 200 solid and liquid species from the NIST-JANAF database and the geophysical database SUPCRTBL. We discussed the condensation sequence of the elements with solar abundances in phase equilibrium down to 100 K. Once the major magnesium silicates Mg2SiO4[s] and MgSiO3[s] have formed, the dust to gas mass ratio jumps to a value of about 0.0045 which is significantly lower than the often assumed value of 0.01. Silicate condensation is found to increase the carbon to oxygen ratio (C/O) in the gas from its solar value of 0.55 up to 0.71, and, by the additional intake of water and hydroxyl into the solid matrix, the formation of phyllosilicates at temperatures below 400 K increases the gaseous C/O further to about 0.83. Metallic tungsten (W) is the first condensate found to become thermodynamically stable around 1600-2200 K (depending on pressure), several hundreds of Kelvin before subsequent materials such as zirconium dioxide (ZrO2) or corundum (Al2O3) can condense. We briefly discuss whether tungsten, despite its low abundance of 2 × 10-7 times the silicon abundance, could provide the first seed particles for astrophysical dust formation. GGCHEM code is publicly available at http://https://github.com/pw31/GGchemTable D.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A1

  12. Fluorescence lifetime imaging of oxygen in dental biofilm

    Science.gov (United States)

    Gerritsen, Hans C.; de Grauw, Cees J.

    2000-12-01

    Dental biofilm consists of micro-colonies of bacteria embedded in a matrix of polysaccharides and salivary proteins. pH and oxygen concentration are of great importance in dental biofilm. Both can be measured using fluorescence techniques. The imaging of dental biofilm is complicated by the thickness of the biofilms that can be up to several hundred micrometers thick. Here, we employed a combination of two-photon excitation microscopy with fluorescence lifetime imaging to quantify the oxygen concentration in dental biofilm. Collisional quenching of fluorescent probes by molecular oxygen leads to a reduction of the fluorescence lifetime of the probe. We employed this mechanism to measure the oxygen concentration distribution in dental biofilm by means of fluorescence lifetime imaging. Here, TRIS Ruthenium chloride hydrate was used as an oxygen probe. A calibration procedure on buffers was use to measure the lifetime response of this Ruthenium probe. The results are in agreement with the Stern-Volmer equation. A linear relation was found between the ratio of the unquenched and the quenched lifetime and the oxygen concentration. The biofilm fluorescence lifetime imaging results show a strong oxygen gradient at the buffer - biofilm interface and the average oxygen concentration in the biofilm amounted to 50 μM.

  13. Measurement of oxygen thermomigration in a hypostoichiometric mixed oxide

    International Nuclear Information System (INIS)

    Norris, D.I.R.; Coleman, S.C.; Kay, P.

    1978-08-01

    A method of determining oxygen to metal ratios in hypostoichiometric (U, Ce)Osub(2-x) by means of lattice parameter measurement and its application to thermomigration experiments is described. The technique is shown to compare favourably with other methods when a simple structure prevails. It is found that oxygen redistributes down an imposed temperature gradient, confirming theoretical predictions, and that the measured Arrhenius slope decreases as the cerium valency decreases. This effect is more marked than in (U, Pu)Osub(2-x). The results are attributable to solid state transport of oxygen vacancies and suggest that immobile complexes incorporating some oxygen deficiency are more easily formed in (U, Ce)Osub(2-x) than in (U, Pu)Osub(2-x). (author)

  14. Hydrothermal synthesis and enhanced photocatalytic activity of mixed-phase TiO2 powders with controllable anatase/rutile ratio

    Science.gov (United States)

    Wang, Qi; Qiao, Zhi; Jiang, Peng; Kuang, Jianlei; Liu, Wenxiu; Cao, Wenbin

    2018-03-01

    In this study, mixed-phase TiO2 powders were novelly synthesized via a facile and mild hydrothermal method without any post-heat treatment. TiOSO4 and peroxide titanic acid (PTA) were used as inorganic titanium sources, while no special solvent or additive were introduced. The XRD and TEM results showed the mixed-phase TiO2 powders were composed of anatase and rutile phases, and the PTA sol played an important role on forming the rutile nucleus. The proportion of rutile in the mixed-phase TiO2 could be easily controlled in the range of 0%-70.5% by changing the amount of PTA sol used in the synthesis process. The UV-Visible absorption spectra indicated the prepared mixed-phase TiO2 showed enhanced visible light absorption with the increase of rutile ratio. The photodegradation experiments revealed the mixed-phase TiO2 exhibited the best photocatalytic activity at the rutile ratio of 41.5%, while a higher or lower rutile ratio both resulted in the decrease of photocatalytic activity.

  15. Enhancements to the CALIOP Aerosol Subtyping and Lidar Ratio Selection Algorithms for Level II Version 4

    Science.gov (United States)

    Omar, A. H.; Tackett, J. L.; Vaughan, M. A.; Kar, J.; Trepte, C. R.; Winker, D. M.

    2016-12-01

    This presentation describes several enhancements planned for the version 4 aerosol subtyping and lidar ratio selection algorithms of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument. The CALIOP subtyping algorithm determines the most likely aerosol type from CALIOP measurements (attenuated backscatter, estimated particulate depolarization ratios δe, layer altitude), and surface type. The aerosol type, so determined, is associated with a lidar ratio (LR) from a discrete set of values. Some of these lidar ratios have been updated in the version 4 algorithms. In particular, the dust and polluted dust will be adjusted to reflect the latest measurements and model studies of these types. Version 4 eliminates the confusion between smoke and clean marine aerosols seen in version 3 by modifications to the elevated layer flag definitions used to identify smoke aerosols over the ocean. In the subtyping algorithms pure dust is determined by high estimated particulate depolarization ratios [δe > 0.20]. Mixtures of dust and other aerosol types are determined by intermediate values of the estimated depolarization ratio [0.075limited to mixtures of dust and smoke, the so called polluted dust aerosol type. To differentiate between mixtures of dust and smoke, and dust and marine aerosols, a new aerosol type will be added in the version 4 data products. In the revised classification algorithms, polluted dust will still defined as dust + smoke/pollution but in the marine boundary layer instances of moderate depolarization will be typed as dusty marine aerosols with a lower lidar ratio than polluted dust. The dusty marine type introduced in version 4 is modeled as a mixture of dust + marine aerosol. To account for fringes, the version 4 Level 2 algorithms implement Subtype Coalescence Algorithm for AeRosol Fringes (SCAARF) routine to detect and classify fringe of aerosol plumes that are detected at 20 km or 80 km horizontal resolution at the plume base. These

  16. Effects of Cyanate and 2,3-Diphosphoglycerate on Sickling RELATIONSHIP TO OXYGENATION

    Science.gov (United States)

    Jensen, Michael; Bunn, H. Franklin; Halikas, George; Kan, Yuet Wai; Nathan, David G.

    1973-01-01

    Cyanate and 2,3-diphosphoglycerate (2,3-DPG) both influence the oxygen affinity of hemoglobin. The studies presented here concern the effects of these compounds on the sickling phenomenon. The inhibitory effect of cyanate on sickling is largely due to the fact that it increases the percentage of oxyhemoglobin S at a given oxygen tension. In addition, cyanate inhibits sickling by a mechanism that is independent of oxygenation. In this paper, we have demonstrated that the viscosity of carbamylated sickle blood was lower than that of non-carbamylated controls at the same oxygen saturation. Furthermore, carbamylation resulted in an increase in the minimum concentration of deoxy-sickle hemoglobin required for gelation. Like cyanate, 2,3-DPG affected sickling of intact erythrocytes by two mechanisms. Since 2,3-DPG decreases the percentage of oxyhemoglobin S at a given oxygen tension, sickling is enhanced. In addition, 2,3-DPG had a direct effect. When the intracellular 2,3-DPG concentration was increased in vitro, a greater percentage of cells were sickled at a given oxygen saturation. Conversely, sickling was inhibited in cells in which 2,3-DPG was artificially lowered. These data indicate that the enhancement of sickling by 2,3-DPG is in part independent of its influence on oxygen affinity. PMID:4729047

  17. Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater.

    Science.gov (United States)

    Tu, Renjie; Jin, Wenbiao; Xi, Tingting; Yang, Qian; Han, Song-Fang; Abomohra, Abd El-Fatah

    2015-12-01

    Algal-bacterial symbiotic system, with biological synergism of physiological functions of both algae and bacteria, has been proposed for cultivation of microalgae in municipal wastewater for biomass production and wastewater treatment. The algal-bacterial symbiotic system can enhance dissolved oxygen production which enhances bacterial growth and catabolism of pollutants in wastewater. Therefore, the oxygen production efficiency of microalgae in algal-bacterial systems is considered as the key factor influencing the wastewater treatment efficiency. In the present study, we have proposed a novel approach which uses static magnetic field to enhance algal growth and oxygen production rate with low operational cost and non-toxic secondary pollution. The performance of oxygen production with the magnetic field was evaluated using Scenedesmus obliquus grown in municipal wastewater and was calculated based on the change in dissolved oxygen concentration. Results indicated that magnetic treatment stimulates both algal growth and oxygen production. Application of 1000 GS of magnetic field once at logarithmic growth phase for 0.5 h increased the chlorophyll-a content by 11.5% over the control after 6 days of growth. In addition, magnetization enhanced the oxygen production rate by 24.6% over the control. Results of the study confirmed that application of a proper magnetic field could reduce the energy consumption required for aeration during the degradation of organic matter in municipal wastewater in algal-bacterial symbiotic systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Image fusion in dual energy computed tomography for detection of various anatomic structures - Effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Jijo, E-mail: jijopaul1980@gmail.com [Department of Diagnostic Radiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Department of Biophysics, Goethe University, Max von Laue-Str.1, 60438 Frankfurt am Main (Germany); Bauer, Ralf W. [Department of Diagnostic Radiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Maentele, Werner [Department of Biophysics, Goethe University, Max von Laue-Str.1, 60438 Frankfurt am Main (Germany); Vogl, Thomas J. [Department of Diagnostic Radiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)

    2011-11-15

    Objective: The purpose of this study was to evaluate image fusion in dual energy computed tomography for detecting various anatomic structures based on the effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality. Material and methods: Forty patients underwent a CT neck with dual energy mode (DECT under a Somatom Definition flash Dual Source CT scanner (Siemens, Forchheim, Germany)). Tube voltage: 80-kV and Sn140-kV; tube current: 110 and 290 mA s; collimation-2 x 32 x 0.6 mm. Raw data were reconstructed using a soft convolution kernel (D30f). Fused images were calculated using a spectrum of weighting factors (0.0, 0.3, 0.6 0.8 and 1.0) generating different ratios between the 80- and Sn140-kV images (e.g. factor 0.6 corresponds to 60% of their information from the 80-kV image, and 40% from the Sn140-kV image). CT values and SNRs measured in the ascending aorta, thyroid gland, fat, muscle, CSF, spinal cord, bone marrow and brain. In addition, CNR values calculated for aorta, thyroid, muscle and brain. Subjective image quality evaluated using a 5-point grading scale. Results compared using paired t-tests and nonparametric-paired Wilcoxon-Wilcox-test. Results: Statistically significant increases in mean CT values noted in anatomic structures when increasing weighting factors used (all P {<=} 0.001). For example, mean CT values derived from the contrast enhanced aorta were 149.2 {+-} 12.8 Hounsfield Units (HU), 204.8 {+-} 14.4 HU, 267.5 {+-} 18.6 HU, 311.9 {+-} 22.3 HU, 347.3 {+-} 24.7 HU, when the weighting factors 0.0, 0.3, 0.6, 0.8 and 1.0 were used. The highest SNR and CNR values were found in materials when the weighting factor 0.6 used. The difference CNR between the weighting factors 0.6 and 0.3 was statistically significant in the contrast enhanced aorta and thyroid gland (P = 0.012 and P = 0.016, respectively). Visual image assessment for image quality showed the highest score for the data reconstructed using the

  19. Image fusion in dual energy computed tomography for detection of various anatomic structures - Effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality

    International Nuclear Information System (INIS)

    Paul, Jijo; Bauer, Ralf W.; Maentele, Werner; Vogl, Thomas J.

    2011-01-01

    Objective: The purpose of this study was to evaluate image fusion in dual energy computed tomography for detecting various anatomic structures based on the effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality. Material and methods: Forty patients underwent a CT neck with dual energy mode (DECT under a Somatom Definition flash Dual Source CT scanner (Siemens, Forchheim, Germany)). Tube voltage: 80-kV and Sn140-kV; tube current: 110 and 290 mA s; collimation-2 x 32 x 0.6 mm. Raw data were reconstructed using a soft convolution kernel (D30f). Fused images were calculated using a spectrum of weighting factors (0.0, 0.3, 0.6 0.8 and 1.0) generating different ratios between the 80- and Sn140-kV images (e.g. factor 0.6 corresponds to 60% of their information from the 80-kV image, and 40% from the Sn140-kV image). CT values and SNRs measured in the ascending aorta, thyroid gland, fat, muscle, CSF, spinal cord, bone marrow and brain. In addition, CNR values calculated for aorta, thyroid, muscle and brain. Subjective image quality evaluated using a 5-point grading scale. Results compared using paired t-tests and nonparametric-paired Wilcoxon-Wilcox-test. Results: Statistically significant increases in mean CT values noted in anatomic structures when increasing weighting factors used (all P ≤ 0.001). For example, mean CT values derived from the contrast enhanced aorta were 149.2 ± 12.8 Hounsfield Units (HU), 204.8 ± 14.4 HU, 267.5 ± 18.6 HU, 311.9 ± 22.3 HU, 347.3 ± 24.7 HU, when the weighting factors 0.0, 0.3, 0.6, 0.8 and 1.0 were used. The highest SNR and CNR values were found in materials when the weighting factor 0.6 used. The difference CNR between the weighting factors 0.6 and 0.3 was statistically significant in the contrast enhanced aorta and thyroid gland (P = 0.012 and P = 0.016, respectively). Visual image assessment for image quality showed the highest score for the data reconstructed using the weighting factor 0

  20. Enhanced Oxygen Diffusion Within the Internal Oxidation Zone of Alloy 617 in Controlled Impurity Helium Environments from 1023 K to 1123 K (750 °C to 850 °C)

    Science.gov (United States)

    Gulsoy, Gokce; Was, Gary S.

    2015-04-01

    Alloy 617 was exposed to He-CO-CO2 environments with of either 9 or 1320 at temperatures from 1023 K to 1123 K (750 °C to 850 °C) to determine the oxygen diffusion coefficients within the internal oxidation zone of the alloy. The oxygen diffusion coefficients determined based on both intergranular and transgranular oxidation rates were several orders of magnitude greater than those reported in pure nickel and in nickel-based binary alloys, indicating that the rapid internal aluminum oxidation of Alloy 617 was primarily due to enhanced oxygen diffusion along the incoherent Al2O3-alloy interfaces. The range of activation energy values determined for oxygen diffusion associated with the intergranular aluminum oxidation was from 149.6 to 154.7 kJ/mol, and that associated with the transgranular aluminum oxidation was from 244.7 to 283.5 kJ/mol.

  1. Enhanced poly(γ-glutamic acid) production by H2 O2 -induced reactive oxygen species in the fermentation of Bacillus subtilis NX-2.

    Science.gov (United States)

    Tang, Bao; Zhang, Dan; Li, Sha; Xu, Zongqi; Feng, Xiaohai; Xu, Hong

    2016-09-01

    Effects of reactive oxygen species (ROS) on cell growth and poly(γ-glutamic acid) (γ-PGA) synthesis were studied by adding hydrogen peroxide to a medium of Bacillus subtilis NX-2. After optimizing the addition concentration and time of H 2 O 2 , a maximum concentration of 33.9 g/L γ-PGA was obtained by adding 100 µM H 2 O 2 to the medium after 24 H. This concentration was 20.6% higher than that of the control. The addition of diphenyleneiodonium chloride (ROS inhibitor) can interdict the effect of H 2 O 2 -induced ROS. Transcriptional levels of the cofactors and relevant genes were also determined under ROS stress to illustrate the possible metabolic mechanism contributing to the improve γ-PGA production. The transcriptional levels of genes belonging to the tricarboxylic acid cycle and electron transfer chain system were significantly increased by ROS, which decreased the NADH/NAD + ratio and increased the ATP levels, thereby providing more reducing power and energy for γ-PGA biosynthesis. The enhanced γ-PGA synthetic genes also directly promoted the formation of γ-PGA. This study was the first to use the ROS control strategy for γ-PGA fermentation and provided valuable information on the possible mechanism by which ROS regulated γ-PGA biosynthesis in B. subtilis NX-2. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  2. Carefully designed oxygen-containing functional groups and defects of porous carbon spheres with UV-O3 treatment and their enhanced catalytic performance

    Science.gov (United States)

    Han, Weiliang; Huang, Xiaosheng; Lu, Gongxuan; Tang, Zhicheng

    2018-04-01

    In this paper, the support surface properties (surface oxygen-containing functional groups and structure defects) of porous carbon spheres (PCSs) were carefully designed by as UV assisted O3 technology. CO catalytic oxidation reactions performed over the supported Pd-Ce catalysts on modified porous carbon spheres. Results illustrated that the Pd-Ce/PCSs catalysts exhibited high CO catalytic activity, which were increased at first, and then decreased with UV assistant-O3 treatment time. The Pd-Ce/PCSs-30 catalyst exhibited superior activity and T100 was only 15 °C. Moreover, the Pd-Ce/PCSs-30 catalyst obtained an excellent stability, and 100% CO conversion could be maintained as the time on stream evolutes up to 16h in the presence of H2O in the feed. Based on characterization results, there were two main factors: (a) the surface area and pore volume were decreased with UV-O3 treatment, leading to the enhancement of Pd-Ce particle size, and the decrease of Pd-Ce nanoparticle dispersion and mass transfer efficiency, as well as the decrease of catalytic activity of Pd-Ce/PCSs, (b) the surface oxygen content and defect sites of PCSs were raised by UV-O3 treatment, which could improve surface loading of Pd, Ce and enhance Pdsbnd Osbnd Ce bonding interactions, thereby increasing the activity of Pd-Ce/PCSs.

  3. Improved stochastic resonance algorithm for enhancement of signal-to-noise ratio of high-performance liquid chromatographic signal

    International Nuclear Information System (INIS)

    Xie Shaofei; Xiang Bingren; Deng Haishan; Xiang Suyun; Lu Jun

    2007-01-01

    Based on the theory of stochastic resonance, an improved stochastic resonance algorithm with a new criterion for optimizing system parameters to enhance signal-to-noise ratio (SNR) of HPLC/UV chromatographic signal for trace analysis was presented in this study. Compared with the conventional criterion in stochastic resonance, the proposed one can ensure satisfactory SNR as well as good peak shape of chromatographic peak in output signal. Application of the criterion to experimental weak signals of HPLC/UV was investigated and the results showed an excellent quantitative relationship between different concentrations and responses

  4. Pancreas Oxygen Persufflation Increases ATP Levels as Shown by Nuclear Magnetic Resonance

    Science.gov (United States)

    Scott, W.E.; Weegman, B.P.; Ferrer-Fabrega, J.; Stein, S.A.; Anazawa, T.; Kirchner, V.A.; Rizzari, M.D.; Stone, J.; Matsumoto, S.; Hammer, B.E.; Balamurugan, A.N.; Kidder, L.S.; Suszynski, T.M.; Avgoustiniatos, E.S.; Stone, S.G.; Tempelman, L.A.; Sutherland, D.E.R.; Hering, B.J.; Papas, K.K.

    2010-01-01

    Background Islet transplantation is a promising treatment for type 1 diabetes. Due to a shortage of suitable human pancreata, high cost, and the large dose of islets presently required for long-term diabetes reversal; it is important to maximize viable islet yield. Traditional methods of pancreas preservation have been identified as suboptimal due to insufficient oxygenation. Enhanced oxygen delivery is a key area of improvement. In this paper, we explored improved oxygen delivery by persufflation (PSF), ie, vascular gas perfusion. Methods Human pancreata were obtained from brain-dead donors. Porcine pancreata were procured by en bloc viscerectomy from heparinized donation after cardiac death donors and were either preserved by either two-layer method (TLM) or PSF. Following procurement, organs were transported to a 1.5-T magnetic resonance (MR) system for 31P nuclear magnetic resonance spectroscopy to investigate their bioenergetic status by measuring the ratio of adenosine triphosphate to inorganic phosphate (ATP:Pi) and for assessing PSF homogeneity by MRI. Results Human and porcine pancreata can be effectively preserved by PSF. MRI showed that pancreatic tissue was homogeneously filled with gas. TLM can effectively raise ATP:Pi levels in rat pancreata but not in larger porcine pancreata. ATP:Pi levels were almost undetectable in porcine organs preserved with TLM. When human or porcine organs were preserved by PSF, ATP:Pi was elevated to levels similar to those observed in rat pancreata. Conclusion The methods developed for human and porcine pancreas PSF homogeneously deliver oxygen throughout the organ. This elevates ATP levels during preservation and may improve islet isolation outcomes while enabling the use of marginal donors, thus expanding the usable donor pool. PMID:20692395

  5. Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values?

    CSIR Research Space (South Africa)

    Waterhouse, JS

    2002-07-30

    Full Text Available . Cosmo- chim. Acta 46 (1982) 955^965. [35] W.M. Buhay, T.W.D. Edwards, Climate in southwestern Ontario, Canada, between AD 1610 and 1885 inferred from oxygen and hydrogen isotopic measurements of wood cellulose from trees in di?erent hydrological set...

  6. Oxygen effect in radiation biology: caffeine and serendipity

    International Nuclear Information System (INIS)

    Kesavan, P.C.

    2005-01-01

    The 'hit theory' developed in 1920s to explain the actions of ionizing radiation on cells and organisms was purely physical, and its limitation was its inadequacy to address the contemporary findings such as the oxygen enhancement of radiobiological damage, and the increased radio- sensitivity of dividing compared to non-dividing cells. The textbooks written prior to 1970s did not either refer at all to oxygen as a radiosensitizer, or had mentioned it only in a passing manner; yet 'oxygen effect' was emerging as the central dogma in radiation biology. The oxygen effect in radiation biology is highly interdisciplinary encompassing atomic physics (i.e. interaction of photon with matter), radiation chemistry (formation of reactive oxygen species), molecular signalling, gene expression and genetic alterations in cells (mutation, cancer) or the cell death (apoptosis, necrosis, mitotic catastrophe, etc.). Cell death in higher organisms is now recognized as the precursor of possible error-free cell replacement repair. (author)

  7. Microscopic oxygen imaging based on fluorescein bleaching efficiency measurements

    DEFF Research Database (Denmark)

    Beutler, Martin; Heisterkamp, Ines M.; Piltz, Bastian

    2014-01-01

    by a charge-coupled-device (ccd) camera mounted on a fluorescence microscope allowed a pixelwise estimation of the ratio function in a microscopic image. Use of a microsensor and oxygen-consuming bacteria in a sample chamber enabled the calibration of the system for quantification of absolute oxygen......Photobleaching of the fluorophore fluorescein in an aqueous solution is dependent on the oxygen concentration. Therefore, the time-dependent bleaching behavior can be used to measure of dissolved oxygen concentrations. The method can be combined with epi-fluorescence microscopy. The molecular...... states of the fluorophore can be expressed by a three-state energy model. This leads to a set of differential equations which describe the photobleaching behavior of fluorescein. The numerical solution of these equations shows that in a conventional wide-field fluorescence microscope, the fluorescence...

  8. Rf-sputtered vanadium oxide thin films: effect of oxygen partial pressure on structural and electrochemical properties

    CERN Document Server

    Park, Y J; Ryu, K S; Chang, S H; Park, S C; Yoon, S M; Kim, D K

    2001-01-01

    Vanadium oxide thin films with thickness of about 2000 A have been prepared by radio frequency sputter deposition using a V sub 2 O sub 5 target in a mixed argon and oxygen atmosphere with different Ar/O sub 2 ratio ranging from 99/1 to 90/10. X-ray diffraction and X-ray absorption near edge structure spectroscopic studies show that the oxygen content higher than 5% crystallizes a stoichiometric V sub O sub 5 phase, while oxygen deficient phase is formed in the lower oxygen content. The oxygen content in the mixed Ar + O sub 2 has a significant influence on electrochemical lithium insertion/deinsertion property. The discharge-charge capacity of vanadium oxide film increases with increasing the reactive oxygen content. The V sub O sub 5 film deposited at the Ar/O sub 2 ratio of 90/10 exhibits high discharge capacity of 100 mu Ah/cm sup 2 -mu m along with good cycle performance.

  9. A Microdrop Generator for the Calibration of a Water Vapor Isotope Ratio Spectrometer

    NARCIS (Netherlands)

    Iannone, Rosario Q.; Romanini, Daniele; Kassi, Samir; Meijer, Harro A. J.; Kerstel, Erik R. Th.

    A microdrop generator is described that produces water vapor with a known isotopic composition and volume mixing ratio for the calibration of a near-infrared diode laser water isotope ratio spectrometer. The spectrometer is designed to measure in situ the water vapor deuterium and oxygen ((17)O and

  10. SnO2 promoted by alkali metal oxides for soot combustion: The effects of surface oxygen mobility and abundance on the activity

    Science.gov (United States)

    Rao, Cheng; Shen, Jiating; Wang, Fumin; Peng, Honggen; Xu, Xianglan; Zhan, Hangping; Fang, Xiuzhong; Liu, Jianjun; Liu, Wenming; Wang, Xiang

    2018-03-01

    In this study, SnO2-based catalysts promoted by different alkali metal oxides with a Sn/M (M = Li, Na, K, Cs) molar ratio of 9/1 have been prepared for soot combustion. In comparison with the un-modified SnO2 support, the activity of the modified catalysts has been evidently enhanced, following the sequence of CsSn1-9 > KSn1-9 > NaSn1-9 > LiSn1-9 > SnO2. As testified by Raman, H2-TPR, soot-TPR-MS, XPS and O2-TPD results, the incorporation of various alkali metal oxides can induce the formation of more abundant and mobile oxygen species on the surface of the catalysts. Moreover, quantified results have proved that the amount of the surface active oxygen species is nearly proportional to the activity of the catalysts. CsSn1-9, the catalyst promoted by cesium oxide, owns the largest amount of surface mobile oxygen species, thus having the highest activity among all the studied catalysts. It is concluded that the amount of surface active and mobile oxygen species is the major factor determining the activity of the catalysts for soot combustion.

  11. Enhanced Cell Capture on Functionalized Graphene Oxide Nanosheets through Oxygen Clustering.

    Science.gov (United States)

    Bardhan, Neelkanth M; Kumar, Priyank V; Li, Zeyang; Ploegh, Hidde L; Grossman, Jeffrey C; Belcher, Angela M; Chen, Guan-Yu

    2017-02-28

    With the global rise in incidence of cancer and infectious diseases, there is a need for the development of techniques to diagnose, treat, and monitor these conditions. The ability to efficiently capture and isolate cells and other biomolecules from peripheral whole blood for downstream analyses is a necessary requirement. Graphene oxide (GO) is an attractive template nanomaterial for such biosensing applications. Favorable properties include its two-dimensional architecture and wide range of functionalization chemistries, offering significant potential to tailor affinity toward aromatic functional groups expressed in biomolecules of interest. However, a limitation of current techniques is that as-synthesized GO nanosheets are used directly in sensing applications, and the benefits of their structural modification on the device performance have remained unexplored. Here, we report a microfluidic-free, sensitive, planar device on treated GO substrates to enable quick and efficient capture of Class-II MHC-positive cells from murine whole blood. We achieve this by using a mild thermal annealing treatment on the GO substrates, which drives a phase transformation through oxygen clustering. Using a combination of experimental observations and MD simulations, we demonstrate that this process leads to improved reactivity and density of functionalization of cell capture agents, resulting in an enhanced cell capture efficiency of 92 ± 7% at room temperature, almost double the efficiency afforded by devices made using as-synthesized GO (54 ± 3%). Our work highlights a scalable, cost-effective, general approach to improve the functionalization of GO, which creates diverse opportunities for various next-generation device applications.

  12. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability

    Directory of Open Access Journals (Sweden)

    Ariel Jackson

    2018-01-01

    Full Text Available Improving the performance of oxygen reduction reaction (ORR electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs. Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mgPt−1 at 0.9 V versus the reversible hydrogen electrode (RHE, which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mgPt−1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s−1, maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.

  13. Macroinvertebrate short-term responses to flow variation and oxygen depletion: A mesocosm approach.

    Science.gov (United States)

    Calapez, Ana R; Branco, Paulo; Santos, José M; Ferreira, Teresa; Hein, Thomas; Brito, António G; Feio, Maria João

    2017-12-01

    In Mediterranean rivers, water scarcity is a key stressor with direct and indirect effects on other stressors, such as water quality decline and inherent oxygen depletion associated with pollutants inputs. Yet, predicting the responses of macroinvertebrates to these stressors combination is quite challenging due to the reduced available information, especially if biotic and abiotic seasonal variations are taken under consideration. This study focused on the response of macroinvertebrates by drift to single and combined effects of water scarcity and dissolved oxygen (DO) depletion over two seasons (winter and spring). A factorial design of two flow velocity levels - regular and low (vL) - with three levels of oxygen depletion - normoxia, medium depletion (dM) and higher depletion (dH) - was carried out in a 5-artificial channels system, in short-term experiments. Results showed that both stressors individually and together had a significant effect on macroinvertebrate drift ratio for both seasons. Single stressor effects showed that macroinvertebrate drift decreased with flow velocity reduction and increased with DO depletion, in both winter and spring experiments. Despite single stressors opposing effects in drift ratio, combined stressors interaction (vL×dM and vL×dH) induced a positive synergistic drift effect for both seasons, but only in winter the drift ratio was different between the levels of DO depletion. Stressors interaction in winter seemed to intensify drift response when reached lower oxygen saturation. Also, drift patterns were different between seasons for all treatments, which may depend on individual's life stage and seasonal behaviour. Water scarcity seems to exacerbate the oxygen depletion conditions resulting into a greater drifting of invertebrates. The potential effects of oxygen depletion should be evaluated when addressing the impacts of water scarcity on river ecosystems, since flow reductions will likely contribute to a higher oxygen

  14. Predicting local recurrence following breast-conserving treatment: parenchymal signal enhancement ratio (SER) around the tumor on preoperative MRI

    International Nuclear Information System (INIS)

    Kim, Mi Young; Cho, Nariya; Koo, Hye Ryoung; Yun, Bo La; Bae, Min Sun; Moon, Woo Kyung; Chie, Eui Kyu

    2013-01-01

    Background: The level of background parenchymal enhancement around tumor is known to be associated with breast cancer risk. However, there is no study investigating predictive power of parenchymal signal enhancement ratio (SER) around tumor for ipsilateral breast tumor recurrence (IBTR). Purpose: To investigate whether the breast parenchymal SER around the tumor on preoperative dynamic contrast-enhanced magnetic resonance imaging (MRI) is associated with subsequent IBTR in breast cancer patients who had undergone breast-conserving treatment. Material and Methods: Nineteen consecutive women (mean age, 44 years; range, 34-63 years) with breast cancer who developed IBTR following breast-conserving treatment and 114 control women matched for age, as well as T and N stages were included. We compared the clinicopathologic features of the two groups including nuclear grade, histologic grade, hormonal receptor status, human epidermal growth factor receptor-2 (HER-2) status, lymphovascular invasion, negative margin width, use of adjuvant therapy, and parenchymal SER around the tumor on preoperative DCE-MRI. The SER was measured on a slice showing the largest dimension of the tumor. Multivariate conditional logistic regression analysis was used to identify independent factors associated with IBTR. Results: In univariate analysis, ER negativity (odds ratio [OR] = 4.7; P = 0.040), PR negativity (OR = 4.0; P = 0.013), HER-2 positivity (OR = 3.6; P = 0.026), and a parenchymal SER greater than 0.53 (OR = 23.3; P = 0.011) were associated with IBTR. In multivariate analysis, ER negativity (OR = 3.8; P = 0.015) and a parenchymal SER greater than 0.53 (OR = 13.2; P = 0.040) on preoperative MRI were independent factors associated with IBTR. Conclusion: In addition to ER negativity, a higher parenchymal SER on preoperative MRI was an independent factor associated with subsequent IBTR in patients with breast cancer who had undergone breast-conserving treatment

  15. Southern Ocean Carbon Dioxide and Oxygen Fluxes Detected by SOCCOM Biogeochemical Profiling Floats

    Science.gov (United States)

    Sarmiento, J. L.; Bushinksy, S.; Gray, A. R.

    2016-12-01

    The Southern Ocean is known to play an important role in the global carbon cycle, yet historically our measurements of this remote region have been sparse and heavily biased towards summer. Here we present new estimates of air-sea fluxes of carbon dioxide and oxygen calculated with measurements from autonomous biogeochemical profiling floats. At high latitudes in and southward of the Antarctic Circumpolar Current, we find a significant flux of CO2 from the ocean to the atmosphere during 2014-2016, which is particularly enhanced during winter months. These results suggest that previous estimates may be biased towards stronger Southern Ocean CO2 uptake due to undersampling in winter. We examine various implications of having a source of CO2 that is higher than previous estimates. We also find that CO2:O2 flux ratios north of the Subtropical Front are positive, consistent with the fluxes being driven by changes in solubility, while south of the Polar Front biological processes and upwelling of deep water combine to produce a negative CO2:O2 flux ratio.

  16. Silver nanowires as catalytic cathodes for stabilizing lithium-oxygen batteries

    Science.gov (United States)

    Kwak, Won-Jin; Jung, Hun-Gi; Lee, Seon-Hwa; Park, Jin-Bum; Aurbach, Doron; Sun, Yang-Kook

    2016-04-01

    Silver nanowires have been investigated as a catalytic cathode material for lithium-oxygen batteries. Their high aspect ratio contributes to the formation of a corn-shaped layer structure of the poorly crystalline lithium peroxide (Li2O2) nanoparticles produced by oxygen reduction in poly-ether based electrolyte solutions. The nanowire morphology seems to provide the necessary large contact area and facile electron supply for a very effective oxygen reduction reaction. The unique morphology and structure of the Li2O2 deposits and the catalytic nature of the silver nano-wires promote decomposition of Li2O2 at low potentials (below 3.4 V) upon the oxygen evolution. This situation avoids decomposition of the solution species and oxidation of the electrodes during the anodic (charge) reactions, leading to high electrical efficiently of lithium-oxygen batteries.

  17. Tailoring properties of reduced graphene oxide by oxygen plasma treatment

    Science.gov (United States)

    Kondratowicz, Izabela; Nadolska, Małgorzata; Şahin, Samet; Łapiński, Marcin; Prześniak-Welenc, Marta; Sawczak, Mirosław; Yu, Eileen H.; Sadowski, Wojciech; Żelechowska, Kamila

    2018-05-01

    We report an easily controllable, eco-friendly method for tailoring the properties of reduced graphene oxide (rGO) by means of oxygen plasma. The effect of oxygen plasma treatment time (1, 5 and 10 min) on the surface properties of rGO was evaluated. Physicochemical characterization using microscopic, spectroscopic and thermal techniques was performed. The results revealed that different oxygen-containing groups (e.g. carboxyl, hydroxyl) were introduced on the rGO surface enhancing its wettability. Furthermore, upon longer treatment time, other functionalities were created (e.g. quinones, lactones). Moreover, external surface of rGO was partially etched resulting in an increase of the material surface area and porosity. Finally, the oxygen plasma-treated rGO electrodes with bilirubin oxidase were tested for oxygen reduction reaction. The study showed that rGO treated for 10 min exhibited twofold higher current density than untreated rGO. The oxygen plasma treatment may improve the enzyme adsorption on rGO electrodes by introduction of oxygen moieties and increasing the porosity.

  18. Calculation of oxygen distribution in uranium-plutonium oxide fuels during irradiation (programme CODIF)

    International Nuclear Information System (INIS)

    Moreno, A.; Sari, C.

    1978-01-01

    Radial gradients of oxygen to metal ratio, O/M, in uranium-plutonium oxide fuel pins, during irradiation and at the end of life, have been calculated on the basis of solid-state thermal diffusion using measured values of the heat of transport. A detailed computer model which includes the calculation of temperature profiles and the variation of the average O/M ratio as a function of burn-up is given. Calculations show that oxygen profiles are affected by the isotopic composition of the fuel, by the temperature profiles and by fuel-cladding interactions

  19. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Krustrup, Peter; Iaia, F Marcello

    2009-01-01

    This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one-legged k......This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one...... conductance during exercise, events that are not associated with either acetylcholine or an increased oxygen demand. The results do not support an essential role for acetylcholine, released form the neuromuscular junction, in exercise hyperaemia or for the enhanced blood flow during neuromuscular blockade....... The enhanced exercise hyperemia during partial neuromuscular blockade may be related to a greater recruitment of fast-twitch muscle fibres. Key words: blood flow, neuromuscular blockade, exercise, skeletal muscle....

  20. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  1. Ion release from magnesium materials in physiological solutions under different oxygen tensions.

    Science.gov (United States)

    Feyerabend, Frank; Drücker, Heiko; Laipple, Daniel; Vogt, Carla; Stekker, Michael; Hort, Norbert; Willumeit, Regine

    2012-01-01

    Although magnesium as degradable biomaterial already showed clinical proof of concepts, the design of new alloys requires predictive in vitro methods, which are still lacking. Incubation under cell culture conditions to obtain "physiological" corrosion may be a solution. The aim of this study was to analyse the influence of different solutions, addition of proteins and of oxygen availability on the corrosion of different magnesium materials (pure Mg, WE43, and E11) with different surface finishing. Oxygen content in solution, pH, osmolality and ion release were determined. Corrosion led to a reduction of oxygen in solution. The influence of oxygen on pH was enhanced by proteins, while osmolality was not influenced. Magnesium ion release was solution-dependent and enhanced in the initial phase by proteins with delayed release of alloying elements. The main corrosion product formed was magnesium carbonate. Therefore, cell culture conditions are proposed as first step toward physiological corrosion.

  2. ZnO Nanorods with Tunable Aspect Ratios Deriving from Oriented-attachment for Enhanced Performance in Quantum-dot Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Wu, Dapeng; Wang, Xiaolu; Cao, Kun; An, Yipeng; Song, Xiaohui; Liu, Ning; Xu, Fang; Gao, Zhiyong; Jiang, Kai

    2017-01-01

    ZnO nanorods consisted of oriented aligned elongated-nanoparticles along the [0001] direction were readily prepared with tunable aspect ratios by a facile solvothermal method. An oriented-attachment growth mechanism was proposed based on time-dependent trails and first principle density function theory calculation. Control experiments indicated that the reaction medium played important roles to influence the oriented-attachment process and the aspect ratio could be tuned from ∼4.6 to ∼16.0 by simply altering the precursor dosages. The as-prepared ZnO nanorods were applied as photoanode materials in quantum-dot sensitized solar cells. The large pore size in the film structure and rough surface of the nanorod could enhance the quantum dots loading amounts and light scattering effect. In addition, the orderly aligned primary ENPs minimized the grain boundaries for suppressed recombination and provided a direct pathway for increased electron diffusion length. Meanwhile, the enhanced film hydrophilicity facilitated the electrolyte penetration and the regeneration of oxidized sensitizers. Therefore, a high power conversion efficiency of ∼4.83% was demonstrated, indicating substantial improvement compared with that of traditional nanoparticle based device (∼3.54%).

  3. Effect of oxygenated perfluorocarbon on isolated islets during transportation.

    Science.gov (United States)

    Terai, Sachio; Tsujimura, Toshiaki; Li, Shiri; Hori, Yuichi; Toyama, Hirochika; Shinzeki, Makoto; Matsumoto, Ippei; Kuroda, Yoshikazu; Ku, Yonson

    2010-08-01

    Previous studies demonstrated the efficacy of the two-layer method (TLM) using oxygenated perfluorochemicals (PFC) for pancreas preservation. The current study investigated the effect of oxygenated PFC on isolated islets during transportation. Purified rat islets were stored in an airtight conical tube for 24h in RPMI culture medium at 22 degrees C or University of Wisconsin solution (UW) at 4 degrees C, either with or without oxygenated PFC. After storage, the islets were assessed for in vitro viability by static incubation (SI), FDA/PI staining, and energy status (ATP, energy charge, and ADP/ATP ratio) and for in vivo viability by a transplantation study. UW at 4 degrees C and RPMI medium at 22 degrees C maintained islet quality almost equally in both in vitro and in vivo assessments. The ATP levels and energy status in the groups with PFC were significantly lower than those without PFC. The groups with PFC showed a significantly higher ADP/ATP ratio than those without PFC. In the transplantation study, blood glucose levels and AUC in the UW+PFC group were significantly higher than those in UW group. UW at 4 degrees C and RPMI medium at 22 degrees C maintained islet quality equally under the conditions for islet transportation. The addition of oxygenated PFC, while advantageous for pancreas preservation, is not useful for islet transportation. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Workshop on Oxygen in the Terrestrial Planets

    Science.gov (United States)

    2004-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Oxygen in the Terrestrial Planets, July 20-23,2004, Santa Fe, New Mexico. The contents include: 1) Experimental Constraints on Oxygen and Other Light Element Partitioning During Planetary Core Formation; 2) In Situ Determination of Fe(3+)/SigmaFe of Spinels by Electron Microprobe: An Evaluation of the Flank Method; 3) The Effect of Oxygen Fugacity on Large-Strain Deformation and Recrystallization of Olivine; 4) Plagioclase-Liquid Trace Element Oxygen Barometry and Oxygen Behaviour in Closed and Open System Magmatic Processes; 5) Core Formation in the Earth: Constraints from Ni and Co; 6) Oxygen Isotopic Compositions of the Terrestrial Planets; 7) The Effect of Oxygen Fugacity on Electrical Conduction of Olivine and Implications for Earth s Mantle; 8) Redox Chemical Diffusion in Silicate Melts: The Impact of the Semiconductor Condition; 9) Ultra-High Temperature Effects in Earth s Magma Ocean: Pt and W Partitioning; 10) Terrestrial Oxygen and Hydrogen Isotope Variations: Primordial Values, Systematics, Subsolidus Effects, Planetary Comparisons, and the Role of Water; 11) Redox State of the Moon s Interior; 12) How did the Terrestrial Planets Acquire Their Water?; 13) Molecular Oxygen Mixing Ratio and Its Seasonal Variability in the Martian Atmosphere; 14) Exchange Between the Atmosphere and the Regolith of Mars: Discussion of Oxygen and Sulfur Isotope Evidence; 15) Oxygen and Hydrogen Isotope Systematics of Atmospheric Water Vapor and Meteoric Waters: Evidence from North Texas; 16) Implications of Isotopic and Redox Heterogeneities in Silicate Reservoirs on Mars; 17) Oxygen Isotopic Variation of the Terrestrial Planets; 18) Redox Exchanges in Hydrous Magma; 19) Hydrothermal Systems on Terrestrial Planets: Lessons from Earth; 20) Oxygen in Martian Meteorites: A Review of Results from Mineral Equilibria Oxybarometers; 21) Non-Linear Fractionation of Oxygen Isotopes Implanted in

  5. Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes

    KAUST Repository

    Wu, Xiao-Yu; Chang, Le; Uddi, Mruthunjaya; Kirchen, Patrick; Ghoniem, Ahmed F.

    2015-01-01

    and flow rates on the feed and sweep sides on the water thermolysis rate and oxygen flux. A single step reaction mechanism is proposed for surface reactions, and three-resistance permeation models are derived. Results show that water thermolysis

  6. Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation

    NARCIS (Netherlands)

    Leuner, K.; Schutt, T.; Kurz, C.; Eckert, S.H.; Schiller, C.; Occhipinti, A.; Mai, S.; Jendrach, M.; Eckert, G.P.; Kruse, S.E.; Palmiter, R.D.; Brandt, U.; Drose, S.; Wittig, I.; Willem, M.; Haass, C.; Reichert, A.S.; Muller, W.E.

    2012-01-01

    AIMS: Intracellular amyloid beta (Abeta) oligomers and extracellular Abeta plaques are key players in the progression of sporadic Alzheimer's disease (AD). Still, the molecular signals triggering Abeta production are largely unclear. We asked whether mitochondrion-derived reactive oxygen species

  7. Stable oxygen and hydrogen isotopes of brines - comparing isotope ratio mass spectrometry and isotope ratio infrared spectroscopy

    Science.gov (United States)

    Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne

    2013-04-01

    Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity

  8. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    Science.gov (United States)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  9. Large aspect ratio tokamak study

    International Nuclear Information System (INIS)

    Reid, R.L.; Holmes, J.A.; Houlberg, W.A.; Peng, Y.K.M.; Strickler, D.J.; Brown, T.G.; Sardella, C.; Wiseman, G.W.

    1979-01-01

    The Large Aspect Ratio Tokamak Study (LARTS) investigated the potential for producing a viable long burn tokamak reactor through enhanced volt-second capability of the ohmic heating transformer by employing high aspect ratio designs. The plasma physics, engineering, and economic implications of high aspect ratio tokamaks were accessed in the context of extended burn operation. Plasma startup and burn parameters were addressed using a one-dimensional transport code. The pulsed electrical power requirements for the poloidal field system, which have a major impact on reactor economics, were minimized by optimizing the field in the ohmic heating coil and the wave shape of the ohmic heating discharge. A high aspect ratio reference reactor was chosen and configured

  10. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish

    DEFF Research Database (Denmark)

    Dahl, Tais Wittchen; Hammarlund, Emma; Anbar, Ariel D.

    2010-01-01

    after the initial rise of animals and, therefore, suggesting that early metazoans evolved in a relatively low oxygen environment. This later oxygenation correlates with the diversification of vascular plants, which likely contributed to increased oxygenation through the enhanced burial of organic carbon...

  11. On the effect of oxygen or copper(II) in radiation-induced degradation of DNA in the presence of thiols

    International Nuclear Information System (INIS)

    Pruetz, W.A.; Moenig, Hans

    1987-01-01

    Degradiation of DNA when γ-irradiated in aqueous solutions containing cysteine can be efficiently enhanced not only with oxygen, but to the same extent also with Cu 2+ ions under hypoxic conditions. The result can be explained by 'self-repair' in this sytem due to recombination of DNA radical with RSS radical - R intermediates, and repair inhibition by oxygen or copper involving RSS radical - R scavenging. It is emphasized that oxygen enhancement in DNA-thiol systems may occur not only by peroxidation, via defect fixation (DNA-O radical 2 ) or thiol activation (RS-O radical 2 ), but also by the well-established inactivation of RSS radical - R by oxygen. There is evidence also from literature data for a correlation between oxygen enhancement and RSS radical - R stability, which varies with thiol concentration, pH and thiol structure. (author)

  12. Induction of Apoptosis in Human Multiple Myeloma Cell Lines by Ebselen via Enhancing the Endogenous Reactive Oxygen Species Production

    Directory of Open Access Journals (Sweden)

    Liang Zhang

    2014-01-01

    Full Text Available Ebselen a selenoorganic compound showing glutathione peroxidase like activity is an anti-inflammatory and antioxidative agent. Its cytoprotective activity has been investigated in recent years. However, experimental evidence also shows that ebselen causes cell death in several cancer cell types whose mechanism has not yet been elucidated. In this study, we examined the effect of ebselen on multiple myeloma (MM cell lines in vitro. The results showed that ebselen significantly enhanced the production of reactive oxygen species (ROS accompanied by cell viability decrease and apoptosis rate increase. Further studies revealed that ebselen can induce Bax redistribution from the cytosol to mitochondria leading to mitochondrial membrane potential ΔΨm changes and cytochrome C release from the mitochondria to cytosol. Furtherly, we found that exogenous addition of N-acetyl cysteine (NAC completely diminished the cell damage induced by ebselen. This result suggests that relatively high concentration of ebselen can induce MM cells apoptosis in culture by enhancing the production of endogenous ROS and triggering mitochondria mediated apoptotic pathway.

  13. Quantum design and synthesis of a boron-oxygen-yttrium phase

    International Nuclear Information System (INIS)

    Music, Denis; Chirita, Valeriu; Kreissig, Ulrich; Czigany, Zsolt; Schneider, Jochen M.; Helmersson, Ulf

    2003-01-01

    Ab initio calculations are used to design a crystalline boron-oxygen-yttrium (BOY) phase. The essential constituent is yttrium substituting for oxygen in the boron suboxide structure (BO 0.17 ) with Y/B and O/B ratios of 0.07. The calculations predict that the BOY phase is 0.36 eV/atom more stable than crystalline BO 0.17 and experiments confirm the formation of crystalline thin films. The BOY phase was synthesized with reactive rf magnetron sputtering and identified with x-ray and selected area electron diffraction. Films with Y/B ratios ranging from 0.10 to 0.32, as determined via elastic recoil detection analysis, were grown over a wide range of temperatures (300-600 deg. C) and found to withstand 1000 deg. C

  14. Effect of high hydrostatic pressure on small oxygen-related clusters in silicon: LVM studies

    International Nuclear Information System (INIS)

    Murin, L.I.; Lindstroem, J.L.; Misiuk, A.

    2003-01-01

    Local vibrational mode (LVM) spectroscopy is used to explore the effect of high hydrostatic pressure (HP) on the formation of small oxygen-related clusters (dimers, trimers, thermal donors, and C-O complexes) at 450 deg. C and 650 deg. C in Cz-Si crystals with different impurity content and prehistory. It is found, in agreement with previous studies, that HP enhances the oxygen clustering in Cz-Si at elevated temperatures. The effect of HP is related mainly to enhancement in the diffusivity of single oxygen atoms and small oxygen aggregates. HP does not noticeably increase the binding energies of the most simple oxygen related complexes like O 2i , C s O ni . The biggest HP effect on the thermal double donor (TDDs) generation is revealed in hydrogenated samples. Heat-treatment of such samples at 450 deg. C under HP results in extremely high TDD introduction rates as well as in a strong increase in the concentration of the first TDD species

  15. Effect of Sr/Ti Ratio on the Photocatalytic Properties of SrTiO3

    International Nuclear Information System (INIS)

    Sulaeman, U; Yin, S; Sato, T

    2011-01-01

    Since strontium titanate is a wide gap semiconductor, it requires UV light to generate the photocatalytic activities. Modification of strontium titanate to show photocatalytic activity under visible light irradiation is the essential work to efficiently utilize the sun light energy for environmental application. It is expected that the synthesis of SrTiO 3 with variation of Sr/Ti atomic ratio could induce the defect crystals having unique photocatalytic properties. The SrTiO 3 with various Sr/Ti atomic ratios were synthesized by microwave-assisted solvothermal reaction of SrCl 2 .6H 2 O and Ti(OC 3 H 7 ) 4 in KOH aqueous solutions with different atomic ratios of Sr/Ti. The products were characterized by TG-DTA, XRD and DRS. The photocatalytic activity was determined by DeNO x ability using LED lamps with the wavelengths of 627 nm (red), 530 nm (green), 445 nm (blue) and 390 nm (UV). The nanoparticles of perovskite type SrTiO 3 with the particle size of 30-40 nm were successfully synthesized. The visible light responsive photocatalytic activity was generated by adding excess amount of Sr. The photocatalytic activity in visible light could be enhanced by an increase in the Sr/Ti atomic ratio up to 1.25, indicating that the visible light responsive photocatalytic activity is due to the generation of new band gap between the conduction band and valence band of SrTiO 3 by the formation of oxygen vacancy.

  16. Quadruple labelled dual oxygen and pH-sensitive ratiometric nanosensors

    Directory of Open Access Journals (Sweden)

    Veeren M. Chauhan

    2016-05-01

    Full Text Available Nanosensors capable of simultaneously measuring dissolved oxygen concentrations from 0 to 100% saturation and pH over the full physiological range, from pH 3.5 to 7.5, that advance the methods towards understanding of key biological gradients, were synthesised. A library of water soluble oxygen-sensitive porphyrins, with three substituted charged functional groups and a chemically flexible carboxylate functional group were spectroscopically analysed to assess their sensitivity to changes in dissolved oxygen concentrations as free species in solution and in suspension as nanoparticle conjugates. A platinum cationic porphyrin was taken forward to fabricate ratiometric oxygen-sensitive nanosensors, using 5-(and-6-carboxytetramethylrhodamine (TAMRA as internal standard. In addition, quadruple labelled dual oxygen and pH-sensitive nanosensors were synthesised using the cationic Pt porphyrin, pH-sensitive fluorescein dyes, carboxyfluorescein (FAM and Oregon Green (OG, in a 1:1 ratio, and TAMRA. We envisage the dual oxygen and pH nanosensors will find broad utility in the characterisation of diverse microenvironments, where there are complex interactions between molecular oxygen and pH. Keywords: Fluorescent, Phosphorescent, Nanosensor, Oxygen, pH, Ratiometric, Platinum metalloporphyrin

  17. New Views on the Early Evolution of Oxygen in the Galaxy

    Science.gov (United States)

    Rebolo, R.; Israelian, G.; García López, R. J.

    We have performed a detailed oxygen abundance analysis of 23 metal-poor (-3.0 Abia & Rebolo 1989; Tomkin et al. 1992; Cavallo, Pilachowski, & Rebolo 1997). Contrary to the previously accepted picture, our oxygen abundances, derived from low-excitation OH lines, agree well with those derived from high-excitation lines of the triplet. For nine stars in common with Tomkin et al. we obtain a mean difference of 0.00 plus or minus 0.11dex with respect to the abundances determined from the triplet using the same stellar parameters and model photospheres. Our new results show a smooth extension of the Edvardsson et al.'s (1993) [O/Fe] versus metallicity curve to much lower abundances. The oxygen abundances of unevolved stars when compared with values in the literature for giants of similar metallicity imply that the latter may have suffered a process of oxygen depletion. It appears that unevolved metal-poor stars are better tracers of the early chemical evolution of the Galaxy. The extrapolation of our results to very low metallicities indicates that the ratio of oxygen to iron emerging from the first Type II SNe in the early Galaxy was indeed close to unity. The higher [O/Fe] ratios we find in dwarfs has an impact on the age determination of globular clusters, and suggest that current age estimates have to be reduced by about 1-2 Gyr.

  18. Large Aspect Ratio Tokamak Study

    International Nuclear Information System (INIS)

    Reid, R.L.; Holmes, J.A.; Houlberg, W.A.; Peng, Y.K.M.; Strickler, D.J.; Brown, T.G.; Wiseman, G.W.

    1980-06-01

    The Large Aspect Ratio Tokamak Study (LARTS) at Oak Ridge National Laboratory (ORNL) investigated the potential for producing a viable longburn tokamak reactor by enhancing the volt-second capability of the ohmic heating transformer through the use of high aspect ratio designs. The plasma physics, engineering, and economic implications of high aspect ratio tokamaks were assessed in the context of extended burn operation. Using a one-dimensional transport code plasma startup and burn parameters were addressed. The pulsed electrical power requirements for the poloidal field system, which have a major impact on reactor economics, were minimized by optimizing the startup and shutdown portions of the tokamak cycle. A representative large aspect ratio tokamak with an aspect ratio of 8 was found to achieve a burn time of 3.5 h at capital cost only approx. 25% greater than that of a moderate aspect ratio design tokamak

  19. Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2013-01-01

    concentration enhances oxygen permeation substantially. This is accomplished through promoting oxidation reactions (oxygen consumption) and the transport of the products and reaction heat towards the membrane, which lowers the oxygen concentration and increases

  20. Hybrid membrane--PSA system for separating oxygen from air

    Science.gov (United States)

    Staiger, Chad L [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM; Miller, A Keith [Albuquerque, NM; Cornelius, Christopher J [Blackburg, VA

    2011-01-25

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  1. Omniclassical Diffusion in Low Aspect Ratio Tokamaks

    International Nuclear Information System (INIS)

    Mynick, H.E.; White, R.B.; Gates, D.A.

    2004-01-01

    Recently reported numerical results for axisymmetric devices with low aspect ratio A found radial transport enhanced over the expected neoclassical value by a factor of 2 to 3. In this paper, we provide an explanation for this enhancement. Transport theory in toroidal devices usually assumes large A, and that the ratio B p /B t of the poloidal to the toroidal magnetic field is small. These assumptions result in transport which, in the low collision limit, is dominated by banana orbits, giving the largest collisionless excursion of a particle from an initial flux surface. However in a small aspect ratio device one may have B p /B t ∼ 1, and the gyroradius may be larger than the banana excursion. Here, we develop an approximate analytic transport theory valid for devices with arbitrary A. For low A, we find that the enhanced transport, referred to as omniclassical, is a combination of neoclassical and properly generalized classical effects, which become dominant in the low-A, B p /B t ∼ 1 regime. Good agreement of the analytic theory with numerical simulations is obtained

  2. Oxygen diffusion in monazite

    Science.gov (United States)

    Cherniak, D. J.; Zhang, X. Y.; Nakamura, M.; Watson, E. B.

    2004-09-01

    We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag-Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850-1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Under wet conditions at 100 MPa water pressure, over the temperature range 700-880 °C, oxygen diffusion can be described by the Arrhenius relationship: Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (∼800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.

  3. Giant thermally-enhanced electrostriction and polar surface phase in L a2M o2O9 oxygen ion conductors

    Science.gov (United States)

    Li, Qian; Lu, Teng; Schiemer, Jason; Laanait, Nouamane; Balke, Nina; Zhang, Zhan; Ren, Yang; Carpenter, Michael A.; Wen, Haidan; Li, Jiangyu; Kalinin, Sergei V.; Liu, Yun

    2018-04-01

    Ferroelectrics possess spontaneous electric polarization at macroscopic scales which nonetheless imposes strict limitations on the material classes. Recent discoveries of untraditional symmetry-breaking phenomena in reduced material dimensions have indicated feasibilities to extend polar properties to broader types of materials, potentially opening up the freedom for designing materials with hybrid functionalities. Here, we report the unusual electromechanical properties of L a2M o2O9 (LAMOX) oxygen ion conductors, systematically investigated at both bulk and surface length levels. We first observed giant electrostriction effects in L a2M o2O9 bulk ceramics that are thermally enhanced in concert with their low-energy oxygen-vacancy hopping dynamics. Moreover, while no clear bulk polarization was detected, the surface phases of LAMOX were found to be manifestly polar, likely originating from the coupling between the intrinsic structural flexibilities with strain gradients (i.e., flexoelectricity) and/or chemical heterogeneities present in the materials. These findings identify L a2M o2O9 as a promising electromechanical material system and suggest that the flexible structural and chemical configurations in ionically active materials could enable fundamentally different venues to accommodate electric polarization.

  4. Enhanced Differentiation of Human Embryonic Stem Cells Toward Definitive Endoderm on Ultrahigh Aspect Ratio Nanopillars

    DEFF Research Database (Denmark)

    Rasmussen, Camilla Holzmann; Reynolds, Paul M.; Petersen, Dorthe Roenn

    2016-01-01

    highlighted that the properties of the physical environment, such as substrate stiffness, affect cellular behavior. Here, mass-produced, injection molded polycarbonate nanopillars are presented, where the surface mechanical properties, i.e., stiffness, can be controlled by the geometric design...... of the ultrahigh aspect ratio nanopillars (stiffness can be reduced by 25.000X). It is found that tall nanopillars, yielding softer surfaces, significantly enhance the induction of defi nitive endoderm cells from pluripotent human embryonic stem cells, resulting in more consistent differentiation of a pure...... population compared to planar control. By contrast, further differentiation toward the pancreatic endoderm is less successful on “soft” pillars when compared to “stiff ” pillars or control, indicating differential cues during the different stages of differentiation. To accompany the mechanical properties...

  5. Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

    Directory of Open Access Journals (Sweden)

    Anna Maria Pappa

    2015-01-01

    Full Text Available Electrospun nanofibrous scaffolds have been extensively used in several biomedical applications for tissue engineering due to their morphological resemblance to the extracellular matrix (ECM. Especially, there is a need for the cardiovascular implants to exhibit a nanostructured surface that mimics the native endothelium in order to promote endothelialization and to reduce the complications of thrombosis and implant failure. Thus, we herein fabricated poly-ε-caprolactone (PCL electrospun nanofibrous scaffolds, to serve as coatings for cardiovascular implants and guide tissue regeneration. Oxygen plasma treatment was applied in order to modify the surface chemistry of the scaffold and its effect on cell attachment and growth was evaluated. The conditions of the surface modification were properly adjusted in order to define those conditions of the treatment that result in surfaces favorable for cell growth, while maintaining morphological integrity and mechanical behavior. Goniometry (contact angle measurements, scanning electron microscopy (SEM, atomic force microscopy (AFM, and X-ray photoelectron spectroscopy (XPS measurements were used to evaluate the morphological and chemical changes induced by the plasma treatment. Moreover, depth-sensing nanoindentation was performed to study the resistance of the plasma-treated scaffolds to plastic deformation. Lastly, the cell studies indicated that all scaffolds were cytocompatible, with the plasma-treated ones expressing a more pronounced cell viability and adhesion. All the above findings demonstrate the great potential of these biomimetic tissue-engineering constructs as efficient coatings for enhanced compatibility of cardiovascular implants.

  6. Constants of the Alper and Howard-Flanders oxygen equation for damage to bacterial membrane, deduced from observations on the radiation-induced penicillin-sensitive lesion

    International Nuclear Information System (INIS)

    Obioha, F.I.; Gillies, N.E.; Cullen, B.M.; Walker, H.C.; Alper, T.

    1984-01-01

    E. coli were irradiated in the presence of 100% oxygen, oxygen-free nitrogen and mixtures of 1.01, 0.59, 0.3, 0.1 and 0.06% oxygen in nitrogen. Changes in sensitivity with pO 2 conformed with the Alper and Howard-Flanders equation for bacteria treated after irradiation by penicillin as well as for the untreated ones. Values of m were respectively 4.8 and 3.3; values of K were identical, within experimental error, (4.4 mmHg). Sensitivity to induction of the bacterial membrane penicillin-sensitive lesion was calculated from the difference in the reciprocals of D 0 values proper to untreated and treated bacteria, for every gas used. The value of m could not be directly calculated because the effect of penicillin on anoxically irradiated bacteria was not detectable. For that reason, a transformation of the oxygen equation was used, allowing estimates to be made of both m and K, provided the results conformed with the equation. Within experimental error they did. Calculated values of m and K for induction of the penicillin-sensitive lesion were respectively 8 and 5.9 mmHg, but it is shown that the oxygen enhancement ratio was probably underestimated and the value overestimated. (author)

  7. Titan’s Oxygen Chemistry and its Impact on Haze Formation

    Science.gov (United States)

    Vuitton, Veronique; He, Chao; Moran, Sarah; Wolters, Cedric; Flandinet, Laurene; Orthous-Daunay, Francois-Regis; Thissen, Roland; Horst, Sarah

    2018-06-01

    Though Titan's atmosphere is reducing with its 98% N2, 2% CH4 and 0.1% H2, CO is the fourth most abundant molecule with a uniform mixing ratio of ~50 ppm. Two other oxygen bearing molecules have also been observed in Titan's atmosphere: CO2 and H2O, with a mixing ratio of ~15 and ~1 ppb, respectively. The physical and chemical processes that determine the abundances of these species on Titan have been at the centre of a long-standing debate as they place constraints on the origin and evolution of its atmosphere. Moreover, laboratory experiments have shown that oxygen can be incorporated into complex molecules, some of which are building blocks of life. Finally, the presence of CO modifies the production rate and size of tholins, which transposed to Titan's haze may have some strong repercussions on the temperature structure and dynamics of the atmosphere.We present here our current understanding of Titan's oxygen chemistry and of its impact on the chemical composition of the haze. We base our discussion on state-of-the-art laboratory experiments for the synthesis and chemical analysis of aerosol analogues. We used a very-high resolution mass spectrometer (LTQ-Orbitrap XL instrument) to characterize the soluble part of tholin samples generated from N2/CH4/CO mixtures at different mixing ratios. These composition measurements provide some understanding of the chemical mechanisms by which CO affects particle formation and growth. Our final objective is to obtain a global picture of the fate and impact of oxygen on Titan, from its origin to prebiotic molecules to haze particles to material deposited on the surface.

  8. Methods for oxygen/uranium ratio determination in substoichiometric uranium dioxide

    International Nuclear Information System (INIS)

    Baranov, V.G.; Godin, Yu.G.; S'edin, Yu.D.; Kosykh, V.G.; Nepryakhin, A.M.; Komarenko, F.F.; Kutyreva, G.A.

    1994-01-01

    Investigations are performed into a possibility to use the methods of thermal gravimetric analysis, gas chromatography, hydration-dehydration, and e.m.f. of high-temperature solid-electrode galvanic cell for determining O-U atomic ratio in UO 2-x . It is shown that the investigated methods have an analysis error of ± 0.001 O/U units. However, the e.m.f. method, which feature a high accuracy near stoichiometry can be applied only within the limits of UO 2-x homogeneity. A possibility is shown to expend the area of e.m.f. method application during the analysis of substoichiometric uranium dioxide. 9 refs.; 1 tab

  9. Major events in Neogene oxygen isotopic records

    International Nuclear Information System (INIS)

    Kennett, J.P.; Hodell, D.A.

    1986-01-01

    Changes in oxygen isotopic ratios of foraminiferal calcite during the cainozoic have been one of the primary tools for investigating the history of Arctic and Antarctic glaciation, although interpretations of the oxygen isotopic record differ markedly. The ambiguity in interpretation results mainly from the partitioning of temperature from ice volume effects in delta 18 O changes. Oxygen isotopic records for the Cainozoic show an increase in delta 18 O values towards the present, reflecting gradual cooling and increased glaciation of the Earth's climate since the late Cretaceous. A variety of core material from the South Atlantic and South-west Pacific oceans are investigated. This composite data represents one of the most complete available with which to evaluate the evolution of glaciation during the Neogene. Expansion of ice shelves in Antarctica undoubtedly accompanied the increased glaciation of the northern hemisphere, since eustatic sea-level lowering would positively reinforce ice growth on Antarctica

  10. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments

    International Nuclear Information System (INIS)

    Chen, Shih-Cheng; Chang, Ting-Chang; Chen, Wei-Ren; Lo, Yuan-Chun; Wu, Kai-Ting; Sze, S.M.; Chen, Jason; Liao, I.H.; Yeh, Fon-Shan

    2010-01-01

    In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were performed to analyze the variation of chemical composition for W nanocrystal embedded oxide both with and without the oxygen plasma treatment. In addition, the transmission electron microscopy (TEM) analyses were also used to identify the microstructure in the thin film and the size and density of W nanocrystals. The device with the oxygen plasma treatment shows a significant improvement of charge storage effect, because the oxygen plasma treatment enhanced the quality of silicon oxide surrounding the W nanocrystals. Therefore, the data retention and endurance characteristics were also improved by the passivation.

  12. Non stoichiometry in U3O(8±x), its temperature and oxygen pressure dependence

    International Nuclear Information System (INIS)

    Rodriguez De Sastre, M.S.; Philippot, J.; Moreau, C.

    1967-01-01

    The deviation from stoichiometry in uranium oxide U 3 O 8 obtained by oxidation of UO 2 , has been studied with respect to its dependence on temperature and oxygen pressure. It is shown that the ratio r = O/U increases with oxygen pressure up to 200 mm Hg at any temperature. At higher pressures, this ratio tends toward a limit which decreases with increasing temperatures. The curve r = f(P) suggest a chemisorption phenomenon as the reaction limiting mechanism. (authors) [fr

  13. Oxygen stable isotopes variation in water precipitation in Poland – anthropological applications

    Directory of Open Access Journals (Sweden)

    Lisowska-Gaczorek Aleksandra

    2017-03-01

    Full Text Available The main objective of oxygen isotope analysis is to determine the probable place of origin of an individual or the reconstruction of migration paths. The research are methodologically based on referencing oxygen isotope ratios of apatite phosphates (δ18Op to the range of environmental background δ18O, most frequently determined on the basis of precipitation.

  14. Improved stability of OLEDs with mild oxygen plasma treated PEDOT:PSS

    International Nuclear Information System (INIS)

    Zhou Yunfei; Yuan Yongbo; Cao Lingfang; Zhang Jie; Pang Hongqi; Lian Jiarong; Zhou Xiang

    2007-01-01

    We demonstrate improved stability of OLEDs with mild oxygen plasma-treated poly (3,4-ethylenedioxythiophene) doped with poly (styrenesulfonate) (PEDOT:PSS) as anode buffer layer. The devices with treated PEDOT:PSS layer exhibited dramatically enhanced lifetime by a factor of 9 compared to the control devices. We investigated the substantial changes in surface morphology of PEDOT:PSS layer after the mild oxygen plasma treatment by scanning electron microscopy and atomic force microscopy. We found that the appropriate treatment can form uniformly distributed nano scaled hillocks/islands on the surface of PEDOT:PSS layer, which possibly result in improved contact to hole transport layer and thus enhanced lifetime of the devices

  15. Single-cell measurement of red blood cell oxygen affinity.

    Science.gov (United States)

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M; Schonbrun, Ethan

    2015-08-11

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.

  16. Radiation-induced damage in T4 bacteriophage: the effect of superoxid radicals and molecular oxygen. Progress report, December 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Samuni, A.; Chevion, M.; Halpern, Y.S.; Ilan, Y.A.; Czapski, G.

    1978-01-01

    The sensitivity of T4 bacteriophage towards γ irradiation has been studied in phosphate buffer suspensions. The spectrum of the water radicals was controlled by a careful choice of the appropriate saturating gas and the addition of radical scavengers. Thus, it was possible to distinguish between the effects of molecular oxygen and the superoxide radicals formed through its reactions. About 90 percent of the damage was caused by the water radicals formed in the bulk suspensions. These probably affected the phage proteins; only the remainder of the damage involved the viral DNA. The oxygen enhancement ratio observed was not connected in any way with the formation of the superoxide radicals. The results confirmed that the OH radicals are the reactive species, while e - /sub aq/ as well as the superoxide radical do not contribute to the radiodamage

  17. New titrimetric method for oxygen to metal ratio in uranium oxide powders

    International Nuclear Information System (INIS)

    Ray, Vinod Kumar; Brahmananda Reddy, G.; Balaji Rao, Y.; Subba Rao, Y.

    2015-01-01

    O/U ratio is of high importance to both U 3 O 8 and UO 2 powders for different reasons. In UO 2 powder it is a guiding parameter for sintering process where as for U 3 O 8 , it indicates efficiency of ammonium di-uranate (ADU) to U 3 O 8 conversion process. In the present method for O/U determination, UO 2 and U 3 O 8 powders are dissolved in 4.5 M sulphuric acid and little HF by heating on hot plate. Subsequently, optimized quantity of phosphoric acid is added on cooling, for getting sharp end point. The resultant solution is titrated with standard potassium dichromate using barium diphenylamine sulphonate (BDS) as an indicator. The expanded uncertainties calculated for UO 2 and U 3 O 8 powders are ±0.004 and ±0.006 O/U ratio units respectively at 95 % confidence level. (author)

  18. Mechanism of magnetoresistance ratio enhancement in MgO/NiFe/MgO heterostructure by rapid thermal annealing

    Science.gov (United States)

    Zhao, Chong-Jun; Liu, Yang; Zhang, Jing-Yan; Sun, Li; Ding, Lei; Zhang, Peng; Wang, Bao-Yi; Cao, Xing-Zhong; Yu, Guang-Hua

    2012-08-01

    To reveal thermal effects on the film quality/microstructure evolution and the resulted magnetoresistance (MR) ratio in MgO/NiFe/MgO heterostructures, positron annihilation spectroscopy studies have been performed. It is found that the ionic interstitials in the MgO layers recombine with the nearby vacancies at lower annealing temperatures (200-300 °C) and lead to a slow increase in sample MR. Meanwhile, vacancy defects agglomeration/removal and ordering acceleration in MgO will occur at higher annealing temperatures (450-550 °C) and the improved MgO and MgO/NiFe interfaces microstructure are responsible for the observed significant MR enhancement.

  19. Comparison of the OxyMask and Venturi mask in the delivery of supplemental oxygen: Pilot study in oxygen-dependent patients

    Science.gov (United States)

    Beecroft, Jaime M; Hanly, Patrick J

    2006-01-01

    BACKGROUND: The OxyMask (Southmedic Inc, Canada) is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA) in patients with chronic hypoxemia. METHODS: Oxygen-dependent patients with chronic, stable respiratory disease were recruited to compare the OxyMask and Venturi mask in a randomized, single-blind, cross-over design. Baseline blood oxygen saturation (SaO2) was established breathing room air, followed in a random order by supplemental oxygen through the OxyMask or Venturi mask. Oxygen delivery was titrated to maintain SaO2 4% to 5% and 8% to 9% above baseline for two separate 30 min periods of stable breathing. Oxygen flow rate, partial pressure of inspired and expired oxygen (PO2) and carbon dioxide (PCO2), minute ventilation, heart rate, nasal and oral breathing, SaO2 and transcutaneous PCO2 were collected continuously. The study was repeated following alterations to the OxyMask design, which improved clearance of carbon dioxide. RESULTS: Thirteen patients, aged 28 to 79 years, were studied initially using the original OxyMask. Oxygen flow rate was lower, inspired PO2 was higher and expired PO2 was lower while using the OxyMask. Minute ventilation and inspired and expired PCO2 were significantly higher while using the OxyMask, whereas transcutaneous PCO2, heart rate and the ratio of nasal to oral breathing did not change significantly throughout the study. Following modification of the OxyMask, 13 additional patients, aged 18 to 79 years, were studied using the same protocol. The modified OxyMask provided a higher inspired PO2 at a lower flow rate, without evidence of carbon dioxide retention. CONCLUSIONS: Oxygen is delivered safely and more efficiently by the OxyMask than by the Venturi mask in stable oxygen-dependent patients. PMID:16896425

  20. Construction of 0.15 Tesla Overhauser Enhanced MRI.

    Science.gov (United States)

    Tokunaga, Yuumi; Nakao, Motonao; Naganuma, Tatsuya; Ichikawa, Kazuhiro

    2017-01-01

    Overhauser enhanced MRI (OMRI) is one of the free radical imaging technologies and has been used in biomedical research such as for partial oxygen measurements in tumor, and redox status in acute oxidative diseases. The external magnetic field of OMRI is frequently in the range of 5-10 mTesla to ensure microwave penetration into small animals, and the S/N ratio is limited. In this study, a 0.15 Tesla OMRI was constructed and tested to improve the S/N ratio for a small sample, or skin measurement. Specification of the main magnet was as follows: 0.15 Tesla permanent magnet; gap size 160 mm; homogenous spherical volume of 80 mm in diameter. The OMRI resonator was designed based on TE 101 cavity mode and machined from a phosphorus deoxidized copper block for electron spin resonance (ESR) excitation and a solenoid transmission/receive resonator for NMR detection. The resonant frequencies and Q values were 6.38 MHz/150 and 4.31-4.41 GHz/120 for NMR and ESR, respectively. The Q values were comparable to those of conventional low field OMRI resonators at 15 mTesla. As expected, the MRI S/N ratio was improved by a factor of 30. Triplet dynamic nuclear polarization spectra were observed for 14 N carboxy-PROXYL, along the excitation microwave sweep. In the current setup, the enhancement factor was ca. 0.5. In conclusion, the results of this preliminary evaluation indicate that the 0.15 Tesla OMRI could be useful for free radical measurement for small samples.

  1. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen.

    Science.gov (United States)

    Yeo, Boon Siang; Bell, Alexis T

    2011-04-13

    Scanning electron microscopy, linear sweep voltammetry, chronoamperometry, and in situ surface-enhanced Raman spectroscopy were used to investigate the electrochemical oxygen evolution reaction (OER) occurring on cobalt oxide films deposited on Au and other metal substrates. All experiments were carried out in 0.1 M KOH. A remarkable finding is that the turnover frequency for the OER exhibited by ∼0.4 ML of cobalt oxide deposited on Au is 40 times higher than that of bulk cobalt oxide. The activity of small amounts of cobalt oxide deposited on Pt, Pd, Cu, and Co decreased monotonically in the order Au > Pt > Pd > Cu > Co, paralleling the decreasing electronegativity of the substrate metal. Another notable finding is that the OER turnover frequency for ∼0.4 ML of cobalt oxide deposited on Au is nearly three times higher than that for bulk Ir. Raman spectroscopy revealed that the as-deposited cobalt oxide is present as Co(3)O(4) but undergoes progressive oxidation to CoO(OH) with increasing anodic potential. The higher OER activity of cobalt oxide deposited on Au is attributed to an increase in fraction of the Co sites present as Co(IV) cations, a state of cobalt believed to be essential for OER to occur. A hypothesis for how Co(IV) cations contribute to OER is proposed and discussed. © 2011 American Chemical Society

  2. Effect of oxygen partial pressure on oxidation of Mo-metal

    Science.gov (United States)

    Sharma, Rabindar Kumar; Kumar, Prabhat; Singh, Megha; Gopal, Pawar; Reddy, G. B.

    2018-05-01

    This report explains the effect of oxygen partial pressure (PO2 ) on oxidation of Mo-metal in oxygen plasma. XRD results indulge that oxide layers formed on Mo-surfaces at different oxygen partial pressures have two different oxide phases (i.e. orthorhombic MoO3 and monoclinic Mo8O23). Intense XRD peaks at high pressure (i.e. 2.0×10-1 Torr) points out the formation of thick oxide layer on Mo-surface due to presence of large oxygen species in chamber and less oxide volatilization. Whereas, at low PO2 (6.5×10-2 and 7.5×10-2 Torr.) the reduced peak strength is owing to high oxide volatilization rate. SEM micrographs and thickness measurements also support XRD results and confirm that the optimum -2value of PO2 to deposited thicker and uniform oxide film on glass substrate is 7.5×10-2 Torr through plasma assistedoxidation process. Further to study the compositional properties, EDX of the sample M2 (the best sample) is carried out, which confirms that the stoichiometric ratio is less than 3 (i.e. 2.88). Less stoichiometric ratio again confirms the presence of sub oxides in oxide layers on Mo metal as evidenced by XRD results. All the observed results are well in consonance with each other.

  3. Oxygen consumption by hydrazine in long sample lines

    International Nuclear Information System (INIS)

    Chi, Lisheng; Turner, Carl-W.

    2012-09-01

    In nuclear power plants secondary side system dissolved oxygen concentration is a strictly controlled chemistry parameter intended to minimize corrosion and fouling of steam cycle components. Low dissolved oxygen concentration is maintained by a combination of mechanical de-aeration and chemical reaction. The dissolved oxygen concentration in feedwater is monitored by sampling systems to ensure it remains within station specification during operation. The sample lines in a nuclear power plant's sampling system can be from 5 to nearly 200 meters in length, resulting in sample residence times between the take-off point to the analyzer from a few seconds to several minutes, depending on the flow rate and the length of the sample line. For many chemical parameters the residence time is of no concern. For measurements of dissolved oxygen and hydrazine in the secondary coolant, however, for residence times longer than one minute, it is uncertain whether the sample is representative of conditions in the secondary coolant, especially for samples taken from locations where the temperature is well over 100 deg. C. To address this concern, a series of tests were conducted under both warm-up and power operation conditions, respectively, to investigate the effect of temperature, residence time, sample line length, surface area, hydrazine-to-oxygen ratio, and the concentrations of dissolved oxygen and hydrazine on the consumption of oxygen by hydrazine. The test results revealed that dissolved oxygen measurements in CANDU plants are underestimated to various degrees, depending on the sampling system operating conditions. Two distinct types of behaviours are observed for the oxygen removal rate: 1) the percentage removal of dissolved oxygen is invariant with time during the tests, and increases with increasing residence time in the test section, when the reaction between hydrazine and oxygen is better described by a homogenous reaction mechanism, and 2) the percentage oxygen

  4. Intracrystalline oxygen isotope effects in CuSO4.5H2O and their dependence on crystallization temperature

    International Nuclear Information System (INIS)

    Heinzinger, K.

    1976-01-01

    In copper sulphate pentahydrate the water molecules occupy three different sites, connected with different oxygen isotope ratios. Results of measurements of the change of these isotope ratios with crystallization temperature are reported. The temperature dependence found here provides the basis for the determination of crystallization temperatures of hydrated crystals from such intracrystalline oxygen isotope fractionation. Suppositions necessary for the application of this method are discussed. (author)

  5. Numerical study on characteristics of radio-frequency discharge at atmospheric pressure in argon with small admixtures of oxygen

    Science.gov (United States)

    Wang, Yinan; Liu, Yue

    2017-07-01

    In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including continuity equations for electrons, positive ions, negative ions and neutral particles, the energy equation, and the Poisson equation for electric potential. Special attention has been paid to the electron energy dissipation and the mechanisms of electron heating, while the admixture of oxygen is in the range of 0.1%-0.6%. It is found that when the oxygen-to-argon ratio grows, the discharge is obviously divided into three stages: electron growth, electron reduction and the electron remaining unchanged. Furthermore, the cycle-averaged electric field, electron temperature, electron Ohmic heating, electron collisionless heating, electron energy dissipation and the net electron production are also studied in detail, and when the oxygen-to-argon ratio is relatively larger (R = 0.6%), double value peaks of electron Ohmic heating appear in the sheath. According to the results of the numerical simulation, various oxygen-to-argon ratios result in different amounts of electron energy dissipation and electron heating.

  6. Determination of helium and oxygen abundances in gaseous nebulae

    International Nuclear Information System (INIS)

    Pronik, V.I.

    1975-01-01

    A new method of determining the abudance of helium and oxygen is proposed. It is based on the statement that functions of atomic distribution with states of ionization may be determined to the sufficient precision by the amount of atoms in two states of ionization. The abudance of helium atoms in nebulae is determined with most probability, since of three possible states of ionization two states with the overwhelming majority atoms may be directly observed. The amount of He++ ions is determined from He 2 recombination lines, and the amount of He+ ions is from He1 lines. The total abudance of He atoms can be found from the observed ratios of I(4686)/I(Hsub(β)) and I(4471)/I(Hsub(β)) at any degree of ionization. These ratios slightly depend on the electron temperature. For oxygen, unlike helium, the observed ratios depend on the electron temperature of gas, and at high densities they also depend on the density of electrons (it is necessary to take account of deactivation of the excited level by electron impacts). Constructed are curves of equal abundance He/H=const for determining He/H according to the ratios observed I(4686)/I(Hsub(β)) and I(4471)/I(Hsub(β)) and curves of equal abudance O/H=const for determining O/H according to the ratios observed I(3727)/I(Hsub(/b)) and I(Nsub(1)+Nsub(2))/I(Hsub(β)), corrected preliminarily for density and temperature

  7. Silver/iron oxide/graphitic carbon composites as bacteriostatic catalysts for enhancing oxygen reduction in microbial fuel cells

    Science.gov (United States)

    Ma, Ming; You, Shijie; Gong, Xiaobo; Dai, Ying; Zou, Jinlong; Fu, Honggang

    2015-06-01

    Biofilms from anode heterotrophic bacteria are inevitably formed over cathodic catalytic sites, limiting the performances of single-chamber microbial fuel cells (MFCs). Graphitic carbon (GC) - based nano silver/iron oxide (AgNPs/Fe3O4/GC) composites are prepared from waste pomelo skin and used as antibacterial oxygen reduction catalysts for MFCs. AgNPs and Fe3O4 are introduced in situ into the composites by one-step carbothermal reduction, enhancing their conductivity and catalytic activity. To investigate the effects of Fe species on the antibacterial and catalytic properties, AgNPs/Fe3O4/GC is washed with sulfuric acid (1 mol L-1) for 0.5 h, 1 h, and 5 h and marked as AgNPs/Fe3O4/GC-x (x = 0.5 h, 1 h and 5 h, respectively). A maximum power density of 1712 ± 35 mW m-2 is obtained by AgNPs/Fe3O4/GC-1 h, which declines by 4.12% after 17 cycles. Under catalysis of all AgNP-containing catalysts, oxygen reduction reaction (ORR) proceeds via the 4e- pathway, and no toxic effects to anode microorganisms result from inhibiting the cathodic biofilm overgrowth. With the exception of AgNPs/Fe3O4/GC-5 h, the AgNPs-containing composites exhibit remarkable power output and coulombic efficiency through lowering proton transfer resistance and air-cathode biofouling. This study provides a perspective for the practical application of MFCs using these efficient antibacterial ORR catalysts.

  8. Effect of oxygen to argon flow ratio on the properties of Al-doped ZnO films for amorphous silicon thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yang-Shih [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Lien, Shui-Yang, E-mail: syl@mdu.edu.tw [Department of Materials Science and Engineering, MingDao University, ChangHua 52345, Taiwan, ROC (China); Huang, Yung-Chuan [Department of Materials Science and Engineering, MingDao University, ChangHua 52345, Taiwan, ROC (China); Wang, Chao-Chun [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Liu, Chueh-Yang [Department of Materials Science and Engineering, MingDao University, ChangHua 52345, Taiwan, ROC (China); Nautiyal, Asheesh [Department of Mechanical Engineering, Yuan Ze University, 135 Yuan-Tung Road, Chungli, 320 Taoyuan, Taiwan, ROC (China); Wuu, Dong-Sing [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Lee, Shuo-Jun [Department of Mechanical Engineering, Yuan Ze University, 135 Yuan-Tung Road, Chungli, 320 Taoyuan, Taiwan, ROC (China)

    2013-02-01

    Transparent conductive oxide thin films in solar cell fabrication have attracted much attention due to their high conductivity and transmittance. In this paper, we have investigated the aluminum-doped zinc oxide (AZO) thin films prepared by radiofrequency magnetron sputtering on Asahi U-type SnO{sub 2} glass with different O{sub 2}/Ar flow ratios in vacuum chamber. Furthermore, the micro-structural, electrical, and optical properties of AZO/SnO{sub 2} films were studied. The change in O{sub 2}/Ar flow ratios is found to significantly affect the haze value, and slightly affect electrical resistivity and transmittance of the films. Afterward, the fabricated AZO thin films with different O{sub 2}/Ar flow ratios were used for building the solar cell devices. The current–voltage and external quantum efficiency characteristics were investigated for the solar cell devices. The optimized O{sub 2}/Ar flow ratio of 3 for solar device shows the best efficiency of 10.41%, and a 20% increase in short-circuit current density compared to typical Asahi solar cells. - Highlights: ► A thin Al-doped zinc oxide (AZO) film has been deposited on SnO{sub 2} substrates. ► The AZO film deposited at an O{sub 2}/Ar ratio of 3 shows low resistivity and high haze. ► The AZO film contains tiny grains that enhance light scattering. ► The amorphous silicon solar cell with the AZO layer shows a 20% increase in Jsc.

  9. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad

    2014-07-25

    Ions are formed as a result of chemi-ionization processes in combustion systems. Recently, there has been an increasing interest in understanding flame ion chemistry due to the possible application of external electric fields to reduce emissions and improve combustion efficiency by active control of combustion process. In order to predict the effect of external electric fields on combustion plasma, it is critical to gain a good understanding of the flame ion chemistry. In this work, a Molecular Beam Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry on equivalence ratio of premixed flames. The relative ion concentration profiles are compared qualitatively with previous methane-oxygen studies and show good agreement. The relative ion concentration data obtained in the present study can be used to validate and improve ion chemistry models for methane-oxygen flames.

  10. Anomalous optical emission in hot dense oxygen

    Science.gov (United States)

    Santoro, Mario; Gregoryanz, Eugene; Mao, Ho-kwang; Hemley, Russell J.

    2007-11-01

    We report the observation of unusually strong, broad-band optical emission peaked between 590 and 650 nm when solid and fluid oxygen are heated by a near infrared laser at pressures from 3 to 46 GPa. In situ Raman spectra of oxygen were collected and corresponding temperatures were measured from the Stokes/anti-Stokes intensity ratios of vibrational transitions. The intense optical emission overwhelmed the Raman spectrum at temperatures exceeding 750 K. The spectrum was found to be much narrower than Planck-type thermal emission, and the intensity increase with input power was much steeper than expected for the thermal emission. The result places an important general caveat on calculating temperatures based on optical emission spectra in high-pressure laser-heating experiments. The intense emission in oxygen is photo-induced rather than being purely thermal, through multiphoton or multi-step single photon absorption processes related to the interaction with infrared radiation. The results suggest that short lived ionic species are induced by this laser-matter interaction.

  11. Direct observation of oxygen-vacancy-enhanced polarization in a SrTiO{sub 3}-buffered ferroelectric BaTiO{sub 3} film on GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Qiao [Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240 (United States); Materials Science and Technology Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Zhang, Yuyang [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240 (United States); Materials Science and Technology Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Contreras-Guerrero, Rocio; Droopad, Ravi [Ingram School of Engineering, Texas State University, San Marcos, Texas 78666 (United States); Pantelides, Sokrates T. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240 (United States); Materials Science and Technology Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37240 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117575 (Singapore); Ogut, Serdar; Klie, Robert F. [Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607 (United States)

    2015-11-16

    The integration of functional oxide thin-films on compound semiconductors can lead to a class of reconfigurable spin-based optoelectronic devices if defect-free, fully reversible active layers are stabilized. However, previous first-principles calculations predicted that SrTiO{sub 3} thin films grown on Si exhibit pinned ferroelectric behavior that is not switchable, due to the presence of interfacial vacancies. Meanwhile, piezoresponse force microscopy measurements have demonstrated ferroelectricity in BaTiO{sub 3} grown on semiconductor substrates. The presence of interfacial oxygen vacancies in such complex-oxide/semiconductor systems remains unexplored, and their effect on ferroelectricity is controversial. Here, we use a combination of aberration-corrected scanning transmission electron microscopy and first-principles density functional theory modeling to examine the role of interfacial oxygen vacancies on the ferroelectric polarization of a BaTiO{sub 3} thin film grown on GaAs. We demonstrate that interfacial oxygen vacancies enhance the polar discontinuity (and thus the single domain, out-of-plane polarization pinning in BaTiO{sub 3}), and propose that the presence of surface charge screening allows the formation of switchable domains.

  12. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  13. Oxygen consumption and responses of the freshwater snail Bulinus ...

    African Journals Online (AJOL)

    behaviour to oxygen differences in the water is of special interest. Knowledge of this ... fold, the prosobranch, to enhance the gaseous exchange between the animal ..... meins that little stress on the respiration ability was encountered towards ...

  14. Effects of carbogen plus fractionated irradiation on KHT tumor oxygenation

    International Nuclear Information System (INIS)

    Fenton, Bruce M.

    1997-01-01

    Background and purpose: Numerous studies have demonstrated improvements in the oxygenation of tumor cells following both irradiation and carbogen breathing. The current studies were initiated to measure the combined effects of carbogen inhalation plus single and multi-dose irradiation on tumor oxygen availability, to better define the underlying physiological relationships. Materials and methods: Using KHT murine sarcomas, radiation was delivered to the tumor-bearing legs of non-anesthetized mice. Tumors were quick-frozen prior to or following single or multifraction irradiation and carbogen breathing, and intravascular HbO 2 saturation profiles were determined cryospectrophotometrically. Results: HbO 2 levels for blood vessels located near the tumor surface initially decreased following 10 Gy irradiation, then increased and remained elevated. Interior HbO 2 levels remained unchanged. Following 2.5 Gy, HbO 2 changes were minimal. At 24 h following 10 Gy, HbO 2 levels were significantly increased compared to non-irradiated controls, and carbogen breathing produced no additional benefit. At 24 h following five fractions of 2 Gy, HbO 2 levels throughout the tumor volume were significantly higher in carbogen breathing animals than in air breathing controls. Conclusions: Although peripheral blood vessels demonstrated substantial improvements in oxygenation following irradiation, oxygen availability nearer the tumor center remained at very low levels. The utility of carbogen in enhancing tumor oxygen availability was maintained following five clinically relevant fractions. At higher doses, radiation-induced enhancements in HbO 2 levels overshadowed the carbogen effect. For either air or carbogen breathing, a decrease in the percentage of vessels with very low oxygen content did not appear to be a major factor in the reoxygenation of the KHT tumor

  15. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    Science.gov (United States)

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Oxygen isotope exchange with quartz during pyrolysis of silver sulfate and silver nitrate.

    Science.gov (United States)

    Schauer, Andrew J; Kunasek, Shelley A; Sofen, Eric D; Erbland, Joseph; Savarino, Joel; Johnson, Ben W; Amos, Helen M; Shaheen, Robina; Abaunza, Mariana; Jackson, Terri L; Thiemens, Mark H; Alexander, Becky

    2012-09-30

    Triple oxygen isotopes of sulfate and nitrate are useful metrics for the chemistry of their formation. Existing measurement methods, however, do not account for oxygen atom exchange with quartz during the thermal decomposition of sulfate. We present evidence for oxygen atom exchange, a simple modification to prevent exchange, and a correction for previous measurements. Silver sulfates and silver nitrates with excess (17)O were thermally decomposed in quartz and gold (for sulfate) and quartz and silver (for nitrate) sample containers to O(2) and byproducts in a modified Temperature Conversion/Elemental Analyzer (TC/EA). Helium carries O(2) through purification for isotope-ratio analysis of the three isotopes of oxygen in a Finnigan MAT253 isotope ratio mass spectrometer. The Δ(17)O results show clear oxygen atom exchange from non-zero (17)O-excess reference materials to zero (17)O-excess quartz cup sample containers. Quartz sample containers lower the Δ(17)O values of designer sulfate reference materials and USGS35 nitrate by 15% relative to gold or silver sample containers for quantities of 2-10 µmol O(2). Previous Δ(17)O measurements of sulfate that rely on pyrolysis in a quartz cup have been affected by oxygen exchange. These previous results can be corrected using a simple linear equation (Δ(17)O(gold) = Δ(17)O(quartz) * 1.14 + 0.06). Future pyrolysis of silver sulfate should be conducted in gold capsules or corrected to data obtained from gold capsules to avoid obtaining oxygen isotope exchange-affected data. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Evolution of Sangiovese Wines With Varied Tannin and Anthocyanin Ratios During Oxidative Aging

    Science.gov (United States)

    Gambuti, Angelita; Picariello, Luigi; Rinaldi, Alessandra; Moio, Luigi

    2018-01-01

    Changes in phenolic compounds, chromatic characteristics, acetaldehyde, and protein-reactive tannins associated with oxidative aging were studied in Sangiovese wines with varied tannin T/anthocyanin A ratios. For this purpose, three Sangiovese vineyards located in Tuscany were considered in the 2016 vintage. To obtain wines with different T/A ratios, two red wines were produced from each vinification batch: a free run juice with a lower T/A ratio and a marc pressed wine with a higher T/A ratio. An overall of six wines with T/A ratios ranging between 5 and 23 were produced. An oxidation treatment (four saturation cycles) was applied to each wine. Average and initial oxygen consumption rates (OCR) were positively correlated to VRF/mA (vanilline reactive flavans/monomeric anthocyanins) and T/A ratios while OCRs were negatively related to the wine content in monomeric and total anthocyanins. The higher the A content was, the greater the loss of total and free anthocyanins. A significant lower production of polymeric pigments was detected in all pressed wines with respect to the correspondant free run one. A gradual decrease of tannin reactivity toward saliva proteins after the application of oxygen saturation cycles was detected. The results obtained in this experiment indicate that VRF/mA and T/A ratios are among the fundamental parameters to evaluate before choosing the antioxidant protection to be used and the right oxidation level to apply for a longer shelf-life of red wine. PMID:29600246

  18. Evolution of Sangiovese Wines With Varied Tannin and Anthocyanin Ratios During Oxidative Aging.

    Science.gov (United States)

    Gambuti, Angelita; Picariello, Luigi; Rinaldi, Alessandra; Moio, Luigi

    2018-01-01

    Changes in phenolic compounds, chromatic characteristics, acetaldehyde, and protein-reactive tannins associated with oxidative aging were studied in Sangiovese wines with varied tannin T/anthocyanin A ratios. For this purpose, three Sangiovese vineyards located in Tuscany were considered in the 2016 vintage. To obtain wines with different T/A ratios, two red wines were produced from each vinification batch: a free run juice with a lower T/A ratio and a marc pressed wine with a higher T/A ratio. An overall of six wines with T/A ratios ranging between 5 and 23 were produced. An oxidation treatment (four saturation cycles) was applied to each wine. Average and initial oxygen consumption rates (OCR) were positively correlated to VRF/mA (vanilline reactive flavans/monomeric anthocyanins) and T/A ratios while OCRs were negatively related to the wine content in monomeric and total anthocyanins. The higher the A content was, the greater the loss of total and free anthocyanins. A significant lower production of polymeric pigments was detected in all pressed wines with respect to the correspondant free run one. A gradual decrease of tannin reactivity toward saliva proteins after the application of oxygen saturation cycles was detected. The results obtained in this experiment indicate that VRF/mA and T/A ratios are among the fundamental parameters to evaluate before choosing the antioxidant protection to be used and the right oxidation level to apply for a longer shelf-life of red wine.

  19. Evolution of Sangiovese Wines with Varied Tannin and Anthocyanin Ratios during Oxidative Aging

    Science.gov (United States)

    Gambuti, Angelita; Picariello, Luigi; Rinaldi, Alessandra; Moio, Luigi

    2018-03-01

    Changes in phenolic compounds, chromatic characteristics, acetaldehyde, and protein-reactive tannins associated with oxidative aging were studied in Sangiovese wines with varied tannin T/anthocyanin A ratios. For this purpose, three Sangiovese vineyards located in Tuscany were considered in the 2016 vintage. To obtain wines with different T/A ratios, two red wines were produced from each vinification batch: a free run juice with a lower T/A ratio and a marc pressed wine with a higher T/A ratio. An overall of 6 wines with T/A ratios ranging between 5 and 23 were produced. An oxidation treatment (four saturation cycles) was applied to each wine. Average and initial oxygen consumption rates (OCR) were positively correlated to VRF/mA (vanilline reactive flavans/monomeric anthocyanins) and T/A ratios while OCRs were negatively related to the wine content in monomeric and total anthocyanins. The higher the A content was, the greater the loss of total and free anthocyanins. A significant lower production of polymeric pigments was detected in all pressed wines with respect to the correspondant free run one. A gradual decrease of tannin reactivity towards saliva proteins after the application of oxygen saturation cycles was detected. The results obtained in this experiment indicate that VRF/mA and T/A ratios are among the fundamental parameters to evaluate before choosing the antioxidant protection to be used and the right oxidation level to apply for a longer shelf-life of red wine.

  20. Evolution of Sangiovese Wines With Varied Tannin and Anthocyanin Ratios During Oxidative Aging

    Directory of Open Access Journals (Sweden)

    Angelita Gambuti

    2018-03-01

    Full Text Available Changes in phenolic compounds, chromatic characteristics, acetaldehyde, and protein-reactive tannins associated with oxidative aging were studied in Sangiovese wines with varied tannin T/anthocyanin A ratios. For this purpose, three Sangiovese vineyards located in Tuscany were considered in the 2016 vintage. To obtain wines with different T/A ratios, two red wines were produced from each vinification batch: a free run juice with a lower T/A ratio and a marc pressed wine with a higher T/A ratio. An overall of six wines with T/A ratios ranging between 5 and 23 were produced. An oxidation treatment (