WorldWideScience

Sample records for oxygen acids hx

  1. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress.

    Science.gov (United States)

    Finiti, Ivan; de la O Leyva, María; Vicedo, Begonya; Gómez-Pastor, Rocío; López-Cruz, Jaime; García-Agustín, Pilar; Real, Maria Dolores; González-Bosch, Carmen

    2014-08-01

    Treatment with the resistance priming inducer hexanoic acid (Hx) protects tomato plants from Botrytis cinerea by activating defence responses. To investigate the molecular mechanisms underlying hexanoic acid-induced resistance (Hx-IR), we compared the expression profiles of three different conditions: Botrytis-infected plants (Inf), Hx-treated plants (Hx) and Hx-treated + infected plants (Hx+Inf). The microarray analysis at 24 h post-inoculation showed that Hx and Hx+Inf plants exhibited the differential expression and priming of many Botrytis-induced genes. Interestingly, we found that the activation by Hx of other genes was not altered by the fungus at this time point. These genes may be considered to be specific targets of the Hx priming effect and may help to elucidate its mechanisms of action. It is noteworthy that, in Hx and Hx+Inf plants, there was up-regulation of proteinase inhibitor genes, DNA-binding factors, enzymes involved in plant hormone signalling and synthesis, and, remarkably, the genes involved in oxidative stress. Given the relevance of the oxidative burst occurring in plant-pathogen interactions, the effect of Hx on this process was studied in depth. We showed by specific staining that reactive oxygen species (ROS) accumulation in Hx+Inf plants was reduced and more restricted around infection sites. In addition, these plants showed higher ratios of reduced to oxidized glutathione and ascorbate, and normal levels of antioxidant activities. The results obtained indicate that Hx protects tomato plants from B. cinerea by regulating and priming Botrytis-specific and non-specific genes, preventing the harmful effects of oxidative stress produced by infection. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  2. Incorporation of oxygen into abscisic acid and phaseic acid for molecular oxygen

    International Nuclear Information System (INIS)

    Creelman, R.A.; Zeevaart, J.A.D.

    1984-01-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumariu. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% 18 O 2 and 80% N 2 indicates that one atom of 18 O is incorporated in the 6'-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase. Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing 18 O 2 indicates that one atom of 18 O is presented in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-streesed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggest that either (a) the oxygen present in the 1'-, 4'-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1'- and 4'-positions of abscisic acid which is converted to abscisic acid under conditions of water stress. 17 references, 2 figures, 1 tables

  3. Incorporation of Oxygen into Abscisic Acid and Phaseic Acid from Molecular Oxygen 1

    Science.gov (United States)

    Creelman, Robert A.; Zeevaart, Jan A. D.

    1984-01-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% 18O2 and 80% N2 indicates that one atom of 18O is incorporated in the 6′-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase. Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing 18O2 indicates that one atom of 18O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1′-, 4′-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1′- and 4′-positions of abscisic acid which is converted to abscisic acid under conditions of water stress. PMID:16663564

  4. Incorporation of oxygen into abscisic Acid and phaseic Acid from molecular oxygen.

    Science.gov (United States)

    Creelman, R A; Zeevaart, J A

    1984-05-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% (18)O(2) and 80% N(2) indicates that one atom of (18)O is incorporated in the 6'-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase.Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing (18)O(2) indicates that one atom of (18)O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1'-, 4'-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1'- and 4'-positions of abscisic acid which is converted to abscisic acid under conditions of water stress.

  5. NR4A nuclear receptors mediate carnitine palmitoyltransferase 1A gene expression by the rexinoid HX600

    Energy Technology Data Exchange (ETDEWEB)

    Ishizawa, Michiyasu [Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610 (Japan); Kagechika, Hiroyuki [Graduate School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Makishima, Makoto, E-mail: makishima.makoto@nihon-u.ac.jp [Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610 (Japan)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer The function of RXR heterodimers with NR4 receptors remains unknown. Black-Right-Pointing-Pointer The RXR ligand HX600 induces expression of carnitine palmitoyltransferase 1A (CPT1A). Black-Right-Pointing-Pointer HX600-induced CPT1A expression is mediated by the NR4 receptors, Nur77 and NURR1. Black-Right-Pointing-Pointer CPT1A induction by HX600 is not mediated by de novo protein synthesis. Black-Right-Pointing-Pointer CPT1A could be a target of the Nur77-RXR and NURR1-RXR heterodimers. -- Abstract: Retinoid X receptors (RXRs) are members of the nuclear receptor superfamily and can be activated by 9-cis retinoic acid (9CRA). RXRs form homodimers and heterodimers with other nuclear receptors such as the retinoic acid receptor and NR4 subfamily nuclear receptors, Nur77 and NURR1. Potential physiological roles of the Nur77-RXR and NURR1-RXR heterodimers have not been elucidated. In this study, we identified a gene regulated by these heterodimers utilizing HX600, a selective RXR agonist for Nur77-RXR and NURR1-RXR. While 9CRA induced many genes, including RAR-target genes, HX600 effectively induced only carnitine palmitoyltransferase 1A (CPT1A) in human teratocarcinoma NT2/D1 cells, which express RXR{alpha}, Nur77 and NURR1. HX600 also increased CPT1A expression in human embryonic kidney (HEK) 293 cells and hepatocyte-derived HepG2 cells. Although HX600 induced CPT1A less effectively than 9CRA, overexpression of Nur77 or NURR1 increased the HX600 response to levels similar to 9CRA in NT2/D1 and HEK293 cells. A dominant-negative form of Nur77 or NURR1 repressed the induction of CPT1A by HX600. A protein synthesis inhibitor did not alter HX600-dependent CPT1A induction. Thus, the rexinoid HX600 directly induces expression of CPT1A through a Nur77 or NURR1-mediated mechanism. CPT1A, a gene involved in fatty acid {beta}-oxidation, could be a target of RXR-NR4 receptor heterodimers.

  6. Reactivity of amino acid anions with nitrogen and oxygen atoms.

    Science.gov (United States)

    Wang, Zhe-Chen; Li, Ya-Ke; He, Sheng-Gui; Bierbaum, Veronica M

    2018-02-14

    For many decades, astronomers have searched for biological molecules, including amino acids, in the interstellar medium; this endeavor is important for investigating the hypothesis of the origin of life from space. The space environment is complex and atomic species, such as nitrogen and oxygen atoms, are widely distributed. In this work, the reactions of eight typical deprotonated amino acids (glycine, alanine, cysteine, proline, aspartic acid, histidine, tyrosine, and tryptophan) with ground state nitrogen and oxygen atoms are studied by experiment and theory. These amino acid anions do not react with nitrogen atoms. However, the reactions of these ions with oxygen atoms show an intriguing variety of ionic products and the reaction rate constants are of the order of 10 -10 cm 3 s -1 . Density functional calculations provide detailed mechanisms of the reactions, and demonstrate that spin conversion is essential for some processes. Our study provides important data and insights for understanding the kinetic and dynamic behavior of amino acids in space environments.

  7. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    Science.gov (United States)

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  8. Second harmonics HOE recording in Bayfol HX

    Science.gov (United States)

    Bruder, Friedrich-Karl; Fäcke, Thomas; Hagen, Rainer; Hönel, Dennis; Orselli, Enrico; Rewitz, Christian; Rölle, Thomas; Walze, Günther; Wewer, Brita

    2015-05-01

    Volume Holographic Optical Elements (vHOEs) provide superior optical properties over DOEs (surface gratings) due to high diffraction efficiencies in the -1st order and their excellent Bragg selectivity. Bayer MaterialScience is offering a variety of customized instant-developing photopolymer films to meet requirements for a specific optics design of a phase hologram. For instance, the photopolymer film thickness is an ideal means to adjust the angular and the spectral selectivity while the index modulation can be adopted with the film thickness to achieve a specific required dynamic range. This is especially helpful for transmission type holograms and in multiplex recordings. The selection of different substrates is helpful to achieve the overall optical properties for a targeted application that we support in B2B-focused developments. To provide further guidance on how to record volume holograms in Bayfol HX, we describe in this paper a new route towards the recording of substrate guided vHOEs by using optimized photopolymer films. Furthermore, we discuss special writing conditions that are suitable to create higher 2nd harmonic intensities and their useful applications. Due to total internal reflection (TIR) at the photopolymer-air interface in substrate guided vHOEs, hologram recording with those large diffraction angles cannot usually be done with two free-space beams. Edge-lit recording setups are used to circumvent this limitation. However, such setups require bulky recording blocks or liquid bathes and are complex and hard to align. A different approach that we present in this paper is to exploit 2nd harmonic grating generation in a freespace recording scheme. Those 2nd harmonic components allow the replay of diffraction angles that are normally only accessible with edge-lit writing configurations. Therefore, this approach significantly simplifies master recordings for vHOEs with edge-lit functionalities, which later can be used in contact copy schemes for

  9. Oxygen uptake during the γ-irradiation of fatty acids

    International Nuclear Information System (INIS)

    Metwally, M.M.K.; Moore, J.S.

    1987-01-01

    The radiation-induced oxidation of saturated and unsaturated fatty acids in aqueous solutions has been estimated by measurement of the continuous uptake of oxygen using an oxygen electrode. Chain reactions, initiated by HO radicals, are easily identified to be occurring in the case of unsaturated fatty acids. Other mild oxidation agents, namely (SCN)2 -anion radicals, Br 2 - anion radicals and N 3 -anion radicals, are also found to be capable of oxidizing the polyunsaturated fatty acids. Evidence is presented the O 2- anion radicals may also initiate peroxidation. The oxidation of the polyunsaturated fatty acids is dependent on dose rate, fatty acid concentration, temperature and the presence of antioxidant and other protective agents. Kinetic studies of the reaction of (SCN)2 - anion radicals and Br 2 - anion radicals with linoleic and linolenic acids have been carried out using pulse radiolysis. The bimolecular rate constants for both radical species with the lipids are approx 10 7 mol-? 1 dm 3 s -1 , below their critical micelle concentrations, and decrease at higher concentrations due to micelle formation. (author)

  10. Electronic properties and bonding in Zr Hx thin films investigated by valence-band x-ray photoelectron spectroscopy

    Science.gov (United States)

    Magnuson, Martin; Schmidt, Susann; Hultman, Lars; Högberg, Hans

    2017-11-01

    The electronic structure and chemical bonding in reactively magnetron sputtered Zr Hx (x =0.15 , 0.30, 1.16) thin films with oxygen content as low as 0.2 at.% are investigated by 4d valence band, shallow 4p core-level, and 3d core-level x-ray photoelectron spectroscopy. With increasing hydrogen content, we observe significant reduction of the 4d valence states close to the Fermi level as a result of redistribution of intensity toward the H 1s-Zr 4d hybridization region at ˜6 eV below the Fermi level. For low hydrogen content (x =0.15 , 0.30), the films consist of a superposition of hexagonal closest-packed metal (α phase) and understoichiometric δ -Zr Hx (Ca F2 -type structure) phases, while for x =1.16 , the films form single-phase Zr Hx that largely resembles that of stoichiometric δ -Zr H2 phase. We show that the cubic δ -Zr Hx phase is metastable as thin film up to x =1.16 , while for higher H contents the structure is predicted to be tetragonally distorted. For the investigated Zr H1.16 film, we find chemical shifts of 0.68 and 0.51 eV toward higher binding energies for the Zr 4 p3 /2 and 3 d5 /2 peak positions, respectively. Compared to the Zr metal binding energies of 27.26 and 178.87 eV, this signifies a charge transfer from Zr to H atoms. The change in the electronic structure, spectral line shapes, and chemical shifts as a function of hydrogen content is discussed in relation to the charge transfer from Zr to H that affects the conductivity by charge redistribution in the valence band.

  11. DSC and X-ray diffraction investigations of phase transitions in HxBABA and NBABA

    International Nuclear Information System (INIS)

    Usha Deniz, K.; Paranjpe, A.S.; Mirza, E.B.; Parvathanathan, P.S.; Patel, K.S.

    1979-01-01

    The phase transitions and the heats of transformation, of the hexyl (HxBABA) and nonyl (NBABA) members of the series of compounds, p-n-Alkoxybenzylidene-p-Aminobenzoic Acids, have been studied by DSC in the temperature range, - 100 0 C to 300 0 C. A scheme of transitions has been proposed for each of the compounds. X-ray diffraction measurements have been done in the smectic C(Ssub(c)) and nematic (N) phases of these materials. The results reveal that (1) the Ssub(c) phase in both compounds is of the C 1 -type, (2) Ssub(c)-type order is seen throughout the nematic phase in HxBABA, whereas in NBABA, it is seen only in the neighbourhood of the Ssub(c)-N transition, (3) the temperature dependence of the smectic layer thickness, d, and of the directly measured tilt angle, theta sub(t,d), reflect faithfully the strength of the first order transition, Ssub(c)-N, and (4) there is a marked difference between the values and the temperature variations of theta sub(t,d) and theta sub(t,c) (tilt angle calculated from d) which is not completely understood, at present

  12. A route for oxygen isotope enrichment of α-COOH groups in amino acids

    International Nuclear Information System (INIS)

    Steinschneidner, A.; St Armour, T.; Valentine, B.; Burgar, M.I.; Fiat, D.

    1981-01-01

    Oxygen-17 was introduced into leucine, proline, phenylalanine and tyrosine. The corresponding tert-butyloxycarbonyl amino acids were first converted to their O-methyl esters. Following saponification with Na 17 OH, the tert-butyloxycarbonyl group was removed to yield free amino acid enriched with oxygen-17 by approximately 1000-fold. Oxygen-17 NMR revealed well-resolved peaks for the labelled amino acids. The chemical shifts are reported. (author)

  13. Gallic acid as an oxygen scavenger in bio-based multilayer packaging films

    OpenAIRE

    Pant, Astrid; Sängerlaub, Sven; Müller, Kajetan

    2017-01-01

    Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and ...

  14. Disruption of gene pqqA or pqqB reduces plant growth promotion activity and biocontrol of crown gall disease by Rahnella aquatilis HX2.

    Directory of Open Access Journals (Sweden)

    Lei Li

    Full Text Available Rahnella aquatilis strain HX2 has the ability to promote maize growth and suppress sunflower crown gall disease caused by Agrobacterium vitis, A. tumefaciens, and A. rhizogenes. Pyrroloquinoline quinone (PQQ, a cofactor of aldose and alcohol dehydrogenases, is required for the synthesis of an antibacterial substance, gluconic acid, by HX2. Mutants of HX2 unable to produce PQQ were obtained by in-frame deletion of either the pqqA or pqqB gene. In this study, we report the independent functions of pqqA and pqqB genes in relation to PQQ synthesis. Interestingly, both the pqqA and pqqB mutants of R. aquatilis eliminated the ability of strain HX2 to produce antibacterial substance, which in turn, reduced the effectiveness of the strain for biological control of sunflower crown gall disease. The mutation also resulted in decreased mineral phosphate solubilization by HX2, which reduced the efficacy of this strain as a biological fertilizer. These functions were restored by complementation with the wild-type pqq gene cluster. Additionally, the phenotypes of HX2 derivatives, including colony morphology, growth dynamic, and pH change of culture medium were impacted to different extents. Our findings suggested that pqqA and pqqB genes individually play important functions in PQQ biosynthesis and are required for antibacterial activity and phosphorous solubilization. These traits are essential for R. aquatilis efficacy as a biological control and plant growth promoting strain. This study enhances our fundamental understanding of the biosynthesis of an environmentally significant cofactor produced by a promising biocontrol and biological fertilizer strain.

  15. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling.

    Science.gov (United States)

    Xu, Enjun; Brosché, Mikael

    2014-06-04

    Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling.

  16. NAXE Mutations Disrupt the Cellular NAD(P)HX Repair System and Cause a Lethal Neurometabolic Disorder of Early Childhood.

    Science.gov (United States)

    Kremer, Laura S; Danhauser, Katharina; Herebian, Diran; Petkovic Ramadža, Danijela; Piekutowska-Abramczuk, Dorota; Seibt, Annette; Müller-Felber, Wolfgang; Haack, Tobias B; Płoski, Rafał; Lohmeier, Klaus; Schneider, Dominik; Klee, Dirk; Rokicki, Dariusz; Mayatepek, Ertan; Strom, Tim M; Meitinger, Thomas; Klopstock, Thomas; Pronicka, Ewa; Mayr, Johannes A; Baric, Ivo; Distelmaier, Felix; Prokisch, Holger

    2016-10-06

    To safeguard the cell from the accumulation of potentially harmful metabolic intermediates, specific repair mechanisms have evolved. APOA1BP, now renamed NAXE, encodes an epimerase essential in the cellular metabolite repair for NADHX and NADPHX. The enzyme catalyzes the epimerization of NAD(P)HX, thereby avoiding the accumulation of toxic metabolites. The clinical importance of the NAD(P)HX repair system has been unknown. Exome sequencing revealed pathogenic biallelic mutations in NAXE in children from four families with (sub-) acute-onset ataxia, cerebellar edema, spinal myelopathy, and skin lesions. Lactate was elevated in cerebrospinal fluid of all affected individuals. Disease onset was during the second year of life and clinical signs as well as episodes of deterioration were triggered by febrile infections. Disease course was rapidly progressive, leading to coma, global brain atrophy, and finally to death in all affected individuals. NAXE levels were undetectable in fibroblasts from affected individuals of two families. In these fibroblasts we measured highly elevated concentrations of the toxic metabolite cyclic-NADHX, confirming a deficiency of the mitochondrial NAD(P)HX repair system. Finally, NAD or nicotinic acid (vitamin B3) supplementation might have therapeutic implications for this fatal disorder. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Effect of oxygen enrichment in air on acid gas combustion under Claus conditions

    KAUST Repository

    Ibrahim, Salisu

    2013-09-01

    Results are presented to examine the combustion of acid gas (H2S and CO2) in hydrogen-fueled flames using a mixture of oxygen and nitrogen under Claus conditions (Φ = 3). Specifically the effect of oxygen enrichment in the above flames is examined. The compositions of acid gas examined are100% H2S and 50% H2S/50% CO2 with different percentages of oxygen enrichment (0%, 19.3% and 69.3%) in the oxygen/nitrogen mixtures. The results revealed that combustion of acid gas formed SO2 wherein the mole fraction of SO2 increased to an asymptotic value at all the oxygen concentrations examined. In addition, increase in oxygen enrichment of the air resulted in increased amounts of SO2 rather than the formation of more desirable elemental sulfur. In case of 50% H2S/50% CO2 acid gas, carbon monoxide mole fraction increased with oxygen enrichment which is an indicator to the availability of additional amounts of oxygen into the reaction pool. This gas mixture resulted in the formation of other sulfurous–carbonaceous compounds (COS and CS2) due to the presence of carbon monoxide. The results showed that the rate of COS formation increased with oxygen enrichment due to the availability of higher amounts of CO while that of CS2 reduced. The global reactions responsible for this observed phenomenon are presented.

  18. Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions

    Science.gov (United States)

    Jahnke, L. L.; Nichols, P. D.

    1986-01-01

    The sterol and fatty acid concentrations for M. capsulatus grown in fed-batch cultures over a wide range of oxygen tensions (0.1-10.6 percent) and at a constant methane level are evaluated. The analyses reveal that the biomass decreases as oxygen levels are lowered; the sterol concentration increases when the oxygen range is between 0.5-1.1 percent and decreases when the oxygen range is below 0.5 percent; and the amount of monounsaturated C16 decreases and the concentration of cyclopropane fatty acids increases after oxygen is reduced. It is noted that growth and membrane synthesis occur at low oxygen concentrations and that the synthesis of membrane lipids responds to growth conditions.

  19. TH-302 in Combination with Radiotherapy Enhances the Therapeutic Outcome and Is Associated with Pretreatment [18F]HX4 Hypoxia PET Imaging.

    Science.gov (United States)

    Peeters, Sarah G J A; Zegers, Catharina M L; Biemans, Rianne; Lieuwes, Natasja G; van Stiphout, Ruud G P M; Yaromina, Ala; Sun, Jessica D; Hart, Charles P; Windhorst, Albert D; van Elmpt, Wouter; Dubois, Ludwig J; Lambin, Philippe

    2015-07-01

    Conventional anticancer treatments are often impaired by the presence of hypoxia. TH-302 selectively targets hypoxic tumor regions, where it is converted into a cytotoxic agent. This study assessed the efficacy of the combination treatment of TH-302 and radiotherapy in two preclinical tumor models. The effect of oxygen modification on the combination treatment was evaluated and the effect of TH-302 on the hypoxic fraction (HF) was monitored using [(18)F]HX4-PET imaging and pimonidazole IHC stainings. Rhabdomyosarcoma R1 and H460 NSCLC tumor-bearing animals were treated with TH-302 and radiotherapy (8 Gy, single dose). The tumor oxygenation status was altered by exposing animals to carbogen (95% oxygen) and nicotinamide, 21% or 7% oxygen breathing during the course of the treatment. Tumor growth and treatment toxicity were monitored until the tumor reached four times its start volume (T4×SV). Both tumor models showed a growth delay after TH-302 treatment, which further increased when combined with radiotherapy (enhancement ratio rhabdomyosarcoma 1.23; H460 1.49). TH-302 decreases the HF in both models, consistent with its hypoxia-targeting mechanism of action. Treatment efficacy was dependent on tumor oxygenation; increasing the tumor oxygen status abolished the effect of TH-302, whereas enhancing the HF enlarged TH-302's therapeutic effect. An association was observed in rhabdomyosarcoma tumors between the pretreatment HF as measured by [(18)F]HX4-PET imaging and the T4×SV. The combination of TH-302 and radiotherapy is promising and warrants clinical testing, preferably guided by the companion biomarker [(18)F]HX4 hypoxia PET imaging for patient selection. ©2015 American Association for Cancer Research.

  20. Sustainable hydrogen from bio-oil - Catalytic steam reforming of acetic acid as a model oxygenate

    NARCIS (Netherlands)

    Takanabe, Kazuhiro; Seshan, K.; Lefferts, Leon; Aika, Ken-ichi

    2004-01-01

    Steam reforming of acetic acid as a model oxygenate present in bio-oil over Pt/ZrO2 catalysts has been studied. Pt/ZrO2 catalysts are very active, completely converting acetic acid and give hydrogen yield close to thermodynamic equilibrium. The catalyst deactivated by formation of oligomers, which

  1. Leaching of basic oxygen furnace sludge with sulphuric acid

    Directory of Open Access Journals (Sweden)

    Andrea Miškufová

    2010-03-01

    Full Text Available In this study the hydrometallurgical processing of BOF sludge in the sulphuric acid solutions under atmospheric pressureand temperatures up to 100 °C is investigated on a laboratory scale. The influence of sulphuric acid concentration, temperature, timeand liquid to solid ratio (L:S on the leaching process was studied. The main aim of this study was to determine optimal conditions whenthe maximum amount of zinc passes into the solution.

  2. LOGOS. HX: a core simulator for high conversion boiling water reactors

    International Nuclear Information System (INIS)

    Tsuiki, Makoto; Sakurada, Koichi; Yoshida, Hiroyuki.

    1988-01-01

    A three-dimensional physics simulator 'LOGOS. HX' has been developed for the designing analysis of high conversion boiling water reactor (HCBWR) cores. Its functions, calculational methods, and verification results will briefly be discussed. (author)

  3. Continuing ARAS visible spectroscopic monitoring of the slow classical nova Sct 2017 = ASASSN-17hx

    Science.gov (United States)

    Guarro, Joan; Berardi, Paolo; Sollecchia, Umberto; Lester, Tim; Bohlsen, Terry; Luckas, Paul; Campos, Fran; Franco, Lorenzo; Garde, Olivier; Buil, Christian; Edlin, Jim; Teyssier, François

    2017-09-01

    We report the results of our continuing spectroscopic monitoring of the slow classical nova Sct 2017 = ASASSN-17hx (Atel# 10523, #10524, #10527, #10558, #10736) as part of the ongoing program by members of the ARAS group.

  4. Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films.

    Science.gov (United States)

    Pant, Astrid F; Sängerlaub, Sven; Müller, Kajetan

    2017-05-03

    Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O₂/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (a w > 0.86).

  5. KORELASI KOMPOSISI UNSUR TERHADAP SIFAT TERMAL SERBUK BAHAN BAKAR U-ZrHX

    Directory of Open Access Journals (Sweden)

    Masrukan Masrukan

    2016-10-01

    Full Text Available ABSTRAK KORELASI KOMPOSISI UNSUR TERHADAP SIFAT TERMAL SERBUK BAHAN BAKAR      U-ZrHx. Telah dilakukan analisis untuk menentukan korelasi komposisi terhadap sifat termal pada serbuk bahan bakar U-ZrHx. Serbuk U-ZrHx dibuat dari proses hidriding ingot U-Zr, dimana ingot U-Zr merupakan hasil peleburan logam U dan Zr. Dalam percobaan ini dibuat tiga variasi serbuk yaitu U-35ZrHx, U-45ZrHx, dan U-55ZrHx. Perlunya dilakukan penentuan kadar Zr terhadap sifat termal adalah untuk mengetahui pengaruh kadar Zr terhadap sifat transformasi panas dari bahan bakar tersebut. Mula –mula dilebur logam U dan Zr didalam tungku peleburan busur listrik hingga menghasilkan ingot U-Zr. Ingot U-Zr selanjutnya dibuat serbuk dengan teknik hidridring-milling hingga menghasilkan serbuk U-Zr. Serbuk U-Zr dianalisis komposisi dengan menggunakan teknik sepektroskopi serapan atom (SAA dan sepektroskopi UV-Vis. Hasil analisis komposisi menunjukkan bahwa pada analisis untuk menentukan kandungan U dan Zr hampir semua sampel uji yang dianalisis mempunyai perbedaan yang cukup besar antara kandungan U dan Zr yang ditentukan dengan hasil analisis U dan Zr terkecuali hasil analisis pada serbuk U-45Zr yang hanya berbeda 0,609 %. Dari hasil pengujian unsur pengotor diperoleh bahwa semua unsur pengotor yang ada masih memenuhi persyaratan untuk bahan. Pengujian kapasitas panas yang dilakukan pada rentang temperatur 35ºC hingga 437ºC memperlihatkan bahwa nilai kapasitas yang paling besar adalah serbuk U-35ZrHx dengan nilai kapasitas panas sebesar 0,13 J/g.oC. Sementara itu dari pengujian transisi perubahan fasa diperoleh bahwa pada U-45ZrHx mengalami dua tahapan reaksi disertai perubahan fasa. Dapat disimpulkan apabila dilihat dari kandungan U dan Zr  belum bisa digunakan untuk bahan bakar, sedangkan dari analisis kandungan unsur pengotor diperoleh bahwa semua unsur yang ada masih  memenuhi persyaratan untuk bahan bakar kecuali unsur Fe. Sementara itu hasil analisis sifat termal

  6. Treatment of iron(II)-rich acid mine water with limestone and oxygen.

    Science.gov (United States)

    Mohajane, G B; Maree, J P; Panichev, N

    2014-01-01

    The main components of acid mine water are free acid, sulphate, and Fe²⁺. Limestone is the most cost-effective alkali that can be used for neutralization. The purpose of this investigation was to identify conditions where Fe²⁺ is removed with limestone and simultaneously oxidized with oxygen to Fe³⁺, in a polyvinyl chloride pipe under pressure. Gypsum scaling is prevented by passing rubber balls through the pipe of the so-called Oxygen-Pipe-Neutralization (OPeN) process pilot plant. Two synthetic waters were treated: (A) acid mine water containing 123 mg L⁻¹ Fe²⁺ representing gold mine water, and (B) acid mine water containing 6,032 mg L⁻¹ Fe²⁺ representing coal mine water. Batch studies were carried out in a pipe reactor and showed that the rate of Fe²⁺ oxidation depended on the Fe²⁺ concentration, oxygen pressure, amount of recycled sludge, limestone dosage and the mixing rate. Continuous studies in an OPeN process pilot plant resulted in 100% removal of total acidity from synthetic coal mine water and a 98% removal from synthetic gold mine water. Fe²⁺ was removed completely as precipitated Fe(OH)₃ from both synthetic coal and gold mine water at around pH 7 at 200 and 100 kPa oxygen pressure, respectively.

  7. Singlet oxygen-induced oxidation of alkylthiocarboxylic acids

    International Nuclear Information System (INIS)

    Celuch, M.; Pogocki, D.; Enache, M.

    2006-01-01

    Singlet oxygen ( 1 O 2 ) could be generated in biological systems by endogenous and exogenous processes (e.g. enzymatic and chemical reactions, UV or visible light in the presence of a sensitizer). Numerous data show that proteins are the major targets of 1 O 2 -induced damage in the living cells. In particular, reaction of 1 O 2 with thioether sulphur of methionine (Met) leads to the formation of persulphoxide >S (+) O-O (-) which is in equilibrium with superoxide radical-anion (O 2 ·- ) and respective sulphur-centered-radical-cation >S ·+ . In presented work, investigation the mechanisms of deprotonation and decarboxylation of the S ·+ - the irreversible processes, which competes with the formation of sulphoxide. Using thioethers dissevering by the number and positions of carboxylate groups it has been shown that efficiency of both decarboxylation and deprotonation could be influenced by various factors such as neighbouring group participation and environmental effects. The observed influence of carboxylate groups in β-position relative to the sulphur on the efficiency of decarboxylation suggests furthermore that they may also catalyze decarboxylation of α-positioned carboxylate in a manner similar to hydroxide anion

  8. The effect of oxygen on fatty acid composition of soil micromycetes

    Czech Academy of Sciences Publication Activity Database

    Jirout, Jiří

    2015-01-01

    Roč. 53, June (2015), s. 125-128 ISSN 1470-160X R&D Projects: GA ČR GPP504/12/P752 Institutional support: RVO:60077344 Keywords : soil micromycetes * oxygen depletion * fatty acids Subject RIV: EE - Microbiology, Virology Impact factor: 3.190, year: 2015

  9. Oxygen Consumption Constrains Food Intake in Fish Fed Diets Varying in Essential Amino Acid Composition

    NARCIS (Netherlands)

    Subramanian, S.; Geurden, I.; Figueiredo-Silva, A.C.; Nusantoro, S.; Kaushik, S.J.; Verreth, J.A.J.; Schrama, J.W.

    2013-01-01

    Compromisation of food intake when confronted with diets deficient in essential amino acids is a common response of fish and other animals, but the underlying physiological factors are poorly understood. We hypothesize that oxygen consumption of fish is a possible physiological factor constraining

  10. Sustainable hydrogen from bio-oil - Catalytic steam reforming of acetic acid as a model oxygenate

    NARCIS (Netherlands)

    Takanabe, Kazuhiro; Aika, Ken-ichi; Seshan, K.; Lefferts, Leon

    Studies were conducted with acetic acid (HAc) as model oxygenate for the design of active and stable catalysts for steam reforming of bio-oil. Pt/ZrO2 catalysts were prepared by wet impregnation technique. The Pt/ZrO2 catalysts showed high activities at initial time on stream, but lost its activity

  11. System Level Analysis of a Water PCM HX Integrated into Orion's Thermal Control System

    Science.gov (United States)

    Navarro, Moses; Hansen, Scott; Seth, Rubik; Ungar, Eugene

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development an Orion system level analysis was performed using Thermal Desktop for a water PCM HX integrated into Orion's thermal control system in a 100km Lunar orbit. The study verified of the thermal model by using a wax PCM and analyzed 1) placing the PCM on the Internal Thermal Control System (ITCS) versus the External Thermal Control System (ETCS) 2) use of 30/70 PGW verses 50/50 PGW and 3) increasing the radiator area in order to reduce PCM freeze times. The analysis showed that for the assumed operating and boundary conditions utilizing a water PCM HX on Orion is not a viable option for any case. Additionally, it was found that the radiator area would have to be increased by at least 40% in order to support a viable water-based PCM HX.

  12. System Level Analysis of a Water PCM HX Integrated Into Orion's Thermal Control System Abstract

    Science.gov (United States)

    Navarro, Moses; Hansen, Scott; Ungar, Eugene; Sheth, Rubik

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development an Orion system level analysis was performed using Thermal Desktop for a water PCM HX integrated into Orion's thermal control system and in a 100km Lunar orbit. The study analyzed 1) placing the PCM on the Internal Thermal Control System (ITCS) versus the External Thermal Control System (ETCS) 2) use of 30/70 PGW verses 50/50 PGW and 3) increasing the radiator area in order to reduce PCM freeze times. The analysis showed that for the assumed operating and boundary conditions utilizing a water PCM HX on Orion is not a viable option. Additionally, it was found that the radiator area would have to be increased over 20% in order to have a viable water-based PCM HX.

  13. Ascorbic acid metabolism in the organism under the lack of oxygen supply to the tissues

    Directory of Open Access Journals (Sweden)

    Sergiy Petrov

    2017-06-01

    Full Text Available The number and ratios of the metabolites of vitamin C - ascorbic, dehydroascorbic and diketogulonic acids were studied under the action of closed space hypoxia, acute blood loss and during sleep – the conditions associated with various oxygen saturation of the organism. It was found that in case of closed space hypoxia, the level of ascorbic and diketogulonic acid decreased with a simultaneous increase in the content of dehydroascorbic acid in the heart and brain. Acute blood loss resulted in decrease in the level of all metabolites of ascorbic acid. During sleep, the level of ascorbic acid metabolites increased. The ratio of vitamin-active metabolites to vitamin-inactive form of ascorbic acid in case of closed space hypoxia and acute blood loss decreased, and during sleep – it did not change significantly.

  14. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways.

    Science.gov (United States)

    Scalschi, Loredana; Vicedo, Begonya; Camañes, Gemma; Fernandez-Crespo, Emma; Lapeña, Leonor; González-Bosch, Carmen; García-Agustín, Pilar

    2013-05-01

    Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule might play a role per se in Hx-IR. These results support a positive relationship between the SA and JA pathways in Hx-primed plants. Furthermore, one of the mechanisms of virulence mediated by COR is stomatal re-opening on infection with P. syringae. In this work, we observed that Hx seems to inhibit stomatal opening in planta in the presence of COR, which suggests that, on infection in tomato, this treatment suppresses effector action to prevent bacterial entry into the mesophyll. © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  15. An Ab Initio MP2 Study of HCN-HX Hydrogen Bonded Complexes

    Directory of Open Access Journals (Sweden)

    Araújo Regiane C.M.U.

    1998-01-01

    Full Text Available An ab initio MP2/6-311++G** study has been performed to obtain geometries, binding energies and vibrational properties of HCN-HX H-bonded complexes with X = F, Cl, NC, CN and CCH. These MP2/6-311++G** results have revealed that: (i the calculated H-bond lengths are in very good agreement with the experimental ones; (ii the H-bond strength is associated with the intermolecular charge transfer and follows the order: HCN-HNC ~ HCN-HF > HCN-HCl ~ HCN-HCN > HCN-HCCH; (iii BSSE correction introduces an average reduction of 2.4 kJ/mol on the MP2/6-311++G** binding energies, i.e. 11% of the uncorrected binding energy; (iv the calculated zero-point energies reduce the stability of these complexes and show a good agreement with the available experimental values; (v the H-X stretching frequency is shifted downward upon H-bond formation. This displacement is associated with the H-bond length; (vi The more pronounced effect on the infrared intensities occurs with the H-X stretching intensity. It is much enhanced after complexation due to the charge-flux term; (vii the calculated intermolecular stretching frequencies are in very good agreement with the experimental ones; and, finally, (viii the results obtained for the HCN-HX complexes follow the same profile as those found for the acetylene-HX series but, in the latter case, the effects on the properties of the free molecules due to complexation are less pronounced than those in HCN-HX.

  16. Roles of oxygen radicals and elastase in citric acid-induced airway constriction of guinea-pigs

    OpenAIRE

    Lai, Y -L; Chiou, W -Y; Lu, F J; Chiang, L Y

    1999-01-01

    Antioxidants attenuate noncholinergic airway constriction. To further investigate the relationship between tachykinin-mediated airway constriction and oxygen radicals, we explored citric acid-induced bronchial constriction in 48 young Hartley strain guinea-pigs, divided into six groups: control; citric acid; hexa(sulphobutyl)fullerenes+citric acid; hexa(sulphobutyl)fullerenes+phosphoramidon+citric acid; dimethylthiourea (DMTU)+citric acid; and DMTU+phosphoramidon+citric acid. Hexa(sulphobutyl...

  17. Research for the influence on PRHR HX performance with different inlet temperature and flow rate

    International Nuclear Information System (INIS)

    Jia Bin; Jing Jianping; An Jieru; Bi Jinsheng; Li Yuanshan; Zhuang Shaoxin

    2014-01-01

    To study the residual heat removal capacity of PRHR HX, numerical simulation is demonstrated using FLUENT. Meanwhile to research the trends of PRHR HX residual heat removal capacity, different operating modes have been simulated with parameters deviated from design value. Finally it's found that when the coolant inlet temperature is higher than design valve the residual heat removal capacity is better and the higher the temperature is the lower the coolant outlet temperature can be obtained. And meanwhile the faster the coolant flows the better the residual heat in the core can be removed. (authors)

  18. Assessment of model chemistries for hydrofluoropolyethers: A DFT/M08-HX benchmark study

    DEFF Research Database (Denmark)

    da Franca E S C Viegas, Luis Pedro

    2017-01-01

    a good accuracy and considerable reduction in computational cost with respect to the benchmark, being more than three times faster than M08-HX/aug-pcseg-2//M08-HX/aug-pcseg-1. This cost-effective approach will be essential in future work when studying larger hydrofluoropolyethers, where the computational......n this work, we report the first detailed theoretical comparative conformational investigation between two different classes of hydrofluoropolyethers: dihydro- and dimethoxyfluoropolyethers. The main objective was to determine a cost-effective computational methodology that could accurately...

  19. Studies on the rheology and oxygen mass transfer in the clavulanic acid production by Streptomyces clavuligerus

    Directory of Open Access Journals (Sweden)

    E. R. Gouveia

    2000-12-01

    Full Text Available In the present work rheological characteristics and volumetric oxygen transfer coefficient (kLa were investigated during batch cultivations of Streptomyces clavuligerus NRRL 3585 for production of clavulanic acid. The experimental rheological data could be adequately described in terms of the power law model and logistic equation. Significant changes in the rheological parameters consistency index (K and flow behavior index (n were observed with the fermentation evolution. Interesting correlations between the consistency index (K/biomass concentration (C X and the flow behavior index (n/biomass concentration were proposed. Volumetric oxygen mass transfer coefficient (kLa was determined by the gas balance method. Classical correlation relating the volumetric oxygen mass transfer coefficient to the operating conditions, physical and to transport properties, including apparent viscosity (muap, could be applied to the experimental results.

  20. Oxygen-independent direct deoxyribonucleic acid backbone breakage caused by rose bengal and visible light

    Energy Technology Data Exchange (ETDEWEB)

    Peak, M J; Peak, J G; Foote, C S; Krinsky, N I

    1984-01-01

    An oxygen enhancement ratio of 10 for the induction of backbone single-strand breaks (SSBs) in purified deoxyribonucleic acid (DNA) by monochromatic 365 nm UV radiation was obtained. Similarly, a dose reduction factor of 10 was observed when the DNA was irradiated in the presence of 0.1 M diazabicyclo(2.2.2)octane (DABCO). To determine whether this breakage of DNA was due to the action of a reactive oxygen species such as singlet oxygen, we used the photosensitizing dye Rose Bengal and visible light as a system for generating singlet oxygen. Treatment of the DNA with Rose Bengal and 545 nm monochromatic light enhanced the rate of induction of SSBs six times, compared with the rate we obtained when the light was used alone. Elimination of oxygen or addition of 0.1 M DABCO during the 545 nm irradiation in the presence of Rose Bengal did not alter the enhancement of SSBs in the DNA caused by Rose Bengal and 545 nm radiation. The induction of SSBs in the DNA caused by irradiation of the DNA by 545 nm light in the presence of Rose Bengal was not enhanced by the use of D/sub 2/O instead of H/sub 2/O as a solvent. The results indicate that Rose Bengal plus visible light can cause biological damage without the intermediacy of reactive oxygen species, i.e. Rose Bengal and visible light can react directly with biological material, in reactions that appear to be type I photosensitized processes, independent of singlet oxygen as an intermediate.

  1. Thin combiner optics utilizing volume holographic optical elements (vHOEs) using Bayfol HX photopolymer film

    Science.gov (United States)

    Bruder, Friedrich-Karl; Fäcke, Thomas; Hagen, Rainer; Hansen, Sven; Manecke, Christel; Orselli, Enrico; Rewitz, Christian; Rölle, Thomas; Walze, Günther

    2017-06-01

    The main function of any augmented reality system is to seamlessly merge the real world perception of a viewer with computer generated images and information. Besides real-time head-tracking and room-scanning capabilities the combiner optics, which optically merge the natural with the artificial visual information, represent a key component for those systems. Various types of combiner optics are known to the industry, all with their specific advantages and disadvantages. Beside the well-established solutions based on refractive optics or surface gratings, volume Holographic Optical Elements (vHOEs) are a very attractive alternative in this field. The unique characteristics of these diffractive grating structures - being lightweight, thin, flat and invisible in Off Bragg conditions - make them perfectly suitable for their use in integrated and compact combiners. For any consumer application it is paramount to build unobtrusive and lightweight augmented reality displays, for which those volume holographic combiners are ideally suited. Due to processing challenges of (historic) holographic recording materials mass production of vHOE holographic combiners was not possible. Therefore vHOE based combiners found use in military applications only by now. The new Bayfol® HX instant developing holographic photopolymer film provides an ideal technology platform to optimize the performance of vHOEs in a wide range of applications. Bayfol® HX provides full color capability and adjustable diffraction efficiency as well as an unprecedented optical clarity when compared to classical holographic recording materials like silver halide emulsions (AgHX) or dichromated gelatin (DCG). Bayfol® HX film is available in industrial scale and quality. Its properties can be tailored for various diffractive performances and integration methods. Bayfol® HX film is easy to process without any need for chemical or thermal development steps, offering simplified contact-copy mass production

  2. Limiting Current of Oxygen Reduction on Gas-Diffusion Electrodes for Phosphoric Acid Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Gang, Xiao; Hjuler, Hans Aage

    1994-01-01

    on polytetrafluorine-ethyl bonded gas-diffusion electordes in phosphoric acid with and without fluorinated additives. This provides an alternative to estimate the film thickness by combining it with the acid-adsorption measurements and the porosity analysis of the catalyst layer. It was noticed that the limiting......Various models have been devoted to the operation mechanism of porous diffusion electrodes. They are, however, suffering from the lack of accuracy concerning the acid-film thickness on which they are based. In the present paper the limiting current density has been measured for oxygen reduction...... current density can be accomplished either by gas-phase diffusion or liquid-phase diffusion, and it is the latter that can be used in the film-thickness estimation. It is also important to mention that at such a limiting condition, both the thin-film model and the filmed agglomerate model reach the same...

  3. Structure and magnetic properties of hot deformed Nd2Fe14B magnets doped with DyHx nanoparticles

    Science.gov (United States)

    Wang, C. G.; Yue, M.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.

    2016-04-01

    Commercial NdFeB powders mixed with DyHx nanoparticles are hot pressed and hot deformed into anisotropic magnets by Spark Plasma Sintering (SPS). The hot deformed magnet exhibits strong c-axis crystallographic texture. The coercivity of the magnet doped with 1.0 wt% DyHx is increased by 66.7%, compared with the magnet without DyHx, while the remanence decreases only by 3%. TEM observation shows that there exists a continuous (Nd,Dy)2Fe14B layer between Nd-rich phase and NdFeB main phase.

  4. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    Energy Technology Data Exchange (ETDEWEB)

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin, E-mail: Albrecht@anaesthesie.uni-kiel.de

    2012-04-15

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does

  5. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    International Nuclear Information System (INIS)

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin

    2012-01-01

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 μM SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: ► Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions ► Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia ► Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia ► Salicylic acid does not influence any of the investigated parameters under hypoxia

  6. Kinetics of oxygen reduction reaction at electrochemically fabricated tin-palladium bimetallic electrocatalyst in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Md. Rezwan, E-mail: mrmche@yahoo.co [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Masud, Jahangir [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Ohsaka, Takeo, E-mail: ohsaka@echem.titech.ac.j [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2010-12-15

    In the present article, oxygen reduction reaction (ORR) at electrochemically fabricated tin-palladium (Sn-Pd) bimetallic electrocatalyst-modified glassy carbon (GC) electrode (Sn-Pd/GC electrode) in acidic media is addressed. Hydrodynamic voltammetric measurements were employed with a view to evaluating various kinetic parameters of the ORR at the Sn-Pd/GC electrode. The obtained results obviously demonstrated that the Sn-Pd bimetallic electrocatalyt substantially promoted the activity of the GC electrode and drove the ORR through an exclusive one-step four-electron pathway forming H{sub 2}O as the final product.

  7. Kinetics of oxygen reduction reaction at electrochemically fabricated tin-palladium bimetallic electrocatalyst in acidic media

    International Nuclear Information System (INIS)

    Miah, Md. Rezwan; Masud, Jahangir; Ohsaka, Takeo

    2010-01-01

    In the present article, oxygen reduction reaction (ORR) at electrochemically fabricated tin-palladium (Sn-Pd) bimetallic electrocatalyst-modified glassy carbon (GC) electrode (Sn-Pd/GC electrode) in acidic media is addressed. Hydrodynamic voltammetric measurements were employed with a view to evaluating various kinetic parameters of the ORR at the Sn-Pd/GC electrode. The obtained results obviously demonstrated that the Sn-Pd bimetallic electrocatalyt substantially promoted the activity of the GC electrode and drove the ORR through an exclusive one-step four-electron pathway forming H 2 O as the final product.

  8. Computational Fluid Dynamics (CFD) Analyses in Support of Space Shuttle Main Engine (SSME) Heat Exchanger (HX) Vane Cracking Investigation

    Science.gov (United States)

    Garcia, Roberto; Benjamin, Theodore G.; Cornelison, J.; Fredmonski, A. J.

    1993-01-01

    Integration issues involved with installing the alternate turbopump (ATP) High Pressure Oxygen Turbopump (HPOTP) into the SSME have raised questions regarding the flow in the HPOTP turnaround duct (TAD). Steady-state Navier-Stokes CFD analyses have been performed by NASA and Pratt & Whitney (P&W) to address these questions. The analyses have consisted of two-dimensional axisymmetric calculations done at Marshall Space Flight Center and three-dimensional calculations performed at P&W. These analyses have identified flowfield differences between the baseline ATP and the Rocketdyne configurations. The results show that the baseline ATP configuration represents a more severe environment to the inner HX guide vane. This vane has limited life when tested in conjunction with the ATP but infinite life when tested with the current SSME HPOTP. The CFD results have helped interpret test results and have been used to assess proposed redesigns. This paper includes details of the axisymmetric model, its results, and its contribution towards resolving the problem.

  9. Improving the first hyperpolarizability of anthracene through interaction with HX molecules (Xdbnd F, Cl, Br): A theoretical study

    Science.gov (United States)

    Abdolmaleki, Ahmad; Dadsetani, Mehrdad; Zabardasti, Abedin

    2018-05-01

    The variations in nonlinear optical activity (NLO) of anthracene (C14H10) was investigated via intermolecular interactions between C14H10 and HX molecules (Xdbnd F, Cl and Br) using B3LYP-D3 method at 6-311++G(d,p) basis set. The stabilization of those complexes was investigated via vibrational analysis, quantum theory of atoms in molecules, molecular electrostatic potential, natural bond orbitals and symmetry-adapted perturbation theory (SAPT) analysis. Furthermore, the optical spectra and the first hyperpolarizabilities of C14H10⋯HX complexes were computed. The adsorption of hydrogen halide through C14H10⋯HX complex formation, didn't change much the linear optical activities of C14H10 molecule, but the magnitude of the first hyperpolarizability of the C14H10⋯HX complexes to be as much as that of urea.

  10. The antioxidant action of Polypodium leucotomos extract and kojic acid: reactions with reactive oxygen species

    Directory of Open Access Journals (Sweden)

    A.J. Gomes

    2001-11-01

    Full Text Available Two natural products Polypodium leucotomos extract (PL and kojic acid (KA were tested for their ability to scavenge reactive oxygen species (·OH, ·O2-, H2O2, ¹O2 in phosphate buffer. Hydroxyl radicals were generated by the Fenton reaction, and the rate constants of scavenging were 1.6 x 10(9 M-1 s-1 for KA and 1.0 x 10(9 M-1 s-1 for PL, similar to that of ethanol (1.4 x 10(9 M-1 s-1. With superoxide anions generated by the xanthine/hypoxanthine system, KA and PL (0.2-1.0 mg/ml inhibited ·O2-dependent reduction of nitroblue tetrazolium by up to 30 and 31%, respectively. In the detection of ¹O2 by rose bengal irradiation, PL at 1.0 mg/ml quenched singlet oxygen by 43% relative to azide and KA by 36%. The present study demonstrates that PL showed an antioxidant effect, scavenging three of four reactive oxygen species tested here. Unlike KA, PL did not significantly scavenge hydrogen peroxide.

  11. Analysis of relative displacement between the HX wearable robotic exoskeleton and the user's hand.

    Science.gov (United States)

    Cempini, Marco; Marzegan, Alberto; Rabuffetti, Marco; Cortese, Mario; Vitiello, Nicola; Ferrarin, Maurizio

    2014-10-18

    Advances in technology are allowing for the production of several viable wearable robotic devices to assist with activities of daily living and with rehabilitation. One of the most pressing limitations to user satisfaction is the lack of consistency in motion between the user and the robotic device. The displacement between the robot and the body segment may not correspond because of differences in skin and tissue compliance, mechanical backlash, and/or incorrect fit. This report presents the results of an analysis of relative displacement between the user's hand and a wearable exoskeleton, the HX. HX has been designed to maximize comfort, wearability and user safety, exploiting chains with multiple degrees-of-freedom with a modular architecture. These appealing features may introduce several uncertainties in the kinematic performances, especially when considering the anthropometry, morphology and degree of mobility of the human hand. The small relative displacements between the hand and the exoskeleton were measured with a video-based motion capture system, while the user executed several different grips in different exoskeleton modes. The analysis furnished quantitative results about the device performance, differentiated among device modules and test conditions. In general, the global relative displacement for the distal part of the device was in the range 0.5-1.5 mm, while within 3 mm (worse but still acceptable) for displacements nearest to the hand dorsum. Conclusions over the HX design principles have been drawn, as well as guidelines for future developments.

  12. Pressurized HxCyOz Cells at ca. 250 °C: Potential and Challenges

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Chatzichristodoulou, Christodoulos; Allebrod, Frank

    2013-01-01

    focus on cells that may have a potential of forming or using HxCyOz in electrolysis or fuel cell mode, respectively. Examples of HxCyOz are hydrogen with (x,y,z) = (2,0,0), carbon monoxide with (x,y,z) = (0,1,1), methane with (x,y,z) = (4,1,0), gasoline with approximately (x,y,z) = (18,8,0), methanol......The increasing need for easy and affordable storage of intermittent renewable energy has encouraged us to explore the possibilities of pressurized electrolysis and fuel cells operating in the temperature range of 200 – 300 °C and pressure from a few bar up to 50 bar and above. Most electrochemical...... rate limiting processes are strongly thermal activated. Also, increased pressure may increase the electrode reaction rates. High pressure means increase energy density in gaseous products. Furthermore, as hydrocarbons, alcohols or ethers - in common denoted HxCyOz - are very convenient fuels, we have...

  13. Effect of oxygen deprivation on metabolism of arachidonic acid by cultures of rat heart cells

    International Nuclear Information System (INIS)

    Freyss-Beguin, M.; Millanvoye-van Brussel, E.; Duval, D.

    1989-01-01

    To investigate the mechanisms responsible for the impairment of phospholipid metabolism observed in ischemic cells, we have studied the effect of conditions simulating ischemia on the metabolism of arachidonic acid (AA) by muscle (M-) and nonmuscle (F-) cells isolated from newborn rat hearts and cultured separately. In muscle cells, oxygen deprivation induces a significant stimulation of the release of [ 14 C]AA from prelabeled cells associated with a preferential redistribution of [ 14 C]AA into cell triglycerides but not formation of radioactive prostaglandins. Moreover, the fatty acid content of phospholipids, as measured by capillary gas chromatography, appears markedly reduced in ischemic myocardial cells. This fact may be related to phospholipase stimulation during ischemia as suggested by the antagonistic effect of mepacrine or p-bromophenacyl bromide. In contrast, oxygen deprivation failed to induce any significant alteration of AA metabolism in fibroblast-like heart cells. Our results indicate that these cultures of newborn rat heart cells, which exhibit many of the features observed in intact organ during ischemia, may represent a useful experimental model to investigate the pharmacological control of the membrane phospholipid turnover

  14. High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaemin [Department; Shih, Pei-Chieh [Department; Tsao, Kai-Chieh [Department; Pan, Yung-Tin [Department; Yin, Xi [Department; Sun, Cheng-Jun [X-ray; Yang, Hong [Department

    2017-08-17

    Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge for the production of hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (Y2Ru2O7-δ) electrocatalyst that has significantly enhanced performance towards OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1-M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates Y2Ru2O7-δ electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band center energy for the overlap between Ru 4d and O 2p orbitals and therefore more stable Ru-O bond than RuO2, highlighting the effect of yttrium on the enhancement in stability. The Y2Ru2O7-δ pyrochlore is also free of expensive iridium metal, thus a cost-effective candidate for practical applications.

  15. Lewis Acid Pairs for the Activation of Biomass-derived Oxygenates in Aqueous Media

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Yuriy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-09-14

    The objective of this project is to understand the mechanistic aspects behind the cooperative activation of oxygenates by catalytic pairs in aqueous media. Specifically, we will investigate how the reactivity of a solid Lewis acid can be modulated by pairing the active site with other catalytic sites at the molecular level, with the ultimate goal of enhancing activation of targeted functional groups. Although unusual catalytic properties have been attributed to the cooperative effects promoted by such catalytic pairs, virtually no studies exist detailing the use heterogeneous water-tolerant Lewis pairs. A main goal of this work is to devise rational pathways for the synthesis of porous heterogeneous catalysts featuring isolated Lewis pairs that are active in the transformation of biomass-derived oxygenates in the presence of bulk water. Achieving this technical goal will require closely linking advanced synthesis techniques; detailed kinetic and mechanistic investigations; strict thermodynamic arguments; and comprehensive characterization studies of both materials and reaction intermediates. For the last performance period (2014-2015), two technical aims were pursued: 1) C-C coupling using Lewis acid and base pairs in Lewis acidic zeolites. Tin-, zirconium-, and hafnium containing zeolites (e.g., Sn-, Zr-, and Hf-Beta) are versatile solid Lewis acids that selectively activate carbonyl functional groups. In this aim, we demonstrate that these zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. 2) One-pot synthesis of MWW zeolite nanosheets for activation of bulky substrates. Through

  16. Substrates and oxygen dependent citric acid production by Yarrowia lipolytica: insights through transcriptome and fluxome analyses.

    Science.gov (United States)

    Sabra, Wael; Bommareddy, Rajesh Reddy; Maheshwari, Garima; Papanikolaou, Seraphim; Zeng, An-Ping

    2017-05-08

    Unlike the well-studied backer yeast where catabolite repression represents a burden for mixed substrate fermentation, Yarrowia lipolytica, an oleaginous yeast, is recognized for its potential to produce single cell oils and citric acid from different feedstocks. These versatilities of Y. lipolytica with regards to substrate utilization make it an attractive host for biorefinery application. However, to develop a commercial process for the production of citric acid by Y. lipolytica, it is necessary to better understand the primary metabolism and its regulation, especially for growth on mixed substrate. Controlling the dissolved oxygen concentration (pO 2 ) in Y. lipolytica cultures enhanced citric acid production significantly in cultures grown on glucose in mono- or dual substrate fermentations, whereas with glycerol as mono-substrate no significant effect of pO 2 was found on citrate production. Growth on mixed substrate with glucose and glycerol revealed a relative preference of glycerol utilization by Y. lipolytica. Under optimized conditions with pO 2 control, the citric acid titer on glucose in mono- or in dual substrate cultures was 55 and 50 g/L (with productivity of 0.6 g/L*h in both cultures), respectively, compared to a maximum of 18 g/L (0.2 g/L*h) with glycerol in monosubstrate culture. Additionally, in dual substrate fermentation, glycerol limitation was found to trigger citrate consumption despite the presence of enough glucose in pO 2 -limited culture. The metabolic behavior of this yeast on different substrates was investigated at transcriptomic and 13 C-based fluxomics levels. Upregulation of most of the genes of the pentose phosphate pathway was found in cultures with highest citrate production with glucose in mono- or in dual substrate fermentation with pO 2 control. The activation of the glyoxylate cycle in the oxygen limited cultures and the imbalance caused by glycerol limitation might be the reason for the re-consumption of citrate in

  17. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation.

    Science.gov (United States)

    Kajimoto, Masaki; Ledee, Dolena R; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G; Portman, Michael A

    2014-01-01

    Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. It has previously been shown that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. METHODS AND RESULTS: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 h) and wean: normal circulation (Group-C); transient coronary occlusion (10 min) for ischemia-reperfusion (IR) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon ((13)C)-labeled lactate, medium-chain and long-chain FAs, was infused as oxidative substrates. Substrate fractional contribution (FC) to the citric acid cycle was analyzed by(13)C-nuclear magnetic resonance. ECMO depressed circulating T3 levels to 40% of the baseline at 4 h and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [adenosine triphosphate]/[adenosine diphosphate] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. T3 releases inhibition of lactate oxidation following IR injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.

  18. Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids

    KAUST Repository

    Zhang, Jizhe

    2014-01-01

    Formic acid is an important commodity chemical as well as a promising medium for hydrogen storage and hydrogen production. In this paper, we report that formic acid can be produced through selective oxidation of glycerol, a low-cost by-product of biodiesel, by using vanadium-substituted phosphomolybdic acids as catalysts and molecular oxygen as the oxidant. Significantly, this catalytic system allows for high-concentration conversions and thus leads to exceptional efficiency. Specifically, 3.64 g of formic acid was produced from 10 g of glycerol/water (50/50 in weight) solution. © 2014 the Partner Organisations.

  19. Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures

    Science.gov (United States)

    Hu, Yang; Jiang, Yiliang; Jensen, Jens Oluf; Cleemann, Lars N.; Li, Qingfeng

    2018-01-01

    Phosphoric acid is the common electrolyte for high-temperature polymer electrolyte fuel cells (HT-PEMFCs) that have advantages such as enhanced CO tolerance and simplified heat and water management. The currently used rotating disk electrode technique is limited to tests in dilute solutions at low temperatures and hence is not suitable for catalyst evaluation for HT-PEMFCs. In this study, we have designed and constructed a half-cell setup to measure the intrinsic activities of catalysts towards the oxygen reduction reaction (ORR) in conditions close to HT-PEMFC cathodes. By optimization of the hydrophobic characteristics of electrodes and the catalyst layer thickness, ORR activities of typical Pt/C catalysts are successfully measured in concentrated phosphoric acid at temperatures above 100 °C. In terms of mass-specific activities, the catalyst exhibits about two times higher activity in the half-cell electrode than that observed in fuel cells, indicating the feasibility of the technique as well as the potential for further improvement of fuel cell electrode performance.

  20. Dose-rate and oxygen effects in models of lipid membranes: linoleic acid

    Energy Technology Data Exchange (ETDEWEB)

    Raleigh, J A; Kremers, W; Gaboury, B [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1977-03-01

    Cellular membranes have been suggested as possible loci for the development of the oxygen effect in radiobiology. Unsaturated lipids from membranes are subject to very efficient radiation-induced peroxidation, and the deleterious effects generally associated with lipid autoxidation could be initiated by ionizing radiation. Oxidative damage in lipids was characterized not only by high yields but also by a profound dose-rate effect. At dose-rates of x irradiation below 100 rad/min, a very sharp rise occurred in oxidative damage. This damage has been quantified spectrophotometrically in terms of diene conjugation (O.D. 234 mm) and chromatographically in terms of specific 9- and 13-hydroperoxide formation in linoleic acid micelles. Radical scavenging experiments indicated that hydroxyl radical attack initiated the oxidative damage. Dimethyl sulphoxide is exceptional in that it did not protect, but sensitized, linoleic acid to radiation-induced peroxidation. The yields of hydroperoxides were substantial (G = 10 to 40) and could be related to biological changes known to be effected by autoxidizing lipids.

  1. Rh(III) -Catalyzed C-H Olefination of Benzoic Acids under Mild Conditions using Oxygen as the Sole Oxidant.

    Science.gov (United States)

    Jiang, Quandi; Zhu, Changlei; Zhao, Huaiqing; Su, Weiping

    2016-02-04

    Phthalide skeletons have been synthesized for the first time through a Rh(III) -catalyzed C-H olefination of benzoic acids under mild conditions using oxygen as the sole oxidant. Aromatic acids bearing a variety of functional groups could react with diverse alkenes to afford the desired cyclized lactones or uncyclized alkenylarenes in moderate-to-excellent yields. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect of polyunsaturated fatty acids on the reactive oxygen and nitrogen species production by raw 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Gabriela; Pekarová, Michaela; Lojek, Antonín

    2010-01-01

    Roč. 49, č. 3 (2010), s. 133-139 ISSN 1436-6207 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : polyunsaturated fatty acids * reactive oxygen species * reactive nitrogen species Subject RIV: BO - Biophysics Impact factor: 3.343, year: 2010

  3. A Neat Trick Using Oxalic Acid Dihydrate and Potassium Permanganate and Other Experiments with Small Organic Amine or Oxygenated Compounds

    Science.gov (United States)

    Kelland, Malcolm A.

    2011-01-01

    Solid potassium permanganate (KMnO[subscript 4]) is shown to react in a variety of ways with small organic amines or oxygenated compounds depending on whether they are liquids or solids and whether water is present. In particular, its reaction with solid oxalic acid dihydrate can be initiated by the moisture in one's breath, making an intriguing…

  4. High-Pressure Geophysical Properties of Fcc Phase FeHX

    Science.gov (United States)

    Thompson, E. C.; Davis, A. H.; Bi, W.; Zhao, J.; Alp, E. E.; Zhang, D.; Greenberg, E.; Prakapenka, V. B.; Campbell, A. J.

    2018-01-01

    Face centered cubic (fcc) FeHX was synthesized at pressures of 18-68 GPa and temperatures exceeding 1,500 K. Thermally quenched samples were evaluated using synchrotron X-ray diffraction (XRD) and nuclear resonant inelastic X-ray scattering (NRIXS) to determine sample composition and sound velocities to 82 GPa. To aid in the interpretation of nonideal (X ≠ 1) stoichiometries, two equations of state for fcc FeHX were developed, combining an empirical equation of state for iron with two distinct synthetic compression curves for interstitial hydrogen. Matching the density deficit of the Earth's core using these equations of state requires 0.8-1.1 wt % hydrogen at the core-mantle boundary and 0.2-0.3 wt % hydrogen at the interface of the inner and outer cores. Furthermore, a comparison of Preliminary Reference Earth Model (PREM) to a Birch's law extrapolation of our experimental results suggests that an iron alloy containing ˜0.8-1.3 wt % hydrogen could reproduce both the density and compressional velocity (VP) of the Earth's outer core.

  5. Carbon-13 and oxygen-18 isotope effects in the decarboxylation of nicotinic acid of natural isotopic composition

    International Nuclear Information System (INIS)

    Zielinski, M.; Zielinska, A.; Papiernik-Zielinska, H.; McKenzie, J.A.; Bernasconi, S.; Paul, H.

    1998-01-01

    Carbon-13 and oxygen-18 isotope effects in the decarboxylation of nicotinic acid of natural isotopic composition above and below its melting temperature have been studied and compared with the primary (PKIE) and secondary kinetic isotope effects (SKIE) of 13 C and 18 O, respectively, in the decarboxylation of other heterocyclic acids. The temperature dependence of the secondary oxygen-18 isotope effects is negative in the total 221-255 deg C temperature interval investigated initially. The 13 C KIE measured above melting point of N.A. (temperature interval 235-270 deg C) are located in the range 1.007-1.009. Below melting point of nicotinic acid the 13 C KIE are larger and reveal the negative temperature dependence ( 13 C KIE decreases with decreasing the reaction temperature from 1.013/at 230 deg C to 1.0114/at 221 deg C). A discussion of the above isotopic results is presented. (author)

  6. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang [Department; Hwang, Sooyeon [Center; Wang, Maoyu [School; Feng, Zhenxing [School; Karakalos, Stavros [Department; Luo, Langli [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Qiao, Zhi [Department; Xie, Xiaohong [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wang, Chongmin [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Su, Dong [Center; Shao, Yuyan [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Wu, Gang [Department

    2017-09-26

    To significantly reduce the cost of proton exchange membrane (PEM) fuel cells, current Pt must be replaced by platinum-metal-group (PGM)-free catalysts for the oxygen reduction reaction (ORR) in acid. We report here a new class of high-performance atomic iron dispersed carbon catalysts through controlled chemical doping of iron ions into zinc-zeolitic imidazolate framework (ZIF), a type of metal-organic framework (MOF). The novel synthetic chemistry enables accurate size control of Fe-doped ZIF catalyst particles with a wide range from 20 to 1000 nm without changing chemical properties, which provides a great opportunity to increase the density of active sites that is determined by the particle size. We elucidated the active site formation mechanism by correlating the chemical and structural changes with thermal activation process for the conversion from Fe-N4 complex containing hydrocarbon networks in ZIF to highly active FeNx sites embedded into carbon. A temperature of 800oC was identified as the critical point to start forming pyridinic nitrogen doping at the edge of the graphitized carbon planes. Further increasing heating temperature to 1100oC leads to increase of graphitic nitrogen, generating possible synergistic effect with FeNx sites to promote ORR activity. The best performing catalyst, which has well-defined particle size around 50 nm and abundance of atomic FeNx sites embedded into carbon structures, achieve a new performance milestone for the ORR in acid including a half-wave potential of 0.85 V vs RHE and only 20 mV loss after 10,000 cycles in O2 saturated H2SO4 electrolyte. The new class PGM-free catalyst with approaching activity to Pt holds great promise for future PEM fuel cells.

  7. Salicylic Acid Alleviates Aluminum Toxicity in Soybean Roots through Modulation of Reactive Oxygen Species Metabolism

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2017-11-01

    Full Text Available As an important signal molecule, salicylic acid (SA improves plant tolerance to aluminum (Al stress. The objective of this study was to investigate the effects of exogenous SA application on the dynamics of endogenous SA and reactive oxygen species in soybean (Glycine max L. exposed to Al stress. The roots of soybean seedlings were exposed to a combination of AlCl3 (30 μM and SA (10 μM/PAC (100 μM, paclobutrazol, SA biosynthesis inhibitor for 3, 6, 9, and 12 h. Al stress induced an increase in endogenous SA concentration in a time-dependent manner, also verified by the up-regulated expression of GmNPR1, an SA-responsive gene. Al stress increased the activities of phenylalanine ammonia-lyase (PAL and benzoic acid 2-hydroxylase (BA2H, and the contents of SA, O2- and malondialdehyde (MDA in the root apex. The application of exogenous SA increased PAL and BA2H, and reduced O2- and MDA contents in soybean roots under Al stress. PAC inhibited the SA induced increase in BA2H activity. In addition, the SA application resulted in a rapid increase in hydrogen peroxide (H2O2 concentration under Al stress, followed by a sharp decrease. Compared with the plants exposed to Al alone, Al+SA plants possessed higher activities of superoxide dismutase, peroxidase, and ascorbate peroxidase, and lower catalase activity, indicating that SA alleviated Al-induced oxidative damage. These results suggested that PAL and BA2H were involved in Al-induced SA production and showed that SA alleviated the adverse effects of Al toxicity by modulating the cellular H2O2 level and the antioxidant enzyme activities in the soybean root apex.

  8. Salicylic acid alleviates aluminum toxicity in soybean roots through modulation of reactive oxygen species metabolism

    Science.gov (United States)

    Liu, Ning; Song, Fengbin; Zhu, Xiancan; You, Jiangfeng; Yang, Zhenming; Li, Xiangnan

    2017-11-01

    As an important signal molecule, salicylic acid (SA) improves plant tolerance to aluminum (Al) stress. The objective of this study was to investigate the effects of exogenous SA application on the dynamics of endogenous SA and reactive oxygen species in soybean (Glycine max L.) exposed to Al stress. The roots of soybean seedlings were exposed to a combination of AlCl3 (30 μM) and SA (10 μM)/PAC (100 μM, paclobutrazol, SA biosynthesis inhibitor) for 3, 6, 9 and 12 h. Al stress induced an increase in endogenous SA concentration in a time-dependent manner, also verified by the up-regulated expression of GmNPR1, an SA-responsive gene. Al stress increased the activities of phenylalanine ammonia-lyase (PAL) and benzoic acid 2-hydroxylase (BA2H), and the contents of SA, O2- and malondialdehyde (MDA) in the root apex. The application of exogenous SA increased PAL and BA2H, and reduced O2- and MDA contents in soybean roots under Al stress. PAC inhibited the SA induced increase in BA2H activity. In addition, the SA application resulted in a rapid increase in hydrogen peroxide (H2O2) concentration under Al stress, followed by a sharp decrease. Compared with the plants exposed to Al alone, Al+SA plants possessed higher activities of superoxide dismutase, peroxidase and ascorbate peroxidase, and lower catalase activity, indicating that SA alleviated Al-induced oxidative damage. These results suggested that PAL and BA2H were involved in Al-induced SA production and showed that SA alleviated the adverse effects of Al toxicity by modulating the cellular H2O2 level and the antioxidant enzyme activities in the soybean root apex.

  9. Oxygenation of cervical cancers during radiotherapy and radiotherapy + cis-retinoic acid/interferon

    International Nuclear Information System (INIS)

    Dunst, Jeurgen; Heansgen, Gabriele; Lautenschleager, Christine; Feuchsel, Glenn; Becker, Axel

    1999-01-01

    Purpose: We have evaluated the tumor tissue pO 2 in cervical cancers during radiotherapy with special emphasis on the course of the pO 2 in primarily hypoxic tumors and in patients treated with radiotherapy plus 13-cis-retinoic acid/interferon-α-2a. Methods and Materials: From June 1995 through April 1997, 49 patients with squamous cell carcinoma FIGO IIB-IVA of the cervix who were treated with definitve radiotherapy with curative intent underwent polarographic measurement of tumor tissue pO 2 with an Eppendorf pO 2 -histograph prior to and during radiation treatment. Radiotherapy consisted of external irradiation with 50.4 Gy in 28 fractions of 1.8 Gy plus high dose rate (HDR) brachytherapy. Twenty-two patients had additional treatment with 13-cis-retinoic acid (cRA, isotretinoin) and interferon-α-2a (IFN-α-2a). Therapy with cRA/IFN in these patients started 2 weeks before radiotherapy; during this induction period, cRA was administered in a dosage of 1 mg per kilogram body weight orally daily and IFN-α-2a in a dosage of 6 x 10 6 I.U. subcutaneously daily. After start of external radiotherapy (XRT), cRA/IFN was continued concomitantly with radiotherapy in reduced doses (0.5 mg cRA per kg body weight orally daily plus 3 x 10 6 I.U. IFN-α-2a subcutaneously three times weekly until the end of the radiation treatment). pO 2 measurements were performed prior to radiotherapy, at 20 Gy, and at the end of radiotherapy. Results: A poor oxygenation defined as a median pO 2 of 10 mm Hg or less was present in 15/38 tumors (39%) in which measurements prior to any treatment were done. Low pO 2 readings below 5 mm Hg were present in 70% of all tumors prior to treatment. In 13 of 15 hypoxic tumors, pO 2 measurements at 19.8 Gy were performed. In these tumors, a significant increase of the median pO 2 from 6.0 ± 3.1 mm Hg to 20.7 ± 21.2 mm Hg was found, p 2 was more pronounced in patients with radiotherapy plus additional cRA/IFN treatment as compared to patients treated

  10. Calculating acid-base and oxygenation status during COPD exacerbation using mathematically arterialised venous blood

    DEFF Research Database (Denmark)

    Rees, Stephen Edward; Rychwicka-Kielek, Beate A; Andersen, Bjarne F

    2012-01-01

    Abstract Background: Repeated arterial puncture is painful. A mathematical method exists for transforming peripheral venous pH, PCO2 and PO2 to arterial eliminating the need for arterial sampling. This study evaluates this method to monitor acid-base and oxygenation during admission...... for exacerbation of chronic obstructive pulmonary disease (COPD). Methods: Simultaneous arterial and peripheral venous blood was analysed. Venous values were used to calculate arterial pH, PCO2 and PO2, with these compared to measured values using Bland-Altman analysis and scatter plots. Calculated values of PO2......H, PCO2 and PO2 were 7.432±0.047, 6.8±1.7 kPa and 9.2±1.5 kPa, respectively. Calculated and measured arterial pH and PCO2 agreed well, differences having small bias and SD (0.000±0.022 pH, -0.06±0.50 kPa PCO2), significantly better than venous blood alone. Calculated PO2 obeyed the clinical rules...

  11. Enhanced dimethyl phthalate biodegradation by accelerating phthalic acid di-oxygenation.

    Science.gov (United States)

    Tang, Yingxia; Zhang, Yongming; Jiang, Ling; Yang, Chao; Rittmann, Bruce E

    2017-12-01

    The aerobic biodegradation of dimethyl phthalate (DMP) is initiated with two hydrolysis reactions that generate an intermediate, phthalic acid (PA), that is further biodegraded through a two-step di-oxygenation reaction. DMP biodegradation is inhibited when PA accumulates, but DMP's biodegradation can be enhanced by adding an exogenous electron donor. We evaluated the effect of adding succinate, acetate, or formate as an exogenous electron donor. PA removal rates were increased by 15 and 30% for initial PA concentrations of 0.3 and 0.6 mM when 0.15 and 0.30 mM succinate, respectively, were added as exogenous electron donor. The same electron-equivalent additions of acetate and formate had the same acceleration impacts on PA removal. Consequently, the DMP-removal rate, even PA coexisting with DMP simultaneously, was accelerated by 37% by simultaneous addition of 0.3 mM succinate. Thus, lowering the accumulation of PA by addition of an electron increased the rate of DMP biodegradation.

  12. (±)-2-Chloropropionic acid elevates reactive oxygen species formation in human neutrophil granulocytes

    International Nuclear Information System (INIS)

    Aam, B.B.; Fonnum, F.

    2006-01-01

    (±)-2-Chloropropionic acid (2-CPA) is a neurotoxic compound which kills cerebellar granule cells in vivo, and makes cerebellar granule cells in vitro produce reactive oxygen species (ROS). We have studied the effect of 2-CPA on ROS formation in human neutrophil granulocytes in vitro. We found an increased formation of ROS after 2-CPA exposure using three different methods; the fluorescent probe DCFH-DA and the chemiluminescent probes lucigenin and luminol. Four different inhibitors of ROS formation were tested on the cells in combination with 2-CPA to characterize the signalling pathways. The spin-trap s-PBN, the ERK1/2 inhibitor U0126 and the antioxidant Vitamin E inhibited the 2-CPA-induced ROS formation completely, while the mitochondrial transition permeability pore blocker cyclosporine A inhibited the ROS formation partly. We also found that 2-CPA induced an increased nitric oxide production in the cells by using the Griess reagent. The level of reduced glutathione, measured with the DTNB assay, was decreased after exposure to high concentrations of 2-CPA. Western blotting analysis showed that 2-CPA exposure led to an elevated phosphorylation of ERK MAP kinase. This phosphorylation was inhibited by U0126. Based on these experiments it seems like the mechanisms for 2-CPA induced toxicity involves ROS formation and is similar in neutrophil granulocytes as earlier shown in cerebellar granule cells. This also implies that 2-CPA may be immunotoxic

  13. Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts

    KAUST Repository

    Yang, Xiulin; Li, Henan; Lu, Ang-Yu; Min, Shixiong; Idriss, Zacharie; Hedhili, Mohamed N.; Huang, Kuo-Wei; Idriss, Hicham; Li, Lain-Jong

    2016-01-01

    Most oxygen evolution reaction (OER) electrocatalysts are not stable in corrosive acids. Even the expensive RuO2 or IrO2, the most acid-resistant oxides, can be dissolved at an oxidative potential. Herein, we realize that the failures of OER catalysts are mostly caused by the weak interface between catalysts and the substrates. Hence, the study of the interface structure between catalysts and substrates is critical. In this work, we observe that the cheap OER catalysts Co3O4 can be more durable than the state-of-the-art RuO2 if the interface quality is good enough. The Co3O4 nanosheets deposited on carbon paper (Co3O4/CP) is prepared by electroplating of Co-species and followed by a two-step calcination process. The 1st step occurs in vacuum in order to maintain the surface integrity of the carbon paper and converts Co-species to Co(II)O. The 2nd step is a calcination in ambient conditions which enables the complete transformation of Co(II)O to Co3O4 without degrading the mechanical strength of the Co3O4-CP interface. Equally important, an in situ formation of a layer of amorphous carbon on top of Co3O4 further enhances the OER catalyst stability. Therefore, these key advances make the Co3O4 catalyst highly active toward the OER in 0.5 M H2SO4 with a small overpotential (370 mV), to reach 10 mA/cm2. The observed long lifetime for 86.8 h at a constant current density of 100 mA/cm2, is among the best of the reported in literature so far, even longer than the state-of-art RuO2 on CP. Overall, our study provides a new insight and methodology for the construction of a high-performance and high stability OER electrocatalysts in corrosive acidic environments.

  14. Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts

    KAUST Repository

    Yang, Xiulin

    2016-04-21

    Most oxygen evolution reaction (OER) electrocatalysts are not stable in corrosive acids. Even the expensive RuO2 or IrO2, the most acid-resistant oxides, can be dissolved at an oxidative potential. Herein, we realize that the failures of OER catalysts are mostly caused by the weak interface between catalysts and the substrates. Hence, the study of the interface structure between catalysts and substrates is critical. In this work, we observe that the cheap OER catalysts Co3O4 can be more durable than the state-of-the-art RuO2 if the interface quality is good enough. The Co3O4 nanosheets deposited on carbon paper (Co3O4/CP) is prepared by electroplating of Co-species and followed by a two-step calcination process. The 1st step occurs in vacuum in order to maintain the surface integrity of the carbon paper and converts Co-species to Co(II)O. The 2nd step is a calcination in ambient conditions which enables the complete transformation of Co(II)O to Co3O4 without degrading the mechanical strength of the Co3O4-CP interface. Equally important, an in situ formation of a layer of amorphous carbon on top of Co3O4 further enhances the OER catalyst stability. Therefore, these key advances make the Co3O4 catalyst highly active toward the OER in 0.5 M H2SO4 with a small overpotential (370 mV), to reach 10 mA/cm2. The observed long lifetime for 86.8 h at a constant current density of 100 mA/cm2, is among the best of the reported in literature so far, even longer than the state-of-art RuO2 on CP. Overall, our study provides a new insight and methodology for the construction of a high-performance and high stability OER electrocatalysts in corrosive acidic environments.

  15. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu; Feng, Zhenxing; Karakalos, Stavros; Luo, Langli; Qiao, Zhi; Xie, Xiaohong; Wang, Chongmin; Su, Dong; Shao, Yuyan; Wu, Gang (BNL); (Oregon State U.); (SC); (PNNL); (Buffalo)

    2017-09-26

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μgPt/cm2). Enhanced stability

  16. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    Science.gov (United States)

    von Sperber, C.; Tamburini, F.; Brunner, B.; Bernasconi, S. M.; Frossard, E.

    2015-07-01

    Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (myo-inositol hexakisphosphate, IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields available Pi and less phosphorylated inositol derivates as products. The hydrolysis of organic P compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O) of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'-monophosphate (AMP) and glycerophosphate (GPO4) as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as a substrate were prepared. During the hydrolysis of IP6 by phytase, four of the six Pi were released, and one oxygen atom from water was incorporated into each Pi. This incorporation of oxygen from water into Pi was subject to an apparent inverse isotopic fractionation (ϵ ~ 6 to 10 ‰), which was similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ~ 7 ‰), where less than three Pi were released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ~ -12 ‰), similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ϵ to the same amino acid sequence motif (RHGXRXP) at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking

  17. State-to-state dynamics of H+HX collisions. II. The H+HX→HX/sup dagger/+H (X = Cl,Br,I) reactive exchange and inelastic collisions at 1.6 eV collision energy

    International Nuclear Information System (INIS)

    Aker, P.M.; Germann, G.J.; Tabor, K.D.; Valentini, J.J.

    1989-01-01

    We report measurement of product state distributions for the rotationally and/or vibrationally excited HX formed in collisions of translationally hot H atoms with HX (X = Cl, Br, and I) at 1.6 eV collision energy. The product state distributions are probed after only one collision of the fast H atom, using coherent anti-Stokes Raman scattering spectroscopy. Whether proceeding by inelastic collisions or reactive exchange, the transfer of translational energy to vibrational and rotational energy is quite inefficient in H+HX collisions at 1.6 eV. For all three hydrogen halides only 2--3% of the initial translational energy appears as HX vibration. For H+HCl only 6% of the initial energy is converted to HCl rotational energy, while for H+HBr and H+HI, this percentage is twice as large, 11--12%, but still small. The indistinguishability of the two H atoms involved makes it impossible to distinguish reactive exchange from inelastic energy transfer in these H+HX collisions. However, the difference in rotational energy partitioning for H+HBr and H+HI as compared with H+HCl, suggests that reactive exchange is dominant in the former and inelastic energy transfer dominates in the latter. The total cross sections for the combined energy transfer/reactive exchange do not change much with the identity of X, being 13 +- 3, 11 +- 2, and 11 +- 2 A 2 , for H+HCl, H+HBr, and H+HI, respectively

  18. Isolation and characterization of curdlan produced by Agrobacterium HX1126 using α-lactose as substrate.

    Science.gov (United States)

    Liu, Yongmei; Gu, Qiuya; Ofosu, Fred Kwame; Yu, Xiaobin

    2015-11-01

    A strain Agrobacterium HX1126 was isolated from soil sample near the canal in Wuxi. α-lactose was used as the sole carbon source for the production of an exopolysaccharide which was named PLHX. The highest production of PLHX (21.4g/L) was obtained under nitrogen depletion. PLHX composed mainly of glucose, with lower amounts of galactose and aminogalactose. The structure of the product was confirmed by NMR and FTIR and was identified as curdlan. This exopolysaccharide formed a gel when 30g/L was put in boiling water for 10min, with an achieved gel strength of 831g/cm(2). Moreover, a hypothesis for higher gel strength production is proposed. The gel forming property makes this exopolysaccaride a good potential application in the food, pharmaceutical and cosmetic industries. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Supernovas, faros en el universo: medición de la distancia a ASASSN-15hx

    Directory of Open Access Journals (Sweden)

    Ramona Núñez López

    2016-12-01

    Full Text Available Difícil pensar en un evento astronómico tan relevante y polifacético como la gigantesca explosión de supernova, que en breves segundos destruye su estrella, creando un gran número de elementos pesados. El inmenso brillo de las supernovas permite observarlas a enormes distancias, para así obtener información cosmológica. En este trabajo abordamos en general el tema de supernovas, enfocándonos luego al estudio de la supernova de tipo Ia ASASSN-15hx. Presentamos las observaciones realizadas en diferentes filtros y mostramos un método basado en el ancho de su curva de luz para estimar su distancia y corrimiento al rojo. Los valores obtenidos coinciden con información encontrada en la literatura y las incertidumbres obtenidas están dentro del rango de las encontradas con otros métodos.

  20. Microbial degradation rates of small peptides and amino acids in the oxygen minimum zone of Chilean coastal waters

    Science.gov (United States)

    Pantoja, Silvio; Rossel, Pamela; Castro, Rodrigo; Cuevas, L. Antonio; Daneri, Giovanni; Córdova, Candy

    2009-07-01

    We found similar microbial degradation rates of labile dissolved organic matter in oxic and suboxic waters off northern Chile. Rates of peptide hydrolysis and amino acid uptake in unconcentrated water samples were not low in the water column where oxygen concentration was depleted. Hydrolysis rates ranged from 65 to 160 nmol peptide L -1 h -1 in the top 20 m, 8-28 nmol peptide L -1 h -1 between 100 and 300 m (O 2-depleted zone), and 14-19 nmol peptide L -1 h -1 between 600 and 800 m. Dissolved free amino acid uptake rates were 9-26, 3-17, and 6 nmol L -1 h -1 at similar depth intervals. Since these findings are consistent with a model of comparable potential activity of microbes in degrading labile substrates of planktonic origin, we suggest, as do other authors, that differences in decomposition rates with high and low oxygen concentrations may be a matter of substrate lability. The comparison between hydrolysis and uptake rates indicates that microbial peptide hydrolysis occurs at similar or faster rates than amino acid uptake in the water column, and that the hydrolysis of peptides is not a rate-limiting step for the complete remineralization of labile macromolecules. Low O 2 waters process about 10 tons of peptide carbon per h, double the amount processed in surface-oxygenated water. In the oxygen minimum zone, we suggest that the C balance may be affected by the low lability of the dissolved organic matter when this is upwelled to the surface. An important fraction of dissolved organic matter is processed in the oxygen minimum layer, a prominent feature of the coastal ocean in the highly productive Humboldt Current System.

  1. Fatty acid binding protein 4 deficiency protects against oxygen-induced retinopathy in mice.

    Directory of Open Access Journals (Sweden)

    Magali Saint-Geniez

    Full Text Available Retinopathy of prematurity (ROP is a leading cause of blindness in children worldwide due to increasing survival rates of premature infants. Initial suppression, followed by increased production of the retinal vascular endothelial growth factor-A (VEGF expression are key events that trigger the pathological neovascularization in ROP. Fatty acid binding protein 4 (FABP4 is an intracellular lipid chaperone that is induced by VEGF in a subset of endothelial cells. FABP4 exhibits a pro-angiogenic function in cultured endothelial cells and in airway microvasculature, but whether it plays a role in modulation of retinal angiogenesis is not known. We hypothesized that FABP4 deficiency could ameliorate pathological retinal vascularization and investigated this hypothesis using a well-characterized mouse model of oxygen-induced retinopathy (OIR. We found that FABP4 was not expressed in retinal vessels, but was present in resident macrophages/microglial cells and endothelial cells of the hyaloid vasculature in the immature retina. While FABP4 expression was not required for normal development of retinal vessels, FABP4 expression was upregulated and localized to neovascular tufts in OIR. FABP4-/- mice demonstrated a significant decrease in neovessel formation as well as a significant improvement in physiological revascularization of the avascular retinal tissues. These alterations in retinal vasculature were accompanied by reduced endothelial cell proliferation, but no effect on apoptosis or macrophage/microglia recruitment. FABP4-/- OIR samples demonstrated decreased expression of genes involved in angiogenesis, such as Placental Growth Factor, and angiopoietin 2. Collectively, our findings suggest FABP4 as a potential target of pathologic retinal angiogenesis in proliferative retinopathies.

  2. DL-2-amino-3-phosphonopropionic acid protects primary neurons from oxygen-glucose deprivation induced injury

    Directory of Open Access Journals (Sweden)

    Di Cui

    2017-02-01

    Full Text Available Cerebral infarction is a type of ischemic stroke and is one of the main causes of irreversible brain damage. Although multiple neuroprotective agents have been investigated recently, the potential of DL-2-amino-3-phosphonopropionic acid (DL-AP3 in treating oxygen-glucose deprivation (OGD-induced neuronal injury, has not been clarified yet. This study was aimed to explore the role of DL-AP3 in primary neuronal cell cultures. Primary neurons were divided into four groups: (1 a control group that was not treated; (2 DL-AP3 group treated with 10 μM of DL-AP3; (3 OGD group, in which neurons were cultured under OGD conditions; and (4 OGD + DL-AP3 group, in which OGD model was first established and then the cells were treated with 10 μM of DL-AP3. Neuronal viability and apoptosis were measured using Cell Counting Kit-8 and flow cytometry. Expressions of phospho-Akt1 (p-Akt1 and cytochrome c were detected using Western blot. The results showed that DL-AP3 did not affect neuronal viability and apoptosis in DL-AP3 group, nor it changed p-Akt1 and cytochrome c expression (p > 0.05. In OGD + DL-AP3 group, DL-AP3 significantly attenuated the inhibitory effects of OGD on neuronal viability (p < 0.001, and reduced OGD induced apoptosis (p < 0.01. Additionally, the down-regulation of p-Akt1 and up-regulation of cytochrome c, induced by OGD, were recovered to some extent after DL-AP3 treatment (p < 0.05 or p < 0.001. Overall, DL-AP3 could protect primary neurons from OGD-induced injury by affecting the viability and apoptosis of neurons, and by regulating the expressions of p-Akt1 and cytochrome c.

  3. DL-2-amino-3-phosphonopropionic acid protects primary neurons from oxygen-glucose deprivation induced injury.

    Science.gov (United States)

    Cui, Di; Xu, Jun; Xu, Quanyi; Zuo, Guokun

    2017-02-21

    Cerebral infarction is a type of ischemic stroke and is one of the main causes of irreversible brain damage. Although multiple neuroprotective agents have been investigated recently, the potential of DL-2-amino-3-phosphonopropionic acid (DL-AP3) in treating oxygen-glucose deprivation (OGD)-induced neuronal injury, has not been clarified yet. This study was aimed to explore the role of DL-AP3 in primary neuronal cell cultures. Primary neurons were divided into four groups: (1) a control group that was not treated; (2) DL-AP3 group treated with 10 μM of DL-AP3; (3) OGD group, in which neurons were cultured under OGD conditions; and (4) OGD + DL-AP3 group, in which OGD model was first established and then the cells were treated with 10 μM of DL-AP3. Neuronal viability and apoptosis were measured using Cell Counting Kit-8 and flow cytometry. Expressions of phospho-Akt1 (p-Akt1) and cytochrome c were detected using Western blot. The results showed that DL-AP3 did not affect neuronal viability and apoptosis in DL-AP3 group, nor it changed p-Akt1 and cytochrome c expression (p > 0.05). In OGD + DL-AP3 group, DL-AP3 significantly attenuated the inhibitory effects of OGD on neuronal viability (p neurons from OGD-induced injury by affecting the viability and apoptosis of neurons, and by regulating the expressions of p-Akt1 and cytochrome c.

  4. Oxygen Reduction on Gas-Diffusion Electrodes for Phosphoric Acid Fuel Cells by a Potential Decay Method

    DEFF Research Database (Denmark)

    Li, Qingfeng; Gang, Xiao; Hjuler, Hans Aage

    1995-01-01

    The reduction of gaseous oxygen on carbon supported platinum electrodes has been studied at 150 degrees C with polarization and potential decay measurements. The electrolyte was either 100 weight percent phosphoric acid or that acid with a fluorinated additive, potassium perfluorohexanesulfonate ......6F13SO3K). The pseudo-Tafel curves of the overpotential vs. log (ii(L)/(i(L) - i)) show a two-slope behavior, probably due to different adsorption mechanisms. The potential relaxations as functions of log (t + tau) and log (-d eta/dt) have been plotted. The variations of these slopes...

  5. NMR study of spin fluctuations and superconductivity in LaFeAsO1-xHx

    Science.gov (United States)

    Fujiwara, Naoki; Sakurai, Ryosuke; Iimura, Soushi; Matsuishi, Satoru; Hosono, Hideo; Yamakawa, Yoichi; Kontani, Hiroshi

    2013-03-01

    We have performed NMR measurements in LaFeAsO1-xHx, an isomorphic compound of LaFeAsO1-xFx. LaFeAsO1-xHx is most recently known for having double superconducting (SC) domes on H doping. LaFeAsO1-xHx is an electron- doped system, and protons act as H-1 as well as F-1. The first SC dome is very similar between F and H doping, suggesting that H doping supplies the same amount of electrons as F doping. Interestingly, an excess amount of H up to x=0.5 can be replaced with O2-. In the H-overdoped regime (x > 0 . 2), LaFeAsO1-xHx undergoes the second superconducting state. We measured the relaxation rate of LaFeAsO1-xHx for x=0.2 and 0.4, and fond an anomalous electronic state; spin fluctuations measured from 1 /T1 T is enhanced with increasing the doping level from x = 0 . 2 to 0.4. The enhancement of spin fluctuations with increasing carrier doping is a new phenomenon that has not observed in LaFeAsO1-xFx in which the upper limit of the doping level is at most x = 0 . 2 . We will discuss the phenomenon in relation to superconductivity. Grant (KAKENHI 23340101) from the Ministry of Education, Sports and Science, Japan

  6. Feasibility and repeatability of PET with the hypoxia tracer [18F]HX4 in oesophageal and pancreatic cancer

    International Nuclear Information System (INIS)

    Klaassen, Remy; Bennink, Roelof J.; Tienhoven, Geertjan van; Bijlsma, Maarten F.; Besselink, Marc G.H.; Berge Henegouwen, Mark I. van; Wilmink, Johanna W.; Nederveen, Aart J.; Windhorst, Albert D.; Hulshof, Maarten C.C.M.; Laarhoven, Hanneke W.M. van

    2015-01-01

    Background and purpose: To investigate the feasibility and to determine the repeatability of recurrent [ 18 F]HX4 PET scans in patients with oesophageal (EC) and pancreatic (PC) cancer. Materials and methods: 32 patients were scanned in total; seven patients (4 EC/3 PC) were scanned 2, 3 and 4 h post injection (PI) of [ 18 F]HX4 and 25 patients (15 EC/10 PC) were scanned twice 3.5 h PI, on two separate days (median 4, range 1–9 days). Maximum tumour to background ratio (TBRmax) and the tumour hypoxic volume (HV) (TBR > 1.0) were calculated. Repeatability was assessed using Bland–Altman analysis. Agreement in localization was calculated as the distance between the centres of mass in the HVs. Results: For EC, the TBRmax in the tumour (mean ± SD) was 1.87 ± 0.46 with a coefficient of repeatability (CoR) of 0.53 (28% of mean). The HV ranged from 3.4 to 98.8 ml with a CoR of 5.1 ml. For PC, the TBRmax was 1.72 ± 0.23 with a CoR of 0.27 (16% of mean). The HV ranged from 4.6 to 104.0 ml with a CoR of 7.8 ml. The distance between the centres of mass in the HV was 2.2 ± 1.3 mm for EC and 2.1 ± 1.5 mm for PC. Conclusions: PET scanning with [ 18 F]HX4 was feasible in both EC and PC patients. Amount and location of elevated [ 18 F]HX4 uptake showed good repeatability, suggesting [ 18 F]HX4 PET could be a promising tool for radiation therapy planning and treatment response monitoring in EC and PC patients

  7. Oxygen status of cervical cancers prior and during definitive radiotherapy: possible impact of pretreatment with INF-α-2a/retinol acid on oxygenation

    International Nuclear Information System (INIS)

    Haensgen, Gabriele; Haensgen, Klaus; Dunst, Juergen

    1996-01-01

    Objective: Modern techniques have raised the possibility to measure intratumoral pO 2 with needle electrodes. We have investigated the oxygenation status of cervical cancers in patients undergoing definitive radiotherapy. Materials and Methods: From July 1995 through February 1996, 28 patients with squamous cell carcinoma of the cervix uteri FIGO II/III underwent polarographic measurement of tumor oxygenation prior to and during definitive radiotherapy. All received combined external irradiation and HDR-brachytherapy. 14 patients were enrolled in a phase II-protocol and received additional treatment with interferon-alpha-2a (INF-α-2a, daily dose 6x10 6 IU s.c. over 12 days) and cis-retinol acid (cRA, daily dose 1 mg/kg orally) starting 12 days before radiotherapy. During radiotherapy, INF-α-2a was given three times weekly in a dosage of 3x10 6 IU s.c. and cRA in daily doses of 0.5 mg/kg. Tumor oxygenation was measured with an Eppendorf-pO 2 -histograph prior to radiotherapy, after 20Gy and after completion of radiotherapy. Results: We found a broad range of pO 2 -values in the 28 patients. Significant hypoxic areas were detectable in about one third of the patients. The mean and median pO 2 -values did not correlate with tumor stage or tumor volume. At the beginning of radiotherapy, the patients with INF-α-2a/cRA-pretreatment had significant higher mean pO 2 -values as compared to patients without INF-α-2a/cRA-pretreatment: mean pO 2 34.7 ± 25.9 mmHg versus 18.0 ± 9.9 mmHg, p=0.03, median pO 2 28.6 versus 17.3 mmHg). Only two patients had pO 2 -measurements before and after INF-α-2a/cRA-pretreatment; in both the mean pO 2 increased threefold during INF-α-2a/cRA. During radiotherapy, the median pO 2 -value increased in both groups of patients. In patients with primary hypoxia, different patterns of oxygenation were detectable after 20Gy showing persistent hypoxia or an increase in the mean pO 2 . Persistent hypoxia without 'reoxygenation' was associated with

  8. [Biocompatibility of poly-L-lactic acid/Bioglass-guided bone regeneration membranes processed with oxygen plasma].

    Science.gov (United States)

    Fang, Wei; Zeng, Shu-Guang; Gao, Wen-Feng

    2015-04-01

    To prepare and characterize a nano-scale fibrous hydrophilic poly-L-lactic acid/ Bioglass (PLLA/BG) composite membrane and evaluate its biocompatibility as a composite membrane for guiding bone regeneration (GBR). PLLA/BG-guided bone regeneration membrane was treated by oxygen plasma to improved its hydrophilicity. The growth of MG-63 osteoblasts on the membrane was observed using Hoechst fluorescence staining, and the biocompatibility of the membrane was evaluated by calculating the cells adhesion rate and proliferation rate. Osteogenesis of MG-63 cells was assessed by detecting alkaline phosphatase (ALP), and the formation of calcified nodules and cell morphology changes were observed using scanning electron microscope (SEM). The cell adhesion rates of PLLA/BG-guided bone regeneration membrane treated with oxygen plasma were (30.570±0.96)%, (47.27±0.78)%, and (66.78±0.69)% at 1, 3, and 6 h, respectively, significantly higher than those on PLLA membrane and untreated PLLA/BG membrane (Pmembranes increased with time, but highest on oxygen plasma-treated PLLA/BG membrane (Pplasma treatment of the PLLA/BG membrane promoted cell adhesion. The membranes with Bioglass promoted the matrix secretion of the osteoblasts. Under SEM, the formation of calcified nodules and spindle-shaped cell morphology were observed on oxygen plasma-treated PLLA/BG membrane. Oxygen plasma-treated PLLA/BG composite membrane has good biocompatibility and can promote adhesion, proliferation and osteogenesis of the osteoblasts.

  9. Effect of varying concentrations of caffeine and ascorbic acid on the radiosensitivity of barley seed irradiated in oxygenated or oxygen-free hydration medium at 25 and 3700C

    International Nuclear Information System (INIS)

    Afzal, S.M.J.; Kesavan, P.C.

    1977-01-01

    The modification of radiosensitivity of barley seed with 1.75 x 10 -3 M and 3.8 x 10 -3 M concentrations of caffeine and ascorbic acid during irradiation in oxygenated and oxygen-free hydration medium was studied at 25 and 37 0 C, respectively. Both concentrations of caffeine and ascorbic acid afforded protection against oxic radiation damage which was maximal at 25 0 C. Caffeine effectively potentiated the anoxic component of damage but ascorbic acid had no influence at all. At 25 0 C there was no concentration-dependent effect of caffeine or ascorbic acid. At 37 0 C, there was no effect, whatsoever, of either concentration of ascorbic acid, whereas caffeine dramatically potentiated the radiation damage under both oxygenated and oxygen-free conditions, and the magnitude of potentiation was concentration-dependent. The possible reactivity of caffeine and ascorbic acid towards the precursors of oxygen-dependent and -independent components of damage in determining the mode and magnitudes of modification is discussed briefly. (author)

  10. Oxygen bubbling can improve the labelling of pentavalent technetium-99m dimercaptosuccinic acid

    International Nuclear Information System (INIS)

    Kobayashi, Hisataka; Suzuki, K.H.; Sakahara, Harumi; Yao Zhengsheng; Yokoyama, Akira; Konishi, Junji

    1995-01-01

    We performed studies in animals (mice) and humans to investigate the effect of such oxygen bubbling on the labelling efficiency of and on the renal uptake of 99m Tc. The method of labelling of 99m Tc (V) DMSA was that of Hirano. It was found that oxygen bubbling oxidized the contaminated 99m Tc (III) DMSA into 99m Tc (V) DMSA in vitro and decreased the uptake of radioactivity in the kidney in both amimals and humans. (orig.)

  11. Isolated Pt Atoms Stabilized by Amorphous Tungstenic Acid for Metal-Support Synergistic Oxygen Activation.

    Science.gov (United States)

    Zhang, Qian; Qin, Xixi; Duanmu, Fanpeng; Ji, Huiming; Shen, Zhurui; Han, Xiaopeng; Hu, Wenbin

    2018-06-05

    Oxygen activation plays a crucial role in many important chemical reactions such as organics oxidation and oxygen reduction. For developing highly active materials for oxygen activation, herein, we report an atomically dispersed Pt on WO3 nanoplates stabilized by in-situ formed amorphous H2WO4 out-layer and the mechanism for activating molecular oxygen. Experimental and theoretical studies demonstrate that the isolated Pt atoms coordinated with oxygen atoms from [WO6] and water of H2WO4, consequently leading to optimized surface electronic configuration and strong metal support interaction (SMSI). In exemplified reactions of butanone oxidation sensing and oxygen reduction, the atomic Pt/WO3 hybrid exhibits superior activity than those of Pt nanoclusters/WO3 and bare WO3 as well as enhanced long-term durability. This work will provide insight on the origin of activity and stability for atomically dispersed materials, thus promoting the development of highly efficient and durable single atom-based catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Linoleic acid, thymine, and tryptophan radiosensitization by protoporphyrin in presence of oxygene

    International Nuclear Information System (INIS)

    Champel, P.; Mignot, M.A.; Pillement, B.; Fontenil, L.; Rocquet, G.

    Sensitizing effect induced by protoporphyrin, an active molecule in photooxidation is studied. Studied substances are tryptophan, thymine, linoleic acid, each component representing one of the great groups of biological components, nucleic acid, proteins, lipids [fr

  13. Effects of fulvic acid concentration and origin on photodegradation of polycyclic aromatic hydrocarbons in aqueous solution: Importance of active oxygen

    International Nuclear Information System (INIS)

    Xia Xinghui; Li Gongchen; Yang Zhifeng; Chen Yumin; Huang, Gordon H.

    2009-01-01

    With an Xe arc lamp house as simulated sunlight, the influences of fulvic acid (FA) concentration and origins on photodegradation of acenaphthene, fluorine, phenanthrene, fluoranthene and pyrene in aqueous solution have been studied. Similar effects of FAs, collected from five places around China, on polycyclic aromatic hydrocarbon (PAH) photodegradation have been observed. Active oxygen was of significance in PAH photodegradation with the presence of FAs. For systems with 1.25 mg L -1 FAs, the contributions of ·OH to PAH photodegradation rates were from 33% to 69%. FAs had two opposite effects, i.e., stimulating the generation of active oxygen and advancing PAH photodegradation; competing with PAHs for energy and photons and restraining PAH photodegradation. Generally, photodegradation rates of the 5 PAHs decreased with the increase of FAs concentration; except fluoranthene and pyrene were advanced in solutions with low FA concentration. The influences of FA concentration on PAH photodegradation were more significant than FA origin. - Influences of fulvic acid (FA) concentration on PAH photodegradation were more significant than FA origin, and active oxygen played an important role in PAH photodegradation

  14. Seasonal changes in blood oxygen transport and acid-base status in the tegu lizard, Tupinambis merianae.

    Science.gov (United States)

    Andrade, Denis V; Brito, Simone P; Toledo, Luís Felipe; Abe, Augusto S

    2004-05-20

    Oxygen-binding properties, blood gases, and acid-base parameters were studied in tegu lizards, Tupinambis merianae, at different seasons and temperatures. Independent of temperature and pH, blood oxygen affinity was higher in dormant lizards than in those active during the summer. Haematocrit (Hct) and hemoglobin content ([Hb]) were greater in active lizards resulting in a higher oxygen-carrying capacity. Nucleoside triphosphate content ([NTP]) was reduced during dormancy, but the ratio between [NTP] and [Hb] remained unchanged. Dormancy was accompanied by an increase in plasma bicarbonate ([HCO-(3)]pl) and an elevation of arterial CO2 partial pressure (PaCO2) and CO2 content in the plasma (CplCO2). These changes in acid-base parameters persist over a broad range of body temperatures. In vivo, arterial O2 partial pressure (PaO2) and O2 content (CaO2) were not affected by season and tended to increase with temperature. Arterial pH (pHa) of dormant animals is reduced compared to active lizards at body temperatures below 15 degrees C, while no significant difference was noticed at higher temperatures. Copyright 2003 Elsevier B.V.

  15. Exogenous application of rutin and gallic acid regulate antioxidants and alleviate reactive oxygen generation in Oryza sativa L.

    Science.gov (United States)

    Singh, Akanksha; Gupta, Rupali; Pandey, Rakesh

    2017-04-01

    The effect of rutin and gallic acid on growth, phytochemical and defense gene activation of rice ( Oryza sativa L.) was investigated. The seeds of rice were primed with different concentrations of rutin and gallic acid (10-60 µg mL -1 ) to explicate the effect on germination on water agar plates. Further, to study the effect of most effective concentrations of gallic acid (60 µg mL -1 ) and rutin (50 µg mL -1 ), greenhouse pot experiment was set up to determine the changes in growth, antioxidant and defense parameters. The results revealed more pronounced effect of gallic acid on total chlorophyll and carotenoids as well as on total flavonoid content and free radical scavenging activities. Gene expression analysis of OsWRKY71, PAL, CHS and LOX genes involved in strengthening the plant defense further validated the results obtained from the biochemical analysis. Microscopic analysis also confirmed reduction in total reactive oxygen species, free radicals like H 2 O 2 and O 2 - by exogenous application of gallic acid and rutin. The data obtained thus suggest that both gallic acid and rutin can affect the growth and physiology of rice plants and therefore can be used to develop effective plant growth promoters and as substitute of biofertilizers for maximizing their use in field conditions.

  16. Oxygen-Induced Retinopathy from Recurrent Intermittent Hypoxia Is Not Dependent on Resolution with Room Air or Oxygen, in Neonatal Rats.

    Science.gov (United States)

    Beharry, Kay D; Cai, Charles L; Skelton, Jacqueline; Siddiqui, Faisal; D'Agrosa, Christina; Calo, Johanna; Valencia, Gloria B; Aranda, Jacob V

    2018-05-01

    Preterm infants often experience intermittent hypoxia (IH) with resolution in room air (RA) or hyperoxia (Hx) between events. Hypoxia is a major inducer of vascular endothelial growth factor, which plays a key role in normal and aberrant retinal angiogenesis. This study tested the hypothesis that neonatal IH which resolved with RA is less injurious to the immature retina than IH resolved by Hx between events. Newborn rats were exposed to: (1) Hx (50% O₂) with brief hypoxia (12% O₂); (2) RA with 12% O₂; (3) Hx with RA; (4) Hx only; or (5) RA only, from P0 to P14. Pups were examined at P14 or placed in RA until P21. Retinal vascular and astrocyte integrity; retinal layer thickness; ocular and systemic biomarkers of angiogenesis; and somatic growth were determined at P14 and P21. All IH paradigms resulted in significant retinal vascular defects, disturbances in retinal astrocyte template, retinal thickening, and photoreceptor damage concurrent with elevations in angiogenesis biomarkers. These data suggest that the susceptibility of the immature retina to changes in oxygen render no differences in the outcomes between RA or O₂ resolution. Interventions and initiatives to curtail O₂ variations should remain a high priority to prevent severe retinopathy.

  17. Oxygen-Induced Retinopathy from Recurrent Intermittent Hypoxia Is Not Dependent on Resolution with Room Air or Oxygen, in Neonatal Rats

    Directory of Open Access Journals (Sweden)

    Kay D. Beharry

    2018-05-01

    Full Text Available Preterm infants often experience intermittent hypoxia (IH with resolution in room air (RA or hyperoxia (Hx between events. Hypoxia is a major inducer of vascular endothelial growth factor, which plays a key role in normal and aberrant retinal angiogenesis. This study tested the hypothesis that neonatal IH which resolved with RA is less injurious to the immature retina than IH resolved by Hx between events. Newborn rats were exposed to: (1 Hx (50% O2 with brief hypoxia (12% O2; (2 RA with 12% O2; (3 Hx with RA; (4 Hx only; or (5 RA only, from P0 to P14. Pups were examined at P14 or placed in RA until P21. Retinal vascular and astrocyte integrity; retinal layer thickness; ocular and systemic biomarkers of angiogenesis; and somatic growth were determined at P14 and P21. All IH paradigms resulted in significant retinal vascular defects, disturbances in retinal astrocyte template, retinal thickening, and photoreceptor damage concurrent with elevations in angiogenesis biomarkers. These data suggest that the susceptibility of the immature retina to changes in oxygen render no differences in the outcomes between RA or O2 resolution. Interventions and initiatives to curtail O2 variations should remain a high priority to prevent severe retinopathy.

  18. Amplifying the manganese scavenging potential of Streptococcus zooepidemicus to reactive oxygen species during production of hyaluronic acid.

    Science.gov (United States)

    Mashitah, M D; Masitah, H; Ramachandran, K B

    2004-05-01

    Streptococcus zooepidemicus (SZ) is an aerotolerant bacteria and its ability to survive under reactive oxidant challenge raises the question of the existence of a defense system. Thus growth, hyaluronic acid (HA) and hydrogen peroxide (H2O2) production by SZ in the presence of increasing concentration of Mn2+ were studied. The results suggested that the tested strain supported growth and HA production in cultures treated with 1 and 10 mM of Mn2+ regardless of H2O2 presence in the medium. This showed that SZ have acquired elaborate defense mechanisms to scavenge oxygen toxicity and thus protect cells from direct and indirect effect of this radical. In contrast, cells treated with 25 mM Mn2+ were sensitive, in which, the HA production was reduced considerably. Thus showing that the oxygen scavenger systems of the cells may be fully saturated at this concentration.

  19. Efficacy and safety of a new superficial chemical peel using alpha-hydroxy acid, vitamin C and oxygen for melasma.

    Science.gov (United States)

    Kim, Won-Serk

    2013-02-01

    Facial skin pigmentary disorders can be resistant to conventional treatment. Superficial chemical peel is an effective and safe treatment in pigmentary problems including melasma, post-inflammatory hyperpigmentation and aging spots. To assess the efficacy and safety of new superficial chemical peel (Melasma peel, Theraderm®), this is composed of alpha-hydroxy acid (AHAs), vitamin C and oxygen for melasma. Twenty-five ethnic Korean patients (Fitzpatrick skin phototypes IV and V) with moderate to severe melasma were enrolled. The patients underwent four treatments at 1-2-week intervals for 8 weeks. Clinical improvement was evaluated on a 5-point scale by participants and by the same dermatologist, and adverse effects were checked during the study. Improvement in the degree of pigmentation, pores, and evenness were noted. Significant clinical improvement of hyperpigmentation was evident. No adverse effects were reported. New superficial chemical peel using AHAs, vitamin C and oxygen is an effective and very safe treatment for melasma.

  20. Reciprocal polyhedra and the Euler relationship: cage hydrocarbons, CnHn and closo-boranes [BxHx]2−

    Directory of Open Access Journals (Sweden)

    Henning Hopf

    2011-02-01

    Full Text Available The closo-boranes BxHx+2, or their corresponding anions [BxHx]2− (where x = 5 through 12 and polycycloalkanes CnHn (where n represents even numbers from 6 through 20 exhibit a complementary relationship whereby the structures of the corresponding molecules, e.g., [B6H6]2− and C8H8 (cubane, are based on reciprocal polyhedra. The vertices in the closo-boranes correspond to faces in its polycyclic hydrocarbon counterpart and vice versa. The different bonding patterns in the two series are described. Several of these hydrocarbons (cubane, pentagonal dodecahedrane and the trigonal and pentagonal prismanes are known while others still remain elusive. Synthetic routes to the currently known CnHn highly symmetrical polyhedral species are briefly summarized and potential routes to those currently unknown are discussed. Finally, the syntheses of the heavier element analogues of cubane and the prismanes are described.

  1. Study of transport of oxygen and water vapour between cells in valve regulated lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Culpin, Barry [11 Bluebell Close, Whittle -le -Woods, Chorley PR6 7RH (United Kingdom); Peters, Ken [Battery Design and Manfg Systems, Glenbank, 77 Chatsworth Road, Worsley, Manchester M28 2GG (United Kingdom)

    2006-08-25

    Valve-regulated lead-acid batteries are maintenance free, safer, office compatible, and have higher volume efficiency than conventional designs. They are universally used in telecommunications and uninterruptible power supply systems. With the electrolyte immobilized in the separator or as a gel, it is feasible for a monobloc battery to have cells that are not fully sealed from one another, that is to have a common gas space, with certain attendant benefits. This study demonstrates that small differences in the saturation level, acid strength or operating temperature of the cells in such designs can initiate a cycle that may subsequently result in failure if the movement of oxygen and water vapour between cells is unrestricted. Cells that are initially out-of-balance will go further out-of-balance at an ever-increasing rate. This situation can also arise in monobloc designs with sealed cells if the intercell seal is inadequate or incomplete. Battery failure is associated with a re-distribution of water between the cells with some drying out and having high impedance. The preferential oxygen absorption in those cells produces heavily sulfated negative plates. Results on batteries tested under a range of overcharge conditions and temperatures are presented to illustrate these effects. The rate at which the cycle occurs depends on the initial relative density of the acid, the temperature or saturation imbalance between the cells, and the size of the interconnecting gas space. Batteries operating under a continuous cycling regime, particularly those with high overcharge currents and voltages that generate large volumes of oxygen, are more prone to this type of failure mode than batteries operating under low overcharge, intermittent cycling, or float conditions. (author)

  2. Passive neutralization of acid mine drainage using basic oxygen furnace slag as neutralization material: experimental and modelling.

    Science.gov (United States)

    Zvimba, John N; Siyakatshana, Njabulo; Mathye, Matlhodi

    2017-03-01

    This study investigated passive neutralization of acid mine drainage using basic oxygen furnace slag as neutralization material over 90 days, with monitoring of the parameters' quality and assessment of their removal kinetics. The quality was observed to significantly improve over time with most parameters removed from the influent during the first 10 days. In this regard, removal of acidity, Fe(II), Mn, Co, Ni and Zn was characterized by fast kinetics while removal kinetics for Mg and SO 4 2- were observed to proceed slowly. The fast removal kinetics of acidity was attributed to fast release of alkalinity from slag minerals under mildly acidic conditions of the influent water. The removal of acidity through generation of alkalinity from the passive treatment system was also observed to generally govern the removal of metallic parameters through hydroxide formation, with overall percentage removals of 88-100% achieved. The removal kinetics for SO 4 2- was modelled using two approaches, yielding rate constant values of 1.56 and 1.53 L/(day mol) respectively, thereby confirming authenticity of SO 4 2- removal kinetics experimental data. The study findings provide insights into better understanding of the potential use of slags and their limitations, particularly in mine closure, as part of addressing this challenge in South Africa.

  3. Toward an Active and Stable Catalyst for Oxygen Evolution in Acidic Media: Ti-Stabilized MnO2

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Paoli, Elisa Antares; Chorkendorff, Ib

    2015-01-01

    Catalysts are required for the oxygen evolution reaction, which are abundant, active, and stable in acid. MnO2 is a promising candidate material for this purpose. However, it dissolves at high overpotentials. Using first-principles calculations, a strategy to mitigate this problem by decorating...... undercoordinated surface sites of MnO2 with a stable oxide is developed here. TiO2 stands out as the most promising of the different oxides in the simulations. This prediction is experimentally verified by testing sputter-deposited thin films of MnO2 and Ti-MnO2. A combination of electrochemical measurements...

  4. Oxygen exchange between C18O2 and ''acidic'' oxide and zeolite catalysts

    International Nuclear Information System (INIS)

    Peri, J.B.

    1975-01-01

    The exchange of oxygen between C 18 O 2 and several high-area oxides, including silica, γ-alumina, silica--alumina, and zeolite catalysts, was studied. Infrared spectra of adsorbed CO 2 and of surface ''carbonates'' were used to follow the rate of oxygen exchange and investigate the nature of unusually exchangeable surface oxide ions, present at low concentrations. Interaction of CO 2 with the surface typically produced initial exchange of one oxygen atom, as expected from interaction with a single oxide ion (CO 2 + O 2- reversible CO 3 2- ), and the number of exchangeable ions increased with increasing temperature. The rate of oxygen exchange did not correlate with chemisorption to form stable surface carbonates or with the extent of strong physical adsorption of CO 2 . With dry silica, exchange was insignificant below 600 0 ; with catalytically active zeolites and dry γ-alumina, it was detectable at 200 0 and fairly rapid at 300--400 0 . Silica--alumina required 100--150 0 higher temperature for exchange than did an active zeolite. Activity for cracking and other hydrocarbon reactions may be related to the ease of exchange of some surface oxide ions with CO 2 . Active zeolites have reactive oxide sites resembling those on dry γ-alumina, but such sites on zeolites are probably less-readily eliminated by chemisorption of H 2 O or other compounds. (U.S.)

  5. Herbivore derived fatty acid-amides elicit reactive oxygen species burst in plants

    Science.gov (United States)

    The formation of a reactive oxygen species (ROS) burst is a central response of plants to many forms of stress including pathogen attack, several abiotic stresses, damage and insect infestation. These ROS act as a direct defense as well as signaling and regulatory molecules. Perception of microbe or...

  6. Proton conductive Pt-Co nanoparticles anchoring on citric acid functionalized graphene for efficient oxygen reduction reaction

    Science.gov (United States)

    Zhao, Yige; Liu, Jingjun; Wu, Yijun; Wang, Feng

    2017-08-01

    Designing highly efficient electro-catalysts for the oxygen reduction reaction (ORR) has been regarded as a demanding task in the development of renewable energy sources. However, little attention has been paid on improving Pt-based catalysts by promoting proton transfer from the electrolyte solutions to the catalyst layer at the cathode. Herein, we design proton conductive Pt-Co alloy nanoparticles anchoring on citric acid functionalized graphene (Pt-Co/CA-G) catalysts for efficient ORR. The facile modification approach for graphene can introduce oxygenated functional groups on the graphene surface to promote proton transfer as well as keeping the high electron conductivity without destroying the graphene original structure. The electrochemical results show that the Pt-Co/CA-G catalyst exhibits more excellent ORR activity and stability than the commercial Pt/C catalyst, which can be attributed to its improved proton transfer ability. The fast proton transfer comes from the hydrogen-bonding networks formed by the interaction between the oxygenated functional groups and water molecules. This work provides not only a novel and simple approach to modify graphene but also an effective strategy to improve Pt-based catalysts for the ORR.

  7. Improvement of microwave-assisted digestion of milk powder with diluted nitric acid using oxygen as auxiliary reagent

    Energy Technology Data Exchange (ETDEWEB)

    Bizzi, Cezar A. [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia de Bioanalitica, Campinas, SP (Brazil); Barin, Juliano S. [Departamento de Tecnologia e Ciencia dos Alimentos, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Garcia, Edivaldo E. [Departamento de Quimica, Universidade Estadual de Maringa, 87100-900, Maringa, PR (Brazil); Nobrega, Joaquim A. [Departamento de Quimica, Universidade Federal de Sao Carlos, 13565-905, Sao Carlos, SP (Brazil); Dressler, Valderi L. [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia de Bioanalitica, Campinas, SP (Brazil); Flores, Erico M.M., E-mail: ericommf@gmail.com [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia de Bioanalitica, Campinas, SP (Brazil)

    2011-05-15

    The feasibility of using diluted HNO{sub 3} solutions under oxygen pressure for decomposition of whole and non-fat milk powders and whey powder samples has been evaluated. Digestion efficiency was evaluated by determining the carbon content in solution (digests) and the determination of Ca, Cd, Cu, Fe, K, Mg, Mn, Mo, Na, Pb and Zn was performed by inductively coupled plasma optical emission spectrometry and Hg by chemical vapor generation coupled to inductively coupled plasma mass spectrometry. Samples (up to 500 mg) were digested using HNO{sub 3} solutions (1 to 14 mol L{sup -1}) and the effect of oxygen pressure was evaluated between 2.5 and 20 bar. It was possible to perform the digestion of 500 mg of milk powder using 2 mol L{sup -1} HNO{sub 3} with oxygen pressure ranging from 7.5 to 20 bar with resultant carbon content in digests lower than 1700 mg L{sup -1}. Using optimized conditions, less than 0.86 mL of concentrated nitric acid (14 mol L{sup -1}) was enough to digest 500 mg of sample. The accuracy was evaluated by determination of metal concentrations in certified reference materials, which presented an agreement better than 95% (Student's t test, P < 0.05) for all the analytes.

  8. Effect of dissolved oxygen on the corrosion behavior of 304 SS in 0.1 N nitric acid containing chloride

    Science.gov (United States)

    Khobragade, Nilay N.; Bansod, Ankur V.; Patil, Awanikumar P.

    2018-04-01

    A study was undertaken in several selected mixed nitric acid/chloride ({{{{NO}}}3}-/{{{Cl}}}- ratio) electrolytes with the nitric acid concentration of 0.1 N and chloride concentration of 0, 10, 100, 1000 and 10 000 ppm. Electrochemical tests like potentiodynamic polarization test, electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis (M-S) were carried out when the electrolytes were in deaerated condition and were in open to air (OTA) condition, and the effect of dissolved oxygen was evaluated on the corrosion behavior of 304 SS. It was found that at a critical {{{{NO}}}3}-/{{{Cl}}}- ratio, a passive state is attained at the earliest in OTA condition. Also, the passive film resistance showed higher values in OTA condition than in deaerated condition exhibiting the effect of dissolved oxygen. The results of EIS results confirmed the results obtained by potentiodynamic polarization wherein the low passive current densities were obtained in OTA condition. Mott-Schottky analysis revealed the lowest defect densities in 100 ppm Cl‑ solution in OTA condition and in 10 ppm Cl‑ solution in deaerated condition indicating less defective films formed in these solutions. XPS analysis showed that the film was bilayer in nature in confirmation with M-S analysis. The results were discussed with point defect model (PDM) and by competitive surface adsorption.

  9. Extending the basic function of lattice oxygen in lepidocrocite titanate - The conversion of intercalated fatty acid to liquid hydrocarbon fuels

    Science.gov (United States)

    Maluangnont, Tosapol; Arsa, Pornanan; Sooknoi, Tawan

    2017-12-01

    We report herein the basicity of the external and internal lattice oxygen (OL) in lepidocrocite titanates with respect to CO2 and palmitic acid, respectively. Several compositions have been tested with different types of the metal M aliovalently (co)substituted for Ti, K0.8[MyTi2-y]O4 (M = Li, Mg, Fe, Co, Ni, Cu, Zn, Cu/Ni and Cu/Zn). The low CO2 desorption peak temperature (70-100 °C) suggests that the external OL sites are weakly basic similar to TiO2. However, the internal OL sites are sufficiently basic to deprotonate palmitic acid, forming the intercalated potassium palmitate at the interlayer spaces. The latter serves as a two-dimensional (2D) molecular reactor for the production of liquid hydrocarbon fuels via deoxygenation under atmospheric N2. A relationship has been observed between the yield of the liquid products vs the partial charge of the lattice oxygen (δO). Since the deoxygenation pathway is highly dependent on the metal substitution, the redox-active sites might also play some roles. The co-substituted K0.8[Cu0.2Ni0.2]Ti1.6O4 produced 68.0% yield of the liquid products, with 51% saturated and 15% unsaturated C15 hydrocarbons at 350 °C.

  10. Fundamental Mechanistic Understanding of Electrocatalysis of Oxygen Reduction on Pt and Non-Pt Surfaces: Acid versus Alkaline Media

    Directory of Open Access Journals (Sweden)

    Nagappan Ramaswamy

    2012-01-01

    Full Text Available Complex electrochemical reactions such as Oxygen Reduction Reaction (ORR involving multi-electron transfer is an electrocatalytic inner-sphere electron transfer process that exhibit strong dependence on the nature of the electrode surface. This criterion (along with required stability in acidic electrolytes has largely limited ORR catalysts to the platinum-based surfaces. New evidence in alkaline media, discussed here, throws light on the involvement of surface-independent outer-sphere electron transfer component in the overall electrocatalytic process. This surface non-specificity gives rise to the possibility of using a wide-range of non-noble metal surfaces as electrode materials for ORR in alkaline media. However, this outer-sphere process predominantly leads only to peroxide intermediate as the final product. The importance of promoting the electrocatalytic inner-sphere electron transfer by facilitation of direct adsorption of molecular oxygen on the active site is emphasized by using pyrolyzed metal porphyrins as electrocatalysts. A comparison of ORR reaction mechanisms between acidic and alkaline conditions is elucidated here. The primary advantage of performing ORR in alkaline media is found to be the enhanced activation of the peroxide intermediate on the active site that enables the complete four-electron transfer. ORR reaction schemes involving both outer- and inner-sphere electron transfer mechanisms are proposed.

  11. Influence of gamma radiation and singlet oxygen on nucleic acid constituents

    International Nuclear Information System (INIS)

    Balland, Alain.

    1979-10-01

    The action of single oxygen on nucleosides proved to be extremely specific of deoxy-2' guanosine. The use of high performance liquid chromatography and spectrometric techniques (IR, mass and NMR) made it possible to isolate and characterise five main products of degradation. Ionizing radiations act mainly through radical species resulting from the radiolysis of water. The effects of the presence of DNA nucleosides in irradiated aqueous solutions of thymidine were investigated. It would appear, in these conditions, that the change in radio-sensitivity of thymidine in oxygenated solution can be explained essentially in terms of the competition of hydroxyl radicals. A study of the action of gamma rays on aqueous solutions of deoxy-2' guanilyl thymidine was carried out in the absence and presence of oxygen. The significant action of neutral radical species on the 'osidic' fragment explaining the break in the phosphodiester bond was noticed. The radio-induced modifications on the substrate were characterised indirectly by enzime hydrolysis (phosphodiesterasis). In an aerated aqueous solution, the monophosphate dinucleosides modified on the thymidine motive were identified by comparison with the substances obtained by synthesis. The characterisation of new substances and the study of synthetic ones required the use of NMR. Hence the configuration study of modified nucleosides was given much room [fr

  12. Effect of fatty acid interaction on myoglobin oxygen affinity and triglyceride metabolism.

    Science.gov (United States)

    Jue, Thomas; Simond, Gregory; Wright, Traver J; Shih, Lifan; Chung, Youngran; Sriram, Renuka; Kreutzer, Ulrike; Davis, Randall W

    2016-08-01

    Recent studies have suggested myoglobin (Mb) may have other cellular functions in addition to storing and transporting O 2 . Indeed, NMR experiments have shown that the saturated fatty acid (FA) palmitate (PA) can interact with myoglobin (Mb) in its ligated state (MbCO and MbCN) but does not interact with Mb in its deoxygenated state. The observation has led to the hypothesis that Mb can also serve as a fatty acid transporter. The present study further investigates fatty acid interaction with the physiological states of Mb using the more soluble but unsaturated fatty acid, oleic acid (OA). OA binds to MbCO but does not bind to deoxy Mb. OA binding to Mb, however, does not alter its O 2 affinity. Without any Mb, muscle has a significantly lower level of triglyceride (TG). In Mb knock-out (MbKO) mice, both heart and skeletal muscles have lower level of TG relative to the control mice. Training further decreases the relative TG in the MbKO skeletal muscle. Nevertheless, the absence of Mb and lower TG level in muscle does not impair the MbKO mouse performance as evidenced by voluntary wheel running measurements. The results support the hypothesis of a complex physiological role for Mb, especially with respect to fatty acid metabolism.

  13. Ursolic acid isolated from guava leaves inhibits inflammatory mediators and reactive oxygen species in LPS-stimulated macrophages.

    Science.gov (United States)

    Kim, Min-Hye; Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2015-06-01

    Psidium guajava (guava) leaves have been frequently used for the treatment of rheumatism, fever, arthritis and other inflammatory conditions. The purpose of this study was to identify major anti-inflammatory compounds from guava leaf extract. The methanol extract and its hexane-, dichloromethane-, ethylacetate-, n-butanol- and water-soluble phases derived from guava leaves were evaluated to determine their inhibitory activity on nitric oxide (NO) production by RAW 264.7 cells stimulated with lipopolysaccharide (LPS). The methanol extract decreased NO production in a dose-dependent manner without cytotoxicity at a concentration range of 0-100 μg/mL. The n-butanol soluble phase was the most potent among the five soluble phases. Four compounds were isolated by reversed-phase HPLC from the n-butanol soluble phase and identified to be avicularin, guaijaverin, leucocyanidin and ursolic acid by their NMR spectra. Among these compounds, ursolic acid inhibited LPS-induced NO production in a dose-dependent manner without cytotoxity at a concentration range of 1-10 µM, but the other three compounds had no effect. Ursolic acid also inhibited LPS-induced prostaglandin E2 production. A western blot analysis showed that ursolic acid decreased the LPS-stimulated inducible nitric oxide synthase and cyclooxygenase protein levels. In addition, ursolic acid suppressed the production of intracellular reactive oxygen species in LPS-stimulated RAW 264.7 cells, as measured by flow cytometry. Taken together, these results identified ursolic acid as a major anti-inflammatory compound in guava leaves.

  14. (Invited) Towards the Development of Active, Stable and Abundant Catalysts for Oxygen Evolution in Acid

    DEFF Research Database (Denmark)

    Stephens, Ifan; Paoli, Elisa Antares; Frydendal, Rasmus

    2015-01-01

    Of the different water splitting technologies, polymer electrolyte membrane (PEM) electrolysers are the most amenable towards small-scale delocalized storage of renewable electricity. In order for these devices make a significant impact to the global energy landscape, they will need to be scaled...... to the TW level. State-of the art PEM electrolysers employ IrOx, which is both expensive and scarce, to catalyse oxygen evolution.(1) Around a decade’s worth of Ir production would be required to scale up PEM electrolysis to the TW scale: this is clearly untenable.(2) It turns out that RuOx has a higher...

  15. Kinetics of oxygen reduction reaction at tin-adatoms-modified gold electrodes in acidic media

    International Nuclear Information System (INIS)

    Miah, Md. Rezwan; Ohsaka, Takeo

    2009-01-01

    In the present report, oxygen reduction reaction (ORR) at polycrystalline gold (Au (poly)) electrode in situ modified by the underpotential deposition (upd) of Sn-adatoms is addressed. The ORR was investigated at the Sn-adatoms-modified Au (poly) electrode by the hydrodynamic voltammetric technique with a view to evaluating the various related kinetic parameters. The results demonstrated that the underpotential deposited Sn-adatoms on the Au (poly) electrode substantially promoted the activity of the electrode towards an exclusive one-step four-electron ORR forming H 2 O as the final product.

  16. Kinetics of oxygen reduction reaction at tin-adatoms-modified gold electrodes in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Md. Rezwan [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)], E-mail: mrmche@yahoo.com; Ohsaka, Takeo [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)], E-mail: ohsaka@echem.titech.ac.jp

    2009-10-01

    In the present report, oxygen reduction reaction (ORR) at polycrystalline gold (Au (poly)) electrode in situ modified by the underpotential deposition (upd) of Sn-adatoms is addressed. The ORR was investigated at the Sn-adatoms-modified Au (poly) electrode by the hydrodynamic voltammetric technique with a view to evaluating the various related kinetic parameters. The results demonstrated that the underpotential deposited Sn-adatoms on the Au (poly) electrode substantially promoted the activity of the electrode towards an exclusive one-step four-electron ORR forming H{sub 2}O as the final product.

  17. Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures

    DEFF Research Database (Denmark)

    Hu, Yang; Jiang, Yiliang; Jensen, Jens Oluf

    2018-01-01

    Phosphoric acid is the common electrolyte for high-temperature polymer electrolyte fuel cells (HT-PEMFCs) that have advantages such as enhanced CO tolerance and simplified heat and water management. The currently used rotating disk electrode technique is limited to tests in dilute solutions at lo...

  18. Molecular simulation insights on the in vacuo adsorption of amino acids on graphene oxide surfaces with varying surface oxygen densities

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, Farzin; Nouranian, Sasan, E-mail: sasan@olemiss.edu; Mahdavi, Mina [University of Mississippi, Department of Chemical Engineering (United States); Al-Ostaz, Ahmed [University of Mississippi, Department of Civil Engineering (United States)

    2016-11-15

    In this fundamental study, a series of molecular dynamics simulations were performed in vacuo to investigate the energetics and select geometries of 20 standard amino acids (AAs) on pristine graphene (PG) and graphene oxide (GO) surfaces as a function of graphene surface oxygen density. These interactions are of key interest to graphene/biomolecular systems. Our results indicate that aromatic AAs exhibit the strongest total interactions with the PG surfaces due to π-π stacking. Tryptophan (Trp) has the highest aromaticity due to its indole side chain and, hence, has the strongest interaction among all AAs (−16.66 kcal/mol). Aliphatic, polar, and charged AAs show various levels of affinity to the PG sheets depending on the strength of their side chain hydrophobic interactions. For example, arginine (Arg) with its guanidinium side chain exhibits the strongest interaction with the PG sheets (−13.81 kcal/mol) following aromatic AAs. Also, glycine (Gly; a polar AA) has the weakest interaction with the PG sheets (−7.29 kcal/mol). When oxygen-containing functional groups are added to the graphene sheets, the π-π stacking in aromatic AAs becomes disrupted and perfect parallelism of the aromatic rings is lost. Moreover, hydrogen bonding and/or electrostatic interactions become more pronounced. Charged AAs exhibit the strongest interactions with the GO surfaces. In general, the AA-GO interactions increase with increasing surface oxygen density, and the effect is more pronounced at higher O/C ratios. This study provides a quantitative measure of AA-graphene interactions for the design and tuning of biomolecular systems suitable for biosensing, drug delivery, and gene delivery applications.

  19. Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions

    Science.gov (United States)

    Mun, Bong-Gyu; Khan, Abdul Latif; Waqas, Muhammad; Kim, Hyun-Ho; Shahzad, Raheem; Imran, Muhammad

    2018-01-01

    This study investigated the regulatory role of exogenous salicylic acid (SA) in rice and its effects on toxic reactive oxygen and nitrogen species during short-term salinity stress. SA application (0.5 and 1.0 mM) during salinity-induced stress (100 mM NaCl) resulted in significantly longer shoot length and higher chlorophyll and biomass accumulation than with salinity stress alone. NaCl-induced reactive oxygen species production led to increased levels of lipid peroxidation in rice plants, which were significantly reduced following SA application. A similar finding was observed for superoxide dismutase; however, catalase (CAT) and ascorbate peroxidase (APX) were significantly reduced in rice plants treated with SA and NaCl alone and in combination. The relative mRNA expression of OsCATA and OsAPX1 was lower in rice plants during SA stress. Regarding nitrogenous species, S-nitrosothiol (SNO) was significantly reduced initially (one day after treatment [DAT]) but then increased in plants subjected to single or combined stress conditions. Genes related to SNO biosynthesis, S-nitrosoglutathione reductase (GSNOR1), NO synthase-like activity (NOA), and nitrite reductase (NIR) were also assessed. The mRNA expression of GSNOR1 was increased relative to that of the control, whereas OsNOA was expressed at higher levels in plants treated with SA and NaCl alone relative to the control. The mRNA expression of OsNR was decreased in plants subjected to single or combination treatment, except at 2 DAT, compared to the control. In conclusion, the current findings suggest that SA can regulate the generation of NaCl-induced oxygen and nitrogen reactive species in rice plants. PMID:29558477

  20. Effect of amino acid ligands on the structure of iron porphyrins and their ability to bind oxygen.

    Science.gov (United States)

    Berryman, Victoria E J; Baker, Matthew G; Boyd, Russell J

    2014-06-26

    Density functional theory is used to study a series of model iron porphyrins in the gas phase. In the first part of this study, three range-separated hybrid density functionals developed by Chai and Head-Gordon were assessed; ωB97, ωB97X, and ωB97XD. The effects of including full Hartree-Fock exchange at long-range and dispersion corrections are reported with respect to the geometries and binding energies of oxygen to the iron porphyrin systems. The functionals all correctly predict the quintet ground state for the deoxy-iron porphyrins, where typically hybrid functionals fail and predict a triplet ground state. Including dispersion in ωB97XD is shown to give the best results for the O2 binding energy and geometrical parameters. The second part of the study employs ωB97XD to study iron porphine systems with different amino acids in the axial position. Geometrical parameters are reported and compared to experimental data, where available. Binding energies of the systems with oxygen are also reported and discussed.

  1. Influence of residual elements in lead on oxygen- and hydrogen-gassing rates of lead-acid batteries

    Science.gov (United States)

    Lam, L. T.; Ceylan, H.; Haigh, N. P.; Lwin, T.; Rand, D. A. J.

    Raw lead materials contain many residual elements. With respect to setting 'safe' levels for these elements, each country has its own standard, but the majority of the present specifications for the lead used to prepare battery oxide apply to flooded batteries that employ antimonial grids. In these batteries, the antimony in the positive and negative grids dominates gassing characteristics so that the influence of residual elements is of little importance. This is, however, not the case for valve-regulated lead-acid (VRLA) batteries, which use antimony-free grids and less sulfuric acid solution. Thus, it is necessary to specify 'acceptable' levels of residual elements for the production of VRLA batteries. In this study, 17 elements are examined, namely: antimony, arsenic, bismuth, cadmium, chromium, cobalt, copper, germanium, iron, manganese, nickel, selenium, silver, tellurium, thallium, tin, and zinc. The following strategy has been formulated to determine the acceptable levels: (i) selection of a control oxide; (ii) determination of critical float, hydrogen and oxygen currents; (iii) establishment of a screening plan for the elements; (iv) development of a statistical method for analysis of the experimental results. The critical values of the float, hydrogen and oxygen currents are calculated from a field survey of battery failure data. The values serve as a base-line for comparison with the corresponding measured currents from cells using positive and negative plates produced either from the control oxide or from oxide doped with different levels of the 17 elements in combination. The latter levels are determined by means of a screening plan which is based on the Plackett-Burman experimental design. Following this systematic and thorough exercise, two specifications are proposed for the purity of the lead to be used in oxide production for VRLA technology.

  2. A computational study on the adsorption configurations and reactions of SiHx(x = 1-4) on clean and H-covered Si(100) surfaces

    Science.gov (United States)

    Le, Thong N.-M.; Raghunath, P.; Huynh, Lam K.; Lin, M. C.

    2016-11-01

    Possible adsorption configurations of H and SiHx (x = 1 - 4) on clean and H-covered Si(100) surfaces are determined by using spin-polarized DFT calculations. The results show that, on the clean surface, the gas-phase hydrogen atom and SiH3 radicals effectively adsorb on the top sites, while SiH and SiH2 prefer the bridge sites of the first layer. Another possibility for SiH is to reside on the hollow sites with a triple-bond configuration. For a partially H-coverd Si(100) surface, the mechanism is similar but with higher adsorption energies in most cases. This suggests that the surface species become more stable in the presence of surface hydrogens. The minimum energy paths for the adsorption/migration and reactions of H/SiHx species on the surfaces are explored using the climbing image-nudged elastic band method. The competitive surface processes for Si thin-film formation from SiHx precursors are also predicted. The study reveals that the migration of hydrogen adatom is unimportant with respect to leaving open surface sites because of its high barriers (>29.0 kcal/mol). Alternatively, the abstraction of hydrogen adatoms by H/SiHx radicals is more favorable. Moreover, the removal of hydrogen atoms from adsorbed SiHx, an essential step for forming Si layers, is dominated by abstraction rather than the decomposition processes.

  3. Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium

    International Nuclear Information System (INIS)

    Feng Yongjun; He Ting; Alonso-Vante, Nicolas

    2009-01-01

    We investigated the effect of CoSe 2 /C nanoparticle loading rate on oxygen reduction reaction (ORR) activity and H 2 O 2 production using the rotating disk electrode and the rotating ring-disk electrode techniques. We prepared carbon-supported CoSe 2 nanoparticles with different nominal loading rates and evaluated these samples by means of powder X-ray diffraction. All the catalysts had an OCP value of 0.81 V vs. RHE. H 2 O 2 production during the ORR process decreased with an increase in catalytic layer thickness. This decrease was related to the CoSe 2 loading on the disk electrode. H 2 O 2 production also decreased with increasing catalytic site density, a phenomenon related to the CoSe 2 loading rate on the carbon substrate. The cathodic current density significantly increased with increasing catalytic layer thickness, but decreased with increasing catalytic site density. In the case of 20 wt% CoSe 2 /C nanoparticles at 22 μg cm -2 , we determined that the transfer process involves about 3.5 electrons.

  4. Investigations of Pd-Cu electrocatalyst for oxygen reduction reaction in acidic media with RDE method

    Energy Technology Data Exchange (ETDEWEB)

    Fouda-Onana, F.; Bah, S.; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    The kinetics of the oxygen reduction reaction (ORR) has been studied extensively with different platinum bi-metallic alloys such as Pt-Fe, Pt-Ni, Pt-Co. However, palladium-based bi-metallic alloys are being considered as a substitute for platinum in electrocatalysts. This paper reported on a study that investigated the ORR on bi-metallic Pd-Cu electrocatalyst. Different contents in Cu were analyzed and an optimal Cu composition leading to the highest ORR activity was found. A mechanism of the ORR kinetics for this catalyst was introduced based on the value of the Tafel slope. A smooth increase in surface area up to 50 per cent Cu was observed to a constant value of 23 cm{sup 2}. Such behaviour was due to the high dispersion of Pd as Cu increased and segregated. A volcano-shape was found between the kinetic current, activation energy and the Cu composition. The maximum exchange current density and the lowest activation energy were found for Pd50Cu50, which corresponded to the highest surface area. All Pd-Cu alloys presented a higher kinetic current than Pd alone. 3 refs., 1 tab., 3 figs.

  5. Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode.

    Science.gov (United States)

    Ma, Yuanyuan; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2018-03-05

    Hydrogen production through water splitting is considered a promising approach for solar energy harvesting. However, the variable and intermittent nature of solar energy and the co-production of H 2 and O 2 significantly reduce the flexibility of this approach, increasing the costs of its use in practical applications. Herein, using the reversible n-type doping/de-doping reaction of the solid-state polytriphenylamine-based battery electrode, we decouple the H 2 and O 2 production in acid water electrolysis. In this architecture, the H 2 and O 2 production occur at different times, which eliminates the issue of gas mixing and adapts to the variable and intermittent nature of solar energy, facilitating the conversion of solar energy to hydrogen (STH). Furthermore, for the first time, we demonstrate a membrane-free solar water splitting through commercial photovoltaics and the decoupled acid water electrolysis, which potentially paves the way for a new approach for solar water splitting. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A safer and flexible method for the oxygen functionalization of carbon nanotubes by nitric acid vapors

    Energy Technology Data Exchange (ETDEWEB)

    Santangelo, Saveria, E-mail: saveria.santangelo@unirc.it [Dipartimento di Ingegneria Civile, dell’Energia, dell’Ambiente e dei Materiali (DICEAM), Università “Mediterranea”, 89122 Reggio Calabria (Italy); Piperopoulos, Elpida [Dipartimento di Ingegneria Eletronica, Chimica ed Ingegneria Industriale (DIECII), Università di Messina, 98166 Messina (Italy); Fazio, Enza [Dipartimento di Fisica e di Scienze della Terra (DFST), Università di Messina, 98166 Messina (Italy); Faggio, Giuliana [Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile (DIIES), Università “Mediterranea”, 89122 Reggio Calabria (Italy); Ansari, Shabana [Dipartimento di Ingegneria Eletronica, Chimica ed Ingegneria Industriale (DIECII), Università di Messina, 98166 Messina (Italy); Lanza, Maurizio [Istituto per i Processi Chimico Fisici (IPCF) del CNR, 98158 Messina (Italy); Neri, Fortunato [Dipartimento di Fisica e di Scienze della Terra (DFST), Università di Messina, 98166 Messina (Italy); Messina, Giacomo [Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile (DIIES), Università “Mediterranea”, 89122 Reggio Calabria (Italy); Milone, Candida [Dipartimento di Ingegneria Eletronica, Chimica ed Ingegneria Industriale (DIECII), Università di Messina, 98166 Messina (Italy)

    2014-06-01

    The functionalization by nitric acid vapors at azeotropic concentration has been recently proposed to eliminate drawbacks of the widely utilized liquid phase functionalization method. This work suggests to exploit the so-called “salt effect” to improve the vapor phase oxidation method in terms of safety and flexibility. Increasing the relative volatility of acid, the addition of Mg(NO{sub 3}){sub 2} salt to the HNO{sub 3} + H{sub 2}O solution allows (i) obtaining vapors with HNO{sub 3} at the azeotropic concentration from a more diluted liquid solution (i.e. operating under safer conditions), and (ii) varying the concentration of HNO{sub 3} in the vapor phase even above the azeotropic concentration limit (with improved process flexibility). High-resolution transmission electron microscopy, thermo-gravimetry, Raman spectroscopy and X-ray photoemission spectroscopy systematic analyses are carried out on pristine and oxidized nanotubes in order to assess their functionalization degree, surface chemistry and structural evolution. The most relevant finding of this preliminary study is that the nanotube functionalization extent increases linearly with the HNO{sub 3} vapor concentration.

  7. A safer and flexible method for the oxygen functionalization of carbon nanotubes by nitric acid vapors

    International Nuclear Information System (INIS)

    Santangelo, Saveria; Piperopoulos, Elpida; Fazio, Enza; Faggio, Giuliana; Ansari, Shabana; Lanza, Maurizio; Neri, Fortunato; Messina, Giacomo; Milone, Candida

    2014-01-01

    The functionalization by nitric acid vapors at azeotropic concentration has been recently proposed to eliminate drawbacks of the widely utilized liquid phase functionalization method. This work suggests to exploit the so-called “salt effect” to improve the vapor phase oxidation method in terms of safety and flexibility. Increasing the relative volatility of acid, the addition of Mg(NO 3 ) 2 salt to the HNO 3 + H 2 O solution allows (i) obtaining vapors with HNO 3 at the azeotropic concentration from a more diluted liquid solution (i.e. operating under safer conditions), and (ii) varying the concentration of HNO 3 in the vapor phase even above the azeotropic concentration limit (with improved process flexibility). High-resolution transmission electron microscopy, thermo-gravimetry, Raman spectroscopy and X-ray photoemission spectroscopy systematic analyses are carried out on pristine and oxidized nanotubes in order to assess their functionalization degree, surface chemistry and structural evolution. The most relevant finding of this preliminary study is that the nanotube functionalization extent increases linearly with the HNO 3 vapor concentration.

  8. Gambogic Acid Lysinate Induces Apoptosis in Breast Cancer MCF-7 Cells by Increasing Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Yong-Zhan Zhen

    2015-01-01

    Full Text Available Gambogic acid (GA inhibits the proliferation of various human cancer cells. However, because of its water insolubility, the antitumor efficacy of GA is limited. Objectives. To investigate the antitumor activity of gambogic acid lysinate (GAL and its mechanism. Methods. Inhibition of cell proliferation was determined by MTT assay; intracellular ROS level was detected by staining cells with DCFH-DA; cell apoptosis was determined by flow cytometer and the mechanism of GAL was investigated by Western blot. Results. GAL inhibited the proliferation of MCF-7 cells with IC50 values 1.46 μmol/L comparable with GA (IC50, 1.16 μmol/L. GAL promoted the production of ROS; however NAC could remove ROS and block the effect of GAL. GAL inhibited the expression of SIRT1 but increased the phosphorylation of FOXO3a and the expression of p27Kip1. At knockdown of FOXO3a, cell apoptosis induced by GAL can be partly blocked. In addition it also enhanced the cleavage of caspase-3. Conclusions. GAL inhibited MCF-7 cell proliferation and induced MCF-7 cell apoptosis by increasing ROS level which could induce cell apoptosis by both SIRT1/FOXO3a/p27Kip1 and caspase-3 signal pathway. These results suggested that GAL might be useful as a modulation agent in cancer chemotherapy.

  9. CuO and Ag2O/CuO Catalyzed Oxidation of Aldehydes to the Corresponding Carboxylic Acids by Molecular Oxygen

    Directory of Open Access Journals (Sweden)

    Yaowu Sha

    2008-04-01

    Full Text Available Furfural was oxidized to furoic acid by molecular oxygen under catalysis by 150nm-sized Ag2O/CuO (92% or simply CuO (86.6%. When 30 nm-size catalyst was used,the main product was a furfural Diels-Alder adduct. Detailed reaction conditions andregeneration of catalysts were investigated. Under optimal conditions, a series of aromaticand aliphatic aldehydes were oxidized to the corresponding acids in good yields.

  10. Formation of hydroxyl groups and exchange with deuterium on NaHX and NaHY zeolites

    International Nuclear Information System (INIS)

    Kubelkova, L.; Novakova, J.

    1976-01-01

    Deammoniation and dehydroxylation of Na(NH 4 )X and Na(NH 4 )Y zeolites were compared. With the X type, both processes overlapped and proceeded more easily than with the Y type. Both H forms contained structural OH groups and hydroxyls denoted as SiOH, to which the 3740 cm -1 band in the IR spectrum was assigned. In addition, the NaHX zeolite contained OH groups characterized by the 3700 and 3600 cm -1 bands. Certain differences in the behaviour of NaHX and NaHY zeolites during deammoniation and dehydroxylation might be attributed to the presence of ''non-localizable'' H atoms. The active sites for the D 2 -OH exchange were probably formed during dehydroxylation. Hydrogen in SiOH groups was replaced by deuterium in both zeolite types more slowly than H atoms in other OH groups, which influenced the kinetic variations in the gaseous phase. The presence of water in the gaseous phase affected the kinetics and could distort the determination of the number of H atoms bound in the zeolites. (author)

  11. Kinetics and Mechanism of Bioactivation via S-Oxygenation of Anti-Tubercular Agent Ethionamide by Peracetic Acid.

    Science.gov (United States)

    Chipiso, Kudzanai; Logan, Isabelle E; Eskew, Matthew W; Omondi, Benard; Simoyi, Reuben H

    2016-10-11

    The kinetics and mechanism of the oxidation of the important antitubercular agent, ethionamide, ETA (2-ethylthioisonicotinamide), by peracetic acid (PAA) have been studied. It is effectively a biphasic reaction with an initial rapid first phase of the reaction which is over in about 5 s and a second slower phase of the reaction which can run up to an hour. The first phase involves the addition of a single oxygen atom to ethionamide to form the S-oxide. The second phase involves further oxidation of the S-oxide to desulfurization of ETA to give 2-ethylisonicotinamide. In contrast to the stability of most organosulfur compounds, the S-oxide of ETA is relatively stable and can be isolated. In conditions of excess ETA, the stoichiometry of the reaction was strictly 1:1: CH 3 CO 3 H + Et(C 5 H 4 )C(═S)NH 2 → CH 3 CO 2 H + Et(C 5 H 4 )C(═NH)SOH. In this oxidation, it was apparent that only the sulfur center was the reactive site. Though ETA was ultimately desulfurized, only the S-oxide was stable. Electrospray ionization (ESI) spectral analysis did not detect any substantial formation of the sulfinic and sulfonic acids. This suggests that cleavage of the carbon-sulfur bond occurs at the sulfenic acid stage, resulting in the formation of an unstable sulfur species that can react further to form more stable sulfur species. In this oxidation, no sulfate formation was observed. ESI spectral analysis data showed a final sulfur species in the form of a dimeric sulfur monoxide species, H 3 S 2 O 2 . We derived a bimolecular rate constant for the formation of the S-oxide of (3.08 ± 0.72) × 10 2 M -1 s -1 . Oxidation of the S-oxide further to give 2-ethylisonicotinamide gave zero order kinetics.

  12. Screening nitrogen-rich bases and oxygen-rich acids by theoretical calculations for forming highly stable salts.

    Science.gov (United States)

    Zhang, Xueli; Gong, Xuedong

    2014-08-04

    Nitrogen-rich heterocyclic bases and oxygen-rich acids react to produce energetic salts with potential application in the field of composite explosives and propellants. In this study, 12 salts formed by the reaction of the bases 4-amino-1,2,4-trizole (A), 1-amino-1,2,4-trizole (B), and 5-aminotetrazole (C), upon reaction with the acids HNO3 (I), HN(NO2 )2 (II), HClO4 (III), and HC(NO2 )3 (IV), are studied using DFT calculations at the B97-D/6-311++G** level of theory. For the reactions with the same base, those of HClO4 are the most exothermic and spontaneous, and the most negative Δr Gm in the formation reaction also corresponds to the highest decomposition temperature of the resulting salt. The ability of anions and cations to form hydrogen bonds decreases in the order NO3 (-) >N(NO2 )2 (-) >ClO4 (-) >C(NO2 )3 (-) , and C(+) >B(+) >A(+) . In particular, those different cation abilities are mainly due to their different conformations and charge distributions. For the salts with the same anion, the larger total hydrogen-bond energy (EH,tot ) leads to a higher melting point. The order of cations and anions on charge transfer (q), second-order perturbation energy (E2 ), and binding energy (Eb ) are the same to that of EH,tot , so larger q leads to larger E2 , Eb , and EH,tot . All salts have similar frontier orbitals distributions, and their HOMO and LUMO are derived from the anion and the cation, respectively. The molecular orbital shapes are kept as the ions form a salt. To produce energetic salts, 5-aminotetrazole and HClO4 are the preferred base and acid, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ornithine Decarboxylase-Mediated Production of Putrescine Influences Ganoderic Acid Biosynthesis by Regulating Reactive Oxygen Species in Ganoderma lucidum.

    Science.gov (United States)

    Wu, Chen-Gao; Tian, Jia-Long; Liu, Rui; Cao, Peng-Fei; Zhang, Tian-Jun; Ren, Ang; Shi, Liang; Zhao, Ming-Wen

    2017-10-15

    Putrescine is an important polyamine that participates in a variety of stress responses. Ornithine decarboxylase (ODC) is a key enzyme that catalyzes the biosynthesis of putrescine. A homolog of the gene encoding ODC was cloned from Ganoderma lucidum In the ODC -silenced strains, the transcript levels of the ODC gene and the putrescine content were significantly decreased. The ODC -silenced strains were more sensitive to oxidative stress. The content of ganoderic acid was increased by approximately 43 to 46% in the ODC -silenced strains. The content of ganoderic acid could be recovered after the addition of exogenous putrescine. Additionally, the content of reactive oxygen species (ROS) was significantly increased by approximately 1.3-fold in the ODC -silenced strains. The ROS content was significantly reduced after the addition of exogenous putrescine. The gene transcript levels and the activities of four major antioxidant enzymes were measured to further explore the effect of putrescine on the intracellular ROS levels. Further studies showed that the effect of the ODC-mediated production of putrescine on ROS might be a factor influencing the biosynthesis of ganoderic acid. Our study reports the role of putrescine in large basidiomycetes, providing a basis for future studies of the physiological functions of putrescine in microbes. IMPORTANCE It is well known that ODC and the ODC-mediated production of putrescine play an important role in resisting various environmental stresses, but there are few reports regarding the mechanisms underlying the effect of putrescine on secondary metabolism in microorganisms, particularly in fungi. G. lucidum is gradually becoming a model organism for studying environmental regulation and metabolism. In this study, a homolog of the gene encoding ODC was cloned in Ganoderma lucidum We found that the transcript level of the ODC gene and the content of putrescine were significantly decreased in the ODC -silenced strains. The content of

  14. Reversible uptake of molecular oxygen by heteroligand Co(II)-L-α-amino acid-imidazole systems: equilibrium models at full mass balance.

    Science.gov (United States)

    Pająk, Marek; Woźniczka, Magdalena; Vogt, Andrzej; Kufelnicki, Aleksander

    2017-09-19

    The paper examines Co(II)-amino acid-imidazole systems (where amino acid = L-α-amino acid: alanine, asparagine, histidine) which, when in aqueous solutions, activate and reversibly take up dioxygen, while maintaining the structural scheme of the heme group (imidazole as axial ligand and O 2 uptake at the sixth, trans position) thus imitating natural respiratory pigments such as myoglobin and hemoglobin. The oxygenated reaction shows higher reversibility than for Co(II)-amac systems with analogous amino acids without imidazole. Unlike previous investigations of the heteroligand Co(II)-amino acid-imidazole systems, the present study accurately calculates all equilibrium forms present in solution and determines the [Formula: see text]equilibrium constants without using any simplified approximations. The equilibrium concentrations of Co(II), amino acid, imidazole and the formed complex species were calculated using constant data obtained for analogous systems under oxygen-free conditions. Pehametric and volumetric (oxygenation) studies allowed the stoichiometry of O 2 uptake reaction and coordination mode of the central ion in the forming oxygen adduct to be determined. The values of dioxygen uptake equilibrium constants [Formula: see text] were evaluated by applying the full mass balance equations. Investigations of oxygenation of the Co(II)-amino acid-imidazole systems indicated that dioxygen uptake proceeds along with a rise in pH to 9-10. The percentage of reversibility noted after acidification of the solution to the initial pH ranged within ca 30-60% for alanine, 40-70% for asparagine and 50-90% for histidine, with a rising tendency along with the increasing share of amino acid in the Co(II): amino acid: imidazole ratio. Calculations of the share of the free Co(II) ion as well as of the particular complex species existing in solution beside the oxygen adduct (regarding dioxygen bound both reversibly and irreversibly) indicated quite significant values for the

  15. Corosolic Acid Induces Non-Apoptotic Cell Death through Generation of Lipid Reactive Oxygen Species Production in Human Renal Carcinoma Caki Cells

    Directory of Open Access Journals (Sweden)

    Seon Min Woo

    2018-04-01

    Full Text Available Corosolic acid is one of the pentacyclic triterpenoids isolated from Lagerstroemia speciose and has been reported to exhibit anti-cancer and anti-proliferative activities in various cancer cells. In the present study, we investigated the molecular mechanisms of corosolic acid in cancer cell death. Corosolic acid induces a decrease of cell viability and an increase of cell cytotoxicity in human renal carcinoma Caki cells. Corosolic acid-induced cell death is not inhibited by apoptosis inhibitor (z-VAD-fmk, a pan-caspase inhibitor, necroptosis inhibitor (necrostatin-1, or ferroptosis inhibitors (ferrostatin-1 and deferoxamine (DFO. Furthermore, corosolic acid significantly induces reactive oxygen species (ROS levels, but antioxidants (N-acetyl-l-cysteine (NAC and trolox do not inhibit corosolic acid-induced cell death. Interestingly, corosolic acid induces lipid oxidation, and α-tocopherol markedly prevents corosolic acid-induced lipid peroxidation and cell death. Anti-chemotherapeutic effects of α-tocopherol are dependent on inhibition of lipid oxidation rather than inhibition of ROS production. In addition, corosolic acid induces non-apoptotic cell death in other renal cancer (ACHN and A498, breast cancer (MDA-MB231, and hepatocellular carcinoma (SK-Hep1 and Huh7 cells, and α-tocopherol markedly inhibits corosolic acid-induced cell death. Therefore, our results suggest that corosolic acid induces non-apoptotic cell death in cancer cells through the increase of lipid peroxidation.

  16. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Soyeon; Shin, Soyeon; Lim, Kyu [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of); Heo, Jun Young, E-mail: junyoung3@gmail.com [Brainscience Institute, Chungnam National University, Daejeon (Korea, Republic of); Kweon, Gi Ryang, E-mail: mitochondria@cnu.ac.kr [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  17. Generation of reactive oxygen species by a novel berberine–bile acid analog mediates apoptosis in hepatocarcinoma SMMC-7721 cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingyong, E-mail: li_qingyong@126.com [Key Laboratory of Forest Plant Ecology (Northeast Forestry University), Ministry of Education (China); Zhang, Li; Zu, Yuangang; Liu, Tianyu; Zhang, Baoyou; He, Wuna [Key Laboratory of Forest Plant Ecology (Northeast Forestry University), Ministry of Education (China)

    2013-04-19

    Graphical abstract: - Highlights: • Anticancer effects of B4, a novel berberine–bile acid analog, were tested. • B4 inhibited cell proliferation in hepatocellular carcinoma cells. • It also stimulated mitochondrial ROS production and membrane depolarization. • Effects of B4 were inhibited by a non-specific ROS scavenger. • Regulation of ROS generation may be a strategy for treating hepatic carcinoma. - Abstract: 2,3-Methenedioxy-9-O-(3′α,7′α-dihydroxy-5′β-cholan-24′-propy-lester) berberine (B4) is a novel berberine–bile acid analog synthesized in our laboratory. Previously, we showed that B4 exerted greater cytotoxicity than berberine in several human cancer cell lines. Therefore, we further evaluated the mechanism governing its anticancer actions in hepatocellular carcinoma SMMC-7721 cells. B4 inhibited the proliferation of SMMC-7721 cells, and stimulated reactive oxygen species (ROS) production and mitochondrial membrane depolarization; anti-oxidant capacity was reduced. B4 also induced the release of cytochrome c from the mitochondria to the cytosol and an increase in poly ADP-ribose polymerase (PARP) cleavage products, reflective of caspase-3 activation. Moreover, B4 induced the nuclear translocation of apoptosis-inducing factor (AIF) and a rise in DNA fragmentation. Pretreatment with the anti-oxidant N-acetylcysteine (NAC) inhibited B4-mediated effects, including cytotoxicity, ROS production, mitochondrial membrane depolarization increase in intracellular Ca{sup 2+}, cytochrome c release, PARP cleavage, and AIF translocation. Our data suggest that B4 induces ROS-triggered caspase-dependent and caspase-independent apoptosis pathways in SMMC-7721 cells and that ROS production may be a specific potential strategy for treating hepatic carcinoma.

  18. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    International Nuclear Information System (INIS)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-01

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis

  19. Transpassive dissolution of alloy 625, chromium, nickel, and molybdenum in high-temperature solutions containing hydrochloric acid and oxygen

    International Nuclear Information System (INIS)

    Kritzer, P.; Boukis, N.; Dinjus, E.

    2000-01-01

    Coupons of nickel, molybdenum, chromium, and the nickel-based Alloy 625 (UNS 06625) were corroded in strongly oxidizing hydrochloric acid (HCl) solutions at 350 C and a pressure (p) of 24 MPa, with reaction times between 0.75 h and 50 h. For Alloy 625, the effect of surface roughness also was investigated. Nickel and molybdenum showed strong material loss after only 5 h of reaction as a result of the instability of the solid oxides formed under experimental conditions. The attack on chromium started at the grain boundaries. At longer reaction times, thick, spalling oxide layers formed on the surface. The attack on Alloy 625 also started at the grain boundaries and at inclusions leading to the formation of small pits. On polished surfaces, the growth of these pits occurred faster than on nonpolished surfaces, but fewer pits grew. Corrosion products formed at the surface consisted of oxygen and chromium. On isolated spots, nickel- and chlorine-containing products also were found

  20. A novel method for synthesis of phosphomolybdic acid-modified Pd/C catalysts for oxygen reduction reaction

    Science.gov (United States)

    Zhu, Mingyuan; Gao, Xiaoling; Luo, Guangqin; Dai, Bin

    2013-03-01

    This manuscript reports a convenient method for immobilizing phosphomolybdic acid (HPMo) on polyaniline (PAN-) functionalized carbon supports. The obtained HPMo-PAN-C sample is used as the support to prepare a Pd/HPMo-PAN-C catalyst. The samples are characterized by Fourier transform infrared spectroscopy, transmission electron microscopy and X-ray diffraction analysis. The results suggest that HPMo retains its Keggin structure and that the presence of HPMo reduces the average particle size of the Pd nano-particles in the obtained Pd/HPMo-PAN-C catalyst. Electro-chemical measurements in 0.5 M HClO4 solution reveal that the Pd/HPMo-PAN-C catalyst has higher catalytic activity for oxygen reduction reactions than does a Pd/C catalyst prepared using a similar procedure. The stability of the Pd/HPMo-PAN-C catalyst is evaluated by multiple-cycle voltammetry techniques; the mass catalytic activity decreases by only 10% after 100 scanning cycles.

  1. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    International Nuclear Information System (INIS)

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien; Ju, Tsai-Kai; Huang, Yuan-Li; Lee, Ming-Shyue; Chen, Jiun-Hong; Lee, Hsinyu

    2013-01-01

    Highlights: •LPA induces ROS generation through LPA 1 and LPA 3 . •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA 1 and LPA 3 siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway

  2. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Ju, Tsai-Kai [Instrumentation Center, National Taiwan University, Taipei, Taiwan, ROC (China); Technology Commons, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Huang, Yuan-Li [Department of Biotechnology, Asia University, Taichung, Taiwan, ROC (China); Lee, Ming-Shyue [Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC (China); Chen, Jiun-Hong [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Lee, Hsinyu, E-mail: hsinyu@ntu.edu.tw [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Center for Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, ROC (China)

    2013-11-01

    Highlights: •LPA induces ROS generation through LPA{sub 1} and LPA{sub 3}. •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA{sub 1} and LPA{sub 3} siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway.

  3. CsrB, a noncoding regulatory RNA, is required for BarA-dependent expression of biocontrol traits in Rahnella aquatilis HX2.

    Science.gov (United States)

    Mei, Li; Xu, Sanger; Lu, Peng; Lin, Haiping; Guo, Yanbin; Wang, Yongjun

    2017-01-01

    Rahnella aquatilis is ubiquitous and its certain strains have the applicative potent as a plant growth-promoting rhizobacteria. R. aquatilis HX2 is a biocontrol agent to produce antibacterial substance (ABS) and showed efficient biocontrol against crown gall caused by Agrobacterium vitis on sunflower and grapevine plants. The regulatory network of the ABS production and biocontrol activity is still limited known. In this study, a transposon-mediated mutagenesis strategy was used to investigate the regulators that involved in the biocontrol activity of R. aquatilis HX2. A 366-nt noncoding RNA CsrB was identified in vitro and in vivo, which regulated ABS production and biocontrol activity against crown gall on sunflower plants, respectively. The predicted product of noncoding RNA CsrB contains 14 stem-loop structures and an additional ρ-independent terminator harpin, with 23 characteristic GGA motifs in the loops and other unpaired regions. CsrB is required for ABS production and biocontrol activity in the biocontrol regulation by a two-component regulatory system BarA/UvrY in R. aquatilis HX2. The noncoding RNA CsrB regulates BarA-dependent ABS production and biocontrol activity in R. aquatilis HX2. To the best of our knowledge, this is the first report of noncoding RNA as a regulator for biocontrol function in R. aquatilis.

  4. Hydrogen bonding interactions in PN...HX complexes: DFT and ab initio studies of structure, properties and topology.

    Science.gov (United States)

    Varadwaj, Pradeep Risikrishna

    2010-05-01

    Spin-restricted DFT (X3LYP and B3LYP) and ab initio (MP2(fc) and CCSD(fc)) calculations in conjunction with the Aug-CC-pVDZ and Aug-CC-pVTZ basis sets were performed on a series of hydrogen bonded complexes PN...HX (X = F, Cl, Br) to examine the variations of their equilibrium gas phase structures, energetic stabilities, electronic properties, and vibrational characteristics in their electronic ground states. In all cases the complexes were predicted to be stable with respect to the constituent monomers. The interaction energy (Delta E) calculated using a super-molecular model is found to be in this order: PN...HF > PN...HCl > PN...HBr in the series examined. Analysis of various physically meaningful contributions arising from the Kitaura-Morokuma (KM) and reduced variational space self-consistent-field (RVS-SCF) energy decomposition procedures shows that the electrostatic energy has significant contribution to the over-all interaction energy. Dipole moment enhancement (Delta mu) was observed in these complexes expected of predominant dipole-dipole electrostatic interaction and was found to follow the trend PN...HF > PN...HCl > PN...HBr at the CCSD level. However, the DFT (X3LYP and B3LYP) and MP2 levels less accurately determined these values (in this order HF 0, nabla(2)rho(c) > 0 and H(c) > 0 at the BCP) whilst the bonds in PN (rho(c) > 0, nabla(2)rho(c) > 0 and H(c) 0, nabla(2)rho(c) BD*(HX) delocalization.

  5. Performance optimization in mass production of volume holographic optical elements (vHOEs) using Bayfol HX photopolymer film

    Science.gov (United States)

    Bruder, Friedrich-Karl; Fäcke, Thomas; Grote, Fabian; Hagen, Rainer; Hönel, Dennis; Koch, Eberhard; Rewitz, Christian; Walze, Günther; Wewer, Brita

    2017-05-01

    Volume Holographic Optical Elements (vHOEs) gained wide attention as optical combiners for the use in smart glasses and augmented reality (SG and AR, respectively) consumer electronics and automotive head-up display applications. The unique characteristics of these diffractive grating structures - being lightweight, thin and flat - make them perfectly suitable for use in integrated optical components like spectacle lenses and car windshields. While being transparent in Off-Bragg condition, they provide full color capability and adjustable diffraction efficiency. The instant developing photopolymer Bayfol® HX film provides an ideal technology platform to optimize the performance of vHOEs in a wide range of applications. Important for any commercialization are simple and robust mass production schemes. In this paper, we present an efficient and easy to control one-beam recording scheme to copy a so-called master vHOE in a step-and-repeat process. In this contact-copy scheme, Bayfol® HX film is laminated to a master stack before being exposed by a scanning laser line. Subsequently, the film is delaminated in a controlled fashion and bleached. We explain working principles of the one-beam copy concept, discuss the opto-mechanical construction and outline the downstream process of the installed vHOE replication line. Moreover, we focus on aspects like performance optimization of the copy vHOE, the bleaching process and the suitable choice of protective cover film in the re-lamination step, preparing the integration of the vHOE into the final device.

  6. Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays).

    Science.gov (United States)

    Cordeiro, Flávio Couto; Santa-Catarina, Claudete; Silveira, Vanildo; de Souza, Sonia Regina

    2011-01-01

    Humic acids (HAs) have positive effects on plant physiology, but the molecular mechanisms underlying these events are only partially understood. The induction of root growth and emission of lateral roots (LRs) promoted by exogenous auxin is a natural phenomenon. Exogenous auxins are also associated with HA. Gas nitric oxide (NO) is a secondary messenger produced endogenously in plants. It is associated with metabolic events dependent on auxin. With the application of auxin, NO production is significantly increased, resulting in positive effects on plant physiology. Thus it is possible to evaluate the beneficial effects of the application of HA as an effect of auxin. To investigate the effects of HA the parameters of root growth, Zea mays was studied by evaluating the application of 3 mM C L⁻¹ of HA extracted from Oxisol and 100 µM SNP (sodium nitroprusside) and the NO donor, subject to two N-NO₃⁻, high dose (5.0 mM N-NO₃⁻) and low dose (5.0 mM N-NO₃⁻). Treatments with HA and NO were positively increased, regardless of the N-NO₃⁻ taken, as assessed by fresh weight and dry root, issue of LRs. The effects were more pronounced in the treatment with a lower dose of N-NO₃⁻. Detection of reactive oxygen species (ROS) in vivo and catalase activity were evaluated; these tests were associated with root growth. Under application of the bioactive substances tested, detection of ROS and catalase activity increased, especially in treatments with lower doses of N-NO₃⁻. The results of this experiment indicate that the effects of HA are dependent on ROS generation, which act as a messenger that induces root growth and the emission of LRs.

  7. Lipoteichoic acid from Staphylococcus aureus induces lung endothelial cell barrier dysfunction: role of reactive oxygen and nitrogen species.

    Directory of Open Access Journals (Sweden)

    Amy Barton Pai

    Full Text Available Tunneled central venous catheters (TCVCs are used for dialysis access in 82% of new hemodialysis patients and are rapidly colonized with Gram-positive organism (e.g. Staphylococcus aureus biofilm, a source of recurrent infections and chronic inflammation. Lipoteichoic acid (LTA, a cell wall ribitol polymer from Gram-positive organisms, mediates inflammation through the Toll-like receptor 2 (TLR2. The effect of LTA on lung endothelial permeability is not known. We tested the hypothesis that LTA from Staphylococcus aureus induces alterations in the permeability of pulmonary microvessel endothelial monolayers (PMEM that result from activation of TLR2 and are mediated by reactive oxygen/nitrogen species (RONS. The permeability of PMEM was assessed by the clearance rate of Evans blue-labeled albumin, the activation of the TLR2 pathway was assessed by Western blot, and the generation of RONS was measured by the fluorescence of oxidized dihydroethidium and a dichlorofluorescein derivative. Treatment with LTA or the TLR2 agonist Pam((3CSK((4 induced significant increases in albumin permeability, IκBα phosphorylation, IRAK1 degradation, RONS generation, and endothelial nitric oxide synthase (eNOS activation (as measured by the p-eNOS(ser1177:p-eNOS(thr495 ratio. The effects on permeability and RONS were effectively prevented by co-administration of the superoxide scavenger Tiron, the peroxynitrite scavenger Urate, or the eNOS inhibitor L-NAME and these effects as well as eNOS activation were reduced or prevented by pretreatment with an IRAK1/4 inhibitor. The results indicate that the activation of TLR2 and the generation of ROS/RNS mediates LTA-induced barrier dysfunction in PMEM.

  8. Targeting the expression of glutathione- and sulfate-dependent detoxification enzymes in HepG2 cells by oxygen in minimal and amino acid enriched medium.

    Science.gov (United States)

    Usarek, Ewa; Graboń, Wojciech; Kaźmierczak, Beata; Barańczyk-Kuźma, Anna

    2016-02-01

    Cancer cells exhibit specific metabolism allowing them to survive and proliferate in various oxygen conditions and nutrients' availability. Hepatocytes are highly active metabolically and thus very sensitive to hypoxia. The purpose of the study was to investigate the effect of oxygen on the expression of phase II detoxification enzymes in hepatocellular carcinoma cells (HepG2) cultured in minimal and rich media (with nonessential amino acids and GSH). The cells were cultured at 1% hypoxia, 10% tissue normoxia, and 21% atmospheric normoxia. The total cell count was determined by trypan blue exclusion dye and the expression on mRNA level by RT-PCR. The result indicated that the expression of glutathione-dependent enzymes (GSTA, M, P, and GPX2) was sensitive to oxygen and medium type. At 1% hypoxia the enzyme expression (with the exception of GSTA) was higher in minimal compared to rich medium, whereas at 10% normoxia it was higher in the rich medium. The expression was oxygen-dependent in both types of medium. Among phenol sulfotransferase SULT1A1 was not sensitive to studied factors, whereas the expression of SULT1A3 was depended on oxygen only in minimal medium. It can be concluded that in HepG2 cells, the detoxification by conjugation with glutathione and, to a lower extent with sulfate, may be affected by hypoxia and/or limited nutrients' availability. Besides, because the data obtained at 10% oxygen significantly differ from those at 21%, the comparative studies on hypoxia should be performed in relation to 10% but not 21% oxygen. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Hydrogen Oxidation on Gas Diffusion Electrodes for Phosphoric Acid Fuel Cells in the Presence of Carbon Monoxide and Oxygen

    DEFF Research Database (Denmark)

    Gang, Xiao; Li, Qingfeng; Hjuler, Hans Aage

    1995-01-01

    Hydrogen oxidation has been studied on a carbon-supported platinum gas diffusion electrode in a phosphoric acidelectrolyte in the presence of carbon monoxide and oxygen in the feed gas. The poisoning effect of carbon monoxide presentin the feed gas was measured in the temperature range from 80...... to 150°C. It was found that throughout the temperaturerange, the potential loss due to the CO poisoning can be reduced to a great extent by the injection of small amounts ofgaseous oxygen into the hydrogen gas containing carbon monoxide. By adding 5 volume percent (v/o) oxygen, an almost...

  10. MINIMAL ROLE FOR REACTIVE OXYGEN SPECIES IN DICHLOROACETIC ACID-INDUCED DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE.

    Science.gov (United States)

    Administration of dichloroacetate (DCA) to pregnant rats produces craniofacial, heart and other defects in their offspring. Exposure of zebrafish to DCA induces malformations and increases superoxide and nitric oxide production suggesting that reactive oxygen species (ROS) are as...

  11. Particle size dependence on oxygen reduction reaction activity of electrodeposited TaOx catalysts in acidic media

    KAUST Repository

    Seo, J.; Cha, Dong Kyu; Takanabe, Kazuhiro; Kubota, J.; Domen, K.

    2013-01-01

    The size dependence of the oxygen reduction reaction activity was studied for TaOx nanoparticles electrodeposited on carbon black for application to polymer electrolyte fuel cells (PEFCs). Compared with a commercial Ta2O5 material, the ultrafine

  12. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture.

    Science.gov (United States)

    Larsen, Nadja; Werner, Birgit Brøsted; Vogensen, Finn Kvist; Jespersen, Lene

    2015-03-01

    Milk acidification by DL-starter cultures [cultures containing Lactococcus lactis diacetylactis (D) and Leuconostoc (L) species] depends on the oxidation-reduction (redox) potential in milk; however, the mechanisms behind this effect are not completely clear. The objective of this study was to investigate the effect of dissolved oxygen on acidification kinetics and redox potential during milk fermentation by lactic acid bacteria (LAB). Fermentations were conducted by single strains isolated from mixed DL-starter culture, including Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris, and Leuconostoc mesenteroides ssp. cremoris, by the DL-starter culture, and by the type strains. High and low levels of oxygen were produced by flushing milk with oxygen or nitrogen, respectively. The kinetics of milk acidification was characterized by the maximum rate and time of acidification (Vamax and Tamax), the maximum rate and time of reduction (Vrmax and Trmax), the minimum redox potential (Eh7 final), and time of reaching Eh7 final (Trfinal). Variations in kinetic parameters were observed at both the species and strain levels. Two of the Lc. lactis ssp. lactis strains were not able to lower redox potential to negative values. Kinetic parameters of the DL-starter culture were comparable with the best acidifying and reducing strains, indicating their additive effects. Acidification curves were mostly diauxic at all oxygen levels, displaying 2 maxima of acidification rate: before (aerobic maximum) and after (anaerobic maximum) oxygen depletion. The redox potential decreased concurrently with oxygen consumption and continued to decrease at slower rate until reaching the final values, indicating involvement of both oxygen and microbiological activity in the redox state of milk. Oxygen flushing had a negative effect on reduction and acidification capacity of tested LAB. Reduction was significantly delayed at high initial oxygen, exhibiting longer Trmax, Trfinal, or both

  13. Priming of plant resistance by natural compounds. Hexanoic acid as a model

    Directory of Open Access Journals (Sweden)

    Paz eAranega Bou

    2014-10-01

    Full Text Available Some alternative control strategies of currently emerging plant diseases are based on the use of resistance inducers. This review highlights the recent advances made in the characterization of natural compounds that induce resistance by a priming mechanism. These include vitamins, chitosans, oligogalacturonides, volatile organic compounds, azelaic and pipecolic acid, among others. Overall, other than providing novel disease control strategies that meet environmental regulations, natural priming agents are valuable tools to help unravel the complex mechanisms underlying the induced resistance phenomenon. The data presented in this review reflect the novel contributions made from studying these natural plant inducers, with special emphasis placed on hexanoic acid (Hx, proposed herein as a model tool for this research field. Hx is a potent natural priming agent of proven efficiency in a wide range of host plants and pathogens. It can early activate broad-spectrum defenses by inducing callose deposition and the SA and JA pathways. Later it can prime pathogen-specific responses according to the pathogen’s lifestyle. Interestingly, Hx primes redox-related genes to produce an anti-oxidant protective effect, which might be critical for limiting the infection of necrotrophs. Our Hx-induced resistance (Hx-IR findings also strongly suggest that it is an attractive tool for the molecular characterization of the plant alarmed state, with the added advantage of it being a natural compound.

  14. Minimizing the effects of oxygen interference on l-lactate sensors by a single amino acid mutation in Aerococcus viridansl-lactate oxidase.

    Science.gov (United States)

    Hiraka, Kentaro; Kojima, Katsuhiro; Lin, Chi-En; Tsugawa, Wakako; Asano, Ryutaro; La Belle, Jeffrey T; Sode, Koji

    2018-04-30

    l-lactate biosensors employing l-lactate oxidase (LOx) have been developed mainly to measure l-lactate concentration for clinical diagnostics, sports medicine, and the food industry. Some l-lactate biosensors employ artificial electron mediators, but these can negatively impact the detection of l-lactate by competing with the primary electron acceptor: molecular oxygen. In this paper, a strategic approach to engineering an AvLOx that minimizes the effects of oxygen interference on sensor strips was reported. First, we predicted an oxygen access pathway in Aerococcus viridans LOx (AvLOx) based on its crystal structure. This was subsequently blocked by a bulky amino acid substitution. The resulting Ala96Leu mutant showed a drastic reduction in oxidase activity using molecular oxygen as the electron acceptor and a small increase in dehydrogenase activity employing an artificial electron acceptor. Secondly, the Ala96Leu mutant was immobilized on a screen-printed carbon electrode using glutaraldehyde cross-linking method. Amperometric analysis was performed with potassium ferricyanide as an electron mediator under argon or atmospheric conditions. Under argon condition, the response current increased linearly from 0.05 to 0.5mM l-lactate for both wild-type and Ala96Leu. However, under atmospheric conditions, the response of wild-type AvLOx electrode was suppressed by 9-12% due to oxygen interference. The Ala96Leu mutant maintained 56-69% of the response current at the same l-lactate level and minimized the relative bias error to -19% from -49% of wild-type. This study provided significant insight into the enzymatic reaction mechanism of AvLOx and presented a novel approach to minimize oxygen interference in sensor applications, which will enable accurate detection of l-lactate concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Aminocaproic acid for the management of bleeding in patients on extracorporeal membrane oxygenation: Four adult case reports and a review of the literature.

    Science.gov (United States)

    Buckley, Leo F; Reardon, David P; Camp, Phillip C; Weinhouse, Gerald L; Silver, David A; Couper, Gregory S; Connors, Jean M

    2016-01-01

    Extracorporeal membrane oxygenation (ECMO) is associated with a significant risk of bleeding and thrombosis. Despite high rates of bleeding and bleeding-related mortality in patients on ECMO, there is little evidence available to guide clinicians in the management of ECMO-associated bleeding. We report the use of aminocaproic acid in four patients with bleeding on ECMO and a review of the literature. High D-dimer levels and low fibrinogen levels suggested that an antifibrinolytic agent may be effective as an adjunct to control bleeding. After aminocaproic acid administration, bleeding was controlled in each patient as evidenced by clinical and laboratory parameters. One patient suffered a cardiac arrest and care was withdrawn. In patients on ECMO with evidence of fibrinolysis, aminocaproic acid may be an effective option to control bleeding and to stabilize clot formation. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Scanning electrochemical microscopy. 47. Imaging electrocatalytic activity for oxygen reduction in an acidic medium by the tip generation-substrate collection mode.

    Science.gov (United States)

    Fernández, José L; Bard, Allen J

    2003-07-01

    The oxygen reduction reaction (ORR) in acidic medium was studied on different electrode materials by scanning electrochemical microscopy (SECM) operating in a new variation of the tip generation-substrate collection mode. An ultramicroelectrode tip placed close to the substrate electrode oxidizes water to oxygen at a constant current. The substrate is held at a potential where the tip-generated oxygen is reduced and the resulting substrate current is measured. By changing the substrate potential, it is possible to obtain a polarization (current-potential) curve, which depends on the electrocatalytic activity of the substrate material. The main difference between this mode and the classical feedback SECM mode of operation is that the feedback diffusion process is not required for the measurement, allowing its application for studying the ORR in acidic solutions. Activity-sensitive images of heterogeneous surfaces, e.g., with Pt and Au electrodes, were obtained from the substrate current when the x-y plane was scanned with the tip. The usefulness of this technique for imaging electrocatalytic activity of smooth metallic electrodes and of highly dispersed fuel cell-type electrocatalysts was demonstrated. The application of this method to the combinatorial chemical analysis of electrode materials and electrocatalysts is discussed.

  17. Comparative analysis of QSAR models for predicting pK(a) of organic oxygen acids and nitrogen bases from molecular structure.

    Science.gov (United States)

    Yu, Haiying; Kühne, Ralph; Ebert, Ralf-Uwe; Schüürmann, Gerrit

    2010-11-22

    For 1143 organic compounds comprising 580 oxygen acids and 563 nitrogen bases that cover more than 17 orders of experimental pK(a) (from -5.00 to 12.23), the pK(a) prediction performances of ACD, SPARC, and two calibrations of a semiempirical quantum chemical (QC) AM1 approach have been analyzed. The overall root-mean-square errors (rms) for the acids are 0.41, 0.58 (0.42 without ortho-substituted phenols with intramolecular H-bonding), and 0.55 and for the bases are 0.65, 0.70, 1.17, and 1.27 for ACD, SPARC, and both QC methods, respectively. Method-specific performances are discussed in detail for six acid subsets (phenols and aromatic and aliphatic carboxylic acids with different substitution patterns) and nine base subsets (anilines, primary, secondary and tertiary amines, meta/para-substituted and ortho-substituted pyridines, pyrimidines, imidazoles, and quinolines). The results demonstrate an overall better performance for acids than for bases but also a substantial variation across subsets. For the overall best-performing ACD, rms ranges from 0.12 to 1.11 and 0.40 to 1.21 pK(a) units for the acid and base subsets, respectively. With regard to the squared correlation coefficient r², the results are 0.86 to 0.96 (acids) and 0.79 to 0.95 (bases) for ACD, 0.77 to 0.95 (acids) and 0.85 to 0.97 (bases) for SPARC, and 0.64 to 0.87 (acids) and 0.43 to 0.83 (bases) for the QC methods, respectively. Attention is paid to structural and method-specific causes for observed pitfalls. The significant subset dependence of the prediction performances suggests a consensus modeling approach.

  18. Evaluation of tumour hypoxia during radiotherapy using [{sup 18}F]HX4 PET imaging and blood biomarkers in patients with head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zegers, Catharina M.L.; Hoebers, Frank J.P.; Elmpt, Wouter van; Oellers, Michel C.; Eekers, Danielle; Balmaekers, Leo; Arts-Pechtold, Marlies; Lambin, Philippe [Maastricht University Medical Centre, Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht (Netherlands); Bons, Judith A. [Maastricht University Medical Centre, Central Diagnostic Laboratory, Maastricht (Netherlands); Troost, Esther G.C. [Maastricht University Medical Centre, Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht (Netherlands); Helmholtz Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Universitaet Dresden, OncoRay, Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Dresden (Germany); Mottaghy, Felix M. [Maastricht University Medical Centre, Department of Nuclear Medicine, Maastricht (Netherlands); RWTH Aachen University, University Hospital, Department of Nuclear Medicine, Aachen (Germany)

    2016-11-15

    Increased tumour hypoxia is associated with a worse overall survival in patients with head and neck squamous cell carcinoma (HNSCC). The aims of this study were to evaluate treatment-associated changes in [{sup 18}F]HX4-PET, hypoxia-related blood biomarkers, and their interdependence. [{sup 18}F]HX4-PET/CT scans of 20 patients with HNSCC were acquired at baseline and after ±20 Gy of radiotherapy. Within the gross-tumour-volumes (GTV; primary and lymph nodes), mean and maximum standardized uptake values, the hypoxic fraction (HF) and volume (HV) were calculated. Also, the changes in spatial uptake pattern were evaluated using [{sup 18}F]HX4-PET/CT imaging. For all patients, the plasma concentration of CAIX, osteopontin and VEGF was assessed. At baseline, tumour hypoxia was detected in 69 % (22/32) of the GTVs. During therapy, we observed a significant decrease in all image parameters. The HF decreased from 21.7 ± 19.8 % (baseline) to 3.6 ± 10.0 % (during treatment; P < 0.001). Only two patients had a HV > 1 cm{sup 3} during treatment, which was located for >98 % within the baseline HV. During treatment, no significant changes in plasma CAIX or VEGF were observed, while osteopontin was increased. [{sup 18}F]HX4-PET/CT imaging allows monitoring changes in hypoxia during (chemo)radiotherapy whereas the blood biomarkers were not able to detect a treatment-associated decrease in hypoxia. (orig.)

  19. A computational study on the energetics and mechanisms for the dissociative adsorption of SiHx(x = 1-4) on W(1 1 1) surface

    Science.gov (United States)

    Lin, Y. H.; Raghunath, P.; Lin, M. C.

    2016-01-01

    The adsorption and dissociation mechanisms of SiHx(x = 1-4) species on W(1 1 1) surface have been investigated by using the periodic density functional theory with the projector-augmented wave approach. The adsorption of all the species on four surface sites: top (T), bridge (B), shallow (S), and deep (D) sites have been analyzed. For SiH4 on a top site, T-SiH4(a), it is more stable with an adsorption energy of 2.6 kcal/mol. For SiH3, the 3-fold shallow site is most favorable with adsorption energy of 46.0 kcal/mol. For SiH2, its adsorption on a bridge site is most stable with 73.0 kcal/mol binding energy, whereas for SiH and Si the most stable adsorption configurations are on 3-fold deep sites with very high adsorption energies, 111.8 and 134.7 kcal/mol, respectively. The potential energy surfaces for the dissociative adsorption of all SiHx species on the W(1 1 1) surface have been constructed using the CINEB method. The barriers for H-atom migration from SiHx(a) to its neighboring W atoms, preferentially on B-sites, were predicted to be 0.4, 1.0, 4.5 and, 8.0 kcal/mol, respectively, for x = 4, 3, 2, and 1, respectively. The adsorption energy of the H atom on a bridge site on the clean W(1 1 1) surface was predicted to be 65.9 kcal/mol, which was found to be slightly affected by the co-adsorption of SiHx-1 within ± 1 kcal/mol.

  20. Estimation and characterization of PCDD/Fs, dl-PCBs, PCNs, HxCBz and PeCBz emissions from magnesium metallurgy facilities in China.

    Science.gov (United States)

    Nie, Zhiqiang; Zheng, Minghui; Liu, Wenbin; Zhang, Bing; Liu, Guorui; Su, Guijin; Lv, Pu; Xiao, Ke

    2011-12-01

    Magnesium production is considered to be one potential source of unintentional persistent organic pollutants (unintentional POPs). However, studies on the emissions of unintentional POPs from magnesium metallurgy are still lacking. Emissions of unintentional POPs, such as polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (dl-PCBs), polychlorinated naphthalenes (PCNs), hexachlorobenzene (HxCBz) and pentachlorobenzene (PeCBz) are covered under the Stockholm Convention. In this study, these emissions were investigated through a magnesium smelting process. Stack gas and fly ash samples from a typical magnesium plant in China were collected and analyzed to estimate the emissions of unintentional POPs from magnesium metallurgy. Emissions factors of 412 ng TEQ t(-1) for PCDD/Fs, 18.6 ng TEQ t(-1) for dl-PCBs, 3329 μg t(-1) for PCNs, 820 μg t(-1) for HxCBz, and 1326 μg t(-1) for PeCBz were obtained in 2009. Annual emissions from magnesium metallurgy in China were estimated to be 0.46 g WHO-TEQ for PCDD/Fs and dl-PCBs, 1651 g for PCNs, 403 g for HxCBz and 653 g for PeCBz, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    Science.gov (United States)

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.

  2. Nitrite accumulation from simultaneous free-ammonia and free-nitrous-acid inhibition and oxygen limitation in a continuous-flow biofilm reactor.

    Science.gov (United States)

    Park, Seongjun; Chung, Jinwook; Rittmann, Bruce E; Bae, Wookeun

    2015-01-01

    To achieve nitrite accumulation for shortcut biological nitrogen removal (SBNR) in a biofilm process, we explored the simultaneous effects of oxygen limitation and free ammonia (FA) and free nitrous acid (FNA) inhibition in the nitrifying biofilm. We used the multi-species nitrifying biofilm model (MSNBM) to identify conditions that should or should not lead to nitrite accumulation, and evaluated the effectiveness of those conditions with experiments in continuous flow biofilm reactors (CFBRs). CFBR experiments were organized into four sets with these expected outcomes based on the MSNBM as follows: (i) Control, giving full nitrification; (ii) oxygen limitation, giving modest long-term nitrite build up; (iii) FA inhibition, giving no long-term nitrite accumulation; and (iv) FA inhibition plus oxygen limitation, giving major long-term nitrite accumulation. Consistent with MSNBM predictions, the experimental results showed that nitrite accumulated in sets 2-4 in the short term, but long-term nitrite accumulation was maintained only in sets 2 and 4, which involved oxygen limitation. Furthermore, nitrite accumulation was substantially greater in set 4, which also included FA inhibition. However, FA inhibition (and accompanying FNA inhibition) alone in set 3 did not maintained long-term nitrite accumulation. Nitrite-oxidizing bacteria (NOB) activity batch tests confirmed that little NOB or only a small fraction of NOB were present in the biofilms for sets 4 and 2, respectively. The experimental data supported the previous modeling results that nitrite accumulation could be achieved with a lower ammonium concentration than had been required for a suspended-growth process. Additional findings were that the biofilm exposed to low dissolved oxygen (DO) limitation and FA inhibition was substantially denser and probably had a lower detachment rate. © 2014 Wiley Periodicals, Inc.

  3. Repeatability of hypoxia PET imaging using [{sup 18}F]HX4 in lung and head and neck cancer patients: a prospective multicenter trial

    Energy Technology Data Exchange (ETDEWEB)

    Zegers, Catharina M.L.; Elmpt, Wouter van; Lambin, Philippe [Maastricht University Medical Centre, Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht (Netherlands); Szardenings, Katrin [Threshold Pharmaceuticals, South San Francisco, CA (United States); Kolb, Hartmuth; Chien, David [Siemens Medical Solutions USA, Inc., Siemens Molecular Imaging Biomarker Research, Culver City, CA (United States); Waxman, Alan [Cedars-Sinai Medical Center, Los Angeles, CA (United States); Subramaniam, Rathan M. [Boston University School of Medicine, Boston, MA (United States); Johns Hopkins Medical Institutions, Division of Nuclear Medicine, Russell H Morgan Department of Radiology and Radiologic Sciences, Baltimore, MD (United States); Moon, Dae Hyuk [University of Ulsan College of Medicine, Department of Nuclear Medicine, Asan Medical Center, Seoul (Korea, Republic of); Brunetti, Jacqueline C. [Holy Name Medical Center, Teaneck, NJ (United States); Srinivas, Shyam M. [Cleveland Clinic, Department of Nuclear Medicine, Imaging Institute, Cleveland, OH (United States)

    2015-11-15

    Hypoxia is an important factor influencing tumor progression and treatment efficacy. The aim of this study was to investigate the repeatability of hypoxia PET imaging with [{sup 18}F]HX4 in patients with head and neck and lung cancer. Nine patients with lung cancer and ten with head and neck cancer were included in the analysis (NCT01075399). Two sequential pretreatment [{sup 18}F]HX4 PET/CT scans were acquired within 1 week. The maximal and mean standardized uptake values (SUV{sub max} and SUV{sub mean}) were defined and the tumor-to-background ratios (TBR) were calculated. In addition, hypoxic volumes were determined as the volume of the tumor with a TBR >1.2 (HV{sub 1.2}). Bland Altman analysis of the uptake parameters was performed and coefficients of repeatability were calculated. To evaluate the spatial repeatability of the uptake, the PET/CT images were registered and a voxel-wise comparison of the uptake was performed, providing a correlation coefficient. All parameters of [{sup 18}F]HX4 uptake were significantly correlated between scans: SUV{sub max} (r = 0.958, p < 0.001), SUV{sub mean} (r = 0.946, p < 0.001), TBR{sub max} (r = 0.962, p < 0.001) and HV{sub 1.2} (r = 0.995, p < 0.001). The relative coefficients of repeatability were 15 % (SUV{sub mean}), 17 % (SUV{sub max}) and 17 % (TBR{sub max}). Voxel-wise analysis of the spatial uptake pattern within the tumors provided an average correlation of 0.65 ± 0.14. Repeated hypoxia PET scans with [{sup 18}F]HX4 provide reproducible and spatially stable results in patients with head and neck cancer and patients with lung cancer. [{sup 18}F]HX4 PET imaging can be used to assess the hypoxic status of tumors and has the potential to aid hypoxia-targeted treatments. (orig.)

  4. Oxygen reduction reaction on a highly-alloyed Pt-Ni supported carbon electrocatalyst in acid solution

    CSIR Research Space (South Africa)

    Zheng, H

    2010-08-31

    Full Text Available Alloyed electrocatalysts such as PtNi/C[1-2], PtCo/C[3], PtCr/C[4], PtFe/C [5-6], and non-alloyed Pt-TiO2/C were reportedly investigated for methanol tolerance during Oxygen reduction reaction (ORR). The high methanol tolerance...

  5. Particle size dependence on oxygen reduction reaction activity of electrodeposited TaOx catalysts in acidic media

    KAUST Repository

    Seo, J.

    2013-11-13

    The size dependence of the oxygen reduction reaction activity was studied for TaOx nanoparticles electrodeposited on carbon black for application to polymer electrolyte fuel cells (PEFCs). Compared with a commercial Ta2O5 material, the ultrafine oxide nanoparticles exhibited a distinctively high onset potential different from that of the bulky oxide particles.

  6. Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids

    KAUST Repository

    Zhang, Jizhe; Sun, Miao; Han, Yu

    2014-01-01

    Formic acid is an important commodity chemical as well as a promising medium for hydrogen storage and hydrogen production. In this paper, we report that formic acid can be produced through selective oxidation of glycerol, a low-cost by-product

  7. HxMoO3 nanobelts with better performance as anode in lithium-ion batteries

    International Nuclear Information System (INIS)

    Ju, Xiaokang; Ning, Peigong; Tong, Xiaobing; Lin, Xiaoping; Pan, Xi; Li, Qiuhong; Duan, Xiaochuan; Wang, Taihong

    2016-01-01

    We first report the pure H x MoO 3 nanobelts as anode for lithium-ion batteries by a facile hydrothermal with ammonium heptamolybdate tetrahydrate ((NH 4 )6Mo 7 O 24 ∙4H 2 O) and hydrochloric acid (HCl). Owing to hydrogen-doping, Mo 5+ exists in the H x MoO 3 nanobelt, which may release extra electrons. Therefore, the electric conductance of H x MoO 3 nanobelt is enhanced greatly. Moreover, the content of hydrogen can’t be high, since the ordered structure deteriorates when amount of hydrogen increasing. The H 0.28 MoO 3 nanobelts we designed exhibit outstanding specific capacity and rate performance. The stable capacity of 920 mAh g −1 is obtained after 25 charge/discharge cycles at 100 mA g −1 . At high current densities such as 1, 2, 5 and 10 A g −1 , the H 0.28 MoO 3 electrode delivers specific capacities of about 600, 500, 420, 300 mAh g −1 , respectively. Even after 450 charge discharge cycles at 1 A g −1 , the performance of our materials can maintain the capacity of about 550 mAh g −1 . Furthermore, we provide more discussion about the lithium storage mechanism of H x MoO 3 nanobelts through ex situ XRD and FESEM. By comparing H x MoO 3 with different X, we find that low content of hydrogen can greatly improve the performance of α-MoO 3 electrodes in Li-ion batteries.

  8. Nitro-oleic acid ameliorates oxygen and glucose deprivation/re-oxygenation triggered oxidative stress in renal tubular cells via activation of Nrf2 and suppression of NADPH oxidase.

    Science.gov (United States)

    Nie, Huibin; Xue, Xia; Liu, Gang; Guan, Guangju; Liu, Haiying; Sun, Lina; Zhao, Long; Wang, Xueling; Chen, Zhixin

    2016-01-01

    Nitroalkene derivative of oleic acid (OA-NO 2 ), due to its ability to mediate revisable Michael addition, has been demonstrated to have various biological properties and become a therapeutic agent in various diseases. Though its antioxidant properties have been reported in different models of acute kidney injury (AKI), the mechanism by which OA-NO 2 attenuates intracellular oxidative stress is not well investigated. Here, we elucidated the anti-oxidative mechanism of OA-NO 2 in an in vitro model of renal ischemia/reperfusion (I/R) injury. Human tubular epithelial cells were subjected to oxygen and glucose deprivation/re-oxygenation (OGD/R) injury. Pretreatment with OA-NO 2 (1.25 μM, 45 min) attenuated OGD/R triggered reactive oxygen species (ROS) generation and subsequent mitochondrial membrane potential disruption. This action was mediated via up-regulating endogenous antioxidant defense components including superoxide dismutase (SOD1), heme oxygenase 1 (HO-1), and γ-glutamyl cysteine ligase modulatory subunits (GCLM). Moreover, subcellular fractionation analyses demonstrated that OA-NO 2 promoted nuclear translocation of nuclear factor-E2- related factor-2 (Nrf2) and Nrf2 siRNA partially abrogated these protective effects. In addition, OA-NO 2 inhibited NADPH oxidase activation and NADPH oxidase 4 (NOX4), NADPH oxidase 2 (NOX2) and p22 phox up-regulation after OGD/R injury, which was not relevant to Nrf2. These results contribute to clarify that the mechanism of OA-NO 2 reno-protection involves both inhibition of NADPH oxidase activity and induction of SOD1, Nrf2-dependent HO-1, and GCLM.

  9. l-Glutamic acid assisted eco-friendly one-pot synthesis of sheet-assembled platinum-palladium alloy networks for methanol oxidation and oxygen reduction reactions.

    Science.gov (United States)

    Shi, Ya-Cheng; Mei, Li-Ping; Wang, Ai-Jun; Yuan, Tao; Chen, Sai-Sai; Feng, Jiu-Ju

    2017-10-15

    In this work, bimetallic platinum-palladium sheet-assembled alloy networks (PtPd SAANs) were facilely synthesized by an eco-friendly one-pot aqueous approach under the guidance of l-glutamic acid at room temperature, without any additive, seed, toxic or organic solvent involved. l-Glutamic acid was served as the green shape-director and weak-stabilizing agent. A series of characterization techniques were employed to examine the morphology, structure and formation mechanism of the product. The architectures exhibited improved electrocatalytic activity and durable ability toward methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) in contrast with commercial Pt black and Pd black catalysts. This is ascribed to the unique structures of the obtained PtPd SAANs and the synergistic effects of the bimetals. These results demonstrate the potential application of the prepared catalyst in fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Solid-phase reduction of silico-12-molybdic acid H4SiMo12O40 by some organic oxygen containing compounds

    International Nuclear Information System (INIS)

    Chuvaev, V.F.; Pinchuk, I.N.; Spitsyn, V.I.

    1982-01-01

    A study is made on reduction reactions of anhydrous silico-12-molybdic acid by vapors of organic oxygen-containing compounds at 170 deg C: alcohols, simple carbonyl compounds. Methods of thermal analysis, electron paramagnetic resonance, paramagnetic resonance were used to established that depending on the nature of organic reagent and temperature, H 6 SiMo 2 5 Mo 10 6 O 40 two-electron or H 8 SiMo 4 5 Mo 8 6 O 40 four-electron flues form. It is shown that the increase of heterogeneous reduction temperature can lead to formation of anhydrous phases of SiMo 12 O 38 -(n/2), able to attach water reversibly with formation of corresponding blue. Characteristics of blues, prepared during solid-phase reduction of silico-12-molybdic acid and mixed valent forms with corresponding reduction degree, separated from water solutions, were compared

  11. High-performance oxygen reduction catalysts in both alkaline and acidic fuel cells based on pre-treating carbon material and iron precursor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ping; Barkholtz, Heather M.; Wang, Ying; Xu, Weilin; Liu, Dijia; Zhuang, Lin

    2017-12-01

    We demonstrate a new and simple method for pre-treating the carbon material and iron precursor to prepare oxygen reduction reaction (ORR) catalysts, which can produce super-high performance and stability in alkaline solution, with high performance in acid solution. This strategy using cheap materials is simply controllable. Moreover, it has achieved smaller uniform nanoparticles to exhibit high stability, and the synergetic effect of Fe and N offered much higher performance in ORR than commercial Pt/C, with high maximum power density in alkaline and acid fuel cell test. So it can make this kind of catalysts be the most promising alternatives of Pt-based catalysts with best performance/price.

  12. Effects of Different Solvents on the Surface Acidic Oxygen-containing Functional Groups on Xanthoceras sorbifolia Shell

    Directory of Open Access Journals (Sweden)

    Linan Liu

    2014-03-01

    Full Text Available This study reports the preparation of a novel biomaterial from a forestry residue - Xanthoceras sorbifolia shell (XSS - by solvent modification. The effects of acid and base (hydrochloric acerbic, acetic acid, sodium hydroxide, ammonia water and some organic solvents (ethanol, acetone, ethyl acetate, chloroform, petroleum ether, and n-hexane on the surface acidic functional groups (SAFGs on XSS were investigated. The amount of SAFGs was quantified using acid and alkali chemical titration methods, and the characteristics of virgin XSS were compared with treated ones by FT-IR spectroscopy. It was found that acid solutions can increase the concentration of SAFGs, while alkaline solutions reduce it. The XSS treated in 0.5 M HCl has the largest number of total acidic functional groups and phenolic hydroxyl groups. The shell extracted with 2 M acetic acid has the highest concentration of carboxyl. The SAFG contents were remarkably increased by treatments with ethanol and acetone, due to the outstanding enhancement of phenolic hydroxyl. These changes in the SAFGs of XSS brought about by treatments with various solutions could be a theoretical foundation for modifying this residue to create a new type of highly efficient absorbent material.

  13. Novel roles of folic acid as redox regulator: Modulation of reactive oxygen species sinker protein expression and maintenance of mitochondrial redox homeostasis on hepatocellular carcinoma.

    Science.gov (United States)

    Lai, Kun-Goung; Chen, Chi-Fen; Ho, Chun-Te; Liu, Jun-Jen; Liu, Tsan-Zon; Chern, Chi-Liang

    2017-06-01

    We provide herein several lines of evidence to substantiate that folic acid (or folate) is a micronutrient capable of functioning as a novel redox regulator on hepatocellular carcinoma. First, we uncovered that folate deficiency could profoundly downregulate two prominent anti-apoptotic effectors including survivin and glucose-regulated protein-78. Silencing of either survivin or glucose-regulated protein-78 via small interfering RNA interfering technique established that both effectors could serve as reactive oxygen species sinker proteins. Second, folate deficiency-triggered oxidative-nitrosative stress could strongly induce endoplasmic reticulum stress that in turn could provoke cellular glutathione depletion through the modulation of the following two crucial events: (1) folate deficiency could strongly inhibit Bcl-2 expression leading to severe suppression of the mitochondrial glutathione pool and (2) folate deficiency could also profoundly inhibit two key enzymes that governing cellular glutathione redox regulation including γ-glutamylcysteinyl synthetase heavy chain, a catalytic enzyme for glutathione biosynthesis, and mitochondrial isocitrate dehydrogenase 2, an enzyme responsible for providing nicotinamide adenine dinucleotide phosphate necessary for regenerating oxidized glutathione disulfide back to glutathione via mitochondrial glutathione reductase. Collectively, we add to the literature new data to strengthen the notion that folate is an essential micronutrient that confers a novel role to combat reactive oxygen species insults and thus serves as a redox regulator via upregulating reactive oxygen species sinker proteins and averting mitochondrial glutathione depletion through proper maintenance of redox homeostasis via positively regulating glutathione biosynthesis, glutathione transporting system, and mitochondrial glutathione recycling process.

  14. Oxygen and silicon stable isotopes of diatom silica. Reconstructing changes in surface water hydrography and silicic acid utilization in the late Pleistocene subarctic Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Edith

    2014-03-05

    Deglacial variations in upper ocean nutrient dynamics and stratification in high latitudes, as well as associated changes in thermohaline overturning circulation, are thought to have played a key role in changing atmospheric CO{sub 2} concentrations. This thesis examines the relationship between past changes in subarctic Pacific upper ocean stratification and nutrient (silicic acid) utilization, using oxygen and silicon stable isotopes of diatom silica, for the first time at millennial-scale resolution and analyzed with a new and efficient instrumentation set-up. The isotopic data, presented in three manuscripts, show a consistent picture of millennial-scale variability in upper ocean stratification and silicic acid utilization during the last ∝50 ka BP, e.g. indicating that the subarctic Pacific was a source region for atmospheric CO{sub 2} during the last deglaciation (late Heinrich Stadial 1 and the Boelling/Alleroed). The presented results demonstrate the high potential of combined diatom oxygen and silicon stable isotope analysis especially for, but not restricted to, marine regions characterized by a low biogenic carbonate content like the subarctic Pacific and the Southern Ocean.

  15. The influence of surface oxygen and hydroxyl groups on the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate on pure Pd(1 0 0): A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanping [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Dong, Xiuqin [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Yu, Yingzhe, E-mail: yzhyu@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Zhang, Minhua, E-mail: mhzhangtj@163.com [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China)

    2016-12-01

    Highlights: • All dehydrogenation reactions in vinyl acetate synthesis on Pd(1 0 0) were studied. • The energy barriers of the transition state of the three reactions were calculated. • The influence of surface Os and OHs on all dehydrogenation actions was discussed. - Abstract: On the basis of a Langmuir–Hinshelwood-type mechanism, the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate (VAH) on pure Pd(1 0 0) with surface oxygen atoms (Os) and hydroxyl groups (OHs) was studied with density functional theory (DFT) method. Our calculation results show that both Os and OHs can consistently reduce the activation energies of dehydrogenation of ethylene, acetic acid and VAH to some degree with only one exception that OHs somehow increase the activation energy of VAH. Based on Langmuir–Hinshelwood mechanism, the three dehydrogenation reactions in presence of surface Os and OHs are almost consistently favored, compared with the corresponding processes on clean Pd(1 0 0) surfaces, and thus a Langmuir–Hinshelwood-type mechanism may not be excluded beforehand when investigating the microscopic performance of the oxygen-assisted vinyl acetate synthesis on Pd(1 0 0) catalysts.

  16. Oxygen and silicon stable isotopes of diatom silica. Reconstructing changes in surface water hydrography and silicic acid utilization in the late Pleistocene subarctic Pacific

    International Nuclear Information System (INIS)

    Maier, Edith

    2014-01-01

    Deglacial variations in upper ocean nutrient dynamics and stratification in high latitudes, as well as associated changes in thermohaline overturning circulation, are thought to have played a key role in changing atmospheric CO 2 concentrations. This thesis examines the relationship between past changes in subarctic Pacific upper ocean stratification and nutrient (silicic acid) utilization, using oxygen and silicon stable isotopes of diatom silica, for the first time at millennial-scale resolution and analyzed with a new and efficient instrumentation set-up. The isotopic data, presented in three manuscripts, show a consistent picture of millennial-scale variability in upper ocean stratification and silicic acid utilization during the last ∝50 ka BP, e.g. indicating that the subarctic Pacific was a source region for atmospheric CO 2 during the last deglaciation (late Heinrich Stadial 1 and the Boelling/Alleroed). The presented results demonstrate the high potential of combined diatom oxygen and silicon stable isotope analysis especially for, but not restricted to, marine regions characterized by a low biogenic carbonate content like the subarctic Pacific and the Southern Ocean.

  17. Oxygen affinity and acid-base status of human blood during exposure to hypoxia and carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Mulhausen, R.O.; Astrup, P.; Mellemgaard, K.

    1968-01-01

    Eight individuals exposed to hypoxia at altitude or simulated altitude in hypobaric chamber had hemoglobin with a decreased affinity for O/sub 2/ as shown by a shift in the dissociation curve to the right (about 4 mm at 3450 m). Acid-base changes could not explain shift. Intermittent CO doses to maintain approx. 15% carboxyhemoglobin produced the typical shift to the left. Acid-base changes were insignificant. Proposed adaptation mechanism for combating hypoxia does not work for CO poisoning.

  18. An experimental study on the effect of carbonic anhydrase on the oxygen isotope exchange kinetics and equilibrium in the carbonic acid system

    Science.gov (United States)

    Uchikawa, J.; Zeebe, R. E.

    2011-12-01

    Stable oxygen isotopes of marine biogenic carbonates are often depleted in 18O relative to the values expected for thermodynamic equilibrium with ambient seawater. One possibility is that 18O-depletion in carbonates is kinetically controlled. The kinetic isotope effect associated with the hydration of CO2 results in 18O-depleted HCO3-. If the HCO3- is utilized before re-establishing equilibrium with ambient water under rapid calcification, the 18O-depletion will be recorded in carbonates. But one caveat in this kinetic model is the fact that many marine calcifiers posses carbonic anhydrase, a zinc-bearing enzyme that catalyzes the CO2 hydration reaction. It is expected that this enzyme accelerates 18O-equilibration in the carbonic acid system by facilitating direct oxygen isotope exchange between HCO3- and H2O via CO2 hydration. Clearly this argues against the conceptual framework of the kinetic model. Yet the critical variable here is the effectiveness of the carbonic anhydrase, which is likely to depend on its concentration and the carbonate chemistry of the aqueous medium. It is also hitherto unknown whether the presence of carbonic anhydrase alters the equilibrium oxygen isotope fractionations between dissolved carbonate species and water. We performed a series of quantitative inorganic carbonate precipitation experiments to examine the changes in the oxygen isotope equilibration time as a function of carbonic anhydrase concentrations. We conducted experiments at pH 8.3 and 8.9. These pH values are similar to the average surface ocean pH and the elevated pH levels observed within calcification microenvironments of certain corals and planktonic foraminifera. A summary of our new experimental results will be presented.

  19. Lipoxin A4 and lipoxin B4 stimulate the release but not the oxygenation of arachidonic acid in human neutrophils: Dissociation between lipid remodeling and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Nigam, S.; Fiore, S.; Luscinskas, F.W.; Serhan, C.N. (Brigham and Women' s Hospital, Boston, MA (USA))

    1990-06-01

    The profiles of actions of lipoxin A4 (LXA4) and lipoxin B4 (LXB4), two lipoxygenase-derived eicosanoids, were examined with human neutrophils. At nanomolar concentrations, LXA4 and LXB4 each stimulated the release of (1-14C)arachidonic acid from esterified sources in neutrophils. Lipoxin-induced release of (1-14C)arachidonic acid was both dose- and time-dependent and was comparable to that induced by the chemotactic peptide f-met-leu-phe. Time-course studies revealed that lipoxin A4 and lipoxin B4 each induced a biphasic release of (1-14C)arachidonic acid, which was evident within seconds (5-15 sec) in its initial phase and minutes (greater than 30 sec) in the second phase. In contrast, the all-trans isomers of LXA4 and LXB4 did not provoke (1-14C)AA release. Lipoxin-induced release of arachidonic acid was inhibited by prior treatment of the cells with pertussis toxin but not by its beta-oligomers, suggesting the involvement of guaninine nucleotide-binding regulatory proteins in this event. Dual radiolabeling of neutrophil phospholipid classes with (1-14C)arachidonic acid and (3H)palmitic acid showed that phosphatidylcholine was a major source of lipoxin-induced release of (1-14C)arachidonic acid. They also demonstrated that lipoxins rapidly stimulate both formation of phosphatidic acid as well as phospholipid remodeling. Although both LXA4 and LXB4 (10(-8)-10(-6) M) stimulated the release of (1-14C)arachidonic acid, neither compound evoked its oxygenation by either the 5- or 15-lipoxygenase pathways (including the formation of LTB4, 20-COOH-LTB4, 5-HETE, or 15-HETE). LXA4 and LXB4 (10(-7) M) each stimulated the elevation of cytosolic Ca2+ as monitored with Fura 2-loaded cells, albeit to a lesser extent than equimolar concentrations of FMLP. Neither lipoxin altered the binding of (3H)LTB4 to its receptor on neutrophils.

  20. Efficient Production of N-Butyl Levulinate Fuel Additive from Levulinic Acid Using Amorphous Carbon Enriched with Oxygenated Groups

    Directory of Open Access Journals (Sweden)

    Jinfan Yang

    2018-01-01

    Full Text Available The aim of this study was to develop an effective carbonaceous solid acid for synthesizing green fuel additive through esterification of lignocellulose-derived levulinic acid (LA and n-butanol. Two different sulfonated carbons were prepared from glucose-derived amorphous carbon (GC400 and commercial active carbon (AC400. They were contrastively studied by a series of characterizations (N2 adsorption, X-ray diffraction, elemental analysis, transmission electron microscopy, Fourier transform infrared spectroscopy and NH3 temperature programmed desorption. The results indicated that GC400 possessed stronger acidity and higher –SO3H density than AC400, and the amorphous structure qualified GC400 for good swelling capacity in the reaction solution. Assessment experiments showed that GC400 displayed remarkably higher catalytic efficiency than AC400 and other typical solid acids (HZSM-5, Hβ, Amberlyst-15 and Nafion-212 resin. Up to 90.5% conversion of LA and 100% selectivity of n-butyl levulinate could be obtained on GC400 under the optimal reaction conditions. The sulfonated carbon retained 92% of its original catalytic activity even after five cycles.

  1. Labeling of amino acids and peptides with isotopic oxygen as followed by 17O-N.M.R

    International Nuclear Information System (INIS)

    Steinschneider, A.; Burgar, M.I.; Buku, A.; Fiat, D.

    1981-01-01

    17 O was introduced into the respective α- and γ-COOH groups of Boc-Gly and Boc-Glu by saponification of the corresponding O-methyl esters with 1 N NaOH in H 2 17 O. Other 17 O enriched Boc-amino acids were prepared by acid catalyzed exchange into the amino acid α-COOH group followed by t-butyloxycarbonylation with t-butyl S-4, 6-dimethylpyrimidin-2-ylthio carbonate. Final enrichment, by approximately three orders of magnitude over natural abundance, was 60-100% of the possible maximum. The synthesis of [ 17 O]-Gly-Ala, [ 17 O]-Gly-Leu and [ 17 O]-Gly-Glu by DCC/HBT mediated coupling of Boc-Gly-[ 17 O]-α-COOH with amino acid-O-t-butyl esters followed by deprotection with HCL/EtOAc proceeded without undue loss of the isotope. Boc-[ 17 O]-Pro-Leu-Gly-NH 2 was prepared by a similar procedure. [Tyr 2 - 17 O]-, Pro 7 - 17 O]- and [Gly 4 - 17 O]-oxytocin were synthesized using solid phase support. 17 O-chemical shifts of synthetic intermediates and of the final products were as expected for each functional group. Linewith data correlate with the molecular weights of the compounds prepared. (author)

  2. Passive neutralization of acid mine drainage using basic oxygen furnace slag as neutralization material: experimental and modelling

    CSIR Research Space (South Africa)

    Zvimba, JN

    2015-12-01

    Full Text Available emission 147 spectrometry (ICP-OES) (Varian: Vista Pro CCD Simultaneous ICP-OES). The pH, acidity, 148 alkalinity of the AMD were determined using a Mettler Toledo Auto-titrator following 149 filtration. Fe(II) was determined using standard permanganate...

  3. Alpha-Lipoic acid supplementation inhibits oxidative damage, accelerating chronic wound healing in patients undergoing hyperbaric oxygen therapy

    Czech Academy of Sciences Publication Activity Database

    Alleva, R.; Nasole, E.; Di Donato, F.; Borghi, B.; Neužil, Jiří; Tomasetti, M.

    2005-01-01

    Roč. 333, č. 2 (2005), s. 404-410 ISSN 0006-291X Institutional research plan: CEZ:AV0Z50520514 Keywords : alpha-lipoic acid * chronic wound * ROS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.000, year: 2005

  4. Comparative analysis of parameters of oxygenation, ventilation and acid-base status during intraoperative application of conventional and protective lung ventilation

    Directory of Open Access Journals (Sweden)

    Videnović N.

    2015-01-01

    Full Text Available The aim of this study was to perform a comparative analysis applied conventional (traditional and protective mechanical lung ventilation in clinical conditions with regard to intraoperative parameters changes of oxygenation, ventilation and acid-base status. This was a prospective study that included 240 patients. All patients underwent the same elective surgery (classic cholecystectomy. Patients were divided into two groups of 120 patients, A and B. In group A during the operation had received conventional lung ventilation with tidal volume of 10-15 ml/kg body weight, respiratory rate 12/min. and a PEEP zero. In group B was applied protective lung ventilation with a tidal volume of 6-8 ml/kg body weight, respiratory rate 12/min. and a PEEP of 7 mbar. Monitoring of oxygenation included the monitoring SaO2 and PaO2. Monitoring of ventilation included the determination of the value of tidal volume and minute volume ventilation, peak inspiratory pressure (Ppeak, medium pressure in the airway (Paw.mean, PEEP, PaCO2 and EtCO2. Monitoring of acid-base status was performed via determination of the pH values of arterial blood. Monitoring was carried out in four intervals: T1 - 5-10 minutes after the establishment of the airway, T2 - after opening peritoneum, T3 - after removal of the gallbladder, T4 - after the closure of the abdominal wall. All monitoring results are presented as mean. The statistical significance of differences in mean values was tested by t - test mean values in the case of two independent samples. As a statistical significance test taken as standard values p <0.01 and p <0.001. Comparative analysis of the value of SaO2, PaO2, Ppeak did not reach statistical significance. Statistical significance there is in the analysis of values of tidal volume and Paw.mean (p <0.001. Analysis of PaCO2 and pH of arterial blood showed no statistical significance in the first interval measurements but did interval T2-T4 (p <0.001. Based on the

  5. Electrodeposited ultrafine NbOx, ZrOx, and TaO x nanoparticles on carbon black supports for oxygen reduction electrocatalysts in acidic media

    KAUST Repository

    Seo, Jeongsuk

    2013-09-06

    A remarkable electrocatalytic activity was obtained for the oxygen reduction reaction (ORR) in acidic solutions on ultrafine nano-oxide catalysts based on group IV or V elements. By potentiostatic electrodepostion in nonaqueous solutions at 298 K followed by heat treatment in H2 gas, highly dispersed fine nanoparticles of NbOx, ZrOx, and TaOx with sizes of less than 5 nm were prepared and deposited on carbon black (CB) loaded electrodes. These oxide nanoparticles showed high catalytic activities with high onset potentials of 0.96 VRHE (NbOx), 1.02 VRHE (ZrOx), and 0.93 V RHE (TaOx) for the ORR. Owing to the high chemical stability of group IV and V oxides, the catalysts were very stable during the ORR in acidic solutions. Surface characterization and chemical identification were performed using scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). All results clearly indicate the formation of nano-oxide electrocatalysts that show an outstanding ORR performance, whereas the bulk oxides are not active because of the absence of electronic conductivity. The present work demonstrates potential candidates for highly stable, non-noble-metal cathode catalysts for polymer electrolyte fuel cells (PEFCs), where the catalysts are exposed to highly acidic and oxidizing conditions. © 2013 American Chemical Society.

  6. Economic process to co-produce poly(ε-l-lysine) and poly(l-diaminopropionic acid) by a pH and dissolved oxygen control strategy.

    Science.gov (United States)

    Xu, Zhaoxian; Feng, Xiaohai; Sun, Zhuzhen; Cao, Changhong; Li, Sha; Xu, Zheng; Xu, Zongqi; Bo, Fangfang; Xu, Hong

    2015-01-01

    This study tended to apply biorefinery of indigenous microbes to the fermentation of target-product generation through a novel control strategy. A novel strategy for co-producing two valuable homopoly(amino acid)s, poly(ε-l-lysine) (ε-PL) and poly(l-diaminopropionic acid) (PDAP), was developed by controlling pH and dissolved oxygen concentrations in Streptomyces albulus PD-1 fermentation. The production of ε-PL and PDAP got 29.4 and 9.6gL(-1), respectively, via fed-batch cultivation in a 5L bioreactor. What is more, the highest production yield (21.8%) of similar production systems was achieved by using this novel strategy. To consider the economic-feasibility, large-scale production in a 1t fermentor was also implemented, which would increase the gross profit of 54,243.5USD from one fed-batch bioprocess. This type of fermentation, which produces multiple commercial products from a unified process is attractive, because it will improve the utilization rate of raw materials, enhance production value and enrich product variety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Electrodeposited ultrafine NbOx, ZrOx, and TaO x nanoparticles on carbon black supports for oxygen reduction electrocatalysts in acidic media

    KAUST Repository

    Seo, Jeongsuk; Cha, Dong Kyu; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2013-01-01

    A remarkable electrocatalytic activity was obtained for the oxygen reduction reaction (ORR) in acidic solutions on ultrafine nano-oxide catalysts based on group IV or V elements. By potentiostatic electrodepostion in nonaqueous solutions at 298 K followed by heat treatment in H2 gas, highly dispersed fine nanoparticles of NbOx, ZrOx, and TaOx with sizes of less than 5 nm were prepared and deposited on carbon black (CB) loaded electrodes. These oxide nanoparticles showed high catalytic activities with high onset potentials of 0.96 VRHE (NbOx), 1.02 VRHE (ZrOx), and 0.93 V RHE (TaOx) for the ORR. Owing to the high chemical stability of group IV and V oxides, the catalysts were very stable during the ORR in acidic solutions. Surface characterization and chemical identification were performed using scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). All results clearly indicate the formation of nano-oxide electrocatalysts that show an outstanding ORR performance, whereas the bulk oxides are not active because of the absence of electronic conductivity. The present work demonstrates potential candidates for highly stable, non-noble-metal cathode catalysts for polymer electrolyte fuel cells (PEFCs), where the catalysts are exposed to highly acidic and oxidizing conditions. © 2013 American Chemical Society.

  8. Benefits of oxygen and nitrogen plasma treatment in Vero cell affinity to poly(lactide-co-glycolide acid

    Directory of Open Access Journals (Sweden)

    Andrea Rodrigues Esposito

    2013-01-01

    Full Text Available Cell adhesion on materials surface is critical because this phenomenon occurs before other events, as cell spreading, cell migration and cell differentiation. it is commonly accepted that the adhesion of cells on solid substrate is influenced by several substratum surface properties, such as wettability, surface charge, roughness and topography. plasma technique is a convenient method for modifying surface properties of materials without affecting physical properties. in this study, poly(lactide-co-glycolide, plga, membranes were modified by oxygen and nitrogen plasma to improve polymer hydrophilicity and verify their effect on vero cells culture. the plga membranes, which were characterized by sem and contact angle, showed increased surface rugosity and narrower contact angles. cell adhesion, cytotoxicity assay, sem and cytochemistry analysis showed that plasma treatment was beneficial to cell growth by improving cell-polymer interaction. Cell adhesion on materials surface is critical because this phenomenon occurs before other events, as cell spreading, cell migration and cell differentiation. It is commonly accepted that the adhesion of cells on solid substrate is influenced by several substratum surface properties, such as wettability, surface charge, roughness and topography. Plasma technique is a convenient method for modifying surface properties of materials without affecting physical properties. In this study, poly(lactide-co-glycolide, PLGA, membranes were modified by oxygen and nitrogen plasma to improve polymer hydrophilicity and verify their effect on Vero cells culture. The PLGA membranes, which were characterized by SEM and contact angle, showed increased surface rugosity and narrower contact angles. Cell adhesion, cytotoxicity assay, SEM and cytochemistry analysis showed that plasma treatment was beneficial to cell growth by improving cell-polymer interaction.

  9. Hexanoic Acid Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by Priming Callose Deposition Correlating SA and OPDA Accumulation

    Directory of Open Access Journals (Sweden)

    Emma Fernández-Crespo

    2017-10-01

    Full Text Available Unlike fungal and bacterial diseases, no direct method is available to control viral diseases. The use of resistance-inducing compounds can be an alternative strategy for plant viruses. Here we studied the basal response of melon to Melon necrotic spot virus (MNSV and demonstrated the efficacy of hexanoic acid (Hx priming, which prevents the virus from systemically spreading. We analysed callose deposition and the hormonal profile and gene expression at the whole plant level. This allowed us to determine hormonal homeostasis in the melon roots, cotyledons, hypocotyls, stems and leaves involved in basal and hexanoic acid-induced resistance (Hx-IR to MNSV. Our data indicate important roles of salicylic acid (SA, 12-oxo-phytodienoic acid (OPDA, jasmonic-isoleucine, and ferulic acid in both responses to MNSV. The hormonal and metabolites balance, depending on the time and location associated with basal and Hx-IR, demonstrated the reprogramming of plant metabolism in MNSV-inoculated plants. The treatment with both SA and OPDA prior to virus infection significantly reduced MNSV systemic movement by inducing callose deposition. This demonstrates their relevance in Hx-IR against MNSV and a high correlation with callose deposition. Our data also provide valuable evidence to unravel priming mechanisms by natural compounds.

  10. Catalytic Conversion of Bio-Oil to Oxygen-Containing Fuels by Acid-Catalyzed Reaction with Olefins and Alcohols over Silica Sulfuric Acid

    Directory of Open Access Journals (Sweden)

    Qingwen Wang

    2013-09-01

    Full Text Available Crude bio-oil from pine chip fast pyrolysis was upgraded with olefins (1-octene, cyclohexene, 1,7-octadiene, and 2,4,4-trimethylpentene plus 1-butanol (iso-butanol, t-butanol and ethanol at 120 °C using a silica sulfuric acid (SSA catalyst that possesses a good catalytic activity and stability. Gas chromatography-mass spectrometry (GC-MS, Fourier transform infrared spectroscopy (FT-IR and proton nuclear magnetic resonance (1H-NMR analysis showed that upgrading sharply increased ester content and decreased the amounts of levoglucosan, phenols, polyhydric alcohols and carboxylic acids. Upgrading lowered acidity (pH value rose from 2.5 to >3.5, removed the unpleasant odor and increased hydrocarbon solubility. Water content dramatically decreased from 37.2% to about 7.0% and the heating value increased from 12.6 MJ·kg−1 to about 31.9 MJ·kg−1. This work has proved that bio-oil upgrading with a primary olefin plus 1-butanol is a feasible route where all the original heating value of the bio-oil plus the added olefin and alcohol are present in the resulting fuel.

  11. Aromatic oxygen compounds boiling from 180/sup 0/ to 225/sup 0/ from acid oils in low-temperature tar

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, A; Kattwinkel, G

    1950-01-01

    To determine the composition of the Krupp-Lurgi low-temperature coal tar and to develop methods for isolating the various compounds, a quantitative investigation was made of the dry tar acid mixture. The aromatic O compounds boiling up to 225/sup 0/ were secured by fractionation with one of the several columns that are described. Large volumes of tar were fractionated under vacuum in an apparatus with a 10-liter flask, electrically heated, and provided with a fractionating column (packed) with a jacket supplied by recirculated oil, externally heated. Large volumes were fractionated to give sufficient quantities of the O compounds. The method of fractional extraction, not described herein, made the separation of the acid oils by fractional distillation much easier. The aromatic O compounds present in greatest proportion are relatively easily isolated; those present in small quantities and more difficult to separate can be removed as a mixture, which can be hydrogenated directly to solvents. Phenols and cresols are formed in about equal fractions in low-temperature carbonization. Of the various xylenols, the sym-xylenol is present to the greatest extent. O compounds with longer side chains than C/sub 2/ were present only to a very slight extent. At the temperature of formation of these tars, side chains of three or more C atoms formed closed ring compounds (indan derivatives, etc.). Little change appears to occur up to 225/sup 0/ in the fractionation of these acid oils.

  12. Uric acid-derived Fe3C-containing mesoporous Fe/N/C composite with high activity for oxygen reduction reaction in alkaline medium

    Science.gov (United States)

    Ma, Jun; Xiao, Dejian; Chen, Chang Li; Luo, Qiaomei; Yu, Yue; Zhou, Junhao; Guo, Changding; Li, Kai; Ma, Jie; Zheng, Lirong; Zuo, Xia

    2018-02-01

    In this work, a category of Fe3C-containing Fe/N/C mesoporous material has been fabricated by carbonizing the mixture of uric acid, Iron (Ⅲ) chloride anhydrous and carbon support (XC-72) under different pyrolysis temperature. Of all these samples, pyrolysis temperature (800 °C) becomes the most crucial factor in forming Fe3C active sites which synergizes with high content of graphitic N to catalyze oxygen reduction reaction (ORR). X-ray absorption fine structure spectroscopy (XAFS) is used to exhibit that the space structure around Fe atoms in the catalyst. This kind of catalyst possesses comparable ORR properties with commercial 20% Pt/C (onset potential is 0 V vs. Ag/AgCl in 0.1 M KOH), the average transfer electron number is 3.84 reflecting the 4-electron process. Moreover, superior stability and methanol tolerance deserve to be mentioned.

  13. Relationship between iodine-123-beta-methyl-p-iodophenyl-pentadecanoic acid washout ratio and oxygen consumption in normal and ischemic myocardium

    International Nuclear Information System (INIS)

    Saito, Kimimasa; Okamoto, Ryuji; Saito, Yasuhiro

    1997-01-01

    The relationship between oxygen consumption and iodine-123-beta-methyl-p-iodophenyl-pentadecanoic acid ( 123 I-BMIPP) washout at rest and after exercise was investigated in normal and ischemic myocardium. Sixteen healthy volunteers and 14 patients with ischemic heart disease were examined. After injection of 111 MBq of 123 I-BMIPP, serial single photon emission computed tomography imaging was performed to evaluate washout ratio after 30 min and 1 hour of rest and after exercise. In the volunteers, the mean washout ratio was 3.3±3.5% after 1 hour of rest and increased during exercise. The exercise washout ratio showed a better correlation with net pressure rate product (net PRP: cumulative values of PRP during exercise) than with the peak PRP. The exercise washout ratio showed a strong correlation with the net PRP in the range from 180 to 300x10 3 mmHg·beat/min and a plateau of 10-15%. In the nine ischemic patients with net PRP≥300x10 3 mmHg·beat/min, the exercise washout ratio values were significantly elevated in normal segments relative to ischemic segments (10.1±1.9% vs 4.7±2.9%, p 3 mmHg·beat/min, washout ratio at rest and after exercise did not differ significantly between normal and ischemic segments. 123 I-BMIPP washout ratio increased with increased oxygen consumption during exercise in normal myocardium but not in ischemic myocardium. The patient must exercise before fatty acid metabolism can be compared between normal and ischemic myocardium. (author)

  14. Chiral Pyridinium Phosphoramide as a Dual Brønsted Acid Catalyst for Enantioselective Diels-Alder Reaction.

    Science.gov (United States)

    Nishikawa, Yasuhiro; Nakano, Saki; Tahira, Yuu; Terazawa, Kanako; Yamazaki, Ken; Kitamura, Chitoshi; Hara, Osamu

    2016-05-06

    Chiral pyridinium phosphoramide 1·HX was designed to be a new class of chiral Brønsted acid catalyst in which both the pyridinium proton and the adjacent imide-like proton activated by the electron-withdrawing pyridinium moiety could work cooperatively as strong dual proton donors. The potential of 1·HX was shown in the enantioselective Diels-Alder reactions of 1-amino dienes with various dienophiles including N-unsubstituted maleimide, which has yet to be successfully used in an asymmetric Diels-Alder reaction.

  15. Nitrogen and sulfur co-doped porous carbon – is an efficient electrocatalyst as platinum or a hoax for oxygen reduction reaction in acidic environment PEM fuel cell?

    International Nuclear Information System (INIS)

    Sahoo, Madhumita; Ramaprabhu, S.

    2017-01-01

    Non-precious, heteroatom doped carbon is reported to replace commercial Pt/C in both alkaline and acidic half-cell rotating disc electrode study; however the real world full cell measurements with the metal-free electrocatalysts overcoming the practical troubles in acidic environment proton exchange membrane fuel cell (PEMFC) are almost negligible to confirm the claim. Nitrogen and sulfur co-doped porous carbon (DPC) was synthesized in a one step, high yield process from single source ionic liquid precursor using eutectic salt as porogens to achieve porosity. Structural characterization confirms 7.03% nitrogen and 1.68% sulfur doping into the high surface area, porous carbon structure. As the cathode oxygen reduction reaction (ORR) catalyst, metal-free DPC and Pt nanoparticles decorated DPC (Pt/DPC) shows stable and high exchange current density by four electron transfer pathway in acidic half–cell liquid environment due to the synergistic effect of nitrogen and sulfur doping and porous nature of DPC. In an actual solid state full cell measurement, Pt/DPC shows higher performance comparable to commercial Pt/C; however DPC failed to reciprocate the half-cell performance due to blockage of active sites in the membrane electrode assembly fabrication process. - Highlights: • Synthesis of N and S co-doped porous carbon (DPC) in simple one-pot technique. • High surface area DPC shows comparable activity for ORR in half-cell acidic PEMFC study. • Real-world performance of DPC gives 20 mW/cm 2 peak power density at 60 °C. • Homogeneous Pt nanoparticles decorated DPC (Pt/DPC) outperforms commercial Pt/C. • Pt/DPC shows maximum power density of 718 mW/cm 2 with lower 0.3 mg/cm 2 total Pt loading.

  16. Effects of continuous triiodothyronine infusion on the tricarboxylic acid cycle in the normal immature swine heart under extracorporeal membrane oxygenation in vivo.

    Science.gov (United States)

    Kajimoto, Masaki; Priddy, Colleen M O'Kelly; Ledee, Dolena R; Xu, Chun; Isern, Nancy; Olson, Aaron K; Portman, Michael A

    2014-04-15

    Extracorporeal membrane oxygenation (ECMO) is frequently used in infants with postoperative cardiopulmonary failure. ECMO also suppresses circulating triiodothyronine (T3) levels and modifies myocardial metabolism. We assessed the hypothesis that T3 supplementation reverses ECMO-induced metabolic abnormalities in the immature heart. Twenty-two male Yorkshire pigs (age: 25-38 days) with ECMO received [2-(13)C]lactate, [2,4,6,8-(13)C4]octanoate (medium-chain fatty acid), and [U-(13)C]long-chain fatty acids as metabolic tracers either systemically (totally physiological intracoronary concentration) or directly into the coronary artery (high substrate concentration) for the last 60 min of each protocol. NMR analysis of left ventricular tissue determined the fractional contribution of these substrates to the tricarboxylic acid cycle. Fifty percent of the pigs in each group received intravenous T3 supplement (bolus at 0.6 μg/kg and then continuous infusion at 0.2 μg·kg(-1)·h(-1)) during ECMO. Under both substrate loading conditions, T3 significantly increased the fractional contribution of lactate with a marginal increase in the fractional contribution of octanoate. Both T3 and high substrate provision increased the myocardial energy status, as indexed by phosphocreatine concentration/ATP concentration. In conclusion, T3 supplementation promoted lactate metabolism to the tricarboxylic acid cycle during ECMO, suggesting that T3 releases the inhibition of pyruvate dehydrogenase. Manipulation of substrate utilization by T3 may be used therapeutically during ECMO to improve the resting energy state and facilitate weaning.

  17. Docosahexaenoic acid induces apoptosis in MCF-7 cells in vitro and in vivo via reactive oxygen species formation and caspase 8 activation.

    Directory of Open Access Journals (Sweden)

    Ki Sung Kang

    Full Text Available BACKGROUND: The present study sought to further investigate the in vitro and in vivo anticancer effects of a representative omega-3 fatty acid, docosahexaenoic acid (DHA, with a focus on assessing the induction of oxidative stress and apoptosis as an important mechanism for its anticancer actions. METHODOLOGY/PRINCIPAL FINDINGS: In vitro studies showed that DHA strongly reduces the viability and DNA synthesis of MCF-7 human breast cancer cells in culture, and also promotes cell death via apoptosis. Mechanistically, accumulation of reactive oxygen species and activation of caspase 8 contribute critically to the induction of apoptotic cell death. Co-presence of antioxidants or selective inhibition or knockdown of caspase 8 each effectively abrogates the cytotoxic effect of DHA. Using athymic nude mice as an in vivo model, we found that feeding animals the 5% fish oil-supplemented diet for 6 weeks significantly reduces the growth of MCF-7 human breast cancer cells in vivo through inhibition of cancer cell proliferation as well as promotion of cell death. Using 3-nitrotyrosine as a parameter, we confirmed that the fish oil-supplemented diet significantly increases oxidative stress in tumor cells in vivo. Analysis of fatty acid content in plasma and tissues showed that feeding animals a 5% fish oil diet increases the levels of DHA and eicosapentaenoic acid in both normal and tumorous mammary tissues by 329% and 300%, respectively. CONCLUSIONS/SIGNIFICANCE: DHA can strongly induce apoptosis in human MCF-7 breast cancer cells both in vitro and in vivo. The induction of apoptosis in these cells is selectively mediated via caspase 8 activation. These observations call for further studies to assess the effectiveness of fish oil as a dietary supplement in the prevention and treatment of human breast cancer.

  18. Electrochemical reduction of oxygen on small platinum particles supported on carbon in concentrated phosphoric acid. 2. Effects of teflon content in the catalyst layer and baking temperature of the electrode

    Energy Technology Data Exchange (ETDEWEB)

    Maoka, T.

    1988-03-01

    A relation between hydrophobicity (or wettability) of a porous gas diffusion electrode for use in a phosphoric acid fuel cell and its cathode performance (activity toward electrochemical oxygen reduction) was examined. The hydrophobicity of the gas diffusion electrode was regulated by changing either the amount of Teflon (PTFE) content in the catalyst layer or baking temperature of the electrode. The Tafel slope or electrochemical oxygen reduction became twice as high as that of the ordinary electrode when the wettability of electrode toward phosphoric acid was high. This fact supports a flooded agglomerate model as the mode of this type of porous gas diffusion electrode.

  19. Mass production of volume holographic optical elements (vHOEs) using Bayfol® HX photopolymer film in a roll-to-roll copy process

    Science.gov (United States)

    Bruder, Friedrich-Karl; Fäcke, Thomas; Grote, Fabian; Hagen, Rainer; Hönel, Dennis; Koch, Eberhard; Rewitz, Christian; Walze, Günther; Wewer, Brita

    2017-03-01

    Volume Holographic Optical Elements (vHOEs) gained wide attention as optical combiners for the use in augmented and virtual reality (AR and VR, respectively) consumer electronics and automotive head-up display applications. The unique characteristics of these diffractive grating structures - being lightweight, thin and flat - make them perfectly suitable for use in integrated optical components like spectacle lenses and car windshields. While being transparent in Off-Bragg condition, they provide full color capability and adjustable diffraction efficiency. The instant developing photopolymer Bayfol® HX film provides an ideal technology platform to optimize the performance of vHOEs in a wide range of applications. Important for any commercialization are simple and robust mass production schemes. In this paper, we present an efficient and easy to control one-beam recording scheme to copy a so-called master vHOE in a step-and-repeat process. In this contact-copy scheme, Bayfol® HX film is laminated to a master stack before being exposed by a scanning laser line. Subsequently, the film is delaminated in a controlled fashion and bleached. We explain working principles of the one-beam copy concept and discuss the mechanical construction of the installed vHOE replication line. Moreover, we treat aspects like master design, effects of vibration and suppression of noise gratings. Furthermore, digital vHOEs are introduced as master holograms. They enable new ways of optical design and paths to large scale vHOEs.

  20. Metabolism of Citrate and Other Carboxylic Acids in Erythrocytes As a Function of Oxygen Saturation and Refrigerated Storage

    Directory of Open Access Journals (Sweden)

    Travis Nemkov

    2017-10-01

    Full Text Available State-of-the-art proteomics technologies have recently helped to elucidate the unanticipated complexity of red blood cell metabolism. One recent example is citrate metabolism, which is catalyzed by cytosolic isoforms of Krebs cycle enzymes that are present and active in mature erythrocytes and was determined using quantitative metabolic flux analysis. In previous studies, we reported significant increases in glycolytic fluxes in red blood cells exposed to hypoxia in vitro or in vivo, an observation relevant to transfusion medicine owing to the potential benefits associated with hypoxic storage of packed red blood cells. Here, using a combination of steady state and quantitative tracing metabolomics experiments with 13C1,2,3-glucose, 13C6-citrate, 13C515N2-glutamine, and 13C1-aspartate via ultra-high performance liquid chromatography coupled on line with mass spectrometry, we observed that hypoxia in vivo and in vitro promotes consumption of citrate and other carboxylates. These metabolic reactions are theoretically explained by the activity of cytosolic malate dehydrogenase 1 and isocitrate dehydrogenase 1 (abundantly represented in the red blood cell proteome, though moonlighting functions of additional enzymes cannot be ruled out. These observations enhance understanding of red blood cell metabolic responses to hypoxia, which could be relevant to understand systemic physiological and pathological responses to high altitude, ischemia, hemorrhage, sepsis, pulmonary hypertension, or hemoglobinopathies. Results from this study will also inform the design and testing of novel additive solutions that optimize red blood cell storage under oxygen-controlled conditions.

  1. Deoxyribonucleic acid directed metallization of platinum nanoparticles on graphite nanofibers as a durable oxygen reduction catalyst for polymer electrolyte fuel cells

    Science.gov (United States)

    Peera, S. Gouse; Sahu, A. K.; Arunchander, A.; Nath, Krishna; Bhat, S. D.

    2015-11-01

    Effective surface functionalization to the hydrophobic graphite nanofibers (GNF) is performed with the biomolecule, namely deoxy-ribo-nucleic-acid (DNA) via π-π interactions. Pt nanoparticles are impregnated on GNF-DNA composite by ethylene glycol reduction method (Pt/GNF-DNA) and its effect on electro catalytic activity for oxygen reduction reaction (ORR) is systemically studied. Excellent dispersion of Pt nanoparticles over GNF-DNA surfaces with no evidence on particle aggregation is a remarkable achievement in this study. This result in higher electro chemical surface area of the catalyst, enhanced ORR behavior with significant enhancement in mass activity. The catalyst is validated in H2-O2 polymer electrolyte fuel cell (PEFC) and a peak power density of 675 mW cm-2 is achieved at a load current density of 1320 mA cm-2 with a minimal catalyst loading of 0.1 mg cm-2 at a cell temperature of 70 °C and 2 bar absolute pressure. Repeated potential cycling up to 10000 cycles in acidic media is also performed for this catalyst and found excellent stability with only 60 mV drop in the ORR half wave potential. The superior behavior of Pt/GNF-DNA catalyst is credited to the robust fibrous structure of GNF and its effective surface functionalization process via π-π interaction.

  2. Catechol Groups Enable Reactive Oxygen Species Scavenging-Mediated Suppression of PKD-NFkappaB-IL-8 Signaling Pathway by Chlorogenic and Caffeic Acids in Human Intestinal Cells

    Directory of Open Access Journals (Sweden)

    Hee Soon Shin

    2017-02-01

    Full Text Available Chlorogenic acid (CHA and caffeic acid (CA are phenolic compounds found in coffee, which inhibit oxidative stress-induced interleukin (IL-8 production in intestinal epithelial cells, thereby suppressing serious cellular injury and inflammatory intestinal diseases. Therefore, we investigated the anti-inflammatory mechanism of CHA and CA, both of which inhibited hydrogen peroxide (H2O2-induced IL-8 transcriptional activity. They also significantly suppressed nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB transcriptional activity, nuclear translocation of the p65 subunit, and phosphorylation of IκB kinase (IKK. Additionally, upstream of IKK, protein kinase D (PKD was also suppressed. Finally, we found that they scavenged H2O2-induced reactive oxygen species (ROS and the functional moiety responsible for the anti-inflammatory effects of CHA and CA was the catechol group. Therefore, we conclude that the presence of catechol groups in CHA and CA allows scavenging of intracellular ROS, thereby inhibiting H2O2-induced IL-8 production via suppression of PKD-NF-κB signaling in human intestinal epithelial cells.

  3. Enhanced poly(γ-glutamic acid) production by H2 O2 -induced reactive oxygen species in the fermentation of Bacillus subtilis NX-2.

    Science.gov (United States)

    Tang, Bao; Zhang, Dan; Li, Sha; Xu, Zongqi; Feng, Xiaohai; Xu, Hong

    2016-09-01

    Effects of reactive oxygen species (ROS) on cell growth and poly(γ-glutamic acid) (γ-PGA) synthesis were studied by adding hydrogen peroxide to a medium of Bacillus subtilis NX-2. After optimizing the addition concentration and time of H 2 O 2 , a maximum concentration of 33.9 g/L γ-PGA was obtained by adding 100 µM H 2 O 2 to the medium after 24 H. This concentration was 20.6% higher than that of the control. The addition of diphenyleneiodonium chloride (ROS inhibitor) can interdict the effect of H 2 O 2 -induced ROS. Transcriptional levels of the cofactors and relevant genes were also determined under ROS stress to illustrate the possible metabolic mechanism contributing to the improve γ-PGA production. The transcriptional levels of genes belonging to the tricarboxylic acid cycle and electron transfer chain system were significantly increased by ROS, which decreased the NADH/NAD + ratio and increased the ATP levels, thereby providing more reducing power and energy for γ-PGA biosynthesis. The enhanced γ-PGA synthetic genes also directly promoted the formation of γ-PGA. This study was the first to use the ROS control strategy for γ-PGA fermentation and provided valuable information on the possible mechanism by which ROS regulated γ-PGA biosynthesis in B. subtilis NX-2. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  4. Coupling of anodic oxidation and adsorption by granular activated carbon for chemical oxygen demand removal from 4,4'-diaminostilbene-2,2'-disulfonic acid wastewater.

    Science.gov (United States)

    Wang, Lizhang; Zhao, Yuemin

    2010-01-01

    Experiments were performed to reduce chemical oxygen demand (COD) from 4,4'-diaminostilbene-2,2'-disulfonic (DSD) acid manufacturing wastewater using electrochemical oxidation coupled with adsorption by granular activated carbon. The COD removal is affected by the residence time and applied voltage. When the residence time is increased, lower value of COD effluent could be obtained, however, the average current efficiency (ACE) decreased rapidly, and so does the applied voltage. In addition, aeration could effectively enhance COD removal efficiency and protect anodes from corrosion. Furthermore, the acidic condition is beneficial to the rapid decrease of COD and the values of pH effluent are independent of the initial solution pH. The optimization conditions obtained from these experiments are applied voltage of 4.8 V, residence time of 180 min and air-liquid ratio of 4.2 with the COD effluent of about 690 mg L⁻¹. In these cases, the ACE and energy consumption are 388% and 4.144 kW h kg⁻¹ COD, respectively. These perfect results from the experiments illustrate that the combined process is a considerable alternative for the treatment of industrial wastewater containing high concentration of organic pollutants and salinity.

  5. Piracetam ameliorated oxygen and glucose deprivation-induced injury in rat cortical neurons via inhibition of oxidative stress, excitatory amino acids release and P53/Bax.

    Science.gov (United States)

    He, Zhi; Hu, Min; Zha, Yun-hong; Li, Zi-cheng; Zhao, Bo; Yu, Ling-ling; Yu, Min; Qian, Ying

    2014-05-01

    Our previous work has demonstrated that piracetam inhibited the decrease in amino acid content induced by chronic hypoperfusion, ameliorated the dysfunction of learning and memory in a hypoperfusion rat model, down-regulated P53, and BAX protein, facilitated the synaptic plasticity, and may be helpful in the treatment of vascular dementia. To explore the precise mechanism, the present study further evaluated effects of piracetam on Oxygen and glucose deprivation (OGD)-induced neuronal damage in rat primary cortical cells. The addition of piracetam to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and lactate dehydrogenase release experiments. Piracetam also lowered the levels of malondialdehyde, nitrogen monoxidum, and xanthine oxidase which was increased in the OGD cells, and enhanced the activities of superoxide dismutase and glutathione peroxidase, which were decreased in the OGD cells. We also demonstrated that piracetam could decrease glutamate and aspartate release when cortical cells were subjected to OGD. Furthermore, Western blot study demonstrated that piracetam attenuated the increased expression of P53 and BAX protein in OGD cells. These observations demonstrated that piracetam reduced OGD-induced neuronal damage by inhibiting the oxidative stress and decreasing excitatory amino acids release and lowering P53/Bax protein expression in OGD cells.

  6. Accurate pKa Calculation of the Conjugate Acids of Alkanolamines, Alkaloids and Nucleotide Bases by Quantum Chemical Methods

    NARCIS (Netherlands)

    Gangarapu, S.; Marcelis, A.T.M.; Zuilhof, H.

    2013-01-01

    The pKa of the conjugate acids of alkanolamines, neurotransmitters, alkaloid drugs and nucleotide bases are calculated with density functional methods (B3LYP, M08-HX and M11-L) and ab initio methods (SCS-MP2, G3). Implicit solvent effects are included with a conductor-like polarizable continuum

  7. Detection of autoantibodies against reactive oxygen species modified glutamic acid decarboxylase-65 in type 1 diabetes associated complications

    Directory of Open Access Journals (Sweden)

    Mashal Subhash N

    2011-03-01

    Full Text Available Abstract Background Autoantibodies against glutamate decarboxylase-65 (GAD65Abs are thought to be a major immunological tool involved in pathogenic autoimmunity development in various diseases. GAD65Abs are a sensitive and specific marker for type 1 diabetes (T1D. These autoantibodies can also be found in 6-10% of patients classified with type 2 diabetes (T2D, as well as in 1-2% of the healthy population. The latter individuals are at low risk of developing T1D because the prevalence rate of GAD65Abs is only about 0.3%. It has, therefore, been suggested that the antibody binding to GAD65 in these three different GAD65Ab-positive phenotypes differ with respect to epitope specificity. The specificity of reactive oxygen species modified GAD65 (ROS-GAD65 is already well established in the T1D. However, its association in secondary complications of T1D has not yet been ascertained. Hence this study focuses on identification of autoantibodies against ROS-GAD65 (ROS-GAD65Abs and quantitative assays in T1D associated complications. Results From the cohort of samples, serum autoantibodies from T1D retinopathic and nephropathic patients showed high recognition of ROS-GAD65 as compared to native GAD65 (N-GAD65. Uncomplicated T1D subjects also exhibited reactivity towards ROS-GAD65. However, this was found to be less as compared to the binding recorded from complicated subjects. These results were further proven by competitive ELISA estimations. The apparent association constants (AAC indicate greater affinity of IgG from retinopathic T1D patients (1.90 × 10-6 M followed by nephropathic (1.81 × 10-6 M and uncomplicated (3.11 × 10-7 M T1D patients for ROS-GAD65 compared to N-GAD65. Conclusion Increased oxidative stress and blood glucose levels with extended duration of disease in complicated T1D could be responsible for the gradual formation and/or exposing cryptic epitopes on GAD65 that induce increased production of ROS-GAD65Abs. Hence regulation of ROS

  8. Oxygen toxicity

    Directory of Open Access Journals (Sweden)

    C. A. van der Westhuizen

    1990-07-01

    Full Text Available Oxygen has been discovered about 200 years ago. Since then the vital physiological involvement of oxygen in various biologi­cal processes, mainly energy production, has been established. However, in the body molecular oxygen can be converted to toxic oxygen metabolites such as superoxide anion, hydrogen peroxide, the hydroxyl radical and singlet oxygen. These toxic metabolites are produced mainly in the mitochondria, plasma membranes and endoplasmic reticulum.

  9. On the controls of leaf-water oxygen isotope ratios in the atmospheric Crassulacean acid metabolism epiphyte Tillandsia usneoides.

    Science.gov (United States)

    Helliker, Brent R

    2011-04-01

    Previous theoretical work showed that leaf-water isotope ratio (δ(18)O(L)) of Crassulacean acid metabolism epiphytes was controlled by the δ(18)O of atmospheric water vapor (δ(18)O(a)), and observed δ(18)O(L) could be explained by both a non-steady-state model and a "maximum enrichment" steady-state model (δ(18)O(L-M)), the latter requiring only δ(18)O(a) and relative humidity (h) as inputs. δ(18)O(L), therefore, should contain an extractable record of δ(18)O(a). Previous empirical work supported this hypothesis but raised many questions. How does changing δ(18)O(a) and h affect δ(18)O(L)? Do hygroscopic trichomes affect observed δ(18)O(L)? Are observations of changes in water content required for the prediction of δ(18)O(L)? Does the leaf need to be at full isotopic steady state for observed δ(18)O(L) to equal δ(18)O(L-M)? These questions were examined with a climate-controlled experimental system capable of holding δ(18)O(a) constant for several weeks. Water adsorbed to trichomes required a correction ranging from 0.5‰ to 1‰. δ(18)O(L) could be predicted using constant values of water content and even total conductance. Tissue rehydration caused a transitory change in δ(18)O(L), but the consequent increase in total conductance led to a tighter coupling with δ(18)O(a). The non-steady-state leaf water models explained observed δ(18)O(L) (y = 0.93*x - 0.07; r(2) = 0.98) over a wide range of δ(18)O(a) and h. Predictions of δ(18)O(L-M) agreed with observations of δ(18)O(L) (y = 0.87*x - 0.99; r(2) = 0.92), and when h > 0.9, the leaf did not need to be at isotopic steady state for the δ(18)O(L-M) model to predict δ(18)O(L) in the Crassulacean acid metabolism epiphyte Tillandsia usneoides.

  10. Selective surface functionalization of polystyrene induced by synchrotron or UV radiation in the presence of oxygen or acrylic acid vapors

    International Nuclear Information System (INIS)

    Kessler, Felipe; Kuhn, Sidiney; Weibel, Daniel E.

    2009-01-01

    Efficient surface functionalization of Polystyrene (PS) thin films by electromagnetic radiation in combination with a reactive gaseous atmosphere was obtained. Monochromatic synchrotron (SR) or polychromatic UV radiation were used as excitation sources. When SR was used, O 2 was introduced after irradiation into the UHV chamber. UV irradiation was carried out keeping a constant flow of O 2 or acrylic acid (AA) vapors during the photolysis. FTIR-ATR and XPS-NEXAFS spectra were obtained at the UFRGS and the LNLS, Campinas respectively. PS films were functionalized by monochromatic SR and then expose to O 2 at specific transitions such us C 1s →σ * C-C excitation. It was found a high rate of COO, C=O and C-O groups at the surface (> 70%). UV-assisted treatment in the presence of AA vapors showed that an efficient polymerization process took place, such as, it was observed in previous AA low pressure RF plasma treatments. UV-assisted functionalization has the advantage of lower costs and simple set-up compared to plasma treatments. (author)

  11. Changes in oxygen content and acid-base balance in arterial and portal blood in response to the dietary electrolyte balance in pigs during a 9-h period after a meal

    NARCIS (Netherlands)

    Dersjant-Li, Y.; Verstegen, M.W.A.; Jansman, A.; Schulze, H.; Schrama, J.W.; Verreth, J.A.J.

    2002-01-01

    The effect of two dietary electrolyte balance (dEB, Na K - Cl-) levels on arterial and portal blood oxygen content, blood pH, and acid-base status in pigs was studied during a 9-h period after a meal, using a crossover experimental design. The dEB levels were established by changing the Cl- level in

  12. Protection against Oxygen-Glucose Deprivation/Reperfusion Injury in Cortical Neurons by Combining Omega-3 Polyunsaturated Acid with Lyciumbarbarum Polysaccharide.

    Science.gov (United States)

    Shi, Zhe; Wu, Di; Yao, Jian-Ping; Yao, Xiaoli; Huang, Zhijian; Li, Peng; Wan, Jian-Bo; He, Chengwei; Su, Huanxing

    2016-01-13

    Ischemic stroke, characterized by the disturbance of the blood supply to the brain, is a severe worldwide health threat with high mortality and morbidity. However, there is no effective pharmacotherapy for ischemic injury. Currently, combined treatment is highly recommended for this devastating injury. In the present study, we investigated neuroprotective effects of the combination of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and Lyciumbarbarum polysaccharide (LBP) on cortical neurons using an in vitro ischemic model. Our study demonstrated that treatment with docosahexaenoic acid (DHA), a major component of the ω-3 PUFAs family, significantly inhibited the increase of intracellular Ca(2+) in cultured wild type (WT) cortical neurons subjected to oxygen-glucose deprivation/reperfusion (OGD/R) injury and promoted their survival compared with the vehicle-treated control. The protective effects were further confirmed in cultured neurons with high endogenous ω-3 PUFAs that were isolated from fat-1 mice, in that a higher survival rate was found in fat-1 neurons compared with wild-type neurons after OGD/R injury. Our study also found that treatment with LBP (50 mg/L) activated Trk-B signaling in cortical neurons and significantly attenuated OGD/R-induced cell apoptosis compared with the control. Notably, both combining LBP treatment with ω-3 PUFAs administration to WT neurons and adding LBP to fat-1 neurons showed enhanced effects on protecting cortical neurons against OGD/R injury via concurrently regulating the intracellular calcium overload and neurotrophic pathway. The results of the study suggest that ω-3 PUFAs and LBP are promising candidates for combined pharmacotherapy for ischemic stroke.

  13. HIMSS Venture+ Forum and HX360 Provide Industry View of Health Technology Innovation, Startup and Investment Activity; Advancing the New Model of Care.

    Science.gov (United States)

    Burde, Howard A; Scarfo, Richard

    2015-01-01

    Presented by HIMSS, the Venture+ Forum program and pitch competition provides a 360-degree view on health technology investing and today's top innovative companies. It features exciting 3-minute pitch presentations from emerging and growth-stage companies, investor panels and a networking reception. Recent Venture+ Forum winners include TowerView Health, Prima-Temp, ActuaiMeds and M3 Clinician. As an industry catalyst for health IT innovation and business-building resource for growing companies and emerging technology solutions, HIMSS has co-developed with A VIA, a new initiative that addresses how emerging technologies, health system business model changes and investment will transform the delivery of care. HX360 engages senior healthcare leaders, innovation teams, investors and entrepreneurs around the vision of transforming healthcare delivery by leveraging technology, process and structure.

  14. Feasibility Study of Utilization of Action Camera, GoPro Hero 4, Google Glass, and Panasonic HX-A100 in Spine Surgery.

    Science.gov (United States)

    Lee, Chang Kyu; Kim, Youngjun; Lee, Nam; Kim, Byeongwoo; Kim, Doyoung; Yi, Seong

    2017-02-15

    Study for feasibility of commercially available action cameras in recording video of spine. Recent innovation of the wearable action camera with high-definition video recording enables surgeons to use camera in the operation at ease without high costs. The purpose of this study is to compare the feasibility, safety, and efficacy of commercially available action cameras in recording video of spine surgery. There are early reports of medical professionals using Google Glass throughout the hospital, Panasonic HX-A100 action camera, and GoPro. This study is the first report for spine surgery. Three commercially available cameras were tested: GoPro Hero 4 Silver, Google Glass, and Panasonic HX-A100 action camera. Typical spine surgery was selected for video recording; posterior lumbar laminectomy and fusion. Three cameras were used by one surgeon and video was recorded throughout the operation. The comparison was made on the perspective of human factor, specification, and video quality. The most convenient and lightweight device for wearing and holding throughout the long operation time was Google Glass. The image quality; all devices except Google Glass supported HD format and GoPro has unique 2.7K or 4K resolution. Quality of video resolution was best in GoPro. Field of view, GoPro can adjust point of interest, field of view according to the surgery. Narrow FOV option was the best for recording in GoPro to share the video clip. Google Glass has potentials by using application programs. Connectivity such as Wi-Fi and Bluetooth enables video streaming for audience, but only Google Glass has two-way communication feature in device. Action cameras have the potential to improve patient safety, operator comfort, and procedure efficiency in the field of spinal surgery and broadcasting a surgery with development of the device and applied program in the future. N/A.

  15. Radiotherapy plus cis-retinoic acid/interferon-α in cervical cancers: response and impact of cRA/IFN on tumor tissue oxygenation

    International Nuclear Information System (INIS)

    Haensgen, Gabriele; Koehler, Uwe; Dunst, Juergen

    1997-01-01

    Background: We have evaluated the impact of 13-cis-retinoic acid plus interferon in combination with radiotherapy on response and on tumor oxygenation in a phase II-study. Materials and methods: From June 1995 through April 1996, thirty-four patients with squamous cell carcinoma FIGO IIB (N=8) and IIIB (N=26) of the cervix who were scheduled for definitive radiotherapy with curative intent received additional treatment with 13-cis-retinoic acid (cRA, isotretinoin) plus interferon-α-2a (IFN-α-2a) as part of a phase-II-protocol at the Universities of Halle-Wittenberg (N=25), Leipzig (N=7) and Dresden (N=2). cRA/IFN-α-2a started 14 days prior to radiotherapy (1 mg per kilogramm body weight cRA orally daily plus 6x10 6 I.U. IFN-α-2a subcutaneously daily). After this induction period, standard radiotherapy was administered (external irradiation with 45Gy in 25 fractions of 1.8Gy plus HDR-brachytherapy with 5x7Gy). During radiotherapy, cRA/IFN-α-2a-treatment was continued with 50% of the daily doses. In 14 patients treated at the University of Halle-Wittenberg, tumor tissue pO 2 -measurements were performed prior to radiotherapy, at 20Gy, and at the end of radiotherapy with an Eppendorf-pO 2 -histograph. The oxygenation data of these patients were compared to 14 patients who had also pO 2 -measurements but had refused to participate in the cRA/IFN-α-2a-protocol and received radiotherapy alone during the same period. Results: All 8 patients with FIGO IIB tumors had a complete clinical remission 3 months after radiotherapy. In FIGO IIIB cancers, (19(26)) (73%) achieved a cCR, 5 (19%) had a PR and 2 died within six months after treatment due to intercurrent disease. The toxicity of cRA/IFN-α-2a was only mild to moderate (fever 43%, skin toxicity 36%, diarrhea 20%, elevation of liver enzymes 20%) with no grade (3(4)) toxicity. The 14 patients with cRA/IFN-α-2a-pretreatment prior to radiotherapy had significant higher median pO 2 -values in their tumors at the

  16. The contribution of gastric digestion and ingestion of amino acids on the postprandial rise in oxygen consumption, heart rate and growth of visceral organs in pythons.

    Science.gov (United States)

    Enok, Sanne; Simonsen, Lasse Stærdal; Wang, Tobias

    2013-05-01

    To investigate the contribution of gastric and intestinal processes to the postprandial rise in metabolism in pythons (Python regius), we measured oxygen consumption after ligation of the pyloric sphincter to prevent the chyme from entering the intestine. Pyloric blockade reduced the postprandial rise in metabolism during the first 18h after ingestion of mice amounting to 18% of the snake's body mass by 60%. In another series of the experiments, we showed that infusion of amino acids directly into the stomach or the intestine elicited similar metabolic responses. This indicates a lower gastric contribution to the SDA response than previously reported. To include an assessment of the gastric contribution to the postprandial cardiovascular response, we also measured blood and heart rate. While heart rate increased during digestion in snakes with pyloric blockade, there was no rise in the double-blocked heart rates compared to fasting controls. Thus, the non-adrenergic-non-cholinergic factor that stimulates heart rate during digestion does not stem from the stomach. Finally, there was no growth of the visceral organs in response to digestion when chyme was prevented from reaching the intestine. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. On methods for the detection of reactive oxygen species generation by human spermatozoa: analysis of the cellular responses to catechol oestrogen, lipid aldehyde, menadione and arachidonic acid.

    Science.gov (United States)

    Aitken, R J; Smith, T B; Lord, T; Kuczera, L; Koppers, A J; Naumovski, N; Connaughton, H; Baker, M A; De Iuliis, G N

    2013-03-01

    Oxidative stress is known to have a major impact on human sperm function and, as a result, there is a need to develop sensitive methods for measuring reactive oxygen species (ROS) generation by these cells. A variety of techniques have been developed for this purpose including chemiluminescence (luminol and lucigenin), flow cytometry (MitoSOX Red, dihydroethidium, 4,5-diaminofluorescein diacetate and 2',7'-dichlorodihydrofluorescein diacetate) and spectrophotometry (nitroblue tetrazolium). The relative sensitivity of these assays and their comparative ability to detect ROS generated in different subcellular compartments of human spermatozoa, have not previously been investigated. To address this issue, we have compared the performance of these assays when ROS generation was triggered with a variety of reagents including 2-hydroxyestradiol, menadione, 4-hydroxynonenal and arachidonic acid. The results revealed that menadione predominantly induced release of ROS into the extracellular space where these metabolites could be readily detected by luminol-peroxidase and, to a lesser extent, 2',7'-dichlorodihydrofluorescein. However, such sensitivity to extracellular ROS meant that these assays were particularly vulnerable to interference by leucocytes. The remaining reagents predominantly elicited ROS generation by the sperm mitochondria and could be optimally detected by MitoSOX Red and DHE. Examination of spontaneous ROS generation by defective human spermatozoa revealed that MitoSOX Red was the most effective indicator of oxidative stress, thereby emphasizing the general importance of mitochondrial dysregulation in the aetiology of defective sperm function. © 2013 American Society of Andrology and European Academy of Andrology.

  18. Retinoic acid-induced differentiation increases the rate of oxygen consumption and enhances the spare respiratory capacity of mitochondria in SH-SY5Y cells.

    Science.gov (United States)

    Xun, Zhiyin; Lee, Do-Yup; Lim, James; Canaria, Christie A; Barnebey, Adam; Yanonne, Steven M; McMurray, Cynthia T

    2012-04-01

    Retinoic acid (RA) is used in differentiation therapy to treat a variety of cancers including neuroblastoma. The contributing factors for its therapeutic efficacy are poorly understood. However, mitochondria (MT) have been implicated as key effectors in RA-mediated differentiation process. Here we utilize the SH-SY5Y human neuroblastoma cell line as a model to examine how RA influences MT during the differentiation process. We find that RA confers an approximately sixfold increase in the oxygen consumption rate while the rate of glycolysis modestly increases. RA treatment does not increase the number of MT or cause measurable changes in the composition of the electron transport chain. Rather, RA treatment significantly increases the mitochondrial spare respiratory capacity. We propose a competition model for the therapeutic effects of RA. Specifically, the high metabolic rate in differentiated cells limits the availability of metabolic nutrients for use by the undifferentiated cells and suppresses their growth. Thus, RA treatment provides a selective advantage for the differentiated state. Published by Elsevier Ireland Ltd.

  19. Porous carbon supported Fe-N-C composite as an efficient electrocatalyst for oxygen reduction reaction in alkaline and acidic media

    Science.gov (United States)

    Liu, Baichen; Huang, Binbin; Lin, Cheng; Ye, Jianshan; Ouyang, Liuzhang

    2017-07-01

    In recent years, non-precious metal electrocatalysts for oxygen reduction reaction (ORR) have attracted tremendous attention due to their high catalytic activity, long-term stability and excellent methanol tolerance. Herein, the porous carbon supported Fe-N-C catalysts for ORR were synthesized by direct pyrolysis of ferric chloride, 6-Chloropyridazin-3-amine and carbon black. Variation of pyrolysis temperature during the synthesis process leads to the difference in ORR catalytic activity. High pyrolysis temperature is beneficial to the formation of the "N-Fe" active sites and high electrical conductivity, but the excessive temperature will cause the decomposition of nitrogen-containing active sites, which are revealed by Raman, TGA and XPS. A series of synthesis and characterization experiments with/without nitrogen or iron in carbon black indicate that the coordination of iron and nitrogen plays a crucial role in achieving excellent ORR performances. Electrochemical test results show that the catalyst pyrolyzed at 800 °C (Fe-N-C-800) exhibits excellent ORR catalytic activity, better methanol tolerance and higher stability compared with commercial Pt/C catalyst in both alkaline and acidic conditions.

  20. ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice.

    Science.gov (United States)

    Xu, Lei; Zhao, Hongyu; Ruan, Wenyuan; Deng, Minjuan; Wang, Fang; Peng, Jinrong; Luo, Jie; Chen, Zhixiang; Yi, Keke

    2017-03-01

    Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice ( Oryza sativa ) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 ( AIM1 ), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1 , likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1 These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes. © 2017 American Society of Plant Biologists. All rights reserved.

  1. Hanford's 100-HX Pump and Treat Project - a Successful Blend of Science, Technology, Construction, and Project Management - 12412

    Energy Technology Data Exchange (ETDEWEB)

    Albin, Kenneth A.; Bachand, Marie T.; Biebesheimer, Fred H.; Neshem, Dean O.; Smoot, John L. [CH2M HILL Plateau Remediation Company, Richland, Washington 99352 (United States)

    2012-07-01

    CH2M Hill Plateau Remediation Company (CHPRC) recently completed construction and start-up of the $25 million 100-HX Groundwater Pump and Treat Project for the Department of Energy (DOE) at its Hanford Reservation site in Washington State. From the onset, the 100-HX Project Leadership Team was able to successfully blend the science and technology of a state-of-the-art groundwater pump and treat system with the principles, tools, and techniques of traditional industrial-type construction and project management. From the 1940's through most of the 1980's, the United States used the Hanford Site to produce nuclear material for national defense at reactor sites located along the Columbia River. While the reactors were operational, large volumes of river water were treated with sodium dichromate (to inhibit corrosion of the reactor piping) and used as a coolant for the reactors. After a single pass through the reactor and before being discharged back to the river, the coolant water was sent to unlined retention basins to cool and to allow the short-lived radioactive contaminants to decay. As a result of these operations, hexavalent chromium was introduced to the vadose zone, and ultimately into the groundwater aquifer and the adjacent Columbia River. In addition, numerous leaks and spills of concentrated sodium dichromate stock solution over the lifetime of reactor operations led to higher concentrations of chromate in the vadose zone and groundwater in localized areas. As a result, the 100 Area was included in the National Priorities List sites under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA). The mission of the 100-HX Project is to significantly reduce the concentration of hexavalent chromium in the groundwater by treating up to 3.8 billion gallons (14,300 mega-liters) of contaminated water over its first nine years of operations. In order to accomplish this mission, groundwater scientists and geologists using

  2. Oxygen Therapy

    Science.gov (United States)

    ... their breathing to dangerously low levels. Will I need oxygen when I sleep? Usually if you use supplemental oxygen during the ... your health care provider tells you you only need to use oxygen for exercise or sleep. Even if you feel “fine” off of your ...

  3. Synthesis, Anti-HCV, Antioxidant and Reduction of Intracellular Reactive Oxygen Species Generation of a Chlorogenic Acid Analogue with an Amide Bond Replacing the Ester Bond.

    Science.gov (United States)

    Wang, Ling-Na; Wang, Wei; Hattori, Masao; Daneshtalab, Mohsen; Ma, Chao-Mei

    2016-06-08

    Chlorogenic acid is a well known natural product with important bioactivities. It contains an ester bond formed between the COOH of caffeic acid and the 3-OH of quinic acid. We synthesized a chlorogenic acid analogue, 3α-caffeoylquinic acid amide, using caffeic and quinic acids as starting materials. The caffeoylquinc acid amide was found to be much more stable than chlorogenic acid and showed anti-Hepatitis C virus (anti-HCV) activity with a potency similar to chlorogenic acid. The caffeoylquinc acid amide potently protected HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide.

  4. Impact of the oxygen defects and the hydrogen concentration on the surface of tetragonal and monoclinic ZrO2 on the reduction rates of stearic acid on Ni/ZrO2.

    Science.gov (United States)

    Foraita, Sebastian; Fulton, John L; Chase, Zizwe A; Vjunov, Aleksei; Xu, Pinghong; Baráth, Eszter; Camaioni, Donald M; Zhao, Chen; Lercher, Johannes A

    2015-02-02

    The role of the specific physicochemical properties of ZrO2 phases on Ni/ZrO2 has been explored with respect to the reduction of stearic acid. Conversion on pure m-ZrO2 is 1.3 times more active than on t-ZrO2 , whereas Ni/m-ZrO2 is three times more active than Ni/t-ZrO2 . Although the hydrodeoxygenation of stearic acid can be catalyzed solely by Ni, the synergistic interaction between Ni and the ZrO2 support causes the variations in the reaction rates. Adsorption of the carboxylic acid group on an oxygen vacancy of ZrO2 and the abstraction of the α-hydrogen atom with the elimination of the oxygen atom to produce a ketene is the key to enhance the overall rate. The hydrogenated intermediate 1-octadecanol is in turn decarbonylated to heptadecane with identical rates on all catalysts. Decarbonylation of 1-octadecanol is concluded to be limited by the competitive adsorption of reactants and intermediate. The substantially higher adsorption of propionic acid demonstrated by IR spectroscopy and the higher reactivity to O2 exchange reactions with the more active catalyst indicate that the higher concentration of active oxygen defects on m-ZrO2 compared to t-ZrO2 causes the higher activity of Ni/m-ZrO2 . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Oxygen Therapy

    Directory of Open Access Journals (Sweden)

    Bonnie Solmes

    2000-01-01

    Full Text Available LTOT is prescribed for people with chronic lung disease in whom there is a decrease in the ability of the lungs to supply enough oxygen to the body. The heart is obliged to pump faster to meet the body's oxygen requirements. This may place undue stress on the heart, resulting in palpitations, dizziness and fatigue. A low oxygen level in arterial blood is also harmful to the heart, the brain and the pulmonary blood vessels. Oxygen therapy is used to break this cycle. A person with low blood oxygen will often be able to accomplish more with less fatigue with the help of supplemental oxygen therapy. Shortness of breath is a mechanical problem resulting from the effects of chronic obstructive pulmonary disease. Oxygen therapy may or may not reduce shortness of breath, but it will help the lungs and heart to function with less stress.

  6. The effect of electrochemical CO annealing on platinum–cobalt nanoparticles in acid medium and their correlation to the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Ciapina, Eduardo G.; Ticianelli, Edson A.

    2011-01-01

    Highlights: ► Modification of the surface properties of Pt 3 Co/C electrocatalyst. ► Electrochemical CO annealing in acid media generated a Pt-rich surface. ► In situ XAS revealed modifications in the Pt 5d band occupancy after CO annealing. ► The CO-annealed sample exhibited stronger interaction with oxygenated species. ► Increased Pt utilization in the CO-annealed Pt 3 Co/C electrocatalyst. - Abstract: This paper describes a modification of the surface properties of a carbon-supported Pt 3 Co catalyst resulting from an electrochemical cycling treatment in a 0.1 M HClO 4 and in a CO-saturated 0.1 M HClO 4 solution (electrochemical CO-annealing). The procedure generated a Pt-rich surface with electrochemical properties different from that presented by the as-received (untreated) sample. This was evidenced by a shift in the CO stripping peak to more positive potentials in the CO stripping voltammetry, and by an increased charge of H upd region and a modification of the oxide reduction peak observed in the base cyclic voltammogram. In situ X-ray absorption spectroscopy experiments conducted in the dispersive mode revealed differences in the electronic 5d band occupancy after the CO annealing, whereas the behavior of the intensity of the white-line as function of the potential for this material approached that found for pure Pt/C nanoparticles, in contrast to the small potential dependence profile exhibited by the as-received Pt 3 Co nanoparticles. Mass activities towards the oxygen reduction reaction measured by rotating disk experiments carried out at 1600 rpm in a O 2 -saturated solution at 25 °C increased from 0.10 A/mg of Pt to 0.19 A/mg of Pt, evidencing the higher Pt utilization in the CO-annealed Pt 3 Co/C electrocatalyst. The origin of the different electrochemical behavior is discussed.

  7. Production of hydroxyl radicals from abiotic oxidation of pyrite by oxygen under circumneutral conditions in the presence of low-molecular-weight organic acids

    Science.gov (United States)

    Zhang, Peng; Yuan, Songhu

    2017-12-01

    Besides acidic environments, pyrite oxidation also occurs in circumneutral environments, such as well-buffered marine and estuarine sediments and salt marshes where low-molecular-weight organic acids (LMWOAs) (e.g., citrate and oxalate) prevail. However, the production of hydroxyl radicals (radOH) from pyrite oxidation by oxygen (O2) in these circumneutral environments is poorly understood. In this study, radOH production was measured during the abiotic oxidation of pyrite by O2 under circumneutral conditions. A pyrite suspension (50 g/L pyrite) that was buffered at pH 6-8 was exposed to air for oxygenation in the dark. Benzoate (20 mM) was added into the suspension to trap radOH. At pH 7, the cumulative radOH reached 7.5 μM within 420 min in the absence of LMWOAs, whereas it increased to 14.8, 12 and 11.2 μM in the presence of 1 mM ethylenediaminotetraacetate, citrate and oxalate, respectively. When the citrate concentration, which serves as a LMWOAs model, was increased from 0.5 to 5 mM, the cumulative radOH increased from 10.3 to 27.3 μM within 420 min at pH 7. With the decrease in pH from 8 to 6, the cumulative radOH increased from 2.1 to 23.3 μM in the absence of LMWOAs, but it increased from 8.8 to 134.9 μM in the presence of 3 mM citrate. The presence of LMWOAs enhanced the radOH production from pyrite oxidation under circumneutral conditions. In the absence of LMOWAs, radOH is produced mostly from the oxidation of adsorbed Fe(II) by O2. In the presence of citrate, radOH production is attributed mainly to the oxidation of Fe(II)-citrate- by O2 and secondarily to the oxidation of H2O on surface-sulfur defects. The acceleration of pyrite oxidation by Fe(III)-citrate increases radOH production. Fe(II)-citrate- is generated mainly from the complexation of adsorbed Fe(II) by citrate and the reduction of Fe(III)-citrate, and the generation is suppressed by the oxidation of adsorbed Fe(II). Fe(III)-citrate is generated predominantly from Fe

  8. Chemical properties and reactive oxygen and nitrogen species quenching activities of dry sugar-amino acid maillard reaction mixtures exposed to baking temperatures.

    Science.gov (United States)

    Chen, Xiu-Min; Liang, Ningjian; Kitts, David D

    2015-10-01

    Maillard reaction products (MRPs) derived from 10 different, dry sugar-amino acid reaction model systems were examined for changes in color index (E), sugar loss, and formation of α-dicarbonyl compounds; the changes were correlated with relative activities to quench both reactive oxygen (ROS) and reactive nitrogen (RNS) species. Reducing sugars, xylose, ribose, fructose, glucose, and non-reducing sucrose were reacted with glycine (Xyl-Gly, Rib-Gly, Fru-Gly, Glc-Gly, and Suc-Gly), or lysine (Xyl-Lys, Rib-Lys, Fru-Lys, Glc-Lys, and Suc-Lys), respectively, at temperatures of 150°C and 180°C for time periods ranging from 5 to 60min. ROS quenching capacity was negatively correlated with color index (E) (r=-0.604, P<0.001), and positively correlated with sugar loss (r=0.567, P<0.001). MRPs also exhibited activity to quench RNS as assessed by nitric oxide (NO) inhibition in differentiated Caco-2 cells that were induced with interferon-γ (IFN-γ) and phorbol ester (PMA) cocktail. We also showed a correlation between RNS and color index, sugar loss, and ROS quenching activities for MR mixtures that were heated for a short time (e.g. 10min) at 150°C. MRP quenching of ROS was largely influenced by sugar type, whereas, RNS quenching was dependent more so on the interaction between reactants and reaction conditions used to generate MRPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Meclofenamic Acid Reduces Reactive Oxygen Species Accumulation and Apoptosis, Inhibits Excessive Autophagy, and Protects Hair Cell-Like HEI-OC1 Cells From Cisplatin-Induced Damage

    Directory of Open Access Journals (Sweden)

    He Li

    2018-05-01

    Full Text Available Hearing loss is the most common sensory disorder in humans, and a significant number of cases is due to the ototoxicity of drugs such as cisplatin that cause hair cell (HC damage. Thus, there is great interest in finding agents and mechanisms that protect HCs from ototoxic drug damage. It has been proposed that epigenetic modifications are related to inner ear development and play a significant role in HC protection and HC regeneration; however, whether the m6A modification and the ethyl ester form of meclofenamic acid (MA2, which is a highly selective inhibitor of FTO (fatmass and obesity-associated enzyme, one of the primary human demethylases, can affect the process of HC apoptosis induced by ototoxic drugs remains largely unexplored. In this study, we took advantage of the HEI-OC1 cell line, which is a cochlear HC-like cell line, to investigate the role of epigenetic modifications in cisplatin-induced cell death. We found that cisplatin injury caused reactive oxygen species accumulation and increased apoptosis in HEI-OC1 cells, and the cisplatin injury was reduced by co-treatment with MA2 compared to the cisplatin-only group. Further investigation showed that MA2 attenuated cisplatin-induced oxidative stress and apoptosis in HEI-OC1 cells. We next found that the cisplatin-induced upregulation of autophagy was significantly inhibited after MA2 treatment, indicating that MA2 inhibited the cisplatin-induced excessive autophagy. Our findings show that MA2 has a protective effect and improves the viability of HEI-OC1 cells after cisplatin treatment, and they provide new insights into potential therapeutic targets for the amelioration of cisplatin-induced ototoxicity.

  10. 'Pre-prosthetic use of poly(lactic-co-glycolic acid) membranes treated with oxygen plasma and TiO2 nanocomposite particles for guided bone regeneration processes'.

    Science.gov (United States)

    Castillo-Dalí, Gabriel; Castillo-Oyagüe, Raquel; Terriza, Antonia; Saffar, Jean-Louis; Batista-Cruzado, Antonio; Lynch, Christopher D; Sloan, Alastair J; Gutiérrez-Pérez, José-Luis; Torres-Lagares, Daniel

    2016-04-01

    Guided bone regeneration (GBR) processes are frequently necessary to achieve appropriate substrates before the restoration of edentulous areas. This study aimed to evaluate the bone regeneration reliability of a new poly-lactic-co-glycolic acid (PLGA) membrane after treatment with oxygen plasma (PO2) and titanium dioxide (TiO2) composite nanoparticles. Circumferential bone defects (diameter: 10mm; depth: 3mm) were created on the parietal bones of eight experimentation rabbits and were randomly covered with control membranes (Group 1: PLGA) or experimental membranes (Group 2: PLGA/PO2/TiO2). The animals were euthanized two months afterwards, and a morphologic study was then performed under microscope using ROI (region of interest) colour analysis. Percentage of new bone formation, length of mineralised bone formed in the grown defects, concentration of osteoclasts, and intensity of osteosynthetic activity were assessed. Comparisons among the groups and with the original bone tissue were made using the Kruskal-Wallis test. The level of significance was set in advance at a=0.05. The experimental group recorded higher values for new bone formation, mineralised bone length, and osteoclast concentration; this group also registered the highest osteosynthetic activity. Bone layers in advanced formation stages and low proportions of immature tissue were observed in the study group. The functionalised membranes showed the best efficacy for bone regeneration. The addition of TiO2 nanoparticles onto PLGA/PO2 membranes for GBR processes may be a promising technique to restore bone dimensions and anatomic contours as a prerequisite to well-supported and natural-appearing prosthetic rehabilitations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Application of the Advanced Distillation Curve Method to the Comparison of Diesel Fuel Oxygenates: 2,5,7,10-Tetraoxaundecane (TOU), 2,4,7,9-Tetraoxadecane (TOD), and Ethanol/Fatty Acid Methyl Ester (FAME) Mixtures.

    Science.gov (United States)

    Burger, Jessica L; Lovestead, Tara M; LaFollette, Mark; Bruno, Thomas J

    2017-08-17

    Although they are amongst the most efficient engine types, compression-ignition engines have difficulties achieving acceptable particulate emission and NO x formation. Indeed, catalytic after-treatment of diesel exhaust has become common and current efforts to reformulate diesel fuels have concentrated on the incorporation of oxygenates into the fuel. One of the best ways to characterize changes to a fuel upon the addition of oxygenates is to examine the volatility of the fuel mixture. In this paper, we present the volatility, as measured by the advanced distillation curve method, of a prototype diesel fuel with novel diesel fuel oxygenates: 2,5,7,10-tetraoxaundecane (TOU), 2,4,7,9-tetraoxadecane (TOD), and ethanol/fatty acid methyl ester (FAME) mixtures. We present the results for the initial boiling behavior, the distillation curve temperatures, and track the oxygenates throughout the distillations. These diesel fuel blends have several interesting thermodynamic properties that have not been seen in our previous oxygenate studies. Ethanol reduces the temperatures observed early in the distillation (near ethanol's boiling temperature). After these early distillation points (once the ethanol has distilled out), B100 has the greatest impact on the remaining distillation curve and shifts the curve to higher temperatures than what is seen for diesel fuel/ethanol blends. In fact, for the 15% B100 mixture most of the distillation curve reaches temperatures higher than those seen diesel fuel alone. In addition, blends with TOU and TOD also exhibited uncommon characteristics. These additives are unusual because they distill over most the distillation curve (up to 70%). The effects of this can be seen both in histograms of oxygenate concentration in the distillate cuts and in the distillation curves. Our purpose for studying these oxygenate blends is consistent with our vision for replacing fit-for-purpose properties with fundamental properties to enable the development of

  12. Production, structural characterization and gel forming property of a new exopolysaccharide produced by Agrobacterium HX1126 using glycerol or d-mannitol as substrate.

    Science.gov (United States)

    Liu, Yongmei; Gu, Qiuya; Ofosu, Fred Kwame; Yu, Xiaobin

    2016-01-20

    A strain Agrobacterium HX1126 was isolated from soil sample near the canal in Wuxi. Glycerol was used as carbon source for the production of a new exopolysaccharide which was named PGHX. PGHX composed mainly of galactose, with lower amounts of arabinose and aminogalactose. It was found that this strain could use d-mannitol as carbon source to produce PGHX too. A method for the preparation of crude PGHX was proposed and the crude PGHX can be formed in a gel formation when 30 g/L was put into the boiling water for 10 min, with an achieved gel strength of 957 g/cm(2). The concentration of proteins in the crude product was considered to be an important parameter which directly influence the gel forming property. The highest production of PGHX (24.9 g/L) was obtained under the nitrogen depletion condition. The structure of the product was confirmed by NMR and FTIR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A 2-week pretreatment with 13-cis-retinoic acid + interferon-α-2a prior to definitive radiation improves tumor tissue oxygenation in cervical cancers

    International Nuclear Information System (INIS)

    Dunst, J.; Haensgen, G.; Becker, A.; Krause, U.; Fuechsel, G.; Koehler, U.

    1998-01-01

    Background: We have evaluated the tumor tissue pO 2 in cervical cancers in patients treated with 13-cis-retinoic acid and interferon-α-2a prior to and during radiotherapy. Patients and methods: From June 1995 through April 1997, 22 patients with squamous cell carcinoma FIGO IIB/III of the cervix who were scheduled for definitive radiotherapy with curative intent received additional treatment with 13-cis-retinoic acid (cRA, isotretinoin) plus interferon-α-2a (IFN-α-2a) as part of a phase-II protocol. cRA/IFN-α-2a started 14 days prior to radiotherapy (1 mg per kilogramme body weight cRA orally daily plus 6x10 6 IU IFN-α-2a subcutaneously daily). After this indicution period, standard radiotherapy was administered (external irradiation with 50.4 Gy in 28 fractions of 1.8 Gy plus HDR-brachytherapy). During radiotherapy, cRA/IFN-α-2a-treatment was continued with 50% of the daily doses. Tumor tissue pO 2 -measurements were performed prior to and after the cRA/IFN-induction period as well as at 20 Gy and at the end of radiotherapy with an Eppendorf-pO 2 -histograph. Results: In 11 out of the 22 patients, pO 2 -measurements were performed prior to the cRA/IFN-induction therapy. The median pO 2 of these untreated tumors was 17.7±16.3 mm Hg. The relative frequency of hypoxic readings with pO 2 -values below 5 mm Hg ranged from 0% to 60.6% (mean 24.3±21.0%). After the 2-week induction period with cRA/IFN, the median pO 2 had increased from 17.7pm16.3 mm Hg to 27.6±19.1 mm Hg (not significant). In all 5 patients with hypoxic tumors prior to cRA/IFN (median pO 2 of 10 mm Hg or less), the median pO 2 was above 20 mm Hg after the 2-week cRA/IFN-induction. In this subgroup of hypoxic tumors, the median pO 2 increased from 6.3±2.7 mm Hg to 27.0±5.6 mm Hg (p=0.004, t-test for paired samples). The frequency of hypoxic readings (pO 2 -values 2 below 10 mm Hg prior to treatment), 4/5 achieved complete remission. Conclusions: Pretreatment with cRA/IFN improves oxygenation of

  14. FY17-PDH-EVTest04 GodInput Impact of the Oxygen Defects1 FY17-PDH-EVTest04 Reduction Rates of Stearic AcidFY17-PDH-T04.

    Science.gov (United States)

    Foraita, Sebastian; Fulton, John L; Chase, Zizwe A; Vjunov, Aleksei; Xu, Pinghong; Baráth, Eszter; Camaioni, Donald M; Zhao, Chen; Lercher, Johannes A

    2016-08-10

    Test New Article1 GodEarlyview.Publish-on-load testing.The role of the specific physicochemical properties of ZrO 2 phases on Ni/ZrO 2 has been explored with respect to the reduction of stearic acid. Conversion on pure m?ZrO 2 is 1.3 times more active than on t?ZrO 2 , whereas Ni/m?ZrO 2 is three times more active than Ni/t?ZrO 2 . Although the hydrodeoxygenation of stearic acid can be catalyzed solely by Ni, the synergistic interaction between Ni and the ZrO 2 support causes the variations in the reaction rates. Adsorption of the carboxylic acid group on an oxygen vacancy of ZrO 2 and the abstraction of the ??hydrogen atom with the elimination of the oxygen atom to produce a ketene is the key to enhance the overall rate. The hydrogenated intermediate 1?octadecanol is in turn decarbonylated to heptadecane with identical rates on all catalysts. Decarbonylation of 1?octadecanol is concluded to be limited by the competitive adsorption of reactants and intermediate. The substantially higher adsorption of propionic acid demonstrated by IR spectroscopy and the higher reactivity to O 2 exchange reactions with the more active catalyst indicate that the higher concentration of active oxygen defects on m?ZrO 2 compared to t?ZrO 2 causes the higher activity of Ni/m?ZrO 2 . © 2015 WILEY?VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The influence of ascorbic acid on the oxygen consumption and the heat production by the cells of wheat seedling roots with their mitochondrial electron transport chain inhibited at complexes I and III

    International Nuclear Information System (INIS)

    Gordon, L.K.; Rakhmatullina, D.F.; Ogorodnikova, T.I.; Alyabyev, A.J.; Minibayeva, F.V.; Loseva, N.L.; Mityashina, S.Y.

    2007-01-01

    The influence of exogenous ascorbic acid (AsA) on oxidative phosphorylation was studied using wheat seedling roots. Treatment of them with AsA stimulated the rates of oxygen consumption and the heat production and caused a decrease of the respiratory coefficient. The increase in respiration was prevented by inhibitors of ascorbate oxidase, diethyldithiocarbamate (DEDTC), and of cytochrome oxidase, cyanide (KCN). Exogenous AsA sharply stimulated the rate of oxygen consumption of roots when complexes I and III of the mitochondrial electron transport chain were inhibited by rotenone and antimycin A, respectively, while the rates of heat production did not change significantly. It is concluded that AsA is a potent energy substrate, which can be used in conditions of failing I and III complexes in the mitochondrial electron transport chain

  16. The hyperbolic chemical bond: Fourier analysis of ground and first excited state potential energy curves of HX (X = H-Ne).

    Science.gov (United States)

    Harrison, John A

    2008-09-04

    RHF/aug-cc-pVnZ, UHF/aug-cc-pVnZ, and QCISD/aug-cc-pVnZ, n = 2-5, potential energy curves of H2 X (1) summation g (+) are analyzed by Fourier transform methods after transformation to a new coordinate system via an inverse hyperbolic cosine coordinate mapping. The Fourier frequency domain spectra are interpreted in terms of underlying mathematical behavior giving rise to distinctive features. There is a clear difference between the underlying mathematical nature of the potential energy curves calculated at the HF and full-CI levels. The method is particularly suited to the analysis of potential energy curves obtained at the highest levels of theory because the Fourier spectra are observed to be of a compact nature, with the envelope of the Fourier frequency coefficients decaying in magnitude in an exponential manner. The finite number of Fourier coefficients required to describe the CI curves allows for an optimum sampling strategy to be developed, corresponding to that required for exponential and geometric convergence. The underlying random numerical noise due to the finite convergence criterion is also a clearly identifiable feature in the Fourier spectrum. The methodology is applied to the analysis of MRCI potential energy curves for the ground and first excited states of HX (X = H-Ne). All potential energy curves exhibit structure in the Fourier spectrum consistent with the existence of resonances. The compact nature of the Fourier spectra following the inverse hyperbolic cosine coordinate mapping is highly suggestive that there is some advantage in viewing the chemical bond as having an underlying hyperbolic nature.

  17. Fate of pollutants post treatment of acid mine drainage with basic oxygen furnace slag: Validation of experimental results with a geochemical model

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2017-01-01

    Full Text Available (PRK) for the remediation of acid mine drainage. J. Hazard. Mater. 301, 332–341. Madzivire, G., Gitari, W.M., Vadapalli, V.R.K., Ojumu, T.V., Petrik, L.F., 2011. Fate of sulphate removed during the treatment of circumneutral mine water and acid mine...

  18. Oxygen safety

    Science.gov (United States)

    ... sure you have working smoke detectors and a working fire extinguisher in your home. If you move around the house with your oxygen, you may need more than one fire extinguisher in different locations. Smoking can be very dangerous. No one should smoke ...

  19. Oxygen therapy - infants

    Science.gov (United States)

    ... breathe increased amounts of oxygen to get normal levels of oxygen in their blood. Oxygen therapy provides babies with the extra oxygen. Information Oxygen is a gas that the cells in your body need to work properly. The ...

  20. Gallic Acid Induces a Reactive Oxygen Species-Provoked c-Jun NH2-Terminal Kinase-Dependent Apoptosis in Lung Fibroblasts

    Science.gov (United States)

    Chen, Chiu-Yuan; Chen, Kun-Chieh; Yang, Tsung-Ying; Liu, Hsiang-Chun; Hsu, Shih-Lan

    2013-01-01

    Idiopathic pulmonary fibrosis is a chronic lung disorder characterized by fibroblasts proliferation and extracellular matrix accumulation. Induction of fibroblast apoptosis therefore plays a crucial role in the resolution of this disease. Gallic acid (3,4,5-trihydroxybenzoic acid), a common botanic phenolic compound, has been reported to induce apoptosis in tumor cell lines and renal fibroblasts. The present study was undertaken to examine the role of mitogen-activated protein kinases (MAPKs) in lung fibroblasts apoptosis induced by gallic acid. We found that treatment with gallic acid resulted in activation of c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB, Akt), but not p38MAPK, in mouse lung fibroblasts. Inhibition of JNK using pharmacologic inhibitor (SP600125) and genetic knockdown (JNK specific siRNA) significantly inhibited p53 accumulation, reduced PUMA and Fas expression, and abolished apoptosis induced by gallic acid. Moreover, treatment with antioxidants (vitamin C, N-acetyl cysteine, and catalase) effectively diminished gallic acid-induced hydrogen peroxide production, JNK and p53 activation, and cell death. These observations imply that gallic acid-mediated hydrogen peroxide formation acts as an initiator of JNK signaling pathways, leading to p53 activation and apoptosis in mouse lung fibroblasts. PMID:23533505

  1. Biodegradation of poly(lactic acid, poly(hydroxybutyrate-co-hydroxyvalerate, poly(butylene succinate and poly(butylene adipate-co-terephthalate under anaerobic and oxygen limited thermophilic conditions

    Directory of Open Access Journals (Sweden)

    Jutakan Boonmee

    2016-01-01

    Full Text Available In order to study the biodegradation behavior of biodegradable plastics in landfill conditions, four types of biodegradable plastics including poly(lactic acid (PLA, poly(hydroxybutyrate-co-hydroxyvalerate (PHBV, poly(butylene succinate (PBS, and poly(butylene adipate-co-terephthalate (PBAT were tested by burying in sludge mixed soil medium under anaerobic and oxygen limited conditions. The experiments were operated at 52 ± 2ºC in dark conditions according to ISO15985. The degree of biodegradation after 75 days was investigated by weight loss determination, visual examination, and surface appearance by scanning electronic microscopy (SEM. Under both anaerobic and oxygen limited conditions, the complete degradation (100% weight loss was found only in PHBV after 75 days. The plastic degradations were ranked in the order of PHBV> PLA> PBS> PBAT. The percentage of weight losses were significantly different at p ≤ 0.05. However, for all studied plastics, the degradation under anaerobic and oxygen limited conditions did not significantly different at 95% confidence.

  2. Carbon Dioxide Exchange and Acidity Levels in Detached Pineapple, Ananas comosus (L.), Merr., Leaves during the Day at Various Temperatures, Oxygen and Carbon Dioxide Concentrations 1

    Science.gov (United States)

    Moradshahi, Ali; Vines, H. Max; Black, Clanton C.

    1977-01-01

    The effects of temperature, O2, and CO2 on titratable acid content and on CO2 exchange were measured in detached pineapple (Ananas comosus) leaves during the daily 15-hour light period. Comparative measurements were made in air and in CO2-free air. Increasing the leaf temperature from 20 to 35 C decreased the total CO2 uptake in air and slightly increased the total CO2 released into CO2-free air. Between 25 and 35 C, the activation energy for daily acid loss was near 12 kcal mol−1, but at lower temperatures the activation energy was much greater. Increasing O2 or decreasing the CO2 concentration decreased the total CO2 fixation in air, whereas the total CO2 released in CO2-free air was increased. The total acid content remained constant at 20 C, but it decreased progressively with increasing temperature both in air and in CO2-free air. The total acid content at 30 C remained constant in 2% O2 irrespective of CO2 concentration. The total acid content decreased in 21 and 50% O2 as the CO2 increased from 0 to 300, and 540 μl/l of CO2. The data indicate that photorespiration is present in pineapple. The lack of acid loss in 2% O2 suggests that light deacidification is dependent upon respiration and that higher O2 concentrations are required to saturate deacidification. PMID:16659832

  3. Carbon Dioxide Exchange and Acidity Levels in Detached Pineapple, Ananas comosus (L.), Merr., Leaves during the Day at Various Temperatures, Oxygen and Carbon Dioxide Concentrations.

    Science.gov (United States)

    Moradshahi, A; Vines, H M; Black, C C

    1977-02-01

    The effects of temperature, O(2), and CO(2) on titratable acid content and on CO(2) exchange were measured in detached pineapple (Ananas comosus) leaves during the daily 15-hour light period. Comparative measurements were made in air and in CO(2)-free air. Increasing the leaf temperature from 20 to 35 C decreased the total CO(2) uptake in air and slightly increased the total CO(2) released into CO(2)-free air. Between 25 and 35 C, the activation energy for daily acid loss was near 12 kcal mol(-1), but at lower temperatures the activation energy was much greater.Increasing O(2) or decreasing the CO(2) concentration decreased the total CO(2) fixation in air, whereas the total CO(2) released in CO(2)-free air was increased. The total acid content remained constant at 20 C, but it decreased progressively with increasing temperature both in air and in CO(2)-free air. The total acid content at 30 C remained constant in 2% O(2) irrespective of CO(2) concentration. The total acid content decreased in 21 and 50% O(2) as the CO(2) increased from 0 to 300, and 540 mul/l of CO(2). The data indicate that photorespiration is present in pineapple. The lack of acid loss in 2% O(2) suggests that light deacidification is dependent upon respiration and that higher O(2) concentrations are required to saturate deacidification.

  4. Novel nanostructured oxygen sensor

    Science.gov (United States)

    Boardman, Alan James

    New government regulations and industry requirements for medical oxygen sensors require the development of alternate materials and process optimization of primary sensor components. Current oxygen sensors are not compliant with the Restriction of Hazardous Substances (RoHS) Directive. This work focused on two areas. First, was finding suitable readily available materials for the sensor anodes. Second was optimizing the processing of the sensor cathode membrane for reduced delamination. Oxygen sensors were made using tin (Sn) and bismuth (Bi) electrodes, potassium hydroxide (KOH) and acetic acid (CH3COOH) electrolytes with platinum (Pt) and gold (Au) reference electrodes. Bi electrodes were fabricated by casting and pressing processes. Electrochemical characterization of the Sn and Bi electrodes was performed by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and sensing characterization per BSEN ISO 21647:2009 at various oxygen percentages, 0%, 20.9% and 100% oxygen levels with an automated test apparatus. The Sn anode with both electrolyte solutions showed good oxygen sensing properties and performance in a sensor. This system shows promise for replacement of Pb electrodes as required by the RoHS Directive. The Bi anode with Au cathode in both KOH and CH3COOH electrolytes showed acceptable performance and oxygen sensing properties. The Bi anodes fabricated by separate manufacturing methods demonstrated effectiveness for use in medical oxygen sensors. Gold thin films were prepared by magnetron sputtering on Flouroethylene Polymer (FEP) films. The FEP substrate temperature ranged from -77°C to 50°C. X-Ray Diffraction (XRD) and 4-point resistivity characterized the effects of substrate temperature to Au thin film particle size. XRD peak broadening and resistivity measurements showed a strong correlation of particle size to FEP substrate temperature. Particle size at 50°C was 594A and the -77°C particle size was 2.4 x 103A. Substrate

  5. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture

    DEFF Research Database (Denmark)

    Larsen, Nadja; Werner, Birgit Brøsted; Vogensen, Finn Kvist

    2015-01-01

    potential to negative values. Kinetic parameters of the DL-starter culture were comparable with the best acidifying and reducing strains, indicating their additive effects. Acidification curves were mostly diauxic at all oxygen levels, displaying 2 maxima of acidification rate: before (aerobic maximum...... subspecies in DL-starter cultures. This knowledge is important for dairies to ensure optimized, fast, and controlled milk fermentations, leading to greater standardization of dairy products.......Milk acidification by DL-starter cultures [cultures containing Lactococcus lactis diacetylactis (D) and Leuconostoc (L) species] depends on the oxidation-reduction (redox) potential in milk; however, the mechanisms behind this effect are not completely clear. The objective of this study...

  6. Simple one-pot synthesis of platinum-palladium nanoflowers with enhanced catalytic activity and methanol-tolerance for oxygen reduction in acid media

    International Nuclear Information System (INIS)

    Zheng, Jie-Ning; He, Li-Li; Chen, Fang-Yi; Wang, Ai-Jun; Xue, Meng-Wei; Feng, Jiu-Ju

    2014-01-01

    Graphical abstract: PtPd nanoflowers were fabricated by one-pot solvothermal co-reduction method in oleylamine system, which exhibited the improved electrocatalytic activity and higher methanol tolerance for oxygen reduction, compared with commercial Pt and Pd black catalysts. - Highlights: • Bimetallic alloyed PtPd nanoflowers are prepared by a simple one-pot solvothermal co-reduction method. • PtPd nanoflowers display high catalytic performance for ORR dominated by a four-electron pathway. • PtPd nanoflowers show good methanol tolerance for ORR. - Abstract: In this work, bimetallic alloyed platinum-palladium (PtPd) nanoflowers are fabricated by one-pot solvothermal co-reduction of Pt (II) acetylacetonate and Pd (II) acetylacetonate in oleylamine system. The as-prepared nanostructures show the enhanced electrocatalytic activity for oxygen reduction reaction (ORR), dominated by a four-electron pathway based on the Koutecky-Levich plots, mainly owing to the inhibition of the formation of Pt–OH ad via the downshift of d-band center for Pt. Meanwhile, PtPd nanoflowers display good methanol tolerance and improved stability for ORR. The chronoamperometry test reveals that the current of PtPd nanoflowers remains 45.9% of its original value within 6000 s, much higher than those of commercial Pt (36.7%) and Pd (32.2%) black catalysts. Therefore, PtPd nanoflowers with unique interconnected structures can be used as a promising cathode catalyst in direct methanol fuel cells

  7. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    OpenAIRE

    C. von Sperber; F. Tamburini; B. Brunner; S. M. Bernasconi; E. Frossard

    2015-01-01

    Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields plant available inorganic phosphate (Pi) and less phosphorylated ...

  8. Comparison of Phenolics and Phenolic Acid Profiles in Conjunction with Oxygen Radical Absorbing Capacity (ORAC) in Berries of Vaccinium arctostaphylos L. and V. myrtillus L.

    Czech Academy of Sciences Publication Activity Database

    Colak, N.; Torun, H.; Grúz, Jiří; Strnad, Miroslav; Šubrtová, Michaela; Inceer, H.; Ayaz, F. A.

    2016-01-01

    Roč. 66, č. 2 (2016), s. 85-91 ISSN 1230-0322 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : blueberry * bilberry * phenolic acids Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.276, year: 2016 http://www.degruyter.com/view/j/pjfns.2016.66.issue-2/pjfns-2015-0053/pjfns-2015-0053.xml

  9. ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin

    Czech Academy of Sciences Publication Activity Database

    Chen, Ch.; Letnik, I.; Hacham, Y.; Dobrev, Petre; Ben-Daniel, B.H.; Vaňková, Radomíra; Amir, R.; Miller, G.

    2014-01-01

    Roč. 166, č. 1 (2014), s. 370-383 ISSN 0032-0889 R&D Projects: GA ČR GA206/09/2062 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * abscisic acid * germinating seeds Subject RIV: ED - Physiology Impact factor: 6.841, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25049361

  10. L-lysine escinat, thiotriazolin, gordox and mydocalm influence on oxygen tension in the intestinal wall and acid-base balance and limited proteolysis in intestinal venous blood in terms of intraabdominal hypertension modeling

    Directory of Open Access Journals (Sweden)

    Sapegin V.I.

    2014-11-01

    Full Text Available In acute experiments on rabbits there were studied changes in oxygen tension in the intestinal wall tissues, acid-base balance and limited proteolysis and its inhibitors in intestinal venous blood, protective action of L-lysine escinat (0,15 mg/kg / single dose, thiotriazolin (25 mg/kg / single dose, aprotinin (gordox (10,000 units/kg / single dose in sequential modeling of standard levels increasing of intra-abdominal hypertension (IAH — 50, 100, 150, 200, 250, 300, 350 m H2O, and also of tolperison (mydocalm (5 mg/kg / single dose on modeling of stable 3-hour IAH 200 m H2O. The IAH modeling was performed by means of stand of our construction. Under the influence of IAH the compensated metabolic acidosis in intestinal venous blood with a compensative hyperpnoe develops, decline of oxygen tension in tissues and activating of a limited proteolysis as well as decline of its inhibitors activity in intestinal venous blood occur. By the degree of metabolic acidosis prevention investigational preparations were distributed as follows gordox > thiotriazolin = L-lysine escinat = mydocalm, and by prevention of decline of oxygen tension in tissues — thiotriazolin > L-lysine escinat > mydocalm > gordox, it is is connected with different rate of methabolic products excretion into the blood, due to the influence on blood circulation and transcapilary exchange. By the degree of prevention of proteolytic activity and inhibitory potential changes, investigational preparations were distributed as follows: gordox > mydocalm > thiotriazolin > L-lysine escinat, this is connected with inhibition of proteolysis in gordox, and in other ones – with reduction of ischemic damage of tissues. Owing to different mechanism of action thiotriazolin, L-lysine escinat and mydocalm may be simultaneously recommended for a conservative treatment of patients with intraabdominal hypertension syndrome.

  11. Functional analysis of protein N-myristoylation: Metabolic labeling studies using three oxygen-substituted analogs of myristic acid and cultured mammalian cells provide evidence for protein-sequence-specific incorporation and analog-specific redistribution

    International Nuclear Information System (INIS)

    Johnson, D.R.; Heuckeroth, R.O.; Gordon, J.I.; Cox, A.D.; Solski, P.A.; Buss, J.E.; Devadas, B.; Adams, S.P.; Leimgruber, R.M.

    1990-01-01

    Covalent attachment of myristic acid (C14:0) to the NH 2 -terminal glycine residue of a number of cellular, viral, and oncogene-encoded proteins is essential for full expression of their biological function. Substitution of oxygen for methylene groups in this fatty acid does not produce a significant change in chain length or stereochemistry but does result in a reduction in hydrophobicity. These heteroatom-containing analogs serve as alternative substrates for mammalian myristoyl-CoA: protein N-myristoyltransferase and offer the opportunity to explore structure/function relationships of myristate in N-myristoyltransferase proteins. The authors have synthesized three tritiated analogs of myristate with oxygen substituted for methylene groups at C6, C11, and C13. Metabolic labeling studies were performed with these compounds and (i) a murine myocyte cell line (BC 3 H1), (ii) a rat fibroblast cell that produces p60 v-src (3Xsrc), or (iii) NIH 3T3 cells that have been engineered to express a fusion protein consisting of an 11-residue myristoylation signal from the Rasheed sarcoma virus (RaSV) gag protein linked to c-Ha-ras with a Cys → Ser-186 mutation. Two-dimensional gel electrophoresis of membrane and soluble fractions prepared from cell lysates revealed different patterns of incorporation of the analogs into cellular N-myristoyl proteins. The demonstration that these analogs differ in the extent to which they are incorporated and in their ability to cause redistribution of any single protein suggests that they may also have sufficient selectivity to be of potential therapeutic value

  12. Porous silicon for photosensitized formation of singlet oxygen in water and in simulated body fluid: two methods of modification by undecylenic acid.

    Science.gov (United States)

    Pastor, Ester; Balaguer, Maria; Bychto, Leszek; Salonen, Jarno; Lehto, Vesa-Pekka; Matveeva, Eugenia; Chirvony, Vladimir

    2009-06-01

    Initially H-terminated and therefore hydrophobic surface of electrochemically prepared luminescent porous silicon (PSi) powder was transformed to the hydrophilic one by means of surface modification by undecylenic acid. Physical adsorption of undecylenic acid as a non-ionic surfactant and its chemical binding through C[triple bond]C bond opening and Si-C bond formation were applied as two different methods of PSi surface modification, physical and chemical modification, respectively. Luminescence of aqueous suspensions of the both types of modified PSi powders in merely water and in simulated body fluid physiological electrolyte was measured as a function of time. Many-fold (up to 20 times) building-up of the luminescence intensity was observed for PSi aqueous suspensions during the first few days, the growth was followed by a slower (a week and more) luminescence intensity decay. As it is evidenced by FTIR spectra and SEM images, the effect of the luminescence growth and decay of PSi suspension in water can be in part attributed to the PSi surface oxidation accompanied by its dissolution and de-aggregation of large PSi particles. It is concluded also from the experiments on PSi luminescence reversible quenching by O2 that SiO-related surface states with the excitation energy about 2.2 eV are formed during water-assisted oxidation of Si nanocrystal surface. An appearance of a large number of such surface states can be also responsible for the observed PSi luminescence building-up.

  13. Biochemical oxygen demand and nutrient processing in a novel multi-stage raw municipal wastewater and acid mine drainage passive co-treatment system.

    Science.gov (United States)

    Strosnider, W H; Winfrey, B K; Nairn, R W

    2011-01-01

    A laboratory-scale, four-stage continuous flow reactor system was constructed to test the viability of high-strength acid mine drainage (AMD) and municipal wastewater (MWW) passive co-treatment. The synthetic AMD had pH 2.60 and 1860 mg/L acidity as CaCO(3) equivalent with 46, 0.25, 2, 290, 55, 1.2 and 390 mg/L of Al, As, Cd, Fe, Mn, Pb and Zn, respectively. The AMD was introduced to the system at a 1:2 ratio with raw MWW from the City of Norman, Oklahoma USA containing 265 ± 94 mg/L BOD(5), 11.5 ± 5.3 mg/L PO(4)(-3), and 20.8 ± 1.8 mg/L NH(4)(+)-N. During the 135 d experiment, PO(4)(-3) and NH(4)(+)-N were decreased to treatment is a viable ecological engineering approach for the developed and developing world that can be optimized and applied to improve water quality with minimal use of fossil fuels and refined materials. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Japan Flavour and Fragrance Materials Association's (JFFMA) safety assessment of food-flavouring substances uniquely used in Japan that belong to the class of aliphatic primary alcohols, aldehydes, carboxylic acids, acetals and esters containing additional oxygenated functional groups.

    Science.gov (United States)

    Saito, Kenji; Hasegawa-Baba, Yasuko; Sekiya, Fumiko; Hayashi, Shim-Mo; Mirokuji, Yoshiharu; Okamura, Hiroyuki; Maruyama, Shinpei; Ono, Atsushi; Nakajima, Madoka; Degawa, Masakuni; Ozawa, Shogo; Shibutani, Makoto; Maitani, Tamio

    2017-09-01

    We performed a safety evaluation using the procedure devised by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) of the following four flavouring substances that belong to the class of 'aliphatic primary alcohols, aldehydes, carboxylic acids, acetals, and esters containing additional oxygenated functional groups' and are uniquely used in Japan: butyl butyrylacetate, ethyl 2-hydroxy-4-methylpentanoate, 3-hydroxyhexanoic acid and methyl hydroxyacetate. Although no genotoxicity study data were found in the published literature, none of the four substances had chemical structural alerts predicting genotoxicity. All four substances were categorised as class I by using Cramer's classification. The estimated daily intake of each of the four substances was determined to be 0.007-2.9 μg/person/day by using the maximised survey-derived intake method and based on the annual production data in Japan in 2001, 2005 and 2010, and was determined to be 0.250-600.0 μg/person/day by using the single-portion exposure technique and based on average-use levels in standard portion sizes of flavoured foods. Both of these estimated daily intake ranges were below the threshold of toxicological concern for class I substances, which is 1800 μg/person/day. Although no information from in vitro and in vivo toxicity studies for the four substances was available, these substances were judged to raise no safety concerns at the current levels of intake.

  15. Enhanced expression of WD repeat-containing protein 35 (WDR35 stimulated by domoic acid in rat hippocampus: involvement of reactive oxygen species generation and p38 mitogen-activated protein kinase activation

    Directory of Open Access Journals (Sweden)

    Tsunekawa Koji

    2013-01-01

    Full Text Available Abstract Background Domoic acid (DA is an excitatory amino acid analogue of kainic acid (KA that acts via activation of glutamate receptors to elicit a rapid and potent excitotoxic response, resulting in neuronal cell death. Recently, DA was shown to elicit reactive oxygen species (ROS production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK in vitro. We have reported that WDR35, a WD-repeat protein, may mediate apoptosis in several animal models. In the present study, we administered DA to rats intraperitoneally, then used liquid chromatography/ion trap tandem mass spectrometry (LC-MS/MS to identify and quantify DA in the brains of the rats and performed histological examinations of the hippocampus. We further investigated the potential involvement of glutamate receptors, ROS, p38 MAPK, and WDR35 in DA-induced toxicity in vivo. Results Our results showed that intraperitoneally administered DA was present in the brain and induced neurodegenerative changes including apoptosis in the CA1 region of the hippocampus. DA also increased the expression of WDR35 mRNA and protein in a dose- and time-dependent manner in the hippocampus. In experiments using glutamate receptor antagonists, the AMPA/KA receptor antagonist NBQX significantly attenuated the DA-induced increase in WDR35 protein expression, but the NMDA receptor antagonist MK-801 did not. In addition, the radical scavenger edaravone significantly attenuated the DA-induced increase in WDR35 protein expression. Furthermore, NBQX and edaravone significantly attenuated the DA-induced increase in p38 MAPK phosphorylation. Conclusion In summary, our results indicated that DA activated AMPA/KA receptors and induced ROS production and p38 MAPK phosphorylation, resulting in an increase in the expression of WDR35 in vivo.

  16. Enhanced Reactive Oxygen Species Production, Acidic Cytosolic pH and Upregulated Na+/H+ Exchanger (NHE) in Dicer Deficient CD4+ T Cells.

    Science.gov (United States)

    Singh, Yogesh; Zhou, Yuetao; Zhang, Shaqiu; Abdelazeem, Khalid N M; Elvira, Bernat; Salker, Madhuri S; Lang, Florian

    2017-01-01

    MicroRNAs (miRNAs) negatively regulate gene expression at a post-transcriptional level. Dicer, a cytoplasmic RNase III enzyme, is required for the maturation of miRNAs from precursor miRNAs. Dicer, therefore, is a critical enzyme involved in the biogenesis and processing of miRNAs. Several biological processes are controlled by miRNAs, including the regulation of T cell development and function. T cells generate reactive oxygen species (ROS) with parallel H+ extrusion accomplished by the Na+/H+-exchanger 1 (NHE1). The present study explored whether ROS production, as well as NHE1 expression and function are sensitive to the lack of Dicer (miRNAs deficient) and could be modified by individual miRNAs. CD4+ T cells were isolated from CD4 specific Dicer deficient (DicerΔ/Δ) mice and the respective control mice (Dicerfl/fl). Transcript and protein levels were quantified with RT-PCR and Western blotting, respectively. For determination of intracellular pH (pHi) cells were incubated with the pH sensitive dye bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) and Na+/H+ exchanger (NHE) activity was calculated from re-alkalinization after an ammonium pulse. Changes in cell volume were measured using the forward scatter in flow cytometry, and ROS production utilizing 2',7' -dichlorofluorescin diacetate (DCFDA) fluorescence. Transfection of miRNA-control and mimics in T cells was performed using DharmaFECT3 reagent. ROS production, cytosolic H+ concentration, NHE1 transcript and protein levels, NHE activity, and cell volume were all significantly higher in CD4+ T cells from DicerΔ/Δ mice than in CD4+ T cells from Dicerfl/fl mice. Furthermore, individual miR-200b and miR-15b modify pHi and NHE activity in Dicerfl/fl and DicerΔ/Δ CD4+ T cells, respectively. Lack of Dicer leads to oxidative stress, cytosolic acidification, upregulated NHE1 expression and activity as well as swelling of CD4+ T cells, functions all reversed by miR-15b or miR-200b. © 2017 The Author

  17. On the Controls of Leaf-Water Oxygen Isotope Ratios in the Atmospheric Crassulacean Acid Metabolism Epiphyte Tillandsia usneoides1[W][OA

    Science.gov (United States)

    Helliker, Brent R.

    2011-01-01

    Previous theoretical work showed that leaf-water isotope ratio (δ18OL) of Crassulacean acid metabolism epiphytes was controlled by the δ18O of atmospheric water vapor (δ18Oa), and observed δ18OL could be explained by both a non-steady-state model and a “maximum enrichment” steady-state model (δ18OL-M), the latter requiring only δ18Oa and relative humidity (h) as inputs. δ18OL, therefore, should contain an extractable record of δ18Oa. Previous empirical work supported this hypothesis but raised many questions. How does changing δ18Oa and h affect δ18OL? Do hygroscopic trichomes affect observed δ18OL? Are observations of changes in water content required for the prediction of δ18OL? Does the leaf need to be at full isotopic steady state for observed δ18OL to equal δ18OL-M? These questions were examined with a climate-controlled experimental system capable of holding δ18Oa constant for several weeks. Water adsorbed to trichomes required a correction ranging from 0.5‰ to 1‰. δ18OL could be predicted using constant values of water content and even total conductance. Tissue rehydration caused a transitory change in δ18OL, but the consequent increase in total conductance led to a tighter coupling with δ18Oa. The non-steady-state leaf water models explained observed δ18OL (y = 0.93*x − 0.07; r2 = 0.98) over a wide range of δ18Oa and h. Predictions of δ18OL-M agreed with observations of δ18OL (y = 0.87*x − 0.99; r2 = 0.92), and when h > 0.9, the leaf did not need to be at isotopic steady state for the δ18OL-M model to predict δ18OL in the Crassulacean acid metabolism epiphyte Tillandsia usneoides. PMID:21300917

  18. Mitigating an increase of specific power consumption in a cryogenic air separation unit at reduced oxygen production

    Science.gov (United States)

    Singla, Rohit; Chowdhury, Kanchan

    2017-02-01

    Specific power consumed in a Linde double column air separation unit (ASU) increases as the quantity of oxygen produced at a given purity is decreased due to the changes of system requirement or market demand. As the plant operates in part load condition, the specific power consumption (SPC) increases as the total power consumption remains the same. In order to mitigate the increase of SPC at lower oxygen production, the operating pressure of high pressure column (HPC) can be lowered by extending the low pressure column (LPC) by a few trays and adding a second reboiler. As the duty of second reboiler in LPC is increased, the recovery of oxygen decreases with a lowering of the HPC pressure. This results in mitigation of the increase of SPC of the plant. A Medium pressure ASU with dual reboiler that produces pressurised gaseous and liquid products of oxygen and nitrogen is simulated in Aspen Hysys 8.6®, a commercial process simulator to determine SPC at varying oxygen production. The effects of reduced pressure of air feed into the cold box on the size of heat exchangers (HX) are analysed. Operation strategy to obtain various oxygen production rates at varying demand is also proposed.

  19. Ursolic Acid-enriched herba cynomorii extract induces mitochondrial uncoupling and glutathione redox cycling through mitochondrial reactive oxygen species generation: protection against menadione cytotoxicity in h9c2 cells.

    Science.gov (United States)

    Chen, Jihang; Wong, Hoi Shan; Ko, Kam Ming

    2014-01-27

    Herba Cynomorii (Cynomorium songaricum Rupr., Cynomoriaceae) is one of the most commonly used 'Yang-invigorating' tonic herbs in Traditional Chinese Medicine (TCM). An earlier study in our laboratory has demonstrated that HCY2, an ursolic acid-enriched fraction derived from Herba Cynomorii, increased mitochondrial ATP generation capacity (ATP-GC) and induced mitochondrial uncoupling as well as a cellular glutathione response, thereby protecting against oxidant injury in H9c2 cells. In this study, we demonstrated that pre-incubation of H9c2 cells with HCY2 increased mitochondrial reactive oxygen species (ROS) generation in these cells, which is likely an event secondary to the stimulation of the mitochondrial electron transport chain. The suppression of mitochondrial ROS by the antioxidant dimethylthiourea abrogated the HCY2-induced enhancement of mitochondrial uncoupling and glutathione reductase (GR)-mediated glutathione redox cycling, and also protected against menadione-induced cytotoxicity. Studies using specific inhibitors of uncoupling protein and GR suggested that the HCY2-induced mitochondrial uncoupling and glutathione redox cycling play a determining role in the cytoprotection against menadione-induced oxidant injury in H9c2 cells. Experimental evidence obtained thus far supports the causal role of HCY2-induced mitochondrial ROS production in eliciting mitochondrial uncoupling and glutathione antioxidant responses, which offer cytoprotection against oxidant injury in H9c2 cells.

  20. Artificial oxygen transport protein

    Science.gov (United States)

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  1. Choice of solvent extraction technique affects fatty acid composition of pistachio (Pistacia vera L.) oil.

    Science.gov (United States)

    Abdolshahi, Anna; Majd, Mojtaba Heydari; Rad, Javad Sharifi; Taheri, Mehrdad; Shabani, Aliakbar; Teixeira da Silva, Jaime A

    2015-04-01

    Pistachio (Pistacia vera L.) oil has important nutritional and therapeutic properties because of its high concentration of essential fatty acids. The extraction method used to obtain natural compounds from raw material is critical for product quality, in particular to protect nutritional value. This study compared the fatty acid composition of pistachio oil extracted by two conventional procedures, Soxhlet extraction and maceration, analyzed by a gas chromatography-flame ionization detector (GC-FID). Four solvents with different polarities were tested: n-hexane (Hx), dichloromethane (DCM), ethyl acetate (EtAc) and ethanol (EtOH). The highest unsaturated fatty acid content (88.493 %) was obtained by Soxhlet extraction with EtAc. The Soxhlet method extracted the most oleic and linolenic acids (51.99 % and 0.385 %, respectively) although a higher concentration (36.32 %) of linoleic acid was extracted by maceration.

  2. Synthesis and characterization of PdAg as a catalyst for oxygen reduction reaction in acid medium; Sintesis y caracterizacion de PdAg como catalizador para la reaccion de reduccion de oxigeno en medio acido

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Casillas, D. C.; Vazquez-Huerta, G.; Solorza-Feria, O. [Centro de Investigacion y de Estudios Avanzados del IPN, Mexico D.F. (Mexico)]. E-mail: dcmartinez@cinvestav.mx

    2009-09-15

    This work presents the synthesis of the binary compound PdAg and the electrochemical characterization for oxygen reduction reaction (ORR) in acid medium. The catalyst is obtained from the reduction of Pd(NO{sub 3}){sub 2}·2H{sub 2}O and AgNO{sub 3} with NaBH{sub 4} in THF. The synthesized compound was physically characterized with transmission electron microscopy (TEM), sweep electron microscopy (SEM) and x-ray diffraction (XRD) of powder. Electrochemical studies were conducted to determine the catalytic activity and intrinsic properties of the PdAg material for the ORR in acid medium using cyclic voltamperometry (CV), rotary disc electrode (RDE) and electrochemical impedance spectroscopy (EIS) in a solution of H{sub 2}SO{sub 4} 0.5 M at 25 degrees Celsius. The electrochemical current-potential responses were compared to those of palladium and platinum. The kinetic results showed an increase in the performance of the bimetallic electrocatalyst containing Ag as compared to pure Pd, but less than that obtained with nanometric Pt. The Tafel slopes obtained are roughly120 mV dec-1, similar to that reported for Pt and Pd and for other Ru-based electrocatalysts. [Spanish] En este trabajo se presentan la sintesis del compuesto binario PdAg y su caracterizacion electroquimica para la reaccion de reduccion de oxigeno (RRO) en medio acido. El catalizador se obtuvo a partir de la reduccion de Pd(NO{sub 3}){sub 2}·2H{sub 2}O y AgNO{sub 3} con NaBH{sub 4} en THF. El compuesto sintetizado se caracterizo fisicamente por microscopia electronica de transmision (MET), microscopia electronica de barrido (MEB) y difraccion de rayos X (DRX) de polvos. Se realizaron estudios electroquimicos para determinar la actividad catalitica y las propiedades intrinsecas del material de PdAg para la reaccion de reduccion de oxigeno (RRO) en medio acido, utilizando las tecnicas de voltamperometria ciclica (VC), electrodo disco rotatorio (EDR) y espectroscopia de impedancia electroquimica (EIE), en

  3. Biogeochemistry: Oxygen burrowed away

    NARCIS (Netherlands)

    Meysman, F.J.R.

    2014-01-01

    Multicellular animals probably evolved at the seafloor after a rise in oceanic oxygen levels. Biogeochemical model simulations suggest that as these animals started to rework the seafloor, they triggered a negative feedback that reduced global oxygen.

  4. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  5. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...... of continental growth and volcanic outgassing, as well as biogeochemical processing of elements within the oceans. The author will seek to explore constraints on the history of oxygenation and understand which processes have regulated oxygen through this eon....

  6. Oxygen evolution reaction catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  7. [Domiciliary oxygen therapy].

    Science.gov (United States)

    Abdel Kafi, S

    2010-09-01

    In Belgium, oxygen therapy is becoming more and more accessible. When oxygen is needed for short periods or for special indications as palliative care, an agreement between mutual insurance companies and pharmacists allows the practitioner the home installation of gazeous oxygen cylinder or of oxygen concentrator. When long term oxygen therapy (LTOT) is indicated for patients with respiratory insufficiency, the pneumologist must first ask the INAMI the authorization to install one of the following modalities: oxygen concentrator with or without demand oxygen delivery cylinder and liquid oxygen. The goal of LTOT is to increase survival and quality of life. The principal and well accepted indication for LTOT is severe hypoxemia. The beneficial effects of oxygen therapy limited at night or on exertion are controversial. In order to increase patient's autonomy, oxygen can be prescribed for ambulation, respecting prescription's rules. At each step of oxygen therapy implementing (indication, choice of the device and follow-up) the patient under oxygen may benefit from a joint approach between the general practitioner and the chest specialist.

  8. Aircraft Oxygen Generation

    Science.gov (United States)

    2012-02-01

    An Oxygen Enriched Air System for the AV-8A Harrier (NADC-81198-60).” 70 Horch , T., et. al. “The F-16 Onboard Oxygen Generating System: Performance...Only and Safety Privileged). Horch , T., Miller, R., Bomar, J., Tedor, J., Holden, R., Ikels, K., & Lozano, P. (1983). The F-16 Onboard Oxygen

  9. Electron beam irradiation, oxygen, and temperature effects on nucleotide degradation in stored aquaculture hybrid striped bass fillets

    International Nuclear Information System (INIS)

    Karahadian, C.; Brannan, R.G.; Heath, J.L.

    1997-01-01

    Skinless fillets from commercially-grown aquaculture hybrid striped bass (Morone saxatilis x M. chrysops) were electron beam-irradiated in the presence of air or vacuum-packaged and stored at 4C and -20C for 14 days. A mean low dose level of 2.0 or 3.0 kGy (+/- 0.5 kGy) and high dose level of 20 kGy (+/- 4 kGy) were used for irradiated samples. Hypoxanthine (Hx) concentrations, Ki-values ([(INO + Hx)/(IMP + INO + Hx)] x 100), and H-values ([(Hx)/(IMP + INO + Hx)] x 100) indicated that irradiation did not influence the rate of nucleotide degradation compared with nonirradiated controls at either refrigerated or frozen temperatures. Vacuum packaging or freezing of stored samples resulted in lower H-values and Hx contents compared with nonirradiated controls regardless of irradiation treatment

  10. Oxygen configurations in silica

    International Nuclear Information System (INIS)

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-01-01

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society

  11. Oxygen and the evolution of metabolic pathways

    Science.gov (United States)

    Jahnke, L. L.

    1986-01-01

    While a considerable amount of evidence has been accumulated about the history of oxygen on this planet, little is known about the relative amounts to which primitive cells might have been exposed. One clue may be found in the metabolic pathways of extant microorganisms. While eucaryotes are principally aerobic organisms, a number are capable of anaerobic growth by fermentation. One such eucaryotic microorganism, Saccharomyces cerevisiae, will grow in the complete absence of oxygen when supplemented with unsaturated fatty acid and sterol. Oxygen-requiring enzymes are involved in the synthesis of both of these compounds. Studies have demonstrated that the oxidative desaturation of palmitic acid and the conversion of squalene to sterols occur in the range of 10-(3) to 10(-2) PAL. Thus, if the oxygen requirements of these enzymatic processes are an indication, eucaryotes might be more primitive than anticipated from the microfossil record. Results of studies on the oxygen requirements for sterol and unsaturated fatty acid synthesis in a more primitive procaryotic system are also discussed.

  12. Effects of motexafin gadolinium on tumor oxygenation and cellular oxygen consumption

    International Nuclear Information System (INIS)

    Donnelly, E.T.; Liu, Y.; Rockwell, S.; Magda, D.

    2003-01-01

    Full text: Recent work in our laboratory showed that motexafin gadolinium (MGd, Xcytrin), a drug currently in Phase III clinical trials as an adjuvant to radiation therapy, modulates the oxygen tensions in EMT6 tumors. The median pO 2 increased from the control value of 1.5±0.4 mmHg to 7.4 ± 3.8 mmHg six hours after treatment with 40 μmol/kg MGd and the percentage of severely hypoxic readings in the tumors ( 7 plateau phase EMT6 cells in 3 mL Dulbecco's Modified Eagle's Medium supplemented with 10% dialyzed fetal bovine serum, which contains no ascorbic acid. In the absence of ascorbic acid, 100 μM MGd did not alter the cellular oxygen consumption rate for EMT6 cells significantly. Marked inhibition of cellular oxygen consumption was observed when cells were incubated with 100 μM MGd in medium supplemented with equimolar ascorbic acid (a 31.5% decrease in consumption was observed after 6 hours of treatment). The 5% mannitol vehicle solution with equimolar ascorbic acid had no discernible effect on cellular oxygen consumption. Ascorbic acid may facilitate cellular uptake of MGd via the intermediate formation of a MGd-oxalate complex. These studies suggest that changes in cellular oxygen consumption could contribute to the changes in tumor oxygenation seen after administration of MGd. These experiments were supported by Pharmacyclics and training grant T32CA09085 from the NIH (E.T.D.). We thank Dr. Raymond Russell for allowing us to use his oxygen electrode apparatus

  13. Integrated turbomachine oxygen plant

    Science.gov (United States)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  14. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    2011-05-01

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  15. Oxygen dissociation curves of whole blood from the Egyptian free ...

    African Journals Online (AJOL)

    Tadarida aegyptiaca (mean body mass 13.5 g) is a fast flying insectivorous bat that hunts in open areas for extended periods, covering extensive distances during its foraging bouts. Whole blood samples taken from the wing arteries were analysed for 2,3-diphosphoglyceric acid, oxygen affinity and pH. The mean oxygen ...

  16. Phenomena and significance of intermediate spillover in electrocatalysis of oxygen and hydrogen electrode reactions

    Directory of Open Access Journals (Sweden)

    Jakšić Jelena M.

    2012-01-01

    Full Text Available Altervalent hypo-d-oxides of transition metal series impose spontaneous dissociative adsorption of water molecules and pronounced membrane spillover transferring properties instantaneously resulting with corresponding bronze type (Pt/HxWO3 under cathodic, and/or its hydrated state (Pt/W(OH6 responsible for the primary oxide (Pt-OH effusion, under anodic polarization, this way establishing instantaneous reversibly revertible alterpolar bronze features (Pt/H0.35WO3 Pt/W(OH6, and substantially advanced electrocatalytic properties of these composite interactive electrocatalysts. As the consequence, the new striking and unpredictable prospects both in law and medium temperature proton exchange membrane fuell cell (L&MT PEMFC and water electrolysis (WE have been opened by the interactive supported individual (Pt, Pd, Ni or prevailing hyper-d-electronic nanostructured intermetallic phase clusters (WPt3, NbPt3, HfPd3, ZrNi3, grafted upon and within high altervalent capacity hypo-d-oxides (WO3, Nb2O5, Ta2O5, TiO2 and their proper mixed valence compounds, to create a novel type of alterpolar interchangeable composite electrocatalysts for hydrogen and oxygen electrode reactions. Whereas in aqueous media Pt (Pt/C features either chemisorbed catalytic surface properties of H-adatoms (Pt-H, or surface oxide (Pt=O, missing any effusion of other interacting species, new generation and selection of composite and interactive strong metal-support interaction (SMSI electrocatalysts in condensed wet state primarily characterizes interchangeable extremely fast reversible spillover of either H-adatoms, or the primary oxides (Pt-OH, Au-OH, or the invertible bronze type behavior of these significant interactive electrocatalytic ingredients. Such nanostructured type electrocatalysts, even of mixed hypo-d-oxide structure (Pt/H0.35WO3/TiO2/C, Pt/HxNbO3/TiO2/C, have for the first time been synthesized by the sol-gel methods and shown rather high stability, electron

  17. Gradually Increased Oxygen Administration Improved Oxygenation and Mitigated Oxidative Stress after Resuscitation from Severe Hemorrhagic Shock.

    Science.gov (United States)

    Luo, Xin; Yin, Yujing; You, Guoxing; Chen, Gan; Wang, Ying; Zhao, Jingxiang; Wang, Bo; Zhao, Lian; Zhou, Hong

    2015-11-01

    The optimal oxygen administration strategy during resuscitation from hemorrhagic shock (HS) is still controversial. Improving oxygenation and mitigating oxidative stress simultaneously seem to be contradictory goals. To maximize oxygen delivery while minimizing oxidative damage, the authors proposed the notion of gradually increased oxygen administration (GIOA), which entails making the arterial blood hypoxemic early in resuscitation and subsequently gradually increasing to hyperoxic, and compared its effects with normoxic resuscitation, hyperoxic resuscitation, and hypoxemic resuscitation in severe HS. Rats were subjected to HS, and on resuscitation, the rats were randomly assigned to four groups (n = 8): the normoxic, the hyperoxic, the hypoxemic, and the GIOA groups. Rats were observed for an additional 1 h. Hemodynamics, acid-base status, oxygenation, and oxidative injury were observed and evaluated. Central venous oxygen saturation promptly recovered only in the hyperoxic and the GIOA groups, and the liver tissue partial pressure of oxygen was highest in the GIOA group after resuscitation. Oxidative stress in GIOA group was significantly reduced compared with the hyperoxic group as indicated by the reduced malondialdehyde content, increased catalase activity, and the lower histologic injury scores in the liver. In addition, the tumor necrosis factor-α and interleukin-6 expressions in the liver were markedly decreased in the GIOA group than in the hyperoxic and normoxic groups as shown by the immunohistochemical staining. GIOA improved systemic/tissue oxygenation and mitigated oxidative stress simultaneously after resuscitation from severe HS. GIOA may be a promising strategy to improve resuscitation from HS and deserves further investigation.

  18. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  19. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  20. Oxidized amino acid residues in the vicinity of Q(A and Pheo(D1 of the photosystem II reaction center: putative generation sites of reducing-side reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Laurie K Frankel

    Full Text Available Under a variety of stress conditions, Photosystem II produces reactive oxygen species on both the reducing and oxidizing sides of the photosystem. A number of different sites including the Mn4O5Ca cluster, P680, PheoD1, QA, QB and cytochrome b559 have been hypothesized to produce reactive oxygen species in the photosystem. In this communication using Fourier-transform ion cyclotron resonance mass spectrometry we have identified several residues on the D1 and D2 proteins from spinach which are oxidatively modified and in close proximity to QA (D1 residues (239F, (241Q, (242E and the D2 residues (238P, (239T, (242E and (247M and PheoD1 (D1 residues (130E, (133L and (135F. These residues may be associated with reactive oxygen species exit pathways located on the reducing side of the photosystem, and their modification may indicate that both QA and PheoD1 are sources of reactive oxygen species on the reducing side of Photosystem II.

  1. Operando XAS Study of the Surface Oxidation State on a Monolayer IrOx on RuOx and Ru Oxide Based Nanoparticles for Oxygen Evolution in Acidic Media

    DEFF Research Database (Denmark)

    Pedersen, Anders Filsøe; Escribano, Maria Escudero; Sebok, Bela

    2018-01-01

    that the average Ir oxidation state change is strongly affected by the coverage of atomic O. The observed shifts in oxidation state suggest that the surface has a high coverage of O at potentials just below the potential where oxygen evolution is exergonic in free energy. This observation is consistent...

  2. High Selectivity Oxygen Delignification

    Energy Technology Data Exchange (ETDEWEB)

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  3. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch

    2005-01-01

    The oxygen tension of the optic nerve is regulated by the intraocular pressure and systemic blood pressure, the resistance in the blood vessels and oxygen consumption of the tissue. The oxygen tension is autoregulated and moderate changes in intraocular pressure or blood pressure do not affect...... the optic nerve oxygen tension. If the intraocular pressure is increased above 40 mmHg or the ocular perfusion pressure decreased below 50 mmHg the autoregulation is overwhelmed and the optic nerve becomes hypoxic. A disturbance in oxidative metabolism in the cytochromes of the optic nerve can be seen...... at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...

  4. Pathology of oxygen

    National Research Council Canada - National Science Library

    Autor, Anne Pomeroy

    1982-01-01

    This volume has been designed to provide those interested in oxygen toxicity with a working knowledge of advancement in the field with the intention that the topics described in each chapter will be immediately useful...

  5. Using oxygen at home

    Science.gov (United States)

    ... at Home Tell your local fire department, electric company, and telephone company that you use oxygen in your home. They ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  6. Pathology of oxygen

    National Research Council Canada - National Science Library

    Autor, Anne Pomeroy

    1982-01-01

    .... The book is divided into three general sections. The first and smallest section of the book explains the molecular and biochemical basis of our current understanding of oxygen radical toxicity as well as the means by which normal aerobic cells...

  7. Hemoglobin Rahere, a human hemoglobin variant with amino acid substitution at the 2,3-diphosphoglycerate binding site. Functional consequences of the alteration and effects of bezafibrate on the oxygen bindings.

    Science.gov (United States)

    Sugihara, J; Imamura, T; Nagafuchi, S; Bonaventura, J; Bonaventura, C; Cashon, R

    1985-09-01

    We encountered an abnormal hemoglobin (Rahere), with a threonine residue replacing the beta 82 (EF6) lysine residue at the binding site of 2,3-diphosphoglycerate, which was responsible for overt erythrocytosis in two individuals of a Japanese family. Hemoglobin Rahere shows a lower oxygen affinity on the binding of 2,3-diphosphoglycerate or chloride ions than hemoglobin A. Although a decrease in the positive charge density at the binding sites of 2,3-diphosphoglycerate in hemoglobin Rahere apparently shifts the allosteric equilibrium toward the low affinity state, it greatly diminishes the cofactor effects by anions. The oxygen affinity of the patient's erythrocytes is substantially lowered by the presence of bezafibrate, which combines with sites different from those of 2,3-diphosphoglycerate in either hemoglobin Rahere or hemoglobin A.

  8. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    la Cour, M; Kiilgaard, Jens Folke; Eysteinsson, T

    2000-01-01

    To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide.......To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide....

  9. Ekstrakorporal oxygenering ved legionellapneumoni

    DEFF Research Database (Denmark)

    Uslu, Bülent; Steensen, Morten

    2009-01-01

    We present a case report with a 49-year-old woman with legionella pneumonia and fulminant respiratory failure. Despite maximal conventional respirator treatment with positive pressure ventilation, 100% oxygen and pharmacological treatment in an intensive care unit, further deterioration with hypo......We present a case report with a 49-year-old woman with legionella pneumonia and fulminant respiratory failure. Despite maximal conventional respirator treatment with positive pressure ventilation, 100% oxygen and pharmacological treatment in an intensive care unit, further deterioration...

  10. Intraportal islet oxygenation.

    Science.gov (United States)

    Suszynski, Thomas M; Avgoustiniatos, Efstathios S; Papas, Klearchos K

    2014-05-01

    Islet transplantation (IT) is a promising therapy for the treatment of diabetes. The large number of islets required to achieve insulin independence limit its cost-effectiveness and the number of patients who can be treated. It is believed that >50% of islets are lost in the immediate post-IT period. Poor oxygenation in the early post-IT period is recognized as a possible reason for islet loss and dysfunction but has not been extensively studied. Several key variables affect oxygenation in this setting, including (1) local oxygen partial pressure (pO(2)), (2) islet oxygen consumption, (3) islet size (diameter, D), and (4) presence or absence of thrombosis on the islet surface. We discuss implications of oxygen-limiting conditions on intraportal islet viability and function. Of the 4 key variables, the islet size appears to be the most important determinant of the anoxic and nonfunctional islet volume fractions. Similarly, the effect of thrombus formation on the islet surface may be substantial. At the University of Minnesota, average size distribution data from clinical alloislet preparations (n = 10) indicate that >150-µm D islets account for only ~30% of the total islet number, but >85% of the total islet volume. This suggests that improved oxygen supply to the islets may have a profound impact on islet survivability and function since most of the β-cell volume is within large islets which are most susceptible to oxygen-limiting conditions. The assumption that the liver is a suitable islet transplant site from the standpoint of oxygenation should be reconsidered. © 2014 Diabetes Technology Society.

  11. Lunar Oxygen Production and Metals Extraction Using Ionic Liquids

    Science.gov (United States)

    Marone, Matthew; Paley, Mark Steven; Donovan, David N.; Karr, Laurel J.

    2009-01-01

    Initial results indicate that ionic liquids are promising media for the extraction of oxygen from lunar regolith. IL acid systems can solubilize regolith and produce water with high efficiency. IL electrolytes are effective for water electrolysis, and the spent IL acid media are capable of regeneration.

  12. Hemoglobin Rahere, a human hemoglobin variant with amino acid substitution at the 2,3-diphosphoglycerate binding site. Functional consequences of the alteration and effects of bezafibrate on the oxygen bindings.

    OpenAIRE

    Sugihara, J; Imamura, T; Nagafuchi, S; Bonaventura, J; Bonaventura, C; Cashon, R

    1985-01-01

    We encountered an abnormal hemoglobin (Rahere), with a threonine residue replacing the beta 82 (EF6) lysine residue at the binding site of 2,3-diphosphoglycerate, which was responsible for overt erythrocytosis in two individuals of a Japanese family. Hemoglobin Rahere shows a lower oxygen affinity on the binding of 2,3-diphosphoglycerate or chloride ions than hemoglobin A. Although a decrease in the positive charge density at the binding sites of 2,3-diphosphoglycerate in hemoglobin Rahere ap...

  13. Online analysis of oxygen inside silicon-glass microreactors with integrated optical sensors

    DEFF Research Database (Denmark)

    Ehgartner, Josef; Sulzer, Philipp; Burger, Tobias

    2016-01-01

    A powerful online analysis set-up for oxygen measurements within microfluidic devices is presented. It features integration of optical oxygen sensors into microreactors, which enables contactless, accurate and inexpensive readout using commercially available oxygen meters via luminescent lifetime...... monitoring of enzyme transformations, including d-alanine or d-phenylalanine oxidation by d-amino acid oxidase, and glucose oxidation by glucose oxidase....

  14. An investigation into the availability and role of oxygen gas in gold ...

    African Journals Online (AJOL)

    The oxygen content of tailings dams around the Witwatersrand Basin was quantitatively measured over a period of 2 months using a multi-level gas sampling device (MLGS) in an attempt to understand the diffusion of oxygen in tailings dams as a result of acid mine drainage. The measured oxygen showed that the diffusion ...

  15. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  16. Acidity of first- and second-row hydrides: Effects of electronegativity and hardness

    International Nuclear Information System (INIS)

    De Proft, F.; Langenaeker, W.; Geerlings, P.

    1995-01-01

    A study is made on the influence of the electronegativity and hardness of a group X on the gas-phase acidities of the first- and second-row hydrides HX. It is shown that these two density functional theory (DFT)-based global properties are sufficient for the correct description of the gas-phase acidity sequences, the group hardness being the more important factor and describing the influence of polarizability effects in the charged forms of the acid-base equilibrium. Various calculated properties effects in the charged forms of the acid-base equilibrium. Various calculated properties of the traditional quantum chemical type (Mulliken charges and the MEP) and DFT-based (local softness), associated with the neutral form of the acid, were found to contain a certain periodicity in their description of the gas-phases acidities. The gas-phase acidities (ΔH acid and ΔG acid values) were also obtained theoretically via quantum statistical thermodynamical calculations at the Hartree-Fock level with the 6-31 + G* basis set; these calculated acidities were in fair agreement with the experimental ones. 43 refs., 7 figs., 4 tabs

  17. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H 2 SO 4 ) and nitric acids (HNO 3 ), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  18. Spillover Phenomena and Its Striking Impacts in Electrocatalysis for Hydrogen and Oxygen Electrode Reactions

    Directory of Open Access Journals (Sweden)

    Georgios D. Papakonstantinou

    2011-01-01

    Full Text Available The core subject of the present paper represents the interrelated spillover (effusion phenomena both of the primary oxide and the H-adatoms, their theory and practice, causes, appearances and consequences, and evidences of existence, their specific properties, and their alterpolar equilibria and kinetic behavior, structural, and resulting catalytic, and double layer charging features. The aim is to introduce electron conductive and d-d interactive individual and composite (mixed valence hypo-d-oxide compounds, of increased altervalent capacity, or their suboxides (Magnéli phases, as the interactive catalytic supports and therefrom provide (i the strong metal-support interaction (SMSI catalytic effect and (ii dynamic spillover interactive transfer of primary oxides (M-OH and free effusional H-adatoms for further electrode reactions and thereby advance the overall electrocatalytic activity. Since hypo-d-oxides feature the exchange membrane properties, the higher the altervalent capacity, the higher the spillover effect. In fact, altervalent hypo-d-oxides impose spontaneous dissociative adsorption of water molecules and then spontaneously pronounced membrane spillover transferring properties instantaneously resulting with corresponding bronze type (Pt/HxWO3 under cathodic and/or its hydrated state (Pt/W(OH6, responsible for Pt-OH effusion, under anodic polarization, this way establishing instantaneous reversibly revertible alterpolar bronze features (Pt/H0.35WO3⇔ Pt/W(OH6 and substantially advanced electrocatalytic properties of these composite interactive electrocatalysts. Such nanostructured-type electrocatalysts, even of mixed-valence hypo-d-oxide structures (Pt/H0.35WO3/TiO2/C, Pt/HxNbO3/TiO2/C, have for the first time been synthesized by the sol-gel methods and shown rather high stability, electron conductivity, and nonexchanged initial pure monobronze spillover and catalytic properties. Such a unique electrocatalytic system, as the

  19. Closed Loop Control of Oxygen Delivery and Oxygen Generation

    Science.gov (United States)

    2017-08-01

    were used for this study and were connected via a USB cable to allow communication. The ventilator was modified to allow closed loop control of oxygen...connected via a USB cable to allow communication. The ventilator was modified to allow closed loop control of oxygen based on the oxygen saturation...2017-4119, 28 Aug 2017. oximetry (SpO2) and intermittent arterial blood sampling for arterial oxygen tension (partial pressure of oxygen [PaO2]) and

  20. Oxygen Dependent Biocatalytic Processes

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard

    Enzyme catalysts have the potential to improve both the process economics and the environ-mental profile of many oxidation reactions especially in the fine- and specialty-chemical industry, due to their exquisite ability to perform stereo-, regio- and chemo-selective oxida-tions at ambient...... to aldehydes and ketones, oxyfunctionalization of C-H bonds, and epoxidation of C-C double bonds. Although oxygen dependent biocatalysis offers many possibilities, there are numerous chal-lenges to be overcome before an enzyme can be implemented in an industrial process. These challenges requires the combined...... far below their potential maximum catalytic rate at industrially relevant oxygen concentrations. Detailed knowledge of the en-zyme kinetics are therefore required in order to determine the best operating conditions and design oxygen supply to minimize processing costs. This is enabled...

  1. Oxygen therapy reduces postoperative tachycardia

    DEFF Research Database (Denmark)

    Stausholm, K; Kehlet, H; Rosenberg, J

    1995-01-01

    Concomitant hypoxaemia and tachycardia in the postoperative period is unfavourable for the myocardium. Since hypoxaemia per se may be involved in the pathogenesis of postoperative tachycardia, we have studied the effect of oxygen therapy on tachycardia in 12 patients randomly allocated to blinded...... air or oxygen by facemask on the second or third day after major surgery. Inclusion criteria were arterial hypoxaemia (oxygen saturation 90 beat.min-1). Each patient responded similarly to oxygen therapy: an increase in arterial oxygen saturation and a decrease...... in heart rate (p oxygen has a positive effect on the cardiac oxygen delivery and demand balance....

  2. Hyperbaric oxygen and radiotherapy

    International Nuclear Information System (INIS)

    Mayer, R.; Hamilton-Farrell, M.R.; Kleij, A.J. van der

    2005-01-01

    Background: Hyperbaric oxygen (HBO) therapy is the inhalation of 100% oxygen at a pressure of at least 1.5 atmospheres absolute (150 kPa). It uses oxygen as a drug by dissolving it in the plasma and delivering it to the tissues independent of hemoglobin. For a variety of organ systems, HBO is known to promote new vessel growth into areas with reduced oxygen tension due to poor vascularity, and therewith promotes wound healing and recovery of radiation-injured tissue. Furthermore, tumors may be sensitized to irradiation by raising intratumoral oxygen tensions. Methods: A network of hyperbaric facilities exists in Europe, and a number of clinical studies are ongoing. The intergovernmental framework COST B14 action 'Hyperbaric Oxygen Therapy' started in 1999. The main goal of the Working Group Oncology is preparation and actual implementation of prospective study protocols in the field of HBO and radiation oncology in Europe. Results: In this paper a short overview on HBO is given and the following randomized clinical studies are presented: (a) reirradiation of recurrent squamous cell carcinoma of the head and neck after HBO sensitization; (b) role of HBO in enhancing radiosensitivity on glioblastoma multiforme; (c) osseointegration in irradiated patients; adjunctive HBO to prevent implant failures; (d) the role of HBO in the treatment of late irradiation sequelae in the pelvic region. The two radiosensitization protocols (a, b) allow a time interval between HBO and subsequent irradiation of 10-20 min. Conclusion: Recruitment of centers and patients is being strongly encouraged, detailed information is given on www.oxynet.org. (orig.)

  3. OXYGEN MANAGEMENT DURING ALCOHOLIC FERMENTATION

    OpenAIRE

    MOENNE VARGAS, MARÍA ISABE

    2013-01-01

    Oxygen additions are a common practice in winemaking, as oxygen has a positive effect in fermentative kinetics, biomass synthesis and improvement of color, structure and :flavor in treated wines. However, most oxygen additions are carried out heuristically through pump-over operations solely on a know-how basis, which is difficult to manage in terms of the exact quantity of oxygen transferred to the fermenting must. It is important to estímate the amount of oxygen added because...

  4. Surface Characterization and Electrocatalytic Properties of the Ti/Ir0.3Ti(0.7-xPbx O2-Coated Electrodes for Oxygen Evolution Reaction in Acidic Media

    Directory of Open Access Journals (Sweden)

    Oliveira-Sousa Adriana de

    2002-01-01

    Full Text Available In this work a systematic investigation was carried out of the surface characterization and electrocatalytic activity of Ti/Ir0.3Ti(0.7-xPb x O2-coated electrodes (0 <= x <= 0.7, using the oxygen evolution reaction (OER in 0.5 mol dm-3 H2SO4 as model. The electrodes were prepared by thermal decomposition of IrCl3, TiCl3 and Pb(NO32 at 600 °C for 1 h using Ti as support. X-ray diffraction shows that the layers are crystalline and that the corresponding metal oxides are present. The surface morphology of the samples, before and after use under extensive oxygen evolution (Tafel experiment, was characterized by Scanning Electron Microscopy and the micrograph analyses show that the OER promotes the dissolution of the oxide layer. The redox processes occurring on the surface were characterized by cyclic voltammetry at 20 mV s-1 in 0.5 mol dm-3 aqueous H2SO4, at room temperature, and were controlled by the Ir3+/Ir4+ couple. The measured anodic voltammetric charge is related to the active area of the electrode showing that the replacement of TiO2 by PbO2 increases the surface area with the higher value being at 50 mol% PbO2. After oxygen evolution, the surface area increases slightly. Tafel slopes are independent of Pb content with the values around 60 mV decade-1, which suggest that only Ir sites are active for OER. The values of normalized current (i/q a show some inhibition of the OER as TiO2 is replaced by PbO2 suggesting that PbO2, can be a good choice, with potential to improve the selectivity of the system. The reaction order with respect to H+ ion is zero at constant overpotential and ionic strength. The values of Tafel slope and reaction order indicate that a single reaction mechanism is operating.

  5. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    Kiilgaard, Jens Folke; Pedersen, D B; Eysteinsson, T

    2004-01-01

    The authors have previously reported that carbonic anhydrase inhibitors such as acetazolamide and dorzolamide raise optic nerve oxygen tension (ONPO(2)) in pigs. The purpose of the present study was to investigate whether timolol, which belongs to another group of glaucoma drugs called beta...

  6. Home Oxygen Therapy

    Science.gov (United States)

    ... cold it can hurt your skin. Keep a fire extinguisher close by, and let your fire department know that you have oxygen in your ... any symptoms of illness. Medicare, Medicaid, and Commercial Insurance Certain insurance policies may pay for all your ...

  7. Central oxygen pipeline failure

    African Journals Online (AJOL)

    surgical intensive care unit (ICU), with two patients on full ventilation and ... uncertainty around the cause of the failure and the restoration, .... soon as its level also falls below three tons. Should ... (properly checked and closed prior to each anaesthetic). ... in use at the time of the central oxygen pipeline failure at Tygerberg.

  8. Extracorporeal membrane oxygenation (ECMO)

    African Journals Online (AJOL)

    Extracorporeal membrane oxygenation (ECMO) is not a novel therapy in the true sense of the ... Intention-to-treat analysis showed benefit for ECMO, with a relative risk ... no doubt that VV-ECMO is an advance in medical technology, and that.

  9. Oxygen Extraction from Minerals

    Science.gov (United States)

    Muscatello, Tony

    2017-01-01

    Oxygen, whether used as part of rocket bipropellant or for astronaut life support, is a key consumable for space exploration and commercialization. In Situ Resource Utilization (ISRU) has been proposed many times as a method for making space exploration more cost effective and sustainable. On planetary and asteroid surfaces the presence of minerals in the regolith that contain oxygen is very common, making them a potential oxygen resource. The majority of research and development for oxygen extraction from minerals has been for lunar regolith although this work would generally be applicable to regolith at other locations in space. This presentation will briefly survey the major methods investigated for oxygen extraction from regolith with a focus on the current status of those methods and possible future development pathways. The major oxygen production methods are (1) extraction from lunar ilmenite (FeTiO3) with either hydrogen or carbon monoxide, (2) carbothermal reduction of iron oxides and silicates with methane, and (3) molten regolith electrolysis (MRE) of silicates. Methods (1) and (2) have also been investigated in a two-step process using CO reduction and carbon deposition followed by carbothermal reduction. All three processes have byproducts that could also be used as resources. Hydrogen or carbon monoxide reduction produce iron metal in small amounts that could potentially be used as construction material. Carbothermal reduction also makes iron metal along with silicon metal and a glass with possible applications. MRE produces iron, silicon, aluminum, titanium, and glass, with higher silicon yields than carbothermal reduction. On Mars and possibly on some moons and asteroids, water is present in the form of mineral hydrates, hydroxyl (-OH) groups on minerals, andor water adsorbed on mineral surfaces. Heating of the minerals can liberate the water which can be electrolyzed to provide a source of oxygen as well. The chemistry of these processes, some key

  10. Ocean Ridges and Oxygen

    Science.gov (United States)

    Langmuir, C. H.

    2014-12-01

    The history of oxygen and the fluxes and feedbacks that lead to its evolution through time remain poorly constrained. It is not clear whether oxygen has had discrete steady state levels at different times in Earth's history, or whether oxygen evolution is more progressive, with trigger points that lead to discrete changes in markers such as mass independent sulfur isotopes. Whatever this history may have been, ocean ridges play an important and poorly recognized part in the overall mass balance of oxidants and reductants that contribute to electron mass balance and the oxygen budget. One example is the current steady state O2 in the atmosphere. The carbon isotope data suggest that the fraction of carbon has increased in the Phanerozoic, and CO2 outgassing followed by organic matter burial should continually supply more O2 to the surface reservoirs. Why is O2 not then increasing? A traditional answer to this question would relate to variations in the fraction of burial of organic matter, but this fraction appears to have been relatively high throughout the Phanerozoic. Furthermore, subduction of carbon in the 1/5 organic/carbonate proportions would contribute further to an increasingly oxidized surface. What is needed is a flux of oxidized material out of the system. One solution would be a modern oxidized flux to the mantle. The current outgassing flux of CO2 is ~3.4*1012 moles per year. If 20% of that becomes stored organic carbon, that is a flux of .68*1012 moles per year of reduced carbon. The current flux of oxidized iron in subducting ocean crust is ~2*1012 moles per year of O2 equivalents, based on the Fe3+/Fe2+ ratios in old ocean crust compared to fresh basalts at the ridge axis. This flux more than accounts for the incremental oxidizing power produced by modern life. It also suggests a possible feedback through oxygenation of the ocean. A reduced deep ocean would inhibit oxidation of ocean crust, in which case there would be no subduction flux of oxidized

  11. Oxygen diffusion in monazite

    Science.gov (United States)

    Cherniak, D. J.; Zhang, X. Y.; Nakamura, M.; Watson, E. B.

    2004-09-01

    We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag-Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850-1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Under wet conditions at 100 MPa water pressure, over the temperature range 700-880 °C, oxygen diffusion can be described by the Arrhenius relationship: Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (∼800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.

  12. Growth of anodic oxide films on oxygen-containing niobium

    Energy Technology Data Exchange (ETDEWEB)

    Habazaki, H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: habazaki@eng.hokudai.ac.jp; Ogasawara, T. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Konno, H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Shimizu, K. [University Chemical Laboratory, Keio University, Yokohama 223-8522 (Japan); Asami, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Saito, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nagata, S. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Skeldon, P. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Thompson, G.E. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)

    2005-09-20

    The present study is directed at understanding of the influence of oxygen in the metal on anodic film growth on niobium, using sputter-deposited niobium containing from about 0-52 at.% oxygen, with anodizing carried out at high efficiency in phosphoric acid electrolyte. The findings reveal amorphous anodic niobia films, with no significant effect of oxygen on the field strength, transport numbers, mobility of impurity species and capacitance. However, since niobium is partially oxidized due to presence of oxygen in the substrate, less charge is required to form the films, hence reducing the time to reach a particular film thickness and anodizing voltage. Further, the relative thickness of film material formed at the metal/film interface is increased by the incorporation of oxygen species into the films from the substrate, with an associated altered depth of incorporation of phosphorus species into the films.

  13. Origin of photosynthetic oxygen

    International Nuclear Information System (INIS)

    Gerster, Richard; Dupuy, Jacques; Guerin de Montgareuil, Pierre

    From the comparison of isotopic exchange kinetics between C 18 O 2 and the water of algae suspensions or aerial leaves subjected to alternating darkness and light, it becomes possible to calculate the isotopic abundance of the CO 2 involved in the photochemical process; this value has been compared to those of the intracellular water and of the evolved O 2 . Kinetics of the appearance of 18 O in the oxygen produced by algae suspended in enriched water are also presented [fr

  14. First kinetic discrimination between carbon and oxygen reactivity of enols.

    Science.gov (United States)

    García-Río, Luis; Mejuto, Juan C; Parajó, Mercedes; Pérez-Lorenzo, Moisés

    2008-11-07

    Nitrosation of enols shows a well-differentiated behavior depending on whether the reaction proceeds through the carbon (nucleophilic catalysis is observed) or the oxygen atom (general acid-base catalysis is observed). This is due to the different operating mechanisms for C- and O-nitrosation. Nitrosation of acetylacetone (AcAc) shows a simultaneous nucleophilic and acid-base catalysis. This simultaneous catalysis constitutes the first kinetic evidence of two independent reactions on the carbon and oxygen atom of an enol. The following kinetic study allows us to determine the rate constants for both reaction pathways. A similar reactivity of the nucleophilic centers with the nitrosonium ion is observed.

  15. Oxygen injection facility

    International Nuclear Information System (INIS)

    Ota, Masamoto; Hirose, Yuki

    1998-01-01

    A compressor introduces air as a starting material and sends it to a dust removing device, a dehumidifying device and an adsorption/separation system disposed downstream. The facility of the present invention is disposed in the vicinity of an injection point and installed in a turbine building of a BWR type reactor having a pipeline of a feedwater system to be injected. The adsorbing/separation system comprises an adsorbing vessel and an automatic valve, and the adsorbing vessel is filled with an adsorbent for selectively adsorbing nitrogen. Zeolite is used as the adsorbent. Nitrogen in the air passing through the adsorbing vessel is adsorbed and removed under a pressurized condition, and a highly concentrated oxygen gas is formed. The direction of the steam of the adsorbed nitrogen is changed by an opening/closing switching operation of an automatic valve and released to the atmosphere (the pressure is released). Generated oxygen gas is stored under pressure in a tank, and injected to the pipeline of the feedwater system by an oxygen injection conduit by way of a flow rate control valve. In the adsorbing vessel, steps of adsorption, separation and storage under pressure are repeated successively. (I.N.)

  16. ITM oxygen for gasification

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, P.A.; Foster, E.P. [Air Products and Chemicals Inc., Toronto, ON (Canada); Gunardson, H.H. [Air Products Canada Ltd., Mississauga, ON (Canada)

    2005-11-01

    This paper described a newly developed air separation technology called Ionic Transport Membrane (ITM), which reduces the overall cost of the gasification process. The technology is well suited for advanced energy conversion processes such as integrated gasification combined cycle (IGCC) that require oxygen and use heavy carbonaceous feedstocks such as residual oils, bitumens, coke and coal. It is also well suited for traditional industrial applications for oxygen and distributed power. Air Products Canada Limited developed the ceramic membrane air separation technology that can reduce the cost of pure oxygen by more than 30 per cent. The separation technology achieves a capital cost reduction of 30 per cent and an energy reduction of 35 per cent over conventional cryogenic air separation. ITM is an electrochemical process that integrates well with the gasification process and an IGCC option for producing electricity from the waste heat generated from gasification. This paper described the integration of ITM technology with both the gasification and IGCC processes and showed the attractive economics of ITM. 6 refs., 2 tabs., 6 figs.

  17. Low content of Pt supported on Ni-MoCx/carbon black as a highly durable and active electrocatalyst for methanol oxidation, oxygen reduction and hydrogen evolution reactions in acidic condition

    Science.gov (United States)

    Zhang, Yan; Zang, Jianbing; Jia, Shaopei; Tian, Pengfei; Han, Chan; Wang, Yanhui

    2017-08-01

    Nickel and molybdenum carbide modified carbon black (Ni-MoCx/C) was synthesized by a two-step microwave-assisted deposition/carbonthermal reduction method and characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The as-prepared Ni-MoCx/C supported Pt (10 wt%) electrocatalyst (10Pt/Ni-MoCx/C) was synthesized through a microwave-assisted reduction method and 10Pt/Ni-MoCx/C exhibited high electrocatalytic activity for methanol oxidation, oxygen reduction and hydrogen evolution reactions. Results showed that 10Pt/Ni-MoCx/C electrocatalyst had better electrocatalytic activity and stability performance than 20 wt% Pt/C (20Pt/C) electrocatalyst. Among them, the electrochemical surface area of 10Pt/Ni-MoCx/C reached 68.4 m2 g-1, which was higher than that of 20Pt/C (63.2 m2 g-1). The enhanced stability and activity of 10Pt/Ni-MoCx/C electrocatalyst were attributed to: (1) an anchoring effect of Ni and MoCx formed during carbonthermal reduction process; (2) a synergistic effect among Pt, Ni, MoOx and MoCx. These findings indicated that 10Pt/Ni-MoCx/C was a promising electrocatalyst for direct methanol fuel cells.

  18. Copper-catalyzed oxidative desulfurization-oxygenation of thiocarbonyl compounds using molecular oxygen: an efficient method for the preparation of oxygen isotopically labeled carbonyl compounds.

    Science.gov (United States)

    Shibahara, Fumitoshi; Suenami, Aiko; Yoshida, Atsunori; Murai, Toshiaki

    2007-06-21

    A novel copper-catalyzed oxidative desulfurization reaction of thiocarbonyl compounds, using molecular oxygen as an oxidant and leading to formation of carbonyl compounds, has been developed, and the utility of the process is demonstrated by its application to the preparation of a carbonyl-18O labeled sialic acid derivative.

  19. Preparation of fulvic acid and low-molecular organic acids by oxidation of weathered coal humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shinozuka, T.; Ito, A.; Sasaki, O.; Yazawa, Y.; Yamaguchi, T. [Chiba Institute of Technolgy, Chiba (Japan). Dept. of Industrial Chemistry

    2002-07-01

    Weathered coal contains much humic acid and a little fulvic acid. Therefore, the production of fulvic acid, the most valuable humic substance because of its water-solubility, was examined by ozone and hydrogen peroxide oxidation of humic acid extracted form Xinjiang (China) weathered coal. The resulting products of the oxidation were water soluble fulvic acid and organic acids, mainly formic acid and oxalic acid. The product yield of fulvic acid was 20 (C%) and that of organic acids were 39 (C%) for formic and acid 13 (C%) for oxalic acid. The formed fulvic acid showed a higher content of oxygen and carboxyl groups, than those of the extracted one from the original weathered coal.

  20. Oxygen diffusion in zircon

    Science.gov (United States)

    Watson, E. B.; Cherniak, D. J.

    1997-05-01

    Oxygen diffusion in natural, non-metamict zircon was characterized under both dry and water-present conditions at temperatures ranging from 765°C to 1500°C. Dry experiments were performed at atmospheric pressure by encapsulating polished zircon samples with a fine powder of 18O-enriched quartz and annealing the sealed capsules in air. Hydrothermal runs were conducted in cold-seal pressure vessels (7-70 MPa) or a piston cylinder apparatus (400-1000 MPa) on zircon samples encapsulated with both 18O-enriched quartz and 18O water. Diffusive-uptake profiles of 18O were measured in all samples with a particle accelerator, using the 18O(p, α) 15N reaction. For dry experimental conditions at 1100-1500°C, the resulting oxygen diffusivities (24 in all) are well described by: D dry (m 2/s) = 1.33 × 10 -4exp(-53920/T) There is no suggestion of diffusive anisotropy. Under wet conditions at 925°C, oxygen diffusion shows little or no dependence upon P H 2O in the range 7-1000 MPa, and is insensitive to total pressure as well. The results of 27 wet experiments at 767-1160°C and 7-1000 MPa can be described a single Arrhenius relationship: D wet (m 2/s) = 5.5 × 10 -12exp(-25280/T) The insensitivity of oxygen diffusion to P H 2O means that applications to geologic problems can be pursued knowing only whether the system of interest was 'wet' (i.e., P H 2O > 7MPa ) or 'dry'. Under dry conditions (presumably rare in the crust), zircons are extremely retentive of their oxygen isotopic signatures, to the extent that δ 18O would be perturbed at the center of a 200 μm zircon only during an extraordinarily hot and protracted event (e.g., 65 Ma at 900°C). Under wet conditions, δ 18O may or may not be retained in the central regions of individual crystals, cores or overgrowth rims, depending upon the specific thermal history of the system.

  1. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  2. Theory of oxygen isotope exchange

    NARCIS (Netherlands)

    den Otter, M.W.; Boukamp, Bernard A.; Bouwmeester, Henricus J.M.

    2001-01-01

    Transients for oxygen molecular mass numbers 32, 34 and 36 are derived which can be used for the interpretation of oxygen isotope exchange data based on measurement of concentrations of 16O2, 16O18O and 18O2 in the gas phase. Key parameters in the theory are the rate at which oxygen molecules are

  3. Utilization of exogenous ethanol by pea seedlings in an oxygen-free environment

    International Nuclear Information System (INIS)

    Ivanov, B.F.; Zemlyanukhin, A.A.; Salam, A.M.M.

    1991-01-01

    The authors investigated the metabolism of exogenous [2- 14 C]-ethanol in pea seedlings (Pisum sativum L.) exposed to different gaseous media, viz.,air, helium, or CO 2 . The 14 C label from ethanol most actively entered amino acids (glutamic and aspartic acids, alanine, glycine, and serine) and organic acids (citrate, malate, succinate, and malonate). Conversion of ethanol to organic acids and separate amino acids (gamma-aminobutyric acid and valine) was intensified under conditions of oxygen stress. A high concentration of CO 2 stimulated transformations of ethanol into these two amino acids, but sharply inhibited overall entry of the label from exogenous ethanol into metabolites of the seedlings. Lengthening the time of exposure lowered this inhibition. Exogenous ethanol did not take part in stress accumulation of alanine in seedlings deprived of oxygen. It is concluded that ethanol participates actively in the metabolic response of pea plants to oxygen stress, and that CO 2 exerts strong modifying action on this response

  4. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  5. Low content of Pt supported on Ni-MoC{sub x}/carbon black as a highly durable and active electrocatalyst for methanol oxidation, oxygen reduction and hydrogen evolution reactions in acidic condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Zang, Jianbing; Jia, Shaopei; Tian, Pengfei; Han, Chan; Wang, Yanhui, E-mail: diamond_wangyanhui@163.com

    2017-08-01

    Highlights: • Ni-MoC{sub x}/C catalyst support was synthesized by a two-step method. • 10Pt/Ni-MoC{sub x}/C was an active and durable low Pt catalyst for MOR, ORR and HER. • The high stability of 10Pt/Ni-MoC{sub x}/C was ascribed to the anchoring effect of MoC{sub x}. • High activity of 10Pt/Ni-MoC{sub x}/C was due to a synergistic of Pt, Ni, MoO{sub x} and MoC{sub x}. - Abstract: Nickel and molybdenum carbide modified carbon black (Ni-MoC{sub x}/C) was synthesized by a two-step microwave-assisted deposition/carbonthermal reduction method and characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The as-prepared Ni-MoC{sub x}/C supported Pt (10 wt%) electrocatalyst (10Pt/Ni-MoC{sub x}/C) was synthesized through a microwave-assisted reduction method and 10Pt/Ni-MoC{sub x}/C exhibited high electrocatalytic activity for methanol oxidation, oxygen reduction and hydrogen evolution reactions. Results showed that 10Pt/Ni-MoC{sub x}/C electrocatalyst had better electrocatalytic activity and stability performance than 20 wt% Pt/C (20Pt/C) electrocatalyst. Among them, the electrochemical surface area of 10Pt/Ni-MoC{sub x}/C reached 68.4 m{sup 2} g{sup −1}, which was higher than that of 20Pt/C (63.2 m{sup 2} g{sup −1}). The enhanced stability and activity of 10Pt/Ni-MoC{sub x}/C electrocatalyst were attributed to: (1) an anchoring effect of Ni and MoC{sub x} formed during carbonthermal reduction process; (2) a synergistic effect among Pt, Ni, MoO{sub x} and MoC{sub x}. These findings indicated that 10Pt/Ni-MoC{sub x}/C was a promising electrocatalyst for direct methanol fuel cells.

  6. Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: A possible role in atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Hseu, You-Cheng [Department of Cosmeceutics, China Medical University, Taichung 40402, Taiwan (China); Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, TX 77030 (United States); Senthil Kumar, K.J. [Department of Cosmeceutics, China Medical University, Taichung 40402, Taiwan (China); Chen, Chih-Sheng; Cho, Hsin-Ju; Lin, Shu-Wei; Shen, Pei-Chun [Institute of Nutrition, China Medical University, Taichung 40402, Taiwan (China); Lin, Cheng-Wen [Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan (China); Lu, Fung-Jou [Institute of Medicine, Chun Shan Medical University, Taichung 40201, Taiwan (China); Yang, Hsin-Ling, E-mail: hlyang@mail.cmu.edu.tw [Institute of Nutrition, China Medical University, Taichung 40402, Taiwan (China); Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, TX 77030 (United States)

    2014-01-15

    Humic acid (HA) has been implicated as one of the etiological factors in the peripheral vasculopathy of blackfoot disease (BFD) in Taiwan. However, the underlying pathophysiological mechanisms of BFD are not well defined. In this study, we used an in vitro and in vivo model, in which HA (25–200 μg/mL) activated macrophages to produce pro-inflammatory molecules by activating their transcriptional factors. HA exposure induced NO and PGE{sub 2} production followed by induction of iNOS and COX-2 through NF-κB/AP-1 transactivation in macrophages. In addition, the production of TNF-α and IL-1β was significantly increased by HA. Moreover, HA-induced iNOS and COX-2 expression were down-regulated by the NF-κB and AP-1 inhibitors pyrrolidine dithiocarbamate (PDTC) and Tanshinone, respectively. Furthermore, generations of ROS and nitrotyrosine, as well as activation of the AKT and MAPKs signaling cascades were observed after HA exposure. Specifically, HA-induced NF-κB activation was mediated by ROS and AKT, and that HA-induced AP-1 activation was mediated by JNK and ERK. Notably, HA-mediated AKT, JNK, and ERK activation was ROS-independent. The inflammatory potential of HA was correlated with increased expression of HO-1 and Nrf2. Furthermore, an in vivo study confirms that mice exposed to HA, the serum levels of TNF-α and IL-1β was significantly increased in a dose-dependent manner. This report marks the first confirmation that environmental exposure of HA induces inflammation in macrophages, which may be one of the main causes of early atherogenesis in blackfoot disease. - Highlights: • Humic acid (HA) induce pro-inflammatory cytokines and mediators in macrophages. • HA-induced inflammation is mediated by ROS and NF-κB/AP-1 signaling pathways. • The inflammatory potential of HA correlated with activation of Nrf2/HO-1 genes. • HA exposure to mice increased pro-inflammatory cytokines production in vivo. • HA may be one of the main causes of early

  7. Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: A possible role in atherosclerosis

    International Nuclear Information System (INIS)

    Hseu, You-Cheng; Senthil Kumar, K.J.; Chen, Chih-Sheng; Cho, Hsin-Ju; Lin, Shu-Wei; Shen, Pei-Chun; Lin, Cheng-Wen; Lu, Fung-Jou; Yang, Hsin-Ling

    2014-01-01

    Humic acid (HA) has been implicated as one of the etiological factors in the peripheral vasculopathy of blackfoot disease (BFD) in Taiwan. However, the underlying pathophysiological mechanisms of BFD are not well defined. In this study, we used an in vitro and in vivo model, in which HA (25–200 μg/mL) activated macrophages to produce pro-inflammatory molecules by activating their transcriptional factors. HA exposure induced NO and PGE 2 production followed by induction of iNOS and COX-2 through NF-κB/AP-1 transactivation in macrophages. In addition, the production of TNF-α and IL-1β was significantly increased by HA. Moreover, HA-induced iNOS and COX-2 expression were down-regulated by the NF-κB and AP-1 inhibitors pyrrolidine dithiocarbamate (PDTC) and Tanshinone, respectively. Furthermore, generations of ROS and nitrotyrosine, as well as activation of the AKT and MAPKs signaling cascades were observed after HA exposure. Specifically, HA-induced NF-κB activation was mediated by ROS and AKT, and that HA-induced AP-1 activation was mediated by JNK and ERK. Notably, HA-mediated AKT, JNK, and ERK activation was ROS-independent. The inflammatory potential of HA was correlated with increased expression of HO-1 and Nrf2. Furthermore, an in vivo study confirms that mice exposed to HA, the serum levels of TNF-α and IL-1β was significantly increased in a dose-dependent manner. This report marks the first confirmation that environmental exposure of HA induces inflammation in macrophages, which may be one of the main causes of early atherogenesis in blackfoot disease. - Highlights: • Humic acid (HA) induce pro-inflammatory cytokines and mediators in macrophages. • HA-induced inflammation is mediated by ROS and NF-κB/AP-1 signaling pathways. • The inflammatory potential of HA correlated with activation of Nrf2/HO-1 genes. • HA exposure to mice increased pro-inflammatory cytokines production in vivo. • HA may be one of the main causes of early atherogenesis

  8. Oxygen-Methane Thruster

    Science.gov (United States)

    Pickens, Tim

    2012-01-01

    An oxygen-methane thruster was conceived with integrated igniter/injector capable of nominal operation on either gaseous or liquid propellants. The thruster was designed to develop 100 lbf (approximately 445 N) thrust at vacuum conditions and use oxygen and methane as propellants. This continued development included refining the design of the thruster to minimize part count and manufacturing difficulties/cost, refining the modeling tools and capabilities that support system design and analysis, demonstrating the performance of the igniter and full thruster assembly with both gaseous and liquid propellants, and acquiring data from this testing in order to verify the design and operational parameters of the thruster. Thruster testing was conducted with gaseous propellants used for the igniter and thruster. The thruster was demonstrated to work with all types of propellant conditions, and provided the desired performance. Both the thruster and igniter were tested, as well as gaseous propellants, and found to provide the desired performance using the various propellant conditions. The engine also served as an injector testbed for MSFC-designed refractory combustion chambers made of rhenium.

  9. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  10. OXYGEN ABUNDANCES IN CEPHEIDS

    International Nuclear Information System (INIS)

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.; Kovtyukh, V. V.

    2013-01-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  11. Sterilization by oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Adir Jose; Mansano, Ronaldo Domingues; Andreoli Pinto, Terezinha de Jesus; Ruas, Ronaldo; Silva Zambon, Luis da; Silva, Monica Valero da; Verdonck, Patrick Bernard

    2004-07-31

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site and it also affects the bulk properties of the polymers. The use of a gas plasma is an elegant alternative sterilization technique. The plasma promotes an efficient inactivation of the micro-organisms, minimises the damage to the materials and presents very little danger for personnel and the environment. Pure oxygen reactive ion etching type of plasmas were applied to inactivate a biologic indicator, the Bacillus stearothermophilus, to confirm the efficiency of this process. The sterilization processes took a short time, in a few minutes the mortality was complete. In situ analysis of the micro-organisms' inactivating time was possible using emission spectrophotometry. The increase in the intensity of the 777.5 nm oxygen line shows the end of the oxidation of the biologic materials. The results were also observed and corroborated by scanning electron microscopy.

  12. High Selectivity Oxygen Delignification

    Energy Technology Data Exchange (ETDEWEB)

    Arthur J. Ragauskas

    2005-09-30

    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in

  13. Medical oxygen and air travel.

    Science.gov (United States)

    Lyznicki, J M; Williams, M A; Deitchman, S D; Howe, J P

    2000-08-01

    This report responds to a resolution that asked the American Medical Association (AMA) to take action to improve airport and airline accommodations for passengers requiring medical oxygen. Information for the report was derived from a search of the MEDLINE database and references listed in pertinent articles, as well as through communications with experts in aerospace and emergency medicine. Based on this information, the AMA Council on Scientific Affairs determined that commercial air travel exposes passengers to altitude-related hypoxia and gas expansion, which may cause some passengers to experience significant symptoms and medical complications during flight. Medical guidelines are available to help physicians evaluate and counsel potential passengers who are at increased risk of inflight hypoxemia. Supplemental oxygen may be needed for some passengers to maintain adequate tissue oxygenation and prevent hypoxemic complications. For safety and security reasons, federal regulations prohibit travelers from using their own portable oxygen system onboard commercial aircraft. Many U.S. airlines supply medical oxygen for use during flight but policies and procedures vary. Oxygen-dependent passengers must make additional arrangements for the use of supplemental oxygen in airports. Uniform standards are needed to specify procedures and equipment for the use of medical oxygen in airports and aboard commercial aircraft. Revision of federal regulations should be considered to accommodate oxygen-dependent passengers and permit them to have an uninterrupted source of oxygen from departure to destination.

  14. Fine-tuning the activity of oxygen evolution catalysts

    DEFF Research Database (Denmark)

    Paoli, Elisa Antares; Masini, Federico; Frydendal, Rasmus

    2016-01-01

    Water splitting is hindered by the sluggish kinetics of the oxygen evolution reaction (OER). The choice of materials for this reaction in acid is limited to the platinum group metals; high loading required of these scarce and expensive elements severely limit the scalability of such technology...

  15. Influence of Substrate Composition on vitro Oxygen Consumption of ...

    African Journals Online (AJOL)

    1974-09-11

    Sep 11, 1974 ... and it activates the angiotensin sys- tem by converting angiotensin I to angiotensin n.l3 It also participates in the de 110\\10 synthesis of fatty acids," pro- teins" and of phospholipids (surfactant)." The oxygen consumed by the lung is used not only for its own basal metabolic needs but for additional metabolic.

  16. Oxygen effect and intracellular oxygen content (adaptation hypothesis)

    Energy Technology Data Exchange (ETDEWEB)

    Yarmonenko, S P; Ehpshtejn, I M [Akademiya Meditsinskikh Nauk SSSR, Moscow. Onkologicheskij Tsentr

    1977-01-01

    Experimental data indicating that a radiomodifying action of hypoxia is dependent on the ''prehistory'' of the irradiated object are considered. This dependence manifests itself in a decreased protective action of acute hypoxia on the hypoxia-adapted objects. To explain this a hypothesis is proposed connecting a degree of cell radiosensitivity modification, determined by the oxygen effect, with the intracellular oxygen content. The latter, in accord with current ideas, is regulated by variations in the diffusion resistance to oxygen shown by the cytoplasmic membranes depending on the energy level of the cell and the degree of its oxygenation.

  17. Oxygen effect and intracellular oxygen content (adaptation hypothesis)

    International Nuclear Information System (INIS)

    Yarmonenko, S.P.; Ehpshtejn, I.M.

    1977-01-01

    Experimental data indicating that a radiomodifying action of hypoxia is dependent on the ''prehistory'' of the irradiated object are considered. This dependence manifests itself in a decreased protective action of acute hypoxia on the hypoxia-adapted objects. To explain this a hypothesis is proposed connecting a degree of cell radiosensitivity modification, determined by the oxygen effect, with the intracellular oxygen content. The latter, in accord with current ideas, is regulated by variations in the diffusion resistance to oxygen shown by the cytoplasmic membranes depending on the energy level of the cell and the degree of its oxygenation

  18. Singlet oxygen-mediated damage to proteins and its consequences

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2003-01-01

    by the transfer of energy to ground state (triplet) molecular oxygen by either protein-bound, or other, chromophores. Singlet oxygen can also be generated by a range of other enzymatic and non-enzymatic reactions including processes mediated by heme proteins, lipoxygenases, and activated leukocytes, as well...... the absorption of UV radiation by the protein, or bound chromophore groups, thereby generating excited states (singlet or triplets) or radicals via photo-ionisation. The second major process involves indirect oxidation of the protein via the formation and subsequent reactions of singlet oxygen generated...... as radical termination reactions. This paper reviews the data available on singlet oxygen-mediated protein oxidation and concentrates primarily on the mechanisms by which this excited state species brings about changes to both the side-chains and backbone of amino acids, peptides, and proteins. Recent work...

  19. Oxygen availability in model solutions and purées during heat treatment and the impact on vitamin C degradation

    OpenAIRE

    Herbig , Anna-Lena; Maingonnat , Jean Francois; Renard , Catherine

    2017-01-01

    Oxygen availability in different media during heat treatment (8 h at 80°C) and the related vitamin C loss was assessed. Dissolved oxygen in water containing 3 mmol kg-1 of ascorbic acid decreased initially and seemed to be replaced by oxygen from the headspace in the course of time, as oxygen values increased again. In apple puree and carrot puree in contrast, oxygen was depleted within 60 min. Vitamin C in ultrapure water was stable even in the presence of oxygen. A trigger seemed to be cruc...

  20. Oxygen Reduction on Platinum

    DEFF Research Database (Denmark)

    Nesselberger, Markus

    . The influence of the ion adsorption strength, which is observed in the “particle size studies” on the oxygen reduction rate on Pt/C catalysts, is further investigated under similar reaction conditions by infrared spectroscopy. The designed in situ electrochemical ATR-FTIR setup features a high level...... of instrument automation and online data treatment, and provides welldefined mass transport conditions enabling kinetic measurements. A modified electrochemical / spectroscopic interface is presented allowing the exclusive investigation of the Pt/C catalyst layer. Three types of potential dependent adsorption...... adsorption on Pt does not block the ORR directly. Instead, the onset of oxide formation with the concomitant conversion of the anion adsorbate layer is the decisive blocking mechanism....

  1. Reactive Oxygen Species

    DEFF Research Database (Denmark)

    Franchina, Davide G.; Dostert, Catherine; Brenner, Dirk

    2018-01-01

    T cells are a central component of defenses against pathogens and tumors. Their effector functions are sustained by specific metabolic changes that occur upon activation, and these have been the focus of renewed interest. Energy production inevitably generates unwanted products, namely reactive...... and transcription factors, influencing the outcome of the T cell response. We discuss here how ROS can directly fine-tune metabolism and effector functions of T cells....... oxygen species (ROS), which have long been known to trigger cell death. However, there is now evidence that ROS also act as intracellular signaling molecules both in steady-state and upon antigen recognition. The levels and localization of ROS contribute to the redox modeling of effector proteins...

  2. Aspartic acid

    Science.gov (United States)

    ... we eat. Aspartic acid is also called asparaginic acid. Aspartic acid helps every cell in the body work. It ... release Normal nervous system function Plant sources of aspartic acid include: avocado, asparagus, and molasses. Animal sources of ...

  3. OXYGEN TRANSPORT CERAMIC MEMBRANES

    International Nuclear Information System (INIS)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques

  4. Mitochondrial Respiration and Oxygen Tension.

    Science.gov (United States)

    Shaw, Daniel S; Meitha, Karlia; Considine, Michael J; Foyer, Christine H

    2017-01-01

    Measurements of respiration and oxygen tension in plant organs allow a precise understanding of mitochondrial capacity and function within the context of cellular oxygen metabolism. Here we describe methods that can be routinely used for the isolation of intact mitochondria, and the determination of respiratory electron transport, together with techniques for in vivo determination of oxygen tension and measurement of respiration by both CO 2 production and O 2 consumption that enables calculation of the respiratory quotient [CO 2 ]/[O 2 ].

  5. Oxygen-reducing catalyst layer

    Science.gov (United States)

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  6. Oxygen potentials of transuranium oxides

    International Nuclear Information System (INIS)

    Haruyoshi Otobe; Mituso Akabori; Arai Yasuo; Kazuo Minato

    2008-01-01

    The oxygen potentials of pyrochlore-type Pu 2 Zr 2 O 7+y , fluorite-type (Pu 0.5 Zr 0.5 )O 2-x and AmO 2-x have been measured by the electromotive force (EMF) method with a zirconia solid-electrolyte. The oxygen potentials of these oxides were reviewed. The phase relations, microstructure, equilibrium state of these oxides were discussed, referring to the isothermal curve of the oxygen potentials. (authors)

  7. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain.

    Directory of Open Access Journals (Sweden)

    Claudia Alvarez-Carreño

    Full Text Available The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes.Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role.Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later evolution of the

  8. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and a Source of Titan's Aerosols?

    Science.gov (United States)

    Sittler, E. C., Jr.; Ali, A.; Cooper, J. F.; Hartle, R. E.; Johnson, R. E.; Coates, A. J.; Young, D. T.

    2009-01-01

    Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper atmosphere and ionosphere has advanced our understanding of ion neutral chemistry within Titan's upper atmosphere, primarily composed of molecular nitrogen, with approx.2.5% methane. The external energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy sources are solar UV, solar X-rays, Saturn's magnetospheric ions and electrons, solar wind and shocked magnetosheath ions and electrons, galactic cosmic rays (CCR) and the ablation of incident meteoritic dust from Enceladus' E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric ions detected in situ by Cassini for heights >950 km, are the likely seed particles for aerosols detected by the Huygens probe for altitudes <100km. These seed particles may be in the form of polycyclic aromatic hydrocarbons (PAH) containing both carbon and hydrogen atoms CnHx. There could also be hollow shells of carbon atoms, such as C60, called fullerenes which contain no hydrogen. The fullerenes may compose a significant fraction of the seed particles with PAHs contributing the rest. As shown by Cassini, the upper atmosphere is bombarded by magnetospheric plasma composed of protons, H(2+) and water group ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere and can become trapped within the fullerene molecules and ions. Pickup keV N(2+), N(+) and CH(4+) can also be implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following thermalization O(+) can interact with abundant CH4 contributing to the CO and CO2 observed in Titan's atmosphere. If an exogenic keV O(+) ion is implanted into the haze particles, it could become free oxygen within those aerosols that eventually fall onto Titan's surface. The process

  9. OXYGEN ISOTOPIC COMPOSITIONS OF SOLAR CORUNDUM GRAINS

    International Nuclear Information System (INIS)

    Makide, Kentaro; Nagashima, Kazuhide; Huss, Gary R.; Krot, Alexander N.

    2009-01-01

    Oxygen is one of the major rock-forming elements in the solar system and the third most abundant element of the Sun. Oxygen isotopic composition of the Sun, however, is not known due to a poor resolution of astronomical spectroscopic measurements. Several Δ 17 O values have been proposed for the composition of the Sun based on (1) the oxygen isotopic measurements of the solar wind implanted into metallic particles in lunar soil ( 2 O 3 ) is thermodynamically the first condensate from a cooling gas of solar composition. Corundum-bearing CAIs, however, are exceptionally rare, suggesting either continuous reaction of the corundum condensates with a cooling nebular gas and their replacement by hibonite (CaAl 12 O 19 ) or their destruction by melting together with less refractory condensates during formation of igneous CAIs. In contrast to the corundum-bearing CAIs, isolated micrometer-sized corundum grains are common in the acid-resistant residues from unmetamorphosed chondrites. These grains could have avoided multistage reprocessing during CAI formation and, therefore, can potentially provide constraints on the initial oxygen isotopic composition of the solar nebula, and, hence, of the Sun. Here we report oxygen isotopic compositions of ∼60 micrometer-sized corundum grains in the acid-resistant residues from unequilibrated ordinary chondrites (Semarkona (LL3.0), Bishunpur (LL3.1), Roosevelt County 075 (H3.2)) and unmetamorphosed carbonaceous chondrites (Orgueil (CI1), Murray (CM2), and Alan Hills A77307 (CO3.0)) measured with a Cameca ims-1280 ion microprobe. All corundum grains, except two, are 16 O-rich (Δ 17 O = -22.7 per mille ± 8.5 per mille, 2σ), and compositionally similar to the mineralogically pristine CAIs from the CR carbonaceous chondrites (-23.3 per mille ± 1.9 per mille, 2σ), and solar wind returned by the Genesis spacecraft (-27 per mille ± 6 per mille, 2σ). One corundum grain is highly 17 O-enriched (δ 17 O ∼ +60 per mille, δ 18 O

  10. The effect of ammonia upon the electrocatalysis of hydrogen oxidation and oxygen reduction on polycrystalline platinum

    DEFF Research Database (Denmark)

    Verdaguer Casadevall, Arnau; Hernandez-Fernandez, Patricia; Stephens, Ifan E.L.

    2012-01-01

    The influence of ammonium ions on the catalysis of hydrogen oxidation and oxygen reduction is studied by means of rotating ring-disk electrode experiments on polycrystalline platinum in perchloric acid. While ammonium does not affect the hydrogen oxidation reaction, the oxygen reduction reaction...

  11. Oxygen diffusion and oxygen effect in tumor tissue

    International Nuclear Information System (INIS)

    Eissa, H.M.; Hehn, G.

    1979-06-01

    The diffusion of oxygen in tumor cords of bronchus carcinoma of the lung have been studied with refined computer methods for solving the diffusion equation in axis symmetric tumor structures. In this tumor configuration we may find three different regions consisting of euoxic cells, hypoxic tumor cells and necrotic parts. In the case of oxygen supply from a capillary inside a cylinder of tumor tissue with radius 200 μm or in a tumor cord of radius 300 μm with oxygen supply by capillaries outside, we get a relation of well oxygenated cells to hypoxic cells approximately as 1:8 or as 1:1.1 respectively. Of course most of the tumor cords observed in histological slices have smaller diameters, so that an average of approximately 20% hypoxic cells can be assumed. Based on the work of Ardenne, the diffusion of oxygen and glucose in a tumor of type DS-carcinosarcom has been investigated in both intact tumor and tumor treated with ionizing radiation. We can show that a strong reoxygenation effect takes place in that the well supplied regions may increase in some tumor configurations up to a factor of four by volume. The biological consequences of the oxygen pressure determined in tumor cells are discussed in detail. The investigation of oxygen diffusion in the intercapillary tumor region should give a quantitative physical basis for considering the oxygen effect with the aim to explain the advantages of neutron therapy against conventional radiotherapy. (orig./MG) [de

  12. Integration of oxygen membranes for oxygen production in cement plants

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Søgaard, Martin; Hjuler, Klaus

    2015-01-01

    The present paper describes the integration of oxygen membranes in cement plants both from an energy, exergy and economic point of view. Different configurations for oxygen enrichment of the tertiary air for combustion in the pre-calciner and full oxy-fuel combustion in both pre-calciner and kiln...

  13. Effect of hyperbaric oxygenation on carbohydrate metabolism protein synthesis in the myocardium during sustained hypodynamia

    Science.gov (United States)

    Makarov, G. A.

    1980-01-01

    Glycolysis and the intensity of protein synthesis were studied in 140 white male rats in subcellular fractions of the myocardium during 45 day hypodynamia and hyperbaric oxygenation. Hypodynamia increased: (1) the amount of lactic acids; (2) the amount of pyruvic acid; (3) the lactate/pyruvate coefficient; and (4) the activities of aldolase and lactate dehydrogenase. Hyperbaric oxygenation was found to have a favorable metabolic effect on the animals with hypodynamia.

  14. Limitations of potentiometric oxygen sensors operating at low oxygen levels

    DEFF Research Database (Denmark)

    Lund, Anders; Jacobsen, Torben; Hansen, Karin Vels

    2011-01-01

    The electrochemical processes that limit the range of oxygen partial pressures in which potentiometric oxygen sensors can be used, were analysed using a theoretical and an experimental approach. Electrochemical impedance spectroscopy was performed on porous Pt/yttria stabilised zirconia (YSZ......) electrodes between 10−6 and 0.2 bar and at temperatures between 500 and 950 °C. The flow of oxide ions and electron holes through a sensor cell, with a YSZ electrolyte, were calculated under similar conditions. The oxygen permeation of the sensor cell was insignificant at an oxygen partial pressure of 10......−6 bar for an inlet flow rate higher than 2 L h−1 between 600 and 800 °C. The polarisation resistance measured between 10−6 and 10−4 bar was found to be inversely proportional to the oxygen partial pressure, nearly temperature independent and inversely proportional to the inlet gas flow rate, which shows...

  15. Oxygen therapy for cluster headache

    DEFF Research Database (Denmark)

    Petersen, Anja S; Barloese, Mads Cj; Lund, Nunu Lt

    2017-01-01

    -controlled, crossover inpatient study, and 102 CH attacks were treated with 100% oxygen delivered by demand valve oxygen (DVO), O2ptimask or simple mask (15 liters/min) or placebo delivered by DVO for 15 minutes. Primary endpoint: Two-point decrease of pain on a five-point rating scale within 15 minutes. Results Only...

  16. Mars oxygen production system design

    Science.gov (United States)

    Cotton, Charles E.; Pillow, Linda K.; Perkinson, Robert C.; Brownlie, R. P.; Chwalowski, P.; Carmona, M. F.; Coopersmith, J. P.; Goff, J. C.; Harvey, L. L.; Kovacs, L. A.

    1989-01-01

    The design and construction phase is summarized of the Mars oxygen demonstration project. The basic hardware required to produce oxygen from simulated Mars atmosphere was assembled and tested. Some design problems still remain with the sample collection and storage system. In addition, design and development of computer compatible data acquisition and control instrumentation is ongoing.

  17. Oxygen Effects in Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2009-10-01

    Full Text Available Interaction of free oxygen in bio-gasification is a sparsely studied area, apart from the common argument of oxygen being toxic and inhibitory for anaerobic micro-cultures. Some studies have, however, revealed increased solubilisation of organic matter in the presence of some free oxygen in anaerobic digestion. This article analyses these counterbalancing phenomena with a mathematical modelling approach using the widely accepted biochemical model ADM 1. Aerobic oxidation of soluble carbon and inhibition of obligatory anaerobic organisms are modelled using standard saturation type kinetics. Biomass dependent first order hydrolysis kinetics is used to relate the increased hydrolysis rate with oxygen induced increase in biomass growth. The amended model, ADM 1-Ox (oxygen, has 25 state variables and 22 biochemical processes, presented in matrix form. The computer aided simulation tool AQUASIM 2.1 is used to simulate the developed model. Simulation predictions are evaluated against experimental data obtained using a laboratory batch test array comprising miniature anaerobic bio-reactors of 100 ml total volume each, operated under different initial air headspaces giving rise to the different oxygen loading conditions. The reactors were initially fed with a glucose solution and incubated at 35 Celsius, for 563 hours. Under the oxygen load conditions of 22, 44 and 88 mg/L, the ADM1-Ox model simulations predicted the experimental methane potentials quite adequately. Both the experimental data and the simulations suggest a linear reduction of methane potential with respect to the increase in oxygen load within this range.

  18. Environmental science: Oceans lose oxygen

    Science.gov (United States)

    Gilbert, Denis

    2017-02-01

    Oxygen is essential to most life in the ocean. An analysis shows that oxygen levels have declined by 2% in the global ocean over the past five decades, probably causing habitat loss for many fish and invertebrate species. See Letter p.335

  19. Misconceptions in Reporting Oxygen Saturation

    NARCIS (Netherlands)

    Toffaletti, John; Zijlstra, Willem G.

    2007-01-01

    BACKGROUND: We describe some misconceptions that have become common practice in reporting blood gas and cooximetry results. In 1980, oxygen saturation was incorrectly redefined in a report of a new instrument for analysis of hemoglobin (Hb) derivatives. Oxygen saturation (sO(2)) was redefined as the

  20. On the Go with Oxygen

    Science.gov (United States)

    ... for both the patient and the oxygen supply company. There are two types of concentrators: Stationary concentrators plug into an electrical ... stationary unit. If your oxygen needs change, the type of system can ... supply company should explain and demonstrate whatever system you choose. ...

  1. OXYGEN TRANSPORT CERAMIC MEMBRANES

    International Nuclear Information System (INIS)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals

  2. Oxygen diffusion through soil covers on sulphidic mine tailings

    International Nuclear Information System (INIS)

    Yanful, E.K.

    1993-01-01

    Engineered soil covers are being evaluated under Canada's Mine Environment Neutral Drainage (MEND) program for their effectiveness in preventing and controlling acid generation in sulfidic mill tailings. A critical parameter for predicting the performance of these covers is the diffusion coefficient of gaseous oxygen in the cover materials. Laboratory experiments conducted to determine the effective diffusion coefficient of a candidate cover material, a glacial till from an active mine site, are described. The diffusion coefficient is determined by fitting a semianalytic solution of the one-dimensional, transient diffusion equation to experimental gaseous oxygen concentration versus time graphs. Effective diffusion coefficients determined at high water saturations (85%--95%) were of the order of 8 x 10 -8 m 2 /s. The diffusion coefficients decreased with increase in water saturation as a result of the low diffusivity of gaseous oxygen in water relative to that in air and the low solubility of oxygen in water. Placement of soil covers in high saturation conditions would ensure that the flux of oxygen into tailings underneath such covers is low, resulting in low acid flux. This is confirmed by combined laboratory, field, and modeling studies

  3. Advanced Oxygen Systems for Aircraft (Systemes d’Oxygene Avances)

    Science.gov (United States)

    1996-04-01

    Oxygen Generating System (NAOGS), SAM-TR-80-12, Brooks AFB TX 78235, 1980. 11. Horch TC, Miller RL, Bomar JB, Tedor JB, Holden RD, Ikels KG, and...sieve oxygen generation sys- tem. Data from Horch et al (15). cabin altitude. The minimum and maximum oxygen concen- tration lines depict the...an AV-8A Aircraft; Naval Air Test Center Report No. SY-136R-81, 1981. 15. Horch TC, Miller RL, Bomar JB Jr, Tedor JB, Holden RD, Ikels KG, and

  4. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium

    KAUST Repository

    Zhang, Jizhe; Liu, Xin; Sun, Miao; Ma, Xiaohua; Han, Yu

    2012-01-01

    Direct conversion of cellulose to fine chemicals has rarely been achieved. We describe here an eco-benign route for directly converting various cellulose-based biomasses to glycolic acid in a water medium and oxygen atmosphere in which

  5. Simultaneous Monitoring of Vascular Oxygenation and Tissue Oxygen Tension of Breast Tumors Under Hyperbaric Oxygen Exposure

    Science.gov (United States)

    2008-04-01

    28. Alagoz, T., R. Buller, B. Anderson, K. Terrell , R...and oxygenation Ann . New Acad. Sci. 838 29–45 Chapman J D, Stobbe C C, Arnfield M R, Santus R, Lee J and McPhee M S 1991 Oxygen dependency of tumor

  6. Effect of nitrogen and oxygen on radiolysis of iodide solution

    Energy Technology Data Exchange (ETDEWEB)

    Karasawa, H; Endo, M [Hitachi Ltd., Power and Industrial System R+D Divisions, Ibaraki (Japan)

    1996-12-01

    The effect of nitrogen and oxygen on radiolysis of iodide solution was examined. Direct decomposition of nitrogen by {gamma}-radiation produced nitric acid to decrease a water pH. This resulted in the iodine formation in the radiolysis of iodide solution. Hydrogen peroxide was produced by the radiolysis of water containing oxygen. This worked a reducing agent to suppress the formation of iodine in the radiolysis of iodide solution. In the analytical model, fourteen iodine species were considered and reaction scheme consisted in 124 reactions. The analytical model could estimate the oxidation state of iodide ions. (author) 4 figs., 4 refs.

  7. Antioxidants may Attenuate Plasma Erythropoietin Decline after Hyperbaric Oxygen Diving.

    Science.gov (United States)

    Mutzbauer, T S; Schneider, M; Neubauer, B; Weiss, M; Tetzlaff, K

    2015-11-01

    According to previous studies, plasma erythropoietin (EPO) may decrease after hyperbaric oxygen exposure due to oxidative stress. It is hypothesized that the decrease of EPO can be attenuated by oxygen free radical scavengers.The aim of the present study was to evaluate whether EPO plasma levels can be influenced by oral application of vitamin C and E before repeated hyperbaric oxygen exposure during diving. 16 healthy male police task force divers performed 3 morning dives on oxygen within a regular diving schedule on 3 consecutive days. They were randomized into either the placebo group or the vitamin group, receiving 1 g ascorbic acid and 600 IU D-α-tocopherol orally 60 min before the dive. Blood samples for EPO measurement were taken on days 1, 2, and 3 at T1, T3 and T5 60 min before and at T2, T4 and T6 60 min after each dive, respectively. A moderate decrease of EPO was observed beginning at T3 until T6 in the placebo group. The EPO concentrations in the vitamin group did not show relevant variations compared to baseline. Radical scavenging vitamins C and D may counteract hyperbaric oxygen related mechanisms reducing EPO production in hyperbaric oxygen exposure during diving. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Oxygen dependency of porfiromycin cytotoxicity

    International Nuclear Information System (INIS)

    Marshall, R.S.; Rauth, A.M.

    1987-01-01

    The authors determined the oxygen dependency of toxicity for the bioreductive alkylating agents mitomycin C (MMC) and porfiromycin (PM) to investigate whether the toxicities of these agents increase in the range of oxygen tensions over which cells become increasingly radioresistant. In the present work the oxygen dependency of PM in CHO cells was determined by assaying survival as a function of time of exposure to 1.0 μg/ml PM under various known levels of oxygen. While PM demonstrated preferential hypoxic cell toxicity, aerobic cell survival was reduced ten-fold after five hours of exposure. Conversely, PM toxicity after a five hour hypoxic exposure to <0.001% oxygen appeared to be greater than that observed for similar MMC exposures, suggesting that PM may be more selective than MMC in killing hypoxic rather than aerobic cells. The authors are currently investigating this preferential toxicity in two human cell lines, one of which is resistant to these agents. At present, these observations suggest that PM may be more effective than MMC at destroying tumour cells in regions of intermediate and low oxygen tensions which may survive radiotherapy, though the range of oxygen tensions which mediate toxicity is similar for both agents

  9. Orientation-Dependent Oxygen Evolution on RuO2 without Lattice Exchange

    DEFF Research Database (Denmark)

    Stoerzinger, Kelsey A.; Diaz-Morales, Oscar; Kolb, Manuel

    2017-01-01

    the potential involvement of lattice oxygen in the OER mechanism with online electrochemical mass spectrometry, which showed no evidence of oxygen exchange on these oriented facets in acidic or basic electrolytes. Similar results were obtained for polyoriented RuO2 films and particles, in contrast to previous...... work, suggesting lattice oxygen is not exchanged in catalyzing OER on crystalline RuO2 surfaces. This hypothesis is supported by the correlation of activity with the number of active Ru-sites calculated by density functional theory, where more active facets bind oxygen more weakly. This new...

  10. Oxygen treatment of cluster headache

    DEFF Research Database (Denmark)

    Petersen, Anja S; Barloese, Mads C J; Jensen, Rigmor H

    2014-01-01

    PURPOSE: Our aim was to review the existing literature to document oxygen's therapeutic effect on cluster headache. METHOD: A PubMed search resulted in 28 hits, and from these and their references we found in total 11 relevant studies. We included six studies that investigated the efficacy......, but not a prophylactic effect. Despite the fact that only a few high-quality RCT studies are available, oxygen treatment is close to an ideal treatment because it is effective and safe. However, sufferers of cluster headache do not always have access to oxygen because of logistic and financial concerns....

  11. Oxygen diffusion in cuprate superconductors

    International Nuclear Information System (INIS)

    Routbort, J.L.; Rothman, S.J.

    1995-01-01

    Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La 2-x Sr x CuO 4 , YBa 2 Cu 3 O 7- δ, YBa 2 Cu 4 O 8 , and the Bi 2 Sr 2 Ca n-1 Cu n O 2+4 (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible

  12. Oxygen permeation modelling of perovskites

    NARCIS (Netherlands)

    van Hassel, Bart A.; van Hassel, B.A.; Kawada, Tatsuya; Sakai, Natsuko; Yokokawa, Harumi; Dokiya, Masayuki; Bouwmeester, Henricus J.M.

    1993-01-01

    A point defect model was used to describe the oxygen nonstoichiometry of the perovskites La0.75Sr0.25CrO3, La0.9Sr0.1FeO3, La0.9Sr0.1CoO3 and La0.8Sr0.2MnO3 as a function of the oxygen partial pressure. Form the oxygen vacancy concentration predicte by the point defect model, the ionic conductivity

  13. Biophysical properties of phenyl succinic acid derivatised hyaluronic acid

    DEFF Research Database (Denmark)

    Neves-Petersen, Maria Teresa; Klitgaard, Søren; Skovsen, Esben

    2010-01-01

    Modification of hyaluronic acid (HA) with aryl succinic anhydrides results in new biomedical properties of HA as compared to non-modified HA, such as more efficient skin penetration, stronger binding to the skin, and the ability to blend with hydrophobic materials. In the present study, hyaluronic...... acid has been derivatised with the anhydride form of phenyl succinic acid (PheSA). The fluorescence of PheSA was efficiently quenched by the HA matrix. HA also acted as a singlet oxygen scavenger. Fluorescence lifetime(s) of PheSA in solution and when attached to the HA matrix has been monitored...

  14. Insights into the importance of oxygen functional groups in carbon reactions with oxygen containing gases

    International Nuclear Information System (INIS)

    John Zhu, Max Lu

    2005-01-01

    The role of pore structure of carbon in carbon-related adsorptions and reactions has been extensively investigated. However the studies on the role of surface chemistry of carbon are limited. In this paper, we present the importance of oxygen functional groups in carbon reactions with oxygen-containing gases. It is found that there is a good correlation between the electronic structures and reactivities of carbon edge sites. Zigzag sites are more active in oxygen adsorption because of the unpaired electrons and armchair sites are less active in oxygen adsorption due to the triple character. However, the desorption of semi-quinone oxygen from zigzag sites needs a bond energy ca. 30% higher than that of o-quinone oxygen from armchair edge sites. CO 2 and H 2 O adsorb on carbon surface much less favorably than O 2 . H 2 O is first physically adsorbed on the virgin graphite surface followed by chemisorption through oxygen atom approaching the carbon edge site and the movements of two hydrogen atoms to produce H 2 . The adsorption mechanism of H 2 O is different from that for CO 2 , but the final result is quite similar, i.e. producing only semi-quinone oxygen. Based upon the above studies, a new generalized mechanism, as shown in Fig. 1, is developed and can account for all the important kinetic phenomena of carbon-gas reactions. The key point is that in CO 2 /H 2 O-carbon reaction only semi-quinone formed; while, in O 2 -carbon reaction, semi-quinone, o-quinone (at lower pressure), and off-plane epoxy oxygen (at relatively higher pressure) can be formed. This is the main reason for the different reaction kinetics of O 2 -carbon reaction and CO 2 /H 2 O-carbon reactions as observed experimentally. The oxygen functional groups of carbon can be characterized by XPS, PZC (point of zero charge), IEP (isoelectric point) and TPD (temperature-programmed desorption), which were used in our previous studies. We treated the carbon surface with different acids, finding that HNO 3

  15. Oxygenates to hike gasoline price

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that cost of achieving required US gasoline formulations this winter in Environmental Protection Agency carbon monoxide (CO) nonattainment areas could reach 3-5 cents/gal, an Energy Information Administration analysis has found. EIA says new winter demand for gasoline blending oxygenates such as methyl tertiary butyl ether (MTBE) or ethanol created by 190 amendments to the Clean Air Act (CAA) will exceed US oxygenate production by 140,000-220,000 b/d. The shortfall must be made up from inventory or imports. EIA estimates the cost of providing incremental oxygenate to meet expected gasoline blending demand likely will result in a price premium of about 20 cents/gal of MTBE equivalent over traditional gasoline blend octane value. That cost likely will be added to the price of oxygenated gasoline

  16. Oxygen Concentration Inside a Functioning Photosynthetic Cell

    OpenAIRE

    Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei

    2014-01-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic...

  17. Acid Rain

    Science.gov (United States)

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  18. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  19. Substrate effect on oxygen reduction electrocatalysis

    International Nuclear Information System (INIS)

    Timperman, L.; Feng, Y.J.; Vogel, W.; Alonso-Vante, N.

    2010-01-01

    The oxygen reduction reaction (ORR) was investigated on carbon (XC-72) supported platinum nanoparticles, generated via the carbonyl chemical route and on oxide composites supported platinum generated via the UV-photo-deposition technique in sulfuric acid medium. The behavior of Pt/C was examined using a careful dosing of the catalyst loading spanning the range from 4.3 to 131 μg cm -2 . The ORR electrochemical response of Pt/C (in line with recent literature data) is put into contrast with the Pt/oxide-composite systems. Our results point out that it is possible to use smaller amounts of catalyst for the ORR when platinum atoms interact with the oxide (anatase) surface of the substrate composite. Evidence of the incipient metal-substrate interaction is discussed in the light of the results of XRD experiments.

  20. Hydrogen and oxygen production with nuclear heat

    International Nuclear Information System (INIS)

    Barnert, H.

    1979-09-01

    After some remarks on the necessity of producing secondary energy sources for the heat market, the thermodynamic fundamentals of the processes for producing hydrogen and oxygen from water on the basis of nuclear thermal energy are briefly explained. These processes are summarized as one class of the 'thermochemical cycle process' for the conversion of thermal into chemical energy. A number of thermochemical cycle processes are described. The results of the design work so far are illustrated by the example of the 'sulphuric acid hybrid process'. The nuclear heat source of the thermochemical cycle process is the high-temperature reactor. Statements concerning rentability are briefly commented upon, and the research and development efforts and expenditure required are sketched. (orig.) 891 GG/orig. 892 MB [de

  1. Simultaneous Monitoring of Vascular Oxygenation and Tissue Oxygen Tension of Breast Tumors Under Hyperbaric Oxygen Exposure

    National Research Council Canada - National Science Library

    Xia, Mengna

    2005-01-01

    The goals of the study in the first stage are 1) to develop a mathematic model by which we can derive tumor blood flow and metabolic rate of oxygen from hemoglobin concentration during interventions, 2...

  2. The oxycoal process with cryogenic oxygen supply

    Science.gov (United States)

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    ash or the deposits that form. In particular, detailed nitrogen and sulphur chemistry was investigated by combustion tests in a laboratory-scale facility. Oxidant staging, in order to reduce NO formation, turned out to work with similar effectiveness as for conventional air combustion. With regard to sulphur, a considerable increase in the SO2 concentration was found, as expected. However, the H2S concentration in the combustion atmosphere increased as well. Further results were achieved with a pilot-scale test facility, where acid dew points were measured and deposition probes were exposed to the combustion environment. Besides CO2 and water vapour, the flue gas contains impurities like sulphur species, nitrogen oxides, argon, nitrogen, and oxygen. The CO2 liquefaction is strongly affected by these impurities in terms of the auxiliary power requirement and the CO2 capture rate. Furthermore, the impurity of the liquefied CO2 is affected as well. Since the requirements on the liquid CO2 with regard to geological storage or enhanced oil recovery are currently undefined, the effects of possible flue gas treatment and the design of the liquefaction plant are studied over a wide range.

  3. The oxycoal process with cryogenic oxygen supply.

    Science.gov (United States)

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    ash or the deposits that form. In particular, detailed nitrogen and sulphur chemistry was investigated by combustion tests in a laboratory-scale facility. Oxidant staging, in order to reduce NO formation, turned out to work with similar effectiveness as for conventional air combustion. With regard to sulphur, a considerable increase in the SO2 concentration was found, as expected. However, the H2S concentration in the combustion atmosphere increased as well. Further results were achieved with a pilot-scale test facility, where acid dew points were measured and deposition probes were exposed to the combustion environment. Besides CO2 and water vapour, the flue gas contains impurities like sulphur species, nitrogen oxides, argon, nitrogen, and oxygen. The CO2 liquefaction is strongly affected by these impurities in terms of the auxiliary power requirement and the CO2 capture rate. Furthermore, the impurity of the liquefied CO2 is affected as well. Since the requirements on the liquid CO2 with regard to geological storage or enhanced oil recovery are currently undefined, the effects of possible flue gas treatment and the design of the liquefaction plant are studied over a wide range.

  4. Stellar Oxygen Abundances

    Science.gov (United States)

    King, Jeremy

    1994-04-01

    This dissertation addresses several issues concerning stellar oxygen abundances. The 7774 {\\AA} O I triplet equivalent widths of Abia & Rebolo [1989, AJ, 347, 186] for metal-poor dwarfs are found to be systematically too high. I also argue that current effective temperatures used in halo star abundance studies may be ~150 K too low. New color-Teff relations are derived for metal-poor stars. Using the revised Teff values and improved equivalent widths for the 7774A O I triplet, the mean [O/Fe] ratio for a handful of halo stars is found to be +0.52 with no dependence on Teff or [Fe/H]. Possible cosmological implications of the hotter Teff scale are discussed along with additional evidence supporting the need for a higher temperature scale for metal-poor stars. Our Teff scale leads to a Spite Li plateau value of N(Li)=2.28 +/- 0.09. A conservative minimal primordial value of N(Li)=2.35 is inferred. If errors in the observations and models are considered, consistency with standard models of Big Bang nucleosynthesis is still achieved with this larger Li abundance. The revised Teff scale raises the observed B/Be ratio of HD 140283 from 10 to 12, making its value more comfortably consistent with the production of the observed B and Be by ordinary spallation. Our Teff values are found to be in good agreement with values predicted from both the Victoria and Yale isochrone color-Teff relations. Thus, it appears likely that no changes in globular cluster ages would result. Next, we examine the location of the break in the [O/Fe] versus [Fe/H] plane in a quantitative fashion. Analysis of a relatively homogeneous data set does not favor any unique break point in the range -1.7 /= -3), in agreement with the new results for halo dwarfs. We find that the gap in the observed [O/H] distribution, noted by Wheeler et al. [1989, ARAA, 27, 279], persists despite the addition of more O data and may betray the occurrence of a hiatus in star formation between the end of halo formation and

  5. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors

    Science.gov (United States)

    Sun, Zhijuan; Cai, Chenxin; Guo, Fei; Ye, Changhuai; Luo, Yingwu; Ye, Shuming; Luo, Jianchao; Zhu, Fan; Jiang, Chunyue

    2018-04-01

    Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor’s work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.

  6. Oxygen-Partial-Pressure Sensor for Aircraft Oxygen Mask

    Science.gov (United States)

    Kelly, Mark; Pettit, Donald

    2003-01-01

    A device that generates an alarm when the partial pressure of oxygen decreases to less than a preset level has been developed to help prevent hypoxia in a pilot or other crewmember of a military or other high-performance aircraft. Loss of oxygen partial pressure can be caused by poor fit of the mask or failure of a hose or other component of an oxygen distribution system. The deleterious physical and mental effects of hypoxia cause the loss of a military aircraft and crew every few years. The device is installed in the crewmember s oxygen mask and is powered via communication wiring already present in all such oxygen masks. The device (see figure) includes an electrochemical sensor, the output potential of which is proportional to the partial pressure of oxygen. The output of the sensor is amplified and fed to the input of a comparator circuit. A reference potential that corresponds to the amplified sensor output at the alarm oxygen-partial-pressure level is fed to the second input of the comparator. When the sensed partial pressure of oxygen falls below the minimum acceptable level, the output of the comparator goes from the low state (a few millivolts) to the high state (near the supply potential, which is typically 6.8 V for microphone power). The switching of the comparator output to the high state triggers a tactile alarm in the form of a vibration in the mask, generated by a small 1.3-Vdc pager motor spinning an eccentric mass at a rate between 8,000 and 10,000 rpm. The sensation of the mask vibrating against the crewmember s nose is very effective at alerting the crewmember, who may already be groggy from hypoxia and is immersed in an environment that is saturated with visual cues and sounds. Indeed, the sensation is one of rudeness, but such rudeness could be what is needed to stimulate the crewmember to take corrective action in a life-threatening situation.

  7. Oxygenation measurements in head and neck cancers during hyperbaric oxygenation

    International Nuclear Information System (INIS)

    Becker, A.; Kuhnt, T.; Dunst, J.; Liedtke, H.; Krivokuca, A.; Bloching, M.

    2002-01-01

    Background: Tumor hypoxia has proven prognostic impact in head and neck cancers and is associated with poor response to radiotherapy. Hyperbaric oxygenation (HBO) offers an approach to overcome hypoxia. We have performed pO 2 measurements in selected patients with head and neck cancers under HBO to determine in how far changes in the oxygenation occur and whether a possible improvement of oxygenation parameters is maintained after HBO. Patients and Methods: Seven patients (five male, two female, age 51-63 years) with squamous cell cancers of the head and neck were investigated (six primaries, one local recurrence). The median pO 2 prior to HBO was determined with the Eppendorf histograph. Sites of measurement were enlarged cervical lymph nodes (n = 5), the primary tumor (n = 1) and local recurrence (n = 1). Patients then underwent HBO (100% O 2 at 240 kPa for 30 minutes) and the continuous changes in the oxygenation during HBO were determined with a Licox probe. Patients had HBO for 30 minutes (n = 6) to 40 minutes (n = 1). HBO was continued because the pO 2 had not reached a steady state after 30 minutes. After decompression, patients ventilated pure oxygen under normobaric conditions and the course of the pO 2 was further measured over about 15 minutes. Results: Prior to HBO, the median tumor pO 2 in the Eppendorf histography was 8.6 ± 5.4 mm Hg (range 3-19 mm Hg) and the pO 2 measured with the Licox probe was 17.3 ± 25.5 mm Hg (range 0-73 mm Hg). The pO 2 increased significantly during HBO to 550 ± 333 mm Hg (range 85-984 mm Hg, p = 0.018). All patients showed a marked increase irrespective of the oxygenation prior to HBO. The maximum pO 2 in the tumor was reached after 10-33 minutes (mean 17 minutes). After leaving the hyperbaric chamber, the pO 2 was 282 ± 196 mm Hg. All patients maintained an elevated pO 2 for further 5-25 minutes (138 ± 128 mm Hg, range 42-334 mm Hg, p = 0.028 vs the pO 2 prior to HBO). Conclusions: Hyperbaric oxygenation resulted in a

  8. Treatments of acid waters; Tratamientos pasivos de aguas acidas

    Energy Technology Data Exchange (ETDEWEB)

    Delgado Fernandez, J. L.

    2000-07-01

    The exploitation of coal mining locations causes acid effluents due to the oxidation of the sulfurous minerals content of the rocks, denominated acid waters. There are Pyritic materials, pyres and sulphates associated to acid waters that in presence of water, oxygen and certain bacteria (mainly Thiobacillus ferro oxidants), are oxidized, by means of a chemistry reaction, yielding different products. (Author)

  9. Impurities of oxygen in silicon

    International Nuclear Information System (INIS)

    Gomes, V.M.S.

    1985-01-01

    The electronic structure of oxygen complex defects in silicon, using molecular cluster model with saturation by watson sphere into the formalism of Xα multiple scattering method is studied. A systematic study of the simulation of perfect silicon crystal and an analysis of the increasing of atom number in the clusters are done to choose the suitable cluster for the calculations. The divacancy in three charge states (Si:V 2 + , Si:V 2 0 , Si:V 2 - ), of the oxygen pair (Si:O 2 ) and the oxygen-vacancy pair (Si:O.V) neighbours in the silicon lattice, is studied. Distortions for the symmetry were included in the Si:V 2 + and Si:O 2 systems. The behavior of defect levels related to the cluster size of Si:V 2 0 and Si:O 2 systems, the insulated oxygen impurity of silicon in interstitial position (Si:O i ), and the complexes involving four oxygen atoms are analysed. (M.C.K.) [pt

  10. Effects of prone and supine position on oxygenation and inflammatory mediator in a hydrochloric acid-induced lung dysfunction in rats Efeitos da posição prona e supina na oxigenação e mediador inflamatório na disfunção pulmonar induzida por ácido clorídrico em ratos

    Directory of Open Access Journals (Sweden)

    Wagner Rogério Souza de Oliveira

    2008-10-01

    Full Text Available PURPOSE: To compare the effectiveness of mechanical ventilation of supine versus prone position in hydrochloric acid (HCl-induced lung dysfunction. METHODS: Twenty, adult, male, Wistar-EPM-1 rats were anesthetized and randomly grouped (n=5 animals per group as follows: CS-MV (mechanical ventilation in supine position; CP-MV (mechanical ventilation in prone position; bilateral instillation of HCl and mechanical ventilation in supine position (HCl+S; and bilateral instillation of HCl and mechanical ventilation in prone position (HCl+P. All groups were ventilated for 180 minutes. The blood partial pressures of oxygen and carbon dioxide were measured in the time points 0 (zero; 10 minutes before lung injury for stabilization, and at the end of times acid injury, 60, 120 and 180 minutes of mechanical ventilation. At the end of experiment the animals were euthanized, and bronchoalveolar lavages (BALs were taken to determine the contents of total proteins, inflammatory mediators, and lungs wet-to-dry ratios. RESULTS: In the HCl+P group the partial pressure of oxygen increased when compared with HCl+S (128.0±2.9 mmHg and 111.0±6.7 mmHg, respectively within 60 minutes. TNF-α levels in BAL do not differ significantly in the HCl+P group (516.0±5.9 pg/mL, and the HCl+S (513.0±10.6 pg/mL. CONCLUSION: The use of prone position improved oxygenation, but did not reduce TNF-α in BAL upon lung dysfunction induced by HCl.OBJETIVO: Comparar os efeitos da ventilação mecânica em posição prona versus supina na disfunção pulmonar induzida por ácido clorídrico (HCl. MÉTODOS: Vinte ratos, adultos, Wistar-EPM-1 foram anestesiados e distribuídos aleatoriamente em grupos (n=5 animais por grupo: CS-MV (controle, ventilado mecanicamente em posição supina; CP-MV (controle, ventilado mecanicamente em posição prona; instilação bilateral de HCl e ventilação mecânica em posição supina (HCl+S ou ventilação em posição prona (HCl+P. Todos os grupos

  11. HYPERBARIC OXYGENATION AND AEROBIC PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Irvine D. Prather

    2004-03-01

    Full Text Available The continuing desire to improve performance, particularly at the national and international levels, has led to the use of ergogenic aids. Ergogenic aids are defined as 'a procedure or agent that provides the athlete with a competitive edge beyond that obtained via normal training methods'. Random drug testing has been implemented in an effort to minimize an athlete's ability to gain an unfair advantage. However, other means of improving performance have been tried. Blood doping has been used to enhance endurance performance by improving oxygen delivery to working muscles. As oxygen is carried in combination with the hemoglobin, it seems logical that increasing the number of red blood cells (RBC's in the body would increase the oxygen carrying capacity to the tissues and result in improved performance. The first experiments of removing and then reinfusing blood showed a significant improvement in performance time

  12. Photoacoustic Imaging in Oxygen Detection

    Directory of Open Access Journals (Sweden)

    Fei Cao

    2017-12-01

    Full Text Available Oxygen level, including blood oxygen saturation (sO2 and tissue oxygen partial pressure (pO2, are crucial physiological parameters in life science. This paper reviews the importance of these two parameters and the detection methods for them, focusing on the application of photoacoustic imaging in this scenario. sO2 is traditionally detected with optical spectra-based methods, and has recently been proven uniquely efficient by using photoacoustic methods. pO2, on the other hand, is typically detected by PET, MRI, or pure optical approaches, yet with limited spatial resolution, imaging frame rate, or penetration depth. Great potential has also been demonstrated by employing photoacoustic imaging to overcome the existing limitations of the aforementioned techniques.

  13. Oxygen diffusion in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Routbort, J.L.; Rothman, S.J.

    1995-01-01

    Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La{sub 2}{sub {minus}}{sub {times}}Sr{sub {times}}CuO{sub 4}, YBa{sub 2}Cu{sub 3}O{sub 7}{sub {minus}}{delta}, YBa{sub 2}Cu{sub 4}O{sub 8}, and the Bi{sub 2}Sr{sub 2}Ca{sub n}{sub {minus}}{sub 1}Cu{sub n}O{sub 2}{sub +}{sub 4} (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible.

  14. Improvement of AD Biosynthesis Response to Enhanced Oxygen Transfer by Oxygen Vectors in Mycobacterium neoaurum TCCC 11979.

    Science.gov (United States)

    Su, Liqiu; Shen, Yanbing; Gao, Tian; Luo, Jianmei; Wang, Min

    2017-08-01

    In steroid biotransformation, soybean oil can improve the productivity of steroids by increasing substrate solubility and strengthen the cell membrane permeability. However, little is known of its role as oxygen carrier and its mechanism of promoting the steroid biotransformation. In this work, soybean oil used as oxygen vector for the enhancement of androst-4-ene-3,17-dione (AD) production by Mycobacterium neoaurum TCCC 11979 (MNR) was investigated. Upon the addition of 16% (v/v) soybean oil, the volumetric oxygen transfer coefficient (K L a) value increased by 44%, and the peak molar yield of AD (55.76%) was achieved. Analysis of intracellular cofactor levels showed high NAD + , ATP level, and a low NADH/NAD + ratio. Meanwhile, the two key enzymes of the tricarboxylic acid (TCA) cycle, namely, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, were upregulated after incubation with soybean oil. These enhancements induced by the increasing of oxygen supply showed positive effects on phytosterol (PS) bioconversion. Results could contribute to the understanding of effects of soybean oil as oxygen vector on steroid biotransformation and provided a convenient method for enhancing the efficiency of aerobic steroid biocatalysis.

  15. Kinetics of oxygen uncoupling of a copper based oxygen carrier

    International Nuclear Information System (INIS)

    Hu, Wenting; Donat, Felix; Scott, S.A.; Dennis, J.S.

    2016-01-01

    Highlights: • The kinetics of a Cu-based oxygen carrier was determined using a TGA. • A diffusion model was applied to remove mass transfer effects from rate parameters. • Thermodynamics are separated from kinetics, usually difficult for the CLOU reaction. • The rate parameters correctly described the behaviour in a fluidised bed. • The rate parameters can be used to predict performance of large CLOU systems. - Abstract: Here, an oxygen carrier consisting of 60 wt% CuO supported on a mixture of Al_2O_3 and CaO (23 wt% and 17 wt% respectively) was synthesised by wet-mixing powdered CuO, Al(OH)_3 and Ca(OH)_2, followed by calcination at 1000 °C. Its suitability for chemical looping with oxygen uncoupling (CLOU) was investigated. After 25 repeated redox cycles in either a thermogravimetric analyser (TGA) or a laboratory-scale fluidised bed, (with 5 vol% H_2 in N_2 as the fuel, and air as the oxidant) no significant change in either the oxygen uncoupling capacity or the overall oxygen availability of the carrier was found. In the TGA, it was found that the rate of oxygen release from the material was controlled by intrinsic chemical kinetics and external transfer of mass from the surface of the particles to the bulk gas. By modelling the various resistances, values of the rate constant for the decomposition were obtained. The activation energy of the reaction was found to be 59.7 kJ/mol (with a standard error of 5.6 kJ/mol) and the corresponding pre-exponential factor was 632 m"3/mol/s. The local rate of conversion within a particle was assumed to occur either (i) by homogeneous chemical reaction, or (ii) in uniform, non-porous grains, each reacting as a kinetically-controlled shrinking core. Upon cross validation against a batch fluidised bed experiment, the homogeneous reaction model was found to be more plausible. By accurately accounting for the various artefacts (e.g. mass transfer resistances) present in both TGA and fluidised bed experiments, it was

  16. N-(3-Methylphenylsuccinamic acid

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda

    2010-02-01

    Full Text Available In the crystal structure of the title compound, C11H13NO3, the conformations of the N—H and C=O bonds in the amide segment are anti to each other, and that of the amide H atom is anti to the meta-methyl group in the benzene ring. Furthermore, the conformations of the amide oxygen and the carbonyl O atom of the acid segment are also anti to the adjacent –CH2 groups. The C=O and O—H bonds of the acid group are syn to each other. In the crystal, the molecules are packed into infinite chains through intermolecular N—H...O and O—H...O hydrogen bonds.

  17. Renal Blood Flow, Glomerular Filtration Rate, and Renal Oxygenation in Early Clinical Septic Shock.

    Science.gov (United States)

    Skytte Larsson, Jenny; Krumbholz, Vitus; Enskog, Anders; Bragadottir, Gudrun; Redfors, Bengt; Ricksten, Sven-Erik

    2018-06-01

    Data on renal hemodynamics, function, and oxygenation in early clinical septic shock are lacking. We therefore measured renal blood flow, glomerular filtration rate, renal oxygen consumption, and oxygenation in patients with early septic shock. Prospective comparative study. General and cardiothoracic ICUs. Patients with norepinephrine-dependent early septic shock (n = 8) were studied within 24 hours after arrival in the ICU and compared with postcardiac surgery patients without acute kidney injury (comparator group, n = 58). None. Data on systemic hemodynamics and renal variables were obtained during two 30-minute periods. Renal blood flow was measured by the infusion clearance of para-aminohippuric acid, corrected for renal extraction of para-aminohippuric acid. Renal filtration fraction was measured by renal extraction of chromium-51 labeled EDTA. Renal oxygenation was estimated from renal oxygen extraction. Renal oxygen delivery (-24%; p = 0.037) and the renal blood flow-to-cardiac index ratio (-21%; p = 0.018) were lower, renal vascular resistance was higher (26%; p = 0.027), whereas renal blood flow tended to be lower (-19%; p = 0.068) in the septic group. Glomerular filtration rate (-32%; p = 0.006) and renal sodium reabsorption (-29%; p = 0.014) were both lower in the septic group. Neither renal filtration fraction nor renal oxygen consumption differed significantly between groups. Renal oxygen extraction was significantly higher in the septic group (28%; p = 0.022). In the septic group, markers of tubular injury were elevated. In early clinical septic shock, renal function was lower, which was accompanied by renal vasoconstriction, a lower renal oxygen delivery, impaired renal oxygenation, and tubular sodium reabsorption at a high oxygen cost compared with controls.

  18. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  19. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Amino acids

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  1. Valproic Acid

    Science.gov (United States)

    ... acid is in a class of medications called anticonvulsants. It works by increasing the amount of a ... older (about 1 in 500 people) who took anticonvulsants such as valproic acid to treat various conditions ...

  2. Ascorbic Acid

    Science.gov (United States)

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C in ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops to ...

  3. Aminocaproic Acid

    Science.gov (United States)

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  4. Ethacrynic Acid

    Science.gov (United States)

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  5. Singlet Oxygen at the Laundromat

    Science.gov (United States)

    Keeports, David

    1995-09-01

    Singlet molecular oxygen is an interesting molecule both visually and theoretically, since its red chemiluminescence can be analyzed by the application of simple molecular orbital theory. It can be produced from the reaction of hydrogen peroxide from either chlorine gas or hypochlorite ion from household bleach. Here we demostrate how to produce it using simple laundry cleansers.

  6. Recombinator of hydrogen and oxygen

    International Nuclear Information System (INIS)

    Stejskal, J.; Klein, O.; Scholtz, G.; Schmidt, P.; Olaussson, A.

    1976-01-01

    Improvements are proposed for the well known reactors for the catalytic recombination of hydrogen and oxygen, which should permit this being used in contiuous operation in nuclear reactors (BWRs). The improvements concern the geometric arrangement of gas-inlet and -outlet pipes, the inclination of the axis of the catalyst container and the introduction of remote operation. (UWI) [de

  7. Oxygen depletion of bismuth molybdates

    Energy Technology Data Exchange (ETDEWEB)

    Yong, L.K.; Howe, R.F.; Keulks, G.W.; Hall, W.K.

    1978-05-01

    Pure ..cap alpha..-phase bismuth molybdate (Bi/sub 2/Mo/sub 3/O/sub 12/), which is known to be weakly active for selective oxidation, and pure ..gamma..-phase bismuth molybdate (Bi/sub 2/MoO/sub 6/), which has good activity, were subjected to oxidation-reduction cycles with known amounts of hydrogen and oxygen, at 300/sup 0/-570/sup 0/C and with evacuation steps between treatments. The volume of oxygen consumed during reoxidation was equal to half the hydrogen consumed during the reduction on the ..cap alpha..-phase, which indicated that no hydrogen was retained during reduction. For the ..gamma..-phase, the oxygen consumption was greater than half of the hydrogen consumption and it increased with extent of reduction. The excess oxygen was apparently consumed by filling anion vacancies formed during outgassing subsequent to the reduction step. ESR spectroscopy and temperature-programed oxidation-reduction indicated that lattice oxide ions which bridge between bismuth and molybdenum layers of the koechlinite structure become more labile when the catalyst is in a partially reduced state, and that this effect is greater in the ..gamma..- than the ..cap alpha..-phase. Table and 15 references.

  8. Glow discharge in singlet oxygen

    International Nuclear Information System (INIS)

    Vagin, N.P.; Ionin, A.A.; Klimachev, Yu.M.; Sinitsyn, D.V.; Yuryshev, N.N.; Kochetov, I.V.; Napartovich, A.P.

    2003-01-01

    Currently, there is no experimental data on the plasma balance in gas mixtures with a high content of singlet delta oxygen O 2 ( 1 Δ g ). These data can be obtained by studying the parameters of an electric discharge in singlet oxygen produced by a chemical generator. The O 2 ( 1 Δ g ) molecules significantly change the kinetics of electrons and negative ions in plasma. Hence, the discharge conditions at low and high O 2 ( 1 Δ g ) concentrations are very different. Here, the parameters of the positive column of a glow discharge in a gas flow from a chemical singlet-oxygen generator are studied. It is experimentally shown that, at an O 2 ( 1 Δ g ) concentration of 50% and at pressures of 1.5 and 2 torr, the electric field required to sustain the discharge is considerably lower than in the case when all of the oxygen molecules are in the ground state. A theoretical model of the glow discharge is proposed whose predictions are in good agreement with the experimental data

  9. Biotechnological sulphide removal with oxygen

    NARCIS (Netherlands)

    Buisman, C.

    1989-01-01

    This thesis deals with the development of a new process for biotechnological sulphide removal from wastewater, in which it is attempted to convert sulphide into elemental sulphur by colourless sulphur bacteria. The toxicity, corrosive properties, unpleasant odor and high oxygen demand of sulphide

  10. CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen

    Science.gov (United States)

    Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.

  11. Diffusion of oxygen in cork.

    Science.gov (United States)

    Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Simon, Jean-Marc; Paulin, Christian; Bellat, Jean-Pierre

    2012-04-04

    This work reports measurements of effective oxygen diffusion coefficient in raw cork. Kinetics of oxygen transfer through cork is studied at 298 K thanks to a homemade manometric device composed of two gas compartments separated by a cork wafer sample. The first compartment contains oxygen, whereas the second one is kept under dynamic vacuum. The pressure decrease in the first compartment is recorded as a function of time. The effective diffusion coefficient D(eff) is obtained by applying Fick's law to transient state using a numerical method based on finite differences. An analytical model derived from Fick's law applied to steady state is also proposed. Results given by these two methods are in close agreement with each other. The harmonic average of the effective diffusion coefficients obtained from the distribution of 15 cork wafers of 3 mm thickness is 1.1 × 10(-9) m(2) s(-1) with a large distribution over four decades. The statistical analysis of the Gaussian distribution obtained on a 3 mm cork wafer is extrapolated to a 48 mm cork wafer, which length corresponds to a full cork stopper. In this case, the probability density distribution gives a mean value of D(eff) equal to 1.6 × 10(-9) m(2) s(-1). This result shows that it is possible to obtain the effective diffusion coefficient of oxygen through cork from short time (few days) measurements performed on a thin cork wafer, whereas months are required to obtain the diffusion coefficient for a full cork stopper. Permeability and oxygen transfer rate are also calculated for comparison with data from other studies.

  12. Oxygen concentration inside a functioning photosynthetic cell.

    Science.gov (United States)

    Kihara, Shigeharu; Hartzler, Daniel A; Savikhin, Sergei

    2014-05-06

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth's atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Hydrolysis conditions for the analysis for sulphur amino acids in ...

    African Journals Online (AJOL)

    noted that small changes in the levels of limiting amino acids in feed ingredients ... reasoned that removal of oxygen should not be necessary for an oxidative .... buffer only on an abbreviated analytical cycle, the column be- ing regenerated ...

  14. Salvianolic acid B Relieves Oxidative Stress in Glucose Absorption ...

    African Journals Online (AJOL)

    Absorption and Utilization of Mice Fed High-Sugar Diet ... Salvianolic acid B, Blood glucose, Reactive oxygen species, Oxidative stress, Sugar diet. ... protein expression in human aortic smooth ... induced by glucose uptake and metabolism [8].

  15. Oxygen Deficit: The Bio-energetic Pathophysiology

    Directory of Open Access Journals (Sweden)

    ABHAY KUMAR PANDEY

    2014-09-01

    Full Text Available Scarcity of oxygen in humans arises via three modes. The environment may have low oxygen to breath. There can be disease in respiratory system causing hindrance to uptake of oxygen from environment and the circulatory system may be sluggish to supply to body parts that starve for oxygen. Thirdly the chemico-cellular components of blood which carry oxygen may be lowered or defective. In reference to body cells several limiting sites and mechanisms affect the amount of oxygen delivered to them, and these are under regulatory control of several functional and metabolic systems.

  16. The oxygen effect and cellular adaptation

    International Nuclear Information System (INIS)

    Meshcherikova, V.V.; Vajnson, A.A.; Yarmonenko, S.P.

    1979-01-01

    The radiomodifying effect of oxygen was shown to depend on the level of cellular oxygenation prior to irradiation. Acute hypoxia created at the time of irradiation protects previously normally oxygenated cells with DMF approximately 1.4 times larger than that of cells cultured for 24 hours under conditions of mild hypoxia. It is suggested that a decrease in the radioprotective effect of acute hypoxia on chronically hypoxic cells is correlated with an appreciable decrease in the rate of oxygen consumption by these cells, due to which the oxygen concentration near the intracellular targets in chronically hypoxic cells may be higher than in normal cells under conditions of poor oxygenation

  17. Method for oxygen reduction in a uranium-recovery process. [US DOE patent application

    Science.gov (United States)

    Hurst, F.J.; Brown, G.M.; Posey, F.A.

    1981-11-04

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous iron and accumulation of complex iron phosphates or cruds.

  18. Removing oxygen from a solvent extractant in an uranium recovery process

    International Nuclear Information System (INIS)

    Hurst, F.J.; Brown, G.M.; Posey, F.A.

    1984-01-01

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous and accumulation of complex iron phosphates or cruds

  19. Serum Uric Acid Levels in Oral Cancer Patients Seen at Tertiary ...

    African Journals Online (AJOL)

    Introduction: Toxicity by oxygen radicals has been considered as an important cause of cancer. It is proposed that the antioxidant properties of uric acid may act to prevent formation of oxygen radicals and thereby protect against carcinogenesis. This study aims to assess the role of uric acid in the aetiology of oral cancer.

  20. Synthesis and stability of strongly acidic benzamide derivatives

    DEFF Research Database (Denmark)

    Diness, Frederik; Bjerrum, Niels J.; Begtrup, Mikael

    2018-01-01

    Reactivity studies of strong organic acids based on the replacement of one or both of the oxygens in benzoic acids with the trifluoromethanesulfonamide group are reported. Novel derivatives of these types of acids were synthesized in good yields. The generated N-triflylbenzamides were further...... functionalized through cross-coupling and nucleophilic aromatic substitution reactions. All compounds were stable in dilute aqueous solutions. Studies of stability under acidic and basic conditions are also reported....

  1. An electrochemical sensor for monitoring oxygen or hydrogen in water

    International Nuclear Information System (INIS)

    Leitai Yang; Morris, D.R.; Lister, D.H.

    1997-01-01

    Preliminary studies have been done on a simple electrochemical sensor which shows promise as a cheap, robust instrument for measuring dissolved oxygen or hydrogen in water. The sensor is based upon the solid-state electrolyte ''Nafion'' (trade name of perfluorinated sulphonic acid, manufactured by DuPont Inc.). The Nafion was dissolved in a mixture of aliphatic alcohols, made into a slurry with platinum black, and applied to a ∼1 cm-square electrode made of stainless steel gauze. The potential of the electrode was measured relative to a standard calomel electrode (SCE) in acid solutions at room temperature through which mixtures of oxygen and nitrogen or hydrogen and nitrogen were bubbled. The sensor was responsive to the equilibrating gas with good reproducibility. A similar sensor without the Nafion was not at all sensitive to changes in oxygen concentration. The voltage response of the sensor showed non-Nernstian behaviour, which suggests that the electrochemical reactions at the electrode surface are complex. Further testing of the sensor is required to verify its sensitivity and responsiveness in typical reactor coolant chemistries and to demonstrate its durability over a range of temperatures. (author). 4 refs, 4 figs, 1 tab

  2. An electrochemical sensor for monitoring oxygen or hydrogen in water

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Leitai; Morris, D R; Lister, D H [University of New Brunswick, Fredericton (Canada). Dept. of Chemical Engineering

    1997-02-01

    Preliminary studies have been done on a simple electrochemical sensor which shows promise as a cheap, robust instrument for measuring dissolved oxygen or hydrogen in water. The sensor is based upon the solid-state electrolyte ``Nafion`` (trade name of perfluorinated sulphonic acid, manufactured by DuPont Inc.). The Nafion was dissolved in a mixture of aliphatic alcohols, made into a slurry with platinum black, and applied to a {approx}1 cm-square electrode made of stainless steel gauze. The potential of the electrode was measured relative to a standard calomel electrode (SCE) in acid solutions at room temperature through which mixtures of oxygen and nitrogen or hydrogen and nitrogen were bubbled. The sensor was responsive to the equilibrating gas with good reproducibility. A similar sensor without the Nafion was not at all sensitive to changes in oxygen concentration. The voltage response of the sensor showed non-Nernstian behaviour, which suggests that the electrochemical reactions at the electrode surface are complex. Further testing of the sensor is required to verify its sensitivity and responsiveness in typical reactor coolant chemistries and to demonstrate its durability over a range of temperatures. (author). 4 refs, 4 figs, 1 tab.

  3. Well acidizing

    Energy Technology Data Exchange (ETDEWEB)

    Street, E H

    1980-01-23

    The apparatus relates in particular to a well-treating process in which an aqueous acid solution having a pH of < 2 is injected into a subterranean reservoir in a manner such that materials that contain ferric ions are present in the acid and, as the acid reacts within the reservoir and attains a pH exceeding 3, tend to be precipitated as ferric ion-containing solid materials that may plug the pores of the reservoir. Such a precipitation is prevented by dissolving in the acid solution an amount of 5-sulfosalicylic acid which is at least sufficient to sequester significant proportions of ferric ions when the pH of the acid is from 0.5 to 3 but is less than enough to cause a significant salting-out of solid materials, and an amount of citric acid which is at least sufficient to sequester significant proportions of ferric ions when the pH of the acid is from 3 to 6 but is less than enough to precipitate a significant amount of calcium citrate. The amount of the 5-sulfosalicylic acid may be from 0.01 to 0.05 moles/l and the amount of citric acid is from 0.001 to 0.009 moles/l. 11 claims.

  4. Catalyst containing oxygen transport membrane

    Science.gov (United States)

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  5. Oxygen-hydrogen recombination system

    International Nuclear Information System (INIS)

    Sato, Shuichiro; Takejima, Masaki.

    1981-01-01

    Purpose: To avoid reduction in the performance of catalyst used for an oxygen-hydrogen recombiner in the off gas processing system of a nuclear reactor. Constitution: A thermometer is provided for the detection of temperature in an oxygen-hydrogen recombiner. A cooling pipe is provided in the recombiner and cooling medium is introduced externally. The cooling medium may be water or air. In accordance with the detection value from the thermometer, ON-OFF control is carried out for a valve to control the flow rate of the cooling medium thereby rendering the temperature in the recombiner to a predetermined value. This can prevent the catalyst from being exposed to high temperature and avoid the reduction in the performance of the catalyst. (Ikeda, J.)

  6. Oxygen and carbon dioxide sensing

    Science.gov (United States)

    Ren, Fan (Inventor); Pearton, Stephen John (Inventor)

    2012-01-01

    A high electron mobility transistor (HEMT) capable of performing as a CO.sub.2 or O.sub.2 sensor is disclosed, hi one implementation, a polymer solar cell can be connected to the HEMT for use in an infrared detection system. In a second implementation, a selective recognition layer can be provided on a gate region of the HEMT. For carbon dioxide sensing, the selective recognition layer can be, in one example, PEI/starch. For oxygen sensing, the selective recognition layer can be, in one example, indium zinc oxide (IZO). In one application, the HEMTs can be used for the detection of carbon dioxide and oxygen in exhaled breath or blood.

  7. Measurement of forearm oxygen consumption

    DEFF Research Database (Denmark)

    Astrup, A; Simonsen, L; Bülow, J

    1988-01-01

    The classical forearm technique widely used for studies of skeletal muscle metabolism requires arterial cannulation. To avoid arterial puncture it is becoming more common to arterialize blood from a contralateral hand vein by local heating. This modification and the classical method have produced...... blood flow and decreases skeletal muscle blood flow. This facilitates mixing of superficial blood with deep venous blood. Contralateral heating increased deep venous oxygen saturation and abolished the pronounced glucose-induced increase in oxygen consumption observed in the control experiments after...... contradictory results regarding the contribution of skeletal muscle to glucose-induced thermogenesis. The effect on forearm circulation and the metabolism of heating the contralateral hand was examined before and after an oral glucose load. The results suggest that contralateral heating increases subcutaneous...

  8. Oxygen transfer in slurry bioreactors.

    Science.gov (United States)

    Kawase, Y; Moo-Young, M

    1991-04-25

    The oxygen transfer in bioreactors with slurries having a yield stress was investigated. The volumetric mass transfer coefficients in a 40-L bubble column with simulated fermentation broths, the Theological properties of which were represented by the Casson model, were measured. Experimental data were compared with a theoretical correlation developed on the basis of a combination of Higbie's penetration theory and Kolmogoroff's theory of isotropic turbulence. Comparisons between the proposed correlation and data for the simulated broths show good agreement. The mass transfer data for actual mycelial fermentation broths reported previously by the authors were re-examined. Their Theological data was correlated by the Bingham plastic model. The oxygen transfer rate data in the mycelial fermentation broths fit the predictions of the proposed theoretical correlation.

  9. Ibotenic acid and thioibotenic acid

    DEFF Research Database (Denmark)

    Hermit, Mette B; Greenwood, Jeremy R; Nielsen, Birgitte

    2004-01-01

    In this study, we have determined and compared the pharmacological profiles of ibotenic acid and its isothiazole analogue thioibotenic acid at native rat ionotropic glutamate (iGlu) receptors and at recombinant rat metabotropic glutamate (mGlu) receptors expressed in mammalian cell lines....... Thioibotenic acid has a distinct pharmacological profile at group III mGlu receptors compared with the closely structurally related ibotenic acid; the former is a potent (low microm) agonist, whereas the latter is inactive. By comparing the conformational energy profiles of ibotenic and thioibotenic acid...... with the conformations preferred by the ligands upon docking to mGlu1 and models of the other mGlu subtypes, we propose that unlike other subtypes, group III mGlu receptor binding sites require a ligand conformation at an energy level which is prohibitively expensive for ibotenic acid, but not for thioibotenic acid...

  10. Determination of rate constants for the oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A.; Walter, T.; Stimming, U. [Munich Technical Univ., Garching (Germany). Dept. of Physics

    2008-07-01

    The oxygen reduction reaction (ORR) in fuel cells is a complex and fundamental electrochemical reaction. However, greater insight is needed into this multi-electron reaction in order to develop efficient and innovative catalysts. The rotating ring disc electrode (RRDE) is a useful tool for studying reaction intermediates of the ORR and to better understand the reaction pathway. Carbon materials such as carbon nanofilaments-platelets (CNF-PL) have high electrical conductivity and may be considered for fuel cells. In particular Pt and RuSe{sub x}, deposited on CNF-PL materials could act as efficient catalysts in fuel cells. This study used the RRDE to evaluate the oxygen reduction kinetics of these catalysts in oxygen-saturated, diluted sulphuric acid at room temperature. Kinetic data and hydrogen peroxide formation were determined by depositing a thin-film of the catalyst on the Au disc. The values for the constants k1, k2 and k3 were obtained using diagnostic criteria and expressions to calculate the rate constants of the cathodic oxygen reduction reaction for RuSe on new carbon supports. A potential dependency of the constants k1 and k2 for RuSe{sub x}/CNF-PL was observed. The transition of the Tafel slopes for this catalyst was obtained. 4 refs., 1 fig.

  11. Oxygen production processes on the Moon: An overview

    Science.gov (United States)

    Taylor, Lawrence A.; Carrier, W. David, III

    1991-01-01

    The production of oxygen on the Moon utilizing indigenous material is paramount to a successful lunar colonization. Several processes were put forth to accomplish this. The lunar liquid oxygen (LLOX) generation schemes which have received the most study to date are those involving: (1) the reduction of ilmenite (FeTiO3) by H2, C, CO, CH4, CO-Cl2 plasma; (2) magma electrolysis, both unadulterated and fluoride-fluxed, and (3) several others, including carbo-chlorination, HF acid leaching, fluorine extraction, magma oxidation, and vapor pyrolysis. The H2 reduction of ilmenite and magma electrolysis processes have received the most study to date. At this stage of development, they both appear feasible schemes with various pros and cons. However, all processes should be addressed at least at the onset of the considerations. It is ultimatley the energy requirements of the entire process, including the acquisition of feedstock, which will determine the mode of oxygen productions. There is an obvious need for considerably more experimentation and study. Some of these requisite studies are in progress, and several of the most studied and feasible processes for winning oxygen from lunar materials are reviewed.

  12. Activated carbon oxygen content influence on water and surfactant adsorption.

    Science.gov (United States)

    Pendleton, Phillip; Wu, Sophie Hua; Badalyan, Alexander

    2002-02-15

    This research investigates the adsorption properties of three activated carbons (AC) derived from coconut, coal, and wood origin. Each carbon demonstrates different levels of resistance to 2 M NaOH treatment. The coconut AC offers the greatest and wood AC the least resistance. The influence of base treatment is mapped in terms of its effects on specific surface area, micropore volume, water adsorption, and dodecanoic acid adsorption from both water and 2 M NaOH solution. A linear relationship exists between the number of water molecules adsorbed at the B-point of the water adsorption isotherm and the oxygen content determined from elemental analysis. Surfactant adsorption isotherms from water and 2 M NaOH indicate that the AC oxygen content effects a greater dependence on affinity for surfactant than specific surface area and micropore volume. We show a linear relationship between the plateau amount of surfactant adsorbed and the AC oxygen content in both water and NaOH phases. The higher the AC oxygen content, the lower the amount of surfactant adsorbed. In contrast, no obvious relationship could be drawn between the surfactant amount adsorbed and the surface area.

  13. Oxygen abundances in halo stars

    Science.gov (United States)

    Bessell, Michael S.; Sutherland, Ralph S.; Ruan, Kui

    1991-12-01

    The present study determines the oxygen abundance for a sample of metal-poor G dwarfs by analysis of OH lines between 3080 and 3200 A and the permitted high-excitation far-red O I triple. The oxygen abundances determined from the low-excitation OH lines are up to 0.55 dex lower than those measured from the high-excitation O I lines. The abundances for the far-red O I triplet lines agree with those rederived from Abia and Rebolo (1989), and the abundances from the OH lines in dwarfs and giants are in agreement with the rederived O abundances of Barbuy (1988) and others from the forbidden resonance O I line. Because the chi = 0.1.7 eV OH lines are formed in the same layers as the majority of Fe, Ti, and other neutral metal lines used for abundance analyses, it is argued that the OH lines and the forbidden O I line yield the true oxygen abundances relative to the metals.

  14. In-Situ Resource Utilization: Oxygen Production

    Data.gov (United States)

    National Aeronautics and Space Administration — The leading option for extracting oxygen from the Mars atmospheric carbon dioxide is to use a solid oxide electrolyzer, which removes one oxygen atom from the CO2...

  15. Mathematical Modelling of Intraretinal Oxygen Partial Pressure

    African Journals Online (AJOL)

    Erah

    The system of non-linear differential equations was solved numerically using Runge-kutta. Nystroms method. ... artery occlusion. Keywords: Mathematical modeling, Intraretinal oxygen pressure, Retinal capillaries, Oxygen ..... Mass transfer,.

  16. Oxygen-Methane Thruster, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Orion Propulsion, Inc. proposes to develop an Oxygen and Methane RCS Thruster to advance the technology of alternate fuels. A successful Oxygen/CH4 RCS Thruster will...

  17. Oxygen - a limiting factor for brain recovery

    OpenAIRE

    Hadanny, Amir; Efrati, Shai

    2015-01-01

    Effective brain metabolism is highly dependent on a narrow therapeutic window of oxygen. In major insults to the brain (e.g., intracerebral hemorrhage), a slight decrease in oxygen supply, as occurs in a hypobaric environment at high altitude, has devastating effects on the injured brain tissue. Conversely, increasing brain oxygenation, by the use of hyperbaric oxygen therapy, can improve brain metabolism and its dependent regenerative processes.

  18. Oxygen Response of the Wine Yeast Saccharomyces cerevisiae EC1118 Grown under Carbon-Sufficient, Nitrogen-Limited Enological Conditions

    Science.gov (United States)

    Aceituno, Felipe F.; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W.; Melo, Francisco

    2012-01-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations. PMID:23001663

  19. Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions.

    Science.gov (United States)

    Aceituno, Felipe F; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W; Melo, Francisco; Agosin, Eduardo

    2012-12-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations.

  20. Oxygen requirements of the earliest animals

    DEFF Research Database (Denmark)

    Mills, Daniel Brady; Ward, Lewis M.; Jones, CarriAyne

    2014-01-01

    likely exhibited a physiology and morphology similar to that of a modern sponge, its oxygen demands may have been met well before the enhanced oxygenation of the Ediacaran Period. Therefore, the origin of animals may not have been triggered by a contemporaneous rise in the oxygen content...

  1. Oxygen diffusion in glasses and ceramic materials

    International Nuclear Information System (INIS)

    Kolitsch, A.; Richter, E.; Wolf, M.

    1978-10-01

    A survey is given on the published works to study oxygen diffusion in glasses and ceramic materials in the last years. In the first part methods are described for the measurement of oxygen diffusion coefficients and in the second part the published reports on oxygen diffusion in glasses, ceramic and other oxides are discussed. The most important results are summarized in different tables. (author)

  2. Fuel cell serves as oxygen level detector

    Science.gov (United States)

    1965-01-01

    Monitoring the oxygen level in the air is accomplished by a fuel cell detector whose voltage output is proportional to the partial pressure of oxygen in the sampled gas. The relationship between output voltage and partial pressure of oxygen can be calibrated.

  3. 21 CFR 868.5580 - Oxygen mask.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxygen mask. 868.5580 Section 868.5580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5580 Oxygen mask. (a) Identification. An oxygen mask is a device...

  4. Oxygen requirement of separated hybrid catfish eggs

    Science.gov (United States)

    Channel catfish egg masses require hatchery water with over 7.8 ppm dissolved oxygen at 80° F (95% air saturation) to maintain maximum oxygen consumption as they near hatching. This concentration is called the critical oxygen requirement by scientists but for the purpose of this article we will call...

  5. Development of sensors for monitoring oxygen and free radicals in plant physiology

    Science.gov (United States)

    Chaturvedi, Prachee

    Oxygen plays a critical role in the physiology of photosynthetic organisms, including bioenergetics, metabolism, development, and stress response. Oxygen levels affect photosynthesis, respiration, and alternative oxidase pathways. Likewise, the metabolic rate of spatially distinct plant cells (and therefore oxygen flux) is known to be affected by biotic stress (e.g., herbivory) and environmental stress (e.g., salt/nutrient stress). During aerobic metabolism, cells produce reactive oxygen species (ROS) as a by product. Plants also produce ROS during adaptation to stress (e.g., abscisic acid (ABA) mediated stress responses). If stress conditions are prolonged, ROS levels surpass the capacity of detoxifying mechanisms within the cell, resulting in oxidative damage. While stress response pathways such as ABA-mediated mechanisms have been well characterized (e.g., water stress, inhibited shoot growth, synthesis of storage proteins in seeds), the connection between ROS production, oxygen metabolism and stress response remains unknown. In part, this is because details of oxygen transport at the interface of cell(s) and the surrounding microenvironment remains nebulous. The overall goal of this research was to develop oxygen and Free radical sensors for studying stress signaling in plants. Recent developments in nanomaterials and data acquisition systems were integrated to develop real-time, non-invasive oxygen and Free radical sensors. The availability of these sensors for plant physiologists is an exciting opportunity to probe the functional realm of cells and tissues in ways that were not previously possible.

  6. Methane oxidation and formation of EPS in compost: effect of oxygen concentration

    International Nuclear Information System (INIS)

    Wilshusen, J.H.; Hettiaratchi, J.P.A.; Visscher, A. de; Saint-Fort, R.

    2004-01-01

    Oxygen concentration plays an important role in the regulation of methane oxidation and the microbial ecology of methanotrophs. However, this effect is still poorly quantified in soil and compost ecosystems. The effect of oxygen on the formation of exopolymeric substances (EPS) is as yet unknown. We studied the effect of oxygen on the evolution of methanotrophic activity. At both high and low oxygen concentrations, peak activity was observed twice within a period of 6 months. Phospholipid fatty acid analysis showed that there was a shift from type I to type II methanotrophs during this period. At high oxygen concentration, EPS production was about 250% of the amount at low oxygen concentration. It is hypothesized that EPS serves as a carbon cycling mechanism for type I methanotrophs when inorganic nitrogen is limiting. Simultaneously, EPS stimulates nitrogenase activity in type II methanotrophs by creating oxygen-depleted zones. The kinetic results were incorporated in a simulation model for gas transport and methane oxidation in a passively aerated biofilter. Comparison between the model and experimental data showed that, besides acting as a micro-scale diffusion barrier, EPS can act as a barrier to macro-scale diffusion, reducing the performance of such biofilters. - 1.5% oxygen resulted in a slightly higher and more stable methane oxidation activity

  7. Singlet Oxygen Detection Using Red Wine Extracts as Photosensitizers.

    Science.gov (United States)

    Lagunes, Irene; Vázquez-Ortega, Fernanda; Trigos, Ángel

    2017-09-01

    Moderate consumption of red wine provides beneficial effects to health. This is attributed to polyphenol compounds present in wine such as resveratrol, quercetin, gallic acid, rutin, and vanillic acid. The amount of these antioxidants is variable; nevertheless, the main beneficial effects of red wine are attributed to resveratrol. However, it has been found that resveratrol and quercetin are able to photosensitize singlet oxygen generation and conversely, gallic acid acts as quencher. Therefore, and since resveratrol and quercetin are some of the most important antioxidants reported in red wines, the aim of this research was to evaluate the photosensitizing ability of 12 red wine extracts through photo-oxidation of ergosterol. The presence of 1 O 2 was detected by ergosterol conversion into peroxide of ergosterol through 1 H NMR analysis. Our results showed that 10 wine extracts were able to act as photosensitizers in the generation of singlet oxygen. The presence of 1 O 2 can damage other compounds of red wine and cause possible organoleptic alterations. Finally, although the reaction conditions employed in this research do not resemble the inherent conditions in wine making processing or storing, or even during its consumption, this knowledge could be useful to prevent possible pro-oxidant effects and avoid detrimental effects in red wines. © 2017 Institute of Food Technologists®.

  8. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction.

    Science.gov (United States)

    McCrory, Charles C L; Jung, Suho; Peters, Jonas C; Jaramillo, Thomas F

    2013-11-13

    Objective evaluation of the activity of electrocatalysts for water oxidation is of fundamental importance for the development of promising energy conversion technologies including integrated solar water-splitting devices, water electrolyzers, and Li-air batteries. However, current methods employed to evaluate oxygen-evolving catalysts are not standardized, making it difficult to compare the activity and stability of these materials. We report a protocol for evaluating the activity, stability, and Faradaic efficiency of electrodeposited oxygen-evolving electrocatalysts. In particular, we focus on methods for determining electrochemically active surface area and measuring electrocatalytic activity and stability under conditions relevant to an integrated solar water-splitting device. Our primary figure of merit is the overpotential required to achieve a current density of 10 mA cm(-2) per geometric area, approximately the current density expected for a 10% efficient solar-to-fuels conversion device. Utilizing the aforementioned surface area measurements, one can determine electrocatalyst turnover frequencies. The reported protocol was used to examine the oxygen-evolution activity of the following systems in acidic and alkaline solutions: CoO(x), CoPi, CoFeO(x), NiO(x), NiCeO(x), NiCoO(x), NiCuO(x), NiFeO(x), and NiLaO(x). The oxygen-evolving activity of an electrodeposited IrO(x) catalyst was also investigated for comparison. Two general observations are made from comparing the catalytic performance of the OER catalysts investigated: (1) in alkaline solution, every non-noble metal system achieved 10 mA cm(-2) current densities at similar operating overpotentials between 0.35 and 0.43 V, and (2) every system but IrO(x) was unstable under oxidative conditions in acidic solutions.

  9. Placement of acid spoil materials

    Energy Technology Data Exchange (ETDEWEB)

    Pionke, H B; Rogowski, A S

    1982-06-01

    Potentially there are several chemical and hydrologic problems associated with placement of acid spoil materials. The rationale for a deep placement well below the soil surface, and preferably below a water table, is to prevent or minimize oxidation of pyrite to sulfuric acid and associated salts by reducing the supply of oxygen. If, however, substantial sulfuric acid or associated salts are already contained within the spoil because of present or previous mining, handling and reclamation operations (or if large supplies of indigenous salts exist, placement below a water table) may actually increase the rate of acid and salt leaching. Specific placement of acid- and salt-containing spoil should be aimed at preventing contact with percolating water or rising water tables. We recommend placement based on chemical and physical spoil properties that may affect water percolation O/sub 2/ diffusion rates in the profile. Both the deeper placement of acid spoil and coarser particle size can substantially reduce the amount of acid drainage. Placement above the water table with emphasis on percolate control may be better for high sulfate spoils, while placement below the non-fluctuating water table may be better for pyritic spoils.

  10. Formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, H; Laing, B

    1921-12-03

    The production of formic acid by the oxidation of methane with a metallic oxide or by the interaction of carbon monoxide and water vapor in the presence of a catalyst, preferably a metallic oxide, is described along with the destructive distillation of carbonaceous material in the preesnce of formic acid vapor for the purpose of increasing the yield of condensible hydrocarbons.

  11. Modification of radiation sensitivity: the oxygen effect

    International Nuclear Information System (INIS)

    Quintiliani, M.

    1979-01-01

    Four fundamental aspects of the oxygen effect in radiobiology are reviewed, with emphasis on single cell systems: (1) Radiosensitivity in relation to oxygen concentration. In many biological systems, this relationship is remarkably well represented by the well-known Howard-Flanders/Alper formula. Often, however, the degree of uncertainty associated with the estimation of the value of K in the formula is fairly high. Recent data on V79-753B cells indicate a biphasic influence of oxygen concentration on radiosensitivity that cannot be described in terms of the Howard-Flanders/Alper model. (2) The oxygen effect in relation to survival level. The influence of very low oxygen concentrations on the shoulder of the survival curves of irradiated cells is still controversial. Also, the oxygen dependence of repair processes for sublethal and potentially lethal damage need to be better defined. (3) Time-scale of the oxygen effect. All the experimental data obtained with the use of fast techniques indicate that the time scale of the oxygen effect is consistent with that of free radical reactions. This appears to be compatible with the hypothesis that oxygen acts by fixation of a radiation-induced reversible damage. The existence of two types of damage with different rates of decay is suggested, both in bacterial and mammalian cells. (4) Molecular mechanisms of the oxygen effect. In spite of the very large literature on this subject, the identification of the detailed molecular mechanisms of the oxygen effect must still be considered goals for future research

  12. Synthesis of radioiodinated fatty acids for use in diagnostic nuclear medicine. Progress report, March 1, 1984-February 28, 1985

    International Nuclear Information System (INIS)

    Kabalka, G.W.

    1984-01-01

    Methods were developed to synthesize radioiodinated fatty acids and an iodovinyl derivative of 1-aminocyclobutane carboxylic acid. New methods were developed for introducing nitrogen and oxygen isotopes, bromine 77, fluorine 18, and carbon 11 into physiologically active materials. 22 references

  13. Differences in breast tissue oxygenation following radiotherapy

    International Nuclear Information System (INIS)

    Dornfeld, Ken; Gessert, Charles E.; Renier, Colleen M.; McNaney, David D.; Urias, Rodolfo E.; Knowles, Denise M.; Beauduy, Jean L.; Widell, Sherry L.; McDonald, Bonita L.

    2011-01-01

    Tissue perfusion and oxygenation changes following radiotherapy may result from and/or contribute to the toxicity of treatment. Breast tissue oxygenation levels were determined in the treated and non-treated breast 1 year after radiotherapy for breast conserving treatment. Transcutaneous oxygenation varied between subjects in both treated and non-treated breast. Subjects without diabetes mellitus (n = 16) had an average oxygenation level of 64.8 ± 19.9 mmHg in the irradiated breast and an average of 72.3 ± 18.1 mmHg (p = 0.018) at the corresponding location in the control breast. Patients with diabetes (n = 4) showed a different oxygenation pattern, with lower oxygenation levels in control tissue and no decrease in the irradiated breast. This study suggests oxygenation levels in normal tissues vary between patients and may respond differently after radiotherapy.

  14. A Cabin Air Separator for EVA Oxygen

    Science.gov (United States)

    Graf, John C.

    2011-01-01

    Presently, the Extra-Vehicular Activities (EVAs) conducted from the Quest Joint Airlock on the International Space Station use high pressure, high purity oxygen that is delivered to the Space Station by the Space Shuttle. When the Space Shuttle retires, a new method of delivering high pressure, high purity oxygen to the High Pressure Gas Tanks (HPGTs) is needed. One method is to use a cabin air separator to sweep oxygen from the cabin air, generate a low pressure/high purity oxygen stream, and compress the oxygen with a multistage mechanical compressor. A main advantage to this type of system is that the existing low pressure oxygen supply infrastructure can be used as the source of cabin oxygen. ISS has two water electrolysis systems that deliver low pressure oxygen to the cabin, as well as chlorate candles and compressed gas tanks on cargo vehicles. Each of these systems can feed low pressure oxygen into the cabin, and any low pressure oxygen source can be used as an on-board source of oxygen. Three different oxygen separator systems were evaluated, and a two stage Pressure Swing Adsorption system was selected for reasons of technical maturity. Two different compressor designs were subjected to long term testing, and the compressor with better life performance and more favorable oxygen safety characteristics was selected. These technologies have been used as the basis of a design for a flight system located in Equipment Lock, and taken to Preliminary Design Review level of maturity. This paper describes the Cabin Air Separator for EVA Oxygen (CASEO) concept, describes the separator and compressor technology trades, highlights key technology risks, and describes the flight hardware concept as presented at Preliminary Design Review (PDR)

  15. Optimal sulphuric acid production using Acidithiobacillus caldus ...

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... oxygen uptake rate of 1.35 g/L.day (OUR), 52% sulphur conversion at a rate of 0.83 ... achieving a sulphuric acid production rate of 2.76 g/L.day (dP/dt), while the ...

  16. Metallographic study of the system ZrHx

    Energy Technology Data Exchange (ETDEWEB)

    Whitwham, D.

    1961-10-15

    American investigators of the system zirconium-hydrogen are in frequent disagreement over their experimental observations. One of the best articles on zirconium hydride, which does much to resolve these differences of opinion, has not been widely translated from the original French. The following translation is offered in an effort to supply a much needed clarification of the behavior of the several phases in the system zirconium-hydrogen.

  17. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pickenheim, B. R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bibler, N. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hay, M. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-08

    solutions that are depleted of O2 when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be hindered. However, an irradiation test with a simulated SRAT product supernate containing glycolic acid in an oxygen depleted atmosphere found no evidence of polymerization.

  18. Influence of the temperature and oxygen exposure in red Port wine: A kinetic approach.

    Science.gov (United States)

    Oliveira, Carla Maria; Barros, António S; Silva Ferreira, António César; Silva, Artur M S

    2015-09-01

    Although phenolics are recognized to be related with health benefits by limiting lipid oxidation, in wine, they are the primary substrates for oxidation resulting in the quinone by-products with the participation of transition metal ions. Nevertheless, high quality Port wines require a period of aging in either bottle or barrels. During this time, a modification of sensory properties of wines such as the decrease of astringency or the stabilization of color is recognized to phenolic compounds, mainly attributed to anthocyanins and derived pigments. The present work aims to illustrate the oxidation of red Port wine based on its phenolic composition by the effect of both thermal and oxygen exposures. A kinetic approach toanthocyanins degradation was also achieved. For this purpose a forced red Port wine aging protocol was performed at four different storage temperatures, respectively, 20, 30, 35 and 40°C, and two adjusted oxygen saturation levels, no oxygen addition (treatment I), and oxygen addition (treatment II). Three hydroxycinnamic esters, three hydroxycinnamic acids, three hydroxybenzoic acids, two flavan-3-ols, and six anthocyanins were quantitated weekly during 63days, along with oxygen consumption. The most relevant phenolic oxidation markers were anthocyanins and catechin-type flavonoids, which had the highest decreases during the thermal and oxidative red Port wine process. Both temperature and oxygen treatments affected the rate of phenolic degradation. In addition, temperature seems to influence mostly the phenolics kinetic degradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Adsorption of ionizable organic contaminants on multi-walled carbon nanotubes with different oxygen contents

    International Nuclear Information System (INIS)

    Li Xiaona; Zhao Huimin; Quan Xie; Chen Shuo; Zhang Yaobin; Yu Hongtao

    2011-01-01

    Multi-walled carbon nanotubes (MWNTs), which are considered to be promising candidates for the adsorption of toxic organics, are released into aqueous environment with their increasing production and application. In this study, the adsorption behaviors of five structurally related ionizable organic contaminants namely perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorooctanesulfonamide (PFOSA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-n-nonylphenol (4-NP) onto MWNTs with different oxygen contents (3.84-22.85%) were investigated. The adsorption kinetics was investigated and simulated with pseudo-second-order model. The adsorption isotherms were found to be fitted with Freundlich model and influenced by both the properties of organic chemicals and the oxygen contents of MWNTs. As adsorption capacity decreases dramatically with the increasing of oxygen contents, the MWNTs with the lowest oxygen contents possess the highest adsorption capacity among four MWNTs. For the MWNTs with the oxygen contents of 3.84%, the adsorption affinity related with hydrophobic interaction and π-electron polarizability decreased in the order of 4-NP > PFOSA > PFOS > 2,4-D > PFOA. Furthermore, the adsorption characters of five contaminants were affected by solution pH and solute pK a considering electrostatic repulse force and hydrogen bonding, which showed the adsorption of MWNTs with lower oxygen content is much sensitive to solution chemistry.

  20. Active oxygen doctors the evidence

    Science.gov (United States)

    Castelló, Ana; Francès, Francesc; Corella, Dolores; Verdú, Fernando

    2009-02-01

    Investigation at the scene of a crime begins with the search for clues. In the case of bloodstains, the most frequently used reagents are luminol and reduced phenolphthalein (or phenolphthalin that is also known as the Kastle-Meyer colour test). The limitations of these reagents have been studied and are well known. Household cleaning products have evolved with the times, and new products with active oxygen are currently widely used, as they are considered to be highly efficient at removing all kinds of stains on a wide range of surfaces. In this study, we investigated the possible effects of these new cleaning products on latent bloodstains that may be left at a scene of a crime. To do so, various fabrics were stained with blood and then washed using cleaning agents containing active oxygen. The results of reduced phenolphthalein, luminol and human haemoglobin tests on the washed fabrics were negative. The conclusion is that these new products alter blood to such an extent that it can no longer be detected by currently accepted methods employed in criminal investigations. This inability to locate bloodstains means that highly important evidence (e.g. a DNA profile) may be lost. Consequently, it is important that investigators are aware of this problem so as to compensate for it.

  1. Hyperbaric oxygen and wound healing

    Directory of Open Access Journals (Sweden)

    Sourabh Bhutani

    2012-01-01

    Full Text Available Hyperbaric oxygen therapy (HBOT is the use of 100% oxygen at pressures greater than atmospheric pressure. Today several approved applications and indications exist for HBOT. HBOT has been successfully used as adjunctive therapy for wound healing. Non-healing wounds such as diabetic and vascular insufficiency ulcers have been one major area of study for hyperbaric physicians where use of HBOT as an adjunct has been approved for use by way of various studies and trials. HBOT is also indicated for infected wounds like clostridial myonecrosis, necrotising soft tissue infections, Fournier′s gangrene, as also for traumatic wounds, crush injury, compartment syndrome, compromised skin grafts and flaps and thermal burns. Another major area of application of HBOT is radiation-induced wounds, specifically osteoradionecrosis of mandible, radiation cystitis and radiation proctitis. With the increase in availability of chambers across the country, and with increasing number of studies proving the benefits of adjunctive use for various kinds of wounds and other indications, HBOT should be considered in these situations as an essential part of the overall management strategy for the treating surgeon.

  2. A method for the determination of D(-)-lactic acid

    NARCIS (Netherlands)

    Hamer, C.J.A. van den; Elias, R.W.

    A method for the determination of D(—)-lactic acid is described. An acetone powder from Escherichia coli B in the presence of methylene blue oxidizes D(—)-lactic specifically. Oxygen consumption in a Warburg apparatus was used as a measure of the D(—)-lactic acid.

  3. PASSIVE TREATMENT OF ACID ROCK DRAINAGE FROM A SUBSURFACE MINE

    Science.gov (United States)

    Acidic, metal-contaminated drainages are a critical problem facing many areas of the world. Acid rock drainage results when metal sulfide minerals, particularly pyrite, are oxidized by exposure to oxygen and water. The deleterious effects of these drainages on receiving streams a...

  4. The oxygen effect and adaptive response of cells. Report 3. Simulation of respiratory oxygenation and oxygen permeability of cells

    International Nuclear Information System (INIS)

    Ehpshtejn, I.M.

    1978-01-01

    Variations in the oxygen concentration in extracellural [O 2 ] 0 and intracellular [Osub(2)]sub(i) media of cells small in size (d = 2 ] 0 - t-curves). It is shown that the Value of [Osub(2)]sub(i) may be expressed by four variants of its functional dependence: (a) on enzymic reaction of oxygen consumption, (b) on the order of reaction with respect to oxygen, (c) on physiological parameters of cells, and (d) on characteristic oxygen concentrations in the system. Items (c) and (d) are based on the postulated diffusion-kinetic model of oxygen consumption by an idealized cell of small size that consists of a drop of homogenous solution of the respiratory enzyme which is characterized by an equivalent Michaelis constant. The drop is enveloped in a uniform membrane that possesses a definite diffuse resistance to oxygen

  5. Dinitrogen fixation in aphotic oxygenated marine environments

    Directory of Open Access Journals (Sweden)

    Eyal eRahav

    2013-08-01

    Full Text Available We measured N2 fixation rates from oceanic zones that have traditionally been ignored as sources of biological N2 fixation; the aphotic, fully oxygenated, nitrate (NO3--rich, waters of the oligotrophic Levantine Basin (LB and the Gulf of Aqaba (GA. N2 fixation rates measured from pelagic aphotic waters to depths up to 720 m, during the mixed and stratified periods, ranged from 0.01 nmol N L-1 d-1 to 0.38 nmol N L-1 d-1. N2 fixation rates correlated significantly with bacterial productivity and heterotrophic diazotrophs were identified from aphotic as well as photic depths. Dissolved free amino acid amendments to whole water from the GA enhanced bacterial productivity by 2to 3.5 and N2 fixation rates by ~ 2 fold in samples collected from aphotic depths while in amendments to water from photic depths bacterial productivity increased 2 to 6 fold while N2 fixation rates increased by a factor of 2 to 4 illustrating that both BP an heterotrophic N2 fixation are carbon limited. Experimental manipulations of aphotic waters from the LB demonstrated a significant positive correlation between transparent exopolymeric particles (TEP concentration and N2 fixation rates. This suggests that sinking organic material and high carbon (C: nitrogen (N micro-environments (such as TEP-based aggregates or marine snow could support high heterotrophic N2 fixation rates in oxygenated surface waters and in the aphotic zones. Indeed, our calculations show that aphotic N2 fixation accounted for 37 to 75 % of the total daily integrated N2 fixation rates at both locations in the Mediterranean and Red Seas with rates equal or greater to those measured from the photic layers. Moreover, our results indicate that that while N2 fixation may be limited in the surface waters, aphotic, pelagic N2 fixation may contribute significantly to new N inputs in other oligotrophic basins, yet it is currently not included in regional or global N budgets.

  6. Steam reforming of biomass derived oxygenates to hydrogen : Importance of metal-support boundary

    NARCIS (Netherlands)

    Takanabe, K.; Aika, Ken-ichi; Seshan, Kulathu Iyer; Lefferts, L.

    2006-01-01

    Steam reforming of acetic acid over Pt/ZrO2 catalysts was studied as a model reaction of steam reforming of biomass derived oxygenates. Pt/ZrO2 catalysts were very active; however, the catalyst deactivated in time by formation of oligomers which block the active sites for steam reforming.

  7. Safety Standard for Oxygen and Oxygen Systems: Guidelines for Oxygen System Design, Materials Selection, Operations, Storage, and Transportation

    Science.gov (United States)

    1996-01-01

    NASA's standard for oxygen system design, materials selection, operation, and transportation is presented. Minimum guidelines applicable to NASA Headquarters and all NASA Field Installations are contained.

  8. Electron scattering by molecular oxygen

    International Nuclear Information System (INIS)

    Duddy, P.E.

    1999-03-01

    Collisions of electrons with molecules is one of the fundamental processes which occur both in atomic and molecular physics and also in chemistry. These collisions are vital in determining the energy balance and transport properties of electrons in gases and plasmas at low temperatures. There are many important applications for the basic understanding of these collision processes. For example, the study of planetary atmospheres and the interstellar medium involves electron collisions with both molecules and molecular ions. In particular, two of the major cooling mechanisms of electrons in the Earth's ionosphere are (i) the fine structure changing transitions of oxygen atoms by electron impact and (ii) the resonant electron-impact vibrational excitation of N 2 . Other applications include magnetohydrodynamic power generation and laser physics. A molecule, by definition, will contain more than one nucleus and consequently the effect of nuclear motion in the molecule leads to many extra processes in electron scattering by molecules which cannot occur in electron-atom scattering. As for atoms, both elastic and inelastic scattering occur, but in the case of inelastic electron scattering by molecules, the target molecule is excited to a different state by the process. The excitation may be one, or some combination, of rotational, vibrational and electronic transitions. Other reactions which may occur include dissociation of the molecule into its constituent atoms or ionisation. Another difficulty arises when considering the interactions between the electron and the molecule, This interaction, which considerably complicates the calculation, is non-spherical and various methods have been developed over the years to represent this interaction. This thesis considers electron scattering by molecular oxygen in the low energy range i.e. 0-15eV. These collisions are of considerable interest in atmospheric physics and chemistry where the electron impact excitation of O 2 has

  9. Oxygen binding properties of hemoglobin from the white rhinoceros (beta 2-GLU) and the tapir.

    Science.gov (United States)

    Baumann, R; Mazur, G; Braunitzer, G

    1984-04-01

    The beta-chain of rhinoceros hemoglobin contains glutamic acid at position beta 2, and important site for the binding of organic phosphates. We have investigated the oxygen binding properties of this hemoglobin and its interaction with ATP, 2,3-diphosphoglycerate, CO2 and chloride. The results show that the presence of GLU at position beta 2 nearly abolishes the effect of organic phosphates and CO2, whereas the oxygen-linked binding of chloride is not affected. Thus rhinoceros hemoglobin has only protons and chloride anions as major allosteric effectors for the control of its oxygen affinity. From the results obtained with hemoglobin solutions it can be calculated that the blood oxygen affinity of the rhinoceros must be rather high with a P50 of about 20 torr at pH 7.4 and 37 degrees C, which conforms with observations obtained for other large mammals.

  10. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.

    Science.gov (United States)

    Larsen, Nadja; Moslehi-Jenabian, Saloomeh; Werner, Birgit Brøsted; Jensen, Maiken Lund; Garrigues, Christel; Vogensen, Finn Kvist; Jespersen, Lene

    2016-06-02

    Performance of Lactococcus lactis as a starter culture in dairy fermentations depends on the levels of dissolved oxygen and the redox state of milk. In this study the microarray analysis was used to investigate the global gene expression of L. lactis subsp. lactis DSM20481(T) during milk acidification as affected by oxygen depletion and the decrease of redox potential. Fermentations were carried out at different initial levels of dissolved oxygen (dO2) obtained by milk sparging with oxygen (high dO2, 63%) or nitrogen (low dO2, 6%). Bacterial exposure to high initial oxygen resulted in overexpression of genes involved in detoxification of reactive oxygen species (ROS), oxidation-reduction processes, biosynthesis of trehalose and down-regulation of genes involved in purine nucleotide biosynthesis, indicating that several factors, among them trehalose and GTP, were implicated in bacterial adaptation to oxidative stress. Generally, transcriptional changes were more pronounced during fermentation of oxygen sparged milk. Genes up-regulated in response to oxygen depletion were implicated in biosynthesis and transport of pyrimidine nucleotides, branched chain amino acids and in arginine catabolic pathways; whereas genes involved in salvage of nucleotides and cysteine pathways were repressed. Expression pattern of genes involved in pyruvate metabolism indicated shifts towards mixed acid fermentation after oxygen depletion with production of specific end-products, depending on milk treatment. Differential expression of genes, involved in amino acid and pyruvate pathways, suggested that initial oxygen might influence the release of flavor compounds and, thereby, flavor development in dairy fermentations. The knowledge of molecular responses involved in adaptation of L. lactis to the shifts of redox state and pH during milk fermentations is important for the dairy industry to ensure better control of cheese production. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation.

    Science.gov (United States)

    Legchenko, Ekaterina; Chouvarine, Philippe; Borchert, Paul; Fernandez-Gonzalez, Angeles; Snay, Erin; Meier, Martin; Maegel, Lavinia; Mitsialis, S Alex; Rog-Zielinska, Eva A; Kourembanas, Stella; Jonigk, Danny; Hansmann, Georg

    2018-04-25

    Right ventricular (RV) heart failure is the leading cause of death in pulmonary arterial hypertension (PAH). Peroxisome proliferator-activated receptor γ (PPARγ) acts as a vasoprotective metabolic regulator in smooth muscle and endothelial cells; however, its role in the heart is unclear. We report that deletion of PPARγ in cardiomyocytes leads to biventricular systolic dysfunction and intramyocellular lipid accumulation in mice. In the SU5416/hypoxia (SuHx) rat model, oral treatment with the PPARγ agonist pioglitazone completely reverses severe PAH and vascular remodeling and prevents RV failure. Failing RV cardiomyocytes exhibited mitochondrial disarray and increased intramyocellular lipids (lipotoxicity) in the SuHx heart, which was prevented by pioglitazone. Unbiased ventricular microRNA (miRNA) arrays, mRNA sequencing, and lipid metabolism studies revealed dysregulation of cardiac hypertrophy, fibrosis, myocardial contractility, fatty acid transport/oxidation (FAO), and transforming growth factor-β signaling in the failing RV. These epigenetic, transcriptional, and metabolic alterations were modulated by pioglitazone through miRNA/mRNA networks previously not associated with PAH/RV dysfunction. Consistently, pre-miR-197 and pre-miR-146b repressed genes that drive FAO ( Cpt1b and Fabp4 ) in primary cardiomyocytes. We recapitulated our major pathogenic findings in human end-stage PAH: (i) in the pressure-overloaded failing RV (miR-197 and miR-146b up-regulated), (ii) in peripheral pulmonary arteries (miR-146b up-regulated, miR-133b down-regulated), and (iii) in plexiform vasculopathy (miR-133b up-regulated, miR-146b down-regulated). Together, PPARγ activation can normalize epigenetic and transcriptional regulation primarily related to disturbed lipid metabolism and mitochondrial morphology/function in the failing RV and the hypertensive pulmonary vasculature, representing a therapeutic approach for PAH and other cardiovascular/pulmonary diseases. Copyright

  12. 14 CFR 25.1441 - Oxygen equipment and supply.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oxygen equipment and supply. 25.1441... Oxygen equipment and supply. (a) If certification with supplemental oxygen equipment is requested, the... oxygen available in each source of supply. (d) The oxygen flow rate and the oxygen equipment for...

  13. Quantification of photocatalytic oxygenation of human blood.

    Science.gov (United States)

    Subrahmanyam, Aryasomayajula; Thangaraj, Paul R; Kanuru, Chandrasekhar; Jayakumar, Albert; Gopal, Jayashree

    2014-04-01

    Photocatalytic oxygenation of human blood is an emerging concept based on the principle of photocatalytic splitting of water into oxygen and hydrogen. This communication reports: (i) a design of a photocatalytic cell (PC) that separates the blood from UV (incident) radiation source, (ii) a pH, temperature and flow controlled circuit designed for quantifying the oxygenation of human blood by photocatalysis and (iii) measuring the current efficacy of ITO/TiO2 nano thin films in oxygenating human blood in a dynamic circuit in real time. The average increase in oxygen saturation was around 5% above baseline compared to control (p<0.0005). We believe this is one of the first attempts to quantify photocatalytic oxygenation of human blood under controlled conditions. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Oxygen - A Four Billion Year History

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    The air we breathe is twenty-one percent oxygen, an amount higher than on any other known world. While we may take our air for granted, Earth was not always an oxygenated planet. How did it become this way? Oxygen is the most current account of the history of atmospheric oxygen on Earth. Donald...... Canfield--one of the world's leading authorities on geochemistry, earth history, and the early oceans--covers this vast history, emphasizing its relationship to the evolution of life and the evolving chemistry of the Earth. With an accessible and colorful first-person narrative, he draws from a variety...... of fields, including geology, paleontology, geochemistry, biochemistry, animal physiology, and microbiology, to explain why our oxygenated Earth became the ideal place for life. Describing which processes, both biological and geological, act to control oxygen levels in the atmosphere, Canfield traces...

  15. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode...... materials as candidates for robust oxygen sensor electrodes. The present work focuses on characterising the electrochemical properties of a few electrode materials to understand which oxygen electrode processes are limiting for the response time of the sensor electrode. Three types of porous platinum......-Dansensor. The electrochemical properties of the electrodes were characterised by electrochemical impedance spectroscopy (EIS), and the structures were characterised by x-ray diffraction and electron microscopy. At an oxygen partial pressures of 0.2 bar, the response time of the sensor electrode was determined by oxygen...

  16. First oxygen from lunar basalt

    Science.gov (United States)

    Gibson, M. A.; Knudsen, C. W.; Brueneman, D. J.; Kanamori, H.; Ness, R. O.; Sharp, L. L.; Brekke, D. W.; Allen, C. C.; Morris, R. V.; Keller, L. P.

    1993-01-01

    The Carbotek/Shimizu process to produce oxygen from lunar soils has been successfully demonstrated on actual lunar samples in laboratory facilities at Carbotek with Shimizu funding and support. Apollo sample 70035 containing approximately 25 percent ilmenite (FeTiO3) was used in seven separate reactions with hydrogen varying temperature and pressure: FeTiO3 + H2 yields Fe + TiO2 + H2O. The experiments gave extremely encouraging results as all ilmenite was reduced in every experiment. The lunar ilmenite was found to be about twice as reactive as terrestrial ilmenite samples. Analytical techniques of the lunar and terrestrial ilmenite experiments performed by NASA Johnson Space Center include iron Mossbauer spectroscopy (FeMS), optical microscopy, SEM, TEM, and XRD. The Energy and Environmental Research Center at the University of North Dakota performed three SEM techniques (point count method, morphology determination, elemental mapping), XRD, and optical microscopy.

  17. With medium-chain triglycerides, higher and faster oxygen radical production by stimulated polymorphonuclear leukocytes occurs.

    Science.gov (United States)

    Kruimel, J W; Naber, A H; Curfs, J H; Wenker, M A; Jansen, J B

    2000-01-01

    Parenteral lipid emulsions are suspected of suppressing the immune function. However, study results are contradictory and mainly concern the conventional long-chain triglyceride emulsions. Polymorphonuclear leukocytes were preincubated with parenteral lipid emulsions. The influence of the lipid emulsions on the production of oxygen radicals by these stimulated leukocytes was studied by measuring chemiluminescence. Three different parenteral lipid emulsions were tested: long-chain triglycerides, a physical mixture of medium- and long-chain triglycerides, and structured triglycerides. Structured triglycerides consist of triglycerides where the medium- and long-chain fatty acids are attached to the same glycerol molecule. Stimulated polymorphonuclear leukocytes preincubated with the physical mixture of medium- and long-chain triglycerides showed higher levels of oxygen radicals (p triglycerides or structured triglycerides. Additional studies indicated that differences in results of various lipid emulsions were not caused by differences in emulsifier. The overall production of oxygen radicals was significantly lower after preincubation with the three lipid emulsions compared with controls without lipid emulsion. A physical mixture of medium- and long-chain triglycerides induced faster production of oxygen radicals, resulting in higher levels of oxygen radicals, compared with long-chain triglycerides or structured triglycerides. This can be detrimental in cases where oxygen radicals play either a pathogenic role or a beneficial one, such as when rapid phagocytosis and killing of bacteria is needed. The observed lower production of oxygen radicals by polymorphonuclear leukocytes in the presence of parenteral lipid emulsions may result in immunosuppression by these lipids.

  18. Aeration-Controlled Formation of Acid in Heterolactic Fermentations

    DEFF Research Database (Denmark)

    Adler-Nissen, Jens

    1994-01-01

    fermentation processes should be analyzed as fed-batch fermentations with oxygen as the limiting substrate. Addition of fructose in limited amounts leads to the formation of one half mole of acetic acid for each mole fructose, thus offering an alternative mechanism for controlling acetic acid formation.......Controlled aeration of Leuconostoc mesenteroides was studied as a possible mechanism for control of the formation of acetic acid, a metabolite of major influence on the taste of lactic fermented foods. Fermentations were carried out in small scale in a medium in which growth was limited...... by the buffer capacity only. Ethanol and acetic acid formed during the fermentation were analyzed by rapid head space gas chromatography, and the ratio of the molar concentrations of these two volatiles quantitatively predicted the balance between the formation of acetic acid and lactic acid. The oxygen...

  19. Structural changes of polytetrafluoroethylene during irradiation in oxygen

    International Nuclear Information System (INIS)

    Liu, Shuling; Fu, Congli; Gu, Aiqun; Yu, Zili

    2015-01-01

    To study the effect of irradiation on PTFE structure and prepare modified PTFE micropowder, PTFE was irradiated with dose up to 4 MGy in oxygen at room temperature. The structures of both irradiated and unirradiated PTFE samples were comparatively characterized by IR, XPS, Raman spectra and XRD measurement. The results showed that new groups of acyl fluoride (COF), carboxylic acid (COOH) and trifluoromethyl (CF 3 ) were formed under heavy radiation exposure in oxygen. In addition, the expansion of crystallite size or crystal lattice was first reported for the irradiated PTFE. The formation of new chemical groups and the expansion of crystallite size were elucidated by structural changes occurring in irradiation. - Highlights: • The structural change of PTFE irradiated in O 2 is different from that in vacuum. • The double bond is not found in PTFE after irradiation in oxygen. • The new groups like COF, COOH and CF 3 are formed in PTFE after irradiation. • The expansion of crystallite size is observed in the irradiated PTFE

  20. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  1. Mechanisms of group A Streptococcus resistance to reactive oxygen species.

    Science.gov (United States)

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N

    2015-07-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. © FEMS 2015.

  2. Cooking and oxygen. An explosive recipe.

    Science.gov (United States)

    Burns, H L; Ralston, D; Muller, M; Pegg, S

    2001-02-01

    Home oxygen therapy is commonly prescribed for the treatment of chronic obstructive pulmonary disease (COPD). The risks of smoking while using this therapy have been well described. To discuss the Royal Brisbane Hospital Burns Unit's experience and present case studies which illustrate the danger of alternative ignition sources while using home oxygen. The dangers of home oxygen therapy can be minimised by careful patient selection, education and ongoing monitoring.

  3. Workshop on Oxygen in the Terrestrial Planets

    Science.gov (United States)

    2004-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Oxygen in the Terrestrial Planets, July 20-23,2004, Santa Fe, New Mexico. The contents include: 1) Experimental Constraints on Oxygen and Other Light Element Partitioning During Planetary Core Formation; 2) In Situ Determination of Fe(3+)/SigmaFe of Spinels by Electron Microprobe: An Evaluation of the Flank Method; 3) The Effect of Oxygen Fugacity on Large-Strain Deformation and Recrystallization of Olivine; 4) Plagioclase-Liquid Trace Element Oxygen Barometry and Oxygen Behaviour in Closed and Open System Magmatic Processes; 5) Core Formation in the Earth: Constraints from Ni and Co; 6) Oxygen Isotopic Compositions of the Terrestrial Planets; 7) The Effect of Oxygen Fugacity on Electrical Conduction of Olivine and Implications for Earth s Mantle; 8) Redox Chemical Diffusion in Silicate Melts: The Impact of the Semiconductor Condition; 9) Ultra-High Temperature Effects in Earth s Magma Ocean: Pt and W Partitioning; 10) Terrestrial Oxygen and Hydrogen Isotope Variations: Primordial Values, Systematics, Subsolidus Effects, Planetary Comparisons, and the Role of Water; 11) Redox State of the Moon s Interior; 12) How did the Terrestrial Planets Acquire Their Water?; 13) Molecular Oxygen Mixing Ratio and Its Seasonal Variability in the Martian Atmosphere; 14) Exchange Between the Atmosphere and the Regolith of Mars: Discussion of Oxygen and Sulfur Isotope Evidence; 15) Oxygen and Hydrogen Isotope Systematics of Atmospheric Water Vapor and Meteoric Waters: Evidence from North Texas; 16) Implications of Isotopic and Redox Heterogeneities in Silicate Reservoirs on Mars; 17) Oxygen Isotopic Variation of the Terrestrial Planets; 18) Redox Exchanges in Hydrous Magma; 19) Hydrothermal Systems on Terrestrial Planets: Lessons from Earth; 20) Oxygen in Martian Meteorites: A Review of Results from Mineral Equilibria Oxybarometers; 21) Non-Linear Fractionation of Oxygen Isotopes Implanted in

  4. Surface acoustic wave oxygen pressure sensor

    Science.gov (United States)

    Oglesby, Donald M. (Inventor); Upchurch, Billy T. (Inventor); Leighty, Bradley D. (Inventor)

    1994-01-01

    A transducer for the measurement of absolute gas-state oxygen pressure from pressures of less than 100 Pa to atmospheric pressure (1.01 x 10(exp 5) Pa) is based on a standard surface acoustic wave (SAW) device. The piezoelectric material of the SAW device is coated with a compound which will selectively and reversibly bind oxygen. When oxygen is bound by the coating, the mass of the coating increases by an amount equal to the mass of the bound oxygen. Such an increase in the mass of the coating causes a corresponding decrease in the resonant frequency of the SAW device.

  5. Comparison of airline passenger oxygen systems.

    Science.gov (United States)

    Byrne, N J

    1995-08-01

    The principal sources of oxygen for inflight passenger use, scheduled and unscheduled, are examined. Present practices of assessment of the passenger's "fitness to fly" are described. Three partner airlines, British Airways, U.S. Air, and Qantas, catering for more than 8000 oxygen requests annually, are compared. Analysis of customer use suggests that medical oxygen requests are frequently not clinically justified. The growth in demand, for both scheduled and unscheduled use of an expensive resource, supports the need for a "recommended best practice" among carriers. Passengers with respiratory disorders who will most benefit from inflight oxygen are vulnerable either to hypoxia or asthma.

  6. Characterization of carbonaceous solids by oxygen chemisorption

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Palmer, A.; Duguay, D.G.; McConnell, D.G.; Henson, D.E.

    1988-06-01

    Oxygen chemisorption of high and low carbon carbonaceous solids was measured in an electro-microbalance at 200 degrees C in air. A linear correlation between the amount of chemisorbed oxygen and H/C ratio as well as aromaticity was established for the high carbon solids. For the low carbon solids a linear correlation was established between the amount of chemisorbed oxygen and the content of organic matter. Experimental observations are discussed in terms of structural aspects of the solids. Oxygen chemisorption is a suitable technique for a rapid characterization of carbonaceous solids including coal. 15 refs., 7 figs., 3 tabs.

  7. Blood conservation with membrane oxygenators and dipyridamole.

    Science.gov (United States)

    Teoh, K H; Christakis, G T; Weisel, R D; Madonik, M M; Ivanov, J; Wong, P Y; Mee, A V; Levitt, D; Benak, A; Reilly, P

    1987-07-01

    Cardiopulmonary bypass induces platelet activation and dysfunction, which result in platelet deposition and depletion. Reduced platelet numbers and abnormal platelet function may contribute to postoperative bleeding. A membrane oxygenator may preserve platelets and reduce bleeding more than a bubble oxygenator, and the antiplatelet agent dipyridamole may protect platelets intraoperatively and reduce bleeding postoperatively. A prospective randomized trial was performed in 44 patients undergoing elective coronary artery bypass grafting to assess the effects of the membrane oxygenator and dipyridamole on platelet counts, platelet activation products, and postoperative bleeding. Patients who were randomized to receive a bubble oxygenator and no dipyridamole had the lowest postoperative platelet counts, the greatest blood loss, and the most blood products transfused. Platelet counts were highest and blood loss was least in patients randomized to receive a membrane oxygenator and dipyridamole (p less than .05). A bubble oxygenator with dipyridamole and a membrane oxygenator without dipyridamole resulted in intermediate postoperative platelet counts and blood loss. Arterial thromboxane B2 and platelet factor 4 concentrations were elevated on cardiopulmonary bypass in all groups. Both the membrane oxygenator and dipyridamole were independently effective (by multivariate analysis) in preserving platelets. Optimal blood conservation was achieved with a membrane oxygenator and dipyridamole.

  8. Oxygen index tests of thermosetting resins

    Science.gov (United States)

    Gilwee, W. J., Jr.; Parker, J. A.; Kourtides, D. A.

    1980-01-01

    The flammability characteristics of nine thermosetting resins under evaluation for use in aircraft interiors are described. These resins were evaluated using the Oxygen Index (ASTM 2863) testing procedure. The test specimens consisted of both neat resin and glass reinforced resin. When testing glass-reinforced samples it was observed that Oxygen Index values varied inversely with resin content. Oxygen values were also obtained on specimens exposed to temperatures up to 300 C. All specimens experienced a decline in Oxygen Index when tested at an elevated temperature.

  9. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    Science.gov (United States)

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  10. Optimal oxygen saturation in premature infants

    Directory of Open Access Journals (Sweden)

    Meayoung Chang

    2011-09-01

    Full Text Available There is a delicate balance between too little and too much supplemental oxygen exposure in premature infants. Since underuse and overuse of supplemental oxygen can harm premature infants, oxygen saturation levels must be monitored and kept at less than 95% to prevent reactive oxygen species-related diseases, such as retinopathy of prematurity and bronchopulmonary dysplasia. At the same time, desaturation below 80 to 85% must be avoided to prevent adverse consequences, such as cerebral palsy. It is still unclear what range of oxygen saturation is appropriate for premature infants; however, until the results of further studies are available, a reasonable target for pulse oxygen saturation (SpO2 is 90 to 93% with an intermittent review of the correlation between SpO2 and the partial pressure of arterial oxygen tension (PaO2. Because optimal oxygenation depends on individuals at the bedside making ongoing adjustments, each unit must define an optimal target range and set alarm limits according to their own equipment or conditions. All staff must be aware of these values and adjust the concentration of supplemental oxygen frequently.

  11. Alarm points for fixed oxygen monitors

    International Nuclear Information System (INIS)

    Miller, G.C.

    1987-05-01

    Oxygen concentration monitors were installed in a vault where numerous pipes carried inert cryogens and gases to the Mirror Fusion Test Facility (MFTF-B) experimental vessel at Lawrence Livermore National Laboratory (LLNL). The problems associated with oxygen-monitoring systems and the reasons why such monitors were installed were reviewed. As a result of this review, the MFTF-B monitors were set to sound an evacuation alarm when the oxygen concentration fell below 18%. We chose the 18% alarm criterion to minimize false alarms and to allow time for personnel to escape in an oxygen-deficient environment

  12. Oxygen diffusion in bilayer polymer films

    DEFF Research Database (Denmark)

    Poulsen, Lars; Zebger, Ingo; Tofte, Jannik Pentti

    2004-01-01

    Experiments to quantify oxygen diffusion have been performed on polymer samples in which a film of poly(ethylene-co-norbornene) was cast onto a film of polystyrene which, in turn, was cast onto an oxygen-impermeable substrate. In the technique employed, the time evolution of oxygen transport...... through the film of poly(ethylene-co-norbornene) and into the polystyrene film was monitored using the phosphorescence of singlet oxygen as a spectroscopic probe. To analyze the data, it was necessary to solve Fick's second law of diffusion for both polymer films. Tractable analytical and numerical...

  13. Determination of oxygen in liquid sodium

    International Nuclear Information System (INIS)

    Torre, M. de la; Lapena, J.; Galindo, F.; Couchoud, M.; Celis, B. de; Lopez-Araquistain, J.L.

    1976-01-01

    The behaviour is analysed of a device for 'in-line' sampling and vacuum distillation. With this procedure 95 results were obtained for the solubility of oxygen in liquid sodium at temperatures between 125 0 and 300 0 C. The correlation between the concentration of oxygen in a saturation state and the corresponding temperature is represented by: 1g C = 6,17 - 2398/T, where C expressed ppm of oxygen by weight and T is the saturation temperature in 0 K. Reference is also made to the first results obtained with the electrochemical oxygen meter and the system for taking and recording data. (author)

  14. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor

    2007-04-01

    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  15. Evolution of factors affecting placental oxygen transfer

    DEFF Research Database (Denmark)

    Carter, A M

    2009-01-01

    A review is given of the factors determining placental oxygen transfer and the oxygen supply to the fetus. In the case of continuous variables, such as the rate of placental blood flow, it is not possible to trace evolutionary trends. Discontinuous variables, for which we can define character sta......, where fetal and adult haemoglobin are not different, developmental regulation of 2, 3-diphosphoglycerate ensures the high oxygen affinity of fetal blood. Oxygen diffusing capacity is dependent on diffusion distance, which may vary with the type of interhaemal barrier. It has been shown...

  16. On the nature of oxygen-containing surface groups on carbon nanofibers and their role for platinum deposition—an xps and titration study

    NARCIS (Netherlands)

    Plomp, A.J.; Su, D.S.; de Jong, K.P.; Bitter, J.H.

    2009-01-01

    XPS and acid−base titrations were used to investigate the nature and stability of oxygen-containing surface groups on carbon nanofibers (CNF) and platinum-containing CNF. During heat treatments in inert atmosphere at 973 K all acidic (carboxylic) oxygen surface groups were removed for CNF.

  17. Effects of Hyperbaric Oxygen Treatment on Renal System.

    Science.gov (United States)

    Tezcan, Orhan; Caliskan, Ahmet; Demirtas, Sinan; Yavuz, Celal; Kuyumcu, Mahir; Nergiz, Yusuf; Guzel, Abdulmenap; Karahan, Oguz; Ari, Seyhmus; Soker, Sevda; Yalinkilic, Ibrahim; Turkdogan, Kenan Ahmet

    2017-01-01

    Hyperbaric oxygen (HBO) treatment is steadily increasing as a therapeutic modality for various types of diseases. Although good clinical outcomes were reported with HBO treatment for various diseases, the multisystemic effects of this modality are still unclear. This study aimed to investigate the renal effects of HBO experimentally. Fourteen New Zealand White rabbits were divided into 2 groups randomly as the control group and the study group. The study group received HBO treatment for 28 days (100% oxygen at 2.5 atmospheres for 90 minutes daily) and the control group was used to obtain normal renal tissue of the animal genus. After the intervention period, venous blood samples were obtained, and renal tissue samples were harvested for comparisons. Normal histological morphology was determined with Masson trichrome staining and periodic acid-Schiff staining in the control group. Atrophic glomerular structures, vacuolated tubule cells, and degeneration were detected in the renal samples of the study group with Masson trichrome staining. Additionally, flattening was observed on the brush borders of the proximal tubules, and tubular dilatation was visualized with periodic acid-Schiff staining. The histopathologic disruption of renal morphology was verified with detection of significantly elevated kidney function laboratory biomarkers in the study group. Our findings suggests that HBO has adverse effects on renal glomerulus and proximal tubules. However, the functional effects of this alteration should be investigated with further studies.

  18. Oxygen and diverse nutrients influence the water kefir fermentation process.

    Science.gov (United States)

    Laureys, David; Aerts, Maarten; Vandamme, Peter; De Vuyst, Luc

    2018-08-01

    Eight water kefir fermentation series differing in the presence of oxygen, the nutrient concentration, and the nutrient source were studied during eight consecutive backslopping steps. The presence of oxygen allowed the proliferation of acetic acid bacteria, resulting in high concentrations of acetic acid, and decreased the relative abundance of Bifidobacterium aquikefiri. Low nutrient concentrations resulted in slow water kefir fermentation and high pH values, which allowed the growth of Comamonas testosteroni/thiooxydans. Further, low nutrient concentrations favored the growth of Lactobacillus hilgardii and Dekkera bruxellensis, whereas high nutrient concentrations favored the growth of Lactobacillus nagelii and Saccharomyces cerevisiae. Dried figs, dried apricots, and raisins resulted in stable water kefir fermentation. Water kefir fermentation with dried apricots resulted in the highest pH and water kefir grain growth, whereas that with raisins resulted in the lowest pH and water kefir grain growth. Further, water kefir fermentation with raisins resembled fermentations with low nutrient concentrations, that with dried apricots resembled fermentations with normal nutrient concentrations, and that with fresh figs or a mixture of yeast extract and peptone resembled fermentations with high nutrient concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Limited oxygen index levels of impregnated Scots pine wood

    International Nuclear Information System (INIS)

    Tomak, Eylem Dizman; Cavdar, Ayfer Donmez

    2013-01-01

    Highlights: • Scots pine samples were treated with 4 wood preservatives with various concentrations. • Limited oxygen index level was evaluated both for leached and un-leached samples. • All treatments improved fire retardance of samples despite some chemicals leached out. • Samples treated with fireproof agent showed the best results. • LOI of samples treated with boron powder and silicon oil was not changed by leaching. - Abstract: In this study, effect of various concentrations of boron powder, mixture of boric acid and borax, fireproof agent based on liquid blend of limestone, and silicon oil on limited oxygen index levels (LOI) of S. pine wood was investigated. Wood samples were first vacuum treated with the preservatives, and then were subjected to leaching procedure. Samples treated with fireproof agent showed the best results for improving the fire retardancy of wood, furthermore, samples treated with 25%, 50% and 100% of the solution did not burn. Leaching did not considerably change the LOI of wood samples treated with boron powder and silicon oil; however, LOI levels of samples treated with the mixture of boric acid and borax and fireproof agent were affected by leaching procedure probably arising those preservatives did not chemically bond to main wood components. All treatments improved fire retardancy of samples despite some amount of preservatives leached out from wood

  20. Limited oxygen index levels of impregnated Scots pine wood

    Energy Technology Data Exchange (ETDEWEB)

    Tomak, Eylem Dizman, E-mail: eylemdizman@yahoo.com [Forest Industry Engineering Department, Faculty of Forestry, Bursa Technical University, 16200 Bursa (Turkey); Cavdar, Ayfer Donmez [Interior Architecture Department, Faculty of Architecture, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2013-12-10

    Highlights: • Scots pine samples were treated with 4 wood preservatives with various concentrations. • Limited oxygen index level was evaluated both for leached and un-leached samples. • All treatments improved fire retardance of samples despite some chemicals leached out. • Samples treated with fireproof agent showed the best results. • LOI of samples treated with boron powder and silicon oil was not changed by leaching. - Abstract: In this study, effect of various concentrations of boron powder, mixture of boric acid and borax, fireproof agent based on liquid blend of limestone, and silicon oil on limited oxygen index levels (LOI) of S. pine wood was investigated. Wood samples were first vacuum treated with the preservatives, and then were subjected to leaching procedure. Samples treated with fireproof agent showed the best results for improving the fire retardancy of wood, furthermore, samples treated with 25%, 50% and 100% of the solution did not burn. Leaching did not considerably change the LOI of wood samples treated with boron powder and silicon oil; however, LOI levels of samples treated with the mixture of boric acid and borax and fireproof agent were affected by leaching procedure probably arising those preservatives did not chemically bond to main wood components. All treatments improved fire retardancy of samples despite some amount of preservatives leached out from wood.