WorldWideScience

Sample records for oxipurinol alloxanthine oxyprim

  1. Oxipurinol: alloxanthine, Oxyprim, oxypurinol.

    Science.gov (United States)

    2004-01-01

    Oxipurinol [alloxanthine, Oxyprim, oxypurinol] is the active metabolite of the only commercially available xanthine oxidase inhibitor, allopurinol. Oxipurinol is also a xanthine oxidase inhibitor. Oxipurinol is currently being developed by Cardiome Pharma. It is waiting for approval in the US for the treatment of allopurinol-intolerant hyperuricaemia (gout) and is in phase III trials for the treatment of congestive heart failure. Allopurinol is indicated for the treatment of symptomatic hyperuricaemia, or gout. Approximately 3-5% of patients receiving allopurinol develop intolerance to the drug. Oxipurinol was originally developed by Burroughs Wellcome (later GlaxoSmithKline), and has been available on a compassionate-use basis since 1967 for use in allopurinol-intolerant patients. The licensee company ILEX Oncology has stated that oxipurinol does not have patent protection. Oxipurinol's potential for treatment of congestive heart failure is based on the possibility that xanthine oxidase inhibitors may improve myocardial work efficiency by sensitising cardiac muscle cells to calcium ions, which are a key determinant of cardiac muscle function. This results in more efficient contraction of cardiac muscle cells, without the same increase in oxygen demand. At the second annual BioPartnering North America conference (BPN-2004) [February 2004, Vancouver, Canada], Cardiome Pharma stated that it was seeking a commercialisation partner to market and distribute oxipurinol in the US for the treatment of allopurinol-intolerant hyperuricaemia. In 1995, ILEX Oncology obtained an exclusive licence to oxipurinol from Burroughs Wellcome. Burroughs Wellcome later became part of Glaxo Wellcome, which merged with SmithKline Beecham in December 2000 to form GlaxoSmithKline. ILEX's licence agreement is now with GlaxoSmithKline and The Wellcome Foundation. In December 2001, ILEX granted Paralex, a privately held New York-based company, an exclusive sublicence to all of ILEX's rights to

  2. A simple method for quantification of allopurinol and oxipurinol in human serum by high-performance liquid chromatography with UV-detection

    NARCIS (Netherlands)

    Reinders, M.K.; Nijdam, L.C.; van Roon, E.N.; Movig, K.L.; Jansen, T.L.; Brouwers, J.R.

    2007-01-01

    Objectives: Allopurinol is a uric acid lowering drug used in the treatment of gout and the prevention of tumor lysis syndrome. Allopurinol and its active metabolite oxipurinol inhibit xanthine oxidase, which forms uric acid from xanthine and hypoxanthine. Therapeutic drug monitoring is an important

  3. Carotenoids in Marine Animals

    OpenAIRE

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine a...

  4. Carotenoids in Marine Animals

    Science.gov (United States)

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine animal carotenoids from natural product chemistry, metabolism, food chain, and chemosystematic viewpoints, and also describe new structural carotenoids isolated from marine animals over the last decade. PMID:21566799

  5. Biomarker pigment signatures in Cochin back water system - A tropical estuary south west coast of India

    Science.gov (United States)

    Aneeshkumar, N.; Sujatha, C. H.

    2012-03-01

    Sedimentary biomarker pigments around Cochin estuary situated in the southwest coast of India were determined by HPLC. Fucoxanthin, an indicator of diatom was observed to be the most abundant carotenoid pigment in the estuary. Dinoflagellate derived carotenoid pigment peridinin was confined in the southern part of estuary and zeaxanthin pigment indicative of cyanobacteria were more found in sites influenced by anthropogenic activities. One compound having close similarity to fucoxanthin was also detected. Alloxanthin (cryptophyceae), chl b (green algae), canthaxanthin, neoxanthin, lutein and peridinin isomer were also detected by spectra and corresponding algal class were identified. The highest concentration of chl a (11.01 μg g-1) found near to the anthropogenic affected area while the lowest chl a (0.65 μg g-1) was recorded in industrial area. Degradation products of chl a, such as pheophorbide and pheophytin were observed and principal mode of mechanism of degradation were derived. Higher pheopigments content than chl a, reflects a density trapping of dead cells and early degradation of phytopigments from grazing activities.

  6. Photosynthetic pigments of oceanic Chlorophyta belonging to prasinophytes clade VII.

    Science.gov (United States)

    Lopes Dos Santos, Adriana; Gourvil, Priscillia; Rodríguez, Francisco; Garrido, José Luis; Vaulot, Daniel

    2016-02-01

    The ecological importance and diversity of pico/nanoplanktonic algae remains poorly studied in marine waters, in part because many are tiny and without distinctive morphological features. Amongst green algae, Mamiellophyceae such as Micromonas or Bathycoccus are dominant in coastal waters while prasinophytes clade VII, yet not formerly described, appear to be major players in open oceanic waters. The pigment composition of 14 strains representative of different subclades of clade VII was analyzed using a method that improves the separation of loroxanthin and neoxanthin. All the prasinophytes clade VII analyzed here showed a pigment composition similar to that previously reported for RCC287 corresponding to pigment group prasino-2A. However, we detected in addition astaxanthin for which it is the first report in prasinophytes. Among the strains analyzed, the pigment signature is qualitatively similar within subclades A and B. By contrast, RCC3402 from subclade C (Picocystis) lacks loroxanthin, astaxanthin, and antheraxanthin but contains alloxanthin, diatoxanthin, and monadoxanthin that are usually found in diatoms or cryptophytes. For subclades A and B, loroxanthin was lowest at highest light irradiance suggesting a light-harvesting role of this pigment in clade VII as in Tetraselmis. © 2015 Phycological Society of America.

  7. Identification of non-indigenous phytoplankton species dominated bloom off Goa using inverted microscopy and pigment (HPLC) analysis

    Science.gov (United States)

    Bhaskar, P. V.; Roy, Rajdeep; Gauns, Mangesh; Shenoy, D. M.; Rao, V. D.; Mochemadkar, S.

    2011-12-01

    An unusual phytoplankton bloom dominated by unidentified green coloured spherical algal cells (˜5μm diameter) and dinoflagellates ( Heterocapsa, Scripsiella and Gymnodinium) was encountered along the coast of Goa, India during 27 and 29 January, 2005. Pigment analysis was carried out using both fluorometric and HPLC methods. Seawater samples collected from various depths within the intense bloom area showed high concentrations of Chl a (up to 106 mg m - 3) associated with low bacterial production (0.31 to 0.52 mg C m - 3 h - 1) and mesozooplankton biomass (0.03 ml m - 3). Pigment analyses of the seawater samples were done using HPLC detected marker pigments corresponding to prasinophytes, dinoflagellates and diatoms. Chlorophyll b (36-56%) followed by peridinin (15-30%), prasinoxanthin (11-17%) and fucoxanthin (7-15%) were the major diagnostic pigments while pigments of cryptophytes and cyanobacteria including alloxanthin and zeaxanthin formed <10%. Although microscopic analysis indicated a decline in the bloom, pheaophytin concentrations in the water column measured by both techniques were very low, presumably due to fast recycling and/or settling rate. The unique composition of the bloom and its probable causes are discussed in this paper.

  8. Algal Diet of Small-Bodied Crustacean Zooplankton in a Cyanobacteria-Dominated Eutrophic Lake.

    Directory of Open Access Journals (Sweden)

    Ilmar Tõnno

    Full Text Available Small-bodied cladocerans and cyclopoid copepods are becoming increasingly dominant over large crustacean zooplankton in eutrophic waters where they often coexist with cyanobacterial blooms. However, relatively little is known about their algal diet preferences. We studied grazing selectivity of small crustaceans (the cyclopoid copepods Mesocyclops leuckarti, Thermocyclops oithonoides, Cyclops kolensis, and the cladocerans Daphnia cucullata, Chydorus sphaericus, Bosmina spp. by liquid chromatographic analyses of phytoplankton marker pigments in the shallow, highly eutrophic Lake Võrtsjärv (Estonia during a seasonal cycle. Copepods (mainly C. kolensis preferably consumed cryptophytes (identified by the marker pigment alloxanthin in gut contents during colder periods, while they preferred small non-filamentous diatoms and green algae (identified mainly by diatoxanthin and lutein, respectively from May to September. All studied cladoceran species showed highest selectivity towards colonial cyanobacteria (identified by canthaxanthin. For small C. sphaericus, commonly occuring in the pelagic zone of eutrophic lakes, colonial cyanobacteria can be their major food source, supporting their coexistence with cyanobacterial blooms. Pigments characteristic of filamentous cyanobacteria and diatoms (zeaxanthin and fucoxanthin, respectively, algae dominating in Võrtsjärv, were also found in the grazers' diet but were generally avoided by the crustaceans commonly dominating the zooplankton assemblage. Together these results suggest that the co-occurring small-bodied cyclopoid and cladoceran species have markedly different algal diets and that the cladocera represent the main trophic link transferring cyanobacterial carbon to the food web in a highly eutrophic lake.

  9. Carotenogenesis diversification in phylogenetic lineages of Rhodophyta.

    Science.gov (United States)

    Takaichi, Shinichi; Yokoyama, Akiko; Mochimaru, Mari; Uchida, Hiroko; Murakami, Akio

    2016-06-01

    Carotenoid composition is very diverse in Rhodophyta. In this study, we investigated whether this variation is related to the phylogeny of this group. Rhodophyta consists of seven classes, and they can be divided into two groups on the basis of their morphology. The unicellular group (Cyanidiophyceae, Porphyridiophyceae, Rhodellophyceae, and Stylonematophyceae) contained only β-carotene and zeaxanthin, "ZEA-type carotenoids." In contrast, within the macrophytic group (Bangiophyceae, Compsopogonophyceae, and Florideophyceae), Compsopogonophyceae contained antheraxanthin in addition to ZEA-type carotenoids, "ANT-type carotenoids," whereas Bangiophyceae contained α-carotene and lutein along with ZEA-type carotenoids, "LUT-type carotenoids." Florideophyceae is divided into five subclasses. Ahnfeltiophycidae, Hildenbrandiophycidae, and Nemaliophycidae contained LUT-type carotenoids. In Corallinophycidae, Hapalidiales and Lithophylloideae in Corallinales contained LUT-type carotenoids, whereas Corallinoideae in Corallinales contained ANT-type carotenoids. In Rhodymeniophycidae, most orders contained LUT-type carotenoids; however, only Gracilariales contained ANT-type carotenoids. There is a clear relationship between carotenoid composition and phylogenetics in Rhodophyta. Furthermore, we searched open genome databases of several red algae for references to the synthetic enzymes of the carotenoid types detected in this study. β-Carotene and zeaxanthin might be synthesized from lycopene, as in land plants. Antheraxanthin might require zeaxanthin epoxydase, whereas α-carotene and lutein might require two additional enzymes, as in land plants. Furthermore, Glaucophyta contained ZEA-type carotenoids, and Cryptophyta contained β-carotene, α-carotene, and alloxanthin, whose acetylenic group might be synthesized from zeaxanthin by an unknown enzyme. Therefore, we conclude that the presence or absence of the four enzymes is related to diversification of carotenoid

  10. Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse River Estuary, NC, USA).

    Science.gov (United States)

    Cira, Emily K; Paerl, Hans W; Wetz, Michael S

    2016-01-01

    Nitrogen availability and form are important controls on estuarine phytoplankton growth. This study experimentally determined the influence of urea and nitrate additions on phytoplankton growth throughout the growing season (March 2012, June 2011, August 2011) in a temperate, eutrophied estuary (Neuse River Estuary, North Carolina, USA). Photopigments (chlorophyll a and diagnostic photopigments: peridinin, fucoxanthin, alloxanthin, zeaxanthin, chlorophyll b) and microscopy-based cell counts were used as indicators of phytoplankton growth. In March, the phytoplankton community was dominated by Gyrodinium instriatum and only fucoxanthin-based growth rates were stimulated by nitrogen addition. The limited response to nitrogen suggests other factors may control phytoplankton growth and community composition in early spring. In June, inorganic nitrogen concentrations were low and stimulatory effects of both nitrogen forms were observed for chlorophyll a- and diagnostic photopigment-based growth rates. In contrast, cell counts showed that only cryptophyte and dinoflagellate (Heterocapsa rotundata) growth were stimulated. Responses of other photopigments may have been due to an increase in pigment per cell or growth of plankton too small to be counted with the microscopic methods used. Despite high nitrate concentrations in August, growth rates were elevated in response to urea and/or nitrate addition for all photopigments except peridinin. However, this response was not observed in cell counts, again suggesting that pigment-based growth responses may not always be indicative of a true community and/or taxa-specific growth response. This highlights the need to employ targeted microscopy-based cell enumeration concurrent with pigment-based technology to facilitate a more complete understanding of phytoplankton dynamics in estuarine systems. These results are consistent with previous studies showing the seasonal importance of nitrogen availability in estuaries, and also

  11. Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse River Estuary, NC, USA)

    Science.gov (United States)

    Paerl, Hans W.; Wetz, Michael S.

    2016-01-01

    Nitrogen availability and form are important controls on estuarine phytoplankton growth. This study experimentally determined the influence of urea and nitrate additions on phytoplankton growth throughout the growing season (March 2012, June 2011, August 2011) in a temperate, eutrophied estuary (Neuse River Estuary, North Carolina, USA). Photopigments (chlorophyll a and diagnostic photopigments: peridinin, fucoxanthin, alloxanthin, zeaxanthin, chlorophyll b) and microscopy-based cell counts were used as indicators of phytoplankton growth. In March, the phytoplankton community was dominated by Gyrodinium instriatum and only fucoxanthin-based growth rates were stimulated by nitrogen addition. The limited response to nitrogen suggests other factors may control phytoplankton growth and community composition in early spring. In June, inorganic nitrogen concentrations were low and stimulatory effects of both nitrogen forms were observed for chlorophyll a- and diagnostic photopigment-based growth rates. In contrast, cell counts showed that only cryptophyte and dinoflagellate (Heterocapsa rotundata) growth were stimulated. Responses of other photopigments may have been due to an increase in pigment per cell or growth of plankton too small to be counted with the microscopic methods used. Despite high nitrate concentrations in August, growth rates were elevated in response to urea and/or nitrate addition for all photopigments except peridinin. However, this response was not observed in cell counts, again suggesting that pigment-based growth responses may not always be indicative of a true community and/or taxa-specific growth response. This highlights the need to employ targeted microscopy-based cell enumeration concurrent with pigment-based technology to facilitate a more complete understanding of phytoplankton dynamics in estuarine systems. These results are consistent with previous studies showing the seasonal importance of nitrogen availability in estuaries, and also

  12. Phytoplankton of the North Sea and its dynamics: A review

    Science.gov (United States)

    Reid, P. C.; Lancelot, C.; Gieskes, W. W. C.; Hagmeier, E.; Weichart, G.

    microscopic observations has been documented by measurements of taxon-specific pigments such as chlorophyll b (green algae), alloxanthin (Cryptophyceae) and 19' - hexanolyloxyfucoxanthin (Prymnesiophyceae or Haptophyceae). Analysis of time series of satellite images is a promising way to assess in a quantitative and, more important, synoptic way the patchy distribution of phytoplankton over large regions. Growth processes of the phytoplankton respond according to variables amenable to such satellite remote sensing. Empirical and theoretical relationships that can be established between chlorophyll a, 14C uptake, turbidity, stratification, suspended sediment type, irradiance and temperature in some well-investigated areas make remote sensing a potential tool to obtain reliable estimates of primary production in the whole North Sea. The 14C method for estimates of the rate of algal growth processes appears to agree reasonably well with other methods, both involving incubation of samples and in situ measurements of temporal changes of oxygen and pH. The level of net primary production is 250 g C.m -2.a -1 in the central North Sea, 150 to 200 g C.m -2.a -1 in the northern North Sea, and 200 g in the South. The main metabolic processes involved in phytoplankton growth have been modelled mathematically in terms of the most important controlling environmental parameters. Such parameters comprise not only those of a chemical signature (micro- and macronutrients, both inorganic and organic) but also physical effects of vertical mixing and sinking, and biological effects including allelopathic interactions, antibiotic excretions, vertical migration, and mortality due to grazing and parasitism. The balance between primary production and consumption of organic matter appears to vary both geographically and seasonally. The process of regeneration of primary products both in the water column and in and near the bottom seems to be of major importance. Future research should center around a