WorldWideScience

Sample records for oxide thermal barrier

  1. Oxide growth and damage evolution in thermal barrier coatings

    NARCIS (Netherlands)

    Hille, T.S.; Turteltaub, S.R.; Suiker, A.S.J.

    2011-01-01

    Cracking in thermal barrier coatings (TBC) is triggered by the development of a thermally-grown oxide (TGO) layer that develops during thermal cycling from the oxidation of aluminum present in the bond coat (BC). In the present communication a numerical model is presented that describes the

  2. Influence of creep and cyclic oxidation in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Philipp; Baeker, Martin; Roesler, Joachim [Technische Univ. Braunschweig (Germany). Inst. fuer Werkstoffe

    2012-01-15

    The lifetime of thermal barrier coating systems is limited by cracks close to the interfaces, causing delamination. To study the failure mechanisms, a simplified model system is analysed which consists of a bond-coat bulk material, a thermally grown oxide, and an yttria-stabilised zirconia topcoat. The stresses in the model system are calculated using a finite element model which covers the simulation of full thermal cycles, creep in all layers, and the anisotropic oxidation during dwelling. Creep in the oxide and the thermal barrier coating is varied with the use of different creep parameter sets. The influence of creep in the bondcoat is analysed by using two different bond-coat materials: fast creeping Fecralloy and slow creeping oxide dispersion strengthened MA956. It is shown that creep in the bondcoat influences the lifetime of the coatings. Furthermore, a fast creeping thermally grown oxide benefits the lifetime of the coating system. (orig.)

  3. Microstructure of oxides in thermal barrier coatings grown under dry/humid atmosphere

    International Nuclear Information System (INIS)

    Zhou Zhaohui; Guo Hongbo; Wang Juan; Abbas, Musharaf; Gong Shengkai

    2011-01-01

    Graphical abstract: The presence of water vapor promoted the formation of spinels in the TBC. Highlights: → Thermal barrier coatings are produced by electron beam physical vapour deposition. → Oxidation behaviour of the coatings at 1100 deg. C has been investigated in dry/humid O 2 . → Thermally grown oxides formed in the coatings are characterized. → The presence of water vapour promotes the formation of spinel in the TBCs. - Abstract: The microstructure of thermally grown oxide (TGO) in thermal barrier coatings (TBCs) oxidized under dry/humid atmosphere at 1100 deg. C has been characterized by transmission electron microscopy. A thin and continuous oxide layer is formed in the as-deposited TBCs produced by electron beam physical vapor deposition. The TGO formed in dry atmosphere consists of an outer layer of fine α-alumina, zirconia grains and an inner layer of columnar α-alumina grains. However, a small amount of spinel is observed in the TGO under humid atmosphere. The presence of water vapour promotes the formation of spinel.

  4. The oxidation behavior of classical thermal barrier coatings exposed to extreme temperature

    Directory of Open Access Journals (Sweden)

    Alina DRAGOMIRESCU

    2017-03-01

    Full Text Available Thermal barrier coatings (TBC are designed to protect metal surfaces from extreme temperatures and improve their resistance to oxidation during service. Currently, the most commonly used systems are those that have the TBC structure bond coat (BC / top coat (TC layers. The top coat layer is a ceramic layer. Oxidation tests are designed to identify the dynamics of the thermally oxide layer (TGO growth at the interface of bond coat / top coat layers, delamination mechanism and the TBC structural changes induced by thermal conditions. This paper is a short study on the evolution of aluminum oxide protective layer along with prolonged exposure to the testing temperature. There have been tested rectangular specimens of metal super alloy with four surfaces coated with a duplex thermal barrier coating system. The specimens were microscopically and EDAX analyzed before and after the tests. In order to determine the oxide type, the samples were analyzed using X-ray diffraction. The results of the investigation are encouraging for future studies. The results show a direct relationship between the development of the oxide layer and long exposure to the test temperature. Future research will focus on changing the testing temperature to compare the results.

  5. Effect of the top coat on the phase transformation of thermally grown oxide in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X. [Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom); Hashimoto, T. [Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom); Xiao, P. [Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom)]. E-mail: ping.xiao@manchester.ac.uk

    2006-12-15

    The phase transformation of the thermally grown oxide (TGO) formed on a Pt enriched {gamma} + {gamma}' bond coat in electron beam physical vapour deposited thermal barrier coatings (TBCs) was studied by photo-stimulaluminescence spectroscopy. The presence of the TBC retards the {theta} to {alpha} transformation of the TGO and leads to a higher oxidation rate. The reasons for these phenomena are discussed.

  6. Role of high-temperature creep stress in thermally grown oxide growth of thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K.; Nakao, Y.; Seo, D.; Miura, H.; Shoji, T. [Tohoku Univ., Sendai (Japan)

    2008-07-01

    Thermally grown oxide (TGO) grows at the top / bond coating interface of the thermal barrier coating (TBC) in service. It is supposed that the failures of the TBC occur due to thermal stress and the decrease of adhesive strength caused by the TGO growth. Recently, large local stress has been found to change both the diffusion constant of oxygen through an existing oxide and the rate of chemical reaction at the oxide / oxidized material interface. Since high thermal stress occurs in the TBC, the volume expansion of the newly grown oxide, and centrifugal force, the growth rate of the TGO may change depending on not only temperature but also the stress. The aim of this study is to make clear the influence of stress on the growth rate of the TGO quantitatively. As a result, the thickness of the TGO clearly increases with increase of the amplitude of the applied stress and temperature. The increase rate of the TGO thickness is approximately 23% when the applied stress is increased from 0 to 205 MPa at 900 C, and approximately 29% when the stress is increased from 0 to 150 MPa at 950 C. (orig.)

  7. Detection of thermally grown oxides in thermal barrier coatings by nondestructive evaluation

    Science.gov (United States)

    Fahr, A.; Rogé, B.; Thornton, J.

    2006-03-01

    The thermal-barrier coatings (TBC) sprayed on hot-section components of aircraft turbine engines commonly consist of a partially stabilized zirconia top-coat and an intermediate bond-coat applied on the metallic substrate. The bond-coat is made of an aluminide alloy that at high engine temperatures forms thermally grown oxides (TGO). Although formation of a thin layer of aluminum oxide at the interface between the ceramic top-coat and the bond-coat has the beneficial effect of protecting the metallic substrate from hot gases, oxide formation at splat boundaries or pores within the bond-coat is a source of weakness. In this study, plasma-sprayed TBC specimens are manufactured from two types of bond-coat powders and exposed to elevated temperatures to form oxides at the ceramic-bond-coat boundary and within the bond-coat. The specimens are then tested using nondestructive evaluation (NDE) and destructive metallography and compared with the as-manufactured samples. The objective is to determine if NDE can identify the oxidation within the bond-coat and give indication of its severity. While ultrasonic testing can provide some indication of the degree of bond-coat oxidation, the eddy current (EC) technique clearly identifies severe oxide formation within the bond-coat. Imaging of the EC signals as the function of probe location provides information on the spatial variations in the degree of oxidation, and thereby identifies which components or areas are prone to premature damage.

  8. Oxidation and thermal shock behavior of thermal barrier coated 18/10CrNi alloy with coating modifications

    Energy Technology Data Exchange (ETDEWEB)

    Guergen, Selim [Vocational School of Transportation, Anadolu University, Eskisehir (Turkmenistan); Diltemiz, Seyid Fehmi [Turkish Air Force1st Air Supply and Maintenance Center Command, Eskisehir (Turkmenistan); Kushan, Melih Cemal [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2017-01-15

    In this study, substrates of 18/10CrNi alloy plates were initially sprayed with a Ni-21Cr-10Al-1Y bond coat and then with an yttria stabilized zirconia top coat by plasma spraying. Subsequently, plasma-sprayed Thermal barrier coatings (TBCs) were treated with two different modification methods, namely, vacuum heat treatment and laser glazing. The effects of modifications on the oxidation and thermal shock behavior of the coatings were evaluated. The effect of coat thickness on the bond strength of the coats was also investigated. Results showed enhancement of the oxidation resistance and thermal shock resistance of TBCs following modifications. Although vacuum heat treatment and laser glazing exhibited comparable results as per oxidation resistance, the former generated the best improvement in the thermal shock resistance of the TBCs. Bond strength also decreased as coat thickness increased.

  9. Effect of Layer-Graded Bond Coats on Edge Stress Concentration and Oxidation Behavior of Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.

    1998-01-01

    Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.

  10. Microstructural evolution and growth kinetics of thermally grown oxides in plasma sprayed thermal barrier coatings

    Directory of Open Access Journals (Sweden)

    Xiaoju Liu

    2016-02-01

    Full Text Available The formation of thermally grown oxide (TGO during high temperature is a key factor to the degradation of thermal barrier coatings (TBCs applied on hot section components. In the present study both the CoNiCrAlY bond coat and ZrO2-8 wt.% Y2O3 (8YSZ ceramic coat of TBCs were prepared by air plasma spraying (APS. The composition and microstructure of TGO in TBCs were investigated using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS and X-ray diffraction (XRD analysis. The growth rate of TGO for TBC and pure BC were gained after isothermal oxidation at 1100 °C for various times. The results showed that as-sprayed bond coat consisted of β and γ/γ′phases, β phase reducesd as the oxidation time increased. The TGO comprised α-Al2O3 formed in the first 2 h. CoO, NiO, Cr2O3 and spinel oxides appeared after 20 h of oxidation. Contents of CoO and NiO reduced while that of Cr2O3 and spinel oxides increased in the later oxidation stage. The TGO eventually consisted of a sub-Al2O3 layer with columnar microstructure and the upper porous CS clusters. The TGO growth kinetics for two kinds of samples followed parabolic laws, with oxidation rate constant of 0.344 μm/h0.5 for TBCs and 0.354 μm/h0.5 for pure BCs.

  11. Spalling stress in oxidized thermal barrier coatings evaluated by X-ray diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Faculty of Education and Human Sciences, Niigata Univ., Niigata (Japan); Tanaka, K. [Dept. of Mechanical Engineering, Nagoya Univ., Furoh-cho, Chikusa-ku, Nagoya (Japan)

    2005-07-01

    The spallation of thermal barrier coatings (TBCs) is promoted by thermally grown oxide (TGO). To improve TBCs, it is very important to understand the influence of TGO on the spalling stress. In this study 'the TBCs were oxidized at 1373 K for four different periods: 0, 500,1000 and 2000 h. The distribution of the in-plane stress in oxidized TBCs, {sigma}{sub 1}, was obtained by repeating the X-ray stress measurement with low energy X-rays after successive removal of the surface layer. The distribution of the out-of-plane stress, {sigma}{sub 1} - {sigma}{sub 3}, was measured with hard synchrotron X-rays, because high energy X-rays have a large penetration depth. From the results by the low and high energy X-rays, the spalling stress in the oxidized TBCs, {sigma}{sub 3}, was evaluated. The evaluated value of the spalling stress for the oxidized TBC was a small tension beneath the surface, but steeply increased near the interface between the top and bond coating. This large tensile stress near the interface is responsible for the spalling of the top coating. (orig.)

  12. The Development of HfO2-Rare Earth Based Oxide Materials and Barrier Coatings for Thermal Protection Systems

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan James

    2014-01-01

    Advanced hafnia-rare earth oxides, rare earth aluminates and silicates have been developed for thermal environmental barrier systems for aerospace propulsion engine and thermal protection applications. The high temperature stability, low thermal conductivity, excellent oxidation resistance and mechanical properties of these oxide material systems make them attractive and potentially viable for thermal protection systems. This paper will focus on the development of the high performance and high temperature capable ZrO2HfO2-rare earth based alloy and compound oxide materials, processed as protective coating systems using state-or-the-art processing techniques. The emphasis has been in particular placed on assessing their temperature capability, stability and suitability for advanced space vehicle entry thermal protection systems. Fundamental thermophysical and thermomechanical properties of the material systems have been investigated at high temperatures. Laser high-heat-flux testing has also been developed to validate the material systems, and demonstrating durability under space entry high heat flux conditions.

  13. Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films

    International Nuclear Information System (INIS)

    Kim, Seong Woo; Choi, Hyun Muk

    2016-01-01

    To improve the physical and gas barrier properties of biodegradable poly(lactic acid) (PLA) film, two graphene nanosheets of highly functionalized graphene oxide (0.3 wt% to 0.7 wt%) and low-functionalized graphene oxide (0.5 wt%) were incorporated into PLA resin via solution blending method. Subsequently, we investigated the effects of material parameters such as loading level and degree of functionalization for the graphene nanosheets on the morphology and properties of the resultant nanocomposites. The highly functionalized graphene oxide (GO) caused more exfoliation and homogeneous dispersion in PLA matrix as well as more sustainable suspensions in THF, compared to low-functionalized graphene oxide (LFGO). When loaded with GO from 0.3 wt% to 0.7 wt%, the glass transition temperature, degree of crystallinity, tensile strength and modulus increased steadily. The GO gave rise to more pronounced effect in the thermal and mechanical reinforcement, relative to LFGO. In addition, the preparation of fairly transparent PLA-based nanocomposite film with noticeably improved barrier performance achieved only when incorporated with GO up to 0.7wt%. As a result, GO may be more compatible with hydrophilic PLA resin, compared to LFGO, resulting in more prominent enhancement of nanocomposites properties.

  14. Thermal Conductivity of Ceramic Thermal Barrier and Environmental Barrier Coating Materials

    Science.gov (United States)

    Zhu, Dong-Ming; Bansal, Narottam P.; Lee, Kang N.; Miller, Robert A.

    2001-01-01

    Thermal barrier and environmental barrier coatings (TBC's and EBC's) have been developed to protect metallic and Si-based ceramic components in gas turbine engines from high temperature attack. Zirconia-yttria based oxides and (Ba,Sr)Al2Si2O8(BSAS)/mullite based silicates have been used as the coating materials. In this study, thermal conductivity values of zirconia-yttria- and BSAS/mullite-based coating materials were determined at high temperatures using a steady-state laser heat flux technique. During the laser conductivity test, the specimen surface was heated by delivering uniformly distributed heat flux from a high power laser. One-dimensional steady-state heating was achieved by using thin disk specimen configuration (25.4 mm diam and 2 to 4 mm thickness) and the appropriate backside air-cooling. The temperature gradient across the specimen thickness was carefully measured by two surface and backside pyrometers. The thermal conductivity values were thus determined as a function of temperature based on the 1-D heat transfer equation. The radiation heat loss and laser absorption corrections of the materials were considered in the conductivity measurements. The effects of specimen porosity and sintering on measured conductivity values were also evaluated.

  15. Microstructural characterization of thermal barrier coating on Inconel 617 after high temperature oxidation

    Directory of Open Access Journals (Sweden)

    Mohammadreza Daroonparvar

    2013-06-01

    Full Text Available A turbine blade was protected against high temperature corrosion and oxidation by thermal barrier coatings (TBCsusing atmospheric plasma spraying technique (APS on a Ni-based superalloy (Inconel 617. The coatings (NiCr6AlY/ YSZ and NiCr10AlY/YSZ consist of laminar structure with substantial interconnected porosity transferred oxygen from Yittria stabilized Zirconia (YSZ layer toward the bond coat (NiCrAlY. Hence, a thermally grown oxide layer (TGO was formed on the metallic bond coat and internal oxidation of the bond coat occurred during oxidation. The TBC systems were oxidized in a normal electrically heated furnace at 1150 °C for 18, 22, 26, 32 and 40h.Microstructural characterization of coatings demonstrated that the growth of the TGO layer on the nickel alloy with 6wt. % Al is more rapid than TGO with 10wt. % Al. In addition, many micro-cracks were observed at the interface of NiCr6AlY/YSZ. X-ray diffraction analysis (XRD showed the existence of detrimental oxides such as NiCr2O4, NiCrO3 and NiCrO4 in the bond coat containing 6wt. % Al, accompanied by rapid volume expansion causing the destruction of TBC. In contrast, in the bond coat with 10wt. % Al, NiO, Al2O3and Cr2O3 oxides were formed while very low volume expansion occurred. The oxygen could not penetrate into the TGO layer of bond coat with 10 wt. % Al during high temperature oxidation and the detrimental oxides were not extensively formed within the bond coat as more oxygen was needed. The YSZ with higher Al content showed higher oxidation resistance.

  16. Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Schweda, Mario; Beck, Tilmann; Singheiser, Lorenz [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energie- und Klimaforschung (IEK), Werkstoffstruktur und Eigenschaften (IEK-2)

    2012-01-15

    The influence of roughness profile shape, roughness depth, bond coat creep strength and pre-oxidation on the thermal cycling damage evolution and lifetime of a plasma-sprayed ZrO{sub 2} thermal barrier coating system was investigated. A simplified model system was used where FeCrAlY substrates simulated the bond coat. Substrate creep was varied by using the oxide dispersoid strengthened alloy MA956 and the conventional material Fecralloy. Stochastic 3- and periodic 2-dimensional roughness profiles were produced by sand blasting and high speed turning. Damage evolution is significantly influenced by substrate creep with a trend to higher lifetimes for the fast creeping substrate. Pre-oxidation has no influence. Lifetimes of the periodically profiled samples are up to 100 times lower than these of stochastically profiled samples. In the case of periodically profiled samples, the highest lifetime was reached for the highest roughness depth combined with local undercuttings in the roughness profile. For stochastically profiled samples the influence of roughness depth could not be determined due to the wide lifetime scatter. (orig.)

  17. Simulation of thermo-Elastics Properties of Thermal Barrier Coatings ...

    African Journals Online (AJOL)

    Thermal barrier coatings are used to protect different parts in compressors and turbines from heat. They are generally composed of two layers, one metallic layer providing resistance to heat corrosion and oxidation, and one thermally insulating ceramic layer. Two different techniques are industrially used. Plasma spray ...

  18. Optimization of a tunneling barrier in magnetic tunneling junction by tilted-plasma oxidation

    International Nuclear Information System (INIS)

    Nam, C.H.; Shim, Heejae; Kim, K.S.; Cho, B.K.

    2004-01-01

    Oxidation of an AlO x insulating barrier in a magnetic tunneling junction (MTJ) was carried out by a tilted-plasma oxidation method. It was found that the tilted-plasma oxidation induced a gradual change in the extent of oxidation of an insulating layer, which consequently led to a gradual change in the tunneling magnetoresistance (TMR) and specific junction resistance (RA) of the MTJ. We found a linear relation in the TMR versus RA curve with positive and negative slopes for less- and overoxidized junctions, respectively, and a parabolic relation for optimally oxidized junctions. The crossover in the TMR versus RA curves provides an effective and useful way to optimize (and monitor) the oxidation condition of a tunneling barrier in MTJs especially of a tunneling barrier less than 10 A thick. The tunneling junctions were also investigated after thermal annealing at various temperatures. The observations after thermal annealing were found to be consistent with transmission electrons microscopy images and a scenario of the partial formation of an additional ultrathin tunneling barrier at the top surface of the bottom magnetic layer

  19. A coupled mechanical-chemical model for reflecting the influence of stress on oxidation reactions in thermal barrier coating

    Science.gov (United States)

    Chen, Lin; Yueming, Li

    2018-06-01

    In this paper, a coupled mechanical-chemical model is established based on the thermodynamic framework, in which the contribution of chemical expansion to free energy is introduced. The stress-dependent chemical potential equilibrium at the gas-solid interface and the stress gradient-dependent diffusion equation as well as a so-called generalized force which is conjugate to the oxidation rate are derived from the proposed model, which could reflect the influence of stresses on the oxidation reaction. Based on the proposed coupled mechanical-chemical model, a user element subroutine is developed in ABAQUS. The numerical simulation of the high temperature oxidation in the thermal barrier coating is carried out to verify the accuracy of the proposed model, and then the influence of stresses on the oxidation reaction is investigated. In thermally grown oxide, the considerable stresses would be induced by permanent volumetric swelling during the oxidation. The stresses play an important role in the chemical potential equilibrium at the gas-solid interface and strongly affect the oxidation reaction. The gradient of the stresses, however, only occurs in the extremely thin oxidation front layer, which plays a very limited role in the oxidation reaction. The generalized force could be divided into the stress-dependent and the stress-independent parts. Comparing with the stress-independent part, the stress-dependent part is smaller, which has little influence on oxidation reaction.

  20. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    Science.gov (United States)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  1. Monitoring thermally grown oxides under thermal barrier coatings using photoluminescence piezospectroscopy (PLPS)

    Energy Technology Data Exchange (ETDEWEB)

    Del Corno, A.; De Maria, L.; Rinaldi, C. [ERSE, Milan (Italy); Nalin, L.; Simms, N.J. [Cranfield Univ., Bedford (United Kingdom). Energy Technology Centre

    2010-07-01

    The use of thermal barrier coatings (TBCs) on cooled components in industrial gas turbine has enabled higher inlet gas temperatures to be used and hence higher efficiencies to be achieved, without increasing component metal temperatures. However TBCs have a complex coating structure that during high temperature exposure and thermal cycling modifies until TBC spalling which can result in dangerous over-heating of components. This paper reports the results of a TBC exposure programme planned to monitor TGOs development in an example TBC system in terms of both stress evolution within the TGOs and TGO growth. The COST538 reference TBC system was used: an yttria stabilised zirconia TBC applied to an Amdry 995 bond coat on an CMSX-4 substrate. Samples were in the form of 10 mm diameter bars, with the TBC applied to their curved surface. Coated samples were exposed in simulated combustion gases at temperatures 850, 900 and 950 C for periods of up to 10,000 hours. Every 1000 hours samples were cooled and weighed to monitor the progression of the oxidation: selected samples NDT inspected using PLPS and/or destructive examination. Cross-sections were prepared and examined in a scanning electron microscope (SEM) at multiple locations to determine TGO thickness distributions. PLPS spectra were measured and elaborated with a system self developed in ERSE, able to calculate and map the TGO residual stress values under columnar TBCs. So the positions could be evidenced where the damage of the TBC /TGO/BC interface is higher on the exposed bars. The data of TGO thickness distributions and PLPS stress measurement distributions were compared to the exposures carried out on samples to identify and quantify trends in their development. Metallography confirmed that the PLPs technique can reliably detect interface cracking before visible EB-PVD TBC spalling. (orig.)

  2. TGO growth and crack propagation in a thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.R.; Archer, R.; Huang, X. [National Research Council of Canada, Ottawa, ON (Canada); Marple, B.R. [National Research Council of Canada, Boucherville, PQ (Canada)

    2008-07-01

    In thermal barrier coating (TBC) systems, a continuous alumina layer developed at the ceramic topcoat/bond coat interface helps to protect the metallic bond coat from further oxidation and improve the durability of the TBC system under service conditions. However, other oxides such as spinel and nickel oxide, formed in the oxidizing environment, are believed to be detrimental to TBC durability during service at high temperatures. It was shown that in an air-plasma-sprayed (APS) TBC system, post-spraying heat treatments in low-pressure oxygen environments could suppress the formation of the detrimental oxides by promoting the formation of an alumina layer at the ceramic topcoat/bond coat interface, leading to an improved TBC durability. This work presents the influence of post-spraying heat treatments in low-pressure oxygen environments on the oxidation behaviour and durability of a thermally sprayed TBC system with high-velocity oxy-fuel (HVOF)-produced Co-32Ni-21Cr-8Al-0.5Y (wt.%) bond coat. Oxidation behaviour of the TBCs is evaluated by examining their microstructural evolution, growth kinetics of the thermally grown oxide (TGO) layers, as well as crack propagation during low frequency thermal cycling at 1050 C. The relationship between the TGO growth and crack propagation will also be discussed. (orig.)

  3. Residual stress evolution regularity in thermal barrier coatings under thermal shock loading

    Directory of Open Access Journals (Sweden)

    Ximin Chen

    2014-01-01

    Full Text Available Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs under different cycles of thermal shock loading of 1100°C was investigated by the microscopic digital image correlation (DIC and micro-Raman spectroscopy, respectively. The obtained results showed that, as the cycle number of the thermal shock loading increases, the evolution of the residual stress undergoes three distinct stages: a sharp increase, a gradual change, and a reduction. The extension stress near the TBC surface is fast transformed to compressive one through just one thermal cycle. After different thermal shock cycles with peak temperature of 1100°C, phase transformation in TBC does not happen, whereas the generation, development, evolution of the thermally grown oxide (TGO layer and micro-cracks are the main reasons causing the evolution regularity of the residual stress.

  4. Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  5. Design and Performance Optimizations of Advanced Erosion-Resistant Low Conductivity Thermal Barrier Coatings for Rotorcraft Engines

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2012-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability

  6. Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content (HHC) - Fueled Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Mumm, Daniel

    2013-08-31

    The overarching goal of this research program has been to evaluate the potential impacts of coal-derived syngas and high-hydrogen content fuels on the degradation of turbine hot-section components through attack of protective oxides and thermal barrier coatings. The primary focus of this research program has been to explore mechanisms underpinning the observed degradation processes, and connections to the combustion environments and characteristic non-combustible constituents. Based on the mechanistic understanding of how these emerging fuel streams affect materials degradation, the ultimate goal of the program is to advance the goals of the Advanced Turbine Program by developing materials design protocols leading to turbine hot-section components with improved resistance to service lifetime degradation under advanced fuels exposures. This research program has been focused on studying how: (1) differing combustion environments – relative to traditional natural gas fired systems – affect both the growth rate of thermally grown oxide (TGO) layers and the stability of these oxides and of protective thermal barrier coatings (TBCs); and (2) how low levels of fuel impurities and characteristic non-combustibles interact with surface oxides, for instance through the development of molten deposits that lead to hot corrosion of protective TBC coatings. The overall program has been comprised of six inter-related themes, each comprising a research thrust over the program period, including: (i) evaluating the role of syngas and high hydrogen content (HHC) combustion environments in modifying component surface temperatures, heat transfer to the TBC coatings, and thermal gradients within these coatings; (ii) understanding the instability of TBC coatings in the syngas and high hydrogen environment with regards to decomposition, phase changes and sintering; (iii) characterizing ash deposition, molten phase development and infiltration, and associated corrosive

  7. TECHNOLOGICAL PECULIARITIES OF THERMAL BARRIER COATINGS BASED ON ZIRCONIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    V. V. Okovity

    2016-01-01

    Full Text Available A technology for formation of thermal barrier coatings (TBC based on zirconium dioxide has been developed in the paper. The paper investigates structures of phase composition and thermal stability of such developed coatings. Investigation results pertaining to formation of an oxide system ZrO2 – Y2O3, while using plasma spraying and subsequent high-energy processing, which allows to increase resistance of a thermal barrier coating to thermal cycling heat resistance of the coating at temperature of 1100 °C. This leads to longer protection of bottom layer against high-temperature exposure. The methodology is based on complex metallographic, X-ray diffraction and electron microscopy investigations of structural elements in composite plasma coatings of the ZrO2 – Y2O system. Resistance of plasma coatings (Мe – Cr – Al – Y/ZrO2 – Y2O3-type, used as TBC to protect gas turbine engine blades under conditions of frequent thermal cyclings is limited by cleavage of an outer ceramic layer. Structural and electron microprobe investigations have shown that as a result of thermal cycling an outer atmosphere due to porous structure of the ceramic coating layer, migrates to the surface of lower metal coating, causing its oxidation. As a result, the metal-ceramic Al2O3 layer is formed at a metal-ceramic interface and it changes a stress state of the coating that causes a reduction of protective properties. Thus, a high heat resistance of thermal barrier coatings depends on processes occurring at the interface between metal and ceramic coating layers. A laser impact on samples with TBC leads to changes in the structure of the oxide layer of ZrO2 – Y2O3. In this case its initial surface characterized by considerable relief is significantly flattened due to processing and the coating is fractured and it is separated in fragments. As the oxide coating has low thermal conductivity, and the time of laser exposure is about 10–3 sec, a heat flux

  8. High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Guo Hongbo; Sun Lidong; Li Hefei [Department of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, No.37 Xueyuan Road, Beijing 100083 (China); Gong Shengkai [Department of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, No.37 Xueyuan Road, Beijing 100083 (China)], E-mail: gongsk@buaa.edu.cn

    2008-06-30

    NiAl coatings doped with 0.5 at.% and 1.5 at.% Hf were produced by co-evaporation of NiAl and Hf ingots by electron beam physical vapor deposition (EB-PVD), respectively. The addition of 0.5 at.% Hf significantly improved the cyclic oxidation resistance of the NiAl coating. The TGO layer in the 1.5 at.% Hf doped NiAl coating is straight; while that in the 0.5 at.% Hf doped coating became undulated after thermal cycling. The doped NiAl thermal barrier coatings (TBCs) revealed improved thermal cycling lifetimes at 1423 K, compared to the undoped TBC. Failure of the 0.5 at.% Hf doped TBC occurred by cracking at the interface between YSZ topcoat and bond coat, while the 1.5 at.% Hf doped TBC cracked at the interface between bond coat and substrate.

  9. Novel Functionally Graded Thermal Barrier Coatings in Coal-Fired Power Plant Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing [Indiana Univ., Indianapolis, IN (United States)

    2016-11-01

    This project presents a detailed investigation of a novel functionally graded coating material, pyrochlore oxide, for thermal barrier coating (TBC) in gas turbines used in coal-fired power plants. Thermal barrier coatings are refractory materials deposited on gas turbine components, which provide thermal protection for metallic components at operating conditions. The ultimate goal of this research is to develop a manufacturing process to produce the novel low thermal conductivity and high thermal stability pyrochlore oxide based coatings with improved high-temperature durability. The current standard TBC, yttria stabilized zirconia (YSZ), has service temperatures limited to <1200°C, due to sintering and phase transition at higher temperatures. In contrast, pyrochlore oxide, e.g., lanthanum zirconate (La2Zr2O7, LZ), has demonstrated lower thermal conductivity and better thermal stability, which are crucial to high temperature applications, such as gas turbines used in coal-fired power plants. Indiana University – Purdue University Indianapolis (IUPUI) has collaborated with Praxair Surface Technologies (PST), and Changwon National University in South Korea to perform the proposed research. The research findings are critical to the extension of current TBCs to a broader range of high-temperature materials and applications. Several tasks were originally proposed and accomplished, with additional new opportunities identified during the course of the project. In this report, a description of the project tasks, the main findings and conclusions are given. A list of publications and presentations resulted from this research is listed in the Appendix at the end of the report.

  10. Isothermal oxidation behaviour of thermal barrier coatings with CoCrAlY bond coat irradiated by high-current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jie [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Guan, Qingfeng, E-mail: guanqf@mail.ujs.edu.cn [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Hou, Xiuli [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Zhiping; Su, Jingxin; Han, Zhiyong [College of Science, Civil Aviation University of China, Tianjin 300300 (China)

    2014-10-30

    Highlights: • The original coarse surface was re-melted by pulsed electron beam irradiation. • Very fine grains were homogeneously dispersed on the irradiated coat surface. • A compact Al{sub 2}O{sub 3} scale was formed in irradiated TBCs at the onset of oxidation. • The selective oxidation of Al element avoided the formation of other oxides. • The irradiated coating has a much higher oxidation resistance. - Abstract: Thermal sprayed CoCrAlY bond coat irradiated by high-current pulsed electron beam (HCPEB) and thermal barrier coatings (TBCs) prepared with the irradiated bond coat and the ceramic top coat were investigated. The high temperature oxidation resistance of these specimens was tested at 1050 °C in air. Microstructure observations revealed that the original coarse surface of the as-sprayed bond coat was significantly changed as the interconnected bulged nodules with a compact appearance after HCPEB irradiation. Abundant Y-rich alumina particulates and very fine grains were dispersed on the irradiated surface. After high temperature oxidation test, the thermally grown oxide (TGO) in the initial TBCs grew rapidly and was comprised of two distinct layers: a large percentage of mixed oxides in the outer layer and a relatively small portion of Al{sub 2}O{sub 3} in the inner layer. Severe local internal oxidation and extensive cracks in the TGO layer were discovered as well. Comparatively, the irradiated TBCs exhibited thinner TGO layer, slower TGO growth rate, and homogeneous TGO composition (primarily consisting of Al{sub 2}O{sub 3}). The results indicate that TBCs with the irradiated bond coat have a much higher oxidation resistance.

  11. Improved Thermally Grown Oxide Scale in Air Plasma Sprayed NiCrAlY/Nano-YSZ Coatings

    International Nuclear Information System (INIS)

    Daroonparvar, M.; Yajid, M.A.M.; Yusof, N.M.; Hussain, M.S.

    2013-01-01

    Oxidation has been considered as one of the principal disruptive factors in thermal barrier coating systems during service. So, oxidation behavior of thermal barrier coating (TBC) systems with nano structured and micro structured YSZ coatings was investigated at 1000 degree c for 24 h, 48 h, and 120 h. Air plasma sprayed nano-YSZ coating exhibited a tri modal structure. Microstructural characterization also demonstrated an improved thermally grown oxide scale containing lower spinels in nano-TBC system after 120 h of oxidation. This phenomenon is mainly related to the unique structure of the nano-YSZ coating, which acted as a strong barrier for oxygen diffusion into the TBC system at elevated temperatures. Nearly continues but thinner Al 2 O 3 layer formation at the NiCrAlY/nano-YSZ interface was seen, due to lower oxygen infiltration into the system. Under this condition, spinels formation and growth on the Al 2 O 3 oxide scale were diminished in nano-TBC system compared to normal TBC system.

  12. Thermal fatigue behavior of thermal barrier coatings by air plasma spray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Sang; Kim, Eui Hyun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Lee, Jung Hyuk [Korea Plant Service and Engineering Co. Ltd., Incheon (Korea, Republic of)

    2008-06-15

    Effects of top coat morphology and thickness on thermal fatigue behavior of Thermal Barrier Coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and 300 {mu}m respectively. The thickness of top coat was about 700 {mu}m in the Perpendicular Cracked Specimen (PCS). Under thermal fatigue condition at 1,100 .deg. C, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and Thermally Grown Oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

  13. A chromia forming thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M.P.; Evans, H.E. [Metallurgy and Materials, The University of Birmingham, Birmingham, B15 2TT (United Kingdom); Gray, S.; Nicholls, J.R. [Surface Science and Engineering Centre, Cranfield University, Cranfield, MK43 0AL (United Kingdom)

    2011-07-15

    Conventional thermal barrier coating (TBC) systems consist of an insulating ceramic topcoat, a bond coat for oxidation protection and the underlying superalloy designed to combat the oxidising conditions in aero- and land-based gas turbines. Under high-temperature oxidation, the use of an alumina forming bond coat is warranted, thus all current TBC systems are optimised for the early formation of a dense, protective thermally grown oxide (TGO) of alumina. This also offers protection against Type I hot corrosion but a chromia layer gives better protection against Type II corrosion and intermediate temperatures, the conditions found in land-based gas turbines. In this paper the authors present the first known results for a chromia forming TBC system. Tests have been performed under oxidising conditions, up to 1000 h, at temperatures between 750 C and 900 C, and under Type I (900 C) and Type II (700 C) hot corrosion conditions up to 500 h. Under all these conditions no cracking, spallation or degradation was observed. Examination showed the formation of an adherent, dense chromia TGO at the bond coat / topcoat interface. These initial results are very encouraging and the TGO thicknesses agree well with comparable results reported in the literature. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Aspects of fatigue life in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, H.

    2001-08-01

    Thermal barrier coatings (TBC) are applied on hot components in airborne and land based gas turbines when higher turbine inlet temperature, meaning better thermal efficiency, is desired. The TBC is mainly applied to protect underlying material from high temperatures, but also serves as a protection from the aggressive corrosive environment. Plasma sprayed coatings are often duplex TBC's with an outer ceramic top coat (TC) made from partially stabilised zirconia - ZrO{sub 2} + 6-8% Y{sub 2}O{sub 3}. Below the top coat there is a metallic bond coat (BC). The BC is normally a MCrAlX coating (M=Ni, Co, Fe... and X=Y, Hf, Si ... ). In gas turbine components exposed to elevated temperatures nickel-based superalloys are commonly adopted as load carrying components. In the investigations performed here a commercial wrought Ni-base alloy Haynes 230 has been used as substrate for the TBC. As BC a NiCoCrAlY serves as a reference material and in all cases 7% Yttria PS zirconia has been used. Phase development and failure mechanisms in APS TBC during service-like conditions, have been evaluated in the present study. This is done by combinations of thermal cycling and low cycle fatigue tests. The aim is to achieve better knowledge regarding how, when and why thermal barrier coatings fail. As a final outcome of the project a model capable of predicting fatigue life of a given component will help engineers and designers of land based gas turbines for power generation to better optimise TBC's. In the investigations it is seen that TBC life is strongly influenced by oxidation of the BC and interdiffusion between BC and the substrate. The bond coat is known to oxidise with time at high temperature. The initial oxide found during testing is alumina. With increased time at high temperature Al is depleted from the bond coat due to inter-diffusion and oxidation. Oxides others than alumina start to form when the Al content is reduced below a critical limit. It is here believed

  15. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating

    International Nuclear Information System (INIS)

    Zhong, Xinghua; Zhao, Huayu; Zhou, Xiaming; Liu, Chenguang; Wang, Liang; Shao, Fang; Yang, Kai; Tao, Shunyan; Ding, Chuanxian

    2014-01-01

    Highlights: • Gd 2 Zr 2 O 7 /YSZ DCL thermal barrier coating was designed and fabricated. • The Gd 2 Zr 2 O 7 top ceramic layer was toughened by addition of nanostructured 3YSZ. • Remarkable improvement in thermal shock resistance of the DCL coating was achieved. - Abstract: Double-ceramic-layered (DCL) thermal barrier coating system comprising of toughened Gadolinium zirconate (Gd 2 Zr 2 O 7 , GZ) as the top ceramic layer and 4.5 mol% Y 2 O 3 partially-stabilized ZrO 2 (4.5YSZ) as the bottom ceramic layer was fabricated by plasma spraying and thermal shock behavior of the DCL coating was investigated. The GZ top ceramic layer was toughened by addition of nanostructured 3 mol% Y 2 O 3 partially-stabilized ZrO 2 (3YSZ) to improve fracture toughness of the matrix. The thermal shock resistance of the DCL coating was enhanced significantly compared to that of single-ceramic-layered (SCL) GZ-3YSZ composite coating, which is believed to be primarily attributed to the two factors: (i) the increase in fracture toughness of the top ceramic layer by incorporating nanostructured YSZ particles and (ii) the improvement in strain tolerance through the utilization of 4.5YSZ as the bottom ceramic layer. In addition, the failure mechanisms are mainly attributed to the still low fracture toughness of the top ceramic layer and oxidation of the bond-coat

  16. High temperature oxidation interfacial growth kinetics in YSZ thermal barrier coatings with bond coatings of NiCoCrAlY with 0.25% Hf

    Energy Technology Data Exchange (ETDEWEB)

    Soboyejo, W.O. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Mensah, P., E-mail: mensah@engr.subr.edu [Department of Mechanical Engineering, Southern University and A and M College, Baton Rouge, LA 70813 (United States); Diwan, R. [Department of Mechanical Engineering, Southern University and A and M College, Baton Rouge, LA 70813 (United States); Crowe, J. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Akwaboa, S. [Department of Mechanical Engineering, Southern University and A and M College, Baton Rouge, LA 70813 (United States)

    2011-03-15

    Research highlights: {yields} Isothermal oxidation of standard (STD) and vertically cracked (VC) TBCs has been investigated. {yields} The temporal TGO growth kinetics is parabolic in the temperature range between 900 and 1100 deg. C. {yields} Activation energies correspond to growth kinetics controlled by the diffusion of O{sub 2} in Al{sub 2}O{sub 3}. {yields} Variation in oxidation of TBCs is attributed to its microstructure and in-situ oxygen ingression. {yields} Doping TBC bond coat with Hf appears to have potential for enhancing the development of robust TBCs. - Abstract: The results of an experimental study of the high-temperature isothermal oxidation behavior and microstructural evolution in two variations of air plasma sprayed ceramic thermal barrier coatings (TBCs) are discussed in the paper. Two types of TBC specimens were produced for testing. These include a standard and vertically cracked APS. High temperature oxidation was carried out at 900, 1000, 1100 and 1200 deg. C. The experiments were performed in air under isothermal conditions. At each temperature, the specimens were exposed for 25, 50, 75 and 100 h. The corresponding microstructures and microchemistries of the TBC layers were examined using scanning electron microscopy and energy dispersive X-ray spectroscopy. Changes in the dimensions of the thermally grown oxide layer were determined as functions of time and temperature. The evolution of bond coat microstructures/interdiffusion zones and thermally grown oxide layers were compared in the TBC specimens with standard and vertically cracked microstructures.

  17. Recent results from TMX-U thermal barrier experiments

    International Nuclear Information System (INIS)

    Molvik, A.W.; Allen, S.; Barter, J.

    1984-01-01

    The Tandem Mirror Experiment-Upgrade (TMX-U) device was designed to study plasma confinement in a tandem mirror with thermal barriers. Previously the author reported improved axial confinement with high end-plug potentials, consistent with thermal barrier operation. Now, the existence of thermal barriers in TMX-U confirmed by measuring the axial potential profile. Specifically, measured the change in energy of a 5-keV deuterium neutral beam that is injected nearly parallel to the axis and is ionized between the barrier and the central cell. The authors found that the barrier potential is lower than the central cell potential, as required for a thermal barrier. The peak potential is at least 2.4 keV, as determined from the minimum energy of end loss ions. In addition, radial transport is reduced by the use of floating and electrodes that map to concentric cylinders in the central cell. Sloshing ions continue to be microstable

  18. Diffusion barriers of Al2O3 to reduce the bondcoat-oxidation of MCrAlY alloys

    International Nuclear Information System (INIS)

    Schmitt-Thomas, K.G.; Dietl, U.

    1992-01-01

    Under operating conditions in gas turbines plasma sprayed MCrAlY bondcoats (M = Co and/or Ni) for thermal barrier coatings are exposed to a strong oxidation attack. One possibility to reduce bondcoat oxidation is the application of diffusion barriers. Onto the bondcoat, diffusion barriers of Al 2 O 3 are deposited by CVD, PVD and plasma pulse process. The oxidation behaviour of these coating systems were examined at a temperature of 1273 K for times up to 250 hours. The CVD and PVD Al 2 O 3 - coated specimens show compared to the uncoated specimens smaller oxidation rates. The porous Al 2 O 3 coatings, produced by plasma pulse process are not fit for oxidation protection of the bondcoat. There is hope for further improvement of the oxidation resistance by optimizing the CVD- and PVD-process parameters. (orig.) [de

  19. Computational Design and Experimental Validation of New Thermal Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

    2011-12-31

    This project (10/01/2010-9/30/2013), “Computational Design and Experimental Validation of New Thermal Barrier Systems”, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This proposal will directly support the technical goals specified in DE-FOA-0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. We will develop novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; we will perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; we will perform material characterizations and oxidation/corrosion tests; and we will demonstrate our new Thermal barrier coating (TBC) systems experimentally under Integrated gasification combined cycle (IGCC) environments. The durability of the coating will be examined using the proposed High Temperature/High Pressure Durability Test Rig under real syngas product compositions.

  20. Investigation on the Interface Characteristics of the Thermal Barrier Coating System through Flat Cylindrical Indenters

    Directory of Open Access Journals (Sweden)

    Shifeng Wen

    2014-01-01

    Full Text Available Thermal barrier coating (TBC systems are highly advanced material systems and usually applied to insulate components from large and prolonged heat loads by utilizing thermally insulating materials. In this study, the characteristics of the interface of thermal barrier coating systems have been simulated by the finite-element method (FEM. The emphasis was put on the stress distribution at the interface which is beneath the indenter. The effect of the interface roughness, the thermally grown oxide (TGO layer's thickness, and the modulus ratio (η of the thin film with the substrate has been considered. Finite-element results showed that the influences of the interface roughness and the TGO layer's thickness on stress distribution were important. At the same time, the residual stress distribution has been investigated in detail.

  1. Improvements in or relating to thermal barrier systems

    International Nuclear Information System (INIS)

    Birch, W.; Pearson, R.

    1976-01-01

    Reference is made to thermal barrier systems for the internal surface of gas cooled reactor prestressed concrete pressure vessels. Provision has to be made to anchor the thermal barrier system to a metal limit within the pressure vessel, and the object of the arrangement described is to provided a suitable attachment means. The thermal barrier may consist of a number of plates arranged in overlapped fashion or having flexible joint portions. A problem that arises concerns anchoring of the hot plates to the cold pressure vessel by a rigid attachment, and the design must be such as to ensure adequate bending and axial strength compatible with a minimum heat conduction area and allowable thermal stress. The arrangement must also allow easy installation. The arrangement described also provides for a 'fail-safe' structure. It comprises a metal stud with a hollow body; two or more helical channels are provided through the side walls of the body. The body portion expands or contracts to accommodate axial temperature gradient stress set up by the temperature difference between the pressure vessel and the thermal barrier. The space between the thermal barrier and the pressure vessel may contain solid insulating material. (U.K.)

  2. Thermal barrier coatings of rare earth materials deposited by electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhenhua [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He Limin, E-mail: he_limin@yahoo.co [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Chen Xiaolong; Zhao Yu [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Cao Xueqiang, E-mail: xcao@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-10-15

    Thermal barrier coatings (TBCs) have very important applications in gas turbines for higher thermal efficiency and protection of components at high temperature. TBCs of rare earth materials such as lanthanum zirconate (La{sub 2}Zr{sub 2}O{sub 7}, LZ), lanthanum cerate (La{sub 2}Ce{sub 2}O{sub 7}, LC), lanthanum cerium zirconate (La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7}, LZ7C3) were prepared by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, cross-sectional morphology and cyclic oxidation behavior of these coatings were studied. These coatings have partially deviated from their original compositions due to the different evaporation rates of oxides, and the deviation could be reduced by properly controlling the deposition condition. A double ceramic layer-thermal barrier coatings (DCL-TBCs) of LZ7C3 and LC could also be deposited with a single LZ7C3 ingot by properly controlling the deposition energy. LaAlO{sub 3} is formed due to the chemical reaction between LC and Al{sub 2}O{sub 3} in the thermally grown oxide (TGO) layer. The failure of DCL-TBCs is a result of the sintering-induced of LZ7C3 coating and the chemical incompatibility of LC and TGO. Since no single material that has been studied so far satisfies all the requirements for high temperature applications, DCL-TBCs are an important development direction of TBCs.

  3. Evaluation of Erosion Resistance of Advanced Turbine Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Kuczmarski, Maria A.; Miller, Robert A.; Cuy, Michael D.

    2007-01-01

    The erosion resistant turbine thermal barrier coating system is critical to aircraft engine performance and durability. By demonstrating advanced turbine material testing capabilities, we will be able to facilitate the critical turbine coating and subcomponent development and help establish advanced erosion-resistant turbine airfoil thermal barrier coatings design tools. The objective of this work is to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and/or thermal gradient environments, validating advanced turbine airfoil thermal barrier coating systems based on nano-tetragonal phase toughening design approaches.

  4. Erosion and foreign object damage of thermal barrier coatings

    International Nuclear Information System (INIS)

    Nicholls, J.R.; Jaslier, Y.; Rickerby, D.S.

    1997-01-01

    Thermal barrier coating technology is used in the hot sections of gas turbines to extend component life. To maximise these benefits, the thermal barrier coating has to remain intact throughout the life of the turbine. High velocity ballistic damage can lead to total thermal barrier removal, while erosion may lead to progressive loss of thickness during operation. This paper particularly addresses the erosion resistance and resistance to foreign object damage of thermal barrier coatings. It was found that EB-PVD thermal barriers are significantly more erosion resistant when impacted with alumina or silica, than the equivalent plasma spray coating, both at room temperature and 910 C. Examination of tested hardware, reveals that cracking occurs within the near surface region of the columns for EB-PVD ceramic and that erosion occurs by removal of these small blocks of material. In stark contrast, removal of material for plasma sprayed ceramic occurs through poorly bonded splat boundaries. Large particle impact results in severe damage to the EB-PVD thermal barrier, with cracks penetrating through the ceramic coating to the ceramic/bond coat interface. Material removal, per particle impact, increases with increased particle size. (orig.)

  5. Thermal model of attic systems with radiant barriers

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, K.E.

    1991-07-01

    This report summarizes the first phase of a project to model the thermal performance of radiant barriers. The objective of this phase of the project was to develop a refined model for the thermal performance of residential house attics, with and without radiant barriers, and to verify the model by comparing its predictions against selected existing experimental thermal performance data. Models for the thermal performance of attics with and without radiant barriers have been developed and implemented on an IBM PC/AT computer. The validity of the models has been tested by comparing their predictions with ceiling heat fluxes measured in a number of laboratory and field experiments on attics with and without radiant barriers. Cumulative heat flows predicted by the models were usually within about 5 to 10 percent of measured values. In future phases of the project, the models for attic/radiant barrier performance will be coupled with a whole-house model and further comparisons with experimental data will be made. Following this, the models will be utilized to provide an initial assessment of the energy savings potential of radiant barriers in various configurations and under various climatic conditions. 38 refs., 14 figs., 22 tabs.

  6. FAILURE MECHANISMS OF THERMAL BARRIER COATINGS INTERNAL COMBUSTION ENGINES AND llMPROVEMENTS

    Directory of Open Access Journals (Sweden)

    ADNAN PARLAK

    2003-04-01

    Full Text Available MechanicaJ properties of high performance ceramics have been improved to the point where their use in heat engines is possible. The high temperature strength and low thermal expansion properties of bigh performance ceramics offer an advantage over metals in the development of non-water cooling engine. However, because bard environment in diesel engine combustion chamber, solving the problem of durabiUty of TBC is important. DurabiUty of thermal barrier coatings(TBC is liınited by two main failure mechanisms: Therınal expansion nlİsmatch betwcen bond coat and top coat and bond coat oxidation. Both of these can cause failure of the ceramic top coat. Developments of recent years sholv that bond coats \\Vith higher oxidation resistance tend to have better coating system cyclic lives

  7. Deposition and characterization of plasma sprayed Ni-5A1/ magnesia stabilized zirconia based functionally graded thermal barrier coating

    International Nuclear Information System (INIS)

    Baig, M N; Khalid, F A

    2014-01-01

    Thermal barrier coatings (TBCs) are employed to protect hot section components in industrial and aerospace gas turbine engines. Conventional TBCs frequently fail due to high residual stresses and difference between coefficient of thermal expansion (CTE) of the substrate and coatings. Functionally graded thermal barrier coatings (FG-TBCs) with gradual variation in composition have been proposed to minimize the problem. In this work, a five layered functionally graded thermal barrier coating system was deposited by atmospheric plasma spray (APS) technique on Nimonic 90 substrates using Ni-5Al as bond coat (BC) and magnesia stabilized zirconia as top coat (TC). The coatings were characterized by SEM, EDS, XRD and optical profilometer. Microhardness and coefficient of thermal expansion of the five layers deposited as individual coatings were also measured. The deposited coating system was oxidized at 800°C. SEM analysis showed that five layers were successfully deposited by APS to produce a FG-TBC. The results also showed that roughness (Ra) of the individual layers decreased with an increase in TC content in the coatings. It was found that microhardness and CTE values gradually changed from bond coat to cermet layers to top coat. The oxidized coated sample revealed parabolic behavior and changes in the surface morphology and composition of coating

  8. Metallographic techniques for evaluation of thermal barrier coatings

    Science.gov (United States)

    Brindley, William J.; Leonhardt, Todd A.

    1990-01-01

    The performance of ceramic thermal barrier coatings is strongly dependent on the amount and shape of the porosity in the coating. Current metallographic techniques do not provide polished surfaces that are adequate for a repeatable interpretation of the coating structures. A technique recently developed at NASA-Lewis for preparation of thermal barrier coating sections combines epoxy impregnation, careful sectioning and polishing, and interference layering to provide previously unobtainable information on processing-induced porosity. In fact, increased contrast and less ambiguous structure developed by the method make automatic quantitative metallography a viable option for characterizing thermal barrier coating structures.

  9. Thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  10. Design of Thermal Barrier Coatings Thickness for Gas Turbine Blade Based on Finite Element Analysis

    OpenAIRE

    Li, Biao; Fan, Xueling; Li, Dingjun; Jiang, Peng

    2017-01-01

    Thermal barrier coatings (TBCs) are deposited on the turbine blade to reduce the temperature of underlying substrate, as well as providing protection against the oxidation and hot corrosion from high temperature gas. Optimal ceramic top-coat thickness distribution on the blade can improve the performance and efficiency of the coatings. Design of the coatings thickness is a multiobjective optimization problem due to the conflicts among objectives of high thermal insulation performance, long op...

  11. Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dongming

    2006-01-01

    Doped pyrochlore oxides of a type described below are under consideration as alternative materials for high-temperature thermal-barrier coatings (TBCs). In comparison with partially-yttria-stabilized zirconia (YSZ), which is the state-of-the-art TBC material now in commercial use, these doped pyrochlore oxides exhibit lower thermal conductivities, which could be exploited to obtain the following advantages: For a given difference in temperature between an outer coating surface and the coating/substrate interface, the coating could be thinner. Reductions in coating thicknesses could translate to reductions in weight of hot-section components of turbine engines (e.g., combustor liners, blades, and vanes) to which TBCs are typically applied. For a given coating thickness, the difference in temperature between the outer coating surface and the coating/substrate interface could be greater. For turbine engines, this could translate to higher operating temperatures, with consequent increases in efficiency and reductions in polluting emissions. TBCs are needed because the temperatures in some turbine-engine hot sections exceed the maximum temperatures that the substrate materials (superalloys, Si-based ceramics, and others) can withstand. YSZ TBCs are applied to engine components as thin layers by plasma spraying or electron-beam physical vapor deposition. During operation at higher temperatures, YSZ layers undergo sintering, which increases their thermal conductivities and thereby renders them less effective as TBCs. Moreover, the sintered YSZ TBCs are less tolerant of stress and strain and, hence, are less durable.

  12. Buckling of thermally fluctuating spherical shells: Parameter renormalization and thermally activated barrier crossing

    Science.gov (United States)

    Baumgarten, Lorenz; Kierfeld, Jan

    2018-05-01

    We study the influence of thermal fluctuations on the buckling behavior of thin elastic capsules with spherical rest shape. Above a critical uniform pressure, an elastic capsule becomes mechanically unstable and spontaneously buckles into a shape with an axisymmetric dimple. Thermal fluctuations affect the buckling instability by two mechanisms. On the one hand, thermal fluctuations can renormalize the capsule's elastic properties and its pressure because of anharmonic couplings between normal displacement modes of different wavelengths. This effectively lowers its critical buckling pressure [Košmrlj and Nelson, Phys. Rev. X 7, 011002 (2017), 10.1103/PhysRevX.7.011002]. On the other hand, buckled shapes are energetically favorable already at pressures below the classical buckling pressure. At these pressures, however, buckling requires to overcome an energy barrier, which only vanishes at the critical buckling pressure. In the presence of thermal fluctuations, the capsule can spontaneously overcome an energy barrier of the order of the thermal energy by thermal activation already at pressures below the critical buckling pressure. We revisit parameter renormalization by thermal fluctuations and formulate a buckling criterion based on scale-dependent renormalized parameters to obtain a temperature-dependent critical buckling pressure. Then we quantify the pressure-dependent energy barrier for buckling below the critical buckling pressure using numerical energy minimization and analytical arguments. This allows us to obtain the temperature-dependent critical pressure for buckling by thermal activation over this energy barrier. Remarkably, both parameter renormalization and thermal activation lead to the same parameter dependence of the critical buckling pressure on temperature, capsule radius and thickness, and Young's modulus. Finally, we study the combined effect of parameter renormalization and thermal activation by using renormalized parameters for the energy

  13. TMX-U thermal-barrier experiments

    International Nuclear Information System (INIS)

    Simonen, T.C.; Allen, S.L.; Barter, J.D.

    1988-01-01

    This review of thermal-barrier experiments in the Tandem Mirror Experiment Upgrade (TMX-U) describes our progress at Lawrence Livermore National Laboratory in plasma confinement and central-cell heating. Thermal barriers in TMX-U improved axial confinement by two orders of magnitude over a limited range of densities, compared with confinement in single-cell mirrors at the same ion temperature. Our study shows that central-cell radial nonambipolar confinement scales as neoclassical theory and can be eliminated by floating the end walls. Radial ambipolar losses can also be measured and reduced. The electron energy balance is improved in tandem mirrors to near classical, resulting in T/sub e/ up to 0.28 keV. Electron cyclotron heating (ECH) efficiencies up to 42 percent, with low levels of electron microinstability, were achieved when hot electrons in the thermal barrier were heated to average betas as large as 15 percent. The hot-electron distribution is measured from X rays and is modeled by a Fokker-Planck code that includes heating from cavity radio-frequency (RF) fields. Neutral-beam injection in the central cell created average ion betas up to 5 percent with radial profiles of hot ions that are modeled accurately by a radial Fokker-Planck code. Gas fueling between two fundamental ion cyclotron heating (ICH) resonances resulted in symmetrical heating of passing ions toward both ends

  14. Thermal barrier coatings application in diesel engines

    Science.gov (United States)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the

  15. Microstructure Evolution and Impedance Spectroscopy Characterization of Thermal Barrier Coating Exposed to Gas Thermal-shock Environment

    Directory of Open Access Journals (Sweden)

    CHEN Wen-long

    2017-10-01

    Full Text Available Gas thermal-shock experiment of thermal barrier coatings (TBCs was carried out in air up to 1250℃ in order to simulate the thermal cycling process of the engine blades during the start heating and shut down cooling. The growth of thermal growth oxide (TGO layer and microstructure evolution of YSZ layer during thermal cycling process were investigated systematically by electrochemical impedance spectroscopy testing and SEM. The results show that the thickness of TGO layer increases when increasing the frequency of thermal cycling, and the impedance response of middle frequencies is more and more remarkable. Meanwhile, initiation and growth of micro-cracks occur in YSZ layer during the gas thermal-shock experiment. The corresponding impedance characterization of YSZ layer after 100 cycles is similar to the as-sprayed sample, indicating that micro-cracks in short time could heal since the YSZ micro-cracks sinter at high temperature. But after 300 cycles, the impedance spectroscopy of YSZ layer is quite different to the as-sprayed sample, with the corresponding impedance of particle-gap of YSZ more and more remarkable with the increase of the thermal-shock times, indicating that non-healing micro-cracks form in the YSZ layer, which may be the main reason to induce the failure of YSZ layer.

  16. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  17. Finite Element Model Characterization Of Nano-Composite Thermal And Environmental Barrier Coatings

    Science.gov (United States)

    Yamada, Yoshiki; Zhu, Dongming

    2011-01-01

    Thermal and environmental barrier coatings have been applied for protecting Si based ceramic matrix composite components from high temperature environment in advanced gas turbine engines. It has been found that the delamination and lifetime of T/EBC systems generally depend on the initiation and propagation of surface cracks induced by the axial mechanical load in addition to severe thermal loads. In order to prevent T/EBC systems from surface cracking and subsequent delamination due to mechanical and thermal stresses, T/EBC systems reinforced with nano-composite architectures have showed promise to improve mechanical properties and provide a potential crack shielding mechanism such as crack bridging. In this study, a finite element model (FEM) was established to understand the potential beneficial effects of nano-composites systems such as SiC nanotube-reinforced oxide T/EBC systems.

  18. ANALISIS STRUKTUR MIKRO LAPISAN BOND COAT NIAL THERMAL BARRIER COATING (TBC PADA PADUAN LOGAM BERBASIS CO

    Directory of Open Access Journals (Sweden)

    Toto Sudiro

    2012-11-01

    Full Text Available Kehandalan dan umur pakai sistem Thermal Barrier Coating (TBC ditentukan oleh kestabilan lapisan bond coat dan thermal grown oxide (TGO. Sehingga sangatlah penting untuk memahami mekanisme pembentukan dan degradasi lapisan ini. Pada makalah ini akan dibahas analisis struktur mikro lapisan bond coat NiAl yang dideposisikan pada substrat CoCrNi dengan menggunakan gabungan metoda electroplating dan pack-cementation. Pada makalah ini juga dibahas mekanisme pembentukan void disepanjang interface bond coat¬-substrat setelah tes oksidasi.

  19. Evaluation of Defects of Thermal Barrier Coatings by Thermal Shock Test Using Eddy Current Testing

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Tae Hoon; Cho, Youn Ho; Lee, Joon Hyun [Pusan National University, Busan (Korea, Republic of); Oh, Jeong Seok; Lee, Koo Hyun [KIMM, Daejeon (Korea, Republic of)

    2009-10-15

    Periodical thermal shock can introduce defects in thermal barrier coating made by layers of CoNiCrAlY bond coating(BC) and ZrO{sub 2}-8wt%Y{sub 2}O{sub 3} ceramic top coating(TC) on Inconel-738 substrate using plasma spraying. Thermal shock test is performed by severe condition that is to heat until 1000 .deg. C and cool until 20 .deg. C. As the number of cycle is increased, the fatigue by thermal shock is also increased. After test, the micro-structures and mechanical characteristics of thermal barrier coating were investigated by SEM, XRD. The TGO layer of is Al{sub 2}O{sub 3} formed between BC and TC by periodical thermal shock test, and its change in thickness is inspected by eddy current test(ECT). By ECT test, it is shown that TGO and micro-crack can be detected and it is possible to predict the life of thermal barrier coating

  20. Physical and electrical properties of thermal oxidized Sm{sub 2}O{sub 3} gate oxide thin film on Si substrate: Influence of oxidation durations

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Kian Heng; Haseeb, A.S.M.A.; Wong, Yew Hoong, E-mail: yhwong@um.edu.my

    2016-05-01

    Growth of 150 nm Sm{sub 2}O{sub 3} films by sputtered pure samarium metal film on silicon substrates and followed by thermal oxidation process in oxygen ambient at 700 °C through various oxidation durations (5 min, 10 min, 15 min and 20 min) has been carried out. The crystallinity of Sm{sub 2}O{sub 3} film and existence of interfacial layer have been evaluated by X-ray diffraction, Fourier transform infrared and Raman analysis. Crystallite size and microstrain of Sm{sub 2}O{sub 3} were estimated by Williamson–Hall plot analysis. Calculated crystallite size of Sm{sub 2}O{sub 3} from Scherrer equation has similar trend with the value from Williamson–Hall plot. The presence of interfacial layer is supported by composition line scan by energy dispersive X-ray spectroscopy analysis. The surface roughness and surface topography of Sm{sub 2}O{sub 3} film were examined by atomic force microscopy analysis. The electrical characterization revealed that 15 min of oxidation durations with smoothest surface has highest breakdown voltage, lowest leakage current density and highest barrier height value. - Highlights: • Thermal oxidation of sputtered pure metallic Sm in oxygen ambient • Formation of polycrystalline Sm{sub 2}O{sub 3} and semi-polycrystalline interfacial layers • Optimization of oxidation duration of pure metallic Sm in oxygen ambient • Enhanced electrical performance with smooth surface and increased barrier height.

  1. High-temperature resistant, thermally sprayed diffusion barrier coatings on CFC lightweight materials; Hochtemperaturbestaendige, thermisch gespritzte Diffusionsbarriereschichten auf CFC-Leichtbauchargiergestellen

    Energy Technology Data Exchange (ETDEWEB)

    Drehmann, Rico; Rupprecht, Christian; Wielage, Bernhard; Lampke, Thomas [Technische Univ. Chemnitz (Germany). Inst. fuer Werkstoffwissenschaft und Werkstofftechnik (IWW); Gilbert, Maria; Uhlig, Volker; Trimis, Dimosthenis [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Waermetechnik und Thermodynamik (IWTT); Heuer, Volker [ALD Vacuum Technologies GmbH, Hanau (Germany)

    2013-03-15

    In heat treating processes as well as in high temperature brazing processes, charge carriers enable the positioning and transport of work pieces. Recently, charge carriers consisting of graphite or carbon fibre reinforced carbon (CFC) are used. The main disadvantage of charge carriers based on CFC is the undesirable carburization of the overlying components due to diffusion processes. Under this aspect, thermally sprayed coatings are applied on CFC and tested with respect to their suitability as a high-temperature diffusion barrier. The ceramic powders aluminium oxide, aluminium oxide/chromium oxide, aluminium oxide/titanium oxide and zirconium oxide/yttrium oxide are used as a coating material which is processed by means of the powder flame spraying as well as atmospheric plasma spraying. Molybdenum and silicon carbide are used as an adhesive layer. The coating materials aluminium oxide and aluminium oxide/chromium oxide on siliconized CFC presented excellent results. This supplies a large potential of application for thermally sprayed ceramic coatings on carbon-based lightweight materials.

  2. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications

    Science.gov (United States)

    Zhu, Dongming

    2018-01-01

    Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.

  3. Microtexture of the thermally grown alumina in commercial thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Karadge, M. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Zhao, X. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Preuss, M. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Xiao, P. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom)]. E-mail: Ping.Xiao@manchester.ac.uk

    2006-02-15

    otextures of the thermally grown {alpha}-alumina (TGO) in isothermally treated and thermal cycled electron beam physical vapor deposited thermal barrier coatings (EB-PVD-TBC) and isothermally treated air plasma sprayed (APS-TBC) specimens were studied by high resolution electron back-scattered diffraction. The TGO in EB-PVD specimens exhibited a basal microtexture. The TGO in APS specimens, however, did not show any significant microtexture development.

  4. Evaluation of Degradation of Isothermally Aged Plasma-Sprayed Thermal Barrier Coating

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Jae Mean; Seok, Chang Sung; Kang, Min Sung; Kim, Dae Jin [Sungkyunkwan University, Seoul (Korea, Republic of); Lee, Dong Hoon [HYUNDAI STEEL CO., Incheon (Korea, Republic of); Kim, Mun Young [KPS Gas Turbine Technology Service Center, Seongnam (Korea, Republic of)

    2010-04-15

    The thermal barrier coating of a gas turbine blade was degraded by isothermal heating in a furnace and by varying the exposure time and temperature. Then, a micro-Vickers hardness test was conducted on the cross section of the bond coat and Ni-based superalloy substrate. Further, the thickness of TGO(Thermally Grown Oxide) was measured by using an image analyzer, and the changes in the microstructure and element contents in the coating were analyzed by using an optical microscope and by performing SEM-EDX analysis. No significant change was observed in the Vickers hardness of the bond coat when the coated specimen was degraded at a high temperature: delamination was observed between the top coat and the bond coat when the coating was degraded for 50 h at a temperature 1,151 .deg. C.

  5. Alpha-induced instabilities in tandem thermal barriers

    Energy Technology Data Exchange (ETDEWEB)

    Kammash, T.; Galbraith, D.L.

    1987-01-01

    A major premise in the operation of Tandem Mirror reactors is that the fusion reactions take place in the central cell only. The alpha particles generated by the Deuterium-Tritium (DT) fusions, along with other ions, will however pass from the central cell to the thermal barriers and return to the central cell as a result of reflection by the potential hills that exist by the plugs' side of these barriers. This streaming motion gives rise to electrostatic and electomagnetic instabilities which could detract from the barrier's function as a thermal insulator. The number density and streaming velocity of these passing particles are dictated by the electrostatic potential variation and the magnetic field structure in these regions. It is shown that, in the absence of alphas, barriers with deep potential depression are less susceptible to electrostatic instabilities while particularly vulnerable to unstable electromagnetic modes. In the presence of alphas, especially the fast alphas whose mean energy is significantly larger than the barrier potentials they see, (which is twice as high as that seen by the ions) both types of modes become unstable.

  6. Design of tandem mirror reactors with thermal barriers

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1980-01-01

    End-plug technologies for tandem mirror reactors include high-field superconducting magnets, neutral beam injectors, and gyrotrons for electron cyclotron resonant heating (ECRH). In addition to their normal use for sustenance of the end-plug plasmas, neutral beam injectors are used for ''pumping'' trapped ions from the thermal barrier regions by charge exchange. An extra function of the axially directed pump beams is the removal of thermalized alpha particles from the reactor. The principles of tandem mirror operation with thermal barriers will be demonstrated in the upgrade of the Tandem Mirror Experiment (TMX-U) in 1981 and the tandem configuration of the Mirror fusion Test Facility (MFTF-B) in 1984

  7. Investigations of thermal barrier coatings of turbine parts using gas flame heating

    Science.gov (United States)

    Lepeshkin, A. R.; Bichkov, N. G.; Ilinskaja, O. I.; Nazarov, V. V.

    2017-09-01

    The development of methods for the calculated and experimental investigations thermal barrier coatings and thermal state of gas-turbine engine parts with a thermal barrier coatings is actual work. The gas flame heating was demonstrated to be effectively used during investigations of a thermal ceramic barrier coatings and thermal state of such gas-turbine engine parts with a TBC as the cooled turbine blades and vanes and combustion liner components. The gas-flame heating is considered to be preferable when investigating the gas-turbine engine parts with a TBC in the special cases when both the convective and radiant components of thermal flow are of great importance. The small-size rig with gas-flame flow made it possible to conduct the comparison investigations with the purpose of evaluating the efficiency of thermal protection of the ceramic deposited thermal barrier coatings on APS and EB techniques. The developed design-experiment method was introduced in bench tests of turbine blades and combustion liner components of gas turbine engines.

  8. Durability and Design Issues of Thermal/environmental Barrier Coatings on Sic/sic Ceramic Matrix Composites Under 1650 C Test Conditions

    Science.gov (United States)

    Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.

    2004-01-01

    Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.

  9. Thermal failure of nanostructured thermal barrier coatings with cold sprayed nanostructured NiCrAlY bond coat

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Li, Y.; Zhang, S.L.; Wang, X.R.; Yang, G.J.; Li, C.X.; Li, C.J. [Xi' an Jiaotong Univ., Xi' an (China)

    2008-07-01

    Nanostructured YSZ is expected to exhibit a high strain tolerability due to its low Young's modulus and consequently high durability. In this study, a porous YSZ as the thermal barrier coating was deposited by plasma spraying using an agglomerated nanostructured YSZ powder on a Ni-based superalloy Inconel 738 substrate with a cold-sprayed nanostructured NiCrAlY as the bond coat. The heat treatment in Ar atmosphere was applied to the cold-sprayed bond coat before deposition of YSZ. The isothermal oxidation and thermal cycling tests were applied to examine failure modes of plasma-sprayed nanostructured YSZ. The results showed that YSZ coating was deposited by partially melted YSZ particles. The nonmelted fraction of spray particles retains the porous nanostructure of the starting powder into the deposit. YSZ coating exhibits a bimodal microstructure consisting of nanosized particles retained from the powder and micro-columnar grains formed through the solidification of the melted fraction in spray particles. The oxidation of the bond coat occurs during the heat treatment in Ar atmosphere. The uniform oxide at the interface between the bond coat and YSZ can be formed during isothermal test. The cracks were observed at the interface between TGO/BC or TGO/YSZ after thermal cyclic test. However, the failure of TBCs mainly occurred through spalling of YSZ within YSZ coating. The failure characteristics of plasma-sprayed nanostructured YSZ are discussed based on the coating microstructure and formation of TGO on the bond coat surface. (orig.)

  10. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Sanna F.; Knipe, Kevin; Manero, Albert; Raghavan, Seetha [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Meid, Carla; Wischek, Janine; Bartsch, Marion [German Aerospace Center (DLR), Institute of Materials Research, 51147 Cologne (Germany); Okasinski, John; Almer, Jonathan [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Karlsson, Anette M. [Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 (United States)

    2013-08-15

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.

  11. Thermal properties of graphite oxide, thermally reduced graphene and chemically reduced graphene

    Science.gov (United States)

    Jankovský, Ondřej; Sedmidubský, David; Lojka, Michal; Sofer, Zdeněk

    2017-07-01

    We compared thermal behavior and other properties of graphite oxide, thermally reduced graphene and chemically reduced graphene. Graphite was oxidized according to the Hofmann method using potassium chlorate as oxidizing agent in strongly acidic environment. In the next step, the formed graphite oxide was chemically or thermally reduced yielding graphene. The mechanism of thermal reduction was studied using STA-MS. Graphite oxide and both thermally and chemically reduced graphenes were analysed by SEM, EDS, elemental combustion analysis, XPS, Raman spectroscopy, XRD and BET. These findings will help for the large scale production of graphene with appropriate chemical composition.

  12. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

    Science.gov (United States)

    Zhu, Dongming; Spuckler, Charles M.

    2010-01-01

    The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

  13. Nuclear reactor vessel fuel thermal insulating barrier

    Science.gov (United States)

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  14. Design and Characterization of High-strength Bond Coats for Improved Thermal Barrier Coating Durability

    Science.gov (United States)

    Jorgensen, David John

    High pressure turbine blades in gas turbine engines rely on thermal barrier coating (TBC) systems for protection from the harsh combustion environment. These coating systems consist of a ceramic topcoat for thermal protection, a thermally grown oxide (TGO) for oxidation passivation, and an intermetallic bond coat to provide compatibility between the substrate and ceramic over-layers while supplying aluminum to sustain Al2O 3 scale growth. As turbine engines are pushed to higher operating temperatures in pursuit of better thermal efficiency, the strength of industry-standard bond coats limits the lifetime of these coating systems. Bond coat creep deformation during thermal cycling leads to a failure mechanism termed rumpling. The interlayer thermal expansion differences, combined with TGO-imposed growth stresses, lead to the development of periodic undulations in the bond coat. The ceramic topcoat has low out-of-plane compliance and thus detaches and spalls from the substrate, resulting in a loss of thermal protection and subsequent degradation of mechanical properties. New creep resistant Ni3Al bond coats were designed with improved high-temperature strength to inhibit this type of premature failure at elevated temperatures. These coatings resist rumpling deformation while maintaining compatibility with the other layers in the system. Characterization methods are developed to quantify rumpling and assess the TGO-bond coat interface toughness of experimental systems. Cyclic oxidation experiments at 1163 °C show that the Ni3Al bond coats do not experience rumpling but have faster oxide growth rates and are quicker to spall TGO than the (Pt,Ni)Al benchmark. However, the Ni 3Al coatings outperformed the benchmark by over threefold in TBC system life due to a higher resistance to rumpling (mechanical degradation) while maintaining adequate oxidation passivation. The Ni3Al coatings eventually grow spinel NiAl2O4 on top of the protective Al2O3 layer, which leads to the

  15. Effects of variations in coating materials and process conditions on the thermal cycle properties of NiCrAlY/YSZ thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tang Feng [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)]. E-mail: ftang@ucdavis.edu; Ajdelsztajn, Leonardo [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Kim, George E. [Perpetual Technologies, Montreal, Que., H3E 1T8 (Canada); Provenzano, Virgil [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Schoenung, Julie M. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2006-06-15

    Thermal cycle tests were conducted on a variety of thermal barrier coating (TBC) specimens with bond coats that had been prepared in different ways. Variables include: (1) different thermal spray processes (high velocity oxy-fuel (HVOF) spray and low pressure plasma spray (LPPS)) (2) different feedstock powder (gas-atomized and cryomilled) (3) the introduction of nano-sized alumina additives (particles and whiskers) and (4) with and without a post-spray vacuum heat treatment. The results show that the cryomilling of the NiCrAlY powder and the post-spray heat treatment in vacuum can both lead to significant improvement in the thermal cycle lifetime of the TBCs. The TBC specimens with LPPS bond coats also generally showed longer lifetimes than those with HVOF bond coats. In contrast, the intentional dispersion of alumina particles or whiskers in the NiCrAlY powders during cryomilling did not result in the further improvement of the lifetime of the TBCs. Microstructural evolution, including the thermally grown oxide (TGO) formation, the distribution of the dispersoids in the bond coat, the internal oxidation of the bond coat, the bond coat shrinkage during the thermal cycle tests and the reduction of the ZrO{sub 2} in the top coat during the heat treatment in vacuum, was investigated.

  16. Evaluation of properties and thermal stress field for thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    王良; 齐红宇; 杨晓光; 李旭

    2008-01-01

    In order to get thermal stress field of the hot section with thermal barrier coating (TBCs), the thermal conductivity and elastic modulus of top-coat are the physical key properties. The porosity of top-coat was tested and evaluated under different high temperatures. The relationship between the microstructure (porosity of top-coat) and properties of TBCs were analyzed to predict the thermal properties of ceramic top-coat, such as thermal conductivity and elastic modulus. The temperature and stress field of the vane with TBCs were simulated using two sets of thermal conductivity data and elastic modulus, which are from literatures and this work, respectively. The results show that the temperature and stress distributions change with thermal conductivity and elastic modulus. The differences of maximum temperatures and stress are 6.5% and 8.0%, respectively.

  17. Anisotropic TGO rumpling in EB-PVD thermal barrier coatings under in-phase thermomechanical loading

    Energy Technology Data Exchange (ETDEWEB)

    Balint, D.S., E-mail: d.balint@imperial.ac.uk [Department of Mechanical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Kim, S.-S.; Liu Yufu; Kitazawa, R.; Kagawa, Y. [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8409 (Japan); Evans, A.G. [College of Engineering, University of California, Santa Barbara, CA 93106 (United States)

    2011-04-15

    An electron beam physical vapor deposited (EB-PVD) Y{sub 2}O{sub 3}-ZrO{sub 2} thermal barrier system has been tested under in-phase thermomechanical fatigue (TMF) conditions with thermal gradient in the through-thickness direction. Undulations in the thermally grown oxide (TGO) were observed to have clear anisotropic behavior with respect to the directions parallel and perpendicular to the loading axis. It was found that undulation wavelengths were nearly the same in both directions but the amplitude in the perpendicular direction was much larger than in the parallel direction. A recent model of TGO rumpling was adapted and used to analyze and explain the origins of the observed rumpling behavior under TMF conditions. Methods for deducing variation in the coefficient of thermal expansion with temperature and in the creep properties of the substrate from the experimental strain data are also presented in the course of the derivations. Model results show that tensile stress applied in the loading direction can overcome the compression occurring from lateral expansion during oxide formation, causing undulations to flatten; undulations perpendicular to the loading axis are unaffected. However, ratcheting in the strain cycle experienced by the substrate, which occurs naturally by substrate creep, is necessary for anisotropic rumpling under cyclic stress conditions. Model predictions for constant applied stress are also presented, demonstrating a reversal in the direction of undulation alignment under compression. A threshold stress is identified, in both tension and compression, sufficient to produce appreciable anisotropic rumpling. The model predictions provide a clear mechanism for the anisotropy and further evidence that the lateral expansion strain in the oxide is the driving force for oxide rumpling.

  18. Anisotropic TGO rumpling in EB-PVD thermal barrier coatings under in-phase thermomechanical loading

    International Nuclear Information System (INIS)

    Balint, D.S.; Kim, S.-S.; Liu Yufu; Kitazawa, R.; Kagawa, Y.; Evans, A.G.

    2011-01-01

    An electron beam physical vapor deposited (EB-PVD) Y 2 O 3 -ZrO 2 thermal barrier system has been tested under in-phase thermomechanical fatigue (TMF) conditions with thermal gradient in the through-thickness direction. Undulations in the thermally grown oxide (TGO) were observed to have clear anisotropic behavior with respect to the directions parallel and perpendicular to the loading axis. It was found that undulation wavelengths were nearly the same in both directions but the amplitude in the perpendicular direction was much larger than in the parallel direction. A recent model of TGO rumpling was adapted and used to analyze and explain the origins of the observed rumpling behavior under TMF conditions. Methods for deducing variation in the coefficient of thermal expansion with temperature and in the creep properties of the substrate from the experimental strain data are also presented in the course of the derivations. Model results show that tensile stress applied in the loading direction can overcome the compression occurring from lateral expansion during oxide formation, causing undulations to flatten; undulations perpendicular to the loading axis are unaffected. However, ratcheting in the strain cycle experienced by the substrate, which occurs naturally by substrate creep, is necessary for anisotropic rumpling under cyclic stress conditions. Model predictions for constant applied stress are also presented, demonstrating a reversal in the direction of undulation alignment under compression. A threshold stress is identified, in both tension and compression, sufficient to produce appreciable anisotropic rumpling. The model predictions provide a clear mechanism for the anisotropy and further evidence that the lateral expansion strain in the oxide is the driving force for oxide rumpling.

  19. Anisotropic Thermal Diffusivities of Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Akoshima, Megumi; Takahashi, Satoru

    2017-09-01

    Thermal barrier coatings (TBCs) are used to shield the blades of gas turbines from heat and wear. There is a pressing need to evaluate the thermal conductivity of TBCs in the thermal design of advanced gas turbines with high energy efficiency. These TBCs consist of a ceramic-based top coat and a bond coat on a superalloy substrate. Usually, the focus is on the thermal conductivity in the thickness direction of the TBC because heat tends to diffuse from the surface of the top coat to the substrate. However, the in-plane thermal conductivity is also important in the thermal design of gas turbines because the temperature distribution within the turbine cannot be ignored. Accordingly, a method is developed in this study for measuring the in-plane thermal diffusivity of the top coat. Yttria-stabilized zirconia top coats are prepared by thermal spraying under different conditions. The in-plane and cross-plane thermal diffusivities of the top coats are measured by the flash method to investigate the anisotropy of thermal conduction in a TBC. It is found that the in-plane thermal diffusivity is higher than the cross-plane one for each top coat and that the top coats have significantly anisotropic thermal diffusivity. The cross-sectional and in-plane microstructures of the top coats are observed, from which their porosities are evaluated. The thermal diffusivity and its anisotropy are discussed in detail in relation to microstructure and porosity.

  20. Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration and Cyclic Degradations of Thermal and Environmental Barrier Coatings in Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.

    2014-01-01

    In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.

  1. Effect of thermally grown oxide (TGO) microstructure on the durability of TBCs with PtNiAl diffusion bond coats

    Energy Technology Data Exchange (ETDEWEB)

    Spitsberg, Irene [Materials and Process Engineering Department, GE Aircraft Engines, Evendale, OH (United States)]. E-mail: irene.spitsberg@kennametal.com; More, Karren [Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2006-02-15

    The role of pre-oxidation surface treatments on the oxide microstructure and the failure mechanism of multi-layer thermal barrier systems based on Pt-modified NiAl bond coats and electron beam deposited thermal barrier coatings (TBCs) have been studied. The primary pre-oxidation experimental variable was the partial pressure of oxygen in the pre-oxidizing atmosphere at constant temperature and bond coat composition. The durability of TBCs deposited on surfaces following different pre-oxidation treatments were measured and compared using furnace cycling tests. The oxide layers corresponding to different levels of TBC performance were characterized microstructurally, chemically, and compositionally using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques. TBC performance was enhanced by the formation of a surface oxide having a coarse-grained columnar structure during the pre-oxidation process. Increased TBC durability was consistent with a slower oxide growth rate during exposure of the TBC to high-temperature, cyclic conditions, as was observed for this particular pre-oxidation condition. An oxide microstructure having fewer through-thickness transport pathways (grain boundaries) should also result in slower lateral oxide growth rates, consistent with a slowed rate of ratcheting as was observed in the pre-oxidized samples that had the best TBC performance. The desired surface oxide grain structure was achieved by pre-oxidizing the bond coat prior to TBC deposition at an intermediate partial pressure of oxygen.

  2. High quality aluminide and thermal barrier coatings deposition for new and service exposed parts by CVD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pedraza, F.; Tuohy, C.; Whelan, L.; Kennedy, A.D. [SIFCO Turbine Components, Carrigtwohill, Cork (Ireland)

    2004-07-01

    In this work, the performance of CVD aluminide coatings is compared to that of coatings deposited by the classical pack cementation technique using standard SIFCO procedures. The CVD coatings always seem to behave better upon exposure to isothermal and cyclic oxidation conditions. This is explained by a longer term stability of CVD coatings, with higher Al amounts in the diffusion zone and less refractory element precipitation in the additive layer. The qualities of Pt/Al coatings by out-of-pack and CVD are also compared as a previous step for further thermal barrier coating deposition. As an example, YSZ thermal barrier coatings are deposited by MO-CVD on Pt/Al CVD bond coats rendering adherent and thick coatings around the surface of turbine blades. This process under development does not require complex manipulation of the component to be coated. (orig.)

  3. Aluminium oxide barrier films on polymeric web and their conversion for packaging applications

    OpenAIRE

    Struller, CF; Kelly, PJ; Copeland, NJ; Tobin, V; Assender, HE; Holliday, CW; Read, SJ

    2013-01-01

    In recent years, inorganic transparent barrier layers such as aluminium oxide or silicon oxide deposited onto polymer films have emerged as an attractive alternative to polymer based transparent barrier layers for flexible food packaging materials. For this application, barrier properties against water vapour and oxygen are critical. Aluminium oxide coatings can provide good barrier levels at thicknesses in the nanometre range, compared to several micrometres for polymer-based barrier layers....

  4. Life Prediction Issues in Thermal/Environmental Barrier Coatings in Ceramic Matrix Composites

    Science.gov (United States)

    Shah, Ashwin R.; Brewer, David N.; Murthy, Pappu L. N.

    2001-01-01

    Issues and design requirements for the environmental barrier coating (EBC)/thermal barrier coating (TBC) life that are general and those specific to the NASA Ultra-Efficient Engine Technology (UEET) development program have been described. The current state and trend of the research, methods in vogue related to the failure analysis, and long-term behavior and life prediction of EBCITBC systems are reported. Also, the perceived failure mechanisms, variables, and related uncertainties governing the EBCITBC system life are summarized. A combined heat transfer and structural analysis approach based on the oxidation kinetics using the Arrhenius theory is proposed to develop a life prediction model for the EBC/TBC systems. Stochastic process-based reliability approach that includes the physical variables such as gas pressure, temperature, velocity, moisture content, crack density, oxygen content, etc., is suggested. Benefits of the reliability-based approach are also discussed in the report.

  5. The influence of creep properties on crack propagation in thermal barrier coatings

    International Nuclear Information System (INIS)

    Baeker, Martin

    2010-01-01

    Thermal barrier coatings are used to protect turbine blades from the high temperature of the process gas inside a turbine. They consist of a metallic bond coat and of a ceramic top coat with low thermal conductivity. During service, an additional oxide layer forms between bond coat and top coat that eventually causes failure. Finite element simulations show that the roughness of the interface between top and bond coat is crucial for determining the stress state. Lifetime models have been inferred that assume that cracks form in the peak positions at small oxide thickness and propagate when the oxide layer grows and the stress field shifts. A two-dimensional finite element model of crack propagation in the TBC layer is presented. Since the cracks propagate near a material interface and since plasticity may occur in the bond coat, standard tools of fracture mechanics for predicting the crack propagation direction are difficult to apply. This problem is circumvented in a very simple way by propagating short 'test cracks' in different directions and optimising to find the crack direction with the maximum energy release rate. It is shown that the energy release rate and the crack propagation direction are sensitive to the details of the stress state and especially to the creep properties of the materials. Implications for failure models are discussed.

  6. Thermal oxidation for air toxics control

    International Nuclear Information System (INIS)

    Pennington, R.L.

    1991-01-01

    The Administration projects annual expenditures of $1.1 billion by 1995, increasing to $6.7 billion by 2005, in order to comply with the new Clean Air Act Title III hazardous air pollutant requirements. The Title III requirements include 189 hazardous air pollutants which must be reduced or eliminated by 2003. Twenty of the 189 listed pollutants account for approximately 75 percent of all hazardous air pollutant emissions. Ninety percent of these 20 pollutants can be effectively controlled through one or mote of the thermal oxidation technologies. This paper reports that the advantages and disadvantages of each thermal oxidation technology vary substantially and must be reviewed for each application in order to establish the most effective thermal oxidation solution. Effective thermal oxidation will meet MACT (maximum achievable control technology) emission standards

  7. Mercury Oxidation via Catalytic Barrier Filters Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  8. Microstability of TMX-U during initial thermal barrier operation

    International Nuclear Information System (INIS)

    Casper, T.A.; Berzins, L.V.; Ellis, R.F.; James, R.A.; Lasnier, C.

    1984-03-01

    During the initial thermal barrier experiments on the Tandem Mirror Experiment-Upgrade (TMX-U), we successfully demonstrated the principle of improved axial tandem mirror confinement achieved by establishment of both the thermal barrier and the ion confining potential peak. During this operation, we created both hot (100-keV) mirror-confined electron and hot (8-keV) mirror-confined ion populations in the end cells. In certain parameter ranges, we observed these species to be weakly unstable to various microinstabilities, but we did not observe clear evidence for an absolute limit to confinement

  9. Environmental degradation of oxidation resistant and thermal barrier coatings for fuel-flexible gas turbine applications

    Science.gov (United States)

    Mohan, Prabhakar

    The development of thermal barrier coatings (TBCs) has been undoubtedly the most critical advancement in materials technology for modern gas turbine engines. TBCs are widely used in gas turbine engines for both power-generation and propulsion applications. Metallic oxidation-resistant coatings (ORCs) are also widely employed as a stand-alone protective coating or bond coat for TBCs in many high-temperature applications. Among the widely studied durability issues in these high-temperature protective coatings, one critical challenge that received greater attention in recent years is their resistance to high-temperature degradation due to corrosive deposits arising from fuel impurities and CMAS (calcium-magnesium-alumino-silicate) sand deposits from air ingestion. The presence of vanadium, sulfur, phosphorus, sodium and calcium impurities in alternative fuels warrants a clear understanding of high-temperature materials degradation for the development of fuel-flexible gas turbine engines. Degradation due to CMAS is a critical problem for gas turbine components operating in a dust-laden environment. In this study, high-temperature degradation due to aggressive deposits such as V2O5, P2O 5, Na2SO4, NaVO3, CaSO4 and a laboratory-synthesized CMAS sand for free-standing air plasma sprayed (APS) yttria stabilized zirconia (YSZ), the topcoat of the TBC system, and APS CoNiCrAlY, the bond coat of the TBC system or a stand-alone ORC, is examined. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study demonstrated that the V2O5 melt degrades the APS YSZ through the formation of ZrV2O7 and YVO 4 at temperatures below 747°C and above 747°C, respectively. Formation of YVO4 leads to the depletion of the Y2O 3 stabilizer and the deleterious transformation of the YSZ to the monoclinic ZrO2 phase. The investigation on the YSZ degradation by Na 2SO4 and a Na2SO4 + V2

  10. Modeling of Thermal Barrier Coatings

    Science.gov (United States)

    Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.

    1992-01-01

    The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.

  11. Thermal Conductivity Analysis and Lifetime Testing of Suspension Plasma-Sprayed Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2014-08-01

    Full Text Available Suspension plasma spraying (SPS has become an interesting method for the production of thermal barrier coatings for gas turbine components. The development of the SPS process has led to structures with segmented vertical cracks or column-like structures that can imitate strain-tolerant air plasma spraying (APS or electron beam physical vapor deposition (EB-PVD coatings. Additionally, SPS coatings can have lower thermal conductivity than EB-PVD coatings, while also being easier to produce. The combination of similar or improved properties with a potential for lower production costs makes SPS of great interest to the gas turbine industry. This study compares a number of SPS thermal barrier coatings (TBCs with vertical cracks or column-like structures with the reference of segmented APS coatings. The primary focus has been on lifetime testing of these new coating systems. Samples were tested in thermo-cyclic fatigue at temperatures of 1100 °C for 1 h cycles. Additional testing was performed to assess thermal shock performance and erosion resistance. Thermal conductivity was also assessed for samples in their as-sprayed state, and the microstructures were investigated using SEM.

  12. Minimized thermal conductivity in highly stable thermal barrier W/ZrO{sub 2} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Doering, Florian; Major, Anna; Eberl, Christian; Krebs, Hans-Ulrich [University of Goettingen, Institut fuer Materialphysik, Goettingen (Germany)

    2016-10-15

    Nanoscale thin-film multilayer materials are of great research interest since their large number of interfaces can strongly hinder phonon propagation and lead to a minimized thermal conductivity. When such materials provide a sufficiently small thermal conductivity and feature in addition also a high thermal stability, they would be possible candidates for high-temperature applications such as thermal barrier coatings. For this article, we have used pulsed laser deposition in order to fabricate thin multilayers out of the thermal barrier material ZrO{sub 2} in combination with W, which has both a high melting point and high density. Layer thicknesses were designed such that bulk thermal conductivity is governed by the low value of ZrO{sub 2}, while ultrathin W blocking layers provide a high number of interfaces. By this phonon scattering, reflection and shortening of mean free path lead to a significant reduction in overall thermal conductivity even below the already low value of ZrO{sub 2}. In addition to this, X-ray reflectivity measurements were taken showing strong Bragg peaks even after annealing such multilayers at 1300 K. Those results identify W/ZrO{sub 2} multilayers as desired thermally stable, low-conductivity materials. (orig.)

  13. Improved Metallography Of Thermal-Barrier Coatings

    Science.gov (United States)

    Brindley, William J.; Leonhardt, Todd A.

    1991-01-01

    New technique for preparation of metallographic samples makes interpretation of images of pores and microcracks more reliable. Involves use of vacuum epoxy infiltration and interference-film coating to reduce uncertainty. Developed for inspection of plasma-sprayed ceramic thermal-barrier coatings on metals but applicable to other porous, translucent materials, including many important ceramics.

  14. Thermal Gradient Cyclic Behavior of a Thermal/Environmental Barrier Coating System on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.

  15. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    International Nuclear Information System (INIS)

    Silver, E.H.; Clauser, J.F.; Carter, M.R.; Failor, B.H.; Foote, J.H.; Hornady, R.S.; James, R.A.; Lasnier, C.J.; Perkins, D.E.

    1986-01-01

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented

  16. Interlamellar cracking of thermal barrier coatings with TGOs by non-standard four-point bending tests

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P.F. [State Key Laboratory for Strength and Vibration, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an (China); Li, X.D. [State Key Laboratory for Strength and Vibration, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an (China); Aircraft Strength Research Institute of China, Xi' an, 710065 (China); Shang, F.L., E-mail: shangfl@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an (China); Li, C.J. [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an (China)

    2011-09-25

    Highlights: {yields} A non-standard modified four-point bending specimen is adopted for delamination test. {yields} Typical failure mode of the TBC system with TGO layer is demonstrated. {yields} Fracture toughness of 8YSZ on a cold-sprayed MCrAlY coating is evaluated theoretically. - Abstract: This work concerns the failure mode and fracture toughness of plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) deposited on a cold-sprayed MCrAlY bond coat (BC) after thermal oxidation. Upon high-temperature exposure, a thermally grown oxide (TGO) layer was formed along the interface between the BC layer and YSZ ceramic coating layer through oxidation of the bond coat. By utilizing a non-standard modified four-point bending specimen, in conjunction with fractured surface examinations by scanning electron microscope and energy disperse spectroscope, the failure mode of this thermal barrier coating (TBC) system has been checked experimentally. It is shown that delamination cracks firstly initiate at the YSZ/BC interface edge, and then propagate along a wavy path near the interface, not only through the TBC but also within the TGO and along the interlamellar interfaces. Through a theoretical analysis of the bending specimen, the fracture toughness of this TBC system, in terms of strain energy release rate, has been determined from the load-displacement curves which were recorded during the tests.

  17. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture

    Directory of Open Access Journals (Sweden)

    T. Karthikeya Sharma

    2015-11-01

    Full Text Available Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE. This paper investigates the effects of using argon (Ar gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied.

  18. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture.

    Science.gov (United States)

    Karthikeya Sharma, T

    2015-11-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.

  19. Thermal Oxidation of Structured Silicon Dioxide

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Hansen, Ole; Jensen, Jørgen Arendt

    2014-01-01

    The topography of thermally oxidized, structured silicon dioxide is investigated through simulations, atomic force microscopy, and a proposed analytical model. A 357 nm thick oxide is structured by removing regions of the oxide in a masked etch with either reactive ion etching or hydrofluoric acid....... Subsequent thermal oxidation is performed in both dry and wet ambients in the temperature range 950◦C to 1100◦C growing a 205 ± 12 nm thick oxide in the etched mask windows. Lifting of the original oxide near the edge of the mask in the range 6 nm to 37 nm is seen with increased lifting for increasing...

  20. Oxidation and thermal behavior of Jatropha curcas biodiesel ...

    African Journals Online (AJOL)

    The thermal and oxidation behavior is also affected adversely by the container metal. The present paper is dealing with the study of oxidation and thermal behavior of JCB with respect to different metal contents. It was found that influence of metal was detrimental to thermal and oxidation stability. Even small concentrations ...

  1. Thermal Shock Property of Al/Ni-ZrO2 Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    FANJin-juan; WANGQuan-sheng; ZHANGWei-fang

    2004-01-01

    Al/Ni-ZrO2 gradient thermal barrier coatings are made on aluminum substrate using plasma spraying method and one direction thermal shock properties of the coatings are studied in this paper. The results show that pores in coatings link to form cracks vertical to coating surface. They go through the whole ZrO2 coating once vertical cracks form. When thermal shock cycles increase, horizontal cracks that result in coatings failure forms in the coatings and interface. And vertical cracks delay appearance of horizontal cracks and enhance thermal shock property of coatings. Failure mechanisms of coating thermal shock are discussed using experiments and finite element method.

  2. TMX-U [Tandem Mirror Experiment-Upgrade] tandem-mirror thermal-barrier experiments

    International Nuclear Information System (INIS)

    Simonen, T.C.; Allen, S.L.; Baldwin, D.E.

    1986-01-01

    Thermal-barrier experiments have been carried out in the Tandem Mirror Experiment-Upgrade (TMX-U). Measurements of nonambipolar and ambipolar radial transport show that these transport processes, as well as end losses, can be controlled at modest densities and durations. Central-cell heating methods using ion-cyclotron heating (ICH) and neutral-beam injection have been demonstrated. Potential mesurements with recently developed methods indicate that deep thermal barriers can be established

  3. High speed PVD thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beele, W. [Sulzer Metco Coatings BV (Netherlands); Eschendorff, G. [Sulzer Metco Coatings BV (Netherlands); Eldim BV (Netherlands)

    2006-07-15

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  4. High speed PVD thermal barrier coatings

    International Nuclear Information System (INIS)

    Beele, W.; Eschendorff, G.

    2006-01-01

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  5. Separation medium containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Herrera-Alonso, Margarita (Inventor)

    2012-01-01

    A separation medium, such as a chromatography filling or packing, containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g, wherein the thermally exfoliated graphite oxide has a surface that has been at least partially functionalized.

  6. Effects of a Mixed Zone on TGO Displacement Instabilities of Thermal Barrier Coatings at High Temperature in Gas-Cooled Fast Reactors

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-01-01

    Full Text Available Thermally grown oxide (TGO, commonly pure α-Al2O3, formed on protective coatings acts as an insulation barrier shielding cooled reactors from high temperatures in nuclear energy systems. Mixed zone (MZ oxide often grows at the interface between the alumina layer and top coat in thermal barrier coatings (TBCs at high temperature dwell times accompanied by the formation of alumina. The newly formed MZ destroys interface integrity and significantly affects the displacement instabilities of TGO. In this work, a finite element model based on material property changes was constructed to investigate the effects of MZ on the displacement instabilities of TGO. MZ formation was simulated by gradually changing the metal material properties into MZ upon thermal cycling. Quantitative data show that MZ formation induces an enormous stress in TGO, resulting in a sharp change of displacement compared to the alumina layer. The displacement instability increases with an increase in the MZ growth rate, growth strain, and thickness. Thus, the formation of a MZ accelerates the failure of TBCs, which is in agreement with previous experimental observations. These results provide data for the understanding of TBC failure mechanisms associated with MZ formation and of how to prolong TBC working life.

  7. Finite element simulation of stress evolution in thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Bednarz, P.

    2007-07-01

    Gas turbine materials exposed to extreme high temperature require protective coatings. To design reliable components, a better understanding of the coating failure mechanisms is required. Damage in Thermal Barrier Coating Systems (TBCs) is related to oxidation of the Bond Coat, sintering of the ceramic, thermal mismatch of the material constituents, complex shape of the BC/TGO/TBC interface, redistribution of stresses via creep and plastic deformation and crack resistance. In this work, experimental data of thermo-mechanical properties of CMSX-4, MCrAlY (Bond Coat) and APS-TBC (partially stabilized zirconia), were implemented into an FE-model in order to simulate the stress development at the metal/ceramic interface. The FE model reproduced the specimen geometry used in corresponding experiments. It comprises a periodic unit cell representing a slice of the cylindrical specimen, whereas the periodic length of the unit cell equals an idealized wavelength of the rough metal/ceramic interface. Experimental loading conditions in form of thermal cycling with a dwelltime at high temperature and consideration of continuous oxidation were simulated. By a stepwise consideration of various material properties and processes, a reference model was achieved which most realistically simulated the materials behavior. The influences of systematic parameter variations on the stress development and critical sites with respect to possible crack paths were shown. Additionally, crack initiation and propagation at the peak of asperity at BC/TGO interface was calculated. It can be concluded that a realistic modeling of stress development in TBCs requires at least reliable data of i) BC and TGO plasticity, ii) BC and TBC creep, iii) continuous oxidation including in particular lateral oxidation, and iv) critical energy release rate for interfaces (BC/TGO, TGO/TBC) and for each layer. The main results from the performed parametric studies of material property variations suggest that

  8. Theoretical study on thermal stability of molten salt for solar thermal power

    International Nuclear Information System (INIS)

    Wei, Xiaolan; Peng, Qiang; Ding, Jing; Yang, Xiaoxi; Yang, Jianping; Long, Bin

    2013-01-01

    Molten salt (HTS) composed of 53% KNO 3 , 40% NaNO 2 and 7 wt.% NaNO 3 has been used as heat transfer media and thermal storage fluid in the solar thermal power, but thermal decomposition will occur at higher temperature because of the oxidation of nitrite to nitrate in the air. In this paper, the reaction mechanism of NO 2 − oxidation is researched by quantum mechanical method. The results show that two components of the transition state (O 2 NO 2 − ) and intermediate ([NO 4 − ]) are found in the reaction. This reaction is an exothermic reaction and the activation barrier is 94.0 kJ mol −1 . The energy difference of this reaction is very large, so the reaction rate is very slow. -- Highlights: ► The mechanism of the oxidation of nitrite salt in HTS is explained. ► Two components of the transition state (O 2 NO 2 − ) and intermediate ([NO 4 − ]) are found. ► The activation barrier of the nitrite oxidation is determined

  9. Bond strength and stress measurements in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gell, M.; Jordan, E. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. To meet the aggressive Advanced Turbine Systems goals for efficiency, durability and the environment, it will be necessary to employ thermal barrier coatings on turbine airfoils and other hot section components. For The successful application of TBCs to ATS engines with 2600{degrees}F turbine inlet temperatures and required component lives 10 times greater than those for aircraft gas turbine engines, it is necessary to develop quantitative assessment techniques for TBC coating integrity with time and cycles in ATS engines. Thermal barrier coatings in production today consist of a metallic bond coat, such as an MCrAlY overlay coating or a platinum aluminide (Pt-Al) diffusion coating. During heat treatment, both these coatings form a thin, tightly adherent alumina (Al{sub 2}O{sub 3}) film. Failure of TBC coatings in engine service occurs by spallation of the ceramic coating at or near the bond coat to alumina or the alumina to zirconia bonds. Thus, it is the initial strength of these bonds and the stresses at the bond plane, and their changes with engine exposure, that determines coating durability. The purpose of this program is to provide, for the first time, a quantitative assessment of TBC bond strength and bond plane stresses as a function of engine time and cycles.

  10. Oxidation phase growth diagram of vanadium oxides film fabricated by rapid thermal annealing

    Institute of Scientific and Technical Information of China (English)

    Tamura KOZO; Zheng-cao LI; Yu-quan WANG; Jie NI; Yin HU; Zheng-jun ZHANG

    2009-01-01

    Thermal evaporation deposited vanadium oxide films were annealed in air by rapid thermal annealing (RTP). By adjusting the annealing temperature and time, a series of vanadium oxide films with various oxidation phases and surface morphologies were fabricated, and an oxidation phase growth diagram was established. It was observed that different oxidation phases appear at a limited and continuous annealing condition range, and the morphologic changes are related to the oxidation process.

  11. Enhancing the Photovoltage of Ni/ n-Si Photoanode for Water Oxidation through a Rapid Thermal Process.

    Science.gov (United States)

    Li, Shengyang; She, Guangwei; Chen, Cheng; Zhang, Shaoyang; Mu, Lixuan; Guo, Xiangxin; Shi, Wensheng

    2018-03-14

    The Ni in the Ni/ n-Si photoanode can not only protect Si from corrosion, but also catalyze the water oxidation reaction. However, the high density of interface states at the Ni/ n-Si interface could pin the Fermi level of silicon, which will lower the Schottky barrier height of the Ni/ n-Si. As a result, a low photovoltage and consequent high onset potential of Ni/ n-Si photoanode for water oxidation were generated. In this study, the interfacial states of the Ni/ n-Si photoanodes were efficiently diminished through a rapid thermal process (RTP). Calculated from the Mott-Schottky plots, the Schottky barrier height of Ni/ n-Si was increased from 0.58 to 0.78 eV after RTP. Under the illumination of 100 mW cm -2 of the Xe lamp, the onset potential of the Ni/ n-Si photoanode for water oxidation was negatively shifted for 150 mV after RTP. Besides, the RTP-treated Ni/ n-Si photoanode exhibited a high stability during the PEC water oxidation of 8 h in 1 M KOH solution.

  12. Stress controlled gas-barrier oxide coatings on semi-crystalline polymers

    International Nuclear Information System (INIS)

    Rochat, G.; Leterrier, Y.; Fayet, P.; Manson, J.-A.E.

    2005-01-01

    Thin silicon oxide (SiO x ) barrier coatings formed by plasma enhanced chemical vapor deposition on poly(ethylene terephthalate) (PET) substrates were subjected to post-deposition annealing treatments in the temperature range for orientation relaxation of the polymer. The resulting change in coating internal stress state was measured by means of thermo-mechanical analyses, and its effect on the coating cohesive properties and coating/polymer adhesion was determined from the analysis of uniaxial fragmentation tests in situ in a scanning electron microscope, assuming a Weibull-type probability of failure and a perfectly plastic stress transfer at the SiO x /PET interface. The strain to failure and intrinsic fracture toughness of the ultrathin oxide coating were found to be as high as 5.7% and 10 J/m 2 , respectively, and its interfacial shear strength with PET was found to be close to 100 MPa. Annealing for 10 min at 150 deg. C did not modify the oxygen permeation properties of the SiO x /PET film, which suggests that the defect population of the oxide was not affected by the thermal treatment. In contrast, the coating internal compressive stress resulting from annealing was shown to increase by 40% the apparent coating cohesive properties and adhesion to the polymer

  13. Thermal conductivity issues of EB-PVD thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, U.; Raetzer-Scheibe, H.J.; Saruhan, B. [DLR - German Aerospace Center, Institute of Materials Research, 51170 Cologne (Germany); Renteria, A.F. [BTU, Physical Metallurgy and Materials Technology, Cottbus (Germany)

    2007-09-15

    The thermal conductivity of electron-beam physical vapor deposited (EB-PVD) thermal barrier coatings (TBCs) was investigated by the Laser Flash technique. Sample type and methodology of data analyses as well as atmosphere during the measurement have some influence on the data. A large variation of the thermal conductivity was found by changes in TBC microstructure. Exposure at high temperature caused sintering of the porous microstructure that finally increased thermal conductivity up to 30 %. EB-PVD TBCs show a distinct thickness dependence of the thermal conductivity due to the anisotropic microstructure in thickness direction. Thin TBCs had a 20 % lower thermal conductivity than thick coatings. New compositions of the ceramic top layer offer the largest potential to lower thermal conductivity. Values down to 0.8W/(mK) have been already demonstrated with virgin coatings of pyrochlore compositions. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [German] Die Waermeleitfaehigkeit von elektronenstrahl-aufgedampften (EB-PVD) Waermedaemmschichten (TBCs) wurde mittels Laser-Flash untersucht. Probentyp, Messmethodik und die Atmosphaere waehrend der Messung haben einen Einfluss auf die Ergebnisse. Aenderungen in der Mikrostruktur der TBC fuehrten zu grossen Unterschieden der Waermeleitfaehigkeit. Eine Hochtemperaturbelastung verursachte Sintervorgaenge in der poroesen Mikrostruktur, was die Waermeleitfaehigkeit um bis zu 30 % ansteigen liess. EB-PVD TBCs zeigen eine deutliche Dickenabhaengigkeit der Waermeleitfaehigkeit durch die Anisotropie der Mikrostruktur in dieser Richtung. Duenne TBCs haben eine um 20 % geringere Waermeleitfaehigkeit als dicke Schichten. Neue Zusammensetzungen der keramischen Deckschicht bieten die groessten Moeglichkeiten fuer eine Reduktion der Waermeleitfaehigkeit. Werte bis zu 0,8 W/(mK) wurden damit bereits erreicht. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  14. Review of hot corrosion of thermal barrier coatings of gas turbine

    Directory of Open Access Journals (Sweden)

    LIU Yongbao

    2017-03-01

    Full Text Available The review was done in order to make clear the problem of the hot corrosion of the Thermal Barrier Coatings(TBCsduring gas turbine serving. This paper summarizes the factors resulting from the hot corrosion of TBCs during turbine service and classifies methods for enhancing the corrosive resistance of TBCs. A prospective methodology for improving corrosion resistance is also formulated. The main types of corrosion coating include phase reaction, oxidizing of the bond coating, salt-fog corrosion, CMAS corrosion and fuel impurity corrosion. So far, methods for improving the corrosion resistance of TBCs include developing new coating materials, anticorrosive treatment on the surface of TBCs, modifying the stacking configuration and improving the cleansing functions of the gas turbines. In the future, developing new materials with excellent performance will still be the main direction for boosting the improvement of the hot corrosion resistance of TBCs. Simultaneously, improving the tacking configuration and nanotechnology of TBC coatings are potential approaches for improving corrosion resistance. With the development of a Ceramic Matrix Composite (CMC, the focus of the hot corrosion of TBCs may turn to that of Environmental Barrier Coatings (EBCs.

  15. Study on Stress Development in the Phase Transition Layer of Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Yijun Chai

    2016-09-01

    Full Text Available Stress development is one of the significant factors leading to the failure of thermal barrier coating (TBC systems. In this work, stress development in the two phase mixed zone named phase transition layer (PTL, which grows between the thermally grown oxide (TGO and the bond coat (BC, is investigated by using two different homogenization models. A constitutive equation of the PTL based on the Reuss model is proposed to study the stresses in the PTL. The stresses computed with the proposed constitutive equation are compared with those obtained with Voigt model-based equation in detail. The stresses based on the Voigt model are slightly higher than those based on the Reuss model. Finally, a further study is carried out to explore the influence of phase transition proportions on the stress difference caused by homogenization models. Results show that the stress difference becomes more evident with the increase of the PTL thickness ratio in the TGO.

  16. Thermal expansion of beryllium oxide

    International Nuclear Information System (INIS)

    Solodukhin, A.V.; Kruzhalov, A.V.; Mazurenko, V.G.; Maslov, V.A.; Medvedev, V.A.; Polupanova, T.I.

    1987-01-01

    Precise measurements of temperature dependence of the coefficient of linear expansion in the 22-320 K temperature range on beryllium oxide monocrystals are conducted. A model of thermal expansion is suggested; the range of temperature dependence minimum of the coefficient of thermal expansion is well described within the frames of this model. The results of the experiment may be used for investigation of thermal stresses in crystals

  17. Thermal barrier coatings issues in advanced land-based gas turbines

    Science.gov (United States)

    Parks, W. P.; Lee, W. Y.; Wright, I. G.

    1995-01-01

    The Department of Energy's Advanced Turbine System (ATS) program is aimed at forecasting the development of a new generation of land-based gas turbine systems with overall efficiencies significantly beyond those of current state-of-the-art machines, as well as greatly increased times between inspection and refurbishment, improved environmental impact, and decreased cost. The proposed duty cycle of ATS turbines will require the use of different criteria in the design of the materials for the critical hot gas path components. In particular, thermal barrier coatings will be an essential feature of the hot gas path components in these machines. While such coatings are routinely used in high-performance aircraft engines and are becoming established in land-based turbines, the requirements of the ATS turbine application are sufficiently different that significant improvements in thermal barrier coating technology will be necessary. In particular, it appears that thermal barrier coatings will have to function on all airfoil sections of the first stage vanes and blades to provide the significant temperature reduction required. In contrast, such coatings applied to the blades and vances of advanced aircraft engines are intended primarily to reduce air cooling requirements and extend component lifetime; failure of those coatings can be tolerated without jeopardizing mechanical or corrosion performance. A major difference is that in ATS turbines these components will be totally reliant on thermal barrier coatings which will, therefore, need to be highly reliable even over the leading edges of first stage blades. Obviously, the ATS program provides a very challenging opportunity for TBC's, and involves some significant opportunities to extend this technology.

  18. Thermal oxidation of silicon with two oxidizing species

    International Nuclear Information System (INIS)

    Vild-Maior, A.A.; Filimon, S.

    1979-01-01

    A theoretical model for the thermal oxidation of silicon in wet oxygen is presented. It is shown that the presence of oxygen in the oxidation furnace has an important effect when the water temperature is not too high (less than about 65 deg C). The model is in good agreement with the experimental data. (author)

  19. Mechanical, thermal, and barrier properties of methylcellulose/cellulose nanocrystals nanocomposites

    Directory of Open Access Journals (Sweden)

    Hudson Alves Silvério

    2014-12-01

    Full Text Available In this work, the effects of incorporating cellulose nanocrystals from soy hulls (WSH30 on the mechanical, thermal, and barrier properties of methylcellulose (MC nanocomposites were evaluated. MC/WSH30 nanocomposite films with different filler levels (2, 4, 6, 8, and 10% were prepared by casting. Compared to neat MC film, improvements in the mechanical and barrier properties were observed, while thermal stability was retained. The improved mechanical properties of nanocomposites prepared may be attributed to mechanical percolation of WSH30, formation of a continuous network of WSH30 linked by hydrogen interactions and a close association between filler and matrix.

  20. Mechanical, thermal, and barrier properties of methylcellulose/cellulose nanocrystals nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Silverio, Hudson Alves; Flauzino Neto, Wilson Pires; Silva, Ingrid Souza Vieira da; Rosa, Joyce Rover; Pasquini, Daniel, E-mail: pasquini@iqufu.ufu.br, E-mail: danielpasquini2005@yahoo.com.br [Universidade de Uberlandia (USU), MG (Brazil). Instituto de Quimica; Assuncao, Rosana Maria Nascimento de [Universidade de Uberlandia (USU), Ituiutaba, MG (brazil). Fac. de Ciencias Integradas do Pontal; Barud, Hernane da Silva; Ribeiro, Sidney Jose Lima [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica

    2014-11-15

    In this work, the effects of incorporating cellulose nanocrystals from soy hulls (WSH{sub 30}) on the mechanical, thermal, and barrier properties of methylcellulose (MC) nanocomposites were evaluated. MC/WSH{sub 30} nanocomposite films with different filler levels (2, 4, 6, 8, and 10%) were prepared by casting. Compared to neat MC film, improvements in the mechanical and barrier properties were observed, while thermal stability was retained. The improved mechanical properties of nanocomposites prepared may be attributed to mechanical percolation of WSH{sub 30}, formation of a continuous network of WSH{sub 30} linked by hydrogen interactions and a close association between filler and matrix. (author)

  1. Failure mechanism for thermal fatigue of thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Giolli, C.; Scrivani, A.; Rizzi, G. [Turbocoating S.p.A., Rubbiano di Solignano (Italy); Borgioli, F. [Firenze Univ., Sesto Fiorentino (Italy); Bolelli, G.; Lusvarghi, L. [Univ. di Modena e Reggio Emilia, Modena (Italy)

    2008-07-01

    High temperature thermal fatigue causes the failure of Thermal Barrier Coating (TBC) systems. Due to the difference in thickness and microstructure between thick TBCs and traditional thin TBCs, they cannot be assumed a-priori to possess the same failure mechanisms. Thick TBCs, consisting of a CoNiCrAlY bond coat and Yttria Partially Stabilised Zirconia top coat with different values of porosity, were produced by Air Plasma Spray. Thermal fatigue resistance limit of TBCs was tested by Furnace Cycling Tests (FCT) according to the specifications of an Original Equipment Manufacturer (OEM). TBC systems were analyzed before and after FCT. The morphological and chemical evolution of CoNiCrAlY/TGO microstructure was studied. Sintering effect, residual stress, phase transformation and fracture toughness were evaluated in the ceramic Top Coat. All the tested samples passed FCT according to the specification of an important OEM. Thermal fatigue resistance increases with the amount of porosity in the top coat. The compressive in-plane stresses increase in the TBC systems after thermal cycling, nevertheless the increasing rate has a trend contrary to the porosity level of top coat. The data suggest that the spallation happens at the TGO/Top Coat interface. The failure mechanism of thick TBCs subjected to thermal fatigue was eventually found to be similar to the failure mechanism of thin TBC systems made by APS. (orig.)

  2. Hafnia-Based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ramana, Chintalapalle; Choudhuri, Ahsan

    2013-01-31

    Thermal barrier coatings (TBCs) are critical technologies for future gas turbine engines of advanced coal based power generation systems. TBCs protect engine components and allow further increase in engine temperatures for higher efficiency. In this work, nanostructured HfO{sub 2}-based coatings, namely Y{sub 2}O{sub 3}-stabilized HfO{sub 2} (YSH), Gd{sub 2}O{sub 3}-stabilized HfO{sub 2} (GSH) and Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}-HfO{sub 2} (YSZH) were investigated for potential TBC applications in hydrogen turbines. Experimental efforts are aimed at creating a fundamental understanding of these TBC materials. Nanostructured ceramic coatings of YSH, GSH and YSZH were grown by physical vapor deposition methods. The effects of processing parameters and ceramic composition on the microstructural evolution of YSH, GSH and YSZH nanostructured coatings was studied using combined X-ray diffraction (XRD) and Electron microscopy analyses. Efforts were directed to derive a detailed understanding of crystal-structure, morphology, and stability of the coatings. In addition, thermal conductivity as a function of composition in YSH, YSZH and GSH coatings was determined. Laboratory experiments using accelerated test environments were used to investigate the relative importance of various thermo-mechanical and thermo-chemical failure modes of TBCs. Effects of thermal cycling, oxidation and their complex interactions were evaluated using a syngas combustor rig.

  3. Development and Life Prediction of Erosion Resistant Turbine Low Conductivity Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2010-01-01

    Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.

  4. Evolution of photo-stimulated luminescence of EB-PVD/(Ni, Pt)Al thermal barrier coatings

    International Nuclear Information System (INIS)

    Wen Mei; Jordan, Eric H.; Gell, Maurice

    2005-01-01

    Experiments are described which were designed to assess the suitability of photo-stimulated luminescence piezo-spectroscopy (PLPS) measurements as a basis for non-destructive inspection (NDI) and determination of life remaining of thermal barrier coatings (TBCs). Thermal cyclic tests were conducted on 7 wt.% Y 2 O 3 stabilized ZrO 2 (YSZ) electron beam physical vapor deposited (EB-PVD)/(Ni, Pt)Al/CMSX-4 TBCs at two temperatures 1151 and 1121 deg. C. The evolution of PLPS spectral characteristics (peak frequency shift, peak width and area ratio of peaks) was studied as a function of thermal cycles. It was observed that the average thermally grown oxide (TGO) stress and its standard deviation, and the area ratio of peaks show systematic change with thermal cycling, indicating that these characteristics can be used for NDI and determination of life remaining. The average TGO stress increases initially and then decreases monotonically with thermal cycling. The rate of change in the stress can be related to specimen life: the shallower the slope, the higher the life. The peak area ratio also decreases monotonically with cycling. The average TGO stress changes in a systematic manner versus remaining life fraction independent of temperature. Remaining life predictions were made based on average stress versus life fraction, which resulted in life assessments within ±13% of actual values excluding one specimen with abnormal behavior

  5. Design of Thermal Barrier Coatings Thickness for Gas Turbine Blade Based on Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Biao Li

    2017-01-01

    Full Text Available Thermal barrier coatings (TBCs are deposited on the turbine blade to reduce the temperature of underlying substrate, as well as providing protection against the oxidation and hot corrosion from high temperature gas. Optimal ceramic top-coat thickness distribution on the blade can improve the performance and efficiency of the coatings. Design of the coatings thickness is a multiobjective optimization problem due to the conflicts among objectives of high thermal insulation performance, long operation durability, and low fabrication cost. This work developed a procedure for designing the TBCs thickness distribution for the gas turbine blade. Three-dimensional finite element models were built and analyzed, and weighted-sum approach was employed to solve the multiobjective optimization problem herein. Suitable multiregion top-coat thickness distribution scheme was designed with the considerations of manufacturing accuracy, productivity, and fabrication cost.

  6. Evaluation of bond strength of isothermally aged plasma sprayed thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Jin; Lee, Dong Hoon; Koo, Jae Mean; Song, Sung Jin; Seok, Chang Sung [Sungkyunkwan University, Suwon (Korea, Republic of); Kim, Mun Young [Korea Plant Service and Engineering Co., Ltd., Seongnam (Korea, Republic of)

    2008-07-15

    In this study, disk type of thermal barrier coating system for gas turbine blade was isothermally aged in the furnace changing exposure time and temperature. For each aging condition, bond tests for three samples were conducted for evaluating degradation of adhesive or cohesive strength of thermal barrier coating system. For as-sprayed condition, the location of fracture in the bond test was in the middle of epoxy which have bond strength of 57 MPa. As specimens are degraded by thermal aging, bond strength gradually decreased and the location of failure was also changed from within top coat at the earlier stage of thermal aging to the interface between top coat and TGO at the later stage due to the delamination in the coating.

  7. Potential solver for sloshing-ion thermal barriers

    International Nuclear Information System (INIS)

    Boghosian, B.M.; Campbell, R.B.; Gilmore, J.M.

    1981-01-01

    The quasineutrality equations at points (a) and (b) in a sloshing-ion thermal barrier are derived and an algorithm for their solution is given. The solution technique is sufficiently reliable and efficient to be used in a fluid code where it must be invoked at each time step. Circumstances under which the equations admit multiple solutions are noted and discussed

  8. Functionally gradient materials for thermal barrier coatings in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; Barmak, K.; Chan, H.M. [Lehigh Univ., Bethlehem, PA (United States)] [and others

    1995-10-01

    New designs for advanced gas turbine engines for power production are required to have higher operating temperatures in order to increase efficiency. However, elevated temperatures will increase the magnitude and severity of environmental degradation of critical turbine components (e.g. combustor parts, turbine blades, etc{hor_ellipsis}). To offset this problem, the usage of thermal barrier coatings (TBCs) has become popular by allowing an increase in maximum inlet temperatures for an operating engine. Although thermal barrier technology is over thirty years old, the principle failure mechanism is the spallation of the ceramic coating at or near the ceramic/bond coat interface. Therefore, it is desirable to develop a coating that combines the thermal barrier qualities of the ceramic layer and the corrosion protection by the metallic bond coat without the detrimental effects associated with the localization of the ceramic/metal interface to a single plane.

  9. Computational design and experimental validation of new thermal barrier systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shengmin [Louisiana State Univ., Baton Rouge, LA (United States)

    2015-03-31

    The focus of this project is on the development of a reliable and efficient ab initio based computational high temperature material design method which can be used to assist the Thermal Barrier Coating (TBC) bond-coat and top-coat design. Experimental evaluations on the new TBCs are conducted to confirm the new TBCs’ properties. Southern University is the subcontractor on this project with a focus on the computational simulation method development. We have performed ab initio density functional theory (DFT) method and molecular dynamics simulation on screening the top coats and bond coats for gas turbine thermal barrier coating design and validation applications. For experimental validations, our focus is on the hot corrosion performance of different TBC systems. For example, for one of the top coatings studied, we examined the thermal stability of TaZr2.75O8 and confirmed it’s hot corrosion performance.

  10. High-temperature stability of yttria-stabilized zirconia thermal barrier ...

    Indian Academy of Sciences (India)

    temperature drop was found to increase with the coating thickness of YSZ. The coatings ... thermal barrier coating system on niobium alloys for supersonic vehicles. .... Voltage (V). 75 ..... However, distribution of the other elements; such as Ni,.

  11. Characterization of Schottky barrier diodes fabricated from electrochemical oxidation of {alpha} phase brass

    Energy Technology Data Exchange (ETDEWEB)

    Bond, John W., E-mail: jwb13@le.ac.u [Forensic Research Centre, University of Leicester, Leicester LE1 7 EA (United Kingdom)

    2011-04-01

    By careful selection of chloride ion concentration in aqueous sodium chloride, electrochemical oxidation of {alpha} phase brass is shown to permit fabrication of either p-type copper (I) oxide/metal or n-type zinc oxide/metal Schottky barrier diodes. X-ray photoelectron and Auger electron spectroscopies provide evidence that barrier formation and rectifying qualities depend on the relative surface abundance of copper (I) oxide and zinc oxide. X-ray diffraction of the resulting diodes shows polycrystalline oxides embedded in amorphous oxidation products that have a lower relative abundance than the diode forming oxide. Conventional I/V characteristics of these diodes show good rectifying qualities. When neither of the oxides dominate, the semiconductor/metal junction displays an absence of rectification.

  12. New concepts for drift pumping a thermal barrier with rf

    International Nuclear Information System (INIS)

    Barter, J.D.; Baldwin, D.; Chen, Y.; Poulsen, P.

    1985-01-01

    Pump neutral beams, which are directed into the loss cone of the TMX-U plugs, are normally used to pump ions from the thermal barriers. Because these neutral beams introduce cold gas that reduces pumping efficiency, and require a straight line entrance and exit from the plug, alternate methods are being investigated to provide barrier pumping. To maintain the thermal barrier, either of two classes of particles can be pumped. First, the collisionally trapped ions can be pumped directly. In this case, the most promising selection criterion is the azimuthal drift frequency. Second, the excess sloshing-ion density can be removed, allowing the use of increased sloshing-beam density to pump the trapped ions. The selection mechanism in this case is the Doppler-shifted ion-cyclotron resonance of the high-energy sloshing-ions (3 keV less than or equal to U/sub parallel/ less than or equal to 10 keV)

  13. Explanation of the barrier-depression effect in ceramics undergoing microwave heating

    International Nuclear Information System (INIS)

    Kenkre, V.M.; Kus, M.; Katz, J.D.

    1992-01-01

    Thermal runaway observations on a variety of materials including strontium titanate, zinc oxide, iron oxide, and alumina, have been explained successfully in terms of a recent theory, which involves absorbing entities such as vacancies, bivacancies, or interstitials, which have to overcome an energy barrier in order to absorb microwaves to a significant extent. However, there is a tendency, unexplained so far, for the energy-barrier values extracted in this fashion to be slightly smaller than those obtained from diffusion measurements. The source of this systematic discrepancy is discovered through the application of a stochastic analysis of the mobility of the ceramic materials. New barrier values are obtained from the thermal runaway observations and found to be in better agreement with diffusion experiments

  14. Experimentally Studied Thermal Piston-head State of the Internal-Combustion Engine with a Thermal Layer Formed by Micro-Arc Oxidation Method

    Directory of Open Access Journals (Sweden)

    N. Yu. Dudareva

    2015-01-01

    Full Text Available The paper presents results of experimental study to show the efficiency of reducing thermal tension of internal combustion engine (ICE pistons through forming a thermal barrier coating on the piston-head. During the engine operation the piston is under the most thermal stress. High temperatures in the combustion chamber may lead to the piston-head burnout and destruction and engine failure.Micro-arc oxidation (MAO method was selected as the technology to create a thermal barrier coating. MAO technology allows us to form the ceramic coating with a thickness of 400μm on the surface of aluminum alloy, which have high heat resistance, and have good adhesion to the substrate even under thermal cycling stresses.Deliverables of MAO method used to protect pistons described in the scientific literature are insufficient, as they are either calculated or experimentally obtained at the special plants (units, which do not reproduce piston operation in a real engine. This work aims to fill this gap. The aim of the work is an experimental study of the thermal protective ability of MAO-layer formed on the piston-head with simulation of thermal processes of the real engine.The tests were performed on a specially designed and manufactured stand free of motor, which reproduces operation conditions maximum close to those of the real engine. The piston is heated by a fire source - gas burner with isobutene balloon, cooling is carried out by the water circulation system through the water-cooling jacket.Tests have been conducted to compare the thermal state of the regular engine piston without thermal protection and the piston with a heat layer formed on the piston-head by MAO method. The study findings show that the thermal protective MAO-layer with thickness of 100μm allows us to reduce thermal tension of piston on average by 8,5 %. Thus at high temperatures there is the most pronounced effect that is important for the uprated engines.The obtained findings can

  15. Response of a thermal barrier system to acoustic excitation in a gas turbine nuclear reactor

    International Nuclear Information System (INIS)

    Betts, W.S. Jr.; Blevins, R.D.

    1980-11-01

    A gas turbine located within a High-Temperature Gas-Cooled Reactor (HTGR) induces high acoustic sound pressure levels into the primary coolant (helium). This acoustic loading induces high cycle fatigue stresses which may control the design of the thermal barrier system. This study examines the dynamic response of a thermal barrier configuration consisting of a fibrous insulation compressed against the reactor vessel by a coverplate which is held in position by a central attachment fixture. The results of dynamic vibration analyses indicate the effect of the plate size and curvature and the attachment size on the response of the thermal barrier

  16. Thermal Oxidation Resistance of Rare Earth-Containing Composite Elastomer

    Institute of Scientific and Technical Information of China (English)

    邱关明; 张明; 周兰香; 中北里志; 井上真一; 冈本弘

    2001-01-01

    The rare earth-containing composite elastomer was obtained by the reaction of vinyl pyridine-SBR (PSBR) latex with rare earth alkoxides, and its thermal oxidation resistance was studied. After aging test, it is found that its retention rate of mechanical properties is far higher than that of the control sample. The results of thermogravimetric analysis show that its thermal-decomposing temperature rises largely. The analysis of oxidation mechanisms indicates that the main reasons for thermal oxidation resistance are that rare earth elements are of the utility to discontinue autoxidation chain reaction and that the formed complex structure has steric hindrance effect on oxidation.

  17. Thermal cycling behaviour of lanthanum zirconate as EB-PVD thermal barrier coating

    International Nuclear Information System (INIS)

    Bobzin, K.; Lugscheider, E.; Bagcivan, N.

    2006-01-01

    Thermal cycling tests with two different EB-PVD thermal barrier coatings (TBC) were performed in a furnace cycle test. The results of these tests showed an increase of endurable cycle number when pyrochloric La 2 Zr 2 O 7 was used as TBC. 1865 cycles were reached with La 2 Zr 2 O 7 and 1380 cycles with 7 weigth-% yttria stabilised zirconia (YSZ) EB-PVD TBC. Additional investigation was made with scanning electron microscope (SEM) to investigate morphology and to determine chemical composition by electron dispersive x-ray spectroscopy (EDS) analysis. X-Ray diffraction was performed to analyze structural constitution of deposited coatings. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  18. Thermal barrier and support for nuclear reactor fuel core

    International Nuclear Information System (INIS)

    Betts, W.S. Jr.; Pickering, J.L.; Black, W.E.

    1987-01-01

    A nuclear reactor is described having a thermal barrier for supporting a fuel column of a nuclear reactor core within a reactor vessel having a fixed rigid metal liner. The fuel column has a refractory post extending downward. The thermal barrier comprises, in combination, a metallic core support having an interior chamber secured to the metal liner; fibrous thermal insulation material covering the metal liner and surrounding the metallic core support; means associated with the metallic core support and resting on the top for locating and supporting the full column post; and a column of ceramic material located within the interior chamber of the metallic core support, the height of the column is less than the height of the metallic core support so that the ceramic column will engage the means for locating and supporting the fuel column post only upon plastic deformation of the metallic core support; the core support comprises a metallic cylinder and the ceramic column comprises coaxially aligned ceramic pads. Each pad has a hole located within the metallic cylinder by means of a ceramic post passing through the holes in the pads

  19. Synthesis of alumina ceramic encapsulation for self-healing materials on thermal barrier coating

    Science.gov (United States)

    Golim, O. P.; Prastomo, N.; Izzudin, H.; Hastuty, S.; Sundawa, R.; Sugiarti, E.; Thosin, K. A. Z.

    2018-03-01

    Durability of Thermal Barrier Coating or TBC can be optimized by inducing Self-Healing capabilities with intermetallic materials MoSi2. Nevertheless, high temperature operation causes the self-healing materials to become oxidized and lose its healing capabilities. Therefore, a method to introduce ceramic encapsulation for MoSi2 is needed to protect it from early oxidation. The encapsulation process is synthesized through a simple precipitation method with colloidal aluminum hydroxide as precursor and variations on calcination process. Semi-quantitative analysis on the synthesized sample is done by using X-ray diffraction (XRD) method. Meanwhile, qualitative analysis on the morphology of the encapsulation was carried out by using Scanning Electron Microscope (SEM) and Field Emission Scanning Electron Microscope (FESEM) equipped with dual Focus Ion Beam (FIB). The result of the experiment shows that calcination process significantly affects the final characteristic of encapsulation. The optimum encapsulation process was synthesized by colloidal aluminum hydroxide as a precursor, with a double step calcination process in low pressure until 900 °C.

  20. Study of the efficiency of the anti-convective thermal barrier of the Super-Phenix vessels inter space

    International Nuclear Information System (INIS)

    Durin, M.; Mejane, A.

    1983-08-01

    In the LMFBR Phenix reactor, the junction between the primary vessel and the roof slab is a region of large thermal gradients. In order to limit the gradient in the primary vessel, a thermal barrier has been installed between the primary and the safety vessel. The purpose of this barrier is to prevent the penetration of hot gas in the upper part of the vessels inter space. Experimental results have been obtained on a full scale model representing a 25 0 vessel sector of the reactor. Different geometrical configurations have been tested for a large range of boundary condition: - perfectly tight barrier - no thermal barrier; - simulation of leakages on the barrier [fr

  1. New Bond Coat Materials for Thermal Barrier Coating Systems Processed Via Different Routes

    Science.gov (United States)

    Soare, A.; Csaki, I.; Sohaciu, M.; Oprea, C.; Soare, S.; Costina, I.; Petrescu, M. I.

    2017-06-01

    This paper aims at describing the development of new Ru-based Bond Coats (BC) as part of Thermal Barrier Coatings. The challenge of this research was to obtain an adherent and uniform layer of alumina protective layer after high temperature exposure. We have prepared a RuAl 50/50 at% alloy in an induction furnace which was subsequently subjected to oxidation in an electric furnace, in air, at 1100C, for 10h and 100h. Mechanical alloying of Ru and Al powders was another processing route used in an attempt to obtain a stoichiometric RuAl. The alloy was sintered by Spark Plasma Sintering (SPS) and then oxidized at 1100C for 1 and10h. The alloys obtained as such were analysed before and after oxidation using advanced microscopy techniques (SEM and TEM). The encouraging results in case of RuAl alloys prepared by induction melting reveal that we obtained an adherent and uniform layer of alumina, free of delta-Ru. The results for the samples processed by powder metallurgy were positive but need to be further investigated. We should note here the novelty of this method for this particular type of application - as a BC part of a TBC system.

  2. Thermal barrier coatings with a double-layer bond coat on Ni{sub 3}Al based single-crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Xu, Zhenhua; Mu, Rende [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He, Limin, E-mail: he_limin@yahoo.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Huang, Guanghong [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Cao, Xueqiang, E-mail: xcao@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2014-04-05

    Highlights: • Thermal barrier coatings with a double-layer bond coat of (Ni,Pt)Al and NiCrAlYSi. • Good adherence at all interfaces within TBC system. • The underlying (Ni,Pt)Al layer can supply abundant Al content for the upper NiCrAlYSi layer. • Crack nucleation, propagation and coalescence lead to the failure of coating. -- Abstract: Electron-beam physical vapor deposited thermal barrier coatings (TBCs) with a double-layer bond coat of (Ni,Pt)Al and NiCrAlYSi were prepared on a Ni{sub 3}Al based single-crystal superalloy. Phase and cross-sectional microstructure of the developed coatings were studied by using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The experimental results show good adherence at all interfaces within this system. Furthermore, oxidation resistance and elements interdiffusion behavior of the double-layer bond coat were also investigated. The double-layer bond coat system exhibits a better scale adherence than the single layer bond coat systems since the underlying (Ni,Pt)Al layer can supply abundant Al for the upper NiCrAlYSi layer. Finally, thermal cycling behavior of the double-layer bond coat TBC was evaluated and the failure mechanism was discussed. Crack nucleation, propagation and coalescence caused by TGO growth stress and the thermal expansion mismatch stress between TGO and bond coat can be mainly responsible for the spallation of this coating.

  3. Characterization and evaluation of EB-PVD thermal barrier coatings by impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chunxia; Liu Fushun; Gong Shengkai; Xu Huibin [School of Materials Science and Engineering, Beihang Univ., Beijing, BJ (China)

    2005-07-01

    Two layer thermal barrier coatings (TBCs) were prepared by EB-PVD (electron beam-physical vapor deposition) at different substrate temperatures in the range of 823 to 1123 K, and their microstructure was investigated with SEM and AC impedance as a function of substrate temperature and thermal cycling time. YSZ layer of all TBCs samples is in column structure, but the grain size and growth orientation are different with substrate. In this research, impedance spectra (IS) was measured as a function of thermal cycling between 1323 K and 298 K for these thermal barrier coatings. Grain boundary and bulk can be distinguished from analysis of AC impedance spectroa to provide information about the relation between microstructure and electric properties. The change in IS until failure was found to be related with the thickness, microcracks and macrocracks of TGO and the change in the interfacial of TGO/YSZ. (orig.)

  4. Commercial tandem mirror reactor design with thermal barriers: WITAMIR-I

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Emmert, G.A.; Maynard, C.W.

    1980-10-01

    A conceptual design of a near term commercial tandem mirror power reactor is presented. The basic configuration utilizes yin-yang minimum-B plugs with inboard thermal barriers. The maximum magnetic fields are 6.1 T, 8.1 T, and 15 T in the central cell, yin-yang, and thermal barrier magnets, respectively. The blanket utilizes Pb 83 Li 17 as the coolant and HT-9 as the structural material. This yields a high energy multiplication (1.37), a sufficient tritium breeding ratio (1.07) and has a major advantage with respect to maintenance. The plasma Q is 28 at a fusion power level of 3000 MW(t); the net electrical output is 1530 MW(e); and the overall efficiency is 39%. Cost estimates indicate that WITAMIR-I is competitive with recent tokamak power reactor designs

  5. Electronic properties of thermally formed thin iron oxide films

    International Nuclear Information System (INIS)

    Wielant, J.; Goossens, V.; Hausbrand, R.; Terryn, H.

    2007-01-01

    The oxide layer, present between an organic coating and the substrate, guarantees adhesion of the coating and plays a determinating role in the delamination rate of the organic coating. The purpose of this study is to compare the resistive and semiconducting properties of thermal oxides formed on steel in two different atmospheres at 250 deg. C: an oxygen rich atmosphere, air, and an oxygen deficient atmosphere, N 2 . In N 2 , a magnetite layer grows while in air a duplex oxide film forms composed by an inner magnetite layer and a thin outer hematite scale. The heat treatment for different amounts of time at high temperature was used as method to sample the thickness variation and change in electronic and semiconducting properties of the thermal oxide layers. Firstly, linear voltammetric measurements were performed to have a first insight in the electrochemical behavior of the thermal oxides in a borate buffer solution. Electrochemical impedance spectroscopy in the same buffer combined with the Mott-Schottky analysis were used to determine the semiconducting properties of the thermal oxides. By spectroscopic ellipsometry (SE) and atomic force microscopy (AFM), respectively, the thickness and roughness of the oxide layers were determined supporting the physical interpretation of the voltammetric and EIS data. These measurements clearly showed that oxide layers with different constitution, oxide resistance, flatband potential and doping concentration can be grown by changing the atmosphere

  6. Coherent gradient sensing method for measuring thermal stress field of thermal barrier coating structures

    Directory of Open Access Journals (Sweden)

    Kang Ma

    2017-01-01

    Full Text Available Coherent gradient sensing (CGS method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film–substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.

  7. Thermocyclic behaviour of microstructurally modified EB-PVD thermal barrier coatings

    International Nuclear Information System (INIS)

    Schulz, U.; Fritscher, K.; Raetzer-Scheibe, H.-J.; Kaysser, W.A.; Peters, M.

    1997-01-01

    This paper focuses on the combined effects of substrate temperature and rotation during electron-beam physical vapor deposition (EB-PVD) on the columnar microstructure of yttria partially stabilized zirconia (YPSZ) thermal barrier coatings. Diameter and degree of ordering of the columns and the density of the coatings are sensitive to the processing parameters. Results are discussed in the frame of common structural zone models for PVD processes. The models are extended to consider the rotational effect. EB-PVD YPSZ TBCs of different column diameters were deposited on top of an EB-PVD NiCoCrAlY bondcoat on IN 100 superalloy test bars. The performance of the TBCs was investigated in a cyclic oxidation furnace test rig between 1100 C and 130 C and in a burner rig under hot gas corrosion conditions at a maximum temperature of 900 C. Results showed a correlation between cyclic lifetime and the various microstructures of the TBCs. Samples having a non-regular arrangement of columns performed best in both tests. (orig.)

  8. Chip-carrier thermal barrier and its impact on lateral thermal lens profile and beam parameter product in high power broad area lasers

    Science.gov (United States)

    Rieprich, J.; Winterfeldt, M.; Kernke, R.; Tomm, J. W.; Crump, P.

    2018-03-01

    High power broad area diode lasers with high optical power density in a small focus spot are in strong commercial demand. For this purpose, the beam quality, quantified via the beam parameter product (BPP), has to be improved. Previous studies have shown that the BPP is strongly affected by current-induced heating and the associated thermal lens formed within the laser stripe. However, the chip structure and module-assembly related factors that regulate the size and the shape of the thermal lens are not well known. An experimental infrared thermographic technique is used to quantify the thermal lens profile in diode lasers operating at an emission wavelength of 910 nm, and the results are compared with finite element method simulations. The analysis indicates that the measured thermal profiles can best be explained when a thermal barrier is introduced between the chip and the carrier, which is shown to have a substantial impact on the BPP and the thermal resistance. Comparable results are observed in further measurements of samples from multiple vendors, and the barrier is only observed for junction-down (p-down) mounting, consistent with the barrier being associated with the GaAs-metal transition.

  9. THERMAL PROPERTIES OF TRANSPARENT BARRIER MODIFIED WITH ORGANIC PCMS

    Directory of Open Access Journals (Sweden)

    Michał MUSIAŁ

    2016-03-01

    Full Text Available Renewable energy sources are increasingly often applied in civil engineering as a mean to reduce buildings energy demand for heating. One of the ways to reduce HVAC energy demand is to limit heat transfer and excessive solar gain through building's glazed barriers. Preliminary results of the research conducted on organic PCM-modified transparent barrier are presented in this paper. Multiple publications concerning PCMs application in structural materials have recently appeared. Most of them are focused on modification of structure of non-transparent sections of buildings' envelope. Augmenting a glazed barrier with PCMs increases its heat capacity and thermal resistance. The most important feature of the assembly is the thermal buffer, a product of PCM's considerable value of specific latent heat. Research were conducted on a triple-pane transparent rectangular barrier, that constituted one of the faces of cubic chamber. Internal volume of the chamber was 1m3. The applied PCM was a mixture of saturated and non-saturated hydrocarbons. The described assembly was subjected to temperature and radiation that occur in Poland during winter. Glazing temperature, melted/total PCM ratio were measured, as well as energy demand for keeping internal temperature at constant level. Measurements were made in steady states, for various PCM layer thickness. The influence of the modification on energy demand was determined, along with the most effective and rational thickness of PCM layer to be applied. Conducted research enabled to develop a basis for further investigation of PCMs application in civil engineering.

  10. Vibration damage testing of thermal barrier fibrous blanket insulation

    International Nuclear Information System (INIS)

    Black, W.E.; Betts, W.S.

    1984-01-01

    GA Technologies is engaged in a long-term, multiphase program to determine the vibration characteristics of thermal barrier components leading to qualification of assemblies for High Temperature Gas-Cooled Reactor (HTGR) service. The phase of primary emphasis described herein is the third in a series of acoustic tests and uses as background the more elemental tests preceding it. Two sizes of thermal barrier coverplates with one fibrous blanket insulation type were tested in an acoustic environment at sound pressure levels up to 160 dB. Three tests were conducted using sinusoidal and random noise for up to 200 h duration at room temperature. Frequent inspections were made to determine the progression of degradation using definition of stages from a prior test program. Initially the insulation surface adjacent to the metallic seal sheets (noise side) assumed a chafed or polished appearance. This was followed by flattening of the as-received pillowed surface. This stage was followed by a depression being formed in the vicinity of the free edge of the coverplate. Next, loose powder from within the blanket and from fiber erosion accumulated in the depression. Prior experience showed that the next stage of deterioration exhibited a consolidation of the powder to form a local crust. In this test series, this last stage generally failed to materialize. Instead, surface holes generated by solid ceramic particulates (commonly referred to as 'shot') constituted the stage following powdering. With the exception of some manufacturing-induced anomalies, the final stage, namely, gross fiber breakup, did not occur. It is this last stage that must be prevented for the thermal barrier to maintain its integrity. (orig./GL)

  11. Optimization of Heat Transfer on Thermal Barrier Coated Gas Turbine Blade

    Science.gov (United States)

    Aabid, Abdul; Khan, S. A.

    2018-05-01

    In the field of Aerospace Propulsion technology, material required to resist the maximum temperature. In this paper, using thermal barrier coatings (TBCs) method in gas turbine blade is used to protect hot section component from high-temperature effect to extend the service life and reduce the maintenance costs. The TBCs which include three layers of coating corresponding initial coat is super alloy-INCONEL 718 with 1 mm thickness, bond coat is Nano-structured ceramic-metallic composite-NiCoCrAIY with 0.15 mm thickness and top coat is ceramic composite-La2Ce2O7 with 0.09 mm thickness on the nickel alloy turbine blade which in turn increases the strength, efficiency and life span of the blades. Modeling a gas turbine blade using CATIA software and determining the amount of heat transfer on thermal barrier coated blade using ANSYS software has been performed. Thermal stresses and effects of different TBCs blade base alloys are considered using CATIA and ANSYS.

  12. Thermal barrier coatings - Technology for diesel engines

    International Nuclear Information System (INIS)

    Harris, D.H.; Lutz, J.

    1988-01-01

    Thermal Barrier Coatings (TBC) are a development of the aerospace industry primarily aimed at hot gas flow paths in turbine engines. TBC consists of zirconia ceramic coatings applied over (M)CrAlY. These coatings can provide three benefits: (1) a reduction of metal surface operating temperatures, (2) a deterrent to hot gas corrosion, and (3) improved thermal efficiencies. TBC brings these same benefits to reciprocal diesel engines but coating longevity must be demonstrated. Diesels require thicker deposits and have challenging geometries for the arc-plasma spray (APS) deposition process. Different approaches to plasma spraying TBC are required for diesels, especially where peripheral edge effects play a major role. Bondcoats and ceramic top coats are modified to provide extended life as determined by burner rig tests, using ferrous and aluminum substrates

  13. On the interfacial degradation mechanisms of thermal barrier coating systems: Effects of bond coat composition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.T., E-mail: WU.Rudder@nims.go.jp [International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba City, Ibaraki (Japan); Wang, X.; Atkinson, A. [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom)

    2010-10-15

    Thermal barrier coating (TBC) systems based on an electron beam physical vapour deposited, yttria-stabilized zirconia (YSZ) top coat and a substrate material of CMSX-4 superalloy were identically prepared to systematically study the behaviour of different bond coats. The three bond coat systems investigated included two {beta}-structured Pt-Al types and a {gamma}-{gamma}' type produced by Pt diffusion without aluminizing. Progressive evolution of stress in the thermally grown aluminium oxide (TGO) upon thermal cycling, and its relief by plastic deformation and fracture, were studied using luminescence spectroscopy. The TBCs with the LT Pt-Al bond coat failed by a rumpling mechanism that generated isolated cracks at the interface between the TGO and the YSZ. This reduced adhesion at this interface and the TBC delaminated when it could no longer resist the release of the stored elastic energy of the YSZ, which stiffened with time due to sintering. In contrast, the TBCs with Pt diffusion bond coats did not rumple, and the adhesion of interfaces in the coating did not obviously degrade. It is shown that the different failure mechanisms are strongly associated with differences in the high-temperature mechanical properties of the bond coats.

  14. Tire containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A tire, tire lining or inner tube, containing a polymer composite, made of at least one rubber and/or at least one elastomer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g.

  15. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    Science.gov (United States)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  16. Control of the flanges of the thermal barriers fitting the 900 MWe PWR primary pumps

    International Nuclear Information System (INIS)

    Cleurennec, M.; Thebault, Y.; Abittan, E.; Pages, C.; Lhote, P.A.; Randrianarivo, L.

    1998-01-01

    During maintenance visit on 93 D type primary pumps of French 900 MWe nuclear units, cracking has been evidenced on the thermal barrier, first on the flange, on the face of connection of the cooling, water coils, and then on the weld between the housing and the flange. Laboratory examinations have exhibited that this cracking is due to a fatigue phenomenon which is initiated on locations where high residual stresses are present. One pump, in service in a plant, has received an instrumentation in order to determine stress cycling. Measurements of temperature on the surface of the metal have shown the presence of thermal cycling due to the thermohydraulic conditions inside the thermal barrier. A non destructive testing method using ultrasounds has been developed in order to asses the magnitude cracking. Corrective and preventive actions have been implemented for repairing and improving thermal barrier when cracking is detected. (authors)

  17. Nanocomposites of recycled polycarbonate and nano-zinc oxide (rPC/nZnO): effect of gamma radiation and nano oxide content on the thermal properties

    International Nuclear Information System (INIS)

    Carvalho, A.L.F.; Mendes, L.C.; Cestari, S.P.

    2014-01-01

    In order to promote the barrier action to the ultraviolet radiation and increase of mechanical characteristics, nanocomposites of recycled polycarbonate (rPC) and nano-zinc oxide (nZnO) containing 1, 2 and 3 % (wt/wt) of nano oxide were prepared. Since for obtaining nanocomposites and irradiating polymers are promising tools and attractive for improving the material performance, the effects of nano-zinc oxide and gamma radiation, at doses ranged from 10 to 50 kGy, were evaluated in terms of thermal characteristics of the rPC. The rPC/nZnO nanocomposites were characterized by thermogravimetric analysis (TGA) and differential explanatory calorimetry (DSC). There was a progressive decrease of the T_g as function of gamma dosage and nano-zinc oxide content. Initially, the Tonset and Tmax decayed as function of gamma dosage but a recovery was observed. The amount of nano-zinc oxide induced a decreasing of T_o_n_s_e_t and T_m_a_x. (author)

  18. Thermal shock behavior of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxuciac@163.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Dai, Jianwei [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Niu, Jing [Shenyang Liming Aero-engine (Group) Corporation Ltd., Institute of Metallurgical Technology, Technical Center, Shengyang 110043 (China); Li, Na; Huang, Guanghong; He, Limin [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China)

    2014-12-25

    Highlights: • TBCs of (Ni, Pt)Al bond coat with grit blasting process and YSZ ceramic coating. • Grain boundary ridges are the sites for spallation damage initiation in TBCs. • Ridges removed, cavities formation appeared and the damage initiation deteriorated. • Damage initiation and progression at interface lead to a buckling failure. - Abstract: Thermal barrier coating systems (TBCs) including of chemical vapor deposited (Ni, Pt)Al bond coat with grit blasting process and electron beam physical vapor deposited Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) ceramic coating were investigated. The phase structures, surface and cross-sectional morphologies, thermal shock behaviors and residual stresses of the coatings were studied in detail. Grain boundary ridges still remain on the surface of bond coat prior to the deposition of the ceramic coating, which are shown to be the major sites for spallation damage initiation in TBCs. When these ridges are mostly removed, they appear some of cavities formation and then the damage initiation mode is deteriorated. Damage initiation and progression occurs at the bond coat to thermally grown oxide (TGO) interface leading to a buckling failure behavior. A buckle failure once started may be arrested when it runs into a region of high bond coat to TGO interface toughness. Thus, complete failure requires further loss in toughness of the bond coat to TGO interface during cooling. The suppressed cavities formation, the removed ridges at the grain boundaries, the relative high TGO to bond coat interface toughness, the uniform growth behavior of TGO thickening and the lower of the residual stress are the primary factors for prolonging the lifetime of TBCs.

  19. On the compatibility of single crystal superalloys with a thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.T. [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom); Reed, R.C. [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom)], E-mail: r.reed@birmingham.ac.uk

    2008-02-15

    The compatibility of three Co-containing prototype single crystal nickel-based superalloys with a thermal barrier coating (TBC) system is examined. These contain 2.1, 8.4 and 12.6 at.% Co; the concentrations of Al, Cr, Ta, W, Re, Hf are identical and chosen to be representative of advanced grades of these alloys. The TBC consists of an yttria-stabilized zirconia (YSZ) layer formed by electron beam physical vapour deposition (EB-PVD) and a bond coat made by electrodeposited platinum with a subsequent interdiffusion heat treatment - a so-called 'platinum-diffused' bond coat. The resistance to spallation of the TBC system is degraded as the Co content of the substrate increases. Wavelength-dispersive X-ray analysis and secondary ion mass spectrometry indicate that quantities of Co are present in the thermally grown oxide (TGO) by the time that failure occurs, this effect being most pronounced when the Co content of the substrate is high; the TGO is then more wavy and convoluted. The bond coat consists exclusively of the {gamma} and {gamma}' phases, with the balance shifting towards {gamma} with increasing thermal exposure; the loss of Al from the bond coat due to TGO formation means that the TGO is eventually in contact with the {gamma} phase solely, which is enriched in Co.

  20. Numerical simulation of displacement instabilities of surface grooves on an alumina forming alloy during thermal cycling oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Feng Xun; Kang, Ki Ju [Chonnam National University, Gwangju (Korea, Republic of); Ding, Jun [Chongqing University of Technology, Chongqing (China)

    2009-08-15

    Displacement instability of the thermally grown oxide (TGO) is a fundamental source of failure in thermal barrier systems. In this work, a finite element analysis has been performed to analyze the displacement instability occurring at a heat resistant metal with superficial TGO subjected to thermal cycling. Lateral and in-plane growth of the TGO which happens during high temperature is simulated by means of material property change from the substrate metal to the TGO. Most of the material properties including the TGO growth are based on the results experimentally obtained in-house. Results of the finite element analyses agree well with the experimental observation, which proves the accuracy and validity of this simulation. The technique will be useful for future work on more complicated phenomena such as deformation under thermo-mechanical cycling

  1. Studies of physicochemical properties of graphite oxide and thermally exfoliated/reduced graphene oxide

    Directory of Open Access Journals (Sweden)

    Drewniak Sabina Elżbieta

    2015-12-01

    Full Text Available The aim of the experimental research studies was to determine some electrical properties of graphite oxide and thermally exfoliated/reduced graphene oxide. The authors tried to interpret the obtained physicochemical results. For that purpose, both resistance measurements and investigation studies were carried out in order to characterize the samples. The resistance was measured at various temperatures in the course of composition changes of gas atmospheres (which surround the samples. The studies were also supported by such methods as: scanning electron microscopy (SEM, Raman spectroscopy (RS, atomic force microscopy (AFM and thermogravimetry (TG. Moreover, during the experiments also the elemental analyses (EA of the tested samples (graphite oxide and thermally exfoliated/reduced graphene oxide were performed.

  2. Recent experimental progress in the TMX-U thermal barrier tandem mirror experiment

    International Nuclear Information System (INIS)

    Turner, W.C.; Allen, S.L.; Casper, T.A.

    1984-01-01

    Recent experiments on the TMX-U thermal barrier device at LLNL have achieved the end plugging of axial ion losses up to a central cell density of n/sub c/ = 2 x 10 12 cm. During these tests, the axial potential profile characteristic of a thermal barrier has been measured experimentally, indicating an ion-confining potential greater than 1.5 kV and a potential depression of 0.45 kV in the barrier region. The average beta of hot electrons in the thermal barrier has been increased to 15% and appears limited only by classical scattering and ECRH pulse duration. Furthermore, deuterium ions in the central cell have been heated with ICRF to an average energy of 1.5 keV, with a heating efficiency of 40%. During strong end plugging, the axial ion confinement time reached 50 to 100 ms while the nonambipolar radial ion confinement time was 5 to 15 ms - independent of end plugging. Radial ion confinement time exceeding 100 ms has been attained on shots without end plugging. Plates, floated electrically on the end walls, have increased the radial ion confinement time by a factor of 1.8. Further improvement in the central cell density during end plugging can be expected by increasing the ICRF, improving the central cell vacuum conditions and beam heating efficiency, and increasing the radial extent of the potential control plates on the end walls

  3. Thermal Barrier Coatings Resistant to Glassy Deposits

    Science.gov (United States)

    Drexler, Julie Marie

    Engineering of alloys has for years allowed aircraft turbine engines to become more efficient and operate at higher temperatures. As advancements in these alloy systems have become more difficult, ceramic thermal barrier coatings (TBCs), often yttria (7 wt %) stabilized zirconia (7YSZ), have been utilized for thermal protection. TBCs have allowed for higher engine operating temperatures and better fuel efficiency but have also created new engineering problems. Specifically, silica based particles such as sand and volcanic ash that enter the engine during operation form glassy deposits on the TBCs. These deposits can cause the current industrial 7YSZ thermal barrier coatings to fail since the glass formed penetrates and chemically interacts with the TBC. When this occurs, coating failure may occur due to a loss of strain tolerance, which can lead to fracture, and phase changes of the TBC material. There have been several approaches used to stop calcium-magnesium aluminio-silcate (CMAS) glasses (molten sand) from destroying the entire TBC, but overall there is still limited knowledge. In this thesis, 7YSZ and new TBC materials will be examined for thermochemical and thermomechanical performance in the presence of molten CMAS and volcanic ash. Two air plasma sprayed TBCs will be shown to be resistant to volcanic ash and CMAS. The first type of coating is a modified 7YSZ coating with 20 mol% Al2O3 and 5 mol% TiO2 in solid solution (YSZ+20Al+5Ti). The second TBC is made of gadolinium zirconate. These novel TBCs impede CMAS and ash penetration by interacting with the molten CMAS or ash and drastically changing the chemistry. The chemically modified CMAS or ash will crystallize into an apatite or anorthite phase, blocking the CMAS or ash from further destroying the coating. A presented mechanism study will show these coatings are effective due to the large amount of solute (Gd, Al) in the zirconia structure, which is the key to creating the crystalline apatite or

  4. Surface Cracking and Interface Reaction Associated Delamination Failure of Thermal and Environmental Barrier Coatings

    National Research Council Canada - National Science Library

    Zhu, Dongming

    2003-01-01

    ...%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic...

  5. Environmental/Thermal Barrier Coatings for Ceramic Matrix Composites: Thermal Tradeoff Studies

    Science.gov (United States)

    Murthy, Pappu L. M.; Brewer, David; Shah, Ashwin R.

    2007-01-01

    Recent interest in environmental/thermal barrier coatings (EBC/TBCs) has prompted research to develop life-prediction methodologies for the coating systems of advanced high-temperature ceramic matrix composites (CMCs). Heat-transfer analysis of EBC/TBCs for CMCs is an essential part of the effort. It helps establish the resulting thermal profile through the thickness of the CMC that is protected by the EBC/TBC system. This report documents the results of a one-dimensional analysis of an advanced high-temperature CMC system protected with an EBC/TBC system. The one-dimensional analysis was used for tradeoff studies involving parametric variation of the conductivity; the thickness of the EBC/TBCs, bond coat, and CMC substrate; and the cooling requirements. The insight gained from the results will be used to configure a viable EBC/TBC system for CMC liners that meet the desired hot surface, cold surface, and substrate temperature requirements.

  6. Diffusion barrier coatings for high temperature corrosion resistance of advanced carbon/carbon composites

    International Nuclear Information System (INIS)

    Singh Raman, K.S.

    2000-01-01

    Carbon possesses an excellent combination of mechanical and thermal properties, viz., excellent creep resistance at temperatures up to 2400 deg C in non-oxidizing environment and a low thermal expansion coefficient. These properties make carbon a potential material for very high temperature applications. However, the use of carbon materials at high temperatures is considerably restricted due to their extremely poor oxidation resistance at temperatures above 400 deg C. The obvious choice for improving high temperature oxidation resistance of such materials is a suitable diffusion barrier coating. This paper presents an overview of recent developments in advanced diffusion- and thermal-barrier coatings for ceramic composites, with particular reference to C/C composites. The paper discusses the development of multiphase and multi-component ceramic coatings, and recent investigations on the oxidation resistance of the coated C/C composites. The paper also discusses the cases of innovative engineering solutions for traditional problems with the ceramic coatings, and the scope of intelligent processing in developing coatings for the C/C composites. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  7. Effect of ionization on the oxidation kinetics of aluminum nanoparticles

    Science.gov (United States)

    Zheng, Yao-Ting; He, Min; Cheng, Guang-xu; Zhang, Zaoxiao; Xuan, Fu-Zhen; Wang, Zhengdong

    2018-03-01

    Molecular dynamics simulation (MD) of the observed stepwise oxidation of core-shell structured Al/Al2O3 nanoparticles is presented. Different from the metal ion hopping process in the Cabrera-Mott model, which is assumed to occur only at a certain distance from the oxide layer, the MD simulation shows that Al atoms jump over various interfacial gaps directly under the thermal driving force. The energy barrier for Al ionization is found to be increased along with the enlargement of interfacial gap. A mechanism of competition between thermal driving force and ionization potential barrier is proposed in the interpretation of stepwise oxidation behavior.

  8. Physics parameter calculations for a Tandem Mirror Reactor with thermal barriers

    International Nuclear Information System (INIS)

    Boghosian, B.M.; Lappa, D.A.; Logan, B.G.

    1979-01-01

    Thermal barriers are localized reductions in potential between the plugs and the central cell, which effectively insulate trapped plug electrons from the central cell electrons. By then applying electron heating in the plug, it is possible to obtain trapped electron temperatures that are much greater than those of the central cell electrons. This, in turn, effects an increase in the plug potential and central cell confinement with a concomitant decrease in plug density and injection power. Ions trapped in the barrier by collisions are removed by the injection of neutral beams directed inside the barrier cell loss cone; these beam neutrals convert trapped barrier ions to neutrals by charge exchange permitting their escape. We describe a zero-dimensional physics model for this type of reactor, and present some preliminary results for Q

  9. The effect of ethyl pyruvate on oxidative stress in intestine and bacterial translocation after thermal injury.

    Science.gov (United States)

    Karabeyoğlu, Melih; Unal, Bülent; Bozkurt, Betül; Dolapçi, Iştar; Bilgihan, Ayşe; Karabeyoğlu, Işil; Cengiz, Omer

    2008-01-01

    Thermal injury causes a breakdown in the intestinal mucosal barrier due to ischemia reperfusion injury, which can induce bacterial translocation (BT), sepsis, and multiple organ failure in burn patients. The aim of this study was to investigate the effect of ethyl pyruvate (EP) on intestinal oxidant damage and BT in burn injury. Thirty-two rats were randomly divided into four groups. The sham group was exposed to 21 degrees C water and injected intraperitoneal with saline (1 mL/100 g). The sham + EP group received EP (40 mg/kg) intraperitoneally 6 h after the sham procedure. The burn group was exposed to thermal injury and given intraperitoneal saline injection (1 mL/100 g). The burn + EP group received EP (40 mg/kg) intraperitoneally 6 h after thermal injury. Twenty-four hours later, tissue samples were obtained from mesenteric lymph nodes, spleen, and liver for microbiological analysis and ileum samples were harvested for biochemical analysis. Thermal injury caused severe BT in burn group. EP supplementation decreased BT in mesenteric lymph nodes and spleen in the burn + EP group compared with the burn group (P < 0.05). Also, burn caused BT in liver, but this finding was not statistically significant among all groups. Thermal injury caused a statistically significant increase in malondialdehyde and myeloperoxidase levels, and EP prevented this effects in the burn + EP group compared with the burn group (P < 0.05). Our data suggested that EP can inhibit the BT and myeloperoxidase and malondialdehyde production in intestine following thermal injury, suggesting anti-inflammatory and anti-oxidant properties of EP.

  10. Tribological and wear behavior of yttria stabilized zirconia thermal barrier coatings on mild steel

    International Nuclear Information System (INIS)

    Farooq, M.; Pervez, A.

    2012-01-01

    The perfection of the temperature confrontation of the engine essentials can be obtained by claim of a single ceramic thermal barrier coating (TBC) or several composite layers. Engine elements protected by TBC can work safely in elevated temperature range above 1000 degree C. Continuous endeavor to increase thermal resistance of engine the elements requires, apart from laboratory investigations, also numerical study of the different engine parts. The high temperatures and stress concentrations can act as the local sources of damage initiation and defects propagation in the form of cracks. The current study focuses the development of Yttria stabilized zirconia thermal barrier coating by Thermal spray technique. Mild steel was used as a substrate and the coating was then characterized for tribological analysis followed by the optical analysis of wear tracks and found the TBC behavior more promising then steel. (author)

  11. Thermal oxidation of III-V compounds

    International Nuclear Information System (INIS)

    Monteiro, O.R.; Evans, J.W.

    1988-01-01

    The thermal oxidation of two important III-V compound semiconductor materials, namely GaAs and InP, has been studied between 300 and 600 0 C. In-situ TEM, cross-sectional TEM (XTEM) and SIMS analyses were used to characterize the reaction products. The first technique allows us to access the reactions at the very moment they are occurring. XTEM provides a clearer picture of the distribution of phases in the oxidized samples. SIMS gives us information on the dopant redistribution after oxidation as well as enrichment of group V element at the oxide semiconductor interface. Based on those results, the reaction products were characterized and reaction mechanisms proposed

  12. New WC-Cu thermal barriers for fusion applications: High temperature mechanical behaviour

    Science.gov (United States)

    Tejado, E.; Dias, M.; Correia, J. B.; Palacios, T.; Carvalho, P. A.; Alves, E.; Pastor, J. Y.

    2018-01-01

    The combination of tungsten carbide and copper as a thermal barrier could effectively reduce the thermal mismatch between tungsten and copper alloy, which are proposed as base armour and heat sink, respectively, in the divertor of future fusion reactors. Furthermore, since the optimum operating temperature windows for these divertor materials do not overlap, a compatible thermal barrier interlayer between them is required to guarantee a smooth thermal transition, which in addition may mitigate radiation damage. The aim of this work is to study the thermo-mechanical properties of WC-Cu cermets fabricated by hot pressing. Focus is placed on the temperature effect and composition dependence, as the volume fraction of copper varies from 25 to 50 and 75 vol%. To explore this behaviour, fracture experiments are performed within a temperature range from room temperature to 800 °C under vacuum. In addition, elastic modulus and thermal expansion coefficient are estimated from these tests. Results reveal a strong dependence of the performance on temperature and on the volume fraction of copper and, surprisingly, a slight percent of Cu (25 vol%) can effectively reduce the large difference in thermal expansion between tungsten and copper alloy, which is a critical point for in service applications. The thermal performance of these materials, together with their mechanical properties could indeed reduce the heat transfer from the PFM to the underlying element while supporting the high thermal stresses of the joint. Thus, the presence of these cermets could allow the reactor to operate above the ductile to brittle transition temperature of tungsten, without compromising the underlying materials.

  13. Thermal barrier confinement experiments in TMX-U tandem mirror. Revision 1

    International Nuclear Information System (INIS)

    Simonen, T.C.; Allen, S.L.; Baldwin, D.E.

    1984-01-01

    In our recent experiments on the TMX-U thermal-barrier device, we achieved the end plugging of axial ion losses up to a central cell density of n/sub c/ = 6 x 10 12 cm -3 . During lower density experiments, we measured the axial potential profile characteristic of a thermal barrier and found an ion-confining potential greater than 1.5 kV and a potential depression of 0.45 kV in the barrier region. The average beta of hot end plug electrons has reached 15% and of hot central cell ions has reached 6%. In addition, we heated deuterium ions in the central cell with ICRF to an average perpendicular energy of 2 keV. During strong end plugging at low density (7 x 10 11 cm -3 ), the axial ion confinement time tau/sub parallel to/ reached 50 to 100 ms while the nonambiopolar radial ion confinement time tau/sub perpendicular to/ was 14 ms - independent of end plugging. Electrically floating end walls doubled the radial ion confinement time. At higher densities and lower potentials, tau/sub parallel to/ was 6 to 12 ms and tau/sub perpendicular to/ exceeded 100 ms

  14. Thermal Conductivity of EB-PVD Thermal Barrier Coatings Evaluated by a Steady-State Laser Heat Flux Technique

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Nagaraj, Ben A.; Bruce, Robert W.

    2000-01-01

    The thermal conductivity of electron beam-physical vapor deposited (EB-PVD) Zr02-8wt%Y2O3 thermal barrier coatings was determined by a steady-state heat flux laser technique. Thermal conductivity change kinetics of the EB-PVD ceramic coatings were also obtained in real time, at high temperatures, under the laser high heat flux, long term test conditions. The thermal conductivity increase due to micro-pore sintering and the decrease due to coating micro-delaminations in the EB-PVD coatings were evaluated for grooved and non-grooved EB-PVD coating systems under isothermal and thermal cycling conditions. The coating failure modes under the high heat flux test conditions were also investigated. The test technique provides a viable means for obtaining coating thermal conductivity data for use in design, development, and life prediction for engine applications.

  15. Investigation of anodizing parameter effect on barrier layer of anodic zirconium oxide

    International Nuclear Information System (INIS)

    Kharchenko, Eh.P.

    1979-01-01

    Effect of fluoride concentration and forming direction upon kinetics of barrier layer transformations in the process of preparation of phase anodic zirconium oxide in acid fluorine-containing solutions is considered. Suppositions are made on the mechanism of barrier layer transformation under the effect of the parameters mentioned. The thickness of the barrier layer is determined by two methods and it is shown that coefficient of the layer thickess growth at the voltage increase by 1 V is much lower than during formation of the barrier films in non-agressive electrolytes

  16. A method of producing a multilayer barrier structure for a solid oxide fuel cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a method of producing a multilayer barrier structure for a solid oxide cell stack, comprising the steps of: - providing a metal interconnect, wherein the metal interconnect is a ferritic stainless steel layer; - applying a first metal oxide layer on said metal...... oxide; and - reacting the metal oxide in said first metal oxide layer with the metal of said metal interconnect during the SOC-stack initialisation, and a solid oxide stack comprising an anode contact layer and support structure, an anode layer, an electrolyte layer, a cathode layer, a cathode contact...... layer, a metallic interconnect, and a multilayer barrier structure which is obtainable by the above method and through an initialisation step, which is carried out under controlled conditions for atmosphere composition and current load, which depends on the layer composition facilitating the formation...

  17. Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings

    Science.gov (United States)

    Chen, X. W.; Zhao, C. Y.; Wang, B. X.

    2018-05-01

    Thermal barrier coatings are common porous materials coated on the surface of devices operating under high temperatures and designed for heat insulation. This study presents a comprehensive investigation on the microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. Based on the quartet structure generation set algorithm, the finite-difference-time-domain method is applied to calculate angular scattering intensity distribution of complicated random microstructure, which takes wave nature into account. Combining Monte Carlo method with Particle Swarm Optimization, asymmetry factor, scattering coefficient and absorption coefficient are retrieved simultaneously. The retrieved radiative properties are identified with the angular scattering intensity distribution under different pore shapes, which takes dependent scattering and anisotropic pore shape into account implicitly. It has been found that microstructure significantly affects the radiative properties in thermal barrier coatings. Compared with spherical shape, irregular anisotropic pore shape reduces the forward scattering peak. The method used in this paper can also be applied to other porous media, which designs a frame work for further quantitative study on porous media.

  18. Evolution of interfacial toughness of a thermal barrier system with a Pt-diffused {gamma}/{gamma}' bond coat

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.; Liu, J. [School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom); Rickerby, D.S.; Jones, R.J. [Rolls-Royce Plc., PO Box 31, Derby DE24 8BJ (United Kingdom); Xiao, P., E-mail: ping.xiao@manchester.ac.uk [School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom)

    2011-09-15

    A strain-to-fail method has been employed to examine the interfacial adhesion of electron beam-physical vapor deposited thermal barrier coatings (TBCs) with a Pt-diffused {gamma}/{gamma}' bond coat. Based on a previously established model, the estimated interfacial toughness decreases with oxidation time of TBCs. Furthermore, the interfacial toughness value varies considerably with the use of different Young's moduli in the model. It is believed that the modulus obtained from beam bending represents the columnar structure of the TBC. In this case, the mode I interfacial toughness was found to vary from 10 J m{sup -2} for as-deposited TBCs to 0.79 J m{sup -2} for the 60 h oxidized TBCs. The degradation of adhesion could be attributed to the defect formation and impurity segregation at the TGO/bond coat interface, which is associated with the diffusion of Pt.

  19. Investigation of thermal fatigue behavior of thermal barrier coating systems

    International Nuclear Information System (INIS)

    Zhu Dongming; Miller, R.A.

    1997-01-01

    In the present study, the mechanisms of fatigue crack initiation and propagation, and of coating failure under thermal loads that simulate those in diesel engines are investigated. Surface cracks initiate early and grow continuously under thermal low cycle fatigue (LCF) and high cycle fatigue (HCF) stresses. It is found that, in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures. Significant LCF and HCF interactions have been observed in the thermal fatigue tests. The fatigue crack growth rate in the ceramic coating strongly depends on the characteristic HCF cycle number, N* HCF which is defined as the number of HCF cycles per LCF cycle. The crack growth rate is increased from 0.36 μm/LCF cycle for a pure LCF test to 2.8 μm/LCF cycle for a combined LCF and HCF test at N* HCF about 20 000. A surface wedging model has been proposed to account for the HCF crack growth in the coating systems. This mechanism predicts that the HCF damage effect increases with heat flux and thus with increasing surface temperature swing, thermal expansion coefficient and elastic modulus of the ceramic coating, as well as with the HCF interacting depth. Good correlation has been found between the analysis and experimental evidence. (orig.)

  20. Thermal barrier coatings (TBC's) for high heat flux thrust chambers

    Science.gov (United States)

    Bradley, Christopher M.

    The last 30 years materials engineers have been under continual pressure to develop materials with a greater temperature potential or to produce configurations that can be effectively cooled or otherwise protected at elevated temperature conditions. Turbines and thrust chambers produce some of the harshest service conditions for materials which lead to the challenges engineers face in order to increase the efficiencies of current technologies due to the energy crisis that the world is facing. The key tasks for the future of gas turbines are to increase overall efficiencies to meet energy demands of a growing world population and reduce the harmful emissions to protect the environment. Airfoils or blades tend to be the limiting factor when it comes to the performance of the turbine because of their complex design making them difficult to cool as well as limitations of their thermal properties. Key tasks for space transportation it to lower costs while increasing operational efficiency and reliability of our space launchers. The important factor to take into consideration is the rocket nozzle design. The design of the rocket nozzle or thrust chamber has to take into account many constraints including external loads, heat transfer, transients, and the fluid dynamics of expanded hot gases. Turbine engines can have increased efficiencies if the inlet temperature for combustion is higher, increased compressor capacity and lighter weight materials. In order to push for higher temperatures, engineers need to come up with a way to compensate for increased temperatures because material systems that are being used are either at or near their useful properties limit. Before thermal barrier coatings were applied to hot-section components, material alloy systems were able to withstand the service conditions necessary. But, with the increased demand for performance, higher temperatures and pressures have become too much for those alloy systems. Controlled chemistry of hot

  1. Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure

    Directory of Open Access Journals (Sweden)

    Ungyu Paik

    2013-08-01

    Full Text Available The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF and low-pressure plasma spray (LPPS methods showed a partial cracking (and/or delamination and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50% after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF.

  2. Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation ageing

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Shimada, Akihiko; Sugimoto, Masaki; Kudoh, Hisaaki

    2012-01-01

    The mechanism of polymer oxidation by radiation and thermal ageing was investigated for the life evaluation of cables installed in radiation environments. The antioxidant as a stabilizer was very effective for thermal oxidation with a small content in polymers, but was not effective for radiation oxidation. The ionizing radiation induced the oxidation to result in chain scission even at low temperature, because the free radicals were produced and the antioxidant could not stop the oxidation of radicals with the chain scission. A new mechanism of antioxidant effect for polymer oxidation was proposed. The effect of antioxidant was not the termination of free radicals in polymer chains such as peroxy radicals, but was the depression of initial radical formation in polymer chains by thermal activation. The antioxidant molecule was assumed to delocalize the activated energy in polymer chains by the Boltzmann statics (distribution) to result in decrease in the probability of radical formation at a given temperature. The interaction distance (delocalization volume) by one antioxidant molecule was estimated to be 5–10 nm by the radius of sphere in polymer matrix, though the value would depend on the chemical structure of antioxidant. - Highlights: ► Interaction of antioxidant on polymer oxidation is discussed for thermal and radiation ageings. ► Antioxidant is very effective for thermal oxidation, but not for radiation induced oxidation. ► Interaction of antioxidant is not the termination reaction of radicals on polymers. ► Antioxidant is supposed to reduce the provability of polymer radical formation by thermal activation. ► Mechanism of polymer oxidation may not be chain reaction via peroxy radical and hydro-peroxide.

  3. Influence of Thermal Annealing Treatment on Bipolar Switching Properties of Vanadium Oxide Thin-Film Resistance Random-Access Memory Devices

    Science.gov (United States)

    Chen, Kai-Huang; Cheng, Chien-Min; Kao, Ming-Cheng; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Wu, Sean; Su, Feng-Yi

    2017-04-01

    The bipolar switching properties and electrical conduction mechanism of vanadium oxide thin-film resistive random-access memory (RRAM) devices obtained using a rapid thermal annealing (RTA) process have been investigated in high-resistive status/low-resistive status (HRS/LRS) and are discussed herein. In addition, the resistance switching properties and quality improvement of the vanadium oxide thin-film RRAM devices were measured by x-ray diffraction (XRD) analysis, x-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage ( I- V) measurements. The activation energy of the hopping conduction mechanism in the devices was investigated based on Arrhenius plots in HRS and LRS. The hopping conduction distance and activation energy barrier were obtained as 12 nm and 45 meV, respectively. The thermal annealing process is recognized as a candidate method for fabrication of thin-film RRAM devices, being compatible with integrated circuit technology for nonvolatile memory devices.

  4. Automotive body panel containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Adamson, Douglas (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    An automotive body panel containing a polymer composite formed of at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  5. Iodine doping effects on the lattice thermal conductivity of oxidized polyacetylene nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Kedong, E-mail: lishi@mail.utexas.edu, E-mail: kedongbi@seu.edu.cn [Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189 (China); Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Weathers, Annie; Pettes, Michael T.; Shi, Li, E-mail: lishi@mail.utexas.edu, E-mail: kedongbi@seu.edu.cn [Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Matsushita, Satoshi; Akagi, Kazuo [Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510 (Japan); Goh, Munju [Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510 (Japan); Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Eunha-ri san 101, Bondong-eup, Wanju-gun, Jeolabuk-do 565-905 (Korea, Republic of)

    2013-11-21

    Thermal transport in oxidized polyacetylene (PA) nanofibers with diameters in the range between 74 and 126 nm is measured with the use of a suspended micro heater device. With the error due to both radiation and contact thermal resistance corrected via a differential measurement procedure, the obtained thermal conductivity of oxidized PA nanofibers varies in the range between 0.84 and 1.24 W m{sup −1} K{sup −1} near room temperature, and decreases by 40%–70% after iodine doping. It is also found that the thermal conductivity of oxidized PA nanofibers increases with temperature between 100 and 350 K. Because of exposure to oxygen during sample preparation, the PA nanofibers are oxidized to be electrically insulating before and after iodine doping. The measurement results reveal that iodine doping can result in enhanced lattice disorder and reduced lattice thermal conductivity of PA nanofibers. If the oxidation issue can be addressed via further research to increase the electrical conductivity via doping, the observed suppressed lattice thermal conductivity in doped polymer nanofibers can be useful for the development of such conducting polymer nanostructures for thermoelectric energy conversion.

  6. Iodine doping effects on the lattice thermal conductivity of oxidized polyacetylene nanofibers

    International Nuclear Information System (INIS)

    Bi, Kedong; Weathers, Annie; Pettes, Michael T.; Shi, Li; Matsushita, Satoshi; Akagi, Kazuo; Goh, Munju

    2013-01-01

    Thermal transport in oxidized polyacetylene (PA) nanofibers with diameters in the range between 74 and 126 nm is measured with the use of a suspended micro heater device. With the error due to both radiation and contact thermal resistance corrected via a differential measurement procedure, the obtained thermal conductivity of oxidized PA nanofibers varies in the range between 0.84 and 1.24 W m −1  K −1 near room temperature, and decreases by 40%–70% after iodine doping. It is also found that the thermal conductivity of oxidized PA nanofibers increases with temperature between 100 and 350 K. Because of exposure to oxygen during sample preparation, the PA nanofibers are oxidized to be electrically insulating before and after iodine doping. The measurement results reveal that iodine doping can result in enhanced lattice disorder and reduced lattice thermal conductivity of PA nanofibers. If the oxidation issue can be addressed via further research to increase the electrical conductivity via doping, the observed suppressed lattice thermal conductivity in doped polymer nanofibers can be useful for the development of such conducting polymer nanostructures for thermoelectric energy conversion

  7. Oxide, interface, and border traps in thermal, N2O, and N2O-nitrided oxides

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Saks, N.S.

    1996-01-01

    We have combined thermally stimulated-current (TSC) and capacitance endash voltage (C endash V) measurements to estimate oxide, interface, and effective border trap densities in 6 endash 23 nm thermal, N 2 O, and N 2 O-nitrided oxides exposed to ionizing radiation or high-field electron injection. Defect densities depend strongly on oxide processing, but radiation exposure and moderate high-field stress lead to similar trapped hole peak thermal energy distributions (between ∼1.7 and ∼2.0 eV) for all processes. This suggests that similar defects dominate the oxide charge trapping properties in these devices. Radiation-induced hole and interface trap generation efficiencies (0.1%endash 1%) in the best N 2 O and N 2 O-nitrided oxides are comparable to the best radiation hardened oxides in the literature. After ∼10 Mrad(SiO 2 ) x-ray irradiation or ∼10 mC/cm 2 constant current Fowler endash Nordheim injection, effective border trap densities as high as ∼5x10 11 cm -2 are inferred from C endash V hysteresis. These measurements suggest irradiation and high-field stress cause similar border trap energy distributions. In each case, even higher densities of compensating trapped electrons in the oxides (up to 2x10 12 cm -2 ) are inferred from combined TSC and C endash V measurements. These trapped electrons prevent conventional C endash V methods from providing accurate estimates of the total oxide trap charge density in many irradiation or high-field stress studies. Fewer compensating electrons per trapped hole (∼26%±5%) are found for irradiation of N 2 O and N 2 O-nitrided oxides than for thermal oxides (∼46%±7%). (Abstract Truncated)

  8. Development of Reliability Based Life Prediction Methods for Thermal and Environmental Barrier Coatings in Ceramic Matrix Composites

    Science.gov (United States)

    Shah, Ashwin

    2001-01-01

    Literature survey related to the EBC/TBC (environmental barrier coating/thermal barrier coating) fife models, failure mechanisms in EBC/TBC and the initial work plan for the proposed EBC/TBC life prediction methods development was developed as well as the finite element model for the thermal/stress analysis of the GRC-developed EBC system was prepared. Technical report for these activities is given in the subsequent sections.

  9. Non-thermal Plasma and Oxidative Stress

    Science.gov (United States)

    Toyokuni, Shinya

    2015-09-01

    Thermal plasmas and lasers have been used in medicine to cut and ablate tissues and for coagulation. Non-equilibrium atmospheric pressure plasma (NEAPP; non-thermal plasma) is a recently developed, non-thermal technique with possible biomedical applications. Although NEAPP reportedly generates reactive oxygen/nitrogen species, electrons, positive ions, and ultraviolet radiation, few research projects have been conducted to merge this technique with conventional free radical biology. Recently, Prof. Masaru Hori's group (Plasma Nanotechnology Research Center, Nagoya University) developed a NEAPP device with high electron density. Here electron spin resonance revealed hydroxyl radicals as a major product. To merge non-thermal plasma biology with the preexisting free radical biology, we evaluated lipid peroxidation and DNA modifications in various in vitro and ex vivo experiments. Conjugated dienes increased after exposure to linoleic and alfa-linolenic acids. An increase in 2-thiobarbituric acid-reactive substances was also increased after exposure to phosphatidylcholine, liposomes or liver homogenate. Direct exposure to rat liver in medium produced immunohistochemical evidence of 4-hydroxy-2-nonenal- and acrolein-modified proteins. Exposure to plasmid DNA induced dose-dependent single/double strand breaks and increased the amounts of 8-hydroxy-2'-deoxyguanosine and cyclobutane pyrimidine dimers. These results indicate that oxidative biomolecular damage by NEAPP is dose-dependent and thus can be controlled in a site-specific manner. Simultaneous oxidative and UV-specific DNA damage may be useful in cancer treatment. Other recent advancements in the related studies of non-thermal plasma in Nagoya University Graduate School of Medicine will also be discussed.

  10. Self-healing thermal barrier coatings; with application to gas turbine engines

    NARCIS (Netherlands)

    Ponnusami, S.A.

    2013-01-01

    Thermal Barrier Coating (TBC) systems have been applied in turbine engines for aerospace and power plants since the beginning of the 1980s to increase the energy efficiency of the engine, by allowing for higher operation temperatures. TBC systems on average need to be replaced about four times

  11. Next Generation Thermal Barrier Coatings for the Gas Turbine Industry

    Science.gov (United States)

    Curry, Nicholas; Markocsan, Nicolaie; Li, Xin-Hai; Tricoire, Aurélien; Dorfman, Mitch

    2011-01-01

    The aim of this study is to develop the next generation of production ready air plasma sprayed thermal barrier coating with a low conductivity and long lifetime. A number of coating architectures were produced using commercially available plasma spray guns. Modifications were made to powder chemistry, including high purity powders, dysprosia stabilized zirconia powders, and powders containing porosity formers. Agglomerated & sintered and homogenized oven spheroidized powder morphologies were used to attain beneficial microstructures. Dual layer coatings were produced using the two powders. Laser flash technique was used to evaluate the thermal conductivity of the coating systems from room temperature to 1200 °C. Tests were performed on as-sprayed samples and samples were heat treated for 100 h at 1150 °C. Thermal conductivity results were correlated to the coating microstructure using image analysis of porosity and cracks. The results show the influence of beneficial porosity on reducing the thermal conductivity of the produced coatings.

  12. Preparation and investigations of thermal properties of copper oxide ...

    Indian Academy of Sciences (India)

    The effects of copper oxide, aluminium oxide and graphite on the thermal and structural properties of the organic ... solar energy, and heat regulation of electronics, biomedical ..... We gratefully acknowledge the financial support provided by.

  13. Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode

    Science.gov (United States)

    Heydari, F.; Maghsoudipour, A.; Alizadeh, M.; Khakpour, Z.; Javaheri, M.

    2015-09-01

    Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.

  14. Analysis of chemical dissolution of the barrier layer of porous oxide on aluminum thin films using a re-anodizing technique

    Energy Technology Data Exchange (ETDEWEB)

    Vrublevsky, I. [Department of Microelectronics, Belarusian State University of Informatics and Radioelectronics, 6 Brovka street, Minsk 220013 (Belarus)]. E-mail: nil-4-2@bsuir.edu.by; Parkoun, V. [Department of Microelectronics, Belarusian State University of Informatics and Radioelectronics, 6 Brovka street, Minsk 220013 (Belarus); Sokol, V. [Department of Microelectronics, Belarusian State University of Informatics and Radioelectronics, 6 Brovka street, Minsk 220013 (Belarus); Schreckenbach, J. [Institut fuer Chemie, Technische Universitaet Chemnitz, Chemnitz D-09107 (Germany)

    2005-09-30

    Chemical dissolution of the barrier layer of porous oxide formed on thin aluminum films (99.9% purity) in the 4% oxalic acid after immersion in 2 mol dm{sup -3} sulphuric acid at 50 deg. C has been studied. The barrier layer thickness before and after dissolution was calculated using a re-anodizing technique. It has been shown that above 57 V the change in the growth mechanism of porous alumina films takes place. As a result, the change in the amount of regions in the barrier oxide with different dissolution rates is observed. The barrier oxide contains two layers at 50 V: the outer layer with the highest dissolution rate and the inner layer with a low dissolution rate. Above 60 V the barrier oxide contains three layers: the outer layer with a high dissolution rate, the middle layer with the highest dissolution rate and the inner layer with a low dissolution rate. We suggest that the formation of the outer layer of barrier oxide with a high dissolution rate is linked with the injection of protons or H{sub 3}O{sup +} ions from the electrolyte into the oxide film at the anodizing voltages above 57 V.

  15. Influence of Bondcoat Spray Process on Lifetime of Suspension Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.

    2018-01-01

    Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.

  16. Thermal diffusivity and conductivity of thorium- uranium mixed oxides

    Science.gov (United States)

    Saoudi, M.; Staicu, D.; Mouris, J.; Bergeron, A.; Hamilton, H.; Naji, M.; Freis, D.; Cologna, M.

    2018-03-01

    Thorium-uranium oxide pellets with high densities were prepared at the Canadian Nuclear Laboratories (CNL) by co-milling, pressing, and sintering at 2023 K, with UO2 mass contents of 0, 1.5, 3, 8, 13, 30, 60 and 100%. At the Joint Research Centre, Karlsruhe (JRC-Karlsruhe), thorium-uranium oxide pellets were prepared using the spark plasma sintering (SPS) technique with 79 and 93 wt. % UO2. The thermal diffusivity of (Th1-xUx)O2 (0 ≤ x ≤ 1) was measured at CNL and at JRC-Karlsruhe using the laser flash technique. ThO2 and (Th,U)O2 with 1.5, 3, 8 and 13 wt. % UO2 were found to be semi-transparent to the infrared wavelength of the laser and were coated with graphite for the thermal diffusivity measurements. This semi-transparency decreased with the addition of UO2 and was lost at about 30 wt. % of UO2 in ThO2. The thermal conductivity was deduced using the measured density and literature data for the specific heat capacity. The thermal conductivity for ThO2 is significantly higher than for UO2. The thermal conductivity of (Th,U)O2 decreases rapidly with increasing UO2 content, and for UO2 contents of 60% and higher, the conductivity of the thorium-uranium oxide fuel is close to UO2. As the mass difference between the Th and U atoms is small, the thermal conductivity decrease is attributed to the phonon scattering enhanced by lattice strain due to the introduction of uranium in ThO2 lattice. The new results were compared to the data available in the literature and were evaluated using the classical phonon transport model for oxide systems.

  17. Effect of H2O and Y(O on Oxidation Behavior of NiCoCrAl Coating Within Thermal Barrier Coating

    Directory of Open Access Journals (Sweden)

    WANG Yi-qun

    2017-04-01

    Full Text Available NiCoCrAl coatings containing Y and Y oxide were made using vacuum plasma deposition and high-velocity oxygen fuel respectively, high temperature oxidation dynamics and cross-section microstructures of NiCoCrAl+Y and NiCoCrAl+Y(O coatings in Ar-16.7%O2, Ar-3.3%H2O and Ar-0.2%H2-0.9%H2O at 1100℃ were investigated by differential thermal analysis (DTA and optical and electron microscope. The influencing mechanism of Y oxide on the oxidation of coatings at different atmosphere was compared by computation using First-Principles. The results show that Al2O3 layer on NiCoCrAl+Y coatings has more holes for internal oxidation on account of the element Y diffusion and enrichment on the interface. In addition, steam can promote the internal oxidation. While a thinner and uniform alumina form on NiCoCrAl+Y(O coatings because element Y is pinned by oxygen atoms during the preparation of coatings. Water vapor has less influence on protective alumina formation on the NiCoCrAl+Y(O coating. Therefore, oxidation behavior of NiCoCrAl coatings vary in composition and structure in different oxidizing atmosphere. Besides, Y and Y-enrichment oxides have key influences on the microstructure and the growth rate.

  18. Tritium permeation barriers for fusion technology

    International Nuclear Information System (INIS)

    Perujo, A.; Forcey, K.

    1994-01-01

    An important issue concerning the safety, feasibility and fueling (i.e., tritium breeding ratio and recovery from the breeding blanket) of a fusion reactor is the possible tritium leakages through the structural materials and in particular through those operating at high temperatures. The control of tritium permeation could be a critical factor in determining the viability of a future fusion power reactor. The formation of tritium permeation barriers to prevent the loss of tritium to the coolant by diffusion though the structural material seems to be the most practical method to minimize such losses. Many authors have discussed the formation of permeation barriers to reduce the leakage of hydrogen isotopes through proposed first wall and structural materials. In general, there are two routes for the formation of such a barrier, namely: the growth of oxide layers (e.g., Cr 2 O 3 , Al 2 O 3 , etc.) or the application of surface coatings. Non-metals are the most promising materials from the point of view of the formation of permeation barriers. Oxides such as Al 2 O 3 or Cr 2 O 3 or carbides such as SiC or TiC have been proposed. Amongst the metals only tungsten or gold are sufficiently less permeable than steel to warrant investigation as candidate materials for permeation barriers. It is of course possible to grow oxide layers on steel directly by heating in the atmosphere or under a variety of conditions (first route above). The direct oxidizing is normally done in an environment of open-quotes wet hydrogenclose quotes to promote the growth of chromia on, for example, nickel steels or ternary oxides on 316L to prevent corrosion. The application of surface layers (second route above), offers a greater range of materials for the formation of permeation barriers. In addition to reducing permeation, such layers should be adhesive, resistant to attack by corrosive breeder materials and should not crack during thermal cycling

  19. HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Jacob Barbara A

    2009-02-01

    Full Text Available Abstract Background HIV-infected individuals are at increased risk for acute and chronic airway disease even though there is no evidence that the virus can infect the lung epithelium. Although HIV-related proteins including gp120 and Tat can directly cause oxidant stress and cellular dysfunction, their effects in the lung are unknown. The goal of this study was to determine the effects of HIV-1 transgene expression in rats on alveolar epithelial barrier function. Alveolar epithelial barrier function was assessed by determining lung liquid clearance in vivo and alveolar epithelial monolayer permeability in vitro. Oxidant stress in the alveolar space was determined by measuring the glutathione redox couple by high performance liquid chromatography, and the expression and membrane localization of key tight junction proteins were assessed. Finally, the direct effects of the HIV-related proteins gp120 and Tat on alveolar epithelial barrier formation and tight junction protein expression were determined. Results HIV-1 transgene expression caused oxidant stress within the alveolar space and impaired epithelial barrier function even though there was no evidence of overt inflammation within the airways. The expression and membrane localization of the tight junction proteins zonula occludens-1 and occludin were decreased in alveolar epithelial cells from HIV-1 transgenic rats. Further, treating alveolar epithelial monolayers from wild type rats in vitro with recombinant gp120 or Tat for 24 hours reproduced many of the effects on zonula occludens-1 and occludin expression and membrane localization. Conclusion Taken together, these data indicate that HIV-related proteins cause oxidant stress and alter the expression of critical tight junction proteins in the alveolar epithelium, resulting in barrier dysfunction.

  20. Comparative study on effect of blending, thermal barrier coating ...

    African Journals Online (AJOL)

    The brake thermal efficiency, specific fuel consumption, carbon monoxide, unburned hydrocarbon and oxides of nitrogen emissions of both diesel and UOME and its blends were measured before and after coating and the results are compared. B20 fuelled biodiesel and PSZ coated engine provides almost comparable ...

  1. Smoldering and Flame Resistant Textiles via Conformal Barrier Formation.

    Science.gov (United States)

    Zammarano, Mauro; Cazzetta, Valeria; Nazaré, Shonali; Shields, J Randy; Kim, Yeon Seok; Hoffman, Kathleen M; Maffezzoli, Alfonso; Davis, Rick

    2016-12-07

    A durable and flexible silicone-based backcoating (halogen free) is applied to the backside of an otherwise smoldering-prone and flammable fabric. When exposed to fire, cyclic siloxanes (produced by thermal decomposition of the backcoating) diffuse through the fabric in the gas phase. The following oxidation of the cyclic siloxanes forms a highly conformal and thermally stable coating that fully embeds all individual fibers and shields them from heat and oxidation. As a result, the combustion of the fabric is prevented. This is a novel fire retardant mechanism that discloses a powerful approach towards textiles and multifunctional flexible materials with combined smoldering/flaming ignition resistance and fire-barrier properties.

  2. Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2015-07-01

    Full Text Available Suspension plasma spraying has become an emerging technology for the production of thermal barrier coatings for the gas turbine industry. Presently, though commercial systems for coating production are available, coatings remain in the development stage. Suitable suspension parameters for coating production remain an outstanding question and the influence of suspension properties on the final coatings is not well known. For this study, a number of suspensions were produced with varied solid loadings, powder size distributions and solvents. Suspensions were sprayed onto superalloy substrates coated with high velocity air fuel (HVAF -sprayed bond coats. Plasma spray parameters were selected to generate columnar structures based on previous experiments and were maintained at constant to discover the influence of the suspension behavior on coating microstructures. Testing of the produced thermal barrier coating (TBC systems has included thermal cyclic fatigue testing and thermal conductivity analysis. Pore size distribution has been characterized by mercury infiltration porosimetry. Results show a strong influence of suspension viscosity and surface tension on the microstructure of the produced coatings.

  3. Evolution of pore microstructure in thermal barrier coatings studied by SANS

    Czech Academy of Sciences Publication Activity Database

    Haug, J.; Wiedenmann, A.; Flores, A.; Saruhan-Brings, B.; Strunz, Pavel

    2006-01-01

    Roč. 385, č. 1 (2006), s. 617-619 ISSN 0921-4526 R&D Projects: GA ČR GA202/06/0601 Institutional research plan: CEZ:AV0Z10480505 Keywords : thermal barrier coatings * electron beam physical vapor deposition * SANS Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.872, year: 2006

  4. Aluminum oxide barrier coating on polyethersulfone substrate by atomic layer deposition for barrier property enhancement

    International Nuclear Information System (INIS)

    Kim, Hyun Gi; Kim, Sung Soo

    2011-01-01

    Aluminum oxide layers were deposited on flexible polyethersulfone (PES) substrates via plasma enhanced atomic layer deposition (PEALD) process using trimethylaluminum (TMA) and oxygen as precursor and reactant materials. Several process parameters in PEALD process were investigated in terms of refractive index and layer thickness. Number of process cycle increased the thickness and refractive index of the layer to enhance the barrier properties. Non-physisorbed TMA and unreacted oxygen were purged before and after the plasma reaction, respectively. Identical purge time was applied to TMA and oxygen and it was optimized for 10 s. Thinner and denser layer was formed as substrate temperature increased. However, the PES substrate could be deformed above 120 o C. Aluminum oxide layer formed on PES at optimized conditions have 11.8 nm of thickness and reduced water vapor transmission rate and oxygen transmission rate to below 4 x 10 -3 g/m 2 day and 4 x 10 -3 cm 3 /m 2 day, respectively. Polycarbonate and polyethylene naphthalate films were also tested at optimized conditions, and they also showed quite appreciable barrier properties to be used as plastic substrates.

  5. Effects of Thermal Annealing Conditions on Cupric Oxide Thin Film

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Seon; Oh, Hee-bong; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2015-07-15

    In this study, cupric oxide (CuO) thin films were grown on fluorine doped tin oxide(FTO) substrate by using spin coating method. We investigated the effects of thermal annealing temperature and thermal annealing duration on the morphological, structural, optical and photoelectrochemical properties of the CuO film. From the results, we could find that the morphologies, grain sizes, crystallinity and photoelectrochemical properties were dependent on the annealing conditions. As a result, the maximum photocurrent density of -1.47 mA/cm{sup 2} (vs. SCE) was obtained from the sample with the thermal annealing conditions of 500 ℃ and 40 min.

  6. Thermal activation of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height

    International Nuclear Information System (INIS)

    Guo-Ping, Ru; Rong, Yu; Yu-Long, Jiang; Gang, Ruan

    2010-01-01

    This paper investigates the thermal activation behaviour of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height by numerical simulation. The analytical Gaussian distribution model predicted that the I-V-T curves may intersect with the possibility of the negative thermal activation of current, but may be contradictory to the thermionic emission mechanism in a Schottky diode. It shows that the cause of the unphysical phenomenon is related to the incorrect calculation of current across very low barriers. It proposes that junction voltage V j , excluding the voltage drop across series resistance from the external bias, is a crucial parameter for correct calculation of the current across very low barriers. For correctly employing the thermionic emission model, V j needs to be smaller than the barrier height ø. With proper scheme of series resistance connection where the condition of V j > ø is guaranteed, I-V-T curves of an inhomogeneous Schottky diode with a Gaussian distribution of barrier height have been simulated, which demonstrate normal thermal activation. Although the calculated results exclude the intersecting possibility of I-V-T curves with an assumption of temperature-independent series resistance, it shows that the intersecting is possible when the series resistance has a positive temperature coefficient. Finally, the comparison of our numerical and analytical results indicates that the analytical Gaussian distribution model is valid and accurate in analysing I-V-T curves only for small barrier height inhomogeneity. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films.

    Science.gov (United States)

    Usman, Adil; Hussain, Zakir; Riaz, Asim; Khan, Ahmad Nawaz

    2016-11-20

    In the present work, synthesis of poly(vinyl alcohol)/graphene oxide/starch/silver (PVA/GO/Starch/Ag) nanocomposites films is reported. Such films have been characterized and investigated for their mechanical, thermal and antimicrobial properties. The exfoliation of GO in the PVA matrix occurs owing to the non-covalent interactions of the polymer chains of PVA and hydrophilic surface of the GO layers. Presence of GO in PVA and PVA/starch blends were found to enhance the tensile strength of the nanocomposites system. It was found that the thermal stability of PVA as well as PVA/starch blend systems increased by the incorporation of GO where strong physical bonding between GO layers and PVA/starch blends is assumed to cause thermal barrier effects. Antimicrobial properties of the prepared films were investigated against Escherichia coli and Staphylococcus aureus. Our results show enhanced antimicrobial properties of the prepared films where PVA-GO, PVA-Ag, PVA-GO-Ag and PVA-GO-Ag-Starch showed antimicrobial activity in ascending order. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    OpenAIRE

    Lee, Youngseok; Oh, Woongkyo; Dao, Vinh Ai; Hussain, Shahzada Qamar; Yi, Junsin

    2012-01-01

    It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT) solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO) process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0) which improves the efficie...

  9. Quantal and thermal zero point motion formulae of barrier transmission probability

    International Nuclear Information System (INIS)

    Takigawa, N.; Alhassid, Y.; Balantekin, A.B.

    1992-01-01

    A Green's function method is developed to derive quantal zero point motion formulae for the barrier transmission probability in heavy ion fusion reactions corresponding to various nuclear intrinsic degrees of freedom. In order to apply to the decay of a hot nucleus, the formulae are then generalized to the case where the intrinsic degrees of freedom are in thermal equilibrium with a heat bath. A thermal zero point motion formula for vibrational coupling previously obtained through the use of influence functional methods naturally follows, and the effects of rotational coupling are found to be independent of temperature if the deformation is rigid

  10. Effects of solid fission products forming dissolved oxide (Nd) and metallic precipitate (Ru) on the thermal conductivity of uranium base oxide fuel

    International Nuclear Information System (INIS)

    Kim, Dong-Joo; Yang, Jae-Ho; Kim, Jong-Hun; Rhee, Young-Woo; Kang, Ki-Won; Kim, Keon-Sik; Song, Kun-Woo

    2007-01-01

    The effects of solid fission products on the thermal conductivity of uranium base oxide nuclear fuel were experimentally investigated. Neodymium (Nd) and ruthenium (Ru) were added to represent the physical states of solid fission products such as 'dissolved oxide' and 'metallic precipitate', respectively. Thermal conductivity was determined on the basis of the thermal diffusivity, density and specific heat values. The effects of the additives on the thermal conductivity were quantified in the form of the thermal resistivity equation - the reciprocal of the phonon conduction equation - which was determined from the measured data. It is concluded that the thermal conductivity of the irradiated nuclear fuel is affected by both the 'dissolved oxide' and the 'metallic precipitate', however, the effects are in the opposite direction and the 'dissolved oxide' influences the thermal conductivity more significantly than that of the 'metallic precipitate'

  11. Thermal barrier coatings on gas turbine blades: Chemical vapor deposition (Review)

    Science.gov (United States)

    Igumenov, I. K.; Aksenov, A. N.

    2017-12-01

    Schemes are presented for experimental setups (reactors) developed at leading scientific centers connected with the development of technologies for the deposition of coatings using the CVD method: at the Technical University of Braunschweig (Germany), the French Aerospace Research Center, the Materials Research Institute (Tohoku University, Japan) and the National Laboratory Oak Ridge (USA). Conditions and modes for obtaining the coatings with high operational parameters are considered. It is established that the formed thermal barrier coatings do not fundamentally differ in their properties (columnar microstructure, thermocyclic resistance, thermal conductivity coefficient) from standard electron-beam condensates, but the highest growth rates and the perfection of the crystal structure are achieved in the case of plasma-chemical processes and in reactors with additional laser or induction heating of a workpiece. It is shown that CVD reactors can serve as a basis for the development of rational and more advanced technologies for coating gas turbine blades that are not inferior to standard electron-beam plants in terms of the quality of produced coatings and have a much simpler and cheaper structure. The possibility of developing a new technology based on CVD processes for the formation of thermal barrier coatings with high operational parameters is discussed, including a set of requirements for industrial reactors, high-performance sources of vapor precursors, and promising new materials.

  12. Interstitial pressure dependence of the thermal conductivity of some rare earth oxide powders

    International Nuclear Information System (INIS)

    Pradeep, P.

    1997-01-01

    Thermal transport properties of powdered materials depend upon interstitial gas pressure. The present study reports the experimental results for the effective thermal conductivity of three rare earth oxide powders viz. yttrium oxide, samarium oxide, and gadolinium oxide, at various interstitial pressures by using transient plane source (TPS) method. A theoretical model is also proposed for the interpretation of the variation of the effective thermal conductivity with interstitial gas pressure. Its validity is found to be good in low pressure range of 45 mm Hg to normal pressure when compared with the experimental results. Also an attempt has been made to calculate the variation of thermal conductivity with interstitial pressure in the high pressure range up to 2 kbar using the proposed model. (author)

  13. Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Eric [Univ. of Connecticut, Storrs, CT (United States); Gell, Maurice [Univ. of Connecticut, Storrs, CT (United States)

    2015-01-15

    Advanced thermal barrier coatings (TBC) are crucial to improved energy efficiency in next generation gas turbine engines. The use of traditional topcoat materials, e.g. yttria-stabilized zirconia (YSZ), is limited at elevated temperatures due to (1) the accelerated undesirable phase transformations and (2) corrosive attacks by calcium-magnesium-aluminum-silicate (CMAS) deposits and moisture. The first goal of this project is to use the Solution Precursor Plasma Spray (SPPS) process to further reduce the thermal conductivity of YSZ TBCs by introducing a unique microstructural feature of layered porosity, called inter-pass boundaries (IPBs). Extensive process optimization accompanied with hundreds of spray trials as well as associated SEM cross-section and laser-flash measurements, yielded a thermal conductivity as low as 0.62 Wm⁻¹K⁻¹ in SPPS YSZ TBCs, approximately 50% reduction of APS TBCs; while other engine critical properties, such as cyclic durability, erosion resistance and sintering resistance, were characterized to be equivalent or better than APS baselines. In addition, modifications were introduced to SPPS TBCs so as to enhance their resistance to CMAS under harsh IGCC environments. Several mitigation approaches were explored, including doping the coatings with Al₂O₃ and TiO₂, applying a CMAS infiltration-inhibiting surface layer, and filling topcoat cracks with blocking substances. The efficacy of all these modifications was assessed with a set of novel CMAS-TBC interaction tests, and the moisture resistance was tested in a custom-built high-temperature moisture rig. In the end, the optimal low thermal conductivity TBC system was selected based on all evaluation tests and its processing conditions were documented. The optimal coating consisted on a thick inner layer of YSZ coating made by the SPPS process having a thermal conductivity 50% lower than standard YSZ coatings topped with a high temperature tolerant CMAS resistant gadolinium

  14. Evolution of thermal ion transport barriers in reversed shear/ optimised shear plasmas

    International Nuclear Information System (INIS)

    Voitsekhovitch, I.; Garbet, X.; Moreau, D.; Bush, C.E.; Budny, R.V.; Gohil, P.; Kinsey, J.E.; Talyor, T.S.; Litaudon, X.

    2001-01-01

    The effects of the magnetic and ExB rotation shears on the thermal ion transport in advanced tokamak scenarios are analyzed through the predictive modelling of the evolution of internal transport barriers. Such a modelling is performed with an experimentally validated L-mode thermal diffusivity completed with a semi-empirical shear correction which is based on simple theoretical arguments from turbulence studies. A multi-machine test of the model on relevant discharges from the ITER Data Base (TFTR, DIII-D and JET) is presented. (author)

  15. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Youngseok Lee

    2012-01-01

    Full Text Available It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0 which improves the efficiency of HIT solar cell. The ultrathin thermal passivation silicon oxide (SiO2 layer was deposited by RTO system in the temperature range 500–950°C for 2 to 6 minutes. The thickness of the silicon oxide layer was affected by RTO annealing temperature and treatment time. The best value of surface recombination velocity was recorded for the sample treated at a temperature of 850°C for 6 minutes at O2 flow rate of 3 Lpm. A surface recombination velocity below 25 cm/s was obtained for the silicon oxide layer of 4 nm thickness. This ultrathin SiO2 layer was employed for the fabrication of HIT solar cell structure instead of a-Si:H, (i layer and the passivation and tunneling effects of the silicon oxide layer were exploited. The photocurrent was decreased with the increase of illumination intensity and SiO2 thickness.

  16. Engineered Barrier System Thermal-Hydraulic-Chemical Column Test Report

    International Nuclear Information System (INIS)

    W.E. Lowry

    2001-01-01

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M and O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01

  17. Structural evolution of tunneling oxide passivating contact upon thermal annealing.

    Science.gov (United States)

    Choi, Sungjin; Min, Kwan Hong; Jeong, Myeong Sang; Lee, Jeong In; Kang, Min Gu; Song, Hee-Eun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan; Kim, Ka-Hyun

    2017-10-16

    We report on the structural evolution of tunneling oxide passivating contact (TOPCon) for high efficient solar cells upon thermal annealing. The evolution of doped hydrogenated amorphous silicon (a-Si:H) into polycrystalline-silicon (poly-Si) by thermal annealing was accompanied with significant structural changes. Annealing at 600 °C for one minute introduced an increase in the implied open circuit voltage (V oc ) due to the hydrogen motion, but the implied V oc decreased again at 600 °C for five minutes. At annealing temperature above 800 °C, a-Si:H crystallized and formed poly-Si and thickness of tunneling oxide slightly decreased. The thickness of the interface tunneling oxide gradually decreased and the pinholes are formed through the tunneling oxide at a higher annealing temperature up to 1000 °C, which introduced the deteriorated carrier selectivity of the TOPCon structure. Our results indicate a correlation between the structural evolution of the TOPCon passivating contact and its passivation property at different stages of structural transition from the a-Si:H to the poly-Si as well as changes in the thickness profile of the tunneling oxide upon thermal annealing. Our result suggests that there is an optimum thickness of the tunneling oxide for passivating electron contact, in a range between 1.2 to 1.5 nm.

  18. Growth and thermal oxidation of Ru and ZrO2 thin films as oxidation protective layers

    NARCIS (Netherlands)

    Coloma Ribera, R.

    2017-01-01

    This thesis focuses on the study of physical and chemical processes occurring during growth and thermal oxidation of Ru and ZrO2 thin films. Acting as oxidation resistant capping materials to prevent oxidation of layers underneath, these films have several applications, i.e., in microelectronics

  19. Thermo-mechanical Fatigue Failure of Thermal Barrier Coated Superalloy Specimen

    Science.gov (United States)

    Subramanian, Rajivgandhi; Mori, Yuzuru; Yamagishi, Satoshi; Okazaki, Masakazu

    2015-09-01

    Failure behavior of thermal barrier coated (TBC) Ni-based superalloy specimens were studied from the aspect of the effect of bond coat material behavior on low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) at various temperatures and under various loading conditions. Initially, monotonic tensile tests were carried out on a MCrAlY alloy bond coat material in the temperature range of 298 K to 1273 K (25 °C to 1000 °C). Special attention was paid to understand the ductile to brittle transition temperature (DBTT). Next, LCF and TMF tests were carried out on the thermal barrier coated Ni-based alloy IN738 specimen. After these tests, the specimens were sectioned to understand their failure mechanisms on the basis of DBTT of the bond coat material. Experimental results demonstrated that the LCF and TMF lives of the TBC specimen were closely related to the DBTT of the bond coat material, and also the TMF lives were different from those of LCF tests. It has also been observed that the crack density in the bond coat in the TBC specimen was significantly dependent on the test conditions. More importantly, not only the number of cracks but also the crack penetration probability into substrate were shown to be sensitive to the DBTT.

  20. Revisiting the effects of organic solvents on the thermal reduction of graphite oxide

    International Nuclear Information System (INIS)

    Barroso-Bujans, Fabienne; Fierro, José Luis G.; Alegría, Angel; Colmenero, Juan

    2011-01-01

    Highlights: ► Retention of organic solvent on graphite oxide interlayer space. ► Decreasing exfoliation temperature. ► Close link between structure and thermal behavior of solvent treated graphite oxide. ► Restacking inhibition of thermally reduced graphite oxide sheets. ► Changes in kinetic mechanisms of thermal reduction. - Abstract: Treatment of graphite oxide (GO) with organic solvents via sorption from either liquid or gas phase, and subsequent desorption, induces profound changes in the layered GO structure: loss of stacking order, retention of trace amounts of solvents and decreasing decomposition temperature. This study presents new evidences of the effect of organic solvents on the thermal reduction of GO by means of thermogravimetric analysis, X-ray diffraction and X-ray photoelectron spectroscopy. The results reveal a relative higher decrease of the oxygen amounts in solvent-treated GO as compared to untreated GO and the restacking inhibition of the thermally reduced GO sheets upon slow heating. The kinetic experiments evidence changes occurring in the reduction mechanisms of the solvent-treated GO, which support the close link between GO structure and thermal properties.

  1. Partial oxidation of methane in a temperature-controlled dielectric barrier discharge reactor

    KAUST Repository

    Zhang, Xuming; Cha, Min

    2015-01-01

    We studied the relative importance of the reduced field intensity and the background reaction temperature in the partial oxidation of methane in a temperature-controlled dielectric barrier discharge reactor. We obtained important mechanistic insight

  2. Comparison of radiation-induced and thermal oxidative aging of polyethylene in the presence of inhibitors

    International Nuclear Information System (INIS)

    Dalinkevich, A.A.; Piskarev, I.M.

    1996-01-01

    Thermal oxidative and radiation-induced oxidative aging of inhibited polyethylene of commercial brands with known properties was studied at 60, 80 and 140 deg C. Radiation-induced oxidative aging was carried out under X-ray radiation with E max = 25 keV at dose rates providing specimen oxidation in kinetic conditions. The value of activation energy of thermal oxidative destruction of inhibited polyethylene under natural conditions of its employment at 60-140 deg C (E a = 60 kJ/mol) was obtained by comparison of data for radiation-induced and thermal oxidative destruction

  3. Structural-morphological variations in pseudo-barrier films of anode aluminium oxide under irradiation with high-energy particles

    International Nuclear Information System (INIS)

    Chernykh, M.A.; Belov, V.T.

    1988-01-01

    Comparative study of structural-morphological variations under electron beam effect in pseudo-barrier films of anode aluminium oxide, obtained in seven different solutions and proton or X-rays pre-irradiated to determine structure peculiarities of anode aluminium oxides, is presented. Such study is a matter of interest from the solid-phase transformation theory point of view and for anode aluminium films application under radiation. Stability increase of pseudo-barrier films of anode aluminium oxide to the effect of UEhMV-100 K microscope electron beam at standard modes of operation (75 kV) due to proton or X-rays irradiation is found. Difference in structural-monorphological variations obtained in different solutions of anode aluminium films under high-energy particles irradiation is determined. Strucural-phase microinhomogeneity of amorphous pseudo-barrier films of anode aluminium oxide and its influence on solid-phase transformations character under electron bean of maximal intensity are detected

  4. Thickness and microstructure characterization of TGO in thermal barrier coatings by 3D reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xuemei; Meng, Fangli [The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, , Chinese Academy of Sciences, Shanghai 200050 (China); Kong, Mingguang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Yongzhe [The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, , Chinese Academy of Sciences, Shanghai 200050 (China); Huang, Liping; Zheng, Xuebin [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zeng, Yi, E-mail: zengyi@mail.sic.ac.cn [The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, , Chinese Academy of Sciences, Shanghai 200050 (China); CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050 (China)

    2016-10-15

    Yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBCs) are prepared by plasma spraying. Thermally grown oxide (TGO) would be formed between YSZ topcoat and bond coat after 50 h thermal service for YSZ TBCs. The electron back scattered diffraction (EBSD) results reveal that the TGO layer is composed of α-Al{sub 2}O{sub 3} and cubic Al{sub 2}NiO{sub 4} layers. Measured values of TGO thickness from the 2D-SEM image are greater than or equal to its real thickness due to the fact that the TGO layer is much rolling so that up and down surfaces of the TGO can't be completely perpendicular to the cross-section direction confirmed by 3D-SEM. Furthermore, 3D-SEM results reveal that the real thickness of TGO layer is 3.10 μm instead of 7.1 μm. In addition, 3D-EBSD confirmed that α-Al{sub 2}O{sub 3} layer in TGO is composed of single layer of grains and Al{sub 2}NiO{sub 4} layer consist of multilayer of grains while α-Al{sub 2}O{sub 3} layer is mixed with single layer and multilayer of α-Al{sub 2}O{sub 3} grains from observation of the 2D-EBSD image. It provides a new method to characterize real thickness and microstructure of TGO, which is also applied to other film materials. - Highlights: •This work provides a new method to measure the real thickness of TGO. •YSZ TBCs were prepared by plasma spraying. •TGO is formed in TBCs by simulating thermal service at 1100 °C for 50 h. •Real thickness and microstructure of TGO were investigated by 3D reconstruction.

  5. Synthesis and characterization of thermally oxidized ZnO films

    Indian Academy of Sciences (India)

    Administrator

    Synthesis and characterization of thermally oxidized ZnO films. A P RAMBU1,* and N IFTIMIE2 .... R. −. Δ. = = (1) where Ra is the sensor resistance in the air and Rg is the .... ple, Aida and coworkers (2006) reported that the total oxidation is ...

  6. Effects of Thermal Exposure on Structures of DD6 Single Crystal Superalloy with Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    DONG Jianmin

    2016-10-01

    Full Text Available In order to investigate the effect of water grit-blasting and high temperature thermal exposure on the microstructures of DD6 alloy with TBCs, DD6 single crystal superalloy specimens were water grit-blasted with 0.3 MPa pressure, then the specimens were coated with thermal barrier coatings by electron beam physical vapor deposition (EB-PVD. Specimens with TBCs were exposed at 1100℃ for 50 and 100 hours in the air respectively, and then these specimens were subjected to stress-rupture tests under the condition of 1100℃/130 MPa. The results show that grit-blasting doesn't lead into the recrystallization, thermal exposure can induce element interdiffusion between the bond coat and alloy substrate, the residual stress and element diffusion lead into the changes of γ' phase coarsing direction. After stress rupture tests, the secondary reaction zone emerges into a local area.

  7. Real-time oxide evolution of copper protected by graphene and boron nitride barriers

    DEFF Research Database (Denmark)

    Galbiati, Miriam; Stoot, Adam Carsten; Mackenzie, David

    2017-01-01

    and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real......-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.......Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion...

  8. Real-time oxide evolution of copper protected by graphene and boron nitride barriers.

    Science.gov (United States)

    Galbiati, M; Stoot, A C; Mackenzie, D M A; Bøggild, P; Camilli, L

    2017-01-09

    Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.

  9. Combined photovoltaic and solar-thermal systems: overcoming barriers to market acceptance

    International Nuclear Information System (INIS)

    Collins, M.R.

    2005-01-01

    Combined Photovoltaic and Solar-Thermal Systems (PV/T Systems) combine Photovoltaic (PV) and solar thermal technologies into one system with both electrical and thermal energy output. PV/T systems have several perceived advantages to stand-alone PV or solar-thermal systems. The increased efficiency and dual nature of the systems make suitable for situations where installation space is limited, and for homeowners who are forced to decide between meeting thermal or electrical needs. The financial benefit of the combined system is also significant, as the long payback of PV systems is joined with a relatively short payback of solar thermal systems. A background of PV/T was presented, with details of classifications and the International Energy Association's program to evaluate the technical status of PV/T systems and formulate a roadmap for future development. It was noted that input from the Solar Heating and Cooling Program (SHCP) is needed to help identify market barriers in PV/T systems. This paper reviewed existing and potential PV/T systems and their technical status, and reported on the methodology established by IEA group 35. The systems were grouped according to thermal collector types of unglazed water collectors, glazed water collectors, unglazed air collectors, glazed air collectors, air-flow windows, and concentrating collectors. It was noted that a number of new systems are currently being developed, including concentrating collectors with water and air heating, unglazed air heating systems, and unglazed water heating systems. It was noted that apart from technical barriers, efficient design and performance prediction are also problematic, as tools for predicting performance do not exist. The same tools will be used to optimize PV/T system designs. It was suggested that standardized reporting methods, simulation and sizing tools and demonstration products need to be created and that regional certification issues need to be identified. Environmental

  10. In situ SANS study of pore microstructure in YSZ thermal barrier coatings

    Czech Academy of Sciences Publication Activity Database

    Strunz, Pavel; Schumacher, G.; Vassen, R.; Wiedenmann, A.

    2004-01-01

    Roč. 52, č. 11 (2004), s. 3305-3312 ISSN 1359-6454 R&D Projects: GA ČR GA202/03/0891 Institutional research plan: CEZ:AV0Z1048901 Keywords : plasma spraying * thermal barrier coatings * ceramics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.490, year: 2004

  11. Improved the Surface Roughness of Silicon Nanophotonic Devices by Thermal Oxidation Method

    Energy Technology Data Exchange (ETDEWEB)

    Shi Zujun; Shao Shiqian; Wang Yi, E-mail: ywangwnlo@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, No. 1037, Luoyu Street, Wuhan 430074 (China)

    2011-02-01

    The transmission loss of the silicon-on-insulator (SOI) waveguide and the coupling loss of the SOI grating are determined to a large extent by the surface roughness. In order to obtain smaller loss, thermal oxidation is a good choice to reduce the surface roughness of the SOI waveguide and grating. Before the thermal oxidation, the root mean square of the surface roughness is over 11 nm. After the thermal oxidation, the SEM figure shows that the bottom of the grating is as smooth as quartz surface, while the AFM shows that the root mean square of the surface is less than 5 nm.

  12. Thermal neutron detectors based on complex oxide crystals

    CERN Document Server

    Ryzhikov, V; Volkov, V; Chernikov, V; Zelenskaya, O

    2002-01-01

    The ways of improvement of spectrometric quality of CWO and GSO crystals have been investigated with the aim of their application in thermal neutron detectors based on radiation capture reactions. The efficiency of the neutron detection by these crystals was measured, and the obtained data were compared with the results for sup 6 LiI(Tl) crystals. It is shown that the use of complex oxide crystals and neutron-absorption filters for spectrometry of thermal and resonance neutrons could be a promising method in combination with computer data processing. Numerical calculations are reported for spectra of gamma-quanta due to radiation capture of the neutrons. To compensate for the gamma-background lines, we used a crystal pair of heavy complex oxides with different sensitivity to neutrons.

  13. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt-Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy.

    Science.gov (United States)

    Flynn, Brendan T; Oleksak, Richard P; Thevuthasan, Suntharampillai; Herman, Gregory S

    2018-01-31

    A method to understand the role of interfacial chemistry on the modulation of Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. In situ X-ray photoelectron spectroscopy was used to characterize the interfacial chemistries that modulate barrier heights in this system. The primary changes were a significant chemical reduction of indium, from In 3+ to In 0 , that occurs during deposition of Pt on to the a-IGZO surface in ultrahigh vacuum. Postannealing and controlling the background ambient O 2 pressure allows further tuning of the reduction of indium and the corresponding Schottky barrier heights from 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metal-semiconductor field-effect transistors.

  14. Thermal sensor based zinc oxide diode for low temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Ocaya, R.O. [Department of Physics, University of the Free State (South Africa); Al-Ghamdi, Ahmed [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia); El-Tantawy, F. [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt); Center of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Farooq, W.A. [Department of Physics and Astronomy, College of Science, King Saud University, Riyadh (Saudi Arabia); Yakuphanoglu, F., E-mail: fyhan@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia); Department of Physics, Faculty of Science, Firat University, Elazig, 23169 (Turkey)

    2016-07-25

    The device parameters of Al/p-Si/Zn{sub 1-x}Al{sub x}O-NiO/Al Schottky diode for x = 0.005 were investigated over the 50 K–400 K temperature range using direct current–voltage (I–V) and impedance spectroscopy. The films were prepared using the sol–gel method followed by spin-coating on p-Si substrate. The ideality factor, barrier height, resistance and capacitance of the diode were found to depend on temperature. The calculated barrier height has a mean. Capacitance–voltage (C–V) measurements show that the capacitance decreases with increasing frequency, suggesting a continuous distribution of interface states over the surveyed 100 kHz to 1 MHz frequency range. The interface state densities, N{sub ss}, of the diode were calculated and found to peak as functions of bias and temperature in two temperature regions of 50 K–300 K and 300 K–400 K. A peak value of approximately 10{sup 12}/eV cm{sup 2} was observed around 0.7 V bias for 350 K and at 3 × 10{sup 12}/eVcm{sup 2} around 2.2 V bias for 300 K. The relaxation time was found to average 4.7 μs over all the temperatures, but showing its lowest value of 1.58 μs at 300 K. It is seen that the interface states of the diode is controlled by the temperature. This suggests that Al/p-Si/Zn1-xAlxO-NiO/Al diode can be used as a thermal sensors for low temperature applications. - Highlights: • Al/pSi/Zn1-xAlxO-NiO/Al Schottky diode was fabricated by sol gel method. • The interface state density of the diode is controlled by the temperature. • Zinc oxide based diode can be used as a thermal sensor for low temperature applications.

  15. Effect of thermal treatment conditions on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid

    International Nuclear Information System (INIS)

    Gorshkova, T.P.; Tarasova, D.V.; Olen'kova, I.P.; Andrushkevich, T.V.; Nikoro, T.A.

    1984-01-01

    The effect of thermal treatment conditions (temperature and gas medium) on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid is investigated. It is shown that active and selective catalysts are formed in the course of thermal decomposition of the drying product of ammonium metavanadate and paramolybdate under the conditions ensuring the vanadium ion reduction up to tetravalent state with conservation of molybdenum oxidation degree equal to 6. It is possible to realize it either by treatment of the catalyst calcinated in the air flow at 300 deg by the reaction mixture at the activation stage or by gas-reducer flow treatment at 280 deg. Thermal treatment in the reducing medium of the oxidized catalyst does not lead to complete regeneration of its properties

  16. Advanced Oxide Material Systems for 1650 Deg. C Thermal/Environmental Barrier Coating Applications

    National Research Council Canada - National Science Library

    Zhu, Dongming; Fox, Dennis S; Bansal, Narottam P; Miller, Robert A

    2004-01-01

    ... systems under engine high-heat-flux and severe thermal cycling conditions. In this report, the thermal conductivity and water vapor stability of selected candidate hafnia-, pyrochlore-, and magnetoplumbite-based TEBC materials are evaluated...

  17. Effects of thermal oxidation duration on the structural and electrical properties of Nd{sub 2}O{sub 3}/Si system

    Energy Technology Data Exchange (ETDEWEB)

    Hetherin, Karuppiah; Ramesh, S.; Wong, Yew Hoong [University of Malaya, Department of Mechanical Engineering, Faculty of Engineering, Kuala Lumpur (Malaysia)

    2017-08-15

    A study on the growth, structure and electrical properties of Nd{sub 2}O{sub 3} was carried out experimentally on RF sputtered thin film on Si followed by thermal oxidation at 700 C at different oxidation durations (5, 10, 15 and 20 min). The structural and chemical properties were studied by X-ray diffraction analysis, Fourier transform infrared analysis, Raman analysis and high resolution transmission electron microscopy analysis. The formation of cubic-Nd{sub 2}O{sub 3}, orthorhombic-Nd{sub 2}Si{sub 2}O{sub 7}, monoclinic-SiO{sub 2}, tetragonal-SiO{sub 2} and hexagonal-SiO{sub 2} was detected. A single interfacial layer was detected for the sample oxidized at 15 min and double interfacial layers were detected for the samples oxidized at 5, 10 and 20 min. The sample oxidized at 15 min possessed the best electrical properties which were attributed by the highest Nd{sub 2}O{sub 3} intensity, largest SiO{sub 2} crystallite structure, thinnest interfacial and oxide layer, highest barrier height, lowest effective oxide charges, slow trap density and average interface trap density. (orig.)

  18. Effect of thermal barrier coatings on the performance of steam and water-cooled gas turbine/steam turbine combined cycle system

    Science.gov (United States)

    Nainiger, J. J.

    1978-01-01

    An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

  19. Splenectomy attenuates severe thermal trauma-induced intestinal barrier breakdown in rats.

    Science.gov (United States)

    Liu, Xiang-dong; Chen, Zhen-yong; Yang, Peng; Huang, Wen-guang; Jiang, Chun-fang

    2015-12-01

    The severe local thermal trauma activates a number of systemic inflammatory mediators, such as TNF-α, NF-κB, resulting in a disruption of gut barrier. The gastrointestinal tight junction (TJ) is highly regulated by membrane-associated proteins including zonula occludens protein-1 (ZO-1) and occludin, which can be modulated by inflammatory cytokines. As splenectomy has been shown to reduce secretion of cytokines, we hypothesized that (1) severe scald injury up-regulates TNF-α and NF-κB, meanwhile down-regulates expression of ZO-1 and occludin, leading to the increased intestinal permeability, and (2) splenectomy can prevent the burn-induced decrease in ZO-1 and occludin expression, resulting in improved intestinal barrier. Wistar rats undergoing a 30% total body surface area (TBSA) thermal trauma were randomized to receive an accessorial splenectomy meanwhile or not. Intestinal injury was assessed by histological morphological analysis, and serum endotoxin levels, TNF-α, NF-κB, ZO-1 and occludin levels were detected by Western blotting in the terminal ileum mucosal tissue. 30% TBSA burn caused a significant increase in serum endotoxin levels, but NF-κB, and TNF-α, and the average intestinal villus height and mucosal thickness were decreased significantly. Burn injury could also markedly decrease the levels of ZO-1 and occludin in terminal ileum mucosal tissue (all PSplenectomy at 7th day after burn significantly reversed the burn-induced breakdown of ZO-1 and occludin (all PSplenectomy may provide a therapeutic benefit in restoring burn-induced intestinal barrier by decreasing the release of inflammatory cytokines and recovering TJ proteins.

  20. Insulating gallium oxide layer produced by thermal oxidation of gallium-polar GaN: Insulating gallium oxide layer produced by thermal oxidation of gallium-polar GaN

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, T. [Kansas State Univ., Manhattan, KS (United States); Wei, D. [Kansas State Univ., Manhattan, KS (United States); Nepal, N. [Naval Research Lab. (NRL), Washington, DC (United States); Garces, N. Y. [Naval Research Lab. (NRL), Washington, DC (United States); Hite, J. K. [Naval Research Lab. (NRL), Washington, DC (United States); Meyer, H. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eddy, C. R. [Naval Research Lab. (NRL), Washington, DC (United States); Baker, Troy [Nitride Solutions, Wichita, KS (United States); Mayo, Ashley [Nitride Solutions, Wichita, KS (United States); Schmitt, Jason [Nitride Solutions, Wichita, KS (United States); Edgar, J. H. [Kansas State Univ., Manhattan, KS (United States)

    2014-02-24

    We report the benefits of dry oxidation of n -GaN for the fabrication of metal-oxide-semiconductor structures. GaN thin films grown on sapphire by MOCVD were thermally oxidized for 30, 45 and 60 minutes in a pure oxygen atmosphere at 850 °C to produce thin, smooth GaOx layers. Moreover, the GaN sample oxidized for 30 minutes had the best properties. Its surface roughness (0.595 nm) as measured by atomic force microscopy (AFM) was the lowest. Capacitance-voltage measurements showed it had the best saturation in accumulation region and the sharpest transition from accumulation to depletion regions. Under gate voltage sweep, capacitance-voltage hysteresis was completely absent. The interface trap density was minimum (Dit = 2.75×1010 cm–2eV–1) for sample oxidized for 30 mins. These results demonstrate a high quality GaOx layer is beneficial for GaN MOSFETs.

  1. Hot electron formation in thermal barrier region of tandem mirror GAMMA 10

    International Nuclear Information System (INIS)

    Katanuma, I.; Kiwamoto, Y.; Sawada, K.; Miyoshi, S.

    1987-01-01

    We have studied the hot electron build-up by the second harmonic electron cyclotron resonance heating in the thermal barrier region of tandem mirror GAMMA 10 by using a Fokker-Planck code with self-consistent potential profile taken into account. We have found two phases in the evolution of hot electron population and the potential profile. In the first phase where the RF diffusion is dominant quick increase of the hot electron density and that of the mean energy are observed. No further increase in the mean energy is observed thereafter. The potential is the deepest during the first phase. The second phase starts in the mean-free-time of the pitch angle scattering of hot electrons on cold electrons and ions. In this phase the hot electron population increases in the rate of the pitch angle scattering. The potential dip shallows due to the accumulation of pitch angle scattered passing ions. This observation indicates the necessity of the ion pumping for maintaining the negative potential at the thermal barrier. (author)

  2. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.

    2015-01-01

    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  3. Effect of a two-dimensional potential on the rate of thermally induced escape over the potential barrier

    International Nuclear Information System (INIS)

    Han, S.; Lapointe, J.; Lukens, J.E.

    1992-01-01

    The thermally induced escape rate of a particle trapped in a two-dimensional (2D) potential well has been investigated through experiment and numerical simulations. The measurements were performed on a special type of superconducting quantum interference device (SQUID) which has 2 degrees of freedom. The energies associated with the motion perpendicular to (transverse) and along (longitudinal) the escape direction are quite different: the ratio between the transverse and longitudinal small oscillation frequencies is ω t /ω l ∼7. The SQUID's parameters, which were used to determine the potential shape and energy scales were all independently determined. All data were obtained under conditions for which the 2D thermal activation (TA) model is expected to be valid. The results were found in good agreement with the theoretical prediction. The measured thermal activation energy is found to be the same as the barrier height calculated from the independently determined potential parameters. No evidence of apparent potential barrier enhancement recently reported in a similar system was found. In addition, the results of our numerical simulations suggest that the region in which the 2D thermal activation model is applicable may be extended to barriers as low as ΔU∼k BT

  4. Conjugate heat transfer investigation on the cooling performance of air cooled turbine blade with thermal barrier coating

    Science.gov (United States)

    Ji, Yongbin; Ma, Chao; Ge, Bing; Zang, Shusheng

    2016-08-01

    A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera. Besides, conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison. The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant, and spatial difference is also discussed. Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest. The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path. Thermal barrier effects of the coating vary at different regions of the blade surface, where higher internal cooling performance exists, more effective the thermal barrier will be, which means the thermal protection effect of coatings is remarkable in these regions. At the designed mass flow ratio condition, the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface, while this value is 0.09 on the suction side.

  5. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    Czech Academy of Sciences Publication Activity Database

    Medřický, J.; Curry, N.; Pala, Zdeněk; Vilémová, Monika; Chráska, Tomáš; Johansson, J.; Markocsan, N.

    2015-01-01

    Roč. 24, č. 4 (2015), s. 622-628 ISSN 1059-9630 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : gas turbine s * high temperature application * porosity of coatings * stabilized zirconia * thermal barrier coatings (TBCs) Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.568, year: 2015

  6. Role of atomic layer deposited aluminum oxide as oxidation barrier for silicon based materials

    Energy Technology Data Exchange (ETDEWEB)

    Fiorentino, Giuseppe, E-mail: g.fiorentino@tudelft.nl; Morana, Bruno [Department of Microelectronic, Delft University of Technology, Feldmannweg 17, 2628 CT Delft (Netherlands); Forte, Salvatore [Department of Electronic, University of Naples Federico II, Piazzale Tecchio, 80125 Napoli (Italy); Sarro, Pasqualina Maria [Department of Microelectronic, Delft University of Technology, Feldmannweg 17, 2628 CT, Delft (Netherlands)

    2015-01-15

    In this paper, the authors study the protective effect against oxidation of a thin layer of atomic layer deposited (ALD) aluminum oxide (Al{sub 2}O{sub 3}). Nitrogen doped silicon carbide (poly-SiC:N) based microheaters coated with ALD Al{sub 2}O{sub 3} are used as test structure to investigate the barrier effect of the alumina layers to oxygen and water vapor at very high temperature (up to 1000 °C). Different device sets have been fabricated changing the doping levels, to evaluate possible interaction between the dopants and the alumina layer. The as-deposited alumina layer morphology has been evaluated by means of AFM analysis and compared to an annealed sample (8 h at 1000 °C) to estimate the change in the grain structure and the film density. The coated microheaters are subjected to very long oxidation time in dry and wet environment (up to 8 h at 900 and 1000 °C). By evaluating the electrical resistance variation between uncoated reference devices and the ALD coated devices, the oxide growth on the SiC is estimated. The results show that the ALD alumina coating completely prevents the oxidation of the SiC up to 900 °C in wet environment, while an oxide thickness reduction of 50% is observed at 1000 °C compared to uncoated devices.

  7. Reliability enhancement due to in-situ post-oxidation of sputtered MgO barrier in double MgO barrier magnetic tunnel junction

    Directory of Open Access Journals (Sweden)

    Chikako Yoshida

    2017-06-01

    Full Text Available We have investigated the effects of in-situ post-oxidation (PO of a sputtered MgO barrier in a double-MgO-barrier magnetic tunnel junction (MTJ and found that the short error rate was significantly reduced, the magnetoresistance (MR ratio was increased approximately 18%, and the endurance lifetime was extend. In addition, we found that the distribution of breakdown number (a measure of endurance exhibits trimodal characteristics, which indicates competition between extrinsic and intrinsic failures. This improvement in reliability might be related to the suppression of Fe and Co diffusion to the MgO barrier, as revealed by electron energy-loss spectroscopy (EELS analysis.

  8. Failure analysis of thermally cycled columnar thermal barrier coatings produced by high-velocity-air fuel and axial-suspension-plasma spraying: A design perspective

    Czech Academy of Sciences Publication Activity Database

    Ganvir, A.; Vaidhyanathan, V.; Markocsan, N.; Gupta, M.; Pala, Zdeněk; Lukáč, František

    2018-01-01

    Roč. 44, č. 3 (2018), s. 3161-3172 ISSN 0272-8842 Institutional support: RVO:61389021 Keywords : Columnar Thermal Barrier Coatings * Axial Suspension Plasma spraying * Thermal Cyclic Fatigue * High Velocity Air Fuel Spraying Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.986, year: 2016 https://www.sciencedirect.com/science/article/pii/S0272884217325403

  9. Thermal oxidative degradation behaviours of flame-retardant thermotropic liquid crystal copolyester/PET blends

    International Nuclear Information System (INIS)

    Du Xiaohua; Zhao Chengshou; Wang Yuzhong; Zhou Qian; Deng Yi; Qu Minghai; Yang Bing

    2006-01-01

    The flame retardancy and the thermal oxidative degradation behaviors of the blend of poly(ethylene terephthalate) (PET) with a kind of phosphorus-containing thermotropic liquid crystal copolyester (TLCP) with high flame retardancy (limited oxygen index, 70%) have been investigated by oxygen index test (LOI), UL-94 rating and thermogravimetric analysis (TGA) in air. The results show that TLCP can dramatically improve the flame retardancy and the melt dripping behavior of PET. Moreover, the apparent activation energies of thermal oxidative degradation of the blends were evaluated using Kissinger and Flynn-Wall-Ozawa methods. It is found that addition of TLCP improve thermal stability and restrain thermal decomposition of PET in air, especially at the primary degradation stage. Py-GC/MS analysis shows that there are remarkable changes in the pyrolysis products when TLCP are blended into PET. The interaction between TLCP and PET has changed their thermal oxidative degradation mechanism

  10. Composition Effects on Aluminide Oxidation Performance: Objectives for Improved Bond Coats

    International Nuclear Information System (INIS)

    Pint, BA

    2001-01-01

    Formerly, the role of metallic coatings on Ni-base superalloys was simply to limit environmental attack of the underlying substrate. However, a new paradigm has been established for metallic coatings adapted as bond coats for thermal barrier coatings. It is no longer sufficient for the coating to just minimize the corrosion rate. The metallic coating must also form a slow-growing external Al(sub 2)O(sub 3) layer beneath the overlying low thermal conductivity ceramic top coat. This thermally grown oxide or scale must have near-perfect adhesion in order to limit spallation of the top coat, thereby achieving a long coating lifetime. While oxidation is not the only concern in complex thermal barrier coating systems, it is, however, a primary factor in developing the next generation of bond coats. Therefore, a set of compositional guidelines for coatings is proposed in order to maximize oxidation performance. These criteria are based on test results of cast alloy compositions to quantify an d understand possible improvements as a basis for further investigations using coatings made by chemical vapor deposited (CVD). Experimental work includes furnace cycle testing and in-depth characterization of the alumina scale, including transmission electron microscopy (TEM)

  11. TMX tandem-mirror experiments and thermal-barrier theoretical studies

    International Nuclear Information System (INIS)

    Simonen, T.C.; Baldwin, D.E.; Allen, S.L.

    1982-01-01

    This paper describes recent analysis of energy confinement in the Tandem Mirror Experiment (TMX). TMX data also indicates that warm plasma limits the amplitude of the anisotropy driven Alfven ion cyclotron (AIC) mode. Theoretical calculations show strong AIC stabilization with off-normal beam injection as planned in TMX-U and MFTF-B. This paper reports results of theoretical analysis of hot electrons in thermal barriers including electron heating calculations by Monte Carlo and Fokker-Planck codes and analysis of hot electron MHD and microinstability. Initial results from the TMX-U experiment are presented which show the presence of sloshing ions

  12. Characteristics of ceramic oxide nanoparticles synthesized using radio frequency produced thermal plasma

    International Nuclear Information System (INIS)

    Dhamale, Gayatri D.; Mathe, V.L.; Bhoraskar, S.V.; Ghorui, S.

    2015-01-01

    Thermal plasma devices with their unique processing capabilities due to extremely high temperature and steep temperature gradient play an important role in synthesis of ultrafine powders in the range of 100nm or less. High temperature gas phase synthesis in Radio Frequency (RF) thermal plasma reactor is an attractive route for mass production of refractory nanoparticles, especially in the case of rare earth oxides. Here we report synthesis of Yttrium Oxide (Y_2O_3), Neodymium Oxide (Nd_2O_3) and Aluminum Oxide (Al_2O_3) in an inductively coupled radio frequency thermal plasma reactor. Synthesized nanoparticles find wide application in various fields like gate dielectrics, photocatalytic applications, laser devices and photonics. Nano sized Yttrium oxide, Neodymium Oxide and Aluminum oxide powders were separately synthesized in an RF plasma reactor starting with micron sized irregular shaped precursor powders. The system was operated at 3MHz in atmospheric pressure at different power levels. Synthesized powders were scrapped out from different deposition locations inside the reactor and characterized for their phase, morphology, particle size, crystallinity and other characteristic features. Highly crystalline nature of the synthesized particles, narrow size distribution, location dependent phase formation, and distinct variation in the inherent defect states compared to the bulk are some of the important characteristic features observed

  13. Thermomechanical and Environmental Durability of Environmental Barrier Coated Ceramic Matrix Composites Under Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan

    2016-01-01

    This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.

  14. ECRH [electron-cyclotron resonance heating]-heated distributions in thermal-barrier tandem mirrors

    International Nuclear Information System (INIS)

    Cohen, R.H.; LoDestro, L.L.

    1987-01-01

    The distribution function is calculated for electrons subjected to strong electron-cyclotron resonance heating (ECRH) at the plug and barrier in a tandem-mirror thermal-barrier cell. When ECRH diffusion locally dominates over collisions and a boundary condition (associated with electrons passing to the center cell) imposes variations on the distribution function rapid compared to the variation of the ECRH and collisional diffusion coefficients, the kinetic equation can be reduced approximately to Laplace's equation. For the typical case where velocity space is divided into distinct regions in which plug and barrier ECRH dominate, the solution in each region can be expressed in terms of the plasma dispersion function or exponential integrals, according to whether the passing electrons are dominated by collisions or ECRH, respectively. The analytic results agree well with Fokker-Planck code results, in terms of both velocity-space structure and values of moments. 10 refs., 4 figs

  15. Oxygen isotopic exchange occurring during dry thermal oxidation of 6H SiC

    Energy Technology Data Exchange (ETDEWEB)

    Vickridge, I.C. E-mail: vickridge@gps.jussieu.fr; Tromson, D.; Trimaille, I.; Ganem, J.-J.; Szilagyi, E.; Battistig, G

    2002-05-01

    SiC is a large band gap semiconductor, promising for high power and high frequency devices. The thermal oxide is SiO{sub 2} however the growth rates of thermal oxide on SiC are substantially slower than on Si, and different along the polar directions (<0 0 0 1-bar> and <0 0 0 1> in the hexagonal polytypes). Thorough understanding of the oxide growth mechanisms may give us new insights into the nature of the SiO{sub 2}/SiC interface, crucial for device applications. We have determined growth kinetics for ultra-dry thermal oxidation of 6H SiC at 1100 deg. C for pressures from 3 to 200 mbar. At 3 mbar, the lowest pressure studied, the oxide growth rates along the two polar directions are virtually the same. At higher pressures growth is faster on the carbon-terminated (0 0 0 1-bar) face. After consecutive oxidations at 1100 deg. C and 100 mbar in {sup 18}O{sub 2} and {sup 16}O{sub 2} gases, {sup 18}O depth profiles show significant isotopic exchange and oxygen movement within the oxide during oxidation.

  16. Thermal transport properties of polycrystalline tin-doped indium oxide films

    International Nuclear Information System (INIS)

    Ashida, Toru; Miyamura, Amica; Oka, Nobuto; Sato, Yasushi; Shigesato, Yuzo; Yagi, Takashi; Taketoshi, Naoyuki; Baba, Tetsuya

    2009-01-01

    Thermal diffusivity of polycrystalline tin-doped indium oxide (ITO) films with a thickness of 200 nm has been characterized quantitatively by subnanosecond laser pulse irradiation and thermoreflectance measurement. ITO films sandwiched by molybdenum (Mo) films were prepared on a fused silica substrate by dc magnetron sputtering using an oxide ceramic ITO target (90 wt %In 2 O 3 and 10 wt %SnO 2 ). The resistivity and carrier density of the ITO films ranged from 2.9x10 -4 to 3.2x10 -3 Ω cm and from 1.9x10 20 to 1.2x10 21 cm -3 , respectively. The thermal diffusivity of the ITO films was (1.5-2.2)x10 -6 m 2 /s, depending on the electrical conductivity. The thermal conductivity carried by free electrons was estimated using the Wiedemann-Franz law. The phonon contribution to the heat transfer in ITO films with various resistivities was found to be almost constant (λ ph =3.95 W/m K), which was about twice that for amorphous indium zinc oxide films

  17. Thermal imaging of solid oxide fuel cell anode processes

    Energy Technology Data Exchange (ETDEWEB)

    Pomfret, Michael B.; Kidwell, David A.; Owrutsky, Jeffrey C. [Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Steinhurst, Daniel A. [Nova Research Inc., Alexandria, VA 22308 (United States)

    2010-01-01

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H{sub 2} and carbon deposition lead to the fragment cooling by 5 {+-} 2 C and 16 {+-} 1 C, respectively. When air is flowed over the fragments, the temperature rises 24 {+-} 1 C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 {+-} 0.1 C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a {delta}T of +2.2 {+-} 0.2 C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial ({proportional_to}0.1 mm) and temperature ({proportional_to}0.1 C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs. (author)

  18. Thermal imaging of solid oxide fuel cell anode processes

    Science.gov (United States)

    Pomfret, Michael B.; Steinhurst, Daniel A.; Kidwell, David A.; Owrutsky, Jeffrey C.

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H 2 and carbon deposition lead to the fragment cooling by 5 ± 2 °C and 16 ± 1 °C, respectively. When air is flowed over the fragments, the temperature rises 24 ± 1 °C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 ± 0.1 °C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a Δ T of +2.2 ± 0.2 °C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial (∼0.1 mm) and temperature (∼0.1 °C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs.

  19. Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires

    International Nuclear Information System (INIS)

    Sun, Shibin; Chang, Xueting; Li, Zhenjiang

    2010-01-01

    Single-crystalline non-stoichiometric tungsten oxide nanowires were initially prepared using a simple solvothermal method. High resolution transmission electron microscopy (HRTEM) investigations indicate that the tungsten oxide nanowires exhibit various crystal defects, including stacking faults, dislocations, and vacancies. A possible defect-induced mechanism was proposed to account for the temperature-dependent morphological evolution of the tungsten oxide nanowires under thermal processing. Due to the high specific surface areas and non-stoichiometric crystal structure, the original tungsten oxide nanowires were highly sensitive to ppm level ethanol at room temperature. Thermal treatment under dry air condition was found to deteriorate the selectivity of room-temperature tungsten oxide sensors, and 400 o C may be considered as the top temperature limit in sensor applications for the solvothermally-prepared nanowires. The photoluminescence (PL) characteristics of tungsten oxide nanowires were also strongly influenced by thermal treatment.

  20. Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shibin [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong (China); Chang, Xueting [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, Shandong (China); Li, Zhenjiang, E-mail: zjli126@126.com [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong (China)

    2010-09-15

    Single-crystalline non-stoichiometric tungsten oxide nanowires were initially prepared using a simple solvothermal method. High resolution transmission electron microscopy (HRTEM) investigations indicate that the tungsten oxide nanowires exhibit various crystal defects, including stacking faults, dislocations, and vacancies. A possible defect-induced mechanism was proposed to account for the temperature-dependent morphological evolution of the tungsten oxide nanowires under thermal processing. Due to the high specific surface areas and non-stoichiometric crystal structure, the original tungsten oxide nanowires were highly sensitive to ppm level ethanol at room temperature. Thermal treatment under dry air condition was found to deteriorate the selectivity of room-temperature tungsten oxide sensors, and 400 {sup o}C may be considered as the top temperature limit in sensor applications for the solvothermally-prepared nanowires. The photoluminescence (PL) characteristics of tungsten oxide nanowires were also strongly influenced by thermal treatment.

  1. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide.

    Science.gov (United States)

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-12-18

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants.

  2. Polymer-Derived Ceramics as Innovative Oxidation Barrier Coatings for Mo-Si-B Alloys

    Science.gov (United States)

    Hasemann, Georg; Baumann, Torben; Dieck, Sebastian; Rannabauer, Stefan; Krüger, Manja

    2015-04-01

    A preceramic polymer precursor, perhydropolysilazane, is used to investigate its function as a new type of oxidation barrier coating on Mo-Si-B alloys. After dip-coating and pyrolysis at 1073 K (800 °C), dense and well-adhering SiON ceramic coatings could be achieved, which were investigated by SEM and cyclic oxidation tests at 1073 K and 1373 K (800 °C and 1100 °C). The coating is promising in reducing the mass loss during the initial stage of oxidation exposure at 1373 K (1100 °C) significantly.

  3. A modelling approach to designing microstructures in thermal barrier coatings

    International Nuclear Information System (INIS)

    Gupta, M.; Nylen, P.; Wigren, J.

    2013-01-01

    Thermomechanical properties of Thermal Barrier Coatings (TBCs) are strongly influenced by coating defects, such as delaminations and pores, thus making it essential to have a fundamental understanding of microstructure-property relationships in TBCs to produce a desired coating. Object-Oriented Finite element analysis (OOF) has been shown previously as an effective tool for evaluating thermal and mechanical material behaviour, as this method is capable of incorporating the inherent material microstructure as input to the model. In this work, OOF was used to predict the thermal conductivity and effective Young's modulus of TBC topcoats. A Design of Experiments (DoE) was conducted by varying selected parameters for spraying Yttria-Stabilised Zirconia (YSZ) topcoat. The microstructure was assessed with SEM, and image analysis was used to characterize the porosity content. The relationships between microstructural features and properties predicted by modelling are discussed. The microstructural features having the most beneficial effect on properties were sprayed with a different spray gun so as to verify the results obtained from modelling. Characterisation of the coatings included microstructure evaluation, thermal conductivity and lifetime measurements. The modelling approach in combination with experiments undertaken in this study was shown to be an effective way to achieve coatings with optimised thermo-mechanical properties.

  4. Oxidative reduction of glove box wipers with a downdraft thermal oxidation system

    International Nuclear Information System (INIS)

    Phelps, M.R.; Wilcox, W.A.

    1996-04-01

    Wipers (rags) used for decontamination and glove box cleanup in the Plutonium Finishing Plant often become soaked with acid and plutonium-rich solutions. After use, these wipers are rinsed in a dilute NaOH solution and dried, but the formation of unstable nitrates and the hydrogen gas caused by hydrolysis are concerns that still must be addressed. This report gives the results of testing with a small downdraft thermal oxidation system that was constructed by Pacific Northwest National Laboratory to stabilize glove wiper waste, reduce the waste volume, and reclaim plutonium. Proof-of-principle testing was conducted with eight runs using various combinations of rag moisture and chemical pretreatment. All runs went to planned completion. Results of these tests indicate that the thermal oxidation system has the potential for providing significant reductions in waste volume. Weight reductions of 150:1 were easily obtainable during this project. Modifications could result in weight reductions of over 200:1, with possible volume reductions of 500:1

  5. Effect of thermal annealing of lead oxide film

    International Nuclear Information System (INIS)

    Hwang, Oh Hyeon; Kim, Sang Su; Suh, Jong Hee; Cho, Shin Hang; Kim, Ki Hyun; Hong, Jin Ki; Kim, Sun Ung

    2011-01-01

    Oxygen partial pressure in a growth process of lead oxide determines chemical and physical properties as well as crystalline structure. In order to supply oxygen, two ring-shape suppliers have been installed in a growth chamber. Films have been deposited using vacuum thermal evaporation from a raw material of yellow lead oxide powder (5N). Growth rate is controlled to be about 400 A/s, and film thickness more than 50 μm has been achieved. After deposition, the film is annealed at various temperatures under an oxygen atmosphere. In this study, an optimum growth condition for a good X-ray detector has been achieved by fine control of oxygen flow-rate and by thermal treatment. An electrical resistivity of 4.5x10 12 Ω cm is measured, and is comparable with the best data of PbO.

  6. Surface and sub-surface thermal oxidation of thin ruthenium films

    Energy Technology Data Exchange (ETDEWEB)

    Coloma Ribera, R.; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Kokke, S.; Zoethout, E. [FOM Dutch Institute for Fundamental Energy Research (DIFFER), P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-09-29

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  7. Modelling of thermal behaviour of iron oxide layers on boiler tubes

    Science.gov (United States)

    Angelo, J. D.; Bennecer, A.; Kaczmarczyk, S.; Picton, P.

    2016-05-01

    Slender boiler tubes are subject to localised swelling when they are expose to excessive heat. The latter is due to the formation of an oxide layer, which acts as an insulation barrier. This excessive heat can lead to microstructural changes in the material that would reduce the mechanical strength and would eventually lead to critical and catastrophic failure. Detecting such creep damage remains a formidable challenge for boiler operators. It involves a costly process of shutting down the plant, performing electromagnetic and ultrasonic non-destructive inspection, repairing or replacing damaged tubes and finally restarting the plant to resume its service. This research explores through a model developed using a finite element computer simulation platform the thermal behaviour of slender tubes under constant temperature exceeding 723 °K. Our simulation results demonstrate that hematite layers up to 15 μm thickness inside the tubes do not act as insulation. They clearly show the process of long term overheating on the outside of boiler tubes which in turn leads to initiation of flaws.

  8. Evolution of thermal stress and failure probability during reduction and re-oxidation of solid oxide fuel cell

    Science.gov (United States)

    Wang, Yu; Jiang, Wenchun; Luo, Yun; Zhang, Yucai; Tu, Shan-Tung

    2017-12-01

    The reduction and re-oxidation of anode have significant effects on the integrity of the solid oxide fuel cell (SOFC) sealed by the glass-ceramic (GC). The mechanical failure is mainly controlled by the stress distribution. Therefore, a three dimensional model of SOFC is established to investigate the stress evolution during the reduction and re-oxidation by finite element method (FEM) in this paper, and the failure probability is calculated using the Weibull method. The results demonstrate that the reduction of anode can decrease the thermal stresses and reduce the failure probability due to the volumetric contraction and porosity increasing. The re-oxidation can result in a remarkable increase of the thermal stresses, and the failure probabilities of anode, cathode, electrolyte and GC all increase to 1, which is mainly due to the large linear strain rather than the porosity decreasing. The cathode and electrolyte fail as soon as the linear strains are about 0.03% and 0.07%. Therefore, the re-oxidation should be controlled to ensure the integrity, and a lower re-oxidation temperature can decrease the stress and failure probability.

  9. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

    Science.gov (United States)

    Darthout, Émilien; Gitzhofer, François

    2017-12-01

    Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

  10. Surface and sub-surface thermal oxidation of thin ruthenium films

    NARCIS (Netherlands)

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Kokke, S.; Zoethout, E.; Yakshin, Andrey; Bijkerk, Frederik

    2014-01-01

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low

  11. Thermally Evaporated Iron (Oxide) on an Alumina Barrier Layer, by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Madaan, Nitesh; Kanyal, Supriya S.; Jensen, David S.; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-06

    We report the XPS characterization of a thermally evaporated iron thin film (6 nm) deposited on an Si/SiO_2/Al_2O_3 substrate using Al Ka X-rays. An XPS survey spectrum, narrow Fe 2p scan, narrow O 1s, and valence band scan are shown.

  12. Moisture-Induced Delamination Video of an Oxidized Thermal Barrier Coating

    Science.gov (United States)

    Smialek, James L.; Zhu, Dongming; Cuy, Michael D.

    2008-01-01

    PVD TBC coatings were thermally cycled to near-failure at 1150 C. Normal failure occurred after 200 to 300 1-hr cycles with only moderate weight gains (0.5 mg/sq cm). Delamination and buckling was often delayed until well after cooldown (desktop spallation), but could be instantly induced by the application of water drops, as shown in a video clip which can be viewed by clicking on figure 2 of this report. Moisture therefore plays a primary role in delayed desktop TBC failure. Hydrogen embrittlement is proposed as the underlying mechanism.

  13. Efficiency enhancement of CIGS compound solar cell fabricated using homomorphic thin Cr{sub 2}O{sub 3} diffusion barrier formed on stainless steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Jae-Kwan; Lee, Seung-Kyu; Kim, Jin-Soo; Jeong, Kwang-Un; Ahn, Haeng-Keun; Lee, Cheul-Ro, E-mail: crlee7@jbnu.ac.kr

    2016-12-15

    Highlights: • A chromium oxide layer is formed as diffusion barrier by thermal oxidation process on STS substrate. • A Cr{sub 2}O{sub 3} layer effectively reduces impurities diffusion into the CIGS absorber layer. • The Cr{sub 2}O{sub 3} layer plays an important role in increasing the efficiency by reduction of impurity diffusion. - Abstract: It is known that the efficiency of flexible Cu(In,Ga)Se{sub 2} (CIGS) solar cells fabricated on stainless-steel (STS) substrates deteriorates due to iron (Fe) and Cr impurities diffusing into the CIGS absorber layer. To overcome this problem, a nanoscale homomorphic chromium oxide layer was formed as a diffusion barrier by thermal oxidation on the surface of STS substrates for 1 min at 600 °C in oxygen atmosphere. By TEM and grazing-incidence X-ray diffraction (GIXRD), it was confirmed that the formed oxide layer on surface of STS substrates was a Cr{sub 2}O{sub 3} layer. It was found that the formed homomorphic Cr{sub 2}O{sub 3} thin layer of about 15 nm thickness was an effective diffusion barrier to reduce impurity diffusion into the CIGS layer by secondary ion mass spectroscopy (SIMS). In contrast to the efficiency of CIGS solar cell without homomorphic Cr{sub 2}O{sub 3} diffusion layer is 8.6%, whereas with diffusion barrier it increases to 10.6% because of impurities such as Fe and Cr from the STS substrate into the CIGS layer. It reveals that the layer formed on the surface of STS substrate by thermal oxidation process plays an important role in increasing the performance of CIGS solar cells.

  14. Thermal gradient effects on the oxidation of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Klein, A.C.; Reyes, J.N. Jr.; Maguire, M.A.

    1990-01-01

    A Thermal Gradient Test Facility (TGTF) has been designed and constructed to measure the thermal gradient effect on pressurized water reactor (PWR) fuel rod cladding. The TGTF includes a heat flux simulator assembly capable of producing a wide range of PWR operating conditions including water flow velocities and temperatures, water chemistry conditions, cladding temperatures, and heat fluxes ranging to 160 W/cm 2 . It is fully instrumented including a large number of thermocouples both inside the water flow channel and inside the cladding. Two test programs are in progress. First, cladding specimens are pre-oxidized in air at 500 deg. C and in 400 deg. C steam for various lengths of time to develop a range of uniform oxide thicknesses from 1 to 60 micrometers. The pre-oxidized specimens are placed in the TGTF to characterize the oxide thermal conductivity under a variety of water flow and heat flux conditions. Second, to overcome the long exposure times required under typical PWR conditions a series of tests with the addition of high concentrations of lithium hydroxide to the water are being considered. Static autoclave tests have been conducted with lithium hydroxide concentrations ranging from 0 to 2 moles per liter at 300, 330, and 360 deg. C for up to 36 hours. Results for zircaloy-4 show a considerable increase in the weight gain for the exposed samples with oxidation rate enhancement factors as high as 70 times that of pure water. Operation of the TGTF with elevated lithium hydroxide levels will yield real-time information concerning the effects of a heat flux on the oxidation kinetics of zircaloy fuel rod cladding. (author). 5 refs, 5 figs, 2 tabs

  15. Thermal barrier coatings: Coating methods, performance, and heat engine applications. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The bibliography contains citations concerning conference proceedings on coating methods, performance evaluations, and applications of thermal barrier coatings as protective coatings for heat engine components against high temperature corrosions and chemical erosions. The developments of thermal barrier coating techniques for high performance and reliable gas turbines, diesel engines, jet engines, and internal combustion engines are presented. Topics include plasma sprayed coating methods, yttria stabilized zirconia coatings, coating life models, coating failure and durability, thermal shock and cycling, and acoustic emission analysis of coatings. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  16. Thermal barrier coatings: Coating methods, performance, and heat engine applications. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The bibliography contains citations concerning conference proceedings on coating methods, performance evaluations, and applications of thermal barrier coatings as protective coatings for heat engine components against high temperature corrosions and chemical erosions. The developments of thermal barrier coating techniques for high performance and reliable gas turbines, diesel engines, jet engines, and internal combustion engines are presented. Topics include plasma sprayed coating methods, yttria stabilized zirconia coatings, coating life models, coating failure and durability, thermal shock and cycling, and acoustic emission analysis of coatings. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Packaging material and flexible medical tubing containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A packaging material or flexible medical tubing containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  18. Spectral Modeling of Residual Stress and Stored Elastic Strain Energy in Thermal Barrier Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Donegan, Sean; Rolett, Anthony

    2013-12-31

    Solutions to the thermoelastic problem are important for characterizing the response under temperature change of refractory systems. This work extends a spectral fast Fourier transform (FFT) technique to analyze the thermoelastic behavior of thermal barrier coatings (TBCs), with the intent of probing the local origins of failure in TBCs. The thermoelastic FFT (teFFT) approach allows for the characterization of local thermal residual stress and strain fields, which constitute the origins of failure in TBC systems. A technique based on statistical extreme value theory known as peaks-over-threshold (POT) is developed to quantify the extreme values ("hot spots") of stored elastic strain energy (i.e., elastic energy density, or EED). The resolution dependence of the teFFT method is assessed through a sensitivity study of the extreme values in EED. The sensitivity study is performed both for the local (point-by-point) eld distributions as well as the grain scale eld distributions. A convergence behavior to a particular distribution shape is demonstrated for the local elds. The grain scale fields are shown to exhibit a possible convergence to a maximum level of EED. To apply the teFFT method to TBC systems, 3D synthetic microstructures are created to approximate actual TBC microstructures. The morphology of the grains in each constituent layer as well as the texture is controlled. A variety of TBC materials, including industry standard materials and potential future materials, are analyzed using the teFFT. The resulting hot spots are quantified using the POT approach. A correlation between hot spots in EED and interface rumpling between constituent layers is demonstrated, particularly for the interface between the bond coat (BC) and the thermally grown oxide (TGO) layer.

  19. Dispersion of SiC nanoparticles in cellulose for study of tensile, thermal and oxygen barrier properties.

    Science.gov (United States)

    Kisku, Sudhir K; Dash, Satyabrata; Swain, Sarat K

    2014-01-01

    Cellulose/silicon carbide (cellulose/SiC) nanobiocomposites were prepared by solution technique. The interaction of SiC nanoparticles with cellulose were confirmed by Fourier transformed infrared (FTIR) spectroscopy. The structure of cellulose/SiC nanobiocomposites was investigated by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The tensile properties of the nanobiocomposites were improved as compared with virgin cellulose. Thermal stabilities of cellulose/SiC nanobiocomposites were studied by thermogravimetric analysis (TGA). The cellulose/SiC nanobiocomposites were thermally more stable than the raw cellulose. It may be due to the delamination of SiC with cellulose matrix. The oxygen barrier properties of cellulose composites were measured using gas permeameter. A substantial reduction in oxygen permeability was obtained with increase in silicon carbide concentrations. The thermally resistant and oxygen barrier properties of the prepared nanobiocomposites may enable the materials for the packaging applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Yttria-stabilized zirkonia / gadolinium zirconate double-layer plasma-sprayed thermal barrier coating systems (TBCs)

    International Nuclear Information System (INIS)

    Bakan, Emine

    2015-01-01

    Thermal barrier coating (TBC) research and development is driven by the desirability of further increasing the maximum inlet temperature in a gas turbine engine. A number of new top coat ceramic materials have been proposed during the last decades due to limited temperature capability (1200 C) of the state-of-the-art yttria-stabilized zirconia (7 wt. % Y 2 O 3 -ZrO 2 , YSZ) at long term operation. Zirconate pyrochlores of the large lanthanides((Gd → La) 2 Zr 2 O 7 ) have been particularly attractive due to their higher temperature phase stability than that of the YSZ. Nonetheless, the issues related with the implementation of pyrochlores such as low fracture toughness and formation of deleterious interphases with thermally grown oxide (TGO, Al 2 O 3 ) were reported. The implication was the requirement of an interlayer between the pyrochlores and TGO, which introduced double-layer systems to the TBC literature. Furthermore, processability issues of pyrochlores associated with the different evaporation rates of lanthanide oxides and zirconia resulting in unfavorable composition variations in the coatings were addressed in different studies. After all, although the material properties are available, there is a paucity of data in the literature concerning the properties of the coatings made of pyrochlores. From the processability point of view the most reported pyrochlore is La 2 Zr 2 O 7 . Hence, the goal of this research was to investigate plasma-sprayed Gd 2 Zr 2 O 7 (GZO) coatings and YSZ/GZO double-layer TBC systems. Three main topics were examined based on processing, performance and properties: (i) the plasma spray processing of the GZO and its impact on the microstructural and compositional properties of the GZO coatings; (ii) the cycling lifetime of the YSZ/GZO double-layer systems under thermal gradient at a surface temperature of 1400 C; (iii) the properties of the GZO and YSZ coatings such as thermal conductivity, coefficient of thermal expansion as well

  1. In Situ Study of Thermal Stability of Copper Oxide Nanowires at Anaerobic Environment

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2014-01-01

    Full Text Available Many metal oxides with promising electrochemical properties were developed recently. Before those metal oxides realize the use as an anode in lithium ion batteries, their thermal stability at anaerobic environment inside batteries should be clearly understood for safety. In this study, copper oxide nanowires were investigated as an example. Several kinds of in situ experiment methods including in situ optical microscopy, in situ Raman spectrum, and in situ transmission electron microscopy were adopted to fully investigate their thermal stability at anaerobic environment. Copper oxide nanowires begin to transform as copper(I oxide at about 250°C and finish at about 400°C. The phase transformation proceeds with a homogeneous nucleation.

  2. Consumption of thermally oxidized palm oil diets alters biochemical indices in rats

    Directory of Open Access Journals (Sweden)

    Ayodeji Osmund Falade

    2015-06-01

    Full Text Available Palm oil is thermally oxidized to increase its palatability and this has been a usual practice in most homes. This study sought to assess the biochemical responses of rats to thermally oxidized palm oil diets. Therefore, Wistar strain albino rats (Rattus norveigicus were fed with fresh palm oil (control and thermally oxidized palm oil (test groups diets and water ad libitum for 30 days. Then, the malondialdehyde (MDA contents and total protein of the plasma and liver were determined. Subsequently, the plasma liver function markers [alanine transaminase (ALT, aspartate transaminase (AST, alkaline phosphatase (ALP, albumin (ALB and total bilirubin (TBIL ] and the lipid profile [triglyceride (TRIG, total cholesterol (T-CHOL, high density lipoprotein (HDL-CHOL and low density lipoprotein (LDL-CHOL ] were assayed. The results of the study revealed that there was a significant decrease (P < 0.05 in the plasma and liver total protein, ALB, TRIG and HDL-CHOL of the test groups when compared with the control. Conversely, there was a significant increase (P < 0.05 in the activities of ALT, AST and ALP, TBIL, T-CHOL, LDL-CHOL and plasma/liver MDA of the test groups when compared with the control. These effects were most pronounced in rats fed with 20 min-thermally oxidized palm oil diet. Hence, consumption of thermally oxidized palm oil diets had deleterious effects on biochemical indices in rats. Therefore, cooking with and/or consumption of palm oil subjected to heat treatment for several long periods of time should be discouraged in our homes as this might have deleterious effects on human health.

  3. Flexibility of MFTF-B for thermal-barrier modifications and axisymmetric upgrades

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1981-01-01

    Flexibility in MFTB-B will be achieved partly by using the margins in particle and energy control designed into the machine and partly by making modest changes based on results obtained in TMX Upgrade. This latter flexibility is permitted by the schedule for vessel construction and component fabrication. The changes we might expect were determined by an examination of the processes involved in creating a thermal barrier and by speculating on the range of outcomes from TMX Upgrade experiments

  4. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties.

    Science.gov (United States)

    Soni, Bhawna; Hassan, El Barbary; Schilling, M Wes; Mahmoud, Barakat

    2016-10-20

    The development of biobased active films for use in food packaging is increasing due to low cost, environmental appeal, renewability and availability. The objective of this research was to develop an effective and complete green approach for the production of bionanocomposite films with enhanced mechanical and barrier properties. This was accomplished by incorporating TEMPO-oxidized cellulose nanofibers (2,2,6,6-tetramethylpiperidine-1-oxyl radical) into a chitosan matrix. An aqueous suspension of chitosan (100-75wt%), sorbitol (25wt%) and TEMPO-oxidized cellulose nanofibers (TEMPO-CNFs, 0-25wt%) were cast in an oven at 40°C for 2-4days. Films were preconditioned at 25°C and 50% RH for characterization. The surface morphology of the films was revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The thermal properties and crystal structure of the films were evaluated by thermogravimetric analysis (TGA-DTG) and X-ray diffraction (XRD). Incorporation of TEMPO-CNFs enhanced the mechanical strength of the films due to the high aspect ratio (3-20nm width, and 10-100nm length) of TEMPO-CNFs and strong interactions with the chitosan matrix. Oxygen and water vapor transmission rates for films that are prepared with chitosan and TEMPO-CNFs (15-25wt%) were significantly reduced. Furthermore, these bionanocomposite films had good thermal stability. Use of TEMPO-CNFs in this method makes it possible to produce bionanocomposite films that are flexible, transparent, and thus have potential in food packaging applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Thermal oxidation of Zr–Cu–Al–Ni amorphous metal thin films

    International Nuclear Information System (INIS)

    Oleksak, R.P.; Hostetler, E.B.; Flynn, B.T.; McGlone, J.M.; Landau, N.P.; Wager, J.F.; Stickle, W.F.; Herman, G.S.

    2015-01-01

    The initial stages of thermal oxidation for Zr–Cu–Al–Ni amorphous metal thin films were investigated using X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The as-deposited films had oxygen incorporated during sputter deposition, which helped to stabilize the amorphous phase. After annealing in air at 300 °C for short times (5 min) this oxygen was found to segregate to the surface or buried interface. Annealing at 300 °C for longer times leads to significant composition variation in both vertical and lateral directions, and formation of a surface oxide layer that consists primarily of Zr and Al oxides. Surface oxide formation was initially limited by back-diffusion of Cu and Ni ( 30 min). The oxidation properties are largely consistent with previous observations of Zr–Cu–Al–Ni metallic glasses, however some discrepancies were observed which could be explained by the unique sample geometry of the amorphous metal thin films. - Highlights: • Thermal oxidation of amorphous Zr–Cu–Al–Ni thin films was investigated. • Significant short-range inhomogeneities were observed in the amorphous films. • An accumulation of Cu and Ni occurs at the oxide/metal interface. • Diffusion of Zr was found to limit oxide film growth.

  6. Effect of thermal barrier coating with various blends of pumpkin seed oil methyl ester in DI diesel engine

    Science.gov (United States)

    Karthickeyan, V.; Balamurugan, P.

    2017-10-01

    The rise in oil prices, dependency on fossil fuels, degradation of non-renewable energy resources and global warming strives to find a low-carbon content alternative fuel to the conventional fuel. In the present work, Partially Stabilized Zirconia (PSZ) was used as a thermal barrier coating in piston head, cylinder head and intake and exhaust valves using plasma spray technique, which provided a rise in combustion chamber temperature. With the present study, the effects of thermal barrier coating on the blends of Pumpkin Seed Oil Methyl Ester (PSOME) were observed in both the coated and uncoated engine. Performance and emission characteristics of the PSOME in coated and uncoated engines were observed and compared. Increased thermal efficiency and reduced fuel consumption were observed for B25 and diesel in coated and uncoated engine. On comparing with the other biodiesel samples, B25 exhibited lower HC, NOx and smoke emissions in thermally coated engine than uncoated engine. After 100 h of operation, no anamolies were found in the thermally coated components except minor cracks were identified in the edges of the piston head.

  7. Examination of several pre-oxidation procedures and their effect as hydrogen permeation-barrier

    International Nuclear Information System (INIS)

    Heimes, E.

    1986-03-01

    Several pre-oxidation procedures have been tested with respect to their effect as a hydrogen permeation barrier at the high temperature alloys Hastelloy X and Inconel 617. By outside coating of Hastelloy X samples with alumina the determined impeding effects were very low. A surface aluminium enrichment by different procedures were accomplished before selective oxidation. The method of Aluminium-Hot-Dipping generated oxide layers with a four- to fivefold higher impeding effect compared to specimens fabricated by a standard procedure. With the aid of a metallographical follow-up examination it was shown that the higher impeding effects are due to an improved adhesion between the oxide layer and the high temperature material, whereby in the cooling period after manufacturing a smaller amount of oxide cracking is obtainable. (orig./PW) [de

  8. Design of durability and lifetime assessment method under thermomechanical stress for thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyun Gyoo; Choi, Young Kue; Jeon, Seol; Lee, Hee Soo [Pusan National University, Busan (Korea, Republic of); Jeon, Min Seok [Korea Testing Laboratory, Seoul (Korea, Republic of)

    2014-01-15

    A durability testing method under thermo-mechanical stress for thermal barrier coatings (TBC) specimens was designed by a combination of an electric furnace and a tensile testing machine, which was done on TBCs on NIMONIC 263 substrates by an atmospheric plasma spraying (APS) deposition method. The testing conditions were chosen according to a preliminary experiment that identified the elastic deformation region of the top coating and the substrate during mechanical loading. Surface cracking and a decrease in the thickness of the top coating, which are typical degradation behaviors under conventional thermal shock testing, were observed after the designed thermal fatigue test, and delamination at the top coating-bond coating interface occurred by the mechanical load. Lifetime assessment was conducted by statistical software using life cycle data which were obtained after the thermal fatigue test.

  9. Evaluation of a Degradation of Thermal Barrier Coating for Gas Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Jin; Lee, Dong Hoon; Koo, Jae Mean; Seok, Chang Sung [Sungkyunkwan Univ., Seoul (Korea, Republic of); Kim, Mun Young; Yang, Sung Ho; Park, Sang Yoel [Korea Power Engineering Company, Inc., Yongin (Korea, Republic of)

    2007-07-01

    Thermal barrier coating system for gas turbine blade were thermally aged by isothermal heating in the furnace varing aging time and temperature. Then, micro Vickers hardness test was done for the cross section of bond coat and Ni-based superalloy substrate. Also, the thickness of TGO was measured by image analyzer and the changes in the microstructure and element distributions in the coating were analyzed by optical microscope and SEM-EDX analysis. No significant changes in the Vickers hardness of the bond coat were observed as the coated specimen was aged at high temperature and delaminations near between top coat and bond coat occurred when the coatings were aged for 50 hr at over 1,151 .deg. C.

  10. Effects of Water Molecule on CO Oxidation by OH: Reaction Pathways, Kinetic Barriers, and Rate Constants.

    Science.gov (United States)

    Zhang, Linyao; Yang, Li; Zhao, Yijun; Zhang, Jiaxu; Feng, Dongdong; Sun, Shaozeng

    2017-07-06

    The water dilute oxy-fuel combustion is a clean combustion technology for near-zero emission power; and the presence of water molecule could have both kinetic and dynamic effects on combustion reactions. The reaction OH + CO → CO 2 + H, one of the most important elementary reactions, has been investigated by extensive electronic structure calculations. And the effects of a single water molecule on CO oxidation have been studied by considering the preformed OH(H 2 O) complex reacts with CO. The results show little change in the reaction pathways, but the additional water molecule actually increases the vibrationally adiabatic energy barriers (V a G ). Further thermal rate constant calculations in the temperature range of 200 to 2000 K demonstrate that the total low-pressure limit rate constant for the water assisted OH(H 2 O) + CO → CO 2 + H 2 O + H reaction is 1-2 orders lower than that of the water unassisted one, which is consistent with the change of V a G . Therefore, the hydrated radical OH(H 2 O) would actually slow down the oxidation of CO. Meanwhile, comparisons show that the M06-2X/aug-cc-pVDZ method gives a much better estimation in energy and thus is recommended to be employed for direct dynamics simulations.

  11. Sintering and microstructure evolution in columnar thermal barrier coatings

    International Nuclear Information System (INIS)

    Krishnamurthy, Ramanathan; Srolovitz, David J.

    2009-01-01

    Sintering of thermal barrier coatings changes their key properties, such as thermal conductivity and thermal shock resistance, thus adversely impacting their reliability. We present a novel modeling approach to study the evolution of coating structure during sintering. We model the sintering of individual columns using a thermodynamic principle, and incorporate the center-to-center approach rates for the columns calculated using this principle in a larger scale discrete dynamics model for the evolution of a large number of columns. Surface energies, grain boundary energies and strain energies associated with the deformation of the columns are all included in this framework, while sintering is assumed to occur by the concerted action of surface and grain boundary diffusion. Two sets of initial conditions corresponding to different extents of pre-sintering among neighboring columns are considered. When the extent of pre-sintering is small, we observe that small clusters containing 5-20 columns are formed. In contrast, where a larger amount of pre-sintering exists, we observe, especially at large column densities, that clusters containing 50-100 columns separated by large inter-cluster pores/channels that appear to organize themselves into a network are formed. These observations are in good agreement with recently published experimental observations. We also explain how these results can explain the development of a 'mud-crack'-like pattern

  12. Thermal oxidation of nuclear graphite: A large scale waste treatment option

    Science.gov (United States)

    Jones, Abbie N.; Marsden, Barry J.

    2017-01-01

    This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF). Particulate samples of Magnox Reactor Pile Grade-A (PGA) graphite, were oxidised in both air and 60% O2, over the temperature range 400–1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700–800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000–1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput. PMID:28793326

  13. Thermal oxidation of nuclear graphite: A large scale waste treatment option.

    Directory of Open Access Journals (Sweden)

    Alex Theodosiou

    Full Text Available This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF. Particulate samples of Magnox Reactor Pile Grade-A (PGA graphite, were oxidised in both air and 60% O2, over the temperature range 400-1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700-800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000-1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput.

  14. Thermal-grating contributions to degenerate four-wave mixing in nitric oxide

    International Nuclear Information System (INIS)

    Danehy, P.M.; Paul, P.H.; Farrow, R.L.

    1995-01-01

    We report investigations of degenerate four-wave mixing (DFWM) line intensities in the A 2 Σ + left-arrow X 2 Π electronic transitions of nitric oxide. Contributions from population gratings (spatially varying perturbations in the level populations of absorbing species) and thermal gratings (spatially varying perturbations in the overall density) were distinguished and compared by several experimental and analytical techniques. For small quantities of nitric oxide in a strongly quenching buffer gas (carbon dioxide), we found that thermal-grating contributions dominated at room temperature for gas pressures of ∼0.5 atm and higher. In a nearly nonquenching buffer (nitrogen) the population-grating mechanism dominated at pressures of ∼1.0 atm and lower. At higher temperatures in an atmospheric-pressure methane/air flame, population gratings of nitric oxide also dominated. We propose a simple model for the ratio of thermal- to population-grating scattering intensities that varies as P 4 T -4.4 . Preliminary investigations of the temperature dependence and detailed studies of the pressure dependence are in agreement with this model. Measurements of the temporal evolution and the peak intensity of isolated thermal-grating signals are in detailed agreement with calculations based on a linearized hydrodynamic model [J. Opt. Soc. Am. B 12, 384 (1995)]. copyright 1995 Optical Society of America

  15. Nitrogen inversion barriers affect the N-oxidation of tertiary alkylamines by cytochromes P450

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Jørgensen, Martin S.; Jacobsen, T.A.

    2013-01-01

    Calculations: Cytochrome P450 enzymes facilitate a number of chemically different reactions. For example, amines can be either N-dealkylated or N-oxidized, but it is complex to rationalize which of these competing reactions occurs. It is shown that the barrier for inversion of the alkylamine...... nitrogen atom seems to be of vital importance for the amount of N-oxidized product formed relative to dealkylation and hydroxylation products....

  16. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  17. Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials

    International Nuclear Information System (INIS)

    Mehrali, Mohammad; Latibari, Sara Tahan; Mehrali, Mehdi; Indra Mahlia, Teuku Meurah; Cornelis Metselaar, Hendrik Simon

    2013-01-01

    PA/GO (palmitic acid/graphene oxide) as PCMs (phase change materials) prepared by vacuum impregnation method, have high thermal conductivity. The GO (graphene oxide) composite was used as supporting material to improve thermal conductivity and shape stabilization of composite PCM (phase change material). SEM (Scanning electronic microscope), FT-IR (Fourier transformation infrared spectroscope) and XRD (X-ray diffractometer) were applied to determine microstructure, chemical structure and crystalloid phase of palmitic acid/GO composites, respectively. DSC (Differential scanning calorimeter) test was done to investigate thermal properties which include melting and solidifying temperatures and latent heat. FT-IR analysis represented that the composite instruction of porous palmitic acid and GO were physical. The temperatures of melting, freezing and latent heats of the composite measured through DSC analysis were 60.45, 60.05 °C, 101.23 and 101.49 kJ/kg, respectively. Thermal cycling test showed that the form-stable composite PCM has good thermal reliability and chemical stability. Thermal conductivity of the composite PCM was improved by more than three times from 0.21 to 1.02. As a result, due to their acceptable thermal properties, good thermal reliability, chemical stability and great thermal conductivities, we can consider the prepared form-stable composites as highly conductive PCMs for thermal energy storage applications. - Highlights: • Novel composite PCM with high thermal conductivity and latent heat storage. • New thermal cycling test for thermal reliability of composite PCMs. • Increasing thermal conductivity of composite PCM with graphene oxide. • Increasing thermal stability of phase change material by adding graphene oxide

  18. Thermal and oxidation effects

    Energy Technology Data Exchange (ETDEWEB)

    Adamcova, J.; Kolaoikova, I. [Prague Univ., Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles (Czech Republic); Adamcova, J. [Czech Geological Survey, Geologicka 6, Prague (Czech Republic); Kaufhold, S.; Dohrmann, R. [BGR, Federal Institute for Geoscience and Natural Resources, Hannover (Germany); Dohrmann, R. [LBEG, State Authority for Mining, Energy, and Geology, Hannover (Germany); Craen, M. de; Van Geet, M.; Honty, M.; Wang, L.; Weetjens, E. [CK-CEN - Belgian Nuclear Research Centre - Environment, Healt and Safety Institute, Mol (Belgium); Van Geet, M. [ONDRAF/NIRAS - Belgian Agency for Radioactive Waste and Enriched Fissile Materials, Brussel (Belgium); Pozzi, J.P.; Janots, D. [Ecole Normale Paris, CNRS Lab. de Geologie, 75 - Paris (France); Aubourg, C. [Universite Cergy Pontoise, CNRS Lab. de Tectonique, 95 (France); Cathelineau, M.; Rousset, D.; Ruck, R. [Nancy-1 Univ. Henri Poincare, CNRS G2R, 54 (France); Clauer, N. [Strasbourg-1 Univ., CNRS CGS, 67 (France); Liewig, N. [Institut Pluridisciplinaire Hubert Curien, CNRS, 67 - Strasbourg (France); Techer, I. [Nimes Univ., CNRS Cerege, 30 (France)

    2007-07-01

    This session gathers 4 articles dealing with: the alteration processes in bentonites: mineralogical and structural changes during long-term and short-term experiments (J. Adamcov, I. Kolarikova); the implications from the lot experiment regarding the selection of an optimum HLRW bentonite (S. Kaufhold, R. Dohrmann); the extent of oxidation in Boom clay as a result of excavation and ventilation of the HADES URF: Experimental and modelling assessments (M. De Craen, M. Van Geet, M. Honty, L. Wang, E. Weetjens); and the magnetic and mineralogical alterations under thermal stress at 95 deg. C of Callovo-Oxfordian clay-stones (Bure, France) and lower Dogger Mont Terri clay-stones, Switzerland (J.P. Pozzi, C. Aubourg, D. Janots, M. Cathelineau, N. Clauer, D. Rousset, R. Ruck, N. Liewig, I. Techer)

  19. Magnet system for a thermal barrier Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Kim, N.S.; Conn, R.W.

    1981-01-01

    The magnet system for a thermal barrier D-D tandem mirror reactor has been studied as part of the UCLA tandem mirror reactor design study SATYR. Three main considerations in designing the SATYR magnet system are to obtain the desired field strength variation throughout the system, to have proper space for plasma and neutron shielding, and to satisfy the MHD stability to achieve maximum central cell /beta/. Due to the importance and the complexity, the 'internal' field reversal magnet is the main concern in the entire magnet system for SATYR. Two different magnet designs, a non-uniform current density solenoid and a higher-order solenoid, are discussed. Coil levitation for the internal field reversal magnet has been analyzed

  20. Damage-free back channel wet-etch process in amorphous indium-zinc-oxide thin-film transistors using a carbon-nanofilm barrier layer.

    Science.gov (United States)

    Luo, Dongxiang; Zhao, Mingjie; Xu, Miao; Li, Min; Chen, Zikai; Wang, Lang; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2014-07-23

    Amorphous indium-zinc-oxide thin film transistors (IZO-TFTs) with damage-free back channel wet-etch (BCE) process were investigated. A carbon (C) nanofilm was inserted into the interface between IZO layer and source/drain (S/D) electrodes as a barrier layer. Transmittance electron microscope images revealed that the 3 nm-thick C nanofilm exhibited a good corrosion resistance to a commonly used H3PO4-based etchant and could be easily eliminated. The TFT device with a 3 nm-thick C barrier layer showed a saturated field effect mobility of 14.4 cm(2) V(-1) s(-1), a subthreshold swing of 0.21 V/decade, an on-to-off current ratio of 8.3 × 10(10), and a threshold voltage of 2.0 V. The favorable electrical performance of this kind of IZO-TFTs was due to the protection of the inserted C to IZO layer in the back-channel-etch process. Moreover, the low contact resistance of the devices was proved to be due to the graphitization of the C nanofilms after annealing. In addition, the hysteresis and thermal stress testing confirmed that the usage of C barrier nanofilms is an effective method to fabricate the damage-free BCE-type devices with high reliability.

  1. The fabrication and thermal properties of bismuth-aluminum oxide nanothermometers.

    Science.gov (United States)

    Wang, Chiu-Yen; Chen, Shih-Hsun; Tsai, Ping-Hsin; Chiou, Chung-Han; Hsieh, Sheng-Jen

    2017-01-27

    Bismuth (Bi) nanowires, well controlled in length and diameter, were prepared by using an anodic aluminum oxide (AAO) template-assisted molding injection process with a high cooling rate. A high performance atomic layer deposition (ALD)-capped bismuth-aluminum oxide (Bi-Al 2 O 3 ) nanothermometer is demonstrated that was fabricated via a facile, low-cost and low-temperature method, including AAO templated-assisted molding injection and low-temperature ALD-capped processes. The thermal behaviors of Bi nanowires and Bi-Al 2 O 3 nanocables were studied by in situ heating transmission electron microscopy. Linear thermal expansion of liquid Bi within native bismuth oxide nanotubes and ALD-capped Bi-Al 2 O 3 nanocables were evaluated from 275 °C to 700 °C and 300 °C to 1000 °C, respectively. The results showed that the ALD-capped Bi-Al 2 O 3 nanocable possesses the highest working temperature, 1000 °C, and the broadest operation window, 300 °C-1000 °C, of a thermal-expanding type nanothermometer. Our innovative approach provides another way of fabricating core-shell nanocables and to further achieve sensing local temperature under an extreme high vacuum environment.

  2. Thermal stability of pulsed laser deposited iridium oxide thin films at low oxygen atmosphere

    Science.gov (United States)

    Gong, Yansheng; Wang, Chuanbin; Shen, Qiang; Zhang, Lianmeng

    2013-11-01

    Iridium oxide (IrO2) thin films have been regarded as a leading candidate for bottom electrode and diffusion barrier of ferroelectric capacitors, some process related issues need to be considered before integrating ferroelectric capacitors into memory cells. This paper presents the thermal stability of pulsed laser deposited IrO2 thin films at low oxygen atmosphere. Emphasis was given on the effect of post-deposition annealing temperature at different oxygen pressure (PO2) on the crystal structure, surface morphology, electrical resistivity, carrier concentration and mobility of IrO2 thin films. The results showed that the thermal stability of IrO2 thin films was strongly dependent on the oxygen pressure and annealing temperature. IrO2 thin films can stably exist below 923 K at PO2 = 1 Pa, which had a higher stability than the previous reported results. The surface morphology of IrO2 thin films depended on PO2 and annealing temperature, showing a flat and uniform surface for the annealed films. Electrical properties were found to be sensitive to both the annealing temperature and oxygen pressure. The room-temperature resistivity of IrO2 thin films with a value of 49-58 μΩ cm increased with annealing temperature at PO2 = 1 Pa. The thermal stability of IrO2 thin films as a function of oxygen pressure and annealing temperature was almost consistent with thermodynamic calculation.

  3. Synthesis, Characterization and Thermal Diffusivity of Holmium and Praseodymium Zirconates

    OpenAIRE

    Stopyra M.; Niemiec D.; Moskal G.

    2016-01-01

    A2B2O7 oxides with pyrochlore or defected fluorite structure are among the most promising candidates for insulation layer material in thermal barrier coatings. The present paper presents the procedure of synthesis of holmium zirconate Ho2Zr2O7 and praseodymium zirconate Pr2Zr2O7 via Polymerized-Complex Method (PCM). Thermal analysis of precursor revealed that after calcination at relatively low temperature (700°C) fine-crystalline, single-phase material is obtained. Thermal diffusivity was me...

  4. Contribution to the thermal study of a dielectric barrier discharge reactor

    International Nuclear Information System (INIS)

    Dubus, Nicolas

    2009-01-01

    This thesis aims to study the thermal behaviour of a laboratory Dielectric Barrier Discharge (DBD) reactor. An experimental study was first realized to measure temperatures at different points of the reactor by using optic fibers. These measurements were performed in transient and steady states. To examine the influence of heat losses, not insulated and insulated reactors were considered. The influence of the nature and the form of the applied voltage was else considered. Experiments were conducted with a sinusoidal voltage and a pulsed power supply. (author) [fr

  5. Relation of Thermal Conductivity with Process Induced Anisotropic Void Systems in EB-PVD PYSZ Thermal Barrier Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, A. Flores; Saruhan-Brings, B.; Ilavsky, J.

    2008-03-03

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified as open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 11000C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.

  6. Relation of thermal conductivity with process induced anisotropic void system in EB-PVD PYSZ thermal barrier coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, A. F.; Saruhan, B.; Ilavsky, J.; German Aerospace Center

    2007-01-01

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based ,TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified as open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 1100C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.

  7. Oxygen Barrier Properties and Melt Crystallization Behavior of Poly(ethylene terephthalate)/Graphene Oxide Nanocomposites

    OpenAIRE

    Szymczyk, Anna; Paszkiewicz, Sandra; Pawelec, Iwona; Lisiecki, Slawomir; Jotko, Marek; Spitalsky, Zdenko; Mosnácek, Jaroslav; Roslaniec, Zbigniew

    2015-01-01

    Poly(ethylene terephthalate) nanocomposites with low loading (0.1–0.5 wt%) of graphene oxide (GO) have been prepared by using in situ polymerization method. TEM study of nanocomposites morphology has shown uniform distribution of highly exfoliated graphene oxide nanoplatelets in PET matrix. Investigations of oxygen permeability of amorphous films of nanocomposites showed that the nanocomposites had better oxygen barrier properties than the neat PET. The improvement of oxygen permeability for ...

  8. Graphene Oxide Bionanocomposite Coatings with High Oxygen Barrier Properties

    Directory of Open Access Journals (Sweden)

    Ilke Uysal Unalan

    2016-12-01

    Full Text Available In this work, we present the development of bionanocomposite coatings on poly(ethylene terephthalate (PET with outstanding oxygen barrier properties. Pullulan and graphene oxide (GO were used as main polymer phase and nanobuilding block (NBB, respectively. The oxygen barrier performance was investigated at different filler volume fractions (ϕ and as a function of different relative humidity (RH values. Noticeably, the impermeable nature of GO was reflected under dry conditions, in which an oxygen transmission rate (OTR, mL·m−2·24 h−1 value below the detection limit of the instrument (0.01 mL·m−2·24 h−1 was recorded, even for ϕ as low as 0.0004. A dramatic increase of the OTR values occurred in humid conditions, such that the barrier performance was totally lost at 90% RH (the OTR of coated PET films was equal to the OTR of bare PET films. Modelling of the experimental OTR data by Cussler’s model suggested that the spatial ordering of GO sheets within the main pullulan phase was perturbed because of RH fluctuations. In spite of the presence of the filler, all the formulations allowed the obtainment of final materials with haze values below 3%, the only exception being the formulation with the highest loading of GO (ϕ ≈ 0.03. The mechanisms underlying the experimental observations are discussed.

  9. Yttria-stabilized zirkonia / gadolinium zirconate double-layer plasma-sprayed thermal barrier coating systems (TBCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bakan, Emine

    2015-07-01

    Thermal barrier coating (TBC) research and development is driven by the desirability of further increasing the maximum inlet temperature in a gas turbine engine. A number of new top coat ceramic materials have been proposed during the last decades due to limited temperature capability (1200 C) of the state-of-the-art yttria-stabilized zirconia (7 wt. % Y{sub 2}O{sub 3}-ZrO{sub 2}, YSZ) at long term operation. Zirconate pyrochlores of the large lanthanides((Gd → La){sub 2}Zr{sub 2}O{sub 7}) have been particularly attractive due to their higher temperature phase stability than that of the YSZ. Nonetheless, the issues related with the implementation of pyrochlores such as low fracture toughness and formation of deleterious interphases with thermally grown oxide (TGO, Al{sub 2}O{sub 3}) were reported. The implication was the requirement of an interlayer between the pyrochlores and TGO, which introduced double-layer systems to the TBC literature. Furthermore, processability issues of pyrochlores associated with the different evaporation rates of lanthanide oxides and zirconia resulting in unfavorable composition variations in the coatings were addressed in different studies. After all, although the material properties are available, there is a paucity of data in the literature concerning the properties of the coatings made of pyrochlores. From the processability point of view the most reported pyrochlore is La{sub 2}Zr{sub 2}O{sub 7}. Hence, the goal of this research was to investigate plasma-sprayed Gd{sub 2}Zr{sub 2}O{sub 7} (GZO) coatings and YSZ/GZO double-layer TBC systems. Three main topics were examined based on processing, performance and properties: (i) the plasma spray processing of the GZO and its impact on the microstructural and compositional properties of the GZO coatings; (ii) the cycling lifetime of the YSZ/GZO double-layer systems under thermal gradient at a surface temperature of 1400 C; (iii) the properties of the GZO and YSZ coatings such as

  10. Designing a highly sensitive Eddy current sensor for evaluating damage on thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Min; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Seong; Lee, Yeong Ze [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Seul Gi [LG Electronics, Seoul (Korea, Republic of)

    2016-06-15

    A thermal barrier coating (TBC) has been widely applied to machine components working under high temperature as a thermal insulator owing to its critical financial and safety benefits to the industry. However, the nondestructive evaluation of TBC damage is not easy since sensing of the microscopic change that occurs on the TBC is required during an evaluation. We designed an eddy current probe for evaluating damage on a TBC based on the finite element method (FEM) and validated its performance through an experiment. An FEM analysis predicted the sensitivity of the probe, showing that impedance change increases as the TBC thermally degrades. In addition, the effect of the magnetic shield concentrating magnetic flux density was also observed. Finally, experimental validation showed good agreement with the simulation result.

  11. A microstuctural study on accelerated zirconium alloy oxidation

    International Nuclear Information System (INIS)

    Sohn, Seung Bum; Oh, Seung Jun; Jang, Jung Nam; Kim, Yong Soo; Jung, Yong Hwan; Baek, Jong Hyuk; Park, Jung Yong

    2005-01-01

    It has been reported that the effect of thermal redistribution of hydrides across the zirconium metaloxide interface, coupled with thermal feedback on the metal-oxide interface, is a dominating factor in the accelerated oxidation in zirconium alloys cladding PWR fuel. Basically this influence determines characteristic of oxide layer. Influence estimation for corrosion oxide layer due to hydrogen / hydride carried out because of investigation on the kinetic on accelerated oxidation due to hydride precipitation was preceded. Generally, it is known that ZrO 2 tetragonal layer structures play an important role as a barrier layer. So analysing the ZrO 2 monoclinic and tetragonal structure distribution is our main aim. Especially, this study focused on the hydride effects. In other words, the difference of crystal structure distribution between pre-hydrided and without hydrided specimen is just expected results. Experimental results of microstructure at zirconium metal-oxide interface through TEM and EBSD analysis was confirmed

  12. Myeloperoxidase-derived oxidants induce blood-brain barrier dysfunction in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Andreas Üllen

    Full Text Available Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt blood-brain barrier (BBB function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl formed via the myeloperoxidase (MPO-H2O2-Cl(- system. In the present study we examined the role of leukocyte activation, leukocyte-derived MPO and MPO-generated oxidants on BBB function in vitro and in vivo. In a mouse model of lipopolysaccharide (LPS-induced systemic inflammation, neutrophils that had become adherent released MPO into the cerebrovasculature. In vivo, LPS-induced BBB dysfunction was significantly lower in MPO-deficient mice as compared to wild-type littermates. Both, fMLP-activated leukocytes and the MPO-H2O2-Cl(- system inflicted barrier dysfunction of primary brain microvascular endothelial cells (BMVEC that was partially rescued with the MPO inhibitor 4-aminobenzoic acid hydrazide. BMVEC treatment with the MPO-H2O2-Cl(- system or activated neutrophils resulted in the formation of plasmalogen-derived chlorinated fatty aldehydes. 2-chlorohexadecanal (2-ClHDA severely compromised BMVEC barrier function and induced morphological alterations in tight and adherens junctions. In situ perfusion of rat brain with 2-ClHDA increased BBB permeability in vivo. 2-ClHDA potently activated the MAPK cascade at physiological concentrations. An ERK1/2 and JNK antagonist (PD098059 and SP600125, respectively protected against 2-ClHDA-induced barrier dysfunction in vitro. The current data provide evidence that interference with the MPO pathway could protect against BBB dysfunction under (neuroinflammatory conditions.

  13. Combined photovoltaic and solar-thermal systems: overcoming barriers to market acceptance. Paper no. IGEC-1-136

    International Nuclear Information System (INIS)

    Collins, M.R.

    2005-01-01

    In 1997, the International Energy Association's (IEA) Photovoltaic Power Systems Program (PVSP) initiated IEA Task 7 to evaluate the technical status of combined Photovoltaic and Solar-Thermal systems (PV/T), and to formulate a roadmap for future development. Because the Task was initiated by the PVSP, however, individuals from the Solar Heating and Cooling Program (SHCP) were not invited to participate, and the Task Group lacked any significant expertise with solar-thermal systems. When the Task submitted its final report in 2002, it consisted of an accounting of existing systems and a list of the perceived market barriers. Without input from the SHCP, however, no move could be made to actually address those barriers. IEA Task 7, however, did recognize that the participation of the SHCP was needed, and in 1999 made an effort to initiate some discussion between the PVSP and the SHCP. The result was IEA Task 35 - PV/T Systems, which met for the first time in January of 2005. The new group intends to reevaluate the findings of Task 7, and to develop the means by which these market barriers can be overcome. The current discussion will provide an overview of existing and potential PV/T systems and their technical status. Further, it will report on the methodology established by the Task 35 work group to overcome the aforementioned market barriers. (author)

  14. Deuterium permeation behavior of HTUPS4 steel with thermal oxidation layer

    International Nuclear Information System (INIS)

    Xu, Yu-Ping; Liu, Feng; Zhao, Si-Xiang; Li, Xiao-Chun; Wang, Jing; An, Zhong-Qing; Lu, Tao; Liu, Hao-Dong; Ding, Fang; Zhou, Hai-Shan; Luo, Guang-Nan

    2016-01-01

    The permeation behavior of creep-resistant, Al 2 O 3 -forming HTUPS austenitic stainless steels was studied using a gas driven permeation (GDP) device. The steel samples were first thermal oxidized at air condition, followed by GDP experiments. The permeability and diffusion coefficients of oxidized samples and bare 316L steels were derived and compared. In order to characterize the oxide layer, X-ray photoelectron spectroscopy was performed. An oxide layer with a thickness of 200 nm which mainly consists of Al 2 O 3 was detected.

  15. Effects of X irradiation and high field electron injection of the electrical properties of rapid thermal oxides

    International Nuclear Information System (INIS)

    Schubert, W.K.; Seager, C.H.

    1988-01-01

    Rapid thermal oxidation (RTO) is a promising tool for fabricating the thin gate oxides (5 to 15 nm) that will be needed in future submicron integrated circuits, because of its inherently superior time-temperature control when compared to conventional oxidation methods. It is important to demonstrate that RTO can be used without adversely affecting the radiation hardness or high field properties of the oxide. Beyond this demonstration, rapid thermal processing makes it possible to determine more precisely how the kinetics of oxidation and post oxidation annealing affect the device properties. Information of this type should prove useful in modeling relevant defect formation mechanisms. The present paper is part of a systematic study of the effect of rapid thermal processing on the radiation and high field response of thin oxides

  16. Small scale model and underground laboratory study of engineered barrier thermal behaviour

    International Nuclear Information System (INIS)

    Dardaine, M.; Beziat, A.; Gatabin, C.; Lefevre, I.; Plas, F.; Fontan, N.; Moyne, C.

    1991-01-01

    This is the final report of the contract CCE FI1W/0061, which had the objective of studying the thermal behaviour of the engineered barrier having the selected French clay Fo-Ca (natural calcic smectite) as its major constituent. After being installed this barrier was subjected simultaneously to the heat flux dissipated by the container and to a possible rehydration by contact with the host medium. It consists of three parts. The first part is devoted to R and D studies concerning detectors suitable for the point measurement of the water concentration. Among the techniques that can be envisaged, capacitor methods, which are very temperature sensitive, would require a great deal of effort to be satisfactory. On the other hand, the water concentration can, in principle, be derived from the measurement of the thermal conductivity in the transient regime. Although the carrying out of this measurement is somewhat critical, it can give good results under certain conditions. The second part reports experiments carried out in the laboratory concerning both the study of heat transfer during the so-called dry phase of the disposal (without any water being supplied externally) and the study of the phenomenon of fissuration. Finally, the third part describes the in situ experiment BACCHUS, carried out in the underground test facility at Mol (Belgium), in collaboration with the CEN/SCK. In the course of the five months of the thermal phase of this experiment a large variation in the amplitude of the temperature gradients was recorded, which may be explained, on one hand, by the convergence of the medium and, on the other hand, by a much more rapid rehydration than that predicted

  17. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    Science.gov (United States)

    Medřický, Jan; Curry, Nicholas; Pala, Zdenek; Vilemova, Monika; Chraska, Tomas; Johansson, Jimmy; Markocsan, Nicolaie

    2015-04-01

    Yttria-stabilized zirconia thermal barrier coatings are extensively used in turbine industry; however, increasing performance requirements have begun to make conventional air plasma sprayed coatings insufficient for future needs. Since the thermal conductivity of bulk material cannot be lowered easily; the design of highly porous coatings may be the most efficient way to achieve coatings with low thermal conductivity. Thus the approach of fabrication of coatings with a high porosity level based on plasma spraying of ceramic particles of dysprosia-stabilized zirconia mixed with polymer particles, has been tested. Both polymer and ceramic particles melt in plasma and after impact onto a substrate they form a coating. When the coating is subjected to heat treatment, polymer burns out and a complex structure of pores and cracks is formed. In order to obtain desired porosity level and microstructural features in coatings; a design of experiments, based on changes in spray distance, powder feeding rate, and plasma-forming atmosphere, was performed. Acquired coatings were evaluated for thermal conductivity and thermo-cyclic fatigue, and their morphology was assessed using scanning electron microscopy. It was shown that porosity level can be controlled by appropriate changes in spraying parameters.

  18. Magnetic and thermal properties of amorphous TbFeCo alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke, E-mail: K.Wang@hqu.edu.cn; Dong, Shuo; Huang, Ya; Qiu, Yuzhen

    2017-07-15

    Highlights: • Significant increase in magnetization is observed in TbFeCo upon crystallization. • The crystallization temperature is determined in the range between 400 and 450 °C. • The activation barriers for structural changes are obtained successfully. • Better thermal stability against crystallization and oxidation is demonstrated in FeCo-rich sample than Tb-rich type. - Abstract: Amorphous TbFeCo material with perpendicular magnetic anisotropy is currently attracting more attention for potential applications in spintronic devices and logic memories. We systematically investigate magnetic, structural, thermal, optical and electrical properties of TbFeCo alloy films. It shows out-of-plane easy axis of the films turns into in-plane orientation after annealing. Significant increase in saturation magnetization in the temperature range between 400 and 450 °C is revealed by thermomagnetic measurements. The occurrence of crystallization and oxidation at high temperatures is confirmed by X-ray diffraction measurements. Pronounced changes in optical reflectance and sheet resistance are observed with temperature, in line with structural relaxation and change. The activation barriers for crystallization and oxidation are determined to be 1.01 eV and 0.83 eV, respectively, for FeCo-rich and Tb-rich samples. Better thermal stability against crystallization and oxidation is demonstrated in the FeCo-rich sample than the Tb-rich type. Our results provide some useful information for the alloy used in device fabrication.

  19. A Novel Investigation of the Formation of Titanium Oxide Nanotubes on Thermally Formed Oxide of Ti-6Al-4V.

    Science.gov (United States)

    Butt, Arman; Hamlekhan, Azhang; Patel, Sweetu; Royhman, Dmitry; Sukotjo, Cortino; Mathew, Mathew T; Shokuhfar, Tolou; Takoudis, Christos

    2015-10-01

    Traditionally, titanium oxide (TiO2) nanotubes (TNTs) are anodized on Ti-6Al-4V alloy (Ti-V) surfaces with native TiO2 (amorphous TiO2); subsequent heat treatment of anodized surfaces has been observed to enhance cellular response. As-is bulk Ti-V, however, is often subjected to heat treatment, such as thermal oxidation (TO), to improve its mechanical properties. Thermal oxidation treatment of Ti-V at temperatures greater than 200°C and 400°C initiates the formation of anatase and rutile TiO2, respectively, which can affect TNT formation. This study aims at understanding the TNT formation mechanism on Ti-V surfaces with TO-formed TiO2 compared with that on as-is Ti-V surfaces with native oxide. Thermal oxidation-formed TiO2 can affect TNT formation and surface wettability because TO-formed TiO2 is expected to be part of the TNT structure. Surface characterization was carried out with field emission scanning electron microscopy, energy dispersive x-ray spectroscopy, water contact angle measurements, and white light interferometry. The TNTs were formed on control and 300°C and 600°C TO-treated Ti-V samples, and significant differences in TNT lengths and surface morphology were observed. No difference in elemental composition was found. Thermal oxidation and TO/anodization treatments produced hydrophilic surfaces, while hydrophobic behavior was observed over time (aging) for all samples. Reduced hydrophobic behavior was observed for TO/anodized samples when compared with control, control/anodized, and TO-treated samples. A method for improved surface wettability and TNT morphology is therefore discussed for possible applications in effective osseointegration of dental and orthopedic implants.

  20. Article Including Environmental Barrier Coating System

    Science.gov (United States)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  1. Thermal oxidative degradation of wood modified with aminophenylborates

    Directory of Open Access Journals (Sweden)

    Klyachenkova Olga

    2016-01-01

    Full Text Available Comparative thermal analysis in the presence of oxygen was carried out for samples of native pine wood and wood samples modified with aminophenylborates. Significant decrease in the amount of heat released during thermal decomposition of the modified samples was established, which is due to the increase of carbonaceous residues on the surface. Reduction of heat release during decomposition of the modified samples may be explained by the lower yield of combustible volatile products as well as by thin film of boron oxide, formed on the surface of the modified wood, that partially reflects heat flow. Produced upon the modifier decomposition water vapor and inert nitrogen oxides dilute gaseous mixture near the wood surface and isolate it from oxygen. This enhances fire-resistance of wood modified with mono- and diethanolamine(N→Bphenylborates. Hydroxyl group at the sixth carbon atom of the glucopyranose ring of cellulose participates in reactions of cellulose modification, which prevents formation of flammable levoglucosan and, consequently, improves the fire-resistance of the modified wood.

  2. Behavior of mixed-oxide fuel subjected to multiple thermal transients

    International Nuclear Information System (INIS)

    Fenske, G.R.; Hofman, G.L.; Neimark, L.A.; Poeppel, R.B.

    1983-11-01

    The microstructural behavior of irradiated mixed-oxide fuel subjected to multiple, mild thermal transients was investigated using direct electrical heating. The results demonstrate that significant intergranular porosity, accompanied by large-scale (>90%) release of the retained fission gas, developed as a result of the cyclic heating. Microstructural examination of the fuel indicated that thermal-shock-induced cracking of the fuel contributed significantly to the increased swelling and gas release

  3. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion.

    Science.gov (United States)

    Wickman, B; Bastos Fanta, A; Burrows, A; Hellman, A; Wagner, J B; Iandolo, B

    2017-01-16

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes considerably. Herein, we present hematite thin films fabricated via one-step oxidation of Fe by rapid thermal processing (RTP). In particular, we investigate the effect of oxidation temperature on the PEC properties of hematite. Films prepared at 750 °C show the highest activity towards water oxidation. These films show the largest average grain size and the highest charge carrier density, as determined from electron microscopy and impedance spectroscopy analysis. We believe that the fast processing enabled by RTP makes this technique a preferred method for investigation of novel materials and architectures, potentially also on nanostructured electrodes, where retaining high surface area is crucial to maximize performance.

  4. Heterojunctions of oxide-p-InSe on oriented (110) crystal substrate

    CERN Document Server

    Katerinchuk, V N; Betsa, T V; Kaminskij, V M; Netyaga, V V

    2001-01-01

    The photoelectric properties of the oxide-p-InSe heterotransition, formed in the plane, parallel to the C crystallographic axis, are studied. The heterotransitions are formed through the thermal oxidation of the InSe crystalline sublattice. The influence of the surface recombination effects on the heterotransition properties is not determined. It is established from the volt-farad characteristics, that the p-n-transition type is sharp, and the energy barrier value constitutes 0.17 V. It is determined also, that the current flow through the heterotransition barrier is described within the frames of the diode theory

  5. Novel thermal barrier coatings based on La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7}/8YSZ double-ceramic-layer systems deposited by electron beam physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhenhua, E-mail: zhxuciac@yahoo.com.cn [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He Shimei; He Limin; Mu Rende; Huang Guanghong [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Cao Xueqiang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2011-03-17

    Research highlights: > LZ7C3 and YSZ have good chemical compatibility for the formation of DCL coating. > DCL coating has a longer lifetime than that of single layer coating of LZ7C3 or YSZ. > Similar TECs of LZ7C3 with YSZ coatings and YSZ coating with TGO layer. > Unique growth modes of columns within DCL coating. > Outward diffusion of Cr element (bond coat) into LZ7C3 layer. - Abstract: Double-ceramic-layer (DCL) thermal barrier coatings (TBCs) of La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7} (LZ7C3) and yttria stabilized zirconia (YSZ) were deposited by electron beam-physical vapor deposition (EB-PVD). The thermal cycling test at 1373 K in an air furnace indicates the DCL coating has a much longer lifetime than the single layer LZ7C3 coating, and even longer than that of the single layer YSZ coating. The superior sintering-resistance of LZ7C3 coating, the similar thermal expansion behaviors of YSZ interlayer with LZ7C3 coating and thermally grown oxide (TGO) layer, and the unique growth modes of columns within DCL coating are all very helpful to the prolongation of thermal cycling life of DCL coating. The failure of DCL coating is mainly a result of the reduction-oxidation of cerium oxide, the crack initiation, propagation and extension, the abnormal oxidation of bond coat, the degradation of t'-phase in YSZ coating and the outward diffusion of Cr alloying element into LZ7C3 coating.

  6. A novel thermal decomposition approach for the synthesis of silica-iron oxide core–shell nanoparticles

    International Nuclear Information System (INIS)

    Kishore, P.N.R.; Jeevanandam, P.

    2012-01-01

    Highlights: ► Silica-iron oxide core–shell nanoparticles have been synthesized by a novel thermal decomposition approach. ► The silica-iron oxide core–shell nanoparticles are superparamagnetic at room temperature. ► The silica-iron oxide core–shell nanoparticles serve as good photocatalyst for the degradation of Rhodamine B. - Abstract: A simple thermal decomposition approach for the synthesis of magnetic nanoparticles consisting of silica as core and iron oxide nanoparticles as shell has been reported. The iron oxide nanoparticles were deposited on the silica spheres (mean diameter = 244 ± 13 nm) by the thermal decomposition of iron (III) acetylacetonate, in diphenyl ether, in the presence of SiO 2 . The core–shell nanoparticles were characterized by X-ray diffraction, infrared spectroscopy, field emission-scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy, diffuse reflectance spectroscopy, and magnetic measurements. The results confirm the presence of iron oxide nanoparticles on the silica core. The core–shell nanoparticles are superparamagnetic at room temperature indicating the presence of iron oxide nanoparticles on silica. The core–shell nanoparticles have been demonstrated as good photocatalyst for the degradation of Rhodamine B.

  7. Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model.

    Science.gov (United States)

    Ren, Xiu'e; Chen, Jianbiao; Li, Gang; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi

    2018-08-01

    The study concerned the thermal oxidative degradation kinetics of agricultural residues, peanut shell (PS) and sunflower shell (SS). The thermal behaviors were evaluated via thermogravimetric analysis and the kinetic parameters were determined by using distributed activation energy model (DAEM) and global kinetic model (GKM). Results showed that thermal oxidative decomposition of two samples processed in three zones; the ignition, burnout, and comprehensive combustibility between two agricultural residues were of great difference; and the combustion performance could be improved by boosting heating rate. The activation energy ranges calculated by the DAEM for the thermal oxidative degradation of PS and SS were 88.94-145.30 kJ mol -1 and 94.86-169.18 kJ mol -1 , respectively. The activation energy obtained by the GKM for the oxidative decomposition of hemicellulose and cellulose was obviously lower than that for the lignin oxidation at identical heating rate. To some degree, the determined kinetic parameters could acceptably simulate experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Behavior of mixed-oxide fuel subjected to multiple thermal transients

    International Nuclear Information System (INIS)

    Fenske, G.R.; Neimark, L.A.; Poeppel, R.B.; Hofman, G.L.

    1985-01-01

    The microstructural behavior of irradiated mixed-oxide fuel subjected to multiple, mild thermal transients was investigated using direct electrical heating. The results demonstrate that significant intergranular porosity, accompanied by large-scale (>90%) release of the retained fission gas, developed as a result of the cyclic heating. Microstructural examination of the fuel indicated that thermal-shock-induced cracking of the fuel contributed significantly to the increased swelling and gas release. 29 refs., 12 figs

  9. Partial oxidation of methane in a temperature-controlled dielectric barrier discharge reactor

    KAUST Repository

    Zhang, Xuming

    2015-01-01

    We studied the relative importance of the reduced field intensity and the background reaction temperature in the partial oxidation of methane in a temperature-controlled dielectric barrier discharge reactor. We obtained important mechanistic insight from studying high-temperature and low-pressure conditions with similar reduced field intensities. In the tested range of background temperatures (297 < T < 773 K), we found that the conversion of methane and oxygen depended on both the electron-induced chemistry and the thermo-chemistry, whereas the chemical pathways to the products were overall controlled by the thermo-chemistry at a given temperature. We also found that the thermo-chemistry enhanced the plasma-assisted partial oxidation process. Our findings expand our understanding of the plasma-assisted partial oxidation process and may be helpful in the design of cost-effective plasma reformers. © 2014 The Combustion Institute.

  10. Enhanced performance of thermal-assisted electron field emission based on barium oxide nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yunkang [Department of Mathematics and Physics, Nanjing Institute of technology, Nanjing, 211167 (China); Chen, Jing, E-mail: chenjingmoon@gmail.com [School of Electronic Science & Engineering, Southeast University, Nanjing, 210096 (China); Zhang, Yuning; Zhang, Xiaobing; Lei, Wei; Di, Yunsong [School of Electronic Science & Engineering, Southeast University, Nanjing, 210096 (China); Zhang, Zichen, E-mail: zz241@ime.ac.cn [Integrated system for Laser applications Group, Institute of Microelectronics of Chinese Academy of Sciences, 100029, Beijing (China)

    2017-02-28

    Highlights: • A possible mechanism for thermal-assisted electric field was demonstrated. • A new path for the architecture of the novel nanomaterial and methodology for its potential application in the field emission device area was provided. • The turn-on field, the threshold field and the field emission current density were largely related to the temperature of the cathode. • The relationship between the work function of emitter material and the temperature of emitter was found. - Abstract: In this paper, thermal-assisted field emission properties of barium oxide (BaO) nanowire synthesized by a chemical bath deposition method were investigated. The morphology and composition of BaO nanowire were characterized by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SED), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX) respectively. The turn-on field, threshold field and the emission current density could be affected relatively due to the thermal-assisted effect when the electric field was applied, in the meanwhile, the turn-on field for BaO nanowire was measured to be decreased from 1.12 V/μm to 0.66 V/μm when the temperature was raised from 293 K to 593 K, whereas for the threshold field was found to decrease from 3.64 V/μm to 2.12 V/μm. The improved performance was demonstrated due to the reduced work function of the BaO nanowire as the agitation temperature increasing, leading to the higher probability of electrons tunneling through the energy barrier and enhancement of the field emission properties of BaO emitters.

  11. Enhanced performance of thermal-assisted electron field emission based on barium oxide nanowire

    International Nuclear Information System (INIS)

    Cui, Yunkang; Chen, Jing; Zhang, Yuning; Zhang, Xiaobing; Lei, Wei; Di, Yunsong; Zhang, Zichen

    2017-01-01

    Highlights: • A possible mechanism for thermal-assisted electric field was demonstrated. • A new path for the architecture of the novel nanomaterial and methodology for its potential application in the field emission device area was provided. • The turn-on field, the threshold field and the field emission current density were largely related to the temperature of the cathode. • The relationship between the work function of emitter material and the temperature of emitter was found. - Abstract: In this paper, thermal-assisted field emission properties of barium oxide (BaO) nanowire synthesized by a chemical bath deposition method were investigated. The morphology and composition of BaO nanowire were characterized by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SED), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX) respectively. The turn-on field, threshold field and the emission current density could be affected relatively due to the thermal-assisted effect when the electric field was applied, in the meanwhile, the turn-on field for BaO nanowire was measured to be decreased from 1.12 V/μm to 0.66 V/μm when the temperature was raised from 293 K to 593 K, whereas for the threshold field was found to decrease from 3.64 V/μm to 2.12 V/μm. The improved performance was demonstrated due to the reduced work function of the BaO nanowire as the agitation temperature increasing, leading to the higher probability of electrons tunneling through the energy barrier and enhancement of the field emission properties of BaO emitters.

  12. Niobium nitride Josephson tunnel junctions with magnesium oxide barriers

    International Nuclear Information System (INIS)

    Shoji, A.; Aoyagi, M.; Kosaka, S.; Shinoki, F.; Hayakawa, H.

    1985-01-01

    Niobium nitride-niobium nitride Josephson tunnel junctions have been fabricated using amorphous magnesium oxide (a-MgO) films as barriers. These junctions have excellent tunneling characteristics. For example, a large gap voltage (V/sub g/ = 5.1 mV), a large product of the maximum critical current and the normal tunneling resistance (I/sub c/R/sub n/ = 3.25 mV), and a small subgap leakage current (V/sub m/ = 45 mV, measured at 3 mV) have been obtained for a NbN/a-MgO/NbN junction. The critical current of this junction remains finite up to 14.5 K

  13. SiC fiber and yttria-stabilized zirconia composite thick thermal barrier coatings fabricated by plasma spray

    Science.gov (United States)

    Ma, Rongbin; Cheng, Xudong; Ye, Weiping

    2015-12-01

    Approximately 4 mm-thick SiC fiber/yttria-stabilized zirconia (YSZ) composite thermal barrier coatings (TBCs) were prepared by atmospheric plasma spray (APS). The composite coatings have a 'reinforced concrete frame structure', which can protect the coating from failure caused by increasing thickness of coating. The SiC fiber plays an important role in reducing the residual stress level of the composite coatings. The thermal conductivity (TC) value of the composite coatings is 0.632 W/m K, which is about 50% reduction compared to that of typical APS YSZ TBCs. And the composite coatings have higher fracture toughness and better thermal shock resistance than the YSZ TBCs.

  14. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release

    Energy Technology Data Exchange (ETDEWEB)

    Guibelin, Eric

    2003-07-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best way to minimize greenhouse effect gases emission. (author)

  15. Modelling the influence of reactive elements on the work of adhesion between a thermally grown oxide and a bond coat alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, I.J. [University of Technology Delft, Department of Materials Science and Technology, Rotterdamseweg 137, 2628 AL Delft (Netherlands); Sloof, W.G. [Netherlands Institute of Metals Research, Rotterdamseweg 137, 2628 AL Delft (Netherlands)

    2006-03-15

    The durability of thermal barrier coating systems is primarily determined by the degree of adhesion between the thermally grown oxide (TGO) and the bond coat. Failure of the TBC is often the result of delamination at this interface. Adhesion can be improved by the addition of reactive elements (RE) to the bond coat alloy. REs include oxide forming elements such as Y, Zr and Hf. The so-called reactive element effect has been attributed to a direct improvement of the bonding between the TGO and the bond coat. A macroscopic atom model has been developed to allow the work of adhesion between two compounds (e.g. an oxide and a metal compound) to be estimated. By calculating the work of adhesion across a number of different interfaces, the influence of reactive elements and impurities present in the substrate can be assessed. It has been found that the REs have a limited direct influence on the work of adhesion and can even result in a weaker interface. A large reduction in the work of adhesion is calculated when S and C are present at the interface. REs have a high affinity for both S and C. This indicates that the RE effect is primarily that of impurity scavenging, preventing diffusion of impurities to the interface. A number of experiments are reported, which demonstrate the RE effect and support the modelling results. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  16. Active Bilayer PE/PCL Films for Food Packaging Modified with Zinc Oxide and Casein

    Directory of Open Access Journals (Sweden)

    Ana Rešček

    2015-12-01

    Full Text Available This paper studies the properties of active polymer food packaging bilayer polyethylene/polycaprolactone (PE/PCL films. Such packaging material consists of primary PE layer coated with thin film of PCL coating modified with active component (zinc oxide or zinc oxide/casein complex with intention to extend the shelf life of food and to maintain the quality and health safety. The influence of additives as active components on barrier, mechanical, thermal and antimicrobial properties of such materials was studied. The results show that, in comparison to the neat PE and PE/PCL films, some of PE/PCL bilayer films with additives exhibit improved barrier properties i.e. decreased water vapour permeability. Higher thermal stability of modified PE/PCL material is obtained due to a modified mechanism of thermal degradation. The samples with the additive nanoparticles homogeneously dispersed in the polymer matrix showed good mechanical properties. Addition of higher ZnO content contributes to the enhanced antibacterial activity of a material.

  17. Failures of the thermal barriers of 900 MWe reactor coolant pumps

    International Nuclear Information System (INIS)

    Peyrouty, P.

    1997-01-01

    This report describes the anomalies encountered in the thermal barriers of the reactor coolant pumps in French 900 MWe PWR power stations. In addition to this specific problem, it demonstrates how the fortuitous discovery of a fault during a sampling test enables faults of a generic nature to be revealed in components which were not subject to periodic inspection, the failure of which could seriously affect safety. This example demonstrates the risk represented by deterioration in areas which are not examined periodically and for which there are no preceding signs which would make early detection of deterioration possible. (author)

  18. Failures of the thermal barriers of 900 MWe reactor coolant pumps

    Energy Technology Data Exchange (ETDEWEB)

    Peyrouty, P.

    1996-12-01

    This report describes the anomalies encountered in the thermal barriers of the reactor coolant pumps in French 900 MWe PWR power stations. In addition to this specific problem, it demonstrates how the fortuitous discovery of a fault during a sampling test enabled faults of a generic nature to be revealed in components which were not subject to periodic inspection, the failure of which could seriously affect safety. This example demonstrates the risk which can be associated with the deterioration in areas which are not examined periodically and for which there are no preceding signs which would make early detection of deterioration possible.

  19. Failures of the thermal barriers of 900 MWe reactor coolant pumps

    International Nuclear Information System (INIS)

    Peyrouty, P.

    1996-01-01

    This report describes the anomalies encountered in the thermal barriers of the reactor coolant pumps in French 900 MWe PWR power stations. In addition to this specific problem, it demonstrates how the fortuitous discovery of a fault during a sampling test enabled faults of a generic nature to be revealed in components which were not subject to periodic inspection, the failure of which could seriously affect safety. This example demonstrates the risk which can be associated with the deterioration in areas which are not examined periodically and for which there are no preceding signs which would make early detection of deterioration possible

  20. Impact of impurity content on the sintering resistance and phase stability of dysprosia- and yttria-stabilized zirconia thermal barrier coatings

    Czech Academy of Sciences Publication Activity Database

    Curry, N.; Janikowski, W.; Pala, Zdeněk; Vilémová, Monika; Markocsan, N.

    2014-01-01

    Roč. 23, 1-2 (2014), s. 160-169 ISSN 1059-9630. [International Thermal Spray Conference (ITSC2013). Busan, 13.05.2013-15.05.2013] Institutional support: RVO:61389021 Keywords : atmospheric plasma spray (APS) * thermal and phase stability of coatings * thermal barrier coatings (TBCs) * thermal conductivity * zirconia Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.344, year: 2014 http://link.springer.com/article/10.1007%2Fs11666-013-0014-9/fulltext.html

  1. Deposition stress effects on thermal barrier coating burner rig life

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  2. Microstructural development in physical vapour-deposited partially stabilized zirconia thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Y. H. (Center for Intelligent Processing of Materials, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (United States)); Biederman, R.R. (Center for Intelligent Processing of Materials, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (United States)); Sisson, R.D. Jr. (Center for Intelligent Processing of Materials, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (United States))

    1994-10-01

    The effects of processing parameters of physical vapour deposition on the microstructure of partially stabilized zirconia (PSZ) thermal barrier coatings have been experimentally investigated. Emphasis has been placed on the crystallographic texture of the PSZ coatings and the microstructure of the top surface of the PSZ coatings as well as the metal-ceramic interface. The variations in the deposition chamber temperature, substrate thickness, substrate rotation and vapour incidence angle resulted in the observation of significant differences in the crystallographic texture and microstructure of the PSZ coatings. ((orig.))

  3. Role of Oxides and Porosity on High-Temperature Oxidation of Liquid-Fueled HVOF Thermal-Sprayed Ni50Cr Coatings

    Science.gov (United States)

    Song, B.; Bai, M.; Voisey, K. T.; Hussain, T.

    2017-02-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high-temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid-fueled high velocity oxy-fuel thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using oxygen content analysis, mercury intrusion porosimetry, scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). Short-term air oxidation tests (4 h) of freestanding coatings (without boiler steel substrate) in a thermogravimetric analyzer at 700 °C were performed to obtain the kinetics of oxidation of the as-sprayed coating. Long-term air oxidation tests (100 h) of the coated substrates were performed at same temperature to obtain the oxidation products for further characterization in detail using SEM/EDX and XRD. In all samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr2O3 was the main oxidation product on the surface of all three coatings. The coating with medium porosity and medium oxygen content has the best high-temperature oxidation performance in this study.

  4. Electronic interactions decreasing the activation barrier for the hydrogen electro-oxidation reaction

    International Nuclear Information System (INIS)

    Santos, Elizabeth; Schmickler, Wolfgang

    2008-01-01

    A unified model for electrochemical electron transfer reactions which explicitly accounts for the electronic structure of the electrode recently proposed by us is applied to the hydrogen oxidation reaction at different metal electrocatalysts. We focus on the changes produced in the transition state (saddle point) as a consequence of the interactions with d-bands. We discuss different empirical correlations between properties of the metal and catalytic activity proposed in the past. We show which role is played by the band structure of the different metals and its interaction with the molecule for decreasing the activation barrier. Finally, we demonstrate why some metals are better electrocatalysts for the hydrogen electro-oxidation reaction than others

  5. Enhancing mechanical and thermal properties of styrene-butadiene rubber/carboxylated acrylonitrile butadiene rubber blend by the usage of graphene oxide with diverse oxidation degrees

    Science.gov (United States)

    Xue, Xiaodong; Yin, Qing; Jia, Hongbing; Zhang, Xuming; Wen, Yanwei; Ji, Qingmin; Xu, Zhaodong

    2017-11-01

    Graphene oxide (GO) with various oxidation degrees were prepared through a modified Hummer's method by varying the dosage of oxidizing agent. Styrene-butadiene rubber (SBR)/carboxylated acrylonitrile butadiene rubber (XNBR)/GO nanocomposites were fabricated by aqueous-phase mixing of GO colloidal dispersion with SBR latex and a small loading of XNBR latex, followed by co-coagulation. Effects of GO oxidation degree on the morphology, structure, mechanical and thermal properties of nanocomposites were thoroughly investigated. The results showed that the mechanical strength of nanocomposites were enhanced with the increase of oxidation degree of GO. Especially, when the weight ratio of KMnO4 to graphite was 15/5, the tensile strength, tear strength and thermal conductivity of SBR/XNBR/GO filled with 3 phr (parts per hundred rubber) GO increased by 255.3%, 141.5% and 22.8%, respectively, compared to those of neat SBR/XNBR blend. In addition, the thermal stability and the solvent resistance of the nanocomposites were also improved significantly. This work suggested that GO with higher oxidation degree could effectively improve the properties of SBR/XNBR blend.

  6. Influence of thermal barrier effect of grain boundaries on bulk cascades in alpha-zirconium revealed by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yanan; Lai, Wensheng, E-mail: wslai@tsinghua.edu.cn

    2016-03-15

    The effect of grain boundaries (GBs) on bulk cascades in nano-structured alpha-zirconium has been studied by molecular dynamics (MD) simulations. It turns out that the existence of GBs increases the defect productivity in grains, suggesting that the GBs may act as a thermal barrier and postpone the annihilation of defects within grains. Moreover, it is found that the thermal barrier effect of GBs facilitates the shift of symmetric tilt GBs to the grain with higher temperature, and the smaller the tilt angle is, the easier the boundary shift will be. Thus, the influence of GBs on radiation damage in the nano-structured materials comes from the competition between damage increase in grains and defect annihilation at GBs.

  7. Saturated Resin Ectopic Regeneration by Non-Thermal Dielectric Barrier Discharge Plasma

    Directory of Open Access Journals (Sweden)

    Chunjing Hao

    2017-11-01

    Full Text Available Textile dyes are some of the most refractory organic compounds in the environment due to their complex and various structure. An integrated resin adsorption/Dielectric Barrier Discharge (DBD plasma regeneration was proposed to treat the indigo carmine solution. It is the first time to report ectopic regeneration of the saturated resins by non-thermal Dielectric Barrier Discharge. The adsorption/desorption efficiency, surface functional groups, structural properties, regeneration efficiency, and the intermediate products between gas and liquid phase before and after treatment were investigated. The results showed that DBD plasma could maintain the efficient adsorption performance of resins while degrading the indigo carmine adsorbed by resins. The degradation rate of indigo carmine reached 88% and the regeneration efficiency (RE can be maintained above 85% after multi-successive regeneration cycles. The indigo carmine contaminants were decomposed by a variety of reactive radicals leading to fracture of exocyclic C=C bond, which could cause decoloration of dye solution. Based on above results, a possible degradation pathway for the indigo carmine by resin adsorption/DBD plasma treatment was proposed.

  8. Axisymmetric pumping scheme for the thermal barrier in a tandem mirror

    International Nuclear Information System (INIS)

    Li, X.Z.

    1985-09-01

    An axisymmetric pumping scheme is proposed to pump the particles that trap in a thermal barrier without invoking the neutral beam or geodesic curvature. In this scheme a magnetic scraper is moved uni-directionally on the barrier peak to push the barely trapped particles into the central cell. We utilize a potential jump that forms at the peak field for sufficiently strong pumping. The non-collisional catching effect has to be limited by setting an upper limit on the scraping frequency of the magnetic bump. On the other hand, the dynamic stability of the pumping scheme sets a lower limit on the scraping frequency. Using the variational method, we are able to estimate the window between these two limits, which seems feasible for the Tara reactor parameter set. A primary calculation shows that the magnetic bump, ΔB/B is about 10 -4 and the scraping frequency, nu/sub sc/, is about 10 +5 sec -1 , which are similar to the parameters required for those for drift pumping

  9. Spray pyrolysis of doped-ceria barrier layers for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Szymczewska, Dagmara; Chrzan, Aleksander; Karczewski, Jakub

    2017-01-01

    Gadolinium doped ceria (Ce0.8Gd0.2O2 − x-CGO) layer fabricated by spray pyrolysis is investigated as the diffusion barrier for solid oxide fuel cell. It is deposited between the La0.6Sr0.4FeO3 − δ cathode and the yttria stabilized zirconia electrolyte to mitigate harmful interdiffusion...

  10. UV Enhanced Oxygen Response Resistance Ratio of ZnO Prepared by Thermally Oxidized Zn on Sapphire Substrate

    Directory of Open Access Journals (Sweden)

    Cheng-Chang Yu

    2013-01-01

    Full Text Available ZnO thin film was fabricated by thermally oxidized Zn at 600°C for 1 h. A surface containing nanostructured dumbbell and lines was observed by scanning electron microscope (SEM. The ZnO resistor device was formed after the following Ti/Au metallization. The device resistance was characterized at different oxygen pressure environment in the dark and under ultraviolet (UV light illumination coming from the mercury lamp with a short pass filter. The resistance increases with the increase of oxygen pressure. The resistance decreases and response increases with the increase of light intensity. Models considering the barrier height variation caused by the adsorbed oxygen related species were used to explain these results. The UV light illumination technology shows an effective method to enhance the detection response for this ZnO resistor oxygen sensor.

  11. Thermal deoxygenation of graphite oxide at low temperature

    International Nuclear Information System (INIS)

    Kampars, V; Legzdina, M

    2015-01-01

    Synthesis of graphene via the deoxygenation of the graphite oxide (GO) is a method for the large-scale production of this nanomaterial possessing exceptional mechanical, electrical and translucent properties. Graphite oxide sheet contains at least four different oxygen atoms connected to the Csp 3 and Csp 2 atoms of the sheet in the form of hydroxyl, epoxy, carboxyl or carbonyl groups. Some of these functional groups are located at the surface but others situated at the edges of the platelets. To obtain the graphene nanoplatelets or the few-layer graphene the oxygen functionalities must be removed. Exfoliation and deoxygenation can be accomplished by the use of chemical reductants or heat. Thermal deoxygenation as greener and simpler approach is more preferable over chemical reduction approach. Usually a considerable mass loss of GO observed upon heating at temperatures starting at 200 °C and is attributed to the deoxygenation process. In order to avoid the defects of the obtained graphene sheets it is very important to find the methods for lowering the deoxygenation temperature of GO. Herein, we have investigated the way treatment of the Hummer's synthesis product with acetone and methyl tert-butyl ether under ultrasonication in order to lower the thermal stability of the graphite oxide and its deoxygenation temperature. The obtained results indicate that treatment of the graphite oxide with solvents mentioned above substantially reduces the reduction and exfoliation temperature (130 °C) under ambient atmosphere. The investigation of the composition of evolved gases by hyphenated Pyr/GC/MS method at different experimental conditions under helium atmosphere shows that without the expected H 2 O, CO and CO 2 also sulphur dioxide and acetone has been released

  12. Oxygen transport and GeO2 stability during thermal oxidation of Ge

    Science.gov (United States)

    da Silva, S. R. M.; Rolim, G. K.; Soares, G. V.; Baumvol, I. J. R.; Krug, C.; Miotti, L.; Freire, F. L.; da Costa, M. E. H. M.; Radtke, C.

    2012-05-01

    Oxygen transport during thermal oxidation of Ge and desorption of the formed Ge oxide are investigated. Higher oxidation temperatures and lower oxygen pressures promote GeO desorption. An appreciable fraction of oxidized Ge desorbs during the growth of a GeO2 layer. The interplay between oxygen desorption and incorporation results in the exchange of O originally present in GeO2 by O from the gas phase throughout the oxide layer. This process is mediated by O vacancies generated at the GeO2/Ge interface. The formation of a substoichiometric oxide is shown to have direct relation with the GeO desorption.

  13. Oxidation kinetics of Si and SiGe by dry rapid thermal oxidation, in-situ steam generation oxidation and dry furnace oxidation

    Science.gov (United States)

    Rozé, Fabien; Gourhant, Olivier; Blanquet, Elisabeth; Bertin, François; Juhel, Marc; Abbate, Francesco; Pribat, Clément; Duru, Romain

    2017-06-01

    The fabrication of ultrathin compressively strained SiGe-On-Insulator layers by the condensation technique is likely a key milestone towards low-power and high performances FD-SOI logic devices. However, the SiGe condensation technique still requires challenges to be solved for an optimized use in an industrial environment. SiGe oxidation kinetics, upon which the condensation technique is founded, has still not reached a consensus in spite of various studies which gave insights into the matter. This paper aims to bridge the gaps between these studies by covering various oxidation processes relevant to today's technological needs with a new and quantitative analysis methodology. We thus address oxidation kinetics of SiGe with three Ge concentrations (0%, 10%, and 30%) by means of dry rapid thermal oxidation, in-situ steam generation oxidation, and dry furnace oxidation. Oxide thicknesses in the 50 Å to 150 Å range grown with oxidation temperatures between 850 and 1100 °C were targeted. The present work shows first that for all investigated processes, oxidation follows a parabolic regime even for thin oxides, which indicates a diffusion-limited oxidation regime. We also observe that, for all investigated processes, the SiGe oxidation rate is systematically higher than that of Si. The amplitude of the variation of oxidation kinetics of SiGe with respect to Si is found to be strongly dependent on the process type. Second, a new quantitative analysis methodology of oxidation kinetics is introduced. This methodology allows us to highlight the dependence of oxidation kinetics on the Ge concentration at the oxidation interface, which is modulated by the pile-up mechanism. Our results show that the oxidation rate increases with the Ge concentration at the oxidation interface.

  14. Heat recovery investigation from dryer–thermal oxidizer system in corn-ethanol plants

    International Nuclear Information System (INIS)

    Olszewski, Pawel

    2015-01-01

    In recent years, annual corn ethanol production in the U.S. has exceeded 13,298,000,000 gallons. However, net energy balance for this sector became a subject of controversy in many discussions. The aim of the presented research is an investigation of thermal improvement opportunities in a corn ethanol plant. For this purpose, a complex mathematical model was developed for a dryer–thermal oxidizer system. Three variants were subjected thermodynamic analyses: one state of the art system and two proposed system modifications. The properties of humid gas, a mixture of combustion products and moisture evaporated from distiller's grain, were updated based on the steam properties according to the formulation proposed by the International Association for the Properties of Water and Steam. All calculations were performed by uniquely-developed C++ code. The results indicate major potential for improvement in the following areas: (i) water recovery from humid gas; (ii) heat recovery from moisture condensation – max. 44% of total primary energy usage (TPEU); and (iii) fuel savings by reduction of humid gas flow through a thermal oxidizer – max. 1.4% of TPEU. Also the presented analysis can be a starting point for further modifications in real corn ethanol manufacturing applications, leading towards pilot system implementation. - Highlights: • Mathematical model for dryer–oxidizer system in a corn ethanol plant was proposed. • Three configurations were discussed: with intercooler, regenerator, and recuperator. • Recovery rate of water condensed at various conditions and locations was quantified. • Heat recovery possibilities at various temperatures and locations have been assessed. • Energy savings in thermal oxidizer due to preliminary condensation were calculated

  15. Non-monotonic probability of thermal reversal in thin-film biaxial nanomagnets with small energy barriers

    Directory of Open Access Journals (Sweden)

    N. Kani

    2017-05-01

    Full Text Available The goal of this paper is to investigate the short time-scale, thermally-induced probability of magnetization reversal for an biaxial nanomagnet that is characterized with a biaxial magnetic anisotropy. For the first time, we clearly show that for a given energy barrier of the nanomagnet, the magnetization reversal probability of an biaxial nanomagnet exhibits a non-monotonic dependence on its saturation magnetization. Specifically, there are two reasons for this non-monotonic behavior in rectangular thin-film nanomagnets that have a large perpendicular magnetic anisotropy. First, a large perpendicular anisotropy lowers the precessional period of the magnetization making it more likely to precess across the x^=0 plane if the magnetization energy exceeds the energy barrier. Second, the thermal-field torque at a particular energy increases as the magnitude of the perpendicular anisotropy increases during the magnetization precession. This non-monotonic behavior is most noticeable when analyzing the magnetization reversals on time-scales up to several tens of ns. In light of the several proposals of spintronic devices that require data retention on time-scales up to 10’s of ns, understanding the probability of magnetization reversal on the short time-scales is important. As such, the results presented in this paper will be helpful in quantifying the reliability and noise sensitivity of spintronic devices in which thermal noise is inevitably present.

  16. Energy barriers in patterned media

    NARCIS (Netherlands)

    de Vries, Jeroen

    2013-01-01

    Due to the fact that thermal activation aids in overcoming the energy barrier, the required field for reversal varies from instance to instance for the same island. This thermally induced switching field distribution can be used to determine the difference in energy barrier of magneticallyweak and

  17. Ionic Conductance, Thermal and Morphological Behavior of PEO-Graphene Oxide-Salts Composites

    Directory of Open Access Journals (Sweden)

    Mohammad Saleem Khan

    2015-01-01

    Full Text Available Thin films composites of poly(ethylene oxide-graphene oxide were fabricated with and without lithium salts by solvent cast method. The ionic conductivity of these composites was studied at various concentrations of salt polymer-GO complexes and at different temperatures. The effects of temperature and graphene oxide concentration were measured from Arrhenius conductance plots. It is shown that the addition of salts in pure PEO increases conductance many times. The graphene oxide addition has enhanced the conductance approximately 1000 times as compared to that of pure PEO. The activation energies were determined for all the systems which gave higher values for pure PEO and the value decreased with the addition of LiClO4 and LiCl salts and further decreases with the addition of graphene oxide. The composite has also lowered the activation energy values which mean that incorporation of GO in PEO has decreased crystallinity and the amorphous region has increased the local mobility of polymer chains resulting in lower activation energies. SEM analysis shows uniform distribution of GO in polymer matrix. The thermal stability studies reveal that incorporation of GO has somewhat enhanced the thermal stability of the films.

  18. Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition

    Energy Technology Data Exchange (ETDEWEB)

    Menges, F.; Spieser, M.; Riel, H.; Gotsmann, B., E-mail: bgo@zurich.ibm.com [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Dittberner, M. [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Novotny, L. [Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Passarello, D.; Parkin, S. S. P. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States)

    2016-04-25

    The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-based scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.

  19. Measurement of the diffusion length of thermal neutrons in the beryllium oxide

    International Nuclear Information System (INIS)

    Koechlin, J.C.; Martelly, J.; Duggal, V.P.

    1955-01-01

    The diffusion length of thermal neutrons in the beryllium oxide has been obtained while studying the spatial distribution of the neutrons in a massive parallelepiped of this matter placed before the thermal column of the reactor core of Saclay. The mean density of the beryllium oxide (BeO) is 2,95 gr/cm 3 , the mean density of the massif is 2,92 gr/cm 3 . The value of the diffusion length, deducted of the done measures, is: L = 32,7 ± 0,5 cm (likely gap). Some remarks are formulated about the influence of the spectral distribution of the neutrons flux used. (authors) [fr

  20. Thermal oxidation of reactively sputtered amorphous W80N20 films

    International Nuclear Information System (INIS)

    Vu, Q.T.; Pokela, P.J.; Garden, C.L.; Kolawa, E.; Raud, S.; Nicolet, M.

    1990-01-01

    The oxidation behavior of reactively sputtered amorphous tungsten nitride of composition W 80 N 20 was investigated in dry and wet oxidizing ambient in the temperature range of 450 degree C--575 degree C. A single WO 3 oxide phase is observed. The growth of the oxide follows a parabolic time dependence which is attributed to a process controlled by the diffusivity of the oxidant in the oxide. The oxidation process is thermally activated with an activation energy of 2.5±0.05 eV for dry ambient and 2.35±0.05 eV for wet ambient. The pre-exponential factor of the reaction constant for dry ambient is 1.1x10 21 A 2 /min; that for wet ambient is only about 10 times less and is equal to 1.3x10 20 A 2 /min

  1. Thermal analysis of the effect of thick thermal barrier coatings on diesel engine performance

    International Nuclear Information System (INIS)

    Hoag, K.L.; Frisch, S.R.; Yonushonis, T.M.

    1986-01-01

    The reduction of heat rejection from the diesel engine combustion chamber has been the subject of a great deal of focus in recent years. In the pursuit of this goal, Cummins Engine Company has received a contract from the Department of Energy for the development of thick thermal barrier coatings for combustion chamber surfaces. This contract involves the analysis of the impact of coatings on diesel engine performance, bench test evaluation of various coating designs, and single cylinder engine tests. The efforts reported in this paper center on the analysis of the effects of coatings on engine performance and heat rejection. For this analysis the conventional water cooled engine was compared with an engine having limited oil cooling, and utilizing zirocnia coated cylinder had firedecks and piston crowns. The analysis showed little or no benefits of similarly coating the valves or cylinder liner

  2. AN ANALYSIS OF THE THERMAL AND MECHANICAL BEHAVIOR OF ENGINEERED BARRIERS IN A HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY

    Directory of Open Access Journals (Sweden)

    S. KWON

    2013-02-01

    Full Text Available Adequate design of engineered barriers, including canister, buffer and backfill, is important for the safe disposal of high-level radioactive waste. Three-dimensional computer simulations were carried out under different condition to examine the thermal and mechanical behavior of engineered barriers and rock mass. The research looked at five areas of importance, the effect of the swelling pressure, water content of buffer, density of compacted bentonite, emplacement type and the selection of failure criteria. The results highlighted the need to consider tensile stress in the outer shell of a canister due to thermal expansion of the canister and the swelling pressure from the buffer for a more reliable design of an underground repository system. In addition, an adequate failure criterion should be used for the buffer and backfill.

  3. An analysis of the thermal and mechanical behavior of engineered barriers in a high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Kwon, S.; Cho, W. J.; Lee, J. O.

    2013-01-01

    Adequate design of engineered barriers, including canister, buffer and backfill, is important for the safe disposal of high level radioactive waste. Three-dimensional computer simulations were carried out under different condition to examine the thermal and mechanical behavior of engineered barriers and rock mass. The research looked at five areas of importance, the effect of the swelling pressure, water content of buffer, density of compacted bentonite, emplacement type and the selection of failure criteria. The results highlighted the need to consider tensile stress in the outer shell of a canister due to thermal expansion of the canister and the swelling pressure from the buffer for a more reliable design of an underground repository system. In addition, an adequate failure criterion should be used for the buffer and backfill.

  4. Magnetron sputtered gadolinia-doped ceria diffusion barriers for metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Sønderby, Steffen; Klemensø, Trine; Christensen, Bjarke H.

    2014-01-01

    Gadolinia-doped ceria (GDC) thin films are deposited by reactive magnetron sputtering in an industrial-scale setup and implemented as barrier layers between the cathode and electrolyte in metal-based solid oxide fuel cells consisting of a metal support, an electrolyte of ZrO2 co-doped with Sc2O3...

  5. Oxidation behavior of Hf-modified platinum aluminide coatings during thermal cycling

    Directory of Open Access Journals (Sweden)

    Liya Ye

    2018-02-01

    Full Text Available Platinum aluminide coatings with different Hf contents were fabricated by using HfCl4. The oxidation kinetics and the rumpling behavior of oxide scale were investigated. After thermal cycling, the coating with 0.46 wt% Hf showed least weight gain. With the increase of Hf content, rumpling extent of the scale decreased. Meanwhile, HfO2 preferentially formed in the scale resulting in the increase of scale thickness. The oxidation of excessive Hf even caused the spallation of the scale. The results in the present study indicate that although Hf plays an important role in decreasing rumpling extent of TGO, the oxidation of Hf decreases the adhesion of the scale. Keywords: Pt-Al coating, Hf, Oxidation, Rumpling

  6. Measurement of thermal conductivity of the oxide coating on autoclaved monel-400

    International Nuclear Information System (INIS)

    Dua, A.K.; George, V.C.; Agarwala, R.P.

    1982-01-01

    Thermal conductivity of the oxide coating on monel-400 has been measured by a direct method. The oxide coating is applied on an electrically conducting wire having stable characteristics. The wire is placed in a constant temperature bath and a constant direct current is passed through it. The wire gets heated and loses heat to the surrounding. Temperature is measured by considering it as a resistance thermometer. A convection heat transfer coefficient, which is difficult to measure experimentally but is involved in the analytical expression for thermal conductivity, is eliminated by connecting a second uncoated wire of a noble metal having similar surface finish as that of the coated wire in series with it. The accuracy of the method is nearly six percent. However, the method is not easily applicable for very thin (thickness <= 1μ), highly porous coatings and materials having relatively large thermal conductivity. (M.G.B.)

  7. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.

    Science.gov (United States)

    Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T

    2016-02-01

    The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Potential Health Implications of the Consumption of Thermally-Oxidized Cooking Oils – a Review

    Directory of Open Access Journals (Sweden)

    Falade Ayodeji Osmund

    2017-06-01

    Full Text Available Cooking oils are an integral part of a human diet as they are used in almost all types of culinary practices. They serve as sources of lipids with a significant nutritive value and health benefits which can be attributed to their fatty acid compositions and biological antioxidants. However, cooking oils are usually subjected to thermal oxidation which occurs when fresh cooking oil is heated at high temperatures during various food preparations. Repeated use of cooking oils in the commercial food industry is also common to maximize profit. Thermal oxidation of edible oils had since attracted great attention of nutritionist and researchers given the deteriorative effect such as generation of very cytotoxic compounds, loss of carotenoid, phenolics and vitamins thus reducing the overall antioxidant properties of the oils. Furthermore, several in vivo studies had suggested that consumption of thermally-oxidized cooking oils might not be healthy as it might negatively influence the lipid profile (increased low density lipoprotein (LDL, decreased high density lipoprotein (HDL and elevated cholesterol level, haematological system (alteration in concentration of heamoglobin (Hb, packed cell volume (PCV, white blood cell (WBC count, neutrophil and lymphocyte counts, kidney function, and induce lipid peroxidation and oxidative stress which have been associated with the pathogenesis of various degenerative diseases. Therefore, thermal oxidation seems not to provide any health benefit, as it deteriorates cooking oils and the consumption of the oils may predispose consumers to various disease conditions that may ensue from free radical generation, thereby having deleterious effect on human health.

  9. Improvement of Self-Heating of Indium Gallium Zinc Aluminum Oxide Thin-Film Transistors Using Al2O3 Barrier Layer

    Science.gov (United States)

    Jian, Li-Yi; Lee, Hsin-Ying; Lin, Yung-Hao; Lee, Ching-Ting

    2018-02-01

    To study the self-heating effect, aluminum oxide (Al2O3) barrier layers of various thicknesses have been inserted between the channel layer and insulator layer in bottom-gate-type indium gallium zinc aluminum oxide (IGZAO) thin-film transistors (TFTs). Each IGZAO channel layer was deposited on indium tin oxide (ITO)-coated glass substrate by using a magnetron radiofrequency cosputtering system with dual targets composed of indium gallium zinc oxide (IGZO) and Al. The 3 s orbital of Al cation provided an extra transport pathway and widened the conduction-band bottom, thus increasing the electron mobility of the IGZAO films. The Al-O bonds were able to sustain the oxygen stability of the IGZAO films. The self-heating behavior of the resulting IGZAO TFTs was studied by Hall measurements on the IGZAO films as well as the electrical performance of the IGZAO TFTs with Al2O3 barrier layers of various thicknesses at different temperatures. IGZAO TFTs with 50-nm-thick Al2O3 barrier layer were stressed by positive gate bias stress (PGBS, at gate-source voltage V GS = 5 V and drain-source voltage V DS = 0 V); at V GS = 5 V and V DS = 10 V, the threshold voltage shifts were 0.04 V and 0.2 V, respectively, much smaller than for the other IGZAO TFTs without Al2O3 barrier layer, which shifted by 0.2 V and 1.0 V when stressed under the same conditions.

  10. Solid Waste Decontamination by Thermal Desorption and Catalytic Oxidation Methods

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga; Topka, Pavel; Soukup, Karel; Jirátová, Květa; Váňová, H.; Kaštánek, František

    2014-01-01

    Roč. 68, č. 9 (2014), s. 1279-1282 ISSN 0366-6352 R&D Projects: GA MPO FR-TI1/059 Institutional support: RVO:67985858 Keywords : thermal desorption * catalytic oxidation * soil decontamination Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  11. Numerical investigation of influence thermal preparation coal on nitric oxides formation in combustion process

    Energy Technology Data Exchange (ETDEWEB)

    Chernetskaya, N. [Siberian Federal Univ., Krasnoyarsk (Russian Federation); Chernetsky, M.; Dekterev, A. [Siberian Federal Univ., Krasnoyarsk (Russian Federation); Kutateladze Institute of Thermophysics, Novosibirsk (Russian Federation)

    2013-07-01

    Emissions of nitrogen oxides from coal combustion are a major environmental problem because they have been shown to contribute to the formation of acid rain and photochemical smog. Coal thermalpreparation before furnace delivery is effective method to reduce NOx emissions, shown by experiments in small-scale facilities (Babiy VI, Alaverdov PI, Influence of thermal preparation pulverized coal on nitric oxides outlet for combustion different metamorphized coal. ATI, 1983). This paper presents the mathematical model of burning thermal preparation coal. Validation of the model was carried out on laboratory-scale plant of All-Russia thermal engineering institute. Modeling of low-emissive burner with preliminary heating coal dust is made for the purpose of search of burner optimal constructions which provides low concentration of nitric oxides in the boiler. For modeling are used in-house CFD code ''{sigma}Flow'' (Dekterev AA, Gavrilov AA, Harlamov EB, Litvintcev KY, J Comput Technol 8(Part 1):250-255, 2003).

  12. Iridescent cellulose nanocrystal/polyethylene oxide composite films with low coefficient of thermal expansion

    Science.gov (United States)

    Jairo A. Diaz; Julia L. Braun; Robert J. Moon; Jeffrey P. Youngblood

    2015-01-01

    Simultaneous control over optical and thermal properties is particularly challenging and highly desired in fields like organic electronics. Here we incorporated cellulose nanocrystals (CNCs) into polyethylene oxide (PEO) in an attempt to preserve the iridescent CNC optical reflection given by their chiral nematic organisation, while reducing the composite thermal...

  13. Thermal damping effect due to a green barrier which includes Arundo donax as bioclimatic element in buildings

    Directory of Open Access Journals (Sweden)

    P. Rodríguez-Salinas

    2017-09-01

    Full Text Available Among the main environmental impacts of the operation of residential buildings are those due to greenhouse gases generation as a result of electric consumption of air conditioning systems. The use of vegetation systems in residential buildings represents an alternative to reduce this energy consumption. Green vegetation systems barriers are often used as protection against winds, but recently they are also being used as acoustic dampers. This work explores their use as thermal insulation systems for buildings. Specifically, we report the behavior of an Arundo donax green barrier as a bioclimatic element. The results are analyzed based on indoor and outdoor temperature measurement in prototype buildings, in function of the green barrier presence. Additionally Arundo donax transpiration under extreme environmental conditions was determined.

  14. Role of the SiO2 buffer layer thickness in the formation of Si/SiO2/nc-Ge/SiO2 structures by dry oxidation

    International Nuclear Information System (INIS)

    Kling, A.; Ortiz, M.I.; Prieto, A.C.; Rodriguez, A.; Rodriguez, T.; Jimenez, J.; Ballesteros, C.; Soares, J.C.

    2006-01-01

    Nanomemories, containing Ge-nanoparticles in a SiO 2 matrix, can be produced by dry thermal oxidation of a SiGe layer deposited onto a Si-wafer with a barrier SiO 2 layer on its top. Rutherford backscattering spectrometry has been used to characterize the kinetics of the oxidation process, the composition profile of the growing oxide, the Ge-segregation and its diffusion into the barrier oxide in samples with thin and thick barrier oxide layers. The Ge segregated during the oxidation of the SiGe layer diffuses into the barrier oxide. In the first case the diffusion through the thin oxide is enhanced by the proximity of the substrate that acts as a sink for the Ge, resulting in the formation of a low Ge concentration SiGe layer in the surface of the Si-wafer. In the second case, the Ge-diffusion progresses as slowly as in bulk SiO 2 . Since barrier oxide layers as thin as possible are favoured for device fabrication, the structures should be oxidized at lower temperatures and the initial SiGe layer thickness reduced to minimize the Ge-diffusion

  15. Improved thermal stability and oxidation resistance of Al–Ti–N coating by Si addition

    International Nuclear Information System (INIS)

    Chen, Li; Yang, Bing; Xu, Yuxiang; Pei, Fei; Zhou, Liangcai; Du, Yong

    2014-01-01

    Addition of Si is very effective in upgrading the machining performance and thermal properties of Al–Ti–N coating. Here, we concentrate on the thermal stability and oxidation resistance of Al–Ti–Si–N coating. Alloying with Si favors the growth of wurtzite phase, and thereby causes a drop in hardness from ∼ 34.5 to 28.7 GPa. However, Si-containing coating retards the formation of w-AlN during thermal annealing, and thereby behaves a high hardness value of ∼ 31.3 GPa after annealing at T a = 1100 °C. After 10 h exposure in air at 850 °C, Al–Ti–N coating is fully oxidized. Incorporation of Si significantly improves the oxidation resistance of Al–Ti–N due to the combined effects with the promoted formation of Al-oxide rich top-scale and retarded transformation of anatase (a-) TiO 2 into rutile (r-) TiO 2 , where only ∼ 1.43 μm oxide scale is shown after oxidation at 1100 °C for 15 h. Noticeable is that the worst oxidation resistance of Al–Ti–Si–N coating in the temperature range from 800 to 1100 °C is obtained at 950 °C with oxide scale of ∼ 1.76 μm due to the fast formation of r-TiO 2 . Additionally, a pre-oxidation at 1000 °C has a positive effect on the oxidation resistance of Al–Ti–Si–N coating, which is attributed to the formation of Al-oxide rich top-scale, and thus inhibits the outward diffusion of metal atoms and inward diffusion of O. - Highlights: • Si as a substitutional solid solution and via the formation of a-Si 3 N 4 coexists. • Si addition favors the growth of wurtzite phase and causes a decreased hardness. • Alloying with Si improves the oxidation resistance of AlTiN. • AlTiSiN behaves the worst oxidation resistance at 950 °C from 800 to 1100 °C. • A pre-oxidation at 1000 °C improves the oxidation resistance of AlTiSiN coating

  16. Characteristics of thermally reduced graphene oxide and applied for dye-sensitized solar cell counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Yuan, E-mail: cyho@cycu.edu.tw [Department of Mechanical Engineering, Chung Yuan Christian University, Chung-Li, Taiwan (China); Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung Yuan Christian University, Chung-Li, Taiwan (China); Wang, Hong-Wen [Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung Yuan Christian University, Chung-Li, Taiwan (China); Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan (China)

    2015-12-01

    Graphical abstract: Experimental process: (1) graphite oxidized to graphene oxide; (2) thermal reduction from graphene oxide to graphene; (3) applying to DSSC counter electrode. - Highlights: • Intercalated defects were eliminated by increasing reduction temperature of GO. • High reduction temperature of tGP has lower resistance, high the electron lifetime. • Higher thermal reduction of GO proposes electrocatalytic properties. • DSSC using tGP{sub 250} as counter electrode has energy conversion efficiency of 3.4%. - Abstract: Graphene oxide (GO) was synthesized from a flake-type of graphite powder, which was then reduced to a few layers of graphene sheets using the thermal reduction method. The surface morphology, phase crystallization, and defect states of the reduced graphene were determined from an electron microscope equipped with an energy dispersion spectrometer, X-ray diffraction, Raman spectroscopy, and infrared spectra. After graphene formation, the intercalated defects that existed in the GO were removed, and it became crystalline by observing impurity changes and d-spacing. Dye-sensitized solar cells, using reduced graphene as the counter electrode, were fabricated to evaluate the electrolyte activity and charge transport performance. The electrochemical impedance spectra showed that increasing the thermal reduction temperature could achieve faster electron transport and longer electron lifetime, and result in an energy conversion efficiency of approximately 3.4%. Compared to the Pt counter electrode, the low cost of the thermal reduction method suggests that graphene will enjoy a wide range of potential applications in the field of electronic devices.

  17. Characteristics of thermally reduced graphene oxide and applied for dye-sensitized solar cell counter electrode

    International Nuclear Information System (INIS)

    Ho, Ching-Yuan; Wang, Hong-Wen

    2015-01-01

    Graphical abstract: Experimental process: (1) graphite oxidized to graphene oxide; (2) thermal reduction from graphene oxide to graphene; (3) applying to DSSC counter electrode. - Highlights: • Intercalated defects were eliminated by increasing reduction temperature of GO. • High reduction temperature of tGP has lower resistance, high the electron lifetime. • Higher thermal reduction of GO proposes electrocatalytic properties. • DSSC using tGP 250 as counter electrode has energy conversion efficiency of 3.4%. - Abstract: Graphene oxide (GO) was synthesized from a flake-type of graphite powder, which was then reduced to a few layers of graphene sheets using the thermal reduction method. The surface morphology, phase crystallization, and defect states of the reduced graphene were determined from an electron microscope equipped with an energy dispersion spectrometer, X-ray diffraction, Raman spectroscopy, and infrared spectra. After graphene formation, the intercalated defects that existed in the GO were removed, and it became crystalline by observing impurity changes and d-spacing. Dye-sensitized solar cells, using reduced graphene as the counter electrode, were fabricated to evaluate the electrolyte activity and charge transport performance. The electrochemical impedance spectra showed that increasing the thermal reduction temperature could achieve faster electron transport and longer electron lifetime, and result in an energy conversion efficiency of approximately 3.4%. Compared to the Pt counter electrode, the low cost of the thermal reduction method suggests that graphene will enjoy a wide range of potential applications in the field of electronic devices.

  18. Thermally oxidized aluminum as catalyst-support layer for vertically aligned single-walled carbon nanotube growth using ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Azam, Mohd Asyadi, E-mail: asyadi@jaist.ac.jp [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Fujiwara, Akihiko [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo, Hyogo 679-5198 (Japan); Shimoda, Tatsuya [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2011-11-01

    Characteristics and role of Al oxide (Al-O) films used as catalyst-support layer for vertical growth of single-walled carbon nanotubes (SWCNTs) were studied. EB-deposited Al films (20 nm) were thermally oxidized at 400 deg. C (10 min, static air) to produce the most appropriate surface structure of Al-O. Al-O catalyst-support layers were characterized using various analytical measurements, i.e., atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and spectroscopy ellipsometry (SE). The thermally oxidized Al-O has a highly roughened surface, and also has the most suitable surface chemical states compared to other type of Al-O support layers. We suggest that the surface of thermally oxidized Al-O characterized in this work enhanced Co catalyst activity to promote the vertically aligned SWCNT growth.

  19. Mechanical properties of EB-PVD ZrO2 thermal barrier coatings

    International Nuclear Information System (INIS)

    Held, Carolin

    2014-01-01

    In this work, the elastic properties of thermal barrier coatings which were produced by electron-beam enhanced physical vapour deposition were investigated, as well as the dependency of the properties on the sample microstructure, the thermal treatment and the test method. For this purpose, not only commercial coatings were characterized, but also special sample material was used which consists of a 1 mm thick layer of EB-PVD TBC. This material was isothermally heat treated for different times at 950 C, 1100 C and 1200 C and then tested in a specially developed miniaturized bend test and by dynamic mechanical analysis. The sample material was tested by nanoindentation in order to measure the Young's modulus on a local scale, and the porosity of the samples was determined by microstructure analysis and porosimetry. The decrease of porosity could be connected with sintering and subsequent stiffening of the material. The test results are dependent on the tested volume. A small test volume leads to larger measured Young's moduli, while a large test volume yields lower values. The test volume also has an influence on the increase of stiffness during thermal exposure. With a small tested volume, a quicker increase of the Young's modulus was registered, which could be associated to the sintering of local structures.

  20. Investigation of NOx Reduction by Low Temperature Oxidation Using Ozone Produced by Dielectric Barrier Discharge

    DEFF Research Database (Denmark)

    Stamate, Eugen; Irimiea, Cornelia; Salewski, Mirko

    2013-01-01

    NOx reduction by low temperature oxidation using ozone produced by a dielectric barrier discharge generator is investigated for different process parameters in a 6m long reactor in serpentine arrangement using synthetic dry flue gas with NOx levels below 500 ppm, flows up to 50 slm and temperatures...

  1. Influence of thermal stress on the relative permittivity of the AlGaN barrier layer in an AlGaN/GaN heterostructure Schottky contacts

    International Nuclear Information System (INIS)

    Lü Yuan-Jie; Lin Zhao-Jun; Zhang Yu; Meng Ling-Guo; Cao Zhi-Fang; Luan Chong-Biao; Chen Hong; Wang Zhan-Guo

    2011-01-01

    Ni Schottky contacts on AlGaN/GaN heterostructures were fabricated. Some samples were thermally treated in a furnace with N 2 ambience at 600 °C for different times (0.5 h, 4.5 h, 10.5 h, 18 h, 33 h, 48 h, and 72 h), the others were thermally treated for 0.5 h at different temperatures (500 °C, 600 °C, 700 °C, and 800 °C). With the measured current—voltage (I—V) and capacitance—voltage (C—V) curves and by self-consistently solving Schrodinger's and Poisson's equations, we found that the relative permittivity of the AlGaN barrier layer was related to the piezoelectric and the spontaneous polarization of the AlGaN barrier layer. The relative permittivity was in proportion to the strain of the AlGaN barrier layer. The relative permittivity and the strain reduced with the increased thermal stress time until the AlGaN barrier totally relaxed (after 18 h at 600 °C in the current study), and then the relative permittivity was almost a constant with the increased thermal stress time. When the sample was treated at 800 °C for 0.5 h, the relative permittivity was less than the constant due to the huge diffusion of the contact metal atoms. Considering the relation between the relative permittivity of the AlGaN barrier layer and the converse piezoelectric effect, the conclusion can be made that a moderate thermal stress can restrain the converse piezoelectric effect and can improve the stability of AlGaN/GaN heterostructure devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Development of Composite for Thermal Barriers Reinforced by Ceramic Fibers

    Directory of Open Access Journals (Sweden)

    Ondřej Holčapek

    2018-01-01

    Full Text Available The paper introduces the development process of fiber-reinforced composite with increased resistance to elevated temperatures, which could be additionally increased by the hydrothermal curing. However, production of these composites is extremely energy intensive, and that is why the process of the design reflects environmental aspects by incorporation of waste material—fine ceramic powder applied as cement replacement. Studied composite materials consisted of the basalt aggregate, ceramic fibers applied up to 8% by volume, calcium-aluminous cement (CAC, ceramic powder up to 25% by mass (by 5% as cement replacement, plasticizer, and water. All studied mixtures were subjected to thermal loading on three thermal levels: 105°C, 600°C, and 1000°C. Experimental assessment was performed in terms of both initial and residual material properties; flow test of fresh mixtures, bulk density, compressive strength, flexural strength, fracture energy, and dynamic modulus of elasticity were investigated to find out an optimal dosage of ceramic fibers. Resulting set of composites containing 4% of ceramic fibers with various modifications by ceramic powder was cured under specific hydrothermal condition and again subjected to elevated temperatures. One of the most valuable benefits of additional hydrothermal curing of the composites lies in the higher residual mechanical properties, what allows successful utilization of cured composite as a thermal barrier in civil engineering. Mixtures containing ceramic powder as cement substitute exhibited after hydrothermal curing increase of residual flexural strength about 35%; on the other hand, pure mixture exhibited increase up to 10% even higher absolute values.

  3. Legislative measures for suppressing emission of nitrogen oxides from thermal power stations

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1987-11-01

    Reviews measures taken by some countries to control emission of nitrogen oxides from thermal power stations run on solid fuels, mazout and gas. Refers to maximum permissible concentrations of nitrogen oxides in USA (100 mg/m/sup 3/), Canada (460 mg/m/sup 3/), Japan (41-62 mg/m/sup 3/) and several European countries. Discusses legislative measures in FRG (Federal Regulations BImSchG), particularly Instruction No. 13 BImSchV concerning large boilers run on solid fuels or mazout (continuous monitoring of nitrogen oxide emission into atmosphere, equipping old boilers with means of reducing nitrogen oxide emission, reduction of acid rain). Gives maximum permissible concentrations of nitrogen oxides for new boilers agreed by various countries. 5 refs.

  4. Magnetic Nanoparticles Cross the Blood-Brain Barrier: When Physics Rises to a Challenge

    Directory of Open Access Journals (Sweden)

    Maria Antònia Busquets

    2015-12-01

    Full Text Available The blood-brain barrier is a physical and physiological barrier that protects the brain from toxic substances within the bloodstream and helps maintain brain homeostasis. It also represents the main obstacle in the treatment of many diseases of the central nervous system. Among the different approaches employed to overcome this barrier, the use of nanoparticles as a tool to enhance delivery of therapeutic molecules to the brain is particularly promising. There is special interest in the use of magnetic nanoparticles, as their physical characteristics endow them with additional potentially useful properties. Following systemic administration, a magnetic field applied externally can mediate the capacity of magnetic nanoparticles to permeate the blood-brain barrier. Meanwhile, thermal energy released by magnetic nanoparticles under the influence of radiofrequency radiation can modulate blood-brain barrier integrity, increasing its permeability. In this review, we present the strategies that use magnetic nanoparticles, specifically iron oxide nanoparticles, to enhance drug delivery to the brain.

  5. Ultrasound assisted, thermally activated persulfate oxidation of coal tar DNAPLs.

    Science.gov (United States)

    Peng, Libin; Wang, Li; Hu, Xingting; Wu, Peihui; Wang, Xueqing; Huang, Chumei; Wang, Xiangyang; Deng, Dayi

    2016-11-15

    The feasibility of ultrasound assisted, thermally activated persulfate for effective oxidation of twenty 2-6 ringed coal tar PAHs in a biphasic tar/water system and a triphasic tar/soil/water system were investigated and established. The results indicate that ultrasonic assistance, persulfate and elevated reaction temperature are all required to achieve effective oxidation of coal tar PAHs, while the heating needed can be provided by ultrasonic induced heating as well. Further kinetic analysis reveals that the oxidation of individual PAH in the biphasic tar/water system follows the first-order kinetics, and individual PAH oxidation rate is primary determined by the mass transfer coefficients, tar/water interfacial areas, the aqueous solubility of individual PAH and its concentration in coal tar. Based on the kinetic analysis and experimental results, the contributions of ultrasound, persulfate and elevated reaction temperature to PAHs oxidation were characterized, and the effects of ultrasonic intensity and oxidant dosage on PAHs oxidation efficiency were investigated. In addition, the results indicate that individual PAH degradability is closely related to its reactivity as well, and the high reactivity of 4-6 ringed PAHs substantially improves their degradability. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Non-Parametric Kinetic (NPK Analysis of Thermal Oxidation of Carbon Aerogels

    Directory of Open Access Journals (Sweden)

    Azadeh Seifi

    2017-05-01

    Full Text Available In recent years, much attention has been paid to aerogel materials (especially carbon aerogels due to their potential uses in energy-related applications, such as thermal energy storage and thermal protection systems. These open cell carbon-based porous materials (carbon aerogels can strongly react with oxygen at relatively low temperatures (~ 400°C. Therefore, it is necessary to evaluate the thermal performance of carbon aerogels in view of their energy-related applications at high temperatures and under thermal oxidation conditions. The objective of this paper is to study theoretically and experimentally the oxidation reaction kinetics of carbon aerogel using the non-parametric kinetic (NPK as a powerful method. For this purpose, a non-isothermal thermogravimetric analysis, at three different heating rates, was performed on three samples each with its specific pore structure, density and specific surface area. The most significant feature of this method, in comparison with the model-free isoconversional methods, is its ability to separate the functionality of the reaction rate with the degree of conversion and temperature by the direct use of thermogravimetric data. Using this method, it was observed that the Nomen-Sempere model could provide the best fit to the data, while the temperature dependence of the rate constant was best explained by a Vogel-Fulcher relationship, where the reference temperature was the onset temperature of oxidation. Moreover, it was found from the results of this work that the assumption of the Arrhenius relation for the temperature dependence of the rate constant led to over-estimation of the apparent activation energy (up to 160 kJ/mol that was considerably different from the values (up to 3.5 kJ/mol predicted by the Vogel-Fulcher relationship in isoconversional methods

  7. Electrospray painted article containing thermally exfoliated graphite oxide and method for their manufacture

    Science.gov (United States)

    Korkut, Sibel (Inventor); Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A painted polymer part containing a conductive polymer composition containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the painted polymer part has been electrospray painted.

  8. Effects of thermal treatment on mineralogy and heavy metal behavior in iron oxide stabilized air pollution control residues

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Bender-Koch, C.; Starckpoole, M. M.

    2000-01-01

    Stabilization of air pollution control residues by coprecipitation with ferrous iron and subsequent thermal treatment (at 600 and 900 °C) has been examined as a means to reduce heavy metal leaching and to improve product stability. Changes in mineralogy and metal binding were analyzed using various...... analytical and environmental techniques. Ferrihydrite was formed initially but transformed upon thermal treatment to more stable and crystalline iron oxides (maghemite and hematite). For some metals leaching studies showed more substantial binding after thermal treatment, while other metals either....... Thermal treatment of the stabilized residues produced structures with an inherently better iron oxide stability. However, the concentration of metals in the leachate generally increased as a consequence of the decreased solubility of metals in the more stable iron oxide structure....

  9. Failure Analysis of Multilayered Suspension Plasma-Sprayed Thermal Barrier Coatings for Gas Turbine Applications

    Science.gov (United States)

    Gupta, M.; Markocsan, N.; Rocchio-Heller, R.; Liu, J.; Li, X.-H.; Östergren, L.

    2018-02-01

    Improvement in the performance of thermal barrier coatings (TBCs) is one of the key objectives for further development of gas turbine applications. The material most commonly used as TBC topcoat is yttria-stabilized zirconia (YSZ). However, the usage of YSZ is limited by the operating temperature range which in turn restricts the engine efficiency. Materials such as pyrochlores, perovskites, rare earth garnets are suitable candidates which could replace YSZ as they exhibit lower thermal conductivity and higher phase stability at elevated temperatures. The objective of this work was to investigate different multilayered TBCs consisting of advanced topcoat materials fabricated by suspension plasma spraying (SPS). The investigated topcoat materials were YSZ, dysprosia-stabilized zirconia, gadolinium zirconate, and ceria-yttria-stabilized zirconia. All topcoats were deposited by TriplexPro-210TM plasma spray gun and radial injection of suspension. Lifetime of these samples was examined by thermal cyclic fatigue and thermal shock testing. Microstructure analysis of as-sprayed and failed specimens was performed with scanning electron microscope. The failure mechanisms in each case have been discussed in this article. The results show that SPS could be a promising route to produce multilayered TBCs for high-temperature applications.

  10. Mechanical Properties of Layered La2Zr2O7 Thermal Barrier Coatings

    Science.gov (United States)

    Guo, Xingye; Li, Li; Park, Hyeon-Myeong; Knapp, James; Jung, Yeon-Gil; Zhang, Jing

    2018-04-01

    Lanthanum zirconate (La2Zr2O7) has been proposed as a promising thermal barrier coating (TBC) material due to its low thermal conductivity and high stability at high temperatures. In this work, both single and double-ceramic-layer (DCL) TBC systems of La2Zr2O7 and 8 wt.% yttria-stabilized zirconia (8YSZ) were prepared using air plasma spray (APS) technique. The thermomechanical properties and microstructure were investigated. Thermal gradient mechanical fatigue (TGMF) tests were applied to investigate the thermal cycling performance. The results showed that DCL La2Zr2O7 + 8YSZ TBC samples lasted fewer cycles compared with single-layered 8YSZ TBC samples in TGMF tests. This is because DCL La2Zr2O7 TBC samples had higher residual stress during the thermal cycling process, and their fracture toughness was lower than that of 8YSZ. Bond strength test results showed that 8YSZ TBC samples had higher bond strength compared with La2Zr2O7. The erosion rate of La2Zr2O7 TBC samples was higher than that of 8YSZ samples, due to the lower critical erodent velocity and fracture toughness of La2Zr2O7. DCL porous 8YSZ + La2Zr2O7 had a lower erosion rate than other SCL and DCL La2Zr2O7 coatings, suggesting that porous 8YSZ serves as a stress-relief buffer layer.

  11. Barrier cell sheath formation

    International Nuclear Information System (INIS)

    Kesner, J.

    1980-04-01

    The solution for electrostatic potential within a simply modeled tandem mirror thermal barrier is seen to exhibit a sheath at each edge of the cell. The formation of the sheath requires ion collisionality and the analysis assmes that the collisional trapping rate into the barrier is considerably slower than the barrier pump rate

  12. Thermal oxidation of seeds for the hydrothermal growth of WO3 nanorods on ITO glass substrate

    International Nuclear Information System (INIS)

    Ng, Chai Yan; Abdul Razak, Khairunisak; Lockman, Zainovia

    2015-01-01

    This work reports a simple seed formation method for the hydrothermal growth of tungsten oxide (WO 3 ) nanorods. A WO 3 seed layer was prepared by thermal oxidation, where a W-sputtered substrate was heated and oxidized in a furnace. Oxidation temperatures and periods were varied at 400–550 °C and 5–60 min, respectively, to determine an appropriate seed layer for nanorod growth. Thermal oxidation at 500 °C for 15 min was found to produce a seed layer with sufficient crystallinity and good adhesion to the substrate. These properties prevented the seed from peeling off during the hydrothermal process, thereby allowing nanorod growth on the seed. The nanorod film showed better electrochromic behavior (higher current density of − 1.11 and + 0.65 mA cm −2 ) than compact film (lower current density of − 0.54 and + 0.28 mA cm −2 ). - Highlights: • A simple seed formation method (thermal oxidation) on sputtered W film is reported. • Crystalline seed with good adhesion to substrate is required for nanorod growth. • The appropriate temperature and period for seed formation were 500 °C and 15 min. • WO 3 nanorods exhibited higher electrochromic current density than WO 3 compact film.

  13. Power dependence of ion thermal diffusivity at the internal transport barrier in JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Yoshiteru; Suzuki, Takahiro; Ide, Shunsuke [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    2002-09-01

    The formation properties of an internal transport barrier (ITB) were investigated in a weak positive magnetic shear plasma by changing the neutral beam heating power. The ion thermal diffusivity in the core region shows L-mode state, weak ITB, and strong ITB, depending upon the heating power. Two features of ITB formation were experimentally confirmed. Weak ITB was formed in spite of the absence of an apparent transition in an ion temperature profile. On the other hand, strong ITB appeared after an apparent transition from the weak ITB. In addition, the ion thermal diffusivity at the ITB is correlated to the radial electric field shear. In the case of the weak ITB, ion thermal diffusivity decreased gradually with increases in the radial electric field shear. There exists a threshold in the radial electric field shear, which allows for a change in state from that of weak to strong ITBs. (author)

  14. Thermally Annealed Iron (Oxide) Thin Film on an Alumina Barrier Layer, by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Madaan, Nitesh; Kanyal, Supriya S.; Jensen, David S.; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-06

    Herein we show characterization of an Fe thin film on Al_2O_3 after thermal annealing under H_2 using Al Ka X-rays. The XPS survey spectrum, narrow Fe 2p scan, and valence band regions are presented. The survey spectrum shows aluminum signals due to exposure of the underlying Al_2O_3 film during Fe nanoparticle formation.

  15. Thermal diffusion through amalgam and cement base: comparison of in vitro and in vivo measurements.

    Science.gov (United States)

    Tibbetts, V R; Schnell, R J; Swartz, M L; Phillips, R W

    1976-01-01

    Thermal diffusion was measured in vitro and in vivo through amalgam and amalgam underlaid with bases of zinc phosphate, zinc oxide-eugenol, and calcium hydroxide cements. Although the magnitudes differed, there generally was good agreement between in vitro and in vivo data with respect to the relative rates of thermal diffusivity through amalgam restorations underlaid with bases of each of the three materials. In all tests, both in vitro and in vivo, the zinc oxide-eugenol base proved to be the best thermal insulator. Calcium hydroxide was the next best thermal barrier and was followed by zinc phosphate cement. In vitro tests indicated dentin to be a better thermal insulator than zinc phosphate cement but inferior to the zinc oxide-eugenol and calcium hydroxide base materials used here. Although a method has been presented here for the in vivo assessment of the efficacy of thermal insulating bases and a number of in vivo experiments were conducted, much research remains to be done in this area. Additional investigation is needed to better define the parameters of thermal change beneath various types of restoratives and also to establish more exactly the role of base thickness in providing thermal protection beneath clinical metallic restorations.

  16. Studies on Thermal Oxidation Stability of Aviation Lubricating Oils

    Directory of Open Access Journals (Sweden)

    Wu Nan

    2017-01-01

    Full Text Available Simulating the operating condition of aviation engine via autoclave experiment of high temperature and pressure, we studied the physic-chemical property of poly-α-olefin base oil samples mixed with antioxidants of 2,6-di-tert-butyl-4-methylphenol and p,p’-diisooctyl diphenylamine at different temperature. The mechanism of degradation of PAO aviation lubricating oil was analyzed according to the oxidized products by modern analytical instruments. The results showed that the aviation lubricating oil produced a large number of low molecule compounds while increasing the temperature, and resulted in the viscosity decreasing and acid value increasing which indicated that the thermal oxidation of the oil sample underwent a radical process.

  17. Delamination Mechanisms of Thermal and Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.

    2003-01-01

    Advanced ceramic thermal harrier coatings will play an increasingly important role In future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermaVenvironmenta1 barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.

  18. Measurement of interfacial shear mechanical properties in thermal barrier coating systems by a barb pullout method

    International Nuclear Information System (INIS)

    Guo, S.Q.; Mumm, D.R.; Karlsson, A.M.; Kagawa, Y.

    2005-01-01

    A test technique has been developed to facilitate evaluation of the fracture characteristics of coatings and interfaces in thermal barrier coating (TBC) systems. The methodology has particular application in analyzing delamination crack growth, where crack propagation occurs under predominantly mode II loading. The technique has been demonstrated by quantitatively measuring the effective delamination fracture resistance of an electron-beam physical vapor deposition TBC

  19. Loadings in thermal barrier coatings of jet engine turbine blades an experimental research and numerical modeling

    CERN Document Server

    Sadowski, Tomasz

    2016-01-01

    This book discusses complex loadings of turbine blades and protective layer Thermal Barrier Coating (TBC), under real working airplane jet conditions. They obey both multi-axial mechanical loading and sudden temperature variation during starting and landing of the airplanes. In particular, two types of blades are analyzed: stationary and rotating, which are widely applied in turbine engines produced by airplane factories.

  20. Mosaic-shaped cathode for highly durable solid oxide fuel cell under thermal stress

    Science.gov (United States)

    Joo, Jong Hoon; Jeong, Jaewon; Kim, Se Young; Yoo, Chung-Yul; Jung, Doh Won; Park, Hee Jung; Kwak, Chan; Yu, Ji Haeng

    2014-02-01

    In this study, we propose a novel "mosaic structure" for a SOFC (solid oxide fuel cell) cathode with high thermal expansion to improve the stability against thermal stress. Self-organizing mosaic-shaped cathode has been successfully achieved by controlling the amount of binder in the dip-coating solution. The anode-supported cell with mosaic-shaped cathode shows itself to be highly durable performance for rapid thermal cycles, however, the performance of the cell with a non-mosaic cathode exhibits severe deterioration originated from the delamination at the cathode/electrolyte interface after 7 thermal cycles. The thermal stability of an SOFC cathode can be evidently improved by controlling the surface morphology. In view of the importance of the thermal expansion properties of the cathode, the effects of cathode morphology on the thermal stress stability are discussed.

  1. Advanced oxidation technology for H2S odor gas using non-thermal plasma

    Science.gov (United States)

    Tao, ZHU; Ruonan, WANG; Wenjing, BIAN; Yang, CHEN; Weidong, JING

    2018-05-01

    Non-thermal plasma technology is a new type of odor treatment processing. We deal with H2S from waste gas emission using non-thermal plasma generated by dielectric barrier discharge. On the basis of two criteria, removal efficiency and absolute removal amount, we deeply investigate the changes in electrical parameters and process parameters, and the reaction process of the influence of ozone on H2S gas removal. The experimental results show that H2S removal efficiency is proportional to the voltage, frequency, power, residence time and energy efficiency, while it is inversely proportional to the initial concentration of H2S gas, and ozone concentration. This study lays the foundations of non-thermal plasma technology for further commercial application.

  2. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  3. Tensile toughness test and high temperature fracture analysis of thermal barrier coatings

    International Nuclear Information System (INIS)

    Qian, G.; Nakamura, T.; Berndt, C.C.; Leigh, S.H.

    1997-01-01

    In this paper, an effective fracture toughness test which uses interface fracture mechanics theory is introduced. This method is ideally suited for determining fracture resistance of multilayered thermal barrier coatings (TBCs) consisting of ceramic and bond layers and, unlike other fracture experiments, requires minimal set-up over a simple tensile adhesion test. Furthermore, while other test methods usually use edge cracked specimens, the present test models a crack embedded within the coatings, which is more consistent with actual TBCs where failure initiates from internal voids or defects. The results of combined computational and experimental analysis show that any defects located within the ceramic coating can significantly weaken a TBC, whereas the debonding resistances of the bond coating and its interfaces are found to be much higher. In a separate analysis, the authors have studied fracture behavior of TBCs subjected to thermal loading in a high temperature environment. The computed fracture parameters reveal that when the embedded crack size is on order of the coating thickness, the fracture driving force is comparable to the fracture resistance of the coating found in the toughness test. In addition, the major driving force for fracture derives from the thermal insulating effect across the crack faces rather than the mismatch in the coefficients of thermal expansion. The authors have also investigated the effects of functionally graded material (FGM) within TBCs and found its influences on the fracture parameters to be small. This result implies that the FGM may not contribute toward enhancing the fracture toughness of the TBCs considered here

  4. Tungsten oxide thin films grown by thermal evaporation with high resistance to leaching

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Diogo S. [Universidade Federal de Pelotas (UFPel), RS (Brazil). Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos; Pazinato, Julia C.O.; Freitas, Mauricio A. de; Radtke, Claudio; Garcia, Irene T.S., E-mail: irene@iq.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Instituto de Quimica; Dorneles, Lucio S. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Centro de Ciencias Naturais e Exatas

    2014-05-15

    Tungsten oxides show different stoichiometries, crystal lattices and morphologies. These characteristics are important mainly when they are used as photocatalysts. In this work tungsten oxide thin films were obtained by thermal evaporation on (100) silicon substrates covered with gold and heated at 350 and 600 °C, with different deposition times. The stoichiometry of the films, morphology, crystal structure and resistance to leaching were characterized through X-ray photoelectron spectroscopy, micro-Raman spectroscopy, scanning and transmission electron microscopy, X-ray diffractometry, Rutherford backscattering spectrometry and O{sup 16} (α,α')O{sup 16} resonant nuclear reaction. Films obtained at higher temperatures show well-defined spherical nanometric structure; they are composed of WO{sub 3.1} and the presence of hydrated tungsten oxide was also observed. The major crystal structure observed is the hexagonal. Thin films obtained through thermal evaporation present resistance to leaching in aqueous media and excellent performance as photocatalysts, evaluated through the degradation of the methyl orange dye. (author)

  5. Nanocomposites of recycled polycarbonate and nano-zinc oxide (rPC/nZnO): effect of gamma radiation and nano oxide content on the thermal properties; Nanocompositos de policarbonato reciclado e nanooxido de zinco (rPC/nZnO): efeito da radiacao-gama e do teor de nanooxido nas propriedades termicas

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, A.L.F.; Mendes, L.C.; Cestari, S.P., E-mail: anafcarvalho@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Macromoleculas Eloisa Mano; Souza, M.C.L. [Universidade Estadual da Zona Oeste (UEZO), RJ (Brazil)

    2014-07-01

    In order to promote the barrier action to the ultraviolet radiation and increase of mechanical characteristics, nanocomposites of recycled polycarbonate (rPC) and nano-zinc oxide (nZnO) containing 1, 2 and 3 % (wt/wt) of nano oxide were prepared. Since for obtaining nanocomposites and irradiating polymers are promising tools and attractive for improving the material performance, the effects of nano-zinc oxide and gamma radiation, at doses ranged from 10 to 50 kGy, were evaluated in terms of thermal characteristics of the rPC. The rPC/nZnO nanocomposites were characterized by thermogravimetric analysis (TGA) and differential explanatory calorimetry (DSC). There was a progressive decrease of the T{sub g} as function of gamma dosage and nano-zinc oxide content. Initially, the Tonset and Tmax decayed as function of gamma dosage but a recovery was observed. The amount of nano-zinc oxide induced a decreasing of T{sub onset} and T{sub max}. (author)

  6. Delamination evaluation of thermal barrier coating on turbine blade owing to isothermal degradation using ultrasonic C-scan image

    International Nuclear Information System (INIS)

    Lee, Ho Girl; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Sung

    2016-01-01

    Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at 1,100°C with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived

  7. Delamination evaluation of thermal barrier coating on turbine blade owing to isothermal degradation using ultrasonic C-scan image

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Girl; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Sung [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-10-15

    Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at 1,100°C with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.

  8. Thermal Oxidation of a Carbon Condensate Formed in High-Frequency Carbon and Carbon-Nickel Plasma Flow

    Science.gov (United States)

    Churilov, G. N.; Nikolaev, N. S.; Cherepakhin, A. V.; Dudnik, A. I.; Tomashevich, E. V.; Trenikhin, M. V.; Bulina, N. G.

    2018-02-01

    We have reported on the comparative characteristics of thermal oxidation of a carbon condensate prepared by high-frequency arc evaporation of graphite rods and a rod with a hollow center filled with nickel powder. In the latter case, along with different forms of nanodisperse carbon, nickel particles with nickel core-carbon shell structures are formed. It has been found that the processes of the thermal oxidation of carbon condensates with and without nickel differ significantly. Nickel particles with the carbon shell exhibit catalytic properties with respect to the oxidation of nanosized carbon structures. A noticeable difference between the temperatures of the end of the oxidation process for various carbon nanoparticles and nickel particles with the carbon shell has been established. The study is aimed at investigations of the effect of nickel nanoparticles on the dynamics of carbon condensate oxidation upon heating in the argon-oxygen flow.

  9. Effect of Exercise Intensity on Neurotrophic Factors and Blood-Brain Barrier Permeability Induced by Oxidative-Nitrosative Stress in Male College Students.

    Science.gov (United States)

    Roh, Hee-Tae; Cho, Su-Youn; Yoon, Hyung-Gi; So, Wi-Young

    2017-06-01

    We investigated the effects of aerobic exercise intensity on oxidative-nitrosative stress, neurotrophic factor expression, and blood-brain barrier (BBB) permeability. Fifteen healthy men performed treadmill running under low-intensity (LI), moderate-intensity (MI), and high-intensity (HI) conditions. Blood samples were collected immediately before exercise (IBE), immediately after exercise (IAE), and 60 min after exercise (60MAE) to examine oxidative-nitrosative stress (reactive oxygen species [ROS]; nitric oxide [NO]), neurotrophic factors (brain-derived neurotrophic factor [BDNF]; nerve growth factor [NGF]), and blood-brain barrier (BBB) permeability (S-100β; neuron-specific enolase). ROS concentration significantly increased IAE and following HI (4.9 ± 1.7 mM) compared with that after LI (2.8 ± 1.4 mM) exercise (p exercise (p exercise (p exercise (p exercise (p .05). Moderate- and/or high-intensity exercise may induce higher oxidative-nitrosative stress than may low-intensity exercise, which can increase peripheral neurotrophic factor levels by increasing BBB permeability.

  10. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion

    DEFF Research Database (Denmark)

    Wickman, B.; da Silva Fanta, Alice Bastos; Burrows, Andrew

    2017-01-01

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes...

  11. Thermal oxidation of cesium loaded Prussian blue as a precaution for exothermic phase change in extreme conditions

    International Nuclear Information System (INIS)

    Parajuli, Durga; Tanaka, Hisashi; Takahashi, Akira; Kawamoto, Tohru

    2013-01-01

    Cesium adsorbed Prussian blue is studied for the thermal oxidation. The TG-DTA shows exothermic phase change of micro aggregates of nano-PB at above 270°C. For this reason, Cs loaded PB was heated between 180 to 260°C. Heating at 180 removed only the water. Neither the oxidation of Iron nor the removal of cyanide is observed at this temperature. Oxidation of cyanide is observed upon heating above 200°C while loaded Cs is released after heating at >250°C followed by washing with water. Thermal oxidation between 200 to 220°C for more than 2 h showed control on exothermic phase change and loaded Cs is also not solubilized. (author)

  12. Thermal oxidation of seeds for the hydrothermal growth of WO{sub 3} nanorods on ITO glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Chai Yan [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Department of Mechanical and Material Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Abdul Razak, Khairunisak, E-mail: khairunisak@usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); NanoBiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lockman, Zainovia, E-mail: zainovia@usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2015-11-30

    This work reports a simple seed formation method for the hydrothermal growth of tungsten oxide (WO{sub 3}) nanorods. A WO{sub 3} seed layer was prepared by thermal oxidation, where a W-sputtered substrate was heated and oxidized in a furnace. Oxidation temperatures and periods were varied at 400–550 °C and 5–60 min, respectively, to determine an appropriate seed layer for nanorod growth. Thermal oxidation at 500 °C for 15 min was found to produce a seed layer with sufficient crystallinity and good adhesion to the substrate. These properties prevented the seed from peeling off during the hydrothermal process, thereby allowing nanorod growth on the seed. The nanorod film showed better electrochromic behavior (higher current density of − 1.11 and + 0.65 mA cm{sup −2}) than compact film (lower current density of − 0.54 and + 0.28 mA cm{sup −2}). - Highlights: • A simple seed formation method (thermal oxidation) on sputtered W film is reported. • Crystalline seed with good adhesion to substrate is required for nanorod growth. • The appropriate temperature and period for seed formation were 500 °C and 15 min. • WO{sub 3} nanorods exhibited higher electrochromic current density than WO{sub 3} compact film.

  13. Property Evaluation and Damage Evolution of Environmental Barrier Coatings and Environmental Barrier Coated SiC/SiC Ceramic Matrix Composite Sub-Elements

    Science.gov (United States)

    Zhu, Dongming; Halbig, Michael; Jaskowiak, Martha; Hurst, Janet; Bhatt, Ram; Fox, Dennis S.

    2014-01-01

    This paper describes recent development of environmental barrier coatings on SiC/SiC ceramic matrix composites. The creep and fatigue behavior at aggressive long-term high temperature conditions have been evaluated and highlighted. Thermal conductivity and high thermal gradient cyclic durability of environmental barrier coatings have been evaluated. The damage accumulation and complex stress-strain behavior environmental barrier coatings on SiCSiC ceramic matrix composite turbine airfoil subelements during the thermal cyclic and fatigue testing of have been also reported.

  14. Evaluation of thermal properties of sintered beryllium oxide produced from Indian beryl ore

    International Nuclear Information System (INIS)

    Nair, Sathi R.; Ghanwat, S.J.; Patro, P.K.; Syambabu, M.; Mawal, N.E.; Mahata, T.; Sinha, P.K.

    2014-01-01

    Beryllium oxide (BeO) ceramics possess many interesting properties such as good thermal conductivity, high electrical resistivity, high chemical and thermal stability, low dielectric constant, low dielectric loss and low neutron absorption coefficient. These properties lead to its wide use in vacuum electronics technology, nuclear technology, microelectronics and photoelectron technology. The above properties depend on the purity of the material as well as density and microstructure of the sintered body. For high temperature application thermal conductivity and thermal expansion are two important parameters. In the present study, high purity fine BeO powder has been prepared by beryllate route starting with crude beryllium hydroxide. The powder has been sintered at 1550℃ and sintered samples have been evaluated for its thermal properties

  15. Effect of Young's modulus evolution on residual stress measurement of thermal barrier coatings by X-ray diffraction

    International Nuclear Information System (INIS)

    Chen, Q.; Mao, W.G.; Zhou, Y.C.; Lu, C.

    2010-01-01

    Subjected to thermal cycling, the apparent Young's modulus of air plasma-sprayed (APS) 8 wt.% Y 2 O 3 -stabilized ZrO 2 (8YSZ) thermal barrier coatings (TBCs) was measured by nanoindentation. Owing to the effects of sintering and porous microstructure, the apparent Young's modulus follows a Weibull distribution and changes from 50 to 93 GPa with an increase of thermal cycling. The evolution of residual stresses in the top coating of an 8YSZ TBC system was determined by X-ray diffraction (XRD). The residual stresses derived from the XRD data are well consistent with that obtained by the Vickers indention. It is shown that the evolution of Young's modulus plays an important role in improving the measurement precision of residual stresses in TBCs by XRD.

  16. Calcium incorporation in graphene oxide particles: A morphological, chemical, electrical, and thermal study

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Kelly L.S. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias (Brazil); Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, 21941-909 Rio de Janeiro (Brazil); Curti, Raphael V.; Araujo, Joyce R.; Landi, Sandra M.; Ferreira, Erlon H.M.; Neves, Rodrigo S.; Kuznetsov, Alexei; Sena, Lidia A. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias (Brazil); Archanjo, Braulio S., E-mail: bsarchanjo@inmetro.gov.br [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias (Brazil); Achete, Carlos A. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias (Brazil); Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro (Brazil)

    2016-07-01

    Surface chemical modification and functionalization are common strategies used to provide new properties or functionalities to a material or to enhance existing ones. In this work, graphene oxide prepared using Hummers' method has been chemically modified with calcium ions by immersion in a calcium carbonate solution. Transmission electron microscopy analyses showed that graphene oxide (GO) and calcium incorporated graphene oxide have a morphology similar to an ultra-thin membrane composed of overlapping sheets. X-ray diffraction and Fourier-infrared spectroscopy show that calcium carbonate residue was completely removed by hydrochloric acid washes. Energy dispersive X-ray spectroscopy mapping showed spatially homogeneous calcium in Ca-incorporated graphene oxide sample after HCl washing. This Ca is mainly ionic according to X-ray photoelectron spectroscopy, and its incorporation promoted a small reduction in the graphene oxide structure, corroborated also by four-point probe measurements. A thermal study shows a remarkable increase in the GO stability with the presence of Ca{sup 2+} ions. - Highlights: • Graphene oxide has been chemically modified with Ca ions by immersion in a CaCO{sub 3} solution. • GO–Ca has morphology similar to an ultra-thin membrane composed of overlapping sheets. • CaCO{sub 3} residue was completely removed by acid washes, leaving only ionic calcium. • EDS maps show that Ca incorporation is spatially homogeneous in GO structure. • Thermal analyses show a remarkable increase in GO stability after Ca incorporation.

  17. Calcium incorporation in graphene oxide particles: A morphological, chemical, electrical, and thermal study

    International Nuclear Information System (INIS)

    Castro, Kelly L.S.; Curti, Raphael V.; Araujo, Joyce R.; Landi, Sandra M.; Ferreira, Erlon H.M.; Neves, Rodrigo S.; Kuznetsov, Alexei; Sena, Lidia A.; Archanjo, Braulio S.; Achete, Carlos A.

    2016-01-01

    Surface chemical modification and functionalization are common strategies used to provide new properties or functionalities to a material or to enhance existing ones. In this work, graphene oxide prepared using Hummers' method has been chemically modified with calcium ions by immersion in a calcium carbonate solution. Transmission electron microscopy analyses showed that graphene oxide (GO) and calcium incorporated graphene oxide have a morphology similar to an ultra-thin membrane composed of overlapping sheets. X-ray diffraction and Fourier-infrared spectroscopy show that calcium carbonate residue was completely removed by hydrochloric acid washes. Energy dispersive X-ray spectroscopy mapping showed spatially homogeneous calcium in Ca-incorporated graphene oxide sample after HCl washing. This Ca is mainly ionic according to X-ray photoelectron spectroscopy, and its incorporation promoted a small reduction in the graphene oxide structure, corroborated also by four-point probe measurements. A thermal study shows a remarkable increase in the GO stability with the presence of Ca"2"+ ions. - Highlights: • Graphene oxide has been chemically modified with Ca ions by immersion in a CaCO_3 solution. • GO–Ca has morphology similar to an ultra-thin membrane composed of overlapping sheets. • CaCO_3 residue was completely removed by acid washes, leaving only ionic calcium. • EDS maps show that Ca incorporation is spatially homogeneous in GO structure. • Thermal analyses show a remarkable increase in GO stability after Ca incorporation.

  18. Constrained sintering of an air-plasma-sprayed thermal barrier coating

    International Nuclear Information System (INIS)

    Cocks, A.C.F.; Fleck, N.A.

    2010-01-01

    A micromechanical model is presented for the constrained sintering of an air-plasma-sprayed, thermal barrier coating upon a thick superalloy substrate. The coating comprises random splats with intervening penny-shaped cracks. The crack faces make contact at asperities, which progressively sinter in-service by interfacial diffusion, accommodated by bulk creep. Diffusion is driven by the reduction in interfacial energy at the developing contacts and by the local asperity contact stress. At elevated operating temperature, both sintering and creep strains accumulate within the plane of the coating. The sensitivities of sintering rate and microstructure evolution rate to the kinetic parameters and thermodynamic driving forces are explored. It is demonstrated that the sintering response is governed by three independent timescales, as dictated by the material and geometric properties of the coating. Finally, the role of substrate constraint is assessed by comparing the rate of constrained sintering with that for free sintering.

  19. Analysis of thermal treatment effects upon optico-luminescent and scintillation characteristics of oxide and chalcogenide crystals

    International Nuclear Information System (INIS)

    Ryzhikov, Vladimir D.; Grinyov, Boris V.; Pirogov, Evgeniy N.; Galkin, Sergey N.; Nagornaya, Lyudmila L.; Bondar, Vladimir G.; Babiychuk, Inna P.; Krivoshein, Vadim I.; Silin, Vitaliy I.; Lalayants, Alexandr I.; Voronkin, Evgeniy F.; Katrunov, Konstantin A.; Onishchenko, Gennadiy M.; Vostretsov, Yuriy Ya.; Malyi, Pavel Yu.; Lisetskaya, Elena K.; Lisetskii, Longin N.

    2005-01-01

    This work has been aimed at analyzing the effects of various thermal treatment factors upon optical-luminescent, scintillation and other functional characteristics of complex oxide and chalcogenide crystals. The crystals considered in this work are scintillators with intrinsic (PWO, CWO, BGO), activator (GSO:Ce) or complex-defect ZnSe(Te) type of luminescence. Important factors of thermal treatment are not only the temperature and its variation with time, but also the chemical composition of the annealing medium, its oxidation-reduction properties

  20. UNA REVISIÓN DEL SPRAY TÉRMICO COMO TÉCNICA DE DEPOSICIÓN PARA CAPAS DE BARRERAS TÉRMICAS // THE THERMAL SPRAY AS A DEPOSITION TECHNIQUE FOR THERMAL BARRIER COATING: A REVIEW

    Directory of Open Access Journals (Sweden)

    Eduardo Rondón Briceño

    2015-06-01

    Full Text Available It is important to know the thermal barrier deposition techniques since materials with low thermal conductivity in the barrier can be obtained from them. The dependence of the thermal conductivity with the temperature can be divided into four regions. In this work, we were interested in the study of used techniques for the manufacture of materials with a desirable low thermal conductivity that will be exposed to high temperatures that is to say, materials found in the III and IV region. In these regions the thermal conductivity can be reduced increasing the porosity of the material. Through the study of the thermal barrier deposition techniques we found that the thermal spray produces a coat with high porosity, being the low velocity flame spray technique the best to produce coat of La2Zr2O7 with a minimal thermal conductivity. The thermal spray technique is low cost and almost any material can be thermally sprayed, so this can be considered a very attractive technique for industrial applications. // RESUMEN Es importante conocer las técnicas de deposición de barreras térmicas ya que de ellas depende la obtención de materiales con baja conductividad térmica en la barrera. La dependencia de la conductividad térmica con la temperatura puede dividirse en cuatro regiones. En este trabajo estuvimos interesados en el estudio de las técnicas que se utilizan para la fabricación de materiales sometidos a muy altas temperaturas y donde se desea que su conductividad térmica sea baja, es decir, materiales que se encuentran en la región III y IV. En estas regiones se puede disminuir la conductividad térmica aumentando la porosidad del material. A través del estudio de las técnicas de deposición de barreras térmica, hemos encontrado que la técnica del spray térmico produce una alta porosidad en el recubrimiento, siendo el método de rociado con baja velocidad el mejor método para producir capas de La2Zr2O7 con mínima conductividad t

  1. Evaluation of the properties of anodized aluminum 6061 subjected to thermal cycling treatment using electrochemical impedance spectroscopy (EIS)

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yuelong [Corrosion and Environmental Effects Laboratory (CEEL), Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-0241 (United States); Shih Hong [Lam Research Corporation, 4400 Cushing Parkway, Fremont, CA 94538 (United States)], E-mail: hong.shih@lamrc.com; Daugherty, John [Lam Research Corporation, 4400 Cushing Parkway, Fremont, CA 94538 (United States); Mansfeld, Florian [Corrosion and Environmental Effects Laboratory (CEEL), Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-0241 (United States)], E-mail: mansfeld@usc.edu

    2009-10-15

    The corrosion resistance of anodized Al 6061 produced by two different anodizing and sealing processes was evaluated for 30 days during exposure to 3.5 wt% NaCl using EIS. Thermal cycling treatments at 120, 160 and 200 deg. C have been applied for the two types of samples. The degradation of the properties of the anodized layers has been determined by thorough analysis of the EIS data for control samples and samples that had undergone thermal cycling. Scanning electron microscopy has been used to evaluate the damage to the anodized aluminum layers due to thermal cycling. It was found that the thermal treatment produced considerable damage of both the porous layer and the barrier layer. The EIS data suggest that some cracks extended into the bare metal. The damage of the oxide layers increased with increasing thermal cycling temperature for both types of samples. Self-sealing of the porous layer and the barrier layer occurred during immersion in NaCl.

  2. Thermal oxidation of InP surfaces modified with NiO + PbO mixtures

    International Nuclear Information System (INIS)

    Mittova, I.Ya.; Tomina, E.V.; Samsonov, A.A.; Lukin, A.N.; Simonov, S.P.

    2005-01-01

    The oxidation kinetics of (NiO + PbO)/InP, NiO/InP and PbO/InP structures in an oxygen flow is studied in the temperature range of 400-550 deg C. It is shown by IR spectroscopy that the thermal oxidation of (NiO + PbO)/InP structures leads to the formation of nickel and lead polyphosphates and indium ortho- and metaphosphates. The nickel phosphates may then gradually transform into diphosphates, depending on the oxidation temperature, whereas the lead phosphates undergo no changes [ru

  3. A thermoelectric voltage effect in polyethylene oxide

    International Nuclear Information System (INIS)

    Martin, Bjoern; Wagner, Achim; Kliem, Herbert

    2003-01-01

    The conductivity of polyethylene oxide (PEO) is described with a three-dimensional hopping model considering electrostatic interactions between the ions. Ions fluctuate over energy-barriers in a multi-well potential. To decide whether positive or negative charges are responsible for this conductivity, the thermoelectric voltage is measured. The samples are embedded between two aluminium-electrodes. The oxide on the interface between the electrodes and the PEO serves as a blocking layer. The temperature of each electrode is controlled by a Peltier element. A temperature step is applied to one electrode by changing the temperature of one of the Peltier elements. Due to this temperature gradient, the mobile charges fluctuate thermally activated from the warmer side to the colder side of the sample. The direction of the measured thermoelectric voltage indicates the type of mobile charges. It is found that positive charges are mobile. Further, it is shown that the absolute value of the thermoelectric voltage depends on the energy-barrier heights in the multi-well potential

  4. Thermally induced all-optical inverter and dynamic hysteresis loops in graphene oxide dispersions.

    Science.gov (United States)

    Melle, Sonia; Calderón, Oscar G; Egatz-Gómez, Ana; Cabrera-Granado, E; Carreño, F; Antón, M A

    2015-11-01

    We experimentally study the temporal dynamics of amplitude-modulated laser beams propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. Nonlinear refraction induced in the sample by thermal effects leads to both phase reversing of the transmitted signals and dynamic hysteresis in the input-output power curves. A theoretical model including beam propagation and thermal lensing dynamics reproduces the experimental findings.

  5. Double-ceramic-layer thermal barrier coatings based on La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7}/La{sub 2}Ce{sub 2}O{sub 7} deposited by electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.H. [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); He, L.M., E-mail: he_limin@yahoo.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Mu, R.D.; He, S.M.; Huang, G.H. [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Cao, X.Q., E-mail: xcao@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-03-15

    Double-ceramic-layer (DCL) thermal barrier coatings (TBCs) of La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7} (LZ7C3) and La{sub 2}Ce{sub 2}O{sub 7} (LC) were deposited by electron beam-physical vapor deposition (EB-PVD). The composition, interdiffusion, surface and cross-sectional morphologies, cyclic oxidation behavior of DCL coating were studied. Energy dispersive spectroscopy and X-ray diffraction analyses indicate that both LZ7C3 and LC coatings are effectively fabricated by a single LZ7C3 ingot with properly controlling the deposition energy. The chemical compatibility of LC coating and thermally grown oxide (TGO) layer is unstable. LaAlO{sub 3} is formed due to the chemical reaction between LC and Al{sub 2}O{sub 3} which is the main composition of TGO layer. Additionally, the thermal cycling behavior of DCL coating is influenced by the interdiffusion of Zr and Ce between LZ7C3 and LC coatings. The failure of DCL coating is a result of the sintering of LZ7C3 coating surface, the chemical incompatibility of LC coating and TGO layer and the abnormal oxidation of bond coat. Since no single material that has been studied so far satisfies all the requirements for high temperature applications, DCL coating is an important development direction of TBCs.

  6. Combined Effects of JP-8 Fuel and Ceramic Thermal Barrier Coatings on the Performance and Emissions of a DI Diesel Engine

    National Research Council Canada - National Science Library

    Klett, David

    1999-01-01

    .... The experiments were conducted on a Ricardo Hydra single-cylinder DI diesel engine. Thin ceramic thermal barrier coatings were applied to various combustion chamber surfaces including the piston crown, cylinder head, and cylinder liner...

  7. Real-time monitoring of initial thermal oxidation on Si(001) surfaces by synchrotron radiation photoemission spectroscopy

    CERN Document Server

    Yoshigoe, A; Teraoka, Y

    2003-01-01

    The thermal oxidation of Si(001) surfaces at 860 K, 895 K, 945 K and 1000 K under the O sub 2 pressure of 1 x 10 sup - sup 4 Pa has been investigated by time-resolved photoemission measurements with synchrotron radiation. Based on time evolution analyses by reaction kinetics models, it was found that the oxidation at 860 K, 895 K and 945 K has progressed with the Langmuir adsorption type, whereas the oxidation at 1000 K has showed the character of the two-dimensional island growth involving SiO desorption. The oxidation rates increases with increasing surface temperature in the passive oxidation condition. The time evolution of each Si oxidation state (Si sup n sup + : n = 1, 2, 3, 4) derived from the Si-2p core-level shifts has also been analyzed. The results revealed that the thermal energy contribution to the migration process of the adsorbed oxygen and the emission of the bulk silicon atoms. Thus, the fraction of the Si sup 4 sup + bonding state, i.e. SiO sub 2 structure, was increased. (author)

  8. Growth and structure of rapid thermal silicon oxides and nitroxides studied by spectroellipsometry and Auger electron spectroscopy

    Science.gov (United States)

    Gonon, N.; Gagnaire, A.; Barbier, D.; Glachant, A.

    1994-11-01

    Rapid thermal oxidation of Czochralski-grown silicon in either O2 or N2O atmospheres have been studied using spectroellipsometry and Auger electron spectroscopy. Multiwavelength ellipsometric data were processed in order to separately derive the thickness and refractive indexes of rapid thermal dielectrics. Results revealed a significant increase of the mean refractive index as the film thickness falls below 20 nm for both O2 or N2O oxidant species. A multilayer structure including an about 0.3-nm-thick interfacial region of either SiO(x) or nitroxide in the case of O2 and N2O growth, respectively, followed by a densified SiO2 layer, was found to accurately fit the experimental data. The interfacial region together with the densified state of SiO2 close to the interface suggest a dielectric structure in agreement with the continuous random network model proposed for classical thermal oxides. Auger electron spectroscopy analysis confirmed the presence of noncrystalline Si-Si bonds in the interfacial region, mostly in the case of thin oxides grown in O2. It was speculated that the initial fast growth regime was due to a transient oxygen supersaturation in the interfacial region. Besides, the self-limiting growth in N2O was confirmed and explained in agreement with several recently published data, by the early formation of a very thin nitride or oxynitride membrane in the highly densified oxide beneath the interface. The beneficial effect of direct nitrogen incorporation by rapid thermal oxidation in N2O instead of O2 for the electrical behavior of metal-oxide-semiconductor capacitors is likely a better SiO2/Si lattice accommodation through the reduction of stresses and Si-Si bonds in the interfacial region of the dielectric.

  9. Role of thermal analysis in uranium oxide fuel fabrication process

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Yadav, R.B.

    2006-01-01

    The present paper discusses the application of thermal analysis, particularly, differential thermal analysis (Dta) at various stages of fuel fabrication process. The useful role of Dta in knowing the decomposition pattern and calcination temperature of Adu along with de-nitration temperature is explained. The decomposition pattern depends upon the type of drying process adopted for wet ADU cake (ADU C). Also, the paper highlights the utility of DTA in determining the APS and SSA of UO 2+x and U 3 O 8 powders as an alternate technique. Further, the temperature difference (ΔT max ) between the two exothermic peaks obtained in UO 2+x powder oxidation is related to sintered density of UO 2 pellets. (author)

  10. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  11. Comparative study on the deposition of silicon oxide permeation barrier coatings for polymers using hexamethyldisilazane (HMDSN) and hexamethyldisiloxane (HMDSO)

    Science.gov (United States)

    Mitschker, F.; Schücke, L.; Hoppe, Ch; Jaritz, M.; Dahlmann, R.; de los Arcos, T.; Hopmann, Ch; Grundmeier, G.; Awakowicz, P.

    2018-06-01

    The effect of the selection of hexamethyldisiloxane (HMDSO) and hexamethyldisilazane (HMDSN) as a precursor in a microwave driven low pressure plasma on the deposition of silicon oxide barrier coatings and silicon based organic interlayers on polyethylene terephthalate (PET) and polypropylene (PP) substrates is investigated. Mass spectrometry is used to quantify the absolute gas density and the degree of depletion of neutral precursor molecules under variation of oxygen admixture. On average, HMDSN shows a smaller density, a higher depletion and the production of smaller fragments. Subsequently, this is correlated with barrier performance and chemical structure as a function of barrier layer thickness and oxygen admixture on PET. For this purpose, the oxygen transmission rate (OTR) is measured and Fourier transformed infrared (FTIR) spectroscopy as well as x-ray photoelectron spectroscopy (XPS) is performed. HMDSN based coatings exhibit significantly higher barrier performances for high admixtures of oxygen (200 sccm). In comparison to HMDSO based processes, however, a higher supply of oxygen is necessary to achieve a sufficient degree of oxidation, cross-linking and, therefore, barrier performance. FTIR and XPS reveal a distinct carbon content for low oxygen admixtures (10 and 20 sccm) in case of HMDSN based coatings. The variation of interlayer thickness also reveals significantly higher OTR for HMDSO based coatings on PET and PP. Barrier performance of HMDSO based coatings improves with increasing interlayer thickness up to 10 nm for PET and PP. HMDSN based coatings exhibit a minimum of OTR without interlayer on PP and for 2 nm interlayer thickness on PET. Furthermore, HMDSN based coatings show distinctly higher bond strengths to the PP substrate.

  12. Uranium dioxide and beryllium oxide enhanced thermal conductivity nuclear fuel development

    International Nuclear Information System (INIS)

    Andrade, Antonio Santos; Ferreira, Ricardo Alberto Neto

    2007-01-01

    The uranium dioxide is the most used substance as nuclear reactor fuel for presenting many advantages such as: high stability even when it is in contact with water in high temperatures, high fusion point, and high capacity to retain fission products. The conventional fuel is made with ceramic sintered pellets of uranium dioxide stacked inside fuel rods, and presents disadvantages because its low thermal conductivity causes large and dangerous temperature gradients. Besides, the thermal conductivity decreases further as the fuel burns, what limits a pellet operational lifetime. This research developed a new kind of fuel pellets fabricated with uranium dioxide kernels and beryllium oxide filling the empty spaces between them. This fuel has a great advantage because of its higher thermal conductivity in relation to the conventional fuel. Pellets of this kind were produced, and had their thermophysical properties measured by the flash laser method, to compare with the thermal conductivity of the conventional uranium dioxide nuclear fuel. (author) (author)

  13. Role of oxides and porosity on high temperature oxidation of liquid fuelled HVOF thermal sprayed Ni50Cr coatings

    OpenAIRE

    Song, B.; Bai, M.; Voisey, K.T.; Hussain, Tanvir

    2017-01-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid fuelled high velocity oxy-fuel (HVOF) thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using...

  14. Changes in Acylglycerols composition, quality characteristics and in vivo effects of dietary pumpkin seed oil upon thermal oxidation

    Science.gov (United States)

    Zeb, Alam; Ahmad, Sultan

    2017-07-01

    This study was aimed to determine the acylglycerols composition, quality characteristics and protective role of dietary pumpkin seed oil in rabbits. Pumpkin seed oil was thermally oxidized and analyzed for quality characteristics and acylglycerols composition using reversed phase high performance liquid chromatography with diode array detection (HPLC-DAD). Oxidized and un-oxidized oil samples were fed to the rabbits in different doses for two weeks. The changes in the serum biochemistry, hematology, and liver histology were studied. The levels of quality parameters such peroxide value (PV), anisidine value (AV), total phenolic contents (TPC), thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD) and conjugated trienes (CT) significantly increased with thermal treatment. HPLC analyses revealed ten individual triacylglycerols (TAGs), total di-acylglycerols (DAGs), mono-acylglycerols (MAGs), and total oxidized TAGs. Trilinolein (LLL), 1-oleoyl-2,3-dilinolinoyl glycerol (OLL), triolein (OOO) and 1,2-distearoyl-3-palmitoyl glycerol (SSP) were present in higher amounts and decreased with thermal treatment. Animal's studies showed that oxidized oils decreased the whole body weight, which was ameliorated by the co-administration of un-oxidized oils. The levels of serum biochemical parameters were improved by co-administration of pumpkin seed oils. There were no significant effects of both oxidized and un-oxidized pumpkin seed oil on the hematological and histological parameters of rabbits. In conclusion, nutritionally important triacylglycerols were present in pumpkin seed oil with protective role against the toxicity of its corresponding oxidized oils.

  15. Changes in Acylglycerols Composition, Quality Characteristics and In vivo Effects of Dietary Pumpkin Seed Oil upon Thermal Oxidation

    Directory of Open Access Journals (Sweden)

    Alam Zeb

    2017-07-01

    Full Text Available This study was aimed to determine the acylglycerols composition, quality characteristics, and protective role of dietary pumpkin seed oil (PSO in rabbits. PSO was thermally oxidized and analyzed for quality characteristics and acylglycerols composition using reversed phase high performance liquid chromatography with diode array detection (HPLC-DAD. Oxidized and un-oxidized oil samples were fed to the rabbits in different doses for 2 weeks. The changes in the serum biochemistry, hematology, and liver histology were studied. The levels of quality parameters such peroxide value (PV, anisidine value (AV, total phenolic contents (TPC, thiobarbituric acid reactive substances (TBARS, conjugated dienes (CD and conjugated trienes (CT significantly increased with thermal treatment. HPLC analyses revealed 10 individual triacylglycerols (TAGs, total di-acylglycerols (DAGs, mono-acylglycerols (MAGs, and total oxidized TAGs. Trilinolein (LLL, 1-oleoyl-2,3-dilinolinoyl glycerol (OLL, triolein (OOO and 1,2-distearoyl-3-palmitoyl glycerol (SSP were present in higher amounts and decreased with thermal treatment. Animal's studies showed that oxidized oils decreased the whole body weight, which was ameliorated by the co-administration of un-oxidized oils. The levels of serum biochemical parameters were improved by co-administration of pumpkin seed oils. There were no significant effects of both oxidized and un-oxidized PSO on the hematological and histological parameters of rabbits. In conclusion, nutritionally important triacylglycerols were present in PSO with protective role against the toxicity of its corresponding oxidized oils.

  16. Gadolinium oxide coated fully depleted silicon-on-insulator transistors for thermal neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, Steven A., E-mail: steven.vitale@ll.mit.edu; Gouker, Pascale M.

    2013-09-01

    Fully depleted silicon-on-insulator transistors coated with gadolinium oxide are shown to be effective thermal neutron dosimeters. The theoretical neutron detection efficiency is calculated to be higher for Gd{sub 2}O{sub 3} than for other practical converter materials. Proof-of-concept dosimeter devices were fabricated and tested during thermal neutron irradiation. The transistor current changes linearly with neutron dose, consistent with increasing positive charge in the SOI buried oxide layer generated by ionization from high energy {sup 157}Gd(n,γ){sup 158}Gd conversion electrons. The measured neutron sensitivity is approximately 1/6 the maximum theoretical value, possibly due to electron–hole recombination or conversion electron loss in interconnect wiring above the transistors. -- Highlights: • A novel Gd{sub 2}O{sub 3} coated FDSOI MOSFET thermal neutron dosimeter is presented. • Dosimeter can detect charges generated from {sup 157}Gd(n,γ){sup 158}Gd conversion electrons. • Measured neutron sensitivity is comparable to that calculated theoretically. • Dosimeter requires zero power during operation, enabling new application areas.

  17. Optical Diagnostics of Thermal Barrier Coatings

    Science.gov (United States)

    Majewski, Mark Steven

    The high temperature properties of ceramic materials make them suitable for the extreme environments of gas combustion powered turbines. They are instrumental in providing thermal insulation for the metallic turbine components from the combustion products. Also, the addition of specific rare earth elements to ceramics creates materials with temperature diagnostic applications. Laser based methods have been applied to these ceramic coatings to predict their remaining thermal insulation service life and to explore their high temperature diagnostic capabilities. A method for cleaning thermal barrier coatings (TBCs) contaminated during engine operation has been developed using laser ablation. Surface contamination on the turbine blades hinders nondestructive remaining life prediction using photo luminescence piezospectroscopy (PLPS). Real time monitoring of the removed material is employed to prevent damage to the underlying coating. This method relies on laser induced breakdown spectroscopy (LIBS) to compute the cross correlation coefficient between the spectral emissions of a sample TBC that is contaminated and a reference clean TBC. It is possible to remove targeted contaminants and cease ablation when the top surface of the TBC has been reached. In collaboration with this work, Kelley's thesis [1] presents microscopy images and PLPS measurements indicating the integrity of the TBC has been maintained during the removal of surface contaminants. Thermographic phosphors (TGP) have optical emission properties when excited by a laser that are temperature dependent. These spectral and temporal properties have been investigated and utilized for temperature measurement schemes by many previous researchers. The compounds presented in this dissertation consist of various rare earth (Lanthanide) elements doped into a host crystal lattice. As the temperature of the lattice changes, both the time scale for vibrational quenching and the distribution of energy among atomic energy

  18. The effects of Bifidobacteria on the lipid profile and oxidative stress biomarkers of male rats fed thermally oxidized soybean oil.

    Science.gov (United States)

    Awney, Hala A

    2011-08-01

    Over the years, there has been concern about the changes taking place in heated oils and the effects on individuals consuming them. The present study investigated the effects of a diet containing thermally oxidized soybean oil (TO) or TO supplemented with probiotic Bifidobacteria (TO+Pro) on the serum lipid profile and oxidative stress biomarkers of male rats. The data showed several indicators of oil deterioration after thermal processing, including high levels of % free fatty acid (FFA; 15-fold), acid value (AV; 14-fold), peroxide value (8-fold), p-anisidine value (AnV; 39-fold), total oxidation value (TOTOX; 19-fold), thiobarbituric acid-reactive substances (TBARS) value (8.5-fold), and trans-FA (TFA) isomers (2.5-fold) compared to the control. The rats that were fed a diet containing TO showed a significant (p blood serum samples. High levels of TBARS, superoxide dismutase (SOD), and glutathione reductase (GR) activities were also detected in the livers, kidneys, testes, and brains of rats. Interestingly, a diet containing TO+Pro restored all biological parameters to their control values. The present data suggested that Bifidobacteria may ameliorate the serum lipid profile and oxidative stress biomarkers that are generated in animals that are fed a TO diet.

  19. A photoemission study of the effectiveness of nickel, manganese, and cobalt based corrosion barriers for silicon photo-anodes during water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Robert; Bogan, Justin; McCoy, Anthony; Byrne, Conor; Hughes, Greg [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland)

    2016-05-21

    Silicon is an attractive material for solar water splitting applications due to its abundance and its capacity to absorb a large fraction of incident solar radiation. However, it has not received as much attention as other materials due to its tendency to oxidize very quickly in aqueous environments, particularly when it is employed as the anode where it drives the oxygen evolution reaction. In recent years, several works have appeared in the literature examining the suitability of thin transition metal oxide films grown on top of the silicon to act as a corrosion barrier. The film should be transparent to solar radiation, allow hole transport from the silicon surface to the electrolyte, and stop the diffusion of oxygen from the electrolyte back to the silicon. In this work, we compare Mn-oxide, Co-oxide, and Ni-oxide thin films grown using physical vapor deposition in order to evaluate which material offers the best combination of photocurrent and corrosion protection. In addition to the electrochemical data, we also present a detailed before-and-after study of the surface chemistry of the films using x-ray photoelectron spectroscopy. This approach allows for a comprehensive analysis of the mechanisms by which the corrosion barriers protect the underlying silicon, and how they degrade during the water oxidation reaction.

  20. Comparison of different models for the determination of the absorption and scattering coefficients of thermal barrier coatings

    International Nuclear Information System (INIS)

    Wang, Li; Eldridge, Jeffrey I.; Guo, S.M.

    2014-01-01

    The thermal radiative properties of thermal barrier coatings (TBCs) are becoming more important as the inlet temperatures of advanced gas-turbine engines are continuously being pushed higher in order to improve efficiency. To determine the absorption and scattering coefficients of TBCs, four-flux, two-flux and Kubelka–Munk models were introduced and used to characterize the thermal radiative properties of plasma-sprayed yttria-stabilized zirconia (YSZ) coatings. The results show that the absorption coefficient of YSZ is extremely low for wavelengths 200 μm suggests that when the coating thickness is larger than around twice the average scattering distance, the collimated flux can be simply treated as a diffuse flux inside the coating, and thus the two-flux model can be used to determine the absorption and scattering coefficients as a simplification of the four-flux model

  1. Laser Cladding of Embedded Sensors for Thermal Barrier Coating Applications

    Directory of Open Access Journals (Sweden)

    Yanli Zhang

    2018-05-01

    Full Text Available The accurate real-time monitoring of surface or internal temperatures of thermal barrier coatings (TBCs in hostile environments presents significant benefits to the efficient and safe operation of gas turbines. A new method for fabricating high-temperature K-type thermocouple sensors on gas turbine engines using coaxial laser cladding technology has been developed. The deposition of the thermocouple sensors was optimized to provide minimal intrusive features to the TBC, which is beneficial for the operational reliability of the protective coatings. Notably, this avoids a melt pool on the TBC surface. Sensors were deposited onto standard yttria-stabilized zirconia (7–8 wt % YSZ coated substrates; subsequently, they were embedded with second YSZ layers by the Atmospheric Plasma Spray (APS process. Morphology of cladded thermocouples before and after embedding was optimized in terms of topography and internal homogeneity, respectively. The dimensions of the cladded thermocouple were in the order of 200 microns in thickness and width. The thermal and electrical response of the cladded thermocouple was tested before and after embedding in temperatures ranging from ambient to approximately 450 °C in a furnace. Seebeck coefficients of bared and embedded thermocouples were also calculated correspondingly, and the results were compared to that of a commercial standard K-type thermocouple, which demonstrates that laser cladding is a prospective technology for manufacturing microsensors on the surface of or even embedded into functional coatings.

  2. Zirconium-barrier cladding attributes

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.; Rand, R.A.; Tucker, R.P.; Cheng, B.; Adamson, R.B.; Davies, J.H.; Armijo, J.S.; Wisner, S.B.

    1987-01-01

    This metallurgical study of Zr-barrier fuel cladding evaluates the importance of three salient attributes: (1) metallurgical bond between the zirconium liner and the Zircaloy substrate, (2) liner thickness (roughly 10% of the total cladding wall), and (3) softness (purity). The effect that each of these attributes has on the pellet-cladding interaction (PCI) resistance of the Zr-barrier fuel was studied by a combination of analytical model calculations and laboratory experiments using an expanding mandrel technique. Each of the attributes is shown to contribute to PCI resistance. The effect of the zirconium liner on fuel behavior during off-normal events in which steam comes in contact with the zirconium surface was studied experimentally. Simulations of loss-of-coolant accident (LOCA) showed that the behavior of Zr-barrier cladding is virtually indistinguishable from that of conventional Zircaloy cladding. If steam contacts the zirconium liner surface through a cladding perforation and the fuel rod is operated under normal power conditions, the zirconium liner is oxidized more rapidly than is Zircaloy, but the oxidation rate returns to the rate of Zircaloy oxidation when the oxide phase reaches the zirconium-Zircaloy metallurgical bond

  3. Oral administration of Bifidobacterium breve attenuates UV-induced barrier perturbation and oxidative stress in hairless mice skin.

    Science.gov (United States)

    Ishii, Yuki; Sugimoto, Saho; Izawa, Naoki; Sone, Toshiro; Chiba, Katsuyoshi; Miyazaki, Kouji

    2014-07-01

    Recent studies have shown that some probiotics affect not only the gut but also the skin. However, the effects of probiotics on ultraviolet (UV)-induced skin damage are poorly understood. In this study, we aim to examine whether oral administration of live Bifidobacterium breve strain Yakult (BBY), a typical probiotic, can attenuate skin barrier perturbation caused by UV and reactive oxygen species (ROS) in hairless mice. The mice were orally supplemented with a vehicle only or BBY once a day for nine successive days. Mouse dorsal skin was irradiated with UV from days 6 to 9. The day after the final irradiation, the transepidermal water loss (TEWL), stratum corneum hydration, and oxidation-related factors of the skin were evaluated. We elucidated that BBY prevented the UV-induced increase in TEWL and decrease in stratum corneum hydration. In addition, BBY significantly suppressed the UV-induced increase in hydrogen peroxide levels, oxidation of proteins and lipids, and xanthine oxidase activity in the skin. Conversely, antioxidant capacity did not change regardless of whether BBY was administered or not. In parameters we evaluated, there was a positive correlation between the increase in TEWL and the oxidation levels of proteins and lipids. Our results suggest that oral administration of BBY attenuates UV-induced barrier perturbation and oxidative stress of the skin, and this antioxidative effect is not attributed to enhancement of antioxidant capacity but to the prevention of ROS generation.

  4. Design of a Nickel-Based Bond-Coat Alloy for Thermal Barrier Coatings on Copper Substrates

    Directory of Open Access Journals (Sweden)

    Torben Fiedler

    2014-11-01

    Full Text Available To increase the lifetime of rocket combustion chambers, thermal barrier coatings (TBC may be applied on the copper chamber wall. Since standard TBC systems used in gas turbines are not suitable for rocket-engine application and fail at the interface between the substrate and bond coat, a new bond-coat material has to be designed. This bond-coat material has to be chemically compatible to the copper substrate to improve the adhesion and needs a coefficient of thermal expansion close to that of copper to reduce thermal stresses. One approach to achieve this is to modify the standard NiCrAlY alloy used in gas turbines by adding copper. In this work, the influence of copper on the microstructure of NiCrAlY-alloys is investigated with thermodynamical calculations, optical microscopy, SEM, EDX and calorimetry. Adding copper leads to the formation of a significant amount of \\(\\beta\\ and \\(\\alpha\\ Reducing the aluminum and chromium content leads furthermore to a two-phase fcc microstructure.

  5. Progressive damage during thermal shock cycling of D-gun sprayed thermal barrier coatings with hollow spherical ZrO{sub 2}-8Y{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Ke, P.L. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China) and School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom)]. E-mail: csun@imr.ac.cn; Wang, Q.M. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Gong, J. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun, C. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhou, Y.C. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2006-11-05

    Thermal shock cycling behaviors of D-gun sprayed TBCs with a hollow spherical ZrO{sub 2}-8Y{sub 2}O{sub 3} (HSP-YSZ) top coat and NiCrAlY bond coat on directionally solidified Ni-base superalloys DZ125 were investigated at high temperature (1100 deg. C) {r_reversible} room temperature (RT) repeatedly by water quenching. Scanning electron microscopy (SEM) was used to characterize the coating microstructure and failure morphology. The results showed that failure of the D-gun sprayed TBC starts with crack initiation along the splats boundary in the ceramic top coat and the non-alumina oxides. The cracks propagate and coalesce with the increasing thermal cycling. The extensive cracking of the rapidly formed non-alumina oxides, resulting from the depletion of aluminum in the bond coat, aids to delamination of the outer ceramic layer. The stress distributions in TGO layer at different thermal shock cycles was measured by luminescence spectroscopy to investigate the failure mechanism of TBC system.

  6. Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement.

    Science.gov (United States)

    Luo, David A; Barraza, Enrique T; Kudenov, Michael W

    2017-12-10

    Yttria-stabilized zirconia (YSZ) is the most widely used material for thermal plasma sprayed thermal barrier coatings (TBCs) used to protect gas turbine engine parts in demanding operation environments. The superior material properties of YSZ coatings are related to their internal porosity level. By quantifying the porosity level, tighter control on the spraying process can be achieved to produce reliable coatings. Currently, destructive measurement methods are widely used to measure the porosity level. In this paper, we describe a novel nondestructive approach that is applicable to classify the porosity level of plasma sprayed YSZ TBCs via Mueller matrix polarimetry. A rotating retarder Mueller matrix polarimeter was used to measure the polarization properties of the plasma sprayed YSZ coatings with different porosity levels. From these measurements, it was determined that a sample's measured depolarization ratio is dependent on the sample's surface roughness and porosity level. To this end, we correlate the depolarization ratio with the samples' surface roughness, as measured by a contact profilometer, as well as the total porosity level, in percentage measured using a micrograph and stereological analysis. With the use of this technique, a full-field and rapid measurement of porosity level can be achieved.

  7. Influence of bondcoat composition and manufacturing parameters on the lifetime of thermal barrier coatings under cyclic temperature loading; Einfluss der Bondcoatzusammensetzung und Herstellungsparameter auf die Lebensdauer von Waermedaemmschichten bei zyklischer Temperaturbelastung

    Energy Technology Data Exchange (ETDEWEB)

    Subanovic, Marko

    2008-08-21

    In the present study the influence of the bond coat composition on the lifetime of thermal barrier coatings during thermal cycling was investigated. The knowledge, that the reactive elements (RE), which are essential for the improvement of the oxide scale adhesion, are ''lost'', during the bond coat processing, made it necessary to investigate systematically the influence of the different manufacturing stages on the RE distribution. After VPS (vacuum plasma spraying) with a high oxygen partial pressure in the spraying chamber, the reactive elements in the NiCoCrAl-coating were tied up in oxide precipitates, and thus their beneficial effect on the scale adhesion was inhibited. Another important observation is that the RE's are depleted during the bondcoat vacuum heat-treatment. The degree of Y-depletion depends not only on the Y-reservoir in the coating (Y-content and thickness) but also on the heat-treatment parameters, such as vacuum quality and temperature. A thin, dense alumina oxide scale with a smooth interface between bond coat and TGO doesn't necessary lead to a lifetime extension of the EB-PVD TBC's. TBC's with such oxide morphology typically failed due to crack formation and propagation along the interface between the TGO and the bondcoat. By addition of zirconium it was possible to shift the failure initiation from the interface TGO/bondcoat to the interface TBC/TGO, which can apparently accommodate more thermal strain energy before failure. The shift of the failure location was achieved by a change of the oxide morphology, which mainly relies on adjusting a non-even wavy interface between the TGO and the bond coat and formation of defected oxide layers. In contrast, a defected oxide scale with a high growth rate shortened the life time of APSTBC's. Porosity and spinel formation weakened the mechanical integrity of the oxide scale, and facilitated the crack formation and propagation of the already existing

  8. Electron Barrier Formation at the Organic-Back Contact Interface is the First Step in Thermal Degradation of Polymer Solar Cells

    KAUST Repository

    Sachs-Quintana, I. T.

    2014-03-24

    Long-term stability of polymer solar cells is determined by many factors, one of which is thermal stability. Although many thermal stability studies occur far beyond the operating temperature of a solar cell which is almost always less than 65 °C, thermal degradation is studied at temperatures that the solar cell would encounter in real-world operating conditions. At these temperatures, movement of the polymer and fullerenes, along with adhesion of the polymer to the back contact, creates a barrier for electron extraction. The polymer barrier can be removed and the performance can be restored by peeling off the electrode and depositing a new one. X-ray photoelectron spectroscopy measurements reveal a larger amount of polymer adhered to electrodes peeled from aged devices than electrodes peeled from fresh devices. The degradation caused by hole-transporting polymer adhering to the electrode can be suppressed by using an inverted device where instead of electrons, holes are extracted at the back metal electrode. The problem can be ultimately eliminated by choosing a polymer with a high glass transition temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Global Kinetic Constants for Thermal Oxidative Degradation of a Cellulosic Paper

    Science.gov (United States)

    Kashiwagi, Takashi; Nambu, Hidesaburo

    1992-01-01

    Values of global kinetic constants for pyrolysis, thermal oxidative degradation, and char oxidation of a cellulosic paper were determined by a derivative thermal gravimetric study. The study was conducted at heating rates of 0.5, 1, 1.5, 3, and 5 C/min in ambient atmospheres of nitrogen, 0.28, 1.08, 5.2 percent oxygen concentrations, and air. Sample weight loss rate, concentrations of CO, CO2, and H2O in the degradation products, and oxygen consumption were continuously measured during the experiment. Values of activation energy, preexponential factor, orders of reaction, and yields of CO, CO2, H2O, total hydrocarbons, and char for each degradation reaction were derived from the results. Heat of reaction for each reaction was determined by differential scanning calorimetry. A comparison of the calculated CO, CO2, H2O, total hydrocarbons, sample weight loss rate, and oxygen consumption was made with the measured results using the derived kinetic constants, and the accuracy of the values of kinetic constants was discussed.

  10. Preparation and thermal properties of form-stable palmitic acid/active aluminum oxide composites as phase change materials for latent heat storage

    International Nuclear Information System (INIS)

    Fang, Guiyin; Li, Hui; Cao, Lei; Shan, Feng

    2012-01-01

    Form-stable palmitic acid (PA)/active aluminum oxide composites as phase change materials were prepared by adsorbing liquid palmitic acid into active aluminum oxide. In the composites, the palmitic acid was used as latent heat storage materials, and the active aluminum oxide was used as supporting material. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine the chemical structure, crystalloid phase and microstructure of the composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetry analyzer (TGA). The FT-IR analyses results indicated that there is no chemical interaction between the palmitic acid and active aluminum oxide. The SEM results showed that the palmitic acid was well adsorbed into porous network of the active aluminum oxide. The DSC results indicated that the composites melt at 60.25 °C with a latent heat of 84.48 kJ kg −1 and solidify at 56.86 °C with a latent heat of 78.79 kJ kg −1 when the mass ratio of the PA to active aluminum oxide is 0.9:1. Compared with that of the PA, the melting and solidifying time of the composites CPCM5 was reduced by 20.6% and 21.4% because of the increased heat transfer rate through EG addition. The TGA results showed that the active aluminum oxide can improve the thermal stability of the composites. -- Highlights: ► Form-stable PA/active aluminum oxide composites as PCMs were prepared. ► Chemical structure, crystalloid phase and microstructure of composites were determined. ► Thermal properties and thermal stability of the composites were investigated. ► Expanded graphite can improve thermal conductivity of the composites.

  11. Active Bilayer PE/PCL Films for Food Packaging Modified with Zinc Oxide and Casein

    OpenAIRE

    Rešček, Ana; Kratofil Krehula, Ljerka; Katančić, Zvonimir; Hrnjak-Murgić, Zlata

    2015-01-01

    This paper studies the properties of active polymer food packaging bilayer polyethylene/polycaprolactone (PE/PCL) films. Such packaging material consists of primary PE layer coated with thin film of PCL coating modified with active component (zinc oxide or zinc oxide/casein complex) with intention to extend the shelf life of food and to maintain the quality and health safety. The influence of additives as active components on barrier, mechanical, thermal and antimicrobial properties of such m...

  12. Effect of block composition on thermal properties and melt viscosity of poly[2-(dimethylaminoethyl methacrylate], poly(ethylene oxide and poly(propylene oxide block co-polymers

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available To modify the rheological properties of certain commercial polymers, a set of block copolymers were synthesized through oxyanionic polymerization of 2-(dimethylaminoethyl methacrylate to the chain ends of commercial prepolymers, namely poly(ethylene oxide (PEO, poly(ethylene oxide-block-poly(propylene oxide-block-poly(ethylene oxide (PEO-PPO-PEO, and poly(propylene oxide (PPO. The formed block copolymers were analysed with size exclusion chromatography and nuclear magnetic resonance spectroscopy in order to confirm block formation. Thermal characterization of the resulting polymers was done with differential scanning calorimetry. Thermal transition points were also confirmed with rotational rheometry, which was primarily used to measure melt strength properties of the resulting block co-polymers. It was observed that the synthesised poly[2-(dimethylaminoethyl methacrylate]-block (PDM affected slightly the thermal transition points of crystalline PEO-block but the influence was stronger on amorphous PPO-blocks. Frequency sweeps measured above the melting temperatures for the materials confirmed that the pre-polymers (PEO and PEO-PPO-PEO behave as Newtonian fluids whereas polymers with a PDM block structure exhibit clear shear thinning behaviour. In addition, the PDM block increased the melt viscosity when compared with that one of the pre-polymer. As a final result, it became obvious that pre-polymers modified with PDM were in entangled form, in the melted state as well in the solidified form.

  13. Non-destructive evaluation of degradation in EB-PVD thermal barrier coatings by infrared reflectance spectroscopy

    International Nuclear Information System (INIS)

    Flattum, Richard Y.; Cooney, Adam T.

    2013-01-01

    At room temperature and atmospheric conditions infrared reflectance spectroscopy and X-ray diffraction were employed for the detection of the phase transformation and residual stress within thermal barrier coatings (TBC). The TBC's samples initially consisted of the porous ceramic topcoat deposited by electron beam plasma vapor deposition, a bond coat and a superalloy substrate. Reflectance spectroscopy scans were performed from 7497 cm −1 to 68 cm −1 to analysis the fingerprint region as well as the chemical bonding region. These regions should indicate if a detectable change within the TBC response is a result of thermal degradation of the microstructure and the changes in yttrium dispersion throughout the yttrium stabilized zirconium. The thermal degradation was induced by thermal cycling the samples to 1100° C and then cooling them in an atmospheric environment. X-ray diffraction was also used to detect the phase composition within the TBC samples and see if either would clearly identify failure prior to actual spallation. The eventual measurability and quantify-ability of the phase changes within the TBC's may be used as an effective non-destructive evaluation (NDE) technique that would allow personnel in the field to know when servicing of the turbine blade was necessary.

  14. Zero and low coefficient of thermal expansion polycrystalline oxides

    International Nuclear Information System (INIS)

    Skaggs, S.R.

    1977-09-01

    Polycrystalline oxide systems with zero to low coefficient of thermal expansion (CTE) investigated by the author include hafnia-titania and hafnia. The CTE for 30 to 40 mol% TiO 2 in HfO 2 is less than or equal to 1 x 10 -6 / 0 C, while for other compositions in the range 25 to 60 mol% it is approximately 4 x 10 -6 / 0 C. An investigation of the CTE of 99.999% HfO 2 yielded a value of 4.6 x 10 -6 / 0 C from room temperature to 1000 0 C. Correlation with data on HfO 2 by other investigators shows a definite relationship between the CTE and the amount of ZrO 2 present. Data are listed for comparison of the CTE of several other polycrystalline oxides investigated by Holcombe at Oak Ridge

  15. Zero and low coefficient of thermal expansion polycrystalline oxides

    International Nuclear Information System (INIS)

    Skaggs, S.R.

    1977-01-01

    Polycrystalline oxide systems with zero to low coefficient of thermal expansion (CTE) investigated by the author include hafnia-titania and hafnia. The CTE for 30 to 40 mol percent TiO 2 in HfO 2 is less than or equal to 1 x 10 -6 / 0 C, while for other compositions in the range 25 to 60 mol percent approximately 4 x 10 -6 / 0 C. An investigation of the CTE of 99.999 percent HfO 2 yielded a value of 4.6 x 10 -6 / 0 C from room temperature to 1000 0 C. Correlation with data on HfO 2 by other investigators shows a definite relationship between the CTE and the amount of ZrO 2 present. Data are listed for comparison of the CTE of several other polycrystalline oxides investigated by Holcombe at Oak Ridge

  16. Fabrication and thermal oxidation of ZnO nano fibers prepared via electro spinning technique

    International Nuclear Information System (INIS)

    Baek, Jeongha; Park, Juyun; Kim, Don; Kang, Yongcheol; Koh, Sungwi; Kang, Jisoo

    2012-01-01

    Materials on the scale of nano scale have widely been used as research topics because of their interesting characteristics and aspects they bring into the field. Out of the many metal oxides, zinc oxide (ZnO) was chosen to be fabricated as nano fibers using the electro spinning method for potential uses of solar cells and sensors. After ZnO nano fibers were obtained, calcination temperature effects on the ZnO nano fibers were studied and reported here. The results of scanning electron microscopy (SEM) revealed that the aggregation of the ZnO nano fibers progressed by calcination. X-ray diffraction (XRD) study showed the hcp ZnO structure was enhanced by calcination at 873 and 1173 K. Transmission electron microscopy (TEM) confirmed the crystallinity of the calcined ZnO nano fibers. X-ray photoelectron spectroscopy (XPS) verified the thermal oxidation of Zn species by calcination in the nano fibers. These techniques have helped US deduce the facts that the diameter of ZnO increases as the calcination temperature was raised; the process of calcination affects the crystallinity of ZnO nano fibers, and the thermal oxidation of Zn species was observed as the calcination temperature was raised

  17. Wet oxidative degradation of cellulosic wastes 5- chemical and thermal properties of the final waste forms

    International Nuclear Information System (INIS)

    Eskander, S.B.; Saleh, H.M.

    2002-01-01

    In this study, the residual solution arising from the wet oxidative degradation of solid organic cellulosic materials, as one of the component of radioactive solid wastes, using hydrogen peroxide as oxidant. Were incorporated into ordinary Portland cement matrix. Leaching as well as thermal characterizations of the final solidified waste forms were evaluated to meet the final disposal requirements. Factors, such as the amount of the residual solution incorporated, types of leachant. Release of different radionuclides and freezing-thaw treatment, that may affect the leaching characterization. Were studied systematically from the data obtained, it was found that the final solid waste from containing 35% residual solution in tap water is higher than that in ground water or sea water. Based on the data obtained from thermal analysis, it could be concluded that incorporating the residual solution form the wet oxidative degradation of cellulosic materials has no negative effect on the hydration of cement materials and consequently on the thermal stability of the final solid waste from during the disposal process

  18. Development of a thermal fatigue test method for thermal barrier coatings by laser excitation using a laser thermal shock facility; Entwicklung eines Pruefverfahrens zur laserinduzierten thermischen Ermuedung thermischer Schutzschichten mittels einer Laser-Thermoschockpruefeinrichtung

    Energy Technology Data Exchange (ETDEWEB)

    Nies, Daniel

    2012-07-13

    The finite nature of fossil fuel supply and the growing environmental awareness become increasingly stronger motivations for the development of efficient gas turbines and jet engines for power generation or as engines for land-, sea- and water-based vehicles. One concept developed for this purpose are thermal barrier coatings, where the thermal load of components is reduced by applying a ceramic coating onto the components. In this work the possibility to use a laser thermal shock facility for thermo-cyclic testing of thermal barrier coatings is examined. A focused laser beam is used for heating the sample and a homogeneous temperature distribution on the sample surface is achieved by the used trajectory and radial adjusted laser power. The required improvements of the existing testing facility are explained, including the development of a new sample holder and of the testing and evaluation routines for the experiments. For the assessment of the initiation and evolution of damages, acoustic emission and thermographic methods are used. The possibilities and limits of these methods are assessed during the experiments. The work also includes an extensive temperature dependent characterisation of the ceramic material used for the thermal barrier coating. In this part, the measurement of the Young's modulus by a dynamic method is to be highlighted, as this is a rarely used technique. The characterisations show the expected values, except for a lower porosity as expected by the manufacturer and no significant phase changes during isothermal heat treatments. To reach sample surface temperatures above 1000 C, it is necessary to increase the absorption by an additional coating of magnetite. The temperature distribution on the surface is measured by an infrared camera, which is calibrated for this purpose. With the incorporated active air cooling of the sample backside, the temperature gradient can be controlled, but still leaves room for improvements. Already without

  19. Nanocrystalline transition metal oxides as catalysts in the thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Inder Pal Singh; Srivastava, Pratibha; Singh, Gurdip [Department of Chemistry, DDU Gorakhpur University, Gorakhpur (India)

    2009-08-15

    Nanocrystalline transition metal oxides (NTMOs) have been successfully prepared by three different methods: novel quick precipitation method (Cr{sub 2}O{sub 3} and Fe{sub 2}O{sub 3}); surfactant mediated method (CuO), and reduction of metal complexes with hydrazine as reducing agent (Mn{sub 2}O{sub 3}). The nano particles have been characterized by X-ray diffraction (XRD) which shows an average particle diameter of 35-54 nm. Their catalytic activity was measured in the thermal decomposition of ammonium perchlorate (AP). AP decomposition undergoes a two step process where the addition of metal oxide nanocrystals led to a shifting of the high temperature decomposition peak toward lower temperature. The kinetics of the thermal decomposition of AP and catalyzed AP has also been evaluated using model fitting and isoconversional method. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  20. Enhanced low-temperature oxidation of zirconium alloys under irradiation

    International Nuclear Information System (INIS)

    Cox, B.; Fidleris, V.

    1989-01-01

    The linear growth of relatively thick (>300 nm) interference-colored oxide films on zirconium alloy specimens exposed in the Advanced Test Reactor (ATR) coolant at ≤55 o C was unexpected. Initial ideas were that this was a photoconduction effect. Experiments to study photoconduction in thin anodic zirconium oxide (ZrO 2 ) films in the laboratory were initiated to provide background data. It was found that, in the laboratory, provided a high electric field was maintained across the oxide during ultraviolet (UV) irradiation, enhanced growth of oxide occurred in the irradiated area. Similarly enhanced growth could be obtained on thin thermally formed oxide films that were immersed in an electrolyte with a high electric field superimposed. This enhanced growth was found to be caused by the development of porosity in the barrier oxide layer by an enhanced local dissolution and reprecipitation process during UV irradiation. Similar porosity was observed in the oxide films on the ATR specimens. Since it is not thought that a high electric field could have been present in this instance, localized dissolution of fast-neutron primary recoil tracks may be the operative mechanism. In all instances, the specimens attempt to maintain the normal barrier-layer oxide thickness, which causes the additional oxide growth. Similar mechanisms may have operated during the formation of thick loosely adherent, porous oxides in homogeneous reactor solutions under irradiation, and may be the cause of enhanced oxidation of zirconium alloys in high-temperature water-cooled reactors in some water chemistries. (author)

  1. Transport of oxidants and radionuclides through a clay barrier

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1978-02-01

    The masstransfer rate for oxidants to, and radionuclides from a capsule in a repository has been computed. The capsule which is 0.75 m in diameter is surrounded by Montmorillonite clay. The hole is 1.5 m in diameter. For one capsule about 1220g copper will corrode due to oxygen corrosion in 10 000 years. If the fissures in the rock nearest the hole are filled with clay, the corrosion will decrease significantly. This is valid for a case where the groundwater is in equilibrium with oxygen of 0.2 bar pressure (normal air pressure). Measurements of the oxygen content in groundwater at large depths show a more than 1 000 times smaller values. The transport rate will then be correspondingly smaller. Corrosion due to sulphate/sulphide corrosion may reach some 590 g in the same time if there is 10 mg/l of the least abundant component. The radionuclides Sr 90 , Cs 137 , Am 241 and Am 243 will decay totally in the clay barriers. Pu 240 will be seriously hindered. The total dissolution of the uranium oxide in a capsule takes at least 1.8 million years. Nuclides with high solubilities decrease in about 2 000 years to half their original concentration. The sodium in the Montmorillonite clay in the fissures is exchanged for calcium in about 20 000 years. The exchange of the sodium in the clay in the hole takes millions of years

  2. Thermally activated persulfate oxidation regeneration of NOM- and MTBE- spent granular activated carbon

    Science.gov (United States)

    Chemical oxidation is a developing technology used to regenerate contaminant-spent GAC. Chemical regeneration of GAC represents a viable option to thermal regeneration methods that are energy intensive resulting in significant consumption of fossil fuels and production of greenho...

  3. Thermal and oxidative degradation studies of formulated C-ethers by gel-permeation chromatography

    Science.gov (United States)

    Jones, W. R., Jr.; Morales, W.

    1982-01-01

    Gel-permeation chromatography was used to analyze C-ether lubricant formulations from high-temperature bearing tests and from micro-oxidation tests. Three mu-styragel columns (one 500 and two 100 A) and a tetrahydrofuran mobile phase were found to adequately separate the C-ether degradation products. The micro-oxidation tests yielded degradation results qualitatively similar to those observed from the bearing tests. Micro-oxidation tests conducted in air yielded more degradation than did tests in nitrogen. No great differences were observed between the thermal-oxidative stabilities of the two C-ether formulations or between the catalytic degradation activities of silver and M-50 steel. C-ether formulation I did yield more degradation than did formulation II in 111- and 25-hour bearing tests, respectively.

  4. Effects of fluoride residue on thermal stability in Cu/porous low-k interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y.; Ozaki, S.; Nakamura, T. [FUJITSU LABORATORIES Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0197 (Japan)

    2014-06-19

    We have investigated the effects of fluoride residue on the thermal stability of a Cu/barrier metal (BM)/porous low-k film (k < 2.3) structure. We confirmed that the Cu agglomerated more on a BM/inter layer dielectric (ILD) with a fluoride residue. To consider the effect of fluoride residue on Cu agglomeration, the structural state at the Cu/BM interface was evaluated with a cross-section transmission electron microscope (TEM) and atomic force microscope (AFM). In addition, the chemical bonding state at the Cu/BM interface was evaluated with the interface peeling-off method and X-ray photoelectron spectroscopy (XPS). Moreover, we confirmed the ionization of fluoride residue and oxidation of Cu with fluoride and moisture to clarify the effect of fluoride residue on Cu. Our experimental results indicated that the thermal stability in Cu/porous low-k interconnects was degraded by enhancement of Cu oxidation with fluoride ions diffusion as an oxidizing catalyst.

  5. High aspect ratio silicon nanomoulds for UV embossing fabricated by directional thermal oxidation using an oxidation mask

    International Nuclear Information System (INIS)

    Chen, L Q; Chan-Park, Mary B; Yan, Y H; Zhang Qing; Li, C M; Zhang Jun

    2007-01-01

    Nanomoulding is simple and economical but moulds with nanoscale features are usually prohibitively expensive to fabricate because nanolithographic techniques are mostly serial and time-consuming for large-area patterning. This paper describes a novel, simple and inexpensive parallel technique for fabricating nanoscale pattern moulds by silicon etching followed by thermal oxidation. The mask pattern can be made by direct photolithography or photolithography followed by metal overetching for submicron- and nanoscale features, respectively. To successfully make nanoscale channels having a post-oxidation cross-sectional shape similar to that of the original channel, an oxidation mask to promote unidirectional (specifically horizontal) oxide growth is found to be essential. A silicon nitride or metal mask layer prevents vertical oxidation of the Si directly beneath it. Without this mask, rectangular channels become smaller but are V-shaped after oxidation. By controlling the silicon etch depth and oxidation time, moulds with high aspect ratio channels having widths ranging from 500 to 50 nm and smaller can be obtained. The nanomould, when passivated with a Teflon-like layer, can be used for first-generation replication using ultraviolet (UV) nanoembossing and second-generation replication in other materials, such as polydimethylsiloxane (PDMS). The PDMS stamp, which was subsequently coated with Au, was used for transfer printing of Au electrodes with a 600 nm gap which will find applications in plastics nanoelectronics

  6. Preparation of polyvinyl alcohol graphene oxide phosphonate film and research of thermal stability and mechanical properties.

    Science.gov (United States)

    Li, Jihui; Song, Yunna; Ma, Zheng; Li, Ning; Niu, Shuai; Li, Yongshen

    2018-05-01

    In this article, flake graphite, nitric acid, peroxyacetic acid and phosphoric acid are used to prepare graphene oxide phosphonic and phosphinic acids (GOPAs), and GOPAs and polyvinyl alcohol (PVA) are used to synthesize polyvinyl alcohol graphene oxide phosphonate and phosphinate (PVAGOPs) in the case of faint acidity and ultrasound irradiation, and PVAGOPs are used to fabricate PVAGOPs film, and the structure and morphology of GOPAs, PVAGOPs and PVAGOPs film are characterized, and the thermal stability and mechanical properties of PVAGOPs film are investigated. Based on these, it has been proved that GOPAs consist of graphene oxide phosphonic acid and graphene oxide phosphinic acid, and there are CP covalent bonds between them, and PVAGOPs are composed of GOPAs and PVA, and there are six-member lactone rings between GOPAs and PVA, and the thermal stability and mechanical properties of PVAGOPs film are improved effectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Plasma sprayed thermal barrier coatings for industrial gas turbines: morphology, processing and properties

    International Nuclear Information System (INIS)

    Gruenling, H.W.; Mannsmann, W.

    1993-01-01

    Thermal barrier coatings out of fully or partially stabilized zirconia offer a unique chance in gas turbines to increase the gas inlet temperature significantly while keeping the temperature of the structural material of the component within conventional limits. The protection of combustor parts and transition pieces as well as of some stationary gas turbine parts however is state of the art. As a consequence of still insufficient reliability, the application for hot rotating parts is very limited. The introduction as a design element requires safe life within defined time intervals. These depend on the overhaul and repair intervals of the engines. For large land based industrial or utility gas turbines, for example, coating life between 25.000 and 30.000 hrs. is a minimum requirement. Premature failure of a coating by e.g. local spalling causes local overheating of the component with the consequence of its total destruction or even more expensive secondary damages. Life limiting is the corrosion rate at the ceramic-metal interface and the behavior of the coated system under transient operating conditions, where multiaxial strain and stress distributions are generated. Sufficient strain tolerance of the coating both under tensile as well as compressive conditions is required. The properties of thermal barrier coating systems depend strongly on the structure and phase composition of the coating layers and the morphology of and the adhesion at the ceramic-metal interface. They have to be controlled by the process itself, the process parameters and the characteristics of the applied materials (e.g. chemical composition, processing, morphology, particle size and size distribution). It will be reviewed, how properties and structures of coating systems correlate and how structures can be modified by careful control of the process parameters. (orig.)

  8. Development of functionally graded anti-oxidation coatings for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, J.H. [Dept. of Materials Technology, Korea Inst. of Machinery and Materials, Changwon (Korea); Fang Hai-Tao; Lai Zhong-Hong; Yin Zhong-Da [Materials Science and Engineering School, Harbin Inst. of Tech., Harbin (China)

    2005-07-01

    The concept of functionally graded materials (FGMs) was originated in the research field of thermal barrier coatings. Continuous changes in the composition, grain size, porosity, etc., of these materials result in gradients in such properties as mechanical strength and thermal conductivity. In recent years, functionally graded structural composite materials have received increased attention as promising candidate materials to exhibit better mechanical and functional properties than homogeneous materials or simple composite materials. Therefore the research area of FGMs has been expending in the development of various structural and functional materials, such as cutting tools, photonic crystals, dielectric and piezoelectric ceramics, thermoelectric semiconductors, and biomaterials. We have developed functionally graded structural ceramic/metal composite materials for relaxation of thermal stress, functionally graded anti-oxidation coatings for carbon/carbon composites, and functionally graded dielectric ceramic composites to develop advanced dielectric ceramics with flat characteristics of dielectric constant in a wide temperature range. This paper introduces functionally graded coatings for C/C composites with superior oxidation resistance at high temperatures. (orig.)

  9. A highly sensitive and durable electrical sensor for liquid ethanol using thermally-oxidized mesoporous silicon

    Science.gov (United States)

    Harraz, Farid A.; Ismail, Adel A.; Al-Sayari, S. A.; Al-Hajry, A.; Al-Assiri, M. S.

    2016-12-01

    A capacitive detection of liquid ethanol using reactive, thermally oxidized films constructed from electrochemically synthesized porous silicon (PSi) is demonstrated. The sensor elements are fabricated as meso-PSi (pore sizes hydrophobic PSi surface exhibited almost a half sensitivity of the thermal oxide sensor. The response to water is achieved only at the oxidized surface and found to be ∼one quarter of the ethanol sensitivity, dependent on parameters such as vapor pressure and surface tension. The capacitance response retains ∼92% of its initial value after continuous nine cyclic runs and the sensors presumably keep long-term stability after three weeks storage, demonstrating excellent durability and storage stability. The observed behavior in current system is likely explained by the interface interaction due to dipole moment effect. The results suggest that the current sensor structure and design can be easily made to produce notably higher sensitivities for reversible detection of various analytes.

  10. Infrared absorption study of ammonium uranates and uranium oxide powders formed during their thermal decomposition

    International Nuclear Information System (INIS)

    Rofail, N.H.; ELfekey, S.A.

    1992-01-01

    Ammonium uranates (AU) were precipitated from a nuclear-pure uranyl nitrate solution using different precipitating agents. IR spectra of the obtained uranates and oxides formed during their thermal decomposition have been studied. The results indicated that the precipitating agent, mode of stirring, washing and calcining temperature are important factors for a specific oxide formation.4 FIG., 3 TAB

  11. Upgrading non-oxidized carbon nanotubes by thermally decomposed hydrazine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pen-Cheng, E-mail: wangpc@ess.nthu.edu.tw [Department of Engineering and System Science, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Graduate Program for Science and Technology of Synchrotron Light Source, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Liao, Yu-Chun [Department of Engineering and System Science, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Graduate Program for Science and Technology of Synchrotron Light Source, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Liu, Li-Hung [Department of Engineering and System Science, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Lai, Yu-Ling; Lin, Ying-Chang [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Hsu, Yao-Jane [Graduate Program for Science and Technology of Synchrotron Light Source, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China)

    2014-06-01

    We found that the electrical properties of conductive thin films based on non-oxidized carbon nanotubes (CNTs) could be further improved when the CNTs consecutively underwent a mild hydrazine adsorption treatment and then a sufficiently effective thermal desorption treatment. We also found that, after several rounds of vapor-phase hydrazine treatments and baking treatments were applied to an inferior single-CNT field-effect transistor device, the device showed improvement in I{sub on}/I{sub off} ratio and reduction in the extent of gate-sweeping hysteresis. Our experimental results indicate that, even though hydrazine is a well-known reducing agent, the characteristics of our hydrazine-exposed CNT samples subject to certain treatment conditions could become more graphenic than graphanic, suggesting that the improvement in the electrical and electronic properties of CNT samples could be related to the transient bonding and chemical scavenging of thermally decomposed hydrazine on the surface of CNTs.

  12. Upgrading non-oxidized carbon nanotubes by thermally decomposed hydrazine

    Science.gov (United States)

    Wang, Pen-Cheng; Liao, Yu-Chun; Liu, Li-Hung; Lai, Yu-Ling; Lin, Ying-Chang; Hsu, Yao-Jane

    2014-06-01

    We found that the electrical properties of conductive thin films based on non-oxidized carbon nanotubes (CNTs) could be further improved when the CNTs consecutively underwent a mild hydrazine adsorption treatment and then a sufficiently effective thermal desorption treatment. We also found that, after several rounds of vapor-phase hydrazine treatments and baking treatments were applied to an inferior single-CNT field-effect transistor device, the device showed improvement in Ion/Ioff ratio and reduction in the extent of gate-sweeping hysteresis. Our experimental results indicate that, even though hydrazine is a well-known reducing agent, the characteristics of our hydrazine-exposed CNT samples subject to certain treatment conditions could become more graphenic than graphanic, suggesting that the improvement in the electrical and electronic properties of CNT samples could be related to the transient bonding and chemical scavenging of thermally decomposed hydrazine on the surface of CNTs.

  13. Effect of barrier layers on the properties of indium tin oxide thin films on soda lime glass substrates

    International Nuclear Information System (INIS)

    Lee, Jung-Min; Choi, Byung-Hyun; Ji, Mi-Jung; An, Yong-Tae; Park, Jung-Ho; Kwon, Jae-Hong; Ju, Byeong-Kwon

    2009-01-01

    In this paper, the electrical, structural and optical properties of indium tin oxide (ITO) films deposited on soda lime glass (SLG) haven been investigated, along with high strain point glass (HSPG) substrate, through radio frequency magnetron sputtering using a ceramic target (In 2 O 3 :SnO 2 , 90:10 wt.%). The ITO films deposited on the SLG show a high electrical resistivity and structural defects compared with those deposited on HSPG due to the Na ions from the SLG diffusing to the ITO film by annealing. However, these properties can be improved by intercalating a barrier layer of SiO 2 or Al 2 O 3 between the ITO film and the SLG substrate. SIMS analysis has confirmed that the barrier layer inhibits the Na ion's diffusion from the SLG. In particular, the ITO films deposited on the Al 2 O 3 barrier layer, show better properties than those deposited on the SiO 2 barrier layer.

  14. Deposition stress effects on the life of thermal barrier coatings on burner rigs

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  15. Development of a Nondestructive Evaluation Technique for Degraded Thermal Barrier Coatings Using Microwave

    Science.gov (United States)

    Sayar, M.; Ogawa, K.; Shoji, T.

    2008-02-01

    Thermal barrier coatings have been widely used in gas turbine engines in order to protect substrate metal alloy against high temperature and to enhance turbine efficiency. Currently, there are no reliable nondestructive techniques available to monitor TBC integrity over lifetime of the coating. Hence, to detect top coating (TC) and TGO thicknesses, a microwave nondestructive technique that utilizes a rectangular waveguide was developed. The phase of the reflection coefficient at the interface of TC and waveguide varies for different TGO and TC thicknesses. Therefore, measuring the phase of the reflection coefficient enables us to accurately calculate these thicknesses. Finally, a theoretical analysis was used to evaluate the reliability of the experimental results.

  16. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species.

    Science.gov (United States)

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-07

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm(-2) had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm(-2) plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization.

  17. Films based on oxidized starch and cellulose from barley.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. ICRF heating of passing ions in a thermal barrier tandem mirror

    International Nuclear Information System (INIS)

    Molvik, A.W.; Dimonte, G.; Campbell, R.; Barter, J.; Cummins, W.F.; Falabella, S.; Poulsen, P.

    1985-05-01

    Ion heating is used in the central cells of tandem mirrors to reduce the collisional trapping of passing ions in the end cell thermal barriers. In this paper, we reevaluate ICRF heating of the TMX-U central cell in two limits. The first we term isotropic, because we impose the condition that ions heated in the perpendicular direction be confined for at least one 90 0 scattering time, thereby heating the passing ions. The second we call anisotropic heating. It uses higher ICRF power to mirror trap a majority of the ions near the midplane, thereby reducing the density and collisionality of passing ions. Anisotropic heating has the advantage of increasing with ICRF power, whereas isotropic heating is limited by ion collisionality. Both techniques require gas fueling near the central cell midplane, with an ion cyclotron resonance toward each end cell to heat the cold ions

  19. Magnetic and thermal properties of amorphous TbFeCo alloy films

    Science.gov (United States)

    Wang, Ke; Dong, Shuo; Huang, Ya; Qiu, Yuzhen

    2017-07-01

    Amorphous TbFeCo material with perpendicular magnetic anisotropy is currently attracting more attention for potential applications in spintronic devices and logic memories. We systematically investigate magnetic, structural, thermal, optical and electrical properties of TbFeCo alloy films. It shows out-of-plane easy axis of the films turns into in-plane orientation after annealing. Significant increase in saturation magnetization in the temperature range between 400 and 450 °C is revealed by thermomagnetic measurements. The occurrence of crystallization and oxidation at high temperatures is confirmed by X-ray diffraction measurements. Pronounced changes in optical reflectance and sheet resistance are observed with temperature, in line with structural relaxation and change. The activation barriers for crystallization and oxidation are determined to be 1.01 eV and 0.83 eV, respectively, for FeCo-rich and Tb-rich samples. Better thermal stability against crystallization and oxidation is demonstrated in the FeCo-rich sample than the Tb-rich type. Our results provide some useful information for the alloy used in device fabrication.

  20. Properties of thermally oxidized and nitrided Zr-oxynitride thin film on 4H–SiC in diluted N2O ambient

    International Nuclear Information System (INIS)

    Wong, Yew Hoong; Cheong, Kuan Yew

    2012-01-01

    A systematic investigation on the structural, chemical, and electrical properties of thermally oxidized and nitrided sputtered Zr thin film in various N 2 O ambient (10–100%) at 500 °C for 15 min to form Zr-oxynitride on 4H–SiC substrate has been carried out. The chemical composition, depth profile analysis, and energy band alignment have been evaluated by X-ray photoelectron spectrometer. Zr-oxynitride layer and its interfacial layer comprised of compounds related to Zr–O, Zr–N, Zr–O–N, Si–N, and/or C–N were identified. A model related to the oxidation and nitridation mechanism has been suggested. Supportive results related to the model were obtained by energy filtered transmission electron microscopy, X-ray diffraction, and Raman analyses. A proposed crystal structure was employed to elucidate the surface roughness and topographies of the samples, which were characterized by atomic force microscopy. The electrical results revealed that 10% N 2 O sample has possessed the highest breakdown field and reliability. This was owing to the confinement of nitrogen-related compounds of Zr–O–N and/or Zr–N at or near interfacial layer region, smaller grain with finer structure on the surface, the lowest interface trap density, total interface trap density, and effective oxide charge, and highest barrier height between conduction band edge of oxide and semiconductor. -- Highlights: ► Zr-oxynitride as the gate oxide deposited on 4H–SiC substrate. ► Simultaneous oxidation and nitridation of sputtered Zr thin film on 4H–SiC using various concentrations of N 2 O gas. ► Presence of interfacial layer comprised of mixed compounds related to Zr–O, Zr–N, Zr–O–N, Si–N, and/or C–N. ► The highest electrical breakdown and highest reliability at diluted N 2 O of 10%.

  1. Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies

    Science.gov (United States)

    Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine

    2012-09-01

    The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.

  2. Direct analysis of anabolic steroids in urine using Leidenfrost phenomenon assisted thermal desorption-dielectric barrier discharge ionization mass spectrometry.

    Science.gov (United States)

    Saha, Subhrakanti; Mandal, Mridul Kanti; Nonami, Hiroshi; Hiraoka, Kenzo

    2014-08-11

    Rapid detection of trace level anabolic steroids in urine is highly desirable to monitor the consumption of performance enhancing anabolic steroids by athletes. The present article describes a novel strategy for identifying the trace anabolic steroids in urine using Leidenfrost phenomenon assisted thermal desorption (LPTD) coupled to dielectric barrier discharge (DBD) ionization mass spectrometry. Using this method the steroid molecules are enriched within a liquid droplet during the thermal desorption process and desorbed all-together at the last moment of droplet evaporation in a short time domain. The desorbed molecules were ionized using a dielectric barrier discharge ion-source in front of the mass spectrometer inlet at open atmosphere. This process facilitates the sensitivity enhancement with several orders of magnitude compared to the thermal desorption at a lower temperature. The limits of detection (LODs) of various steroid molecules were found to be in the range of 0.05-0.1 ng mL(-1) for standard solutions and around two orders of magnitude higher for synthetic urine samples. The detection limits of urinary anabolic steroids could be lowered by using a simple and rapid dichloromethane extraction technique. The analytical figures of merit of this technique were evaluated at open atmosphere using suitable internal standards. The technique is simple and rapid for high sensitivity and high throughput screening of anabolic steroids in urine. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress.

    Science.gov (United States)

    Yu, Leilei; Zhai, Qixiao; Tian, Fengwei; Liu, Xiaoming; Wang, Gang; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan; Chen, Wei

    2016-12-02

    Aluminum (Al) is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy) were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury.

  4. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Leilei Yu

    2016-12-01

    Full Text Available Aluminum (Al is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury.

  5. Thermal effect of Zn quantum dots grown on Si(111): competition between relaxation and reconstraint

    Science.gov (United States)

    Kao, Li-Chi; Huang, Bo-Jia; Zheng, Yu-En; Tu, Kai-Teng; Chiu, Shang-Jui; Ku, Ching-Shun; Lo, Kuang Yao

    2018-01-01

    Zn dots are potential solutions for metal contacts in future nanodevices. The metastable states that exist at the interface between Zn quantum dots and oxide-free Si(111) surfaces can suppress the development of the complete relaxation and increase the size of Zn dots. In this work, the actual heat consumption of the structural evolution of Zn dots resulting from extrinsic thermal effect was analyzed. Zn dots were coherently grown on oxide-free Si(111) through magnetron RF sputtering. A compensative optical method combined with reflective second harmonic generation and synchrotron x-ray diffraction (XRD) was developed to statistically analyze the thermal effect on the Zn dot system. Pattern matching (3 m) between the Zn and oxide-free Si(111) surface enabled Si(111) to constrain Zn dots from a liquid to solid phase. Annealing under vacuum induced smaller, loose Zn dots to be reconstrained by Si(111). When the size of the Zn dots was in the margin of complete relaxation, the Zn dot was partially constrained by potential barriers (metastable states) between Zn(111) and one of the six in-planes of Si〈110〉. The thermal disturbance exerted by annealing would enable partially constrained ZnO/Zn dots to overcome the potential barrier and be completely relaxed, which is obvious on the transition between Zn(111) and Zn(002) peak in synchrotron XRD. Considering the actual irradiated surface area of dots array in a wide-size distribution, the competition between reconstrained and relaxed Zn dots on Si(111) during annealing was statistically analyzed.

  6. Synthesis, characterization and thermal expansion studies on thorium-praseodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Full text: Thorium-praseodymium mixed oxide solid solutions containing 15, 25, 40 and 55 mole percent of praseodymia were synthesized by mixing the solutions of thorium nitrate in water and praseodymium oxide (Pr 6 O 11 ) in conc. HNO 3 . Subsequently, their hydroxides were co-precipitated by the addition of aqueous ammonia. Further the precipitate was dried at 50 deg C, calcined at 600 deg C for 4 hours and sintered at 1200 deg C for 6 h in air. X-ray diffraction measurements were performed for phase identification and lattice parameter derivation. Single-phase fluorite structure was observed for all the compositions. Bulk and theoretical densities of solid solutions were also determined by immersion and X-ray techniques. Thermal expansion coefficients and percentage linear thermal expansion of the solid solutions were determined using high temperature X-ray diffraction technique in the temperature range 300 to 1700 K for the first time. The room temperature lattice constants estimated for above compositions are 0.5578, 0.5565, 0.5545 and 0.5526 nm, respectively. The mean linear thermal expansion coefficients for the solid solutions are 15.48 x 10 -6 K -1 , 18.35 x 10 -6 K -1 , 22.65 x 10 -6 K -1 and 26.95 x 10 -6 K -1 , respectively. The percentage linear thermal expansions in this temperature range are 1.68, 1.89, 2.21 and 2.51 respectively. It is seen that the solid solutions are stable up to 1700 K. It is also seen that the effect and nature of the dopant are the important parameters influencing the thermal expansion of the ThO 2 . The lattice parameter of the solid solutions exhibited a decreasing trend with respect to praseodymia addition. The percentage linear thermal expansion of the solid solutions increases steadily with increasing temperature

  7. Load rate dependence of the mechanical properties of thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Zotov, Nikolay; Eggeler, Gunther [Institut fuer Werkstoffe, Ruhr Universitaet Bochum, 44780 Bochum (Germany); Bartsch, Marion [Institut fuer Werkstoff-Forschung, DLR Koeln, 51147 Koeln (Germany)

    2009-07-01

    Thermal barrier coatings (TBC), composed of yttrium-stabilized zirconia (YSZ) ceramic top coat (TC) and intermetallic NiCoCrAlY bond coat (BC) are commonly used as protective coatings of Ni-based high temperature gas engine components. Nanoindentation techniques are increasingly applied for determining the TBC mechanical properties on a nanometre scale. However, little is known about the load-rate dependence of the mechanical properties, which is important for better understanding of cyclic thermal fatigue experiments. Nanoindentations with different load rates omega were performed on polished cross-sections of TBC, deposited by EB-PVD on IN625 substrates (S), using a XP Nanoindenter (MTS) equipped with Berkovich diamond tip. The Young's modulus (E) of the TC is independent of omega, while E for the BC and the S decreases with omega. The hardness (H) of the TC and the BC increases, while H for the S decreases with omega. From the dependence of H on omega, creep power-law exponents c = 0.24(11) and c = 0.023(6) for the TC and the BC were determined. For all TBC components, a decrease with omega of the power-law exponents n and m, describing the loading and unloading nanoindentation curves, is observed.

  8. Overview on Recent Developments of Bondcoats for Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Naumenko, D.; Pillai, R.; Chyrkin, A.; Quadakkers, W. J.

    2017-12-01

    The performance of MCrAlY (M = Ni, Co) bondcoats for atmospheric plasma-sprayed thermal barrier coatings (APS-TBCs) is substantially affected by the contents of Co, Ni, Cr, and Al as well as minor additions of Y, Hf, Zr, etc., but also by manufacturing-related properties such as coating thickness, porosity, surface roughness, and oxygen content. The latter properties depend in turn on the exact technology and set of parameters used for bondcoat deposition. The well-established LPPS process competes nowadays with alternative technologies such as HVOF and APS. In addition, new technologies have been developed for bondcoats manufacturing such as high-velocity APS or a combination of HVOF and APS for application of a flashcoat. Future developments of the bondcoat systems will likely include optimization of thermal spraying methods for obtaining complex bondcoat roughness profiles required for extended APS-TBC lifetimes. Introduction of the newest generation single-crystal superalloys possessing low Cr and high Al and refractory metals (Re, Ru) contents will require definition of new bondcoat compositions and/or multilayered bondcoats to minimize interdiffusion issues. The developments of new bondcoat compositions may be substantially facilitated using thermodynamic-kinetic modeling, the vast potential of which has been demonstrated in recent years.

  9. Graphene oxide-loaded shortening as an environmentally friendly heat transfer fluid with high thermal conductivity

    Directory of Open Access Journals (Sweden)

    Vongsetskul Thammasit

    2017-01-01

    Full Text Available Graphene oxide-loaded shortening (GOS, an environmentally friendly heat transfer fluid with high thermal conductivity, was successfully prepared by mixing graphene oxide (GO with a shortening. Scanning electron microscopy revealed that GO particles, prepared by the modified Hummer’s method, dispersed well in the shortening. In addition, the latent heat of GOS decreased while their viscosity and thermal conductivity increased with increasing the amount of loaded GO. The thermal conductivity of the GOS with 4% GO was higher than that of pure shortening of ca. three times, from 0.1751 to 0.6022 W/mK, and increased with increasing temperature. The GOS started to be degraded at ca. 360°C. After being heated and cooled at 100°C for 100 cycles, its viscosity slightly decreased and no chemical degradation was observed. Therefore, the prepared GOS is potentially used as environmentally friendly heat transfer fluid at high temperature.

  10. Rapid and tunable selective adsorption of dyes using thermally oxidized nanodiamond.

    Science.gov (United States)

    Molavi, Hossein; Shojaei, Akbar; Pourghaderi, Alireza

    2018-03-27

    In the present study, capability of nanodiamond (ND) for the adsorption of anionic (methyl orange, MO) and cationic (methylene blue, MB) dyes from aqueous solution was investigated. Employing fourier transform infrared (FTIR) spectroscopy, Boehm titration method and zeta potential, it was found that the simple thermal oxidation of ND at 425 °C, increased the content of carboxylic acid of ND and accordingly the zeta potential of ND decreased considerably. Therefore, a series of oxidized NDs (OND) at various oxidation times and as-received untreated ND (UND) was used as adsorbents of MO and MB. The adsorption experiments exhibited that UND had large adsorption capacity, very fast adsorption kinetics and excellent selectivity for MO over MB. These results suggested that the adsorption tendency of UND toward anionic MO dye followed not only by electrostatic interactions but also via the chemical interaction caused by the strong hydrogen bond between the sulfonate groups of MO and the oxygen containing groups on the surface of UND. In contrast, ONDs exhibited higher adsorption capacity for cationic MB whose tendency toward MB increased by increasing the thermal oxidation time due to the promotion of the negative charge on the surface of OND leading to the higher electrostatic attraction. The adsorption rate of MB on ONDs was also very high. Kinetics data was well fitted with the pseudo- second-order model for most of the adsorbents. The adsorption selectivity analysis revealed that ONDs displayed more adsorption capacity for MB compared with MO which was also attributed to high electrostatic interactions of cationic dye with negative charges of ONDs. Finally, the release behavior of NDs was also demonstrated after soaking in ethanol and acetone. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Polymer/Silicate Nanocomposites Developed for Improved Strength and Thermal Stability

    Science.gov (United States)

    Campbell, Sandi G.

    2003-01-01

    Over the past decade, polymer-silicate nanocomposites have been attracting considerable attention as a method of enhancing polymer properties. The nanometer dimensions of the dispersed silicate reinforcement can greatly improve the mechanical, thermal, and gas barrier properties of a polymer matrix. In a study at the NASA Glenn Research Center, the dispersion of small amounts (less than 5 wt%) of an organically modified layered silicate (OLS) into the polymer matrix of a carbon-fiber-reinforced composite has improved the thermal stability of the composite. The enhanced barrier properties of the polymer-clay hybrid are believed to slow the diffusion of oxygen into the bulk polymer, thereby slowing oxidative degradation of the polymer. Electron-backscattering images show cracking of a nanocomposite matrix composite in comparison to a neat resin matrix composite. The images show that dispersion of an OLS into the matrix resin reduces polymer oxidation during aging and reduces the amount of cracking in the matrix significantly. Improvements in composite flexural strength, flexural modulus, and interlaminar shear strength were also obtained with the addition of OLS. An increase of up to 15 percent in these mechanical properties was observed in composites tested at room temperature and 288 C. The best properties were seen with low silicate levels, 1 to 3 wt%, because of the better dispersion of the silicate in the polymer matrix.

  12. Practical Aspects of Suspension Plasma Spray for Thermal Barrier Coatings on Potential Gas Turbine Components

    Science.gov (United States)

    Ma, X.; Ruggiero, P.

    2018-04-01

    Suspension plasma spray (SPS) process has attracted extensive efforts and interests to produce fine-structured and functional coatings. In particular, thermal barrier coatings (TBCs) applied by SPS process gain increasing interest due to its potential for superior thermal protection of gas turbine hot sections as compared to conventional TBCs. Unique columnar architectures and nano- and submicrometric grains in the SPS-TBC demonstrated some advantages of thermal shock durability, low thermal conductivity, erosion resistance and strain-tolerant microstructure. This work aimed to look into some practical aspects of SPS processing for TBC applications before it becomes a reliable industry method. The spray capability and applicability of SPS process to achieve uniformity thickness and microstructure on curved substrates were emphasized in designed spray trials to simulate the coating fabrication onto industrial turbine parts with complex configurations. The performances of the SPS-TBCs were tested in erosion, falling ballistic impact and indentational loading tests as to evaluate SPS-TBC performances in simulated turbine service conditions. Finally, a turbine blade was coated and sectioned to verify SPS sprayability in multiple critical sections. The SPS trials and test results demonstrated that SPS process is promising for innovative TBCs, but some challenges need to be addressed and resolved before it becomes an economic and capable industrial process, especially for complex turbine components.

  13. Improved thermal stability of methylsilicone resins by compositing with N-doped graphene oxide/Co3O4 nanoparticles

    International Nuclear Information System (INIS)

    Jiang, Bo; Zhao, Liwei; Guo, Jiang; Yan, Xingru; Ding, Daowei; Zhu, Changcheng; Huang, Yudong; Guo, Zhanhu

    2016-01-01

    Nanoparticles play important roles in enhancing the thermal-resistance of hosting polymer resins. Despite tremendous efforts, developing thermally stable methylsilicone resin at high temperatures is still a challenge. Herein, we report a strategy to increase the activation energy to slow down the decomposition/degradation of methylsilicone resin using synergistic effects between the Co 3 O 4 nanoparticles and the nitrogen doped graphene oxide. The N-doped graphene oxides composited with Co 3 O 4 nanoparticles were prepared by hydrolysis of cobalt nitrate hexahydrate in the presence of graphene oxide and were incorporated into the methylsilicone resin. Two-stage decompositions were observed, i.e., 200–300 and 400–500 °C. The activation energy for the low temperature region was enhanced by 47.117 kJ/mol (vs. 57.76 kJ/mol for pure resin). The enhanced thermal stability was due to the fact that the nanofillers prevented the silicone hydroxyl chain ends ‘‘biting’’ to delay the degradation. The activation energy for high-temperature region was enhanced by 11.585 kJ/mol (vs. 171.95 kJ/mol for pure resin). The nanofillers formed a protective layer to isolate oxygen from the hosting resin. The mechanism for the enhanced thermal stability through prohibited degradation with synergism of these nitrogen-doped graphene oxide nanocomposites was proposed as well.Graphical Abstract

  14. Tandem mirror reactor with thermal barriers

    International Nuclear Information System (INIS)

    Carlson, G.A.; Arfin, B.; Barr, W.L.; Boghosian, B.M.; Erickson, J.L.; Fink, J.H.; Hamilton, G.W.; Logan, B.G.; Myall, J.O.; Neef, W.S. Jr.

    1979-01-01

    This report gives detailed information in the form of the following chapters: (1) overview, (2) plasma physics, (3) magnets, (4) end-plug neutral beams, (5) barrier pump neutral beams, (6) ecr heating, (7) plasma direct converter, and (8) central cell

  15. Nanocomposites of cellulose/iron oxide: influence of synthesis conditions on their morphological behavior and thermal stability

    International Nuclear Information System (INIS)

    Ma Mingguo; Zhu Jiefang; Li Shuming; Jia Ning; Sun Runcang

    2012-01-01

    Nanocomposites of cellulose/iron oxide have been successfully prepared by hydrothermal method using cellulose solution and Fe(NO 3 ) 3 ·9H 2 O at 180 °C. The cellulose solution was obtained by the dissolution of microcrystalline cellulose in NaOH/urea aqueous solution, which is a good system to dissolve cellulose and favors the synthesis of iron oxide without needing any template or other reagents. The phases, microstructure, and morphologies of nanocomposites were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectra (EDS). The effects of the heating time, heating temperature, cellulose concentration, and ferric nitrate concentration on the morphological behavior of products were investigated. The experimental results indicated that the cellulose concentration played an important role in both the phase and shape of iron oxide in nanocomposites. Moreover, the nanocomposites synthesized by using different cellulose concentrations displayed different thermal stabilities. - Highlights: ► Nanocomposites of cellulose/iron oxide have been prepared by hydrothermal method. ► The cellulose concentration played an important role in the phase of iron oxide. ► The cellulose concentration played an important role in the shape of iron oxide. ► The samples displayed different thermal stabilities.

  16. Effect of thermal oxidation treatment on pH sensitivity of AlGaN/GaN heterostructure ion-sensitive field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Bu, Yuyu [Institute of Science and Technology, Tokushima University, Tokushima 770-8506 (Japan); Li, Liuan, E-mail: liliuan@mail.sysu.edu.cn [School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275 (China); Ao, Jin-Ping, E-mail: jpao@ee.tokushima-u.ac.jp [Institute of Science and Technology, Tokushima University, Tokushima 770-8506 (Japan)

    2017-07-31

    Highlights: • AlGaN/GaN ISFETs were fabricated and evaluated with thermal oxidation treatment. • Sensitivity was improved to 57.7 mV/pH after 700 °C treatment. • Sensitivity became poor after 800 °C treatment. • The pure α-Al{sub 2}O{sub 3} crystal phase generated on the surface of the 700 °C treatment sample. • Ga{sub 2}O{sub 3} phase content in the metal oxide layer increased after 800 °C treatment. - Abstract: In this article, AlGaN/GaN heterostructure ion-sensitive field-effect transistors (ISFETs) were prepared and evaluated by thermal oxidation treatment on the AlGaN surface. The ISFETs were fabricated on the AlGaN/GaN heterostructure and then thermally oxidized with dry oxygen in 600, 700, and 800 °C, respectively. It indicates that the performance of the AlGaN/GaN heterostructure ISFETs, such as noise and sensitivity, has been improved owing to the thermal oxidation treatment process at different temperatures. The X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) results indicate that after thermal oxidation treatment at different temperatures, hydroxide who possesses high surface state density will transfer to oxide owing to the higher chemical stability of the latter. Moreover, a crystalline α-Al{sub 2}O{sub 3} phase generated at 700 °C can not only provide a relatively smooth surface, but also improve the sensitivity to 57.7 mV/pH for the AlGaN/GaN heterostructure ISFETs, which is very close to the Nernstian limit.

  17. Oxidation of MoS2 by thermal and hyperthermal atomic oxygen

    International Nuclear Information System (INIS)

    Cross, J.B.; Martin, J.A.; Pope, L.E.; Koontz, S.L.

    1989-01-01

    The present study shows that, at 1.5 eV O-atom translational energy, SO 2 is generated and outgases from an anhydrous MoS 2 surface with a reactivity nearly that of kapton. The reaction of atomic oxygen with MoS 2 has little or no translational energy barrier; i.e., thermally generated atomic oxygen reacts as readily as that having 1.5 eV of translational energy. It is also shown that water present in the flowing afterglow apparatus used to study thermal O-atom reactivity formed sulfates on the MoS 2 surface and that the sulfate is most likely in the form of sulfuric acid. These results imply that water dumps or outgasing in low earth orbit have the potential of forming sulfuric acid covered surfaces on MoS 2 lubricants. Friction measurements show a high initial friction coefficient (0.2) for O-atom exposed MoS 2 surfaces which drops to the normal low value (0.05) after several cycles of operation

  18. Plasma processes and film growth of expanding thermal plasma deposited textured zinc oxide

    NARCIS (Netherlands)

    Groenen, R.; Linden, J.L.; Sanden, van de M.C.M.

    2005-01-01

    Plasma processes and film growth of textured zinc oxide deposited from oxygen and diethyl zinc utilizing expanding thermal argon plasma created by a cascaded arc is discussed. In all conditions explored, an excess of argon ions and low temperature electrons is available, which represent the

  19. Ionoluminscence of partially-stabilized zirconia for thermal barrier coatings

    International Nuclear Information System (INIS)

    Rebollo, N.R.; Ruvalcaba-Sil, J.L.; Miranda, J.

    2007-01-01

    Ionoluminescence is explored as an alternative technique to study the high temperature phase stability of zirconia-based oxides. The evolution of an initially metastable single tetragonal phase towards de-stabilization is investigated for three single-doped zirconia compositions with Y, Yb and Gd. The differences in de-stabilization paths are identified using X-ray diffraction and ionoluminescence; elemental analysis is also performed using particle-induced X-ray emission. X-ray diffraction studies reveal a different scenario for each of the compositions selected; the differences are strongly influenced by the thermodynamic driving forces associated to the fluorite-to-tetragonal displacive transformation. Ionoluminescence studies indicate a significant increment on the signal intensity for de-stabilized samples, relative to previous annealing stages. There are also more subtle differences in the luminescent response from the samples at intermediate annealing stages also related to phase changes. This study provides a basis to characterize phase evolution in single-doped zirconia compositions for thermal insulation applications using luminescence

  20. The Cementitious Barriers Partnership (CBP) Software Toolbox Capabilities In Assessing The Degradation Of Cementitious Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States); Burns, H. H. [Savannah River Site (SRS), Aiken, SC (United States); Langton, C. [Savannah River Site (SRS), Aiken, SC (United States); Smith, F. G. III [Savannah River Site (SRS), Aiken, SC (United States); Brown, K. G. [Vanderbilt University, Nashville, TN (United States); Kosson, D. S. [Vanderbilt University, Nashville, TN (United States); Garrabrants, A. C. [Vanderbilt University, Nashville, TN (United States); Sarkar, S. [Vanderbilt University, Nashville, TN (United States); van der Sloot, H. [Hans van der Sloot Consultancy (The Netherlands); Meeussen, J. C.L. [Nuclear Research and Consultancy Group, Petten (The Netherlands); Samson, E. [SIMCO Technologies Inc. , 1400, boul. du Parc - Technologique , Suite 203, Quebec (Canada); Mallick, P. [United States Department of Energy, 1000 Independence Ave. SW , Washington, DC (United States); Suttora, L. [United States Department of Energy, 1000 Independence Ave. SW , Washington, DC (United States); Esh, D. W. [U .S. Nuclear Regulatory Commission , Washington, DC (United States); Fuhrmann, M. J. [U .S. Nuclear Regulatory Commission , Washington, DC (United States); Philip, J. [U .S. Nuclear Regulatory Commission , Washington, DC (United States)

    2013-01-11

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste and Nuclear Materials Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to 100 years and longer for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox has produced tangible benefits to the DOE Performance Assessment (PA) community. A review of prior DOE PAs has provided a list of potential opportunities for improving cementitious barrier performance predictions through the use of the CBP software tools. These opportunities include: 1) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, 2) prediction of changes in Kd/mobility as a function of time that result from changing pH and redox conditions, 3) concrete degradation from rebar corrosion due to carbonation, 4) early age cracking from drying and/or thermal shrinkage and 5) degradation due to sulfate attack. The CBP has already had opportunity to provide near-term, tangible support to ongoing DOE-EM PAs such as the Savannah River Saltstone Disposal Facility (SDF) by providing a sulfate attack analysis that predicts the extent and damage that sulfate ingress will have on the concrete vaults over extended time (i.e., > 1000 years). This analysis is one of the many technical opportunities in cementitious barrier performance that can be addressed by the DOE-EM sponsored CBP software