WorldWideScience

Sample records for oxide functional group

  1. Tuning of electronic properties and dynamical stability of graphene oxide with different functional groups

    Science.gov (United States)

    Dabhi, Shweta D.; Jha, Prafulla K.

    2017-09-01

    The structural, electronic and vibrational properties of graphene oxide (GO) with varying proportion of epoxy and hydroxyl functional groups have been studied using density functional theory. The functional groups and oxygen density have an obvious influence on the electronic and vibrational properties. The dependence of band gap on associated functional groups and oxygen density shows a possibility of tuning the band gap of graphene by varying the functional groups as well as oxidation level. The absorption of high oxygen content in graphene leads to the gap opening and resulting in a transition from semimetal to semiconductor. Phonon dispersion curves show no imaginary frequency or no softening of any phonon mode throughout the Brillouin zone which confirms the dynamical stability of all considered GO models. Different groups and different oxygen density result into the varying characteristics of phonon modes. The computed results show good agreement with the experimental observations. Our results present interesting possibilities for engineering the electronic properties of graphene and GO and impact the fabrication of new electronics.

  2. Tuning inner-layer oxygen functional groups of reduced graphene oxide by potentiostatic oxidation for high performance electrochemical energy storage devices

    International Nuclear Information System (INIS)

    Wang, Huixin; Feng, Bingmei; Ye, Yifan; Guo, Jinghua; Fang, Hai-Tao

    2017-01-01

    Graphical abstract: Tuning inner-layer oxygen functional groups of reduced graphene oxide by potentiostatic oxidation in carbonate-based electrolyte improves the electrochemical performance. - Abstract: The electrochemical lithiation/delithiation of oxygen-containing functional groups (OCFGs) of nanocarbon materials, particularly graphene, have attracted intensive interest in recent years. Here, we propose a controllable potentiostatic oxidation approach to tune the OCFGs of as-prepared reduced graphene oxide (rGO) in a carbonate-based electrolyte to improve the specific capacity and rate capability. By X-Ray absorption spectroscopy in total fluorescence yield mode and X-Ray diffraction, we confirm that potentiostatic oxidations generate new OCFGs in the inner-layer of rGO. The content of OCFGs increases as oxidation potential being elevated. Such increasing of OCFGs in quantity significantly enhances the capacity. For instance, the specific capacity of 170.4 mAh g −1 for pristine rGO electrode is increased to 290.5 mAh g −1 after the oxidation at 5.0 V. We demonstrate that oxidations at moderate potentials can reduce the electrochemical and ohmic polarizations of rGO electrodes without deteriorating diffusion dynamic, thereby improving rate capability. After the optimal oxidation at 4.7 V, rGO electrode exhibits an excellent rate capability, delivering 58.4 mAh g −1 at 20 A g −1 .

  3. Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups

    Directory of Open Access Journals (Sweden)

    Hong SC

    2011-12-01

    Full Text Available Seong Cheol Hong1,*, Jong Ho Lee1,*, Jaewook Lee1, Hyeon Yong Kim1, Jung Youn Park2, Johann Cho3, Jaebeom Lee1, Dong-Wook Han11Department of Nanomedical Engineering, BK21 Nano Fusion Technology Division, College of Nanoscience and Nanotechnology, Pusan National University, 2Department of Biotechnology Research, National Fisheries Research and Development Institute, Busan, 3Electronic Materials Lab, Samsung Corning Precision Materials Co, Ltd, Gumi City, Gyeongsangbukdo, Korea*These authors contributed equally to this workAbstract: Superparamagnetic iron oxide nanoparticles (SPIONs have been widely utilized for the diagnosis and therapy of specific diseases, as magnetic resonance imaging (MRI contrast agents and drug-delivery carriers, due to their easy transportation to targeted areas by an external magnetic field. For such biomedical applications, SPIONs must have multifunctional characteristics, including optimized size and modified surface. However, the biofunctionality and biocompatibility of SPIONs with various surface functional groups of different sizes have yet to be elucidated clearly. Therefore, it is important to carefully monitor the cytotoxicity and genotoxicity of SPIONs that are surfaced-modified with various functional groups of different sizes. In this study, we evaluated SPIONs with diameters of approximately 10 nm and 100~150 nm, containing different surface functional groups. SPIONs were covered with –O-groups, so-called bare SPIONs. Following this, they were modified with three different functional groups – hydroxyl (–OH, carboxylic (–COOH, and amine (–NH2 groups – by coating their surfaces with tetraethyl orthosilicate (TEOS, (3-aminopropyltrimethoxysilane (APTMS, TEOS-APTMS, or citrate, which imparted different surface charges and sizes to the particles. The effects of SPIONs coated with these functional groups on mitochondrial activity, intracellular accumulation of reactive oxygen species, membrane integrity

  4. Fluorescence properties of dansyl groups covalently bonded to the surface of oxidatively functionalized low-density polyethylene film

    Science.gov (United States)

    Holmes-Farley, S. R.; Whitesides, G. M.

    1985-12-01

    Brief oxidation of low-density polyethylene film with chromic acid in aqueous sulfuric acid introduced carboxylic acid and ketone and/or aldehyde groups onto the surface of the film. The carboxylic acid moieties can be used to attach more complex functionality to the polymer surface. We are developing this surface-functionalized polyethylene (named polyethylene carboxylic acid, PE-CO2H, to emphasize the functional group that dominates its surface properties) as a substrate with which to study problems in organic surface chemistry--especially wetting, polymer surface reconstruction, and adhesion--using physical-organic techniques. This document describes the preparation, characterization, and fluorescence properties of derivatives of PE-CO2H in which the Dansyl (5-dimethylaminonaphthalene-1-sulfonyl) group has been covalently attached by amide links to the surface carbonyl moieties.

  5. Electroless oxidation of diamond surfaces in ceric and ferricyanide solutions: An easy way to produce 'C-O' functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Simon, N., E-mail: nathalie.simon@uvsq.f [Institut Lavoisier de Versailles, UMR 8180, Universite de Versailles-St-Quentin en Yvelines, 45 avenue des Etats Unis, 78000 Versailles (France); Charrier, G.; Etcheberry, A. [Institut Lavoisier de Versailles, UMR 8180, Universite de Versailles-St-Quentin en Yvelines, 45 avenue des Etats Unis, 78000 Versailles (France)

    2010-08-01

    Despite many works are devoted to oxidation of diamond surfaces, it is still a challenge, to successfully produce well defined 'C-O' functions, particularly for functionalization purposes. In this paper we describe and compare, for the first time, the 'electroless' oxidation of as-deposited polycrystalline boron-doped diamond (BDD) films in ceric and ferricyanide solutions at room temperature. Both reactions efficiently generate oxygen functionalities on BDD surface. While a higher amount of 'C-O' moieties is produced with Ce{sup 4+} as oxidizing agent, the use of ferricyanide specie seems the most interesting to specifically generate hydroxyl groups. Additionally, this easy to perform oxidative method appears not damaging for diamond surfaces and adapted to conductive or non-conductive materials. The resulting surfaces were characterized using X-ray photoelectron spectroscopy, contact angle and capacitance-voltage analysis.

  6. Adsorption and oxidation of SO2 by graphene oxides: A van der Waals density functional theory study

    International Nuclear Information System (INIS)

    Zhang, Huijuan; Cen, Wanglai; Liu, Jie; Guo, Jiaxiu; Yin, Huaqiang; Ning, Ping

    2015-01-01

    Highlights: • Hydroxyl group enhances the adsorption of SO 2 on graphene oxide surface. • Hydroxyl group cuts down the barrier for the oxidation of SO 2 through H-bonding interaction. • A charge transfer channel, from surface hydroxyl group to adsorbed SO 2 molecule, and then from the adsorbed SO 2 to epoxy group, is found to underlie the promotion effects on the oxidation of SO 2 . - Abstract: Carbon materials have been used for low temperature (20–150 °C) catalytic removal of SO 2 from the coal-burned flue gases for a long time, but the mechanism at atomic level is still controversial. Density functional theory was used to investigate the adsorption and oxidation of SO 2 on elaborated graphene oxides (GOs) to discover the insights. It is found that the hydroxyl groups on GO surface possess bi-functional effects: both enhancing the adsorption of SO 2 through H-bonding interaction and reducing the reaction barrier for its oxidation to SO 3 . The promotion of oxidation is related to a pre-activation of the surface epoxy group. Based on Bader population, charge difference and electron localization function analysis, a charge transfer channel is proposed to explain the pre-activation

  7. Role of chemical functional groups on thermal and electrical properties of various graphene oxide derivatives: a comparative x-ray photoelectron spectroscopy analysis

    Science.gov (United States)

    Balaji Mohan, Velram; Jakisch, Lothar; Jayaraman, Krishnan; Bhattacharyya, Debes

    2018-03-01

    In recent years, graphene and its derivatives have become prominent subject matter due to their fascinating combination of properties and potential applications in a number application. While several fundamental studies have been progressed, there is a particular need to understand how different graphene derivatives are influenced in terms of their electrical and thermal conductivities by different functional groups they end up with through their manufacturing and functionalisation methods. This article addresses of the role of different functional groups present of different of reduced graphene oxides (rGO) concerning their electrical and thermal properties, and the results were compared with elemental analyses of functionalised reduced graphene oxide (frGO) and graphene. The results showed that electrical and thermal conductivities of the rGO samples, highly dependent on the presence of residual functional groups from oxidation, reduction and functionalisation processes. The increase in reduction of oxygen, hydroxyl, carboxylic, epoxide moieties and heterocyclic compounds increase the specific surface area of the samples through which the mean electron path has increased. This improved both electrical and thermal conductivities together in all the samples which were highly dependent on the efficiency of different reductant used in this study.

  8. Adsorption and oxidation of SO{sub 2} by graphene oxides: A van der Waals density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huijuan [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 (China); Cen, Wanglai, E-mail: cenwanglai@scu.edu.cn [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065 (China); Liu, Jie [Department of Environment Engineering, Chengdu University of Information Technology, Chengdu 610025 (China); Guo, Jiaxiu [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065 (China); Yin, Huaqiang [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065 (China); Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065 (China); Ning, Ping, E-mail: ningping58@sina.com [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 (China)

    2015-01-01

    Highlights: • Hydroxyl group enhances the adsorption of SO{sub 2} on graphene oxide surface. • Hydroxyl group cuts down the barrier for the oxidation of SO{sub 2} through H-bonding interaction. • A charge transfer channel, from surface hydroxyl group to adsorbed SO{sub 2} molecule, and then from the adsorbed SO{sub 2} to epoxy group, is found to underlie the promotion effects on the oxidation of SO{sub 2}. - Abstract: Carbon materials have been used for low temperature (20–150 °C) catalytic removal of SO{sub 2} from the coal-burned flue gases for a long time, but the mechanism at atomic level is still controversial. Density functional theory was used to investigate the adsorption and oxidation of SO{sub 2} on elaborated graphene oxides (GOs) to discover the insights. It is found that the hydroxyl groups on GO surface possess bi-functional effects: both enhancing the adsorption of SO{sub 2} through H-bonding interaction and reducing the reaction barrier for its oxidation to SO{sub 3}. The promotion of oxidation is related to a pre-activation of the surface epoxy group. Based on Bader population, charge difference and electron localization function analysis, a charge transfer channel is proposed to explain the pre-activation.

  9. Comparative effects of graphene and graphene oxide on copper toxicity to Daphnia magna: Role of surface oxygenic functional groups.

    Science.gov (United States)

    Liu, Yingying; Fan, Wenhong; Xu, Zhizhen; Peng, Weihua; Luo, Shenglian

    2018-05-01

    Although the risk of graphene materials to aquatic organisms has drawn wide attention, the combined effects of graphene materials with other contaminants such as toxic metals, which may bring about more serious effects than graphene materials alone, have seldom been explored. Herein, the effects of graphene (GN) and graphene oxide (GO, an important oxidized derivative of graphene) on copper (Cu) toxicity to Daphnia magna were systematically investigated. The results indicated that GN remarkably increased the Cu accumulation in D. magna and enhanced the oxidative stress injury caused by Cu, whereas did not significantly alter D. magna acute mortality within the tested Cu concentrations (0-200 μg L -1 ). On the contrary, GO significantly decreased the Cu accumulation in D. magna and alleviated the oxidative stress injury caused by Cu. Meanwhile, the presence of GO significantly reduced the mortality of D. magna when Cu concentration exceeded 50 μg L -1 . The different effects of GN and GO on Cu toxicity were possibly dependent on the action of surface oxygenic functional group. Because of the introduction of surface oxygenic functional groups, the adsorption ability to metal ions, stability in water and interaction mode with organisms of GO are quite different from that of GN, causing different effects on Cu toxicity. This study provides important information on the bioavailability and toxicity of heavy metals as affected by graphene materials in natural water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The acidic functional groups of humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shanxiang, Li; Shuhe, Sun; Zhai Zongxi, Wu Qihu

    1983-09-01

    The acidic functional groups content, pK value, DELTAH and DELTAS of humic acid (HA) and nitro-humic acid (NHA) were determined by potentiometry, conductometry and calorimetric titration. The thermodynamic parameters of carboxylic groups and phenolic hydroxyl groups of humic acid are similar to that of simple hydroxy-benzoic acid. The configuration sites of acidic functional groups in humic acid from different coals are different. The carbonyl groups on aromatic rings are probably ortho to phenolic -OH for HA and NHA extracted from Huangxian's brown coal and Japanese lignite, while those from Lingshi's weathered coal are not. The weak -COOH groups of the latter possess higher chemical activity. The -COOH content in HA increases, phenolic -OH group decreases and the chemical acidity of acidic functional groups increases when HA is oxidized by nitric acid. (14 refs.)

  11. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  12. Single or functionalized fullerenes interacting with heme group

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Wallison Chaves; Diniz, Eduardo Moraes, E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, Avenida dos Portugueses, 1966, CEP 65080-805, São Luís - MA (Brazil)

    2014-09-15

    The heme group is responsible for iron transportation through the bloodstream, where iron participates in redox reactions, electron transfer, gases detection etc. The efficiency of such processes can be reduced if the whole heme molecule or even the iron is somehow altered from its original oxidation state, which can be caused by interactions with nanoparticles as fullerenes. To verify how such particles alter the geometry and electronic structure of heme molecule, here we report first principles calculations based on density functional theory of heme group interacting with single C{sub 60} fullerene or with C{sub 60} functionalized with small functional groups (−CH{sub 3}, −COOH, −NH{sub 2}, −OH). The calculations shown that the system heme + nanoparticle has a different spin state in comparison with heme group if the fullerene is functionalized. Also a functional group can provide a stronger binding between nanoparticle and heme molecule or inhibit the chemical bonding in comparison with single fullerene results. In addition heme molecule loses electrons to the nanoparticles and some systems exhibited a geometry distortion in heme group, depending on the binding energy. Furthermore, one find that such nanoparticles induce a formation of spin up states in heme group. Moreover, there exist modifications in density of states near the Fermi energy. Although of such changes in heme electronic structure and geometry, the iron atom remains in the heme group with the same oxidation state, so that processes that involve the iron might not be affected, only those that depend on the whole heme molecule.

  13. Adsorption and oxidation of SO2 by graphene oxides: A van der Waals density functional theory study

    Science.gov (United States)

    Zhang, Huijuan; Cen, Wanglai; Liu, Jie; Guo, Jiaxiu; Yin, Huaqiang; Ning, Ping

    2015-01-01

    Carbon materials have been used for low temperature (20-150 °C) catalytic removal of SO2 from the coal-burned flue gases for a long time, but the mechanism at atomic level is still controversial. Density functional theory was used to investigate the adsorption and oxidation of SO2 on elaborated graphene oxides (GOs) to discover the insights. It is found that the hydroxyl groups on GO surface possess bi-functional effects: both enhancing the adsorption of SO2 through H-bonding interaction and reducing the reaction barrier for its oxidation to SO3. The promotion of oxidation is related to a pre-activation of the surface epoxy group. Based on Bader population, charge difference and electron localization function analysis, a charge transfer channel is proposed to explain the pre-activation.

  14. Poly(ethylene oxide) functionalization

    Science.gov (United States)

    Pratt, Russell Clayton

    2014-04-08

    A simple procedure is provided by which the hydroxyl termini of poly(ethylene oxide) can be appended with functional groups to a useful extent by reaction and precipitation. The polymer is dissolved in warmed toluene, treated with an excess of organic base and somewhat less of an excess of a reactive acylating reagent, reacted for several hours, then precipitated in isopropanol so that the product can be isolated as a solid, and salt byproducts are washed away. This procedure enables functionalization of the polymer while not requiring laborious purification steps such as solvent-solvent extraction or dialysis to remove undesirable side products.

  15. The group theory of oxidation II: cosets of non-split groups

    International Nuclear Information System (INIS)

    Keurentjes, Arjan

    2003-01-01

    The oxidation program given in the first article of this series (see preceding article in this issue) is extended to cover oxidation of 3d sigma model theories on a coset G/H, with G non-compact (but not necessarily split), and H the maximal compact subgroup. We recover the matter content, the equations of motion and Bianchi identities from group lattice and Cartan involution. Satake diagrams provide an elegant tool for the computations, the maximal oxidation dimension, and group disintegration chains can be directly read off. We give a complete list of theories that can be recovered from oxidation of a 3-dimensional coset sigma model on G/H, where G is a simple non-compact group

  16. Biogenic oxidized organic functional groups in aerosol particles from a mountain forest site and their similarities to laboratory chamber products

    Science.gov (United States)

    Schwartz, R. E.; Russell, L. M.; Sjostedt, S. J.; Vlasenko, A.; Slowik, J. G.; Abbatt, J. P. D.; MacDonald, A. M.; Li, S. M.; Liggio, J.; Toom-Sauntry, D.; Leaitch, W. R.

    2010-06-01

    Submicron particles collected at Whistler, British Columbia, at 1020 m a.s.l. during May and June 2008 on Teflon filters were analyzed by Fourier transform infrared (FTIR) and X-ray fluorescence (XRF) techniques for organic functional groups (OFG) and elemental composition. Organic mass (OM) concentrations ranged from less than 0.5 to 3.1 μg m-3, with a project mean and standard deviation of 1.3±1.0 μg m-3 and 0.21±0.16 μg m-3 for OM and sulfate, respectively. On average, organic hydroxyl, alkane, and carboxylic acid groups represented 34%, 33%, and 23% of OM, respectively. Ketone, amine and organosulfate groups constituted 6%, 5%, and volatile organic compounds (VOC), including isoprene and monoterpenes from biogenic VOC (BVOC) emissions and their oxidation products (methyl-vinylketone / methacrolein, MVK/MACR), were made using co-located proton transfer reaction mass spectrometry (PTR-MS). We present chemically-specific evidence of OFG associated with BVOC emissions. Positive matrix factorization (PMF) analysis attributed 65% of the campaign OM to biogenic sources, based on the correlations of one factor to monoterpenes and MVK/MACR. The remaining fraction was attributed to anthropogenic sources based on a correlation to sulfate. The functional group composition of the biogenic factor (consisting of 32% alkane, 25% carboxylic acid, 21% organic hydroxyl, 16% ketone, and 6% amine groups) was similar to that of secondary organic aerosol (SOA) reported from the oxidation of BVOCs in laboratory chamber studies, providing evidence that the magnitude and chemical composition of biogenic SOA simulated in the laboratory is similar to that found in actual atmospheric conditions. The biogenic factor OM is also correlated to dust elements, indicating that dust may act as a non-acidic SOA sink. This role is supported by the organic functional group composition and morphology of single particles, which were analyzed by scanning transmission X-ray microscopy near edge X

  17. Quantitative determination of acidic groups in functionalized graphene by direct titration

    Czech Academy of Sciences Publication Activity Database

    Ederer, J.; Janoš, P.; Ecorchard, Petra; Štengl, Václav; Bělčická, Zuzana; Šťastný, Martin; Pop-Georgievski, Ognen; Dohnal, V.

    2016-01-01

    Roč. 103, JUN (2016), s. 44-53 ISSN 1381-5148 R&D Projects: GA ČR(CZ) GA14-05146S Institutional support: RVO:61388980 ; RVO:61389013 Keywords : Acid-base titration * Carboxylic functional groups * Graphene oxide * Phenolic functional groups * Proton-binding model Subject RIV: CA - Inorganic Chemistry ; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 3.151, year: 2016

  18. Biogenic oxidized organic functional groups in aerosol particles from a mountain forest site and their similarities to laboratory chamber products

    Directory of Open Access Journals (Sweden)

    R. E. Schwartz

    2010-06-01

    Full Text Available Submicron particles collected at Whistler, British Columbia, at 1020 m a.s.l. during May and June 2008 on Teflon filters were analyzed by Fourier transform infrared (FTIR and X-ray fluorescence (XRF techniques for organic functional groups (OFG and elemental composition. Organic mass (OM concentrations ranged from less than 0.5 to 3.1 μg m−3, with a project mean and standard deviation of 1.3±1.0 μg m−3 and 0.21±0.16 μg m−3 for OM and sulfate, respectively. On average, organic hydroxyl, alkane, and carboxylic acid groups represented 34%, 33%, and 23% of OM, respectively. Ketone, amine and organosulfate groups constituted 6%, 5%, and <1% of the average organic aerosol composition, respectively. Measurements of volatile organic compounds (VOC, including isoprene and monoterpenes from biogenic VOC (BVOC emissions and their oxidation products (methyl-vinylketone / methacrolein, MVK/MACR, were made using co-located proton transfer reaction mass spectrometry (PTR-MS. We present chemically-specific evidence of OFG associated with BVOC emissions. Positive matrix factorization (PMF analysis attributed 65% of the campaign OM to biogenic sources, based on the correlations of one factor to monoterpenes and MVK/MACR. The remaining fraction was attributed to anthropogenic sources based on a correlation to sulfate. The functional group composition of the biogenic factor (consisting of 32% alkane, 25% carboxylic acid, 21% organic hydroxyl, 16% ketone, and 6% amine groups was similar to that of secondary organic aerosol (SOA reported from the oxidation of BVOCs in laboratory chamber studies, providing evidence that the magnitude and chemical composition of biogenic SOA simulated in the laboratory is similar to that found in actual atmospheric conditions. The biogenic factor OM is also correlated to dust elements, indicating that dust may act as a non-acidic SOA sink. This role is supported by the organic functional

  19. Improving Thermo-Oxidative Stability of Nitrile Rubber Composites by Functional Graphene Oxide.

    Science.gov (United States)

    Zhong, Rui; Zhang, Zhao; Zhao, Hongguo; He, Xianru; Wang, Xin; Zhang, Rui

    2018-05-30

    Graphene oxide (GO), modified with anti-aging agent p -phenylenediamine (PPD), was added into nitrile rubber (NBR) in order to improve the thermo-oxidative stability of NBR. The modification of GO and the transformation of functional groups were characterized by Fourier transform infrared spectroscopy (FTIR), Raman, and X-ray diffraction (XRD). Mechanical performances of NBR composites before and after the thermo-oxidative aging were recorded. The results of dynamic mechanical analysis (DMA) show an increased storage modulus (G') and a decreased value of area of tan δ peak after introducing modified GO into NBR. It indicates that filler particles show positive interaction with molecular chains. The thermo-oxidative stability of composites was investigated by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). Then, the thermo-oxidative aging kinetic parameters were obtained by the Flynn⁻Wall⁻Ozawa (FWO) equation. The results of aging tests show that the thermo-oxidative stability of rubber matrix increases obviously after introducing GO⁻PPD. In addition, mechanical properties (tensile strength and elongation at break) of both before and after aged NBR/GO⁻PPD composites were superior to that of NBR. This work provides meaningful guidance for achieving multifunction thermo-oxidative aging resistance rubber composites.

  20. Pt-Ru nanoparticles supported on functionalized carbon as electrocatalysts for the methanol oxidation

    International Nuclear Information System (INIS)

    Salgado, J.R.C.; Fernandes, J.C.S.; Botelho do Rego, A.M.; Ferraria, A.M.; Duarte, R.G.; Ferreira, M.G.S.

    2011-01-01

    Highlights: → The functionalized carbon using acid solutions contains surface oxygenated groups. → Uniform dispersion of PtRu nanoparticles on the carbon surface was achieved. → Physical analysis showed the formation of PtRu alloy catalysts on functionalized carbon. → PtRu alloy catalysts on functionalized carbon enhanced the methanol oxidation rate. - Abstract: Platinum-ruthenium alloy electrocatalysts, for methanol oxidation reaction, were prepared on carbons thermally treated in helium atmosphere or chemically functionalized in H 2 O 2 , or in HNO 3 + H 2 SO 4 or in HNO 3 solutions. The functionalized carbon that is produced using acid solutions contains more surface oxygenated functional groups than carbon treated with H 2 O 2 solution or HeTT. The XRD/HR-TEM analysis have showed the existence of a higher alloying degree for Pt-Ru electrocatalysts supported on functionalized carbon, which present superior electrocatalytic performance, assessed by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy, as compared to electrocatalysts on unfunctionalized carbon. It also was found that Pt-Ru alloy electrocatalysts on functionalized carbon improve the reaction rate compared to Pt-Ru on carbons treated with H 2 O 2 solution and thermally. A mechanism is discussed, where oxygenated groups generated from acid functionalization of carbon and adsorbed on Pt-Ru electrocatalysts are considered to enhance the electrocatalytic activity of the methanol oxidation reaction.

  1. Adsorption of volatile sulphur compounds onto modified activated carbons: Effect of oxygen functional groups

    International Nuclear Information System (INIS)

    Vega, Esther; Lemus, Jesús; Anfruns, Alba; Gonzalez-Olmos, Rafael; Palomar, José; Martin, María J.

    2013-01-01

    Highlights: • HNO 3 oxidation incorporates a higher amount of functionalities than O 3 oxidation. • The loss of porosity is compensated by the massive incorporation of oxygen groups. • HNO 3 oxidation increases OH groups in AC and the ETM and DMS adsorption capacities. • The oxygen functional groups in the AC surface did not affect the DMDS adsorption. • COSMO-RS predicts the important role of OH groups for VSC adsorption. -- Abstract: The effect of physical and chemical properties of activated carbon (AC) on the adsorption of ethyl mercaptan, dimethyl sulphide and dimethyl disulphide was investigated by treating a commercial AC with nitric acid and ozone. The chemical properties of ACs were characterised by temperature programme desorption and X-ray photoelectron spectroscopy. AC treated with nitric acid presented a larger amount of oxygen functional groups than materials oxidised with ozone. This enrichment allowed a significant improvement on adsorption capacities for ethyl mercaptan and dimethyl sulphide but not for dimethyl disulphide. In order to gain a deeper knowledge on the effect of the surface chemistry of AC on the adsorption of volatile sulphur compounds, the quantum-chemical COSMO-RS method was used to simulate the interactions between AC surface groups and the studied volatile sulphur compounds. In agreement with experimental data, this model predicted a greater affinity of dimethyl disulphide towards AC, unaffected by the incorporation of oxygen functional groups in the surface. Moreover, the model pointed out to an increase of the adsorption capacity of AC by the incorporation of hydroxyl functional groups in the case of ethyl mercaptan and dimethyl sulphide due to the hydrogen bond interactions

  2. Adsorption of volatile sulphur compounds onto modified activated carbons: Effect of oxygen functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Esther, E-mail: esther@lequia.udg.cat [LEQUIA, Institute of the Environment, University of Girona, Campus Montilivi, Girona, Catalonia E-17071 (Spain); Lemus, Jesús [Universidad de Madrid, Sección de Ingeniería Química, Cantoblanco, Madrid E-28049 (Spain); Anfruns, Alba; Gonzalez-Olmos, Rafael [LEQUIA, Institute of the Environment, University of Girona, Campus Montilivi, Girona, Catalonia E-17071 (Spain); Palomar, José [Universidad de Madrid, Sección de Ingeniería Química, Cantoblanco, Madrid E-28049 (Spain); Martin, María J. [LEQUIA, Institute of the Environment, University of Girona, Campus Montilivi, Girona, Catalonia E-17071 (Spain)

    2013-08-15

    Highlights: • HNO{sub 3} oxidation incorporates a higher amount of functionalities than O{sub 3} oxidation. • The loss of porosity is compensated by the massive incorporation of oxygen groups. • HNO{sub 3} oxidation increases OH groups in AC and the ETM and DMS adsorption capacities. • The oxygen functional groups in the AC surface did not affect the DMDS adsorption. • COSMO-RS predicts the important role of OH groups for VSC adsorption. -- Abstract: The effect of physical and chemical properties of activated carbon (AC) on the adsorption of ethyl mercaptan, dimethyl sulphide and dimethyl disulphide was investigated by treating a commercial AC with nitric acid and ozone. The chemical properties of ACs were characterised by temperature programme desorption and X-ray photoelectron spectroscopy. AC treated with nitric acid presented a larger amount of oxygen functional groups than materials oxidised with ozone. This enrichment allowed a significant improvement on adsorption capacities for ethyl mercaptan and dimethyl sulphide but not for dimethyl disulphide. In order to gain a deeper knowledge on the effect of the surface chemistry of AC on the adsorption of volatile sulphur compounds, the quantum-chemical COSMO-RS method was used to simulate the interactions between AC surface groups and the studied volatile sulphur compounds. In agreement with experimental data, this model predicted a greater affinity of dimethyl disulphide towards AC, unaffected by the incorporation of oxygen functional groups in the surface. Moreover, the model pointed out to an increase of the adsorption capacity of AC by the incorporation of hydroxyl functional groups in the case of ethyl mercaptan and dimethyl sulphide due to the hydrogen bond interactions.

  3. Synthesis and Functionalization of Poly(ethylene oxide-b-ethyloxazoline) Diblock Copolymers with Phosphonate Ions

    OpenAIRE

    Chen, Alfred Yuen-Wei

    2013-01-01

    Poly(ethylene oxide) (PEO) and poly(2-ethyl-2-oxazoline) (PEOX) are biocompatible polymers that act as hydrophilic "stealth" drug carriers. As block copolymers, the PEOX group offers a wider variety of functionalization. The goal of this project was to synthesize a poly(ethylene oxide)-b-poly(2-ethyl-2-oxazoline) (PEO-b-PEOX) block copolymer and functionalize pendent groups of PEOX with phosphonic acid. This was achieved through cationic ring opening polymerization (CROP) of 2-...

  4. Improving Thermo-Oxidative Stability of Nitrile Rubber Composites by Functional Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Rui Zhong

    2018-05-01

    Full Text Available Graphene oxide (GO, modified with anti-aging agent p-phenylenediamine (PPD, was added into nitrile rubber (NBR in order to improve the thermo-oxidative stability of NBR. The modification of GO and the transformation of functional groups were characterized by Fourier transform infrared spectroscopy (FTIR, Raman, and X-ray diffraction (XRD. Mechanical performances of NBR composites before and after the thermo-oxidative aging were recorded. The results of dynamic mechanical analysis (DMA show an increased storage modulus (G’ and a decreased value of area of tan δ peak after introducing modified GO into NBR. It indicates that filler particles show positive interaction with molecular chains. The thermo-oxidative stability of composites was investigated by thermogravimetric analysis (TG and differential scanning calorimetry (DSC. Then, the thermo-oxidative aging kinetic parameters were obtained by the Flynn–Wall–Ozawa (FWO equation. The results of aging tests show that the thermo-oxidative stability of rubber matrix increases obviously after introducing GO–PPD. In addition, mechanical properties (tensile strength and elongation at break of both before and after aged NBR/GO–PPD composites were superior to that of NBR. This work provides meaningful guidance for achieving multifunction thermo-oxidative aging resistance rubber composites.

  5. Magnetism in graphene oxide induced by epoxy groups

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongwook, E-mail: dongwookleedl324@gmail.com [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371 (Singapore); Seo, Jiwon, E-mail: jiwonseo@yonsei.ac.kr [Department of Physics and IPAP, Yonsei University, Seoul 120-749 (Korea, Republic of); School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Zhu, Xi; Su, Haibin [Division of Materials Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Cole, Jacqueline M. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Argonne National Laboratory, 9700S Cass Avenue, Argonne, Illinois 60439 (United States)

    2015-04-27

    We have engineered magnetism in graphene oxide. Our approach transforms graphene into a magnetic insulator while maintaining graphene's structure. Fourier transform infrared spectroscopy spectra reveal that graphene oxide has various chemical groups (including epoxy, ketone, hydroxyl, and C-O groups) on its surface. Destroying the epoxy group with heat treatment or chemical treatment diminishes magnetism in the material. Local density approximation calculation results well reproduce the magnetic moments obtained from experiments, and these results indicate that the unpaired spin induced by the presence of epoxy groups is the origin of the magnetism. The calculation results also explain the magnetic properties, which are generated by the interaction between separated magnetic regions and domains. Our results demonstrate tunable magnetism in graphene oxide based on controlling the epoxy group with heat or chemical treatment.

  6. In situ functionalization and PEO coating of iron oxide nanocrystals using seeded emulsion polymerization.

    Science.gov (United States)

    Kloust, Hauke; Schmidtke, Christian; Feld, Artur; Schotten, Theo; Eggers, Robin; Fittschen, Ursula E A; Schulz, Florian; Pöselt, Elmar; Ostermann, Johannes; Bastús, Neus G; Weller, Horst

    2013-04-16

    Herein we demonstrate that seeded emulsion polymerization is a powerful tool to produce multiply functionalized PEO coated iron oxide nanocrystals. Advantageously, by simple addition of functional surfactants, functional monomers, or functional polymerizable linkers-solely or in combinations thereof-during the seeded emulsion polymerization process, a broad range of in situ functionalized polymer-coated iron oxide nanocrystals were obtained. This was demonstrated by purposeful modulation of the zeta potential of encapsulated iron oxide nanocrystals and conjugation of a dyestuff. Successful functionalization was unequivocally proven by TXRF. Furthermore, the spatial position of the functional groups can be controlled by choosing the appropriate spacers. In conclusion, this methodology is highly amenable for combinatorial strategies and will spur rapid expedited synthesis and purposeful optimization of a broad scope of nanocrystals.

  7. Oxidation hardening kinetics of the rheological function G'/('/G') in asphalts

    KAUST Repository

    Juristyarini, Pramitha

    2011-07-29

    The authors used 9 asphalts oxidized at various temperatures and pressures to determine the hardening kinetics for the DSR function, an easily measured and meaningful surrogate for 15C ductility that relates well to age-related binder deterioration. For each asphalt, there is a rapid initial period that slows to a constant rate period. This constant rate period can be represented by carbonyl formation (oxidation) rate times a hardening susceptibility (HS). For the DSR function and viscosity, the HS and initial jump were pressure-but not temperature-dependent. The DSR function initial jump was relatively higher than the viscosity initial jump. © 2011 Taylor & Francis Group, LLC.

  8. Oxidation hardening kinetics of the rheological function G'/('/G') in asphalts

    KAUST Repository

    Juristyarini, Pramitha; Davison, Richard R.; Glover, Charles J.

    2011-01-01

    The authors used 9 asphalts oxidized at various temperatures and pressures to determine the hardening kinetics for the DSR function, an easily measured and meaningful surrogate for 15C ductility that relates well to age-related binder deterioration. For each asphalt, there is a rapid initial period that slows to a constant rate period. This constant rate period can be represented by carbonyl formation (oxidation) rate times a hardening susceptibility (HS). For the DSR function and viscosity, the HS and initial jump were pressure-but not temperature-dependent. The DSR function initial jump was relatively higher than the viscosity initial jump. © 2011 Taylor & Francis Group, LLC.

  9. Electron momentum spectroscopy of the group I and Il metal and oxides

    International Nuclear Information System (INIS)

    Ford, M.J.; Dorsett, H.E.; Sashin, V.A.; Bolorizadeh, M.A.; Mikajlo, E.A.; Soule de Bas, B.; Nixon, K.L.; Coleman, V.A.

    2002-01-01

    Full text: The group I and Il metals and oxides are relatively simple condensed phase systems that are easily accessible to theoretical studies. For this reason they have been the subject of a number of studies using a range of theoretical techniques. Calculated electronic band structures have traditionally been compared with optical, X-ray and photo emissions measurements. While these techniques provide excellent data for testing theoretical predictions they generally probe certain aspects of the electronic structure, such as special point energies or densities of states, or require considerable theoretical input for their interpretation. In this paper we present our electron momentum spectroscopy (EMS) measurements for the lighter group Il metals and oxides and group I oxides. EMS can measure directly the full band dispersions and intensities and provides a sensitive test of theoretical predictions. We compare our measurements with Hartree-Fock (HF) and density functional theory (DFT) calculations carried out within the linear combination of atomic orbitals approximation. As expected HF significantly overestimates the bandwidths and bandgaps. DFT gives reasonable overall agreement, albeit with slight overestimation of bandwidths for the oxides. The intensity distribution for the oxides show a systematic difference from all the calculations which cannot easily be explained by experimental effects such as multiple scattering in the target. This work was funded by the Australian Research Council and Flinders University. EA Mikajlo and K L Nixon acknowledge receipt of SENRAC and Ferry scholarships respectively

  10. N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte

    Science.gov (United States)

    Li, Shin-Ming; Yang, Shin-Yi; Wang, Yu-Sheng; Tsai, Hsiu-Ping; Tien, Hsi-Wen; Hsiao, Sheng-Tsung; Liao, Wei-Hao; Chang, Chien-Liang; Ma, Chen-Chi M.; Hu, Chi-Chang

    2015-03-01

    Nitrogen-doped reduced graphene oxide (N-rGO) has been synthesized using a simple, efficient method combining instant thermal exfoliation and covalent bond transformation from a melamine-graphene oxide mixture. The capacitive performance of N-rGO has been tested in both aqueous (0.5 M H2SO4) and organic (1 M tetraethyl-ammonium tetrafluoroborate (TEABF4) in propylene carbonate (PC)) electrolytes, which are compared with those obtained from thermal-reduced graphene oxide (T-rGO) and chemical-reduced graphene oxide (C-rGO). The contributions of scan-rate-independent (double-layer-like) and scan-rate-dependent (pseudo-capacitance-like) capacitance of all reduced graphene oxides in both aqueous and organic electrolytes were evaluated and compared. The results show that relatively rich oxygen-containing functional groups on C-rGO form significant ion-diffusion barrier, resulting in worse electrochemical responses in organic electrolyte. By contrast, the N-doped structures, large surface area, and lower density of oxygen-containing groups make N-rGO become a promising electrode material for organic electric double-layer capacitors (EDLCs). The capacitance rate-retention of N-rGO reaches 71.1% in 1 M TEABF4/PC electrolyte when the scan rate is elevated to 200 mVs-1, demonstrating that N-rGO improves the relatively low-power drawback of EDLCs in organic electrolytes. The specific energy and power of a symmetric N-rGO cell in the organic electrolyte reach 25 Wh kg-1 and 10 kW kg-1, respectively.

  11. Covalent functionalization of graphene oxide with polyglycerol and their use as templates for anchoring magnetic nanoparticles

    NARCIS (Netherlands)

    Pham, Tuan Anh; Kumar, Nanjundan Ashok; Jeong, Yeon Tae

    An efficient strategy for the preparation of water-dispersible hybrid material containing graphene oxide and polyglycerol for the first time is demonstrated. Pristine graphite was firstly oxidized to obtain graphene oxide with hydroxyl functional groups. Then, the covalent grafting of polyglycerol

  12. Synthesis and oxidation of CpIrIII compounds: functionalization of a Cp methyl group.

    Science.gov (United States)

    Park-Gehrke, Lisa S; Freudenthal, John; Kaminsky, Werner; Dipasquale, Antonio G; Mayer, James M

    2009-03-21

    [CpIrCl(2)](2) () and new CpIr(III)(L-L)X complexes (L-L = N-O or C-N chelating ligands; X = Cl, I, Me) have been prepared and their reactivity with two-electron chemical oxidants explored. Reaction of with PhI(OAc)(2) in wet solvents yields a new chloro-bridged dimer in which each of the Cp ligands has been singly acetoxylated to form [Cp(OAc)Ir(III)Cl(2)](2) () (Cp(OAc) = eta(5)-C(5)Me(4)CH(2)OAc). Complex and related carboxy- and alkoxy-functionalized Cp(OR) complexes can also be prepared from plus (PhIO)(n) and ROH. [Cp(OAc)Ir(III)Cl(2)](2) () and the methoxy analogue [Cp(OMe)Ir(III)Cl(2)](2) () have been structurally characterized. Treatment of [CpIrCl(2)](2) () with 2-phenylpyridine yields CpIr(III)(ppy)Cl () (ppy = cyclometallated 2-phenylpyridyl) which is readily converted to its iodide and methyl analogues CpIr(III)(ppy)I and CpIr(III)(ppy)Me (). CpIr(III) complexes were also prepared with N-O chelating ligands derived from anthranilic acid (2-aminobenzoic acid) and alpha-aminoisobutyric acid (H(2)NCMe(2)COOH), ligands chosen to be relatively oxidation resistant. These complexes and were reacted with potential two-electron oxidants including PhI(OAc)(2), hexachlorocyclohexadienone (C(6)Cl(6)O), N-fluoro-2,4,6-trimethylpyridinium (Me(3)pyF(+)), [Me(3)O]BF(4) and MeOTf (OTf = triflate, CF(3)SO(3)). Iridium(V) complexes were not observed or implicated in these reactions, despite the similarity of the potential products to known CpIr(V) species. The carbon electrophiles [Me(3)O]BF(4) and MeOTf appear to react preferentially at the N-O ligands, to give methyl esters in some cases. Overall, the results indicate that Cp is not inert under oxidizing conditions and is therefore not a good supporting ligand for oxidizing organometallic complexes.

  13. Placental oxidative stress and maternal endothelial function in pregnant women with normotensive fetal growth restriction.

    Science.gov (United States)

    Yoshida, Atsumi; Watanabe, Kazushi; Iwasaki, Ai; Kimura, Chiharu; Matsushita, Hiroshi; Wakatsuki, Akihiko

    2018-04-01

    The purpose of this study was to investigate the relationship between placental oxidative stress and maternal endothelial function in pregnant women with normotensive fetal growth restriction (FGR). We examined serum concentrations of oxygen free radicals (d-ROMs), maternal angiogenic factor (PlGF), and sFlt-1, placental oxidative DNA damage, and maternal endothelial function in 17 women with early-onset preeclampsia (PE), 18 with late-onset PE, 14 with normotensive FGR, and 21 controls. Flow-mediated vasodilation (FMD) was assessed as a marker of maternal endothelial function. Immunohistochemical analysis was performed to measure the proportion of placental trophoblast cell nuclei staining positive for 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage. Maternal serum d-ROM, sFlt-1 concentrations, and FMD did not significantly differ between the control and normotensive FGR groups. The proportion of nuclei staining positive for 8-OHdG was significantly higher in the normotensive FGR group relative to the control group. Our findings demonstrate that, despite the presence of placental oxidative DNA damage as observed in PE patients, pregnant women with normotensive FGR show no increase in the concentrations of sFlt-1 and d-ROMs, or a decrease in FMD.

  14. Interaction of terbium group metal oxides with carbon

    International Nuclear Information System (INIS)

    Vodop'yanov, A.G.; Baranov, S.V.; Kozhevnikov, G.N.

    1990-01-01

    Mechanism of carbothermal reduction of terbium group metals from oxides is investigated using thermodynamic and kinetic analyses. Interaction of metal oxides with carbon covers dissociation of metal oxides and reduction by carbon monoxide, which contribution into general reduction depends on CO pressure. Temperatures of reaction beginning for batch initial components at P=1.3x10 -4 and P CO =0.1 MPa and of formation of oxycarbide melts are determined

  15. When Density Functional Approximations Meet Iron Oxides.

    Science.gov (United States)

    Meng, Yu; Liu, Xing-Wu; Huo, Chun-Fang; Guo, Wen-Ping; Cao, Dong-Bo; Peng, Qing; Dearden, Albert; Gonze, Xavier; Yang, Yong; Wang, Jianguo; Jiao, Haijun; Li, Yongwang; Wen, Xiao-Dong

    2016-10-11

    Three density functional approximations (DFAs), PBE, PBE+U, and Heyd-Scuseria-Ernzerhof screened hybrid functional (HSE), were employed to investigate the geometric, electronic, magnetic, and thermodynamic properties of four iron oxides, namely, α-FeOOH, α-Fe 2 O 3 , Fe 3 O 4 , and FeO. Comparing our calculated results with available experimental data, we found that HSE (a = 0.15) (containing 15% "screened" Hartree-Fock exchange) can provide reliable values of lattice constants, Fe magnetic moments, band gaps, and formation energies of all four iron oxides, while standard HSE (a = 0.25) seriously overestimates the band gaps and formation energies. For PBE+U, a suitable U value can give quite good results for the electronic properties of each iron oxide, but it is challenging to accurately get other properties of the four iron oxides using the same U value. Subsequently, we calculated the Gibbs free energies of transformation reactions among iron oxides using the HSE (a = 0.15) functional and plotted the equilibrium phase diagrams of the iron oxide system under various conditions, which provide reliable theoretical insight into the phase transformations of iron oxides.

  16. Formyl-ended heterobifunctional poly(ethylene oxide): synthesis of poly(ethylene oxide) with a formyl group at one end and a hydroxyl group at the other end.

    Science.gov (United States)

    Nagasaki, Y; Kutsuna, T; Iijima, M; Kato, M; Kataoka, K; Kitano, S; Kadoma, Y

    1995-01-01

    Well-defined poly(ethylene oxide) (PEO) with a formyl group at one end and a hydroxyl group at the other terminus was synthesized by the anionic ring opening polymerization of ethylene oxide (EO) with a new organometallic initiator possessing an acetal moiety, potassium 3,3-diethoxypropyl alkoxide. Hydrolysis of the acetal moiety produced a formyl group-terminated heterobifunctional PEO with a hydroxyl group at the other end.

  17. Molecular structure, functionality and applications of oxidized starches: A review.

    Science.gov (United States)

    Vanier, Nathan Levien; El Halal, Shanise Lisie Mello; Dias, Alvaro Renato Guerra; da Rosa Zavareze, Elessandra

    2017-04-15

    During oxidation, the hydroxyl groups of starch molecules are first oxidized to carbonyl groups, then to carboxyl groups. The contents of the carbonyl and carboxyl groups in a starch molecule therefore indicate the extent of starch oxidation. The mechanisms of starch oxidation with different oxidizing agents, including sodium hypochlorite, hydrogen peroxide, ozone and sodium periodate, are described in this review. The effects of these oxidizing agents on the molecular, physicochemical, thermal, pasting and morphological properties of starch are described as well. In addition, the main industrial applications of oxidized starches are presented. The present review is important for understanding the effects of oxidation on starch properties, and this information may facilitate the development of novel oxidized starches for both food and non-food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Density Functional Theory Calculations of the Quantum Capacitance of Graphene Oxide as a Supercapacitor Electrode.

    Science.gov (United States)

    Song, Ce; Wang, Jinyan; Meng, Zhaoliang; Hu, Fangyuan; Jian, Xigao

    2018-03-31

    Graphene oxide has become an attractive electrode-material candidate for supercapacitors thanks to its higher specific capacitance compared to graphene. The quantum capacitance makes relative contributions to the specific capacitance, which is considered as the major limitation of graphene electrodes, while the quantum capacitance of graphene oxide is rarely concerned. This study explores the quantum capacitance of graphene oxide, which bears epoxy and hydroxyl groups on its basal plane, by employing density functional theory (DFT) calculations. The results demonstrate that the total density of states near the Fermi level is significantly enhanced by introducing oxygen-containing groups, which is beneficial for the improvement of the quantum capacitance. Moreover, the quantum capacitances of the graphene oxide with different concentrations of these two oxygen-containing groups are compared, revealing that more epoxy and hydroxyl groups result in a higher quantum capacitance. Notably, the hydroxyl concentration has a considerable effect on the capacitive behavior. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The oxidation of the aldehyde groups in dialdehyde starch

    NARCIS (Netherlands)

    Haaksman, I.K.; Besemer, A.C.; Jetten, J.M.; Timmermans, J.W.; Slaghek, T.M.

    2006-01-01

    This paper describes the difference in relative reactivity of the aldehyde groups present in dialdehyde starch towards different oxidising agents. The oxidation of dialdehyde starch with peracetic acid and sodium bromide leads to only partial oxidation to give mono-aldehyde-carboxy starch, while

  20. Phosphate functionalized graphene oxide for selective preconcentration of Pu(IV)

    International Nuclear Information System (INIS)

    Chappa, Shankararao; Pandey, Ashok K.

    2015-01-01

    Selective preconcentration of the target ions is a subject of continuous research due to the fact that functional groups are selective to a group of ions/species, and not to a specific ion. Various strategies being explored to make functional group selective to a target ion are based on chemical architecture of functional groups, co-assembly of ligand molecules, synergistic combination of two ligands, formation of size selective cavity, and imprinting using ions as template. Graphene oxide (GO) can be used for removal of radionuclides from aqueous solution having acidity in pH range. As such, GO cannot be used as a sorbent for metal ions from solution having high acidity. GO has epoxy and carboxylic groups that can be used for anchoring functional groups. In the present work, ethylene glycol methacrylate phosphate (EGMP) has been anchored on GO that act as chemical platform. Typically, GO was dispersed in ethanol by sonication for 15 min. In this solution, the EGMP was added and equilibrated for overnight in a shaker at room temp. After equilibrated, GO at the rate EGMP was separated by centrifuge and washed 4-5 times with methanol, EGMP was anchored via C-O-P bonds as confirmed by XPS studies. The sorption studies were carried out using 233 U and 238,239,240 Pu at 3 M HNO 3 using 15 mg of GO at the rate EGMP

  1. Deteriorations of pulmonary function, elevated carbon monoxide levels and increased oxidative stress amongst water-pipe smokers

    Directory of Open Access Journals (Sweden)

    Funda Karaduman Yalcin

    2017-10-01

    Full Text Available Objectives: A water pipe (hookah is a tobacco smoking tool which is thought to be more harmless than a cigarette, and there are no adequate studies about its hazards to health. Water-pipe smoking is threatening health of the youth in the world today. The objective of this study has been to investigate the carbon monoxide (CO levels in breath, examine the changes in pulmonary function tests (PFT and to assess the change of the oxidative stress parameters in blood after smoking a water pipe. Material and Methods: This study is a cross-sectional analytical study that has included 50 volunteers who smoke a water pipe and the control group of 50 volunteers who smoke neither a cigarette nor a water pipe. Carbon monoxide levels were measured in the breath and pulmonary function tests (PFTs were performed before and after smoking a water pipe. Blood samples were taken from either the volunteer control group or water-pipe smokers group after smoking a water pipe for the purpose of evaluation of the parameters of oxidative stress. Results: Carbon monoxide values were measured to be 8.08±7.4 ppm and 28.08±16.5 ppm before and after smoking a water pipe, respectively. This increment was found statistically significant. There were also significant reductions in PFTs after smoking a water pipe. Total oxidative status (TOS, total antioxidant status (TAS and oxidative stress index (OSI were found prominently higher after smoking a water pipe for the group of water-pipe smokers than for the control group. Conclusions: This study has shown that water-pipe smoking leads to deterioration in pulmonary function and increases oxidative stress. To the best of our knowledge this study is the only one that has shown the effect of water-pipe smoking on oxidative stress. More studies must be planned to show the side effects of water-pipe habit and protective policies should be planned especially for young people in Europe. Int J Occup Med Environ Health 2017;30(5:731

  2. Molybdenum Oxides - From Fundamentals to Functionality.

    Science.gov (United States)

    de Castro, Isabela Alves; Datta, Robi Shankar; Ou, Jian Zhen; Castellanos-Gomez, Andres; Sriram, Sharath; Daeneke, Torben; Kalantar-Zadeh, Kourosh

    2017-10-01

    The properties and applications of molybdenum oxides are reviewed in depth. Molybdenum is found in various oxide stoichiometries, which have been employed for different high-value research and commercial applications. The great chemical and physical characteristics of molybdenum oxides make them versatile and highly tunable for incorporation in optical, electronic, catalytic, bio, and energy systems. Variations in the oxidation states allow manipulation of the crystal structure, morphology, oxygen vacancies, and dopants, to control and engineer electronic states. Despite this overwhelming functionality and potential, a definitive resource on molybdenum oxide is still unavailable. The aim here is to provide such a resource, while presenting an insightful outlook into future prospective applications for molybdenum oxides. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Macromolecular surface design: photopatterning of functional stable nitrile oxides.

    Science.gov (United States)

    Altintas, Ozcan; Glassner, Mathias; Rodriguez-Emmenegger, Cesar; Welle, Alexander; Trouillet, Vanessa; Barner-Kowollik, Christopher

    2015-05-04

    The efficient trapping of photogenerated thioaldehydes with functional shelf-stable nitrile oxides in a 1,3-dipolar cycloaddition is a novel and versatile photochemical strategy for polymer end-group functionalization and surface modification under mild and equimolar conditions. The modular ligation in solution was followed in detail by electrospray ionization mass spectrometry (ESI-MS). X-ray photoelectron spectroscopy (XPS) was employed to analyze the functionalized surfaces, whereas time-of-flight secondary-ion mass spectrometry (ToF-SIMS) confirmed the spatial control of the surface functionalization using a micropatterned shadow mask. Polymer brushes were grown from the surface in a spatially confined regime by surface-initiated atom transfer radical polymerization (SI-ATRP) as confirmed by TOF-SIMS, XPS as well as ellipsometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Oxidative stress markers, cognitive functions, and psychosocial functioning in bipolar disorder: an empirical cross-sectional study.

    Science.gov (United States)

    Aydemir, Ömer; Çubukçuoğlu, Zeynep; Erdin, Soner; Taş, Cumhur; Onur, Ece; Berk, Michael

    2014-01-01

    This study aimed to evaluate the relationship between oxidative stress markers and cognitive functions and domains of psychosocial functioning in bipolar disorder. Oxidative stress markers, cognitive functions, and domains of psychosocial functioning were evaluated in 51 patients with bipolar disorder who were in remission. Correlation analyses between these parameters were calculated with data controlled for duration of illness and number of episodes. There was no statistically significant correlation between oxidative stress markers and cognitive functions. In terms of psychosocial functioning, significant correlations were found between malondialdehyde and sense of stigmatization (r = -0.502); household activities and superoxide dismutase (r = 0.501); participation in social activities and nitric oxide (r = 0.414); hobbies and leisure time activities and total glutathione (r = -0.567), superoxide dismutase (r = 0.667), and neurotrophin 4 (r = 0.450); and taking initiative and self-sufficiency and superoxide dismutase (r = 0.597). There was no correlation between other domains of psychosocial functioning and oxidative stress markers. These results imply that oxidative stress markers do not appear to correlate clearly with cognitive impairment and reduced psychosocial functioning. However, there were some associations between selected oxidative markers and activity-oriented functional markers. This may represent a true negative association, or may be an artifact of oxidative stress being a state rather than a trait marker.

  5. Oxidative stress markers, cognitive functions, and psychosocial functioning in bipolar disorder: an empirical cross-sectional study

    Directory of Open Access Journals (Sweden)

    Ömer Aydemir

    2014-12-01

    Full Text Available Objective: This study aimed to evaluate the relationship between oxidative stress markers and cognitive functions and domains of psychosocial functioning in bipolar disorder. Methods: Oxidative stress markers, cognitive functions, and domains of psychosocial functioning were evaluated in 51 patients with bipolar disorder who were in remission. Correlation analyses between these parameters were calculated with data controlled for duration of illness and number of episodes. Results: There was no statistically significant correlation between oxidative stress markers and cognitive functions. In terms of psychosocial functioning, significant correlations were found between malondialdehyde and sense of stigmatization (r = -0.502; household activities and superoxide dismutase (r = 0.501; participation in social activities and nitric oxide (r = 0.414; hobbies and leisure time activities and total glutathione (r = -0.567, superoxide dismutase (r = 0.667, and neurotrophin 4 (r = 0.450; and taking initiative and self-sufficiency and superoxide dismutase (r = 0.597. There was no correlation between other domains of psychosocial functioning and oxidative stress markers. Conclusion: These results imply that oxidative stress markers do not appear to correlate clearly with cognitive impairment and reduced psychosocial functioning. However, there were some associations between selected oxidative markers and activity-oriented functional markers. This may represent a true negative association, or may be an artifact of oxidative stress being a state rather than a trait marker.

  6. Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions

    NARCIS (Netherlands)

    Patila, Michaela; Kouloumpis, Antonios; Gournis, Dimitrios; Rudolf, Petra; Stamatis, Haralambos

    Multi-layer graphene oxide-enzyme nanoassemblies were prepared through the multi-point covalent immobilization of laccase from Trametes versicolor (TvL) on functionalized graphene oxide (fGO). The catalytic properties of the fGO-TvL nanoassemblies were found to depend on the number of the graphene

  7. Effects of salbutamol combined with ulinastatin on respiratory function, inflammation and oxidative stress in COPD patients with laparoscopic surgery

    Directory of Open Access Journals (Sweden)

    Wei He

    2016-05-01

    Full Text Available Objective: To analyze the effects salbutamol combined with ulinastatin on respiratory function, inflammation and oxidative stress in COPD patients with laparoscopic surgery. Methods: A total of 76 cases of COPD patients were brought into the study. They were randomly divided into observation group (n=38 who accepted salbutamol combined with ulinastatin treatment and the control group (n=38 who accepted single salbutamol treatment. All patients’ respiratory function and inflammation levels and different levels of oxidative stress were tested. Results: After the treatment, the observation group patients’ in-surgery SpO2 and Compl levels were higher than the control group’s, while PETCO2, Paw and Raw levels were lower than those of the control group. The in-surgery AAT, ESR, NPT, AAG and SAA levels of the observation group patients were significantly lower than those of the control group. After the treatment, the observation group patients’ in-surgery GR, CAT, GPX1 and TXNL1 levels were higher than the control group’s, while LOX-1 level was lower than that of the control group. Conclusions: COPD patients receiving salbutamol combined with ulinastatin treatment can significantly improve the respiratory function in surgery, and reduce systemic inflammation and oxidative stress.

  8. Ocular biocompatibility of gelatin microcarriers functionalized with oxidized hyaluronic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jui-Yang, E-mail: jylai@mail.cgu.edu.tw [Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan (China); Biomedical Engineering Research Center, Chang Gung University, Taoyuan 33302, Taiwan (China); Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan (China); Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan (China); Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan (China); Ma, David Hui-Kang [Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan (China); Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan (China); Department of Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan (China)

    2017-03-01

    Given that the presence of aldehyde groups on the oxidized sugar residues may pose toxicity concerns, it is necessary to examine the safety of gelatin microcarriers (GMC) functionalized with oxidized hyaluronic acid (oHA) for potential ophthalmic applications. In this study, the ocular biocompatibility of biopolymer microcarriers was investigated in vitro using primary rabbit corneal cell cultures and in vivo using the anterior chamber of the rabbit eye model. Our results showed that different types of corneal cells including epithelial, stromal, and endothelial cells remain viable and actively proliferate following 2 and 4 days of exposure to test materials. In addition, similar interleukin-6 gene expression levels and comet tail lengths were seen in the presence and absence of biopolymer microcarriers, suggesting no cellular inflammation and genotoxicity. After 7 and 14 days of intracameral injection in the rabbit eyes, both the GMC samples and their counterparts functionalized with oHA were well tolerated in the ocular anterior chamber as demonstrated by slit-lamp biomicroscopy. Clinical observations including specular microscopic examinations, corneal topography, and corneal thickness measurements also showed that the rabbits bearing biopolymer microcarriers exhibit no signs of corneal edema and astigmatism as well as endothelial damage, indicating the absence of tissue response. It is concluded that the GMC materials functionalized with oHA (oxidation level: 10.4 ± 0.9%) are compatible toward corneal cells and ocular anterior segment tissues at a concentration of 10 mg/ml. The information about the effect of coupling of aldehyde-functionalized HA to gelatin on in vitro and in vivo biocompatibility of biopolymer composites can be used as further development of corneal stromal cell microcarriers for tissue engineering applications. - Highlights: • We examine in vitro and in vivo ocular biocompatibility of biopolymer microcarrier. • Gelatin-oxidized HA

  9. Ocular biocompatibility of gelatin microcarriers functionalized with oxidized hyaluronic acid

    International Nuclear Information System (INIS)

    Lai, Jui-Yang; Ma, David Hui-Kang

    2017-01-01

    Given that the presence of aldehyde groups on the oxidized sugar residues may pose toxicity concerns, it is necessary to examine the safety of gelatin microcarriers (GMC) functionalized with oxidized hyaluronic acid (oHA) for potential ophthalmic applications. In this study, the ocular biocompatibility of biopolymer microcarriers was investigated in vitro using primary rabbit corneal cell cultures and in vivo using the anterior chamber of the rabbit eye model. Our results showed that different types of corneal cells including epithelial, stromal, and endothelial cells remain viable and actively proliferate following 2 and 4 days of exposure to test materials. In addition, similar interleukin-6 gene expression levels and comet tail lengths were seen in the presence and absence of biopolymer microcarriers, suggesting no cellular inflammation and genotoxicity. After 7 and 14 days of intracameral injection in the rabbit eyes, both the GMC samples and their counterparts functionalized with oHA were well tolerated in the ocular anterior chamber as demonstrated by slit-lamp biomicroscopy. Clinical observations including specular microscopic examinations, corneal topography, and corneal thickness measurements also showed that the rabbits bearing biopolymer microcarriers exhibit no signs of corneal edema and astigmatism as well as endothelial damage, indicating the absence of tissue response. It is concluded that the GMC materials functionalized with oHA (oxidation level: 10.4 ± 0.9%) are compatible toward corneal cells and ocular anterior segment tissues at a concentration of 10 mg/ml. The information about the effect of coupling of aldehyde-functionalized HA to gelatin on in vitro and in vivo biocompatibility of biopolymer composites can be used as further development of corneal stromal cell microcarriers for tissue engineering applications. - Highlights: • We examine in vitro and in vivo ocular biocompatibility of biopolymer microcarrier. • Gelatin-oxidized HA

  10. Effect of thyroid function on LDL oxidation.

    Science.gov (United States)

    Costantini, F; Pierdomenico, S D; De Cesare, D; De Remigis, P; Bucciarelli, T; Bittolo-Bon, G; Cazzolato, G; Nubile, G; Guagnano, M T; Sensi, S; Cuccurullo, F; Mezzetti, A

    1998-05-01

    In this study, the effect of different levels of thyroid hormone and metabolic activity on low density lipoprotein (LDL) oxidation was investigated. Thus, in 16 patients with hyperthyroidism, 16 with hypothyroidism, and 16 age- and sex-matched healthy normolipidemic control subjects, the native LDL content in lipid peroxides, vitamin E, beta-carotene, and lycopene, as well as the susceptibility of these particles to undergo lipid peroxidation, was assessed. Hyperthyroidism was associated with significantly higher lipid peroxidation, as characterized by a higher native LDL content in lipid peroxides, a lower lag phase, and a higher oxidation rate than in the other two groups. This elevated lipid peroxidation was associated with a lower LDL antioxidant concentration. Interestingly, hypothyroid patients showed an intermediate behavior. In fact, in hypothyroidism, LDL oxidation was significantly lower than in hyperthyroidism but higher than in the control group. Hypothyroidism was also characterized by the highest beta-carotene LDL content, whereas vitamin E was significantly lower than in control subjects. In hyperthyroidism but not in the other two groups, LDL oxidation was strongly influenced by free thyroxine blood content. In fact in this group, the native LDL lipid peroxide content and the lag phase were directly and indirectly, respectively, related to free thyroxine blood levels. On the contrary, in hypothyroidism LDL oxidation was strongly and significantly related to serum lipids. In conclusion, both hypothyroidism and hyperthyroidism are characterized by higher levels of LDL oxidation when compared with normolipidemic control subjects. In hyperthyroid patients, the increased lipid peroxidation was strictly related to free thyroxine levels, whereas in hypothyroidism it was strongly influenced by serum lipids.

  11. Does increased Nitric Oxide production and oxidative stress due to high fat diet affect cardiac function after myocardial infarction?

    Directory of Open Access Journals (Sweden)

    Marjan Aghajani

    2017-01-01

    Full Text Available Background &Objectives: High fat (HF diet by affecting the oxidative stress and nitric oxide (NO production may lead to different effects on function of the heart after myocardial infarction (MI. In the present study we aimed to address the hypothesis that high release of NO by activated macrophages affects LV function after MI.Methods: The animals were randomly divided into four groups comprising each of 10 rats: 1 Sham; 2 MI; 3 Sham+ HF diet; 4 MI+ HF diet. Animals fed with HF diet 30 days before sham and MI surgery. MI was induced by permanent ligation of left anterior descending coronary artery (LAD. Nitric oxide (NO production of peritoneal macrophages, the concentrations of MDA in the heart and the infarct size were measured.Results: Our study indicated that HF has adverse effects on myocardium and it may increase NO production as well as oxidative stress, resulting in augmentation of infarct size.Conclusion: Our results add to our knowledge that HF diet was associated with overproduction of NO by peritoneal macrophages and ROS that lead to development of infarct size and adverse remodeling.

  12. Nonlinear optical and optical limiting properties of fullerene, multi-walled carbon nanotubes, graphene and their derivatives with oxygen-containing functional groups

    International Nuclear Information System (INIS)

    Zhang, Xiao-Liang; Li, Xiao-Chun; Liu, Zhi-Bo; Yan, Xiao-Qing; Tian, Jian-Guo; Chen, Yong-Sheng

    2015-01-01

    Nonlinear optical properties (NLO) and optical limiting effect of fullerene (C 60 ), multi-walled carbon nanotubes (MWNTs), reduced graphene oxide (RGO) and their oxygenated derivatives were investigated by open-aperture Z-scan technique with nanosecond pulses at 532 nm. C 60 functionalized by oxygen-containing functional groups exhibits weaker NLO properties than that of pristine C 60 . Graphene oxide (GO) with many oxygen-containing functional groups also shows weaker NLO properties than that of RGO. That can be attributed to the disruption of conjugative structures of C 60 and graphene by oxygen-containing functional groups. However, MWNTs and their oxygenated derivatives exhibit comparable NLO properties due to the small weight ratio of these oxygen-containing groups. To investigate the correlation between structures and NLO response for these carbon nanomaterials with different dimensions, nonlinear scattered signal spectra versus input fluence were also measured. (paper)

  13. Removal of oxidative fragments from chemically functionalized multi-walled carbon nanotubes (MWCNTs)

    International Nuclear Information System (INIS)

    Mohd Hamzah Harun; Whitby, Raymond; Khairul Zaman Dahlan; Nik Ghazali Nik Salleh; Mohd Sofian Alias; Mahathir Mohamed; Mohd Yusof Hamzah; Mohd Faizal Abdul Rahman

    2010-01-01

    Acid oxidized multi-walled carbon nano tubes (MWCNTs) were prepared by refluxing MWCNTs with nitric acid (70 %). To remove the oxidative fragment/ debris, in which partially attached onto the carbon nano tubes lattice, the functionalized MWCNTs (f-MWCNTs) then were refluxed with NaOH (1M) and followed with HCl (1M) wash. The presence of carboxylic group that covalently attached onto the MWCNTs lattice are confirmed with acid-base titration. The TEM image shows the comparison of pure MWCNTs, f-MWCNTs and base-acid wash of f-MWCNTs. (author)

  14. Integration of functional complex oxide nanomaterials on silicon

    Directory of Open Access Journals (Sweden)

    Jose Manuel eVila-Fungueiriño

    2015-06-01

    Full Text Available The combination of standard wafer-scale semiconductor processing with the properties of functional oxides opens up to innovative and more efficient devices with high value applications that can be produced at large scale. This review uncovers the main strategies that are successfully used to monolithically integrate functional complex oxide thin films and nanostructures on silicon: the chemical solution deposition approach (CSD and the advanced physical vapor deposition techniques such as oxide molecular beam epitaxy (MBE. Special emphasis will be placed on complex oxide nanostructures epitaxially grown on silicon using the combination of CSD and MBE. Several examples will be exposed, with a particular stress on the control of interfaces and crystallization mechanisms on epitaxial perovskite oxide thin films, nanostructured quartz thin films, and octahedral molecular sieve nanowires. This review enlightens on the potential of complex oxide nanostructures and the combination of both chemical and physical elaboration techniques for novel oxide-based integrated devices.

  15. Ethylenediamine-functionalized graphene oxide incorporated acid-base ion exchange membranes for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liu, Shuai; Li, Dan; Wang, Lihua; Yang, Haijun; Han, Xutong; Liu, Biqian

    2017-01-01

    Highlights: • Ethylenediamine functionalized graphene oxide. • Layered structure of functionalized graphene oxide block vanadium ions crossover. • Protonated N-containing groups suppress vanadium ions permeation. • Ion transport channels are narrowed by electrostatic interactions. • Vanadium crossover decreased due to enhanced Donnan effect and special structure. - Abstract: As a promising large-scale energy storage battery, vanadium redox flow battery (VRFB) is urgently needed to develop cost-effective membranes with excellent performance. Novel acid-base ion exchange membranes (IEMs) are fabricated based on sulfonated poly(ether ether ketone) (SPEEK) matrix and modified graphene oxide (GO) by solution blending. N-based functionalized graphene oxide (GO-NH 2 ) is fabricated by grafting ethylenediamine onto the edge of GO via a facile method. On one hand, the impermeable layered structures effectively block ion transport pathway to restrain vanadium ions crossover. On the other hand, acid-base pairs form between −SO 3 − groups and N-based groups on the edge of GO nanosheets, which not only suppress vanadium ions contamination but also provide a narrow pathway for proton migration. The structure is beneficial for achieving an intrinsic balance between conductivity and permeability. By altering amounts of GO-NH 2 , a sequence of acid-base IEMs are characterized in detail. The single cells assembled with acid-base IEMs show self-discharge time for 160 h, capacity retention 92% after 100 cycle, coulombic efficiency 97.2% and energy efficiency 89.5%. All data indicate that acid-base IEMs have promising prospects for VRFB applications.

  16. Preparation of Phosphonic Acid Functionalized Graphene Oxide-modified Aluminum Powder with Enhanced Anticorrosive Properties

    Science.gov (United States)

    He, Lihua; Zhao, Yan; Xing, Liying; Liu, Pinggui; Wang, Zhiyong; Zhang, Youwei; Liu, Xiaofang

    2017-07-01

    To improve the anticorrosive performance of aluminum powder, a common functional filler in polymer coatings, we report a novel method to prepare graphene oxide modified aluminum powder (GO-Al) using 3-aminoproplyphosphoic acid as "link" agent. The GO nanosheets were firstly functionalized with 3-aminoproplyphosphoic acid (APSA) by the reaction of amine groups of APSA and the epoxy groups of GO. Subsequently, a layer of GO nanosheets uniformly and tightly covered the surface of flaky aluminum particle though the strong linking strength between -PO(OH)2 functional groups of the modified GO and aluminum. The hydrogen evolution experiment suggests that the GO attached on the aluminum powder could effectively improve the anticorrosive performance of the pigments.

  17. Preparation of graphite derivatives by selective reduction of graphite oxide and isocyanate functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Santha Kumar, Arunjunai Raja Shankar [Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, West Bengal (India); Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Piana, Francesco [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden (Germany); Mičušík, Matej [Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41, Bratislava (Slovakia); Pionteck, Jürgen, E-mail: pionteck@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Banerjee, Susanta [Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, West Bengal (India); Voit, Brigitte [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden (Germany)

    2016-10-01

    Heavily oxidized and ordered graphene nanoplatelets were produced from natural graphite by oxidation using a mixture of phosphoric acid, sulphuric acid, and potassium permanganate (Marcano's method). The atomic percentage of oxygen in the graphite oxide produced was more than 30% confirmed by XPS studies. The graphite oxide produced had intact basal planes and remains in a layered structure with interlayer distance of 0.8 nm, analyzed by WAXS. The graphite oxide was treated with 4,4′-methylenebis(phenyl isocyanate) (MDI) to produce grafted isocyanate functionalization. Introduction of these bulky functional groups widens the interlayer distance to 1.3 nm. In addition, two reduction methods, namely benzyl alcohol mediated reduction and thermal reduction were carried out on isocyanate modified and unmodified graphite oxides and compared to each other. The decrease in the oxygen content and the sp{sup 3} defect-repair were studied with XPS and RAMAN spectroscopy. Compared to the thermal reduction process, which is connected with large material loss, the benzyl alcohol mediated reduction process is highly effective in defect repair. This resulted in an increase of conductivity of at least 9 orders of magnitude compared to the graphite oxide. - Highlights: • Preparation of GO by Marcano's method results in defined interlayer spacing. • Treatment of GO with diisocyanate widens the interlayer spacing to 1.3 nm. • Chemical reduction of GO with benzyl alcohol is effective in defect repair. • Electrical conductivity increases by 9 orders of magnitude during chemical reduction. • The isocyanate functionalization is stable under chemical reducing conditions.

  18. Effect of Trimetazidine Dihydrochloride Tablets adjuvant therapy on inflammatory reaction, oxidative stress, vascular endothelial function and myocardial function in patients with coronary heart disease complicated with heart failure

    Directory of Open Access Journals (Sweden)

    Cai-Wen Wei

    2017-11-01

    Full Text Available Objective: To investigate the effects of Trimetazidine Dihydrochloride Tablets on inflammatory reaction, oxidative stress, vascular endothelial function and myocardial function in patients with coronary heart disease complicated with heart failure. Methods: A total of 98 patients with coronary heart disease and heart failure who met the criteria of the study were selected as the subjects, based on the random data table they were divided into the control group (n=49 and observation group (n=49, the patients in the control group were treated with Metoprolol Tartrate Sustained-release Tablets treatment, and the patients in the observation group were treated with Metoprolol Tartrate Sustained-release Tablets combined with Trimetazidine Dihydrochloride Tablets, the levels of inflammatory reaction, oxidative stress, vascular endothelial function and myocardial function indexes were compared between the two groups before and after treatment. Results: The difference of the CRP, TNF-α, MDA, SOD, NO, ET-1, LVEF, LVEDD and LVESD levels in the two groups before treatment were not statistically significant; Compared with the levels of the two groups before treatment, the two groups of CRP, TNF-α, MDA, ET-1, LVEDD and LVESD levels after treatment were significantly decreased, and the level of the observation group after treatment was significantly lower than those levels in the control group, the difference was statistically significant; The levels of SOD, NO and LVEF of the two groups after treatment were significantly higher than those in the same group before treatment, and the observation group levels [(88.09±7.51 U/ ml, (72.58±14.64 mol/L, (48.34±5.09% ] were significantly higher than the control group [(79.44±7.27 U/ml, (61.89±11.06 mol/L, (44.19±4.58%], the difference was statistically significant. Conclusion: Trimetazidine Dihydrochloride Tablets in the treatment of coronary heart disease with heart failure can effectively inhibit the release

  19. Tunable optical properties of graphene oxide by tailoring the oxygen functionalities using infrared irradiation

    International Nuclear Information System (INIS)

    Maiti, R; Ray, S K; Midya, A; Narayana, C

    2014-01-01

    The modification of individual oxygen functional groups and the resultant optical properties of a graphene oxide suspension were investigated using a controlled photothermal reduction by infrared irradiation. The evolution of the structural and optical characteristics of GO suspensions was obtained from Raman spectra, x-ray photoelectron spectroscopy, optical absorption, and steady state and time-resolved photoluminescence spectroscopy. The results suggest the gradual restoration of sp 2 clusters within the sp 3 matrix with an increase of the reduction time and power density. The yellow-red emission (∼610 nm) originated from the defect-assisted localized states in GO due to epoxy/hydroxyl (C-O/-OH) functional groups and that of the blue emission (∼500 nm) was ascribed to the carbonyl (C=O)-assisted localized electronic states. With an increase in the reduction time and IR power density, the intensity of the yellow-red emission was found to decrease, with the blue emission being prominent. These experimental findings open up a new dimension for controlling the optical absorption and emission properties of graphene oxide by tailoring the oxygen functional groups, which may lead to the potential application of graphene-based optoelectronic devices. (paper)

  20. A 3-hydroxy β-end group in xanthophylls is preferentially oxidized to a 3-oxo ε-end group in mammals.

    Science.gov (United States)

    Nagao, Akihiko; Maoka, Takashi; Ono, Hiroshi; Kotake-Nara, Eiichi; Kobayashi, Miyuki; Tomita, Mie

    2015-02-01

    We previously found that mice fed lutein accumulated its oxidative metabolites (3'-hydroxy-ε,ε-caroten-3-one and ε,ε-carotene-3,3'-dione) as major carotenoids, suggesting that mammals can convert xanthophylls to keto-carotenoids by the oxidation of hydroxyl groups. Here we elucidated the metabolic activities of mouse liver for several xanthophylls. When lutein was incubated with liver postmitochondrial fraction in the presence of NAD(+), (3'R,6'R)-3'-hydroxy-β,ε-caroten-3-one and (6RS,3'R,6'R)-3'-hydroxy-ε,ε-caroten-3-one were produced as major oxidation products. The former accumulated only at the early stage and was assumed to be an intermediate, followed by isomerization to the latter. The configuration at the C3' and C6' of the ε-end group in lutein was retained in the two oxidation products. These results indicate that the 3-hydroxy β-end group in lutein was preferentially oxidized to a 3-oxo ε-end group via a 3-oxo β-end group. Other xanthophylls such as β-cryptoxanthin and zeaxanthin, which have a 3-hydroxy β-end group, were also oxidized in the same manner as lutein. These keto-carotenoids, derived from dietary xanthophylls, were confirmed to be present in plasma of normal human subjects, and β,ε-caroten-3'-one was significantly increased by the ingestion of β-cryptoxanthin. Thus, humans as well as mice have oxidative activity to convert the 3-hydroxy β-end group of xanthophylls to a 3-oxo ε-end group. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  1. Highly sensitive determination of atropine using cobalt oxide nanostructures: Influence of functional groups on the signal sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Soomro, Razium Ali, E-mail: raziumsoomro@gmail.com [Interface Analysis Centre, School of Physics, University of Bristol, Bristol, BS8 1TL (United Kingdom); National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 (Pakistan); Nafady, Ayman [Department of Chemistry, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Chemistry, Faculty of Science, Sohag University, Sohag (Egypt); Hallam, Keith Richard [Interface Analysis Centre, School of Physics, University of Bristol, Bristol, BS8 1TL (United Kingdom); Jawaid, Sana [National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 (Pakistan); Al Enizi, Abdullah [Department of Chemistry, College of Science, King Saud University, Riyadh (Saudi Arabia); Sherazi, Syed Tufail Hussain; Sirajuddin [National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 (Pakistan); Ibupoto, Zafar Hussain [Dr M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, 76080 (Pakistan); Willander, Magnus [Department of Science and Technology, Campus Norrkoping, Linkoping University, SE-60174, Norrkoping (Sweden)

    2016-12-15

    This study describes sensitive determination of atropine using glassy carbon electrodes (GCE) modified with Co{sub 3}O{sub 4} nanostructures. The as-synthesised nanostructures were grown using cysteine (CYS), glutathione (GSH) and histidine (HYS) as effective templates under hydrothermal action. The obtained morphologies revealed interesting structural features, including both cavity-based and flower-shaped structures. The as-synthesised morphologies were noted to actively participate in electro-catalysis of atropine (AT) drug where GSH-assisted structures exhibited the best signal response in terms of current density and over-potential value. The study also discusses the influence of functional groups on the signal sensitivity of atropine electro-oxidation. The functionalisation was carried with the amino acids originally used as effective templates for the growth of Co{sub 3}O{sub 4} nanostructures. The highest increment was obtained when GSH was used as the surface functionalising agent. The GSH-functionalised Co{sub 3}O{sub 4}-modified electrode was utilised for the electro-chemical sensing of AT in a concentration range of 0.01–0.46 μM. The developed sensor exhibited excellent working linearity (R{sup 2} = 0.999) and signal sensitivity up to 0.001 μM of AT. The noted high sensitivity of the sensor is associated with the synergy of superb surface architectures and favourable interaction facilitating the electron transfer kinetics for the electro-catalytic oxidation of AT. Significantly, the developed sensor demonstrated excellent working capability when used for AT detection in human urine samples with strong anti-interference potential against common co-existing species, such as glucose, fructose, cysteine, uric acid, dopamine and ascorbic acid. - Highlights: • Template-assisted growth of Co{sub 3}O{sub 4} nanostructures. • Shape-dependent electro-catalysis of atropine. • Effect of functionalisation of signal sensitivity.

  2. Effect of Shisha (Waterpipe Smoking on Lung Functions and Fractional Exhaled Nitric Oxide (FeNO among Saudi Young Adult Shisha Smokers

    Directory of Open Access Journals (Sweden)

    Sultan Ayoub Meo

    2014-09-01

    Full Text Available Shisha (waterpipe smoking is becoming a more prevalent form of tobacco consumption, and is growing worldwide, particularly among the young generation in the Middle East. This cross-sectional study aimed to determine the effects of shisha smoking on lung functions and Fractional Exhaled Nitric Oxide (FeNO among Saudi young adults. We recruited 146 apparently healthy male subjects (73 control and 73 shisha smokers. The exposed group consisted of male shisha smokers, with mean age 21.54 ± 0.41 (mean ± SEM range 17–33 years. The control group consisted of similar number (73 of non-smokers with mean age 21.36 ± 0.19 (mean ± SEM range 18–28 years. Between the groups we considered the factors like age, height, weight, gender, ethnicity and socioeconomic status to estimate the impact of shisha smoking on lung function and fractional exhaled nitric oxide. Lung function test was performed by using an Spirovit-SP-1 Electronic Spirometer. Fractional Exhaled Nitric Oxide (FeNO was measured by using Niox Mino. A significant decrease in lung function parameters FEV1, FEV1/FVC Ratio, FEF-25%, FEF-50%, FEF-75% and FEF-75–85% was found among shisha smokers relative to their control group. There was also a significant reduction in the Fractional Exhaled Nitric Oxide among Shisha smokers compared to control group.

  3. Catalytic oxidation of 1,2-DCBz over V2O5/TiO2-CNTs: effect of CNT diameter and surface functional groups.

    Science.gov (United States)

    Du, Cuicui; Wang, Qiulin; Peng, Yaqi; Lu, Shengyong; Ji, Longjie; Ni, Mingjiang

    2017-02-01

    A series of V 2 O 5 /TiO 2 -carbon nanotube (CNT) catalysts were prepared and tested to decompose gaseous 1,2-dichlorobenzene (1,2-DCBz). Several physicochemical methods, including nitrogen adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and H 2 temperature-programmed reduction (TPR) were employed to characterise their physicochemical properties. To better understand the effect of CNT properties on the reactivity of V 2 O 5 /TiO 2 -CNT catalysts, the 1,2-DCBz residue remaining in the off-gas and on the catalyst surface were both collected and analysed. The results indicate that the outer diameter and the surface functional groups (hydroxide radical and carboxyl) of CNTs significantly influence upon the catalytic activity of CNT-containing V 2 O 5 /TiO 2 catalysts: the CNT outer diameter mainly affects the aggregation of CNTs and the π-π interaction between the benzene ring and CNTs, while the introduction of -OH and -COOH groups by acid treatment can further enlarge specific surface area (SSA) and contribute to a higher average oxidation state of vanadium (V aos ) and supplemental surface chemisorbed oxygen (O ads ). In addition, the enhanced mobility of lattice oxygen (O latt) also improves the oxidation ability of the catalysts.

  4. Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene

    Energy Technology Data Exchange (ETDEWEB)

    Sablok, Kavita; Bhalla, Vijayender; Sharma, Priyanka; Kaushal, Roohi; Chaudhary, Shilpa [Institute of Microbial Technology (CSIR) Sector-39A, Chandigarh160036 (India); Suri, C. Raman, E-mail: raman@imtech.res.in [Institute of Microbial Technology (CSIR) Sector-39A, Chandigarh160036 (India)

    2013-03-15

    Highlights: ► Binding of electron-deficient trinitrotoluene to the electron rich amino groups to form JM complexes. ► rGO/CNT based platform for enhanced electrochemical detection. ► Functionalization and characterization of rGO/CNT with amine derivative. ► Ultrasenstitive and specific detection of TNT. -- Abstract: Binding of electron-deficient trinitrotoluene (TNT) to the electron rich amine groups on a substrate form specific charge-transfer Jackson–Meisenheimer (JM) complex. In the present work, we report formation of specific JM complex on amine functionalized reduced graphene oxide/carbon nanotubes- (a-rGO/CNT) nanocomposite leading to sensitive detection of TNT. The CNT were dispersed using graphene oxide that provides excellent dispersion by attaching to CNT through its hydrophobic domains and solubilizes through the available -OH and -COOH groups on screen printed electrode (SPE). The GO was reduced electrochemically to form reduced graphene that remarkably increases electrochemical properties owing to the intercalation of high aspect CNT on graphene flakes as shown by TEM micrograph. The surface amine functionalization of dropcasted and rGO/CNT was carried out using a bi-functional cross linker ethylenediamine. The extent of amine functionalization on modified electrodes was confirmed using energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and confocal microscopy. The FTIR and Raman spectra further suggested the formation of JM complex between amine functionalized electrodes and TNT leading to a shift in peak intensity together with peak broadening. The a-rGO/CNT nanocomposite prepared electrode surface leads to ultra-trace detection of TNT upto 0.01 ppb with good reproducibility (n = 3). The a-rGO/CNT sensing platform could be an alternate for sensitive detection of TNT explosive for various security and environmental applications.

  5. Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene

    International Nuclear Information System (INIS)

    Sablok, Kavita; Bhalla, Vijayender; Sharma, Priyanka; Kaushal, Roohi; Chaudhary, Shilpa; Suri, C. Raman

    2013-01-01

    Highlights: ► Binding of electron-deficient trinitrotoluene to the electron rich amino groups to form JM complexes. ► rGO/CNT based platform for enhanced electrochemical detection. ► Functionalization and characterization of rGO/CNT with amine derivative. ► Ultrasenstitive and specific detection of TNT. -- Abstract: Binding of electron-deficient trinitrotoluene (TNT) to the electron rich amine groups on a substrate form specific charge-transfer Jackson–Meisenheimer (JM) complex. In the present work, we report formation of specific JM complex on amine functionalized reduced graphene oxide/carbon nanotubes- (a-rGO/CNT) nanocomposite leading to sensitive detection of TNT. The CNT were dispersed using graphene oxide that provides excellent dispersion by attaching to CNT through its hydrophobic domains and solubilizes through the available -OH and -COOH groups on screen printed electrode (SPE). The GO was reduced electrochemically to form reduced graphene that remarkably increases electrochemical properties owing to the intercalation of high aspect CNT on graphene flakes as shown by TEM micrograph. The surface amine functionalization of dropcasted and rGO/CNT was carried out using a bi-functional cross linker ethylenediamine. The extent of amine functionalization on modified electrodes was confirmed using energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and confocal microscopy. The FTIR and Raman spectra further suggested the formation of JM complex between amine functionalized electrodes and TNT leading to a shift in peak intensity together with peak broadening. The a-rGO/CNT nanocomposite prepared electrode surface leads to ultra-trace detection of TNT upto 0.01 ppb with good reproducibility (n = 3). The a-rGO/CNT sensing platform could be an alternate for sensitive detection of TNT explosive for various security and environmental applications

  6. Effect of Strong Acid Functional Groups on Electrode Rise Potential in Capacitive Mixing by Double Layer Expansion

    KAUST Repository

    Hatzell, Marta C.

    2014-12-02

    © 2014 American Chemical Society. The amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10-5) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g-1) had a positive rise potential of 59 ± 4 mV in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g-1) had a negative rise potential (-31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to -6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. These results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.

  7. Effect of Strong Acid Functional Groups on Electrode Rise Potential in Capacitive Mixing by Double Layer Expansion

    KAUST Repository

    Hatzell, Marta C.; Raju, Muralikrishna; Watson, Valerie J.; Stack, Andrew G.; van Duin, Adri C. T.; Logan, Bruce E.

    2014-01-01

    © 2014 American Chemical Society. The amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10-5) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g-1) had a positive rise potential of 59 ± 4 mV in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g-1) had a negative rise potential (-31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to -6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. These results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.

  8. Introduction to the functional renormalization group

    International Nuclear Information System (INIS)

    Kopietz, Peter; Bartosch, Lorenz; Schuetz, Florian

    2010-01-01

    This book, based on a graduate course given by the authors, is a pedagogic and self-contained introduction to the renormalization group with special emphasis on the functional renormalization group. The functional renormalization group is a modern formulation of the Wilsonian renormalization group in terms of formally exact functional differential equations for generating functionals. In Part I the reader is introduced to the basic concepts of the renormalization group idea, requiring only basic knowledge of equilibrium statistical mechanics. More advanced methods, such as diagrammatic perturbation theory, are introduced step by step. Part II then gives a self-contained introduction to the functional renormalization group. After a careful definition of various types of generating functionals, the renormalization group flow equations for these functionals are derived. This procedure is shown to encompass the traditional method of the mode elimination steps of the Wilsonian renormalization group procedure. Then, approximate solutions of these flow equations using expansions in powers of irreducible vertices or in powers of derivatives are given. Finally, in Part III the exact hierarchy of functional renormalization group flow equations for the irreducible vertices is used to study various aspects of non-relativistic fermions, including the so-called BCS-BEC crossover, thereby making the link to contemporary research topics. (orig.)

  9. Defects and oxidation of group-III monochalcogenide monolayers

    Science.gov (United States)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun

    2017-09-01

    Among various two-dimensional (2D) materials, monolayer group-III monochalcogenides (GaS, GaSe, InS, and InSe) stand out owing to their potential applications in microelectronics and optoelectronics. Devices made of these novel 2D materials are sensitive to environmental gases, especially O2 molecules. To address this critical issue, here we systematically investigate the oxidization behaviors of perfect and defective group-III monochalcogenide monolayers by first-principles calculations. The perfect monolayers show superior oxidation resistance with large barriers of 3.02-3.20 eV for the dissociation and chemisorption of O2 molecules. In contrast, the defective monolayers with single chalcogen vacancy are vulnerable to O2, showing small barriers of only 0.26-0.36 eV for the chemisorption of an O2 molecule. Interestingly, filling an O2 molecule to the chalcogen vacancy of group-III monochalcogenide monolayers could preserve the electronic band structure of the perfect system—the bandgaps are almost intact and the carrier effective masses are only moderately disturbed. On the other hand, the defective monolayers with single vacancies of group-III atoms carry local magnetic moments of 1-2 μB. These results help experimental design and synthesis of group-III monochalcogenides based 2D devices with high performance and stability.

  10. Effect of α-lipoic acid combined with nerve growth factor on bone metabolism, oxidative stress and nerve conduction function after femoral fracture surgery

    Directory of Open Access Journals (Sweden)

    An-Jun Cao

    2017-11-01

    Full Text Available Objective: To discuss the effect of 毩 -lipoic acid combined with nerve growth factor on bone metabolism, oxidative stress and nerve conduction function after femoral fracture surgery. Methods: A total of 110 patients with femoral fracture who received surgical treatment in the hospital between January 2015 and January 2017 were collected and divided into the control group (n=55 and study group (n=55 by random number table. Control group received postoperative nerve growth factor therapy, and study group received postoperative 毩 -lipoic acid combined with nerve growth factor therapy. The differences in the contents of bone metabolism and oxidative stress indexes as well as the levels of nerve conduction function indexes were compared between the two groups before and after treatment. Results: Before treatment, the differences in the contents of bone metabolism and oxidative stress indexes as well as the levels of nerve conduction function indexes were not statistically significant between the two groups. After treatment, serum bone metabolism indexes BGP and PⅠNP contents of study group were higher than those of control group while CTX-Ⅰ and TRAP contents were lower than those of control group; serum oxidative stress indexes TAC, CAT and SOD contents of study group were higher than those of control group while MDA content was lower than that of control group; limb nerve conduction velocity SCV and MCV levels of study group were higher than those of control group. Conclusion: 毩 -lipoic acid combined with nerve growth factor therapy after femoral fracture surgery can effectively balance osteoblast/ osteoclast activity, reduce oxidative stress and improve limb nerve conduction velocity.

  11. Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress.

    Science.gov (United States)

    Santos-Parker, Jessica R; Strahler, Talia R; Bassett, Candace J; Bispham, Nina Z; Chonchol, Michel B; Seals, Douglas R

    2017-01-03

    We hypothesized that curcumin would improve resistance and conduit artery endothelial function and large elastic artery stiffness in healthy middle-aged and older adults. Thirty-nine healthy men and postmenopausal women (45-74 yrs) were randomized to 12 weeks of curcumin (2000 mg/day Longvida®; n=20) or placebo (n=19) supplementation. Forearm blood flow response to acetylcholine infusions (FBF ACh ; resistance artery endothelial function) increased 37% following curcumin supplementation (107±13 vs. 84±11 AUC at baseline, P=0.03), but not placebo (P=0.2). Curcumin treatment augmented the acute reduction in FBF ACh induced by the nitric oxide synthase inhibitor NG monomethyl-L-arginine (L-NMMA; P=0.03), and reduced the acute increase in FBF ACh to the antioxidant vitamin C (P=0.02), whereas placebo had no effect (both P>0.6). Similarly, brachial artery flow-mediated dilation (conduit artery endothelial function) increased 36% in the curcumin group (5.7±0.4 vs. 4.4±0.4% at baseline, P=0.001), with no change in placebo (P=0.1). Neither curcumin nor placebo influenced large elastic artery stiffness (aortic pulse wave velocity or carotid artery compliance) or circulating biomarkers of oxidative stress and inflammation (all P>0.1). In healthy middle-aged and older adults, 12 weeks of curcumin supplementation improves resistance artery endothelial function by increasing vascular nitric oxide bioavailability and reducing oxidative stress, while also improving conduit artery endothelial function.

  12. A 3-hydroxy β-end group in xanthophylls is preferentially oxidized to a 3-oxo ε-end group in mammals[S

    Science.gov (United States)

    Nagao, Akihiko; Maoka, Takashi; Ono, Hiroshi; Kotake-Nara, Eiichi; Kobayashi, Miyuki; Tomita, Mie

    2015-01-01

    We previously found that mice fed lutein accumulated its oxidative metabolites (3′-hydroxy-ε,ε-caroten-3-one and ε,ε-carotene-3,3′-dione) as major carotenoids, suggesting that mammals can convert xanthophylls to keto-carotenoids by the oxidation of hydroxyl groups. Here we elucidated the metabolic activities of mouse liver for several xanthophylls. When lutein was incubated with liver postmitochondrial fraction in the presence of NAD+, (3′R,6′R)-3′-hydroxy-β,ε-caroten-3-one and (6RS,3′R,6′R)-3′-hydroxy-ε,ε-caroten-3-one were produced as major oxidation products. The former accumulated only at the early stage and was assumed to be an intermediate, followed by isomerization to the latter. The configuration at the C3′ and C6′ of the ε-end group in lutein was retained in the two oxidation products. These results indicate that the 3-hydroxy β-end group in lutein was preferentially oxidized to a 3-oxo ε-end group via a 3-oxo β-end group. Other xanthophylls such as β-cryptoxanthin and zeaxanthin, which have a 3-hydroxy β-end group, were also oxidized in the same manner as lutein. These keto-carotenoids, derived from dietary xanthophylls, were confirmed to be present in plasma of normal human subjects, and β,ε-caroten-3′-one was significantly increased by the ingestion of β-cryptoxanthin. Thus, humans as well as mice have oxidative activity to convert the 3-hydroxy β-end group of xanthophylls to a 3-oxo ε-end group. PMID:25502844

  13. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    Science.gov (United States)

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  14. Effect of the laxative magnesium oxide on gastrointestinal functional recovery in fast-track colonic resection: a double-blind, placebo-controlled randomized study

    DEFF Research Database (Denmark)

    Andersen, J; Christensen, H; Pachler, J H

    2012-01-01

    Aim: A double-blind randomised controlled study was conducted to compare the effect of magnesium oxide (1 g 12-hourly) with placebo given within an evidence-based multimodal rehabilitation programme on gastrointestinal recovery, pain, mobilisation and hospital stay after open colonic resection....... Method: Of sixty two potentially eligible patients, thirteen were excluded leaving 22 in the magnesium oxide group and 27 in the placebo group. The main outcome measure was time to normalization of bowel function. Secondary outcome measures included post operative nausea, vomiting, pain, fatigue...... were similar in the groups (p>0.3). The median postoperative hospital stay was three days in both groups (p>0.65). Conclusion: Magnesium oxide does not enhance the recovery of gastrointestinal function within the context of an evidence-based multimodal rehabilitation programme after open colonic...

  15. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide

    International Nuclear Information System (INIS)

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian

    2016-01-01

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL"−"1, which is 32 times lower than that of graphene oxide-based biosensor. - Highlights: • A sensitive and versatile SPR biosensor was constructed for detection of pig IgG. • Biofunctional gold nanostars were used to amplify the response signals. • The strategy employed carboxyl-functionalized graphene oxide as biosensing substrate. • The detection limit of the proposed biosensor is 32 times lower than that of graphene oxide-based biosensor.

  16. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian, E-mail: songdq@jlu.edu.cn

    2016-03-24

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL{sup −1}, which is 32 times lower than that of graphene oxide-based biosensor. - Highlights: • A sensitive and versatile SPR biosensor was constructed for detection of pig IgG. • Biofunctional gold nanostars were used to amplify the response signals. • The strategy employed carboxyl-functionalized graphene oxide as biosensing substrate. • The detection limit of the proposed biosensor is 32 times lower than that of graphene oxide-based biosensor.

  17. Preserved microvascular endothelial function in young, obese adults with functional loss of nitric oxide signaling

    Directory of Open Access Journals (Sweden)

    John eHarrell

    2015-12-01

    Full Text Available Data indicate endothelium-dependent dilation (EDD may be preserved in the skeletal muscle microcirculation of young, obese adults. Preserved EDD might be mediated by compensatory mechanisms, impeding insight into preclinical vascular dysfunction. We aimed to determine the functional roles of nitric oxide synthase (NOS and cyclooxygenase (COX toward EDD in younger obese adults. We first hypothesized EDD would be preserved in young, obese adults. Further, we hypothesized a reduced contribution of NOS in young, obese adults would be replaced by increased COX signaling. Microvascular EDD was assessed with Doppler ultrasound and brachial artery infusion of acetylcholine (ACh in younger (27±1 yr obese (n=29 and lean (n=46 humans. Individual and combined contributions of NOS and COX were examined with intra-arterial infusions of L-NMMA and ketorolac, respectively. Vasodilation was quantified as an increase in forearm vascular conductance (ΔFVC. Arterial endothelial cell biopsies were analyzed for protein expression of endothelial nitric oxide synthase (eNOS. ΔFVC to ACh was similar between groups. After L-NMMA, ΔFVC to ACh was greater in obese adults (p<0.05. There were no group differences in ΔFVC to ACh with ketorolac. With combined NOS-COX inhibition, ΔFVC was greater in obese adults at the intermediate dose of ACh. Surprisingly, arterial endothelial cell eNOS and phosphorylated eNOS were similar between groups. Younger obese adults exhibit preserved EDD and eNOS expression despite functional dissociation of NOS-mediated vasodilation and similar COX signaling. Compensatory NOS- and COX-independent vasodilatory mechanisms conceal reduced NOS contributions in otherwise healthy obese adults early in life, which may contribute to vascular dysfunction.

  18. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice.

    Science.gov (United States)

    Zhang, Yiqiang; Fischer, Kathleen E; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B

    2015-06-15

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality, leading some to suggest this condition represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers of function and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal, functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. Published by Elsevier Inc.

  19. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications

    Science.gov (United States)

    Amstad, Esther; Textor, Marcus; Reimhult, Erik

    2011-07-01

    Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface presentation of functionalities. This review is focused on different aspects of the stability of superparamagnetic iron oxide NPs, from its practical definition to its implementation by molecular design of the dispersant shell around the iron oxide core and further on to its influence on the magnetic properties of the superparamagnetic iron oxide NPs. Special attention is given to the selection of molecular anchors for the dispersant shell, because of their importance to ensure colloidal and functional stability of sterically stabilized superparamagnetic iron oxide NPs. We further detail how dispersants have been optimized to gain close control over iron oxide NP stability, size and functionalities by independently considering the influences of anchors and the attached sterically repulsive polymer brushes. A critical evaluation of different strategies to stabilize and functionalize core-shell superparamagnetic iron oxide NPs as well as a brief introduction to characterization methods to compare those strategies is given.Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface

  20. The catalystic function of leadership in efficient group functioning ...

    African Journals Online (AJOL)

    The more efficient group leaders were found to be more competent and revealed a greater task orientation. Compared to the less efficient groups, the better functioning groups were characterised by a higher degree of shared leadership. The bigger involvement in leadership functions seems to increase the competence ...

  1. Interactions of human hemoglobin with charged ligand-functionalized iron oxide nanoparticles and effect of counterions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Goutam, E-mail: ghoshg@yahoo.com [UGC-DAE Consortium for Scientific Research, Mumbai Centre (India); Panicker, Lata [Bhabha Atomic Research Centre, Solid State Physics Division (India)

    2014-12-15

    Human hemoglobin is an important metalloprotein. It has tetrameric structure with each subunit containing a ‘heme’ group which carries oxygen and carbon dioxide in blood. In this work, we have investigated the interactions of human hemoglobin (Hb) with charged ligand-functionalized iron oxide nanoparticles and the effect of counterions, in aqueous medium. Several techniques like DLS and ζ-potential measurements, UV–vis, fluorescence, and CD spectroscopy have been used to characterize the interaction. The nanoparticle size was measured to be in the range of 20–30 nm. Our results indicated the binding of Hb with both positively as well as negatively charged ligand-functionalized iron oxide nanoparticles in neutral aqueous medium which was driven by the electrostatic and the hydrophobic interactions. The electrostatic binding interaction was not seen in phosphate buffer at pH 7.4. We have also observed that the ‘heme’ groups of Hb remained unaffected on binding with charged nanoparticles, suggesting the utility of the charged ligand-functionalized nanoparticles in biomedical applications.

  2. The anti-oxidant effects of ginger and cinnamon on spermatogenesis dys-function of diabetes rats.

    Science.gov (United States)

    Khaki, Arash; Khaki, Amir Afshin; Hajhosseini, Laleh; Golzar, Farhad Sadeghpour; Ainehchi, Nava

    2014-01-01

    Diabetes rats have been linked to reproductive dysfunction and plant medicine has been shown to be effective in its treatment. Antioxidants have distinctive effects on spermatogenesis, sperm biology and oxidative stress, and changes in anti-oxidant capacity are considered to be involved in the pathogenesis of chronic diabetes mellitus. Ginger and cinnamon are strong anti-oxidants and have been shown to reduce oxidative stress in the long-term treatment of streptozotocin (STZ)-induced diabetes in animal models. The present study examined the influence of combined ginger and cinnamon on spermatogenesis in STZ-induced diabetes in male Wistar rats. Animals (n = 80) were allocated randomly into eight groups, 10 each: Group 1: Control rats given only 5cc Normal saline (0.9% NaCl) daily;Group2: rats received ginger (100mg/kg/rat) daily; Group 3: rats received cinnamon (75mg/kg) daily; Group 4: rats received ginger and cinnamon, (100mg/kg/rat ginger and 75mg/kg cinnamon) daily; Group 5: Diabetic control rats received only normal saline. Group 6: Diabetic rats received 100mg/kg/day ginger; Group 7: Diabetic rats received 75mg /kg/ day cinnamon; Group 8: Diabetic rats received ginger and cinnamon (100mg/kg/day and 75mg/kg /day). Diabetes was induced with 55 mg/kg, single intra-peritoneal injection of STZ in all groups. At the end of the experiment (56th day), blood samples were taken for determination of testosterone, LH,FSH, total anti-oxidant capacity, and levels of malondialdehyde, SOD, Catalase and GPX. All rats were euthanized, testes were dissected out and spermatozoa were collected from the epididymis for analysis. Sperm numbers, percentages of sperm viability and motility, and total serum testosterone increased in ginger and cinnamon and combined ginger and cinnamon treated diabetic rats compared with control groups. Serum testosterone, LH and FSH were higher compared to control group and also serum anti-oxidants (TAC, SOD, GPX and catalase) all were increased at the

  3. Altered Potassium Ion Channel Function as a Possible Mechanism of Increased Blood Pressure in Rats Fed Thermally Oxidized Palm Oil Diets.

    Science.gov (United States)

    Nkanu, Etah E; Owu, Daniel U; Osim, Eme E

    2017-12-27

    Intake of thermally oxidized palm oil leads to cytotoxicity and alteration of the potassium ion channel function. This study investigated the effects of fresh and thermally oxidized palm oil diets on blood pressure and potassium ion channel function in blood pressure regulation. Male Wistar rats were randomly divided into three groups of eight rats. Control group received normal feed; fresh palm oil (FPO) and thermally oxidized palm oil (TPO) groups were fed a diet mixed with 15% (weight/weight) fresh palm oil and five times heated palm oil, respectively, for 16 weeks. Blood pressure was measured; blood samples, hearts, and aortas were collected for biochemical and histological analyses. Thermally oxidized palm oil significantly elevated basal mean arterial pressure (MAP). Glibenclamide (10 -5 mmol/L) and tetraethylammonium (TEA; 10 -3 mmol/L) significantly raised blood pressure in TPO compared with FPO and control groups. Levcromakalim (10 -6 mmol/L) significantly (p palm oil increases MAP probably due to the attenuation of adenosine triphosphate-sensitive potassium (K ATP ) and large-conductance calcium-dependent potassium (BK Ca ) channels, tissue peroxidation, and altered histological structures of the heart and blood vessels.

  4. Structural and functional characteristics of cGMP-dependent methionine oxidation in Arabidopsis thaliana proteins

    KAUST Repository

    Marondedze, Claudius

    2013-01-05

    Background: Increasing structural and biochemical evidence suggests that post-translational methionine oxidation of proteins is not just a result of cellular damage but may provide the cell with information on the cellular oxidative status. In addition, oxidation of methionine residues in key regulatory proteins, such as calmodulin, does influence cellular homeostasis. Previous findings also indicate that oxidation of methionine residues in signaling molecules may have a role in stress responses since these specific structural modifications can in turn change biological activities of proteins. Findings. Here we use tandem mass spectrometry-based proteomics to show that treatment of Arabidopsis thaliana cells with a non-oxidative signaling molecule, the cell-permeant second messenger analogue, 8-bromo-3,5-cyclic guanosine monophosphate (8-Br-cGMP), results in a time-dependent increase in the content of oxidised methionine residues. Interestingly, the group of proteins affected by cGMP-dependent methionine oxidation is functionally enriched for stress response proteins. Furthermore, we also noted distinct signatures in the frequency of amino acids flanking oxidised and un-oxidised methionine residues on both the C- and N-terminus. Conclusions: Given both a structural and functional bias in methionine oxidation events in response to a signaling molecule, we propose that these are indicative of a specific role of such post-translational modifications in the direct or indirect regulation of cellular responses. The mechanisms that determine the specificity of the modifications remain to be elucidated. 2013 Marondedze et al.; licensee BioMed Central Ltd.

  5. Application of density functional theory to the nitric oxide heterogeneous reduction mechanism in the presence of hydroxyl and carbonyl groups

    International Nuclear Information System (INIS)

    Zhang, Hai; Jiang, Xiumin; Liu, Jiaxun; Shen, Jun

    2014-01-01

    Highlights: • The role of hydroxyl and carbonyl groups are studied on two modified zigzag models. • Energetics and kinetics for the proposed pathways are chiefly investigated. • New active sites are beneficial for NO adsorption and N-O bond dissociation. • The highly exothermicity of C(NCO) formation is helpful for CO 2 and N 2 elimination. - Abstract: Comprehensive theoretical calculations are carried out to investigate the nitric oxide (NO) heterogeneous reduction mechanism in the presence of hydroxyl (-OH) and carbonyl (>C=O) groups. Energetics (activation energy and thermochemistry data) and kinetics (thermal rate constant) for the proposed pathways are provided by density functional theory (DFT) and conventional transition state theory (TST), respectively. The role played by -OH and >C=O has been clarified. In the presence of -OH, four stepwise reactions with the highest energy barrier of 251.7 kJ/mol are found to produce new active sites. Subsequently, a number of elementary reactions with energy barrier below 116.1 kJ/mol take place to reduce NO. The role of > C=O is to yield NCO intermediate. The formation of NCO is highly exothermic with 709.4 kJ/mol, which contributes to the elimination of carbon dioxide (CO 2 ) and nitrogen (N 2 ). The discovered mechanism is consistent with previous experimental observation that NO heterogeneous reduction is enhanced due to the presence of oxygen

  6. Oxidative Stress Function in Women over 40 Years of Age, Considering Their Lifestyle.

    Science.gov (United States)

    Gonçalves Mota, Maria Paula; Santos, Zirlene; Soares, Jorge; Pereira, Ana; Fonseca, Sandra; Peixoto, Francisco; Gaivão, Isabel; Oliveira, Maria

    2017-01-01

    Aging is dependent on biological processes that determine the aging of the organism at the cellular level. The Oxidative Stress Theory of Aging might explain some of the age-related changes in cell macromolecules. Moreover, exposome and lifestyle may also induce changes in cell damage induced by oxidative stress. The aim of the present study was to analyze the related redox changes in lymphocyte function of healthy women over 40 years old. Three groups: younger (YG: 40-49 years), middle aged (MAG: 50-59 years), and older (OG: ≥60 years) were evaluated on anthropometric variables, blood pressure, cardiovascular fitness, lifestyle habits, perceived stress, DNA damage, malondialdehyde, catalase activity, and total antioxidant capacity. Physical activity and cardiovascular fitness were significantly higher in YG and MAG as compared to the OG. Systolic blood pressure increased significantly with group age. Frequency and total amount of alcohol intake were lower in the OG and higher in the MAG. No significant differences were observed between the three groups in oxidative stress parameters. Only alcohol consumption was associated with the higher DNA FPG-sensitive sites, and only in the YG ( p  stress parameters measured in the healthy women over the age of 40 who took part in the study. Conscious lifestyle behaviors (decrease in alcohol and smoking habits) could have impaired the expected age-related oxidative stress increase.

  7. Functional Group Analysis.

    Science.gov (United States)

    Smith, Walter T., Jr.; Patterson, John M.

    1984-01-01

    Literature on analytical methods related to the functional groups of 17 chemical compounds is reviewed. These compounds include acids, acid azides, alcohols, aldehydes, ketones, amino acids, aromatic hydrocarbons, carbodiimides, carbohydrates, ethers, nitro compounds, nitrosamines, organometallic compounds, peroxides, phenols, silicon compounds,…

  8. Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Bloemen, Maarten; Brullot, Ward; Luong, Tai Thien; Geukens, Nick; Gils, Ann; Verbiest, Thierry

    2012-01-01

    Superparamagnetic iron oxide nanoparticles can provide multiple benefits for biomedical applications in aqueous environments such as magnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality water-dispersible nanoparticles around 10 nm in size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.

  9. Chronopharmacological effects of growth hormone on the executive function and oxidative stress response in rats.

    Science.gov (United States)

    Ferrari, Carlos K B; França, Eduardo L; Monteiro, Luciane A; Santos, Bruno L; Pereira-Junior, Alfredo; Honorio-França, Adenilda C

    2017-01-01

    To investigate the chronopharmacological effects of growth hormone on executive function and the oxidative stress response in rats. Fifty male Wistar rats (36-40 weeks old) had ad libitum access to water and food and were separated into four groups: diurnal control, nocturnal control, diurnal GH-treated, and nocturnal GH-treated animals. Levels of Cu, Zn superoxide dismutase (Cu, Zn-SOD), and superoxide release by spleen macrophages were evaluated. For memory testing, adaptation and walking in an open field platform was used. GH-treated animals demonstrated better performance in exploratory and spatial open-field tests. The latency time in both GH-treated groups was significantly lower compared with the latency time of the control groups. The diurnal GH treatment did not stimulate superoxide release but increased the CuZn-SOD enzyme levels. The nocturnal GH treatment did not influence the superoxide release and CuZn-SOD concentration. GH treatment also resulted in heart atrophy and lung hypertrophy. Growth hormone treatment improved the performance of executive functions at the cost of oxidative stress triggering, and this effect was dependent on the circadian period of hormone administration. However, GH treatment caused damaging effects such as lung hypertrophy and heart atrophy.

  10. New Dimensions in Microbial Ecology—Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment

    Science.gov (United States)

    Imhoff, Johannes F.

    2016-01-01

    During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA) as target for the green sulfur bacteria and of two reaction center proteins (pufLM) for the phototrophic purple bacteria, with genes of adenosine-5′phosphosulfate (APS) reductase (aprA), sulfate thioesterase (soxB) and dissimilatory sulfite reductase (dsrAB) for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA) for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK) for denitrifying bacteria and with genes of methane

  11. New Dimensions in Microbial Ecology—Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment

    Directory of Open Access Journals (Sweden)

    Johannes F. Imhoff

    2016-05-01

    Full Text Available During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA as target for the green sulfur bacteria and of two reaction center proteins (pufLM for the phototrophic purple bacteria, with genes of adenosine-5′phosphosulfate (APS reductase (aprA, sulfate thioesterase (soxB and dissimilatory sulfite reductase (dsrAB for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK for denitrifying bacteria and with genes

  12. Work Function of Oxide Ultrathin Films on the Ag(100) Surface.

    Science.gov (United States)

    Sementa, Luca; Barcaro, Giovanni; Negreiros, Fabio R; Thomas, Iorwerth O; Netzer, Falko P; Ferrari, Anna Maria; Fortunelli, Alessandro

    2012-02-14

    Theoretical calculations of the work function of monolayer (ML) and bilayer (BL) oxide films on the Ag(100) surface are reported and analyzed as a function of the nature of the oxide for first-row transition metals. The contributions due to charge compression, charge transfer and rumpling are singled out. It is found that the presence of empty d-orbitals in the oxide metal can entail a charge flow from the Ag(100) surface to the oxide film which counteracts the decrease in the work function due to charge compression. This flow can also depend on the thickness of the film and be reduced in passing from ML to BL systems. A regular trend is observed along first-row transition metals, exhibiting a maximum for CuO, in which the charge flow to the oxide is so strong as to reverse the direction of rumpling. A simple protocol to estimate separately the contribution due to charge compression is discussed, and the difference between the work function of the bare metal surface and a Pauling-like electronegativity of the free oxide slabs is used as a descriptor quantity to predict the direction of charge transfer.

  13. Creation of hydrophobic surfaces using a paint containing functionalized oxide particles

    Science.gov (United States)

    Sino, Paul Albert L.; Herrera, Marvin U.; Balela, Mary Donnabelle L.

    2017-05-01

    Hydrophobic surfaces were created by coating various substrates (aluminum sheet, soda-lime glass, silicon carbide polishing paper, glass with double-sided adhesive) with paint containing functionalized oxide particles. The paint was created by functionalizing oxide particles (ground ZnO, TiO2 nanoparticles, or TiO2 microparticles) with fluorosilane molecules in absolute ethanol. Water contact angle of samples shows that the coated substrate becomes hydrophobic (water contact angle ≥ 90°). Among the oxides that were used, ground ZnO yielded contact angle exemplifying superhydrophobicity (water contact angle ≥ 150°). Scanning electron micrograph of paint-containing TiO2 nanoparticles shows rough functionalized oxides structures which probably increase the hydrophobicity of the surface.

  14. Nitric oxide-related species-induced protein oxidation: reversible, irreversible, and protective effects on enzyme function of papain.

    Science.gov (United States)

    Väänänen, Antti J; Kankuri, Esko; Rauhala, Pekka

    2005-04-15

    Protein oxidation, irreversible modification, and inactivation may play key roles in various neurodegenerative disorders. Therefore, we studied the effects of the potentially in vivo occurring nitric oxide-related species on two different markers of protein oxidation: protein carbonyl generation on bovine serum albumine (BSA) and loss of activity of a cysteine-dependent protease, papain, in vitro by using Angeli's salt, papanonoate, SIN-1, and S-nitrosoglutathione (GSNO) as donors of nitroxyl, nitric oxide, peroxynitrite, and nitrosonium ions, respectively. Angeli's salt, SIN-1, and papanonoate (0-1000 microM) all generated a concentration-dependent increase in carbonyl formation on BSA (107, 60, and 45%, respectively). GSNO did not affect carbonyl formation. Papain was inhibited by Angeli's salt, SIN-1, papanonoate, and GSNO with IC50 values of 0.62, 2.3, 54, and 80 microM, respectively. Angeli's salt (3.16 microM)-induced papain inactivation was only partially reversible, while the effects of GSNO (316 microM) and papanonoate (316 microM) were reversible upon addition of excess DTT. The Angeli's salt-mediated DTT-irreversible inhibition of papain was prevented by GSNO or papanonoate pretreatment, hypothetically through mixed disulfide formation or S-nitrosylation of the catalytically critical thiol group of papain. These results, for the first time, compare the generation of carbonyls in proteins by Angeli's salt, papanonoate, and SIN-1. Furthermore, these results suggest that S-nitrosothiols may have a novel function in protecting critical thiols from irreversible oxidative damage.

  15. Phosphine-functionalized graphene oxide, a high-performance electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Ensafi, Ali A.; Golbon Haghighi, Mohsen; Jafari-Asl, Mehdi

    2018-01-01

    Here, a new approach for the synthesis of phosphine-functionalized graphene oxide (GO-PPh2) was developed. Using a simple method, diphenylphosphine group was linked to the hydroxyl group of OH-functionalized graphene that existing at the graphene surface. The electrochemical activity of GO-PPh2 for electrochemical oxygen reduction was checked. The results demonstrated that the new carbon hybrid material has a powerful potential for electrochemical oxygen reduction reaction (ORR). Moreover, GO-PPh2 as an electrocatalyst for ORR exhibited tolerance for methanol or ethanol as a result of crossover effect. In comparison with commercial Pt/C and Pt/rGO electrocatalysts, results showed that GO-PPh2 has a much higher selectivity, better durability, and much better electrochemical stability towards the ORR. The proposed method based on GO-PPh2 introduce an efficient electrocatalyst for further application in fuel cells.

  16. Renormalization Group Functional Equations

    CERN Document Server

    Curtright, Thomas L

    2011-01-01

    Functional conjugation methods are used to analyze the global structure of various renormalization group trajectories. With minimal assumptions, the methods produce continuous flows from step-scaling {\\sigma} functions, and lead to exact functional relations for the local flow {\\beta} functions, whose solutions may have novel, exotic features, including multiple branches. As a result, fixed points of {\\sigma} are sometimes not true fixed points under continuous changes in scale, and zeroes of {\\beta} do not necessarily signal fixed points of the flow, but instead may only indicate turning points of the trajectories.

  17. Functionalization of Liquid Natural Rubber via Oxidative Degradation of Natural Rubber

    Directory of Open Access Journals (Sweden)

    Suhawati Ibrahim

    2014-12-01

    Full Text Available Natural rubber (NR is a high molecular weight natural polymer and can be degraded to liquid natural rubber (LNR leaving certain functional groups at the end of chains. In this study, LNR samples prepared via oxidative degradation using H2O2 and NaNO2 as reagents were found to have different end groups depending on the pH of the reaction medium. In an acidic medium, LNR with hydroxyl terminal groups was formed as the degradation reaction was initiated by hydroxyl radicals produced from decomposition of peroxynitrite acid. In contrast, a redox reaction took place in an alkaline medium to yield LNR with carbonyl terminal groups. The mechanisms of reaction are discussed and proposed to explain the formation of different end groups when reaction carried out in acidic and alkaline media. Chain degradation in an acidic medium seems to be more effective than in an alkaline medium, and thus yields LNR with lower Mn.

  18. Organic Functional Group Playing Card Deck

    Science.gov (United States)

    Welsh, Michael J.

    2003-04-01

    The recognition and identification of organic functional groups, while essential for chemistry and biology majors, is also very useful for non-science majors in the study of molecules in art and life. In order to make this task more palatable for the non-science major (art and communications students), the images of a traditional playing deck of cards (heart, spade, diamond, and club) have been replaced with four representations of common organic functional groups. The hierarchy rules for naming two groups in a molecule is loosely incorporated to represent the sequence (King, Queen, Jack, ?, Ace) of the deck. Students practice recognizing and identifying organic groups by playing simple card games of "Old Maid" and "Go Fish". To play games like "Poker" or "Gin", a student must not only recognize the functional groups, but also master a naming hierarchy for the organic groups.

  19. Amorphous transparent conducting oxides in context: Work function survey, trends, and facile modification

    Science.gov (United States)

    Yeh, T. C.; Zhu, Q.; Buchholz, D. B.; Martinson, A. B.; Chang, R. P. H.; Mason, T. O.

    2015-03-01

    The work functions of various amorphous and crystalline transparent conducting oxides (TCOs) were measured using Kelvin probe. The films, made by pulsed laser deposition, exhibited varying work functions dependent on the composition and deposition parameters. Tin oxide showed the largest work functions of the oxides measured, while zinc oxide showed the lowest. Binary and ternary combinations of the basis TCOs showed intermediate work functions dependent on the endpoint components. Amorphous TCOs, important in OPV and other technological applications, exhibited similar work functions to their crystalline counterparts. UV/ozone treatment of TCOs temporarily increased the work function, consistent with proposed defect mechanisms associated with near-surface changes in carrier content and Fermi level. Finally, a method for facile adjustment of the work function of commercial TCOs by atomic layer deposition (ALD) capping layers was presented, illustrated by the growth of zinc oxide layers on commercial crystalline ITO films.

  20. Poly(zwitterionic liquids) functionalized polypyrrole/graphene oxide nanosheets for electrochemically detecting dopamine at low concentration

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Hui; Liang, Jiachen; Ji, Chunguang; Zhang, Haifeng; Pei, Qi; Zhang, Yuyang; Zhang, Yu [Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036 (China); Hisaeda, Yoshio [Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Song, Xi-Ming, E-mail: songlab@lnu.edu.cn [Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036 (China); Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2016-08-01

    Poly(3-(1-vinylimidazolium-3-yl)propane-1-sulfonate) (PVIPS), a novel kind of poly(zwitterionic liquids) (PZILs) containing both imidazolium cation and sulfonate anion, was successfully modified on the surface of polypyrrole/graphene oxide nanosheets (PPy/GO) by covalent bonding. The obtained novel PZILs functionalized PPy/GO nanosheets (PVIPS/PPy/GO) modified glassy carbon electrode (GCE) presented the excellent electrochemical catalytic activity towards dopamine (DA) with high stability, sensitivity, selectivity and wide linear range (40–1220 nM), especially having a lower detection limit (17.3 nM). The excellent analytical performance is attributed to the strongly negative charges on the surface of modified GCE in aqueous solution, which is different from conventional poly(ionic liquids) modified GCE. DA cations could be quickly enriched on the electrode surface by electrostatic interaction in solution due to the existence of −SO{sub 3}{sup −} groups with negative charge at the end of pendant groups in zwitterionic PVIPS, resulting in a change of the electrons transmission mode in the oxidation of DA, that is, from a typical diffusion-controlled process at conventional poly(1-vinyl-3-ethylimidazole bromide) (PVEIB)/PPy/GO modified GCE to a typical surface-controlled process. - Graphical Abstract: Novel poly(zwitterionic liquids) functionalized polypyrrole/graphene oxide nanosheets were successfully synthesized and presented an excellent performance for determination to DA. Display Omitted - Highlights: • Zwitterionic PVIPS functionalized PPy/GO nanosheets were successfully synthesized. • Their surface charge property has been obviously changed to electronegativity. • The excellent electrochemical catalytic activities towards DA were achieved. • −SO{sub 3}{sup −} groups with negative charge changed the transmission mode of electrons. • PVIPS/PPy/GO can act as an electrode material for detecting DA at low concentration.

  1. Regioselective Wacker Oxidation of Internal Alkenes: Rapid Access to Functionalized Ketones Facilitated by Cross-Metathesis

    KAUST Repository

    Morandi, Bill

    2013-07-26

    Wacka wacka: The title reaction makes use of a wide range of directing groups (DG) to enable the highly regioselective oxidation of alkenes, and occurs predictably at the distal position. Both E and Z alkenes afford valuable functionalized ketones and cross-metathesis was shown to facilitate the preparation of the starting materials. BQ=benzoquinone.

  2. Regioselective Wacker Oxidation of Internal Alkenes: Rapid Access to Functionalized Ketones Facilitated by Cross-Metathesis

    KAUST Repository

    Morandi, Bill; Wickens, Zachary K.; Grubbs, Robert H.

    2013-01-01

    Wacka wacka: The title reaction makes use of a wide range of directing groups (DG) to enable the highly regioselective oxidation of alkenes, and occurs predictably at the distal position. Both E and Z alkenes afford valuable functionalized ketones and cross-metathesis was shown to facilitate the preparation of the starting materials. BQ=benzoquinone.

  3. Curcumin Protects -SH Groups and Sulphate Transport after Oxidative Damage in Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Rossana Morabito

    2015-05-01

    Full Text Available Background/Aims: Erythrocytes, continuously exposed to oxygen pressure and toxic compounds, are sensitive to oxidative stress, namely acting on integral Band 3 protein, with consequences on cell membranes deformability and anion transport efficiency. The aim of the present investigation, conducted on human erythrocytes, is to verify whether curcumin (1 or 10µM, a natural compound with proved antioxidant properties, may counteract Band 3-mediated anion transport alterations due to oxidative stress. Methods: Oxidative conditions were induced by exposure to, alternatively, either 2 mM N-ethylmaleimide (NEM or pH-modified solutions (6.5 and 8.5. Rate constant for SO4= uptake and -SH groups estimation were measured to verify the effect of oxidative stress on anion transport efficiency and erythrocyte membranes. Results: After the exposure of erythrocytes to, alternatively, NEM or pH-modified solutions, a significant decrease in both rate constant for SO4= uptake and -SH groups was observed, which was prevented by curcumin, with a dose-dependent effect. Conclusions: Our results show that: i the decreased efficiency of anion transport may be due to changes in Band 3 protein structure caused by cysteine -SH groups oxidation, especially after exposure to NEM and pH 6.5; ii 10 µM Curcumin is effective in protecting erythrocytes from oxidative stress events at level of cell membrane transport.

  4. The luminescence properties of the octahedral uranate group in oxides with perovskite structure, ch. 3

    International Nuclear Information System (INIS)

    Hair, J.Th.W. de

    1976-01-01

    This chapter describes how the luminescence properties of the octahedral uranate group are influenced by the chemical constitution of its environment. Especially the quenching temperature of the emission is very sensitive. It is stronger influenced by the nature of the neighbouring B cations in the [100] direction than by the A cations in the [111] direction. This variation of the quenching temperature as a function of the chemical constitution of the host lattice is discussed in terms of a configurational coordinate model. The luminescence properties of uranium-activated oxides A 2+ La 3+ B + B'O 6 are also discussed. Remarkably enough in SrLaNaWO 6 -U the luminescence originates from UO 2 2+ groups. (Auth.)

  5. Effect of Thai banana (Musa AA group) in reducing accumulation of oxidation end products in UVB-irradiated mouse skin.

    Science.gov (United States)

    Leerach, Nontaphat; Yakaew, Swanya; Phimnuan, Preeyawass; Soimee, Wichuda; Nakyai, Wongnapa; Luangbudnark, Witoo; Viyoch, Jarupa

    2017-03-01

    Chronic UVB exposure causes skin disorders and cancer through DNA strand breaks and oxidation of numerous functional groups of proteins and lipids in the skin. In this study, we investigated the effects of Thai banana (Musa AA group, "Khai," and Musa ABB group, "Namwa") on the prevention of UVB-induced skin damage when fed to male ICR mice. Mice were orally fed banana (Khai or Namwa) fruit pulps at dose of 1mg/g body weight/day for 12weeks. The shaved backs of the mice were irradiated with UVB for 12weeks. The intensity dose of UVB-exposure was increased from 54mJ/cm 2 /exposure at week 1 to 126mJ/cm 2 /exposure at week 12. A significant increase in skin thickness, lipid peroxidation, protein oxidation end products, and expression of MMP-1 was observed in UVB-irradiated mouse skin. A reduction in the accumulation of oxidation end products was found in the skin of UVB-irradiated mice receiving Khai. This occurred in conjunction with a reduction in MMP-1 expression, inhibition of epidermal thickening, and induction of γ-GCS expression. The dietary intake of Khai prevented skin damage from chronic UVB exposure by increased γ-GCS expression and reduced oxidation end products included carbonyls, malondialdehyde and 4-hydroxynonenal. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Extra Virgin Olive Oil Improves Oxidative Stress, Functional Capacity, and Health-Related Psychological Status in Patients With Fibromyalgia: A Preliminary Study.

    Science.gov (United States)

    Rus, Alma; Molina, Francisco; Ramos, Manuel Miguel; Martínez-Ramírez, María Josefa; Del Moral, María Luisa

    2016-07-21

    Fibromyalgia (FM) is a chronic disease that imposes physical, psychological, and social limitations. We have reported that oxidative stress may play a role in the pathophysiology of FM. Olive oil has been shown to be effective treatment against the oxidative stress associated with several diseases. The aim of this study was to investigate the effect of olive oil on oxidative stress and health-related parameters in FM. This preliminary study was performed on blood samples of 23 women diagnosed with FM who consumed 50 ml of organic olive oil daily for 3 weeks. Subjects were randomized into two groups: one ingested extra virgin olive oil (EVOO) and the other refined olive oil (ROO), which have different antioxidant content. The patients' oxidative (lipid, protein, and DNA oxidation) and antioxidative (antioxidant enzyme activities and compounds) profiles were examined before and after the treatment period. Functional capacity and physical and mental health status were assessed using the Fibromyalgia Impact Questionnaire (FIQ) and the Physical Component (PCS-12) and Mental Component Summaries (MCS-12) of the Short Form-12 Health Survey, respectively. Significant differences were found in pre-post change between the EVOO and ROO groups for protein carbonyls, lipid peroxidation, and FIQ and MCS-12 scores. Differences between groups approached statistical significance for oxidative DNA damage and levels of the antioxidant compound zinc. EVOO may protect women with FM against oxidative stress in addition to improving functional capacity and health-related psychological status. Findings suggest that olive oil may be a valuable therapeutic support in FM. © The Author(s) 2016.

  7. THE EFFECT OF GROUP IIIA TO VIA ELEMENTS AND THEIR OXIDES ON GRAPHITE OXIDATION

    Energy Technology Data Exchange (ETDEWEB)

    Rakszawski, J F; Parker, W E

    1963-06-15

    The effect of group IIIA to VIA elements and oxides on graphite oxidation was determined. Additives were molded with spectroscopically pure graphite powder. The concentration was maintained constant at 0.1 mole percent based on the element. The rate of reaction with 1 atm of air was measured at 700 and 800 deg C. Air flow rate from 2000 to 3000 cc/min had no effect on the oxidation rate of the pure graphite at 700, 750, and 800 deg C indicating that reaction was not occurring in Zone III. The calculated Ea of 54 kcal/mole suggested reaction in Zone I. Visual inspection of the rods after reaction substantiated this conclusion. The reaction was first order with respect to oxygen partial pressure at 700 and 800 deg C. B, B/sub 2/O/sub 5/, P, and P/sub 2/ O/sub 6/ inhibited the oxid ation of graphite at 700 and 800 deg C while the other elements and oxides catalyzed the reaction to various degrees. The reaction remained kinetically of the first order when inhibited. A systematic variation in reaction rates appears to follow the diagonals of the periodic relationship of the element from the upper left to the lower right. These variations can be correlated with average ionization energy or electron affinity. (auth)

  8. Chronopharmacological effects of growth hormone on the executive function and oxidative stress response in rats

    Directory of Open Access Journals (Sweden)

    Carlos K B Ferrari

    2017-01-01

    Full Text Available Objective(s: to investigate the chronopharmacological effects of growth hormone on executive function and the oxidative stress response in rats. Materials and Methods: Fifty male Wistar rats (36-40 weeks old had ad libitum access to water and food and were separated into four groups: diurnal control, nocturnal control, diurnal GH-treated, and nocturnal GH-treated animals. Levels of Cu, Zn superoxide dismutase (Cu,Zn-SOD, and superoxide release by spleen macrophages were evaluated. For memory testing, adaptation and walking in an open field platform was used. GH-treated animals demonstrated better performance in exploratory and spatial open-field tests. Results: The latency time in both GH-treated groups was significantly lower compared with the latency time of the control groups. The diurnal GH treatment did not stimulate superoxide release but increased the CuZn-SOD enzyme levels. The nocturnal GH treatment did not influence the superoxide release and CuZn-SOD concentration. GH treatment also resulted in heart atrophy and lung hypertrophy. Conclusion: Growth hormone treatment improved the performance of executive functions at the cost of oxidative stress triggering, and this effect was dependent on the circadian period of hormone administration. However, GH treatment caused damaging effects such as lung hypertrophy and heart atrophy.

  9. Functional Group Imaging by Adhesion AFM

    NARCIS (Netherlands)

    Berger, C.E.H.; Berger, C.E.H.; van der Werf, Kees; Kooyman, R.P.H.; de Grooth, B.G.; Greve, Jan

    1995-01-01

    Recently developed adhesion atomic force microscopy was used as a technique to map the spatial arrangement of chemical functional groups at a surface with a lateral resolution of 20 nm. The ratio of the adhesion forces for different functional groups can be compared with values determined from the

  10. Gastrointestinal function in chronic radiation enteritis -effects of loperamide-N-oxide

    International Nuclear Information System (INIS)

    Yeoh, E.K.; Horowitz, M.; Russo, A.; Muecke, T.; Chatterton, B.E.; Robb, T.

    1993-01-01

    The effects of loperamide-N-oxide, a new peripheral opiate agonist precursor, on gastrointestinal function were evaluated in 18 patients with diarrhoea caused by radiation enteritis. Each patient was given loperamide-N-oxide and placebo for 14 days, separated by a washout period of 14 days. Gastrointestinal symptoms; absorption of bile acid, vitamin B12, lactose, and fat; gastric emptying; small intestinal and whole gut transit; and intestinal permeability were measured during placebo and loperamide-N-oxide phases. Data were compared with those obtained in 18 normal subjects. In the patient, in addition to an increased frequency of bowel actions there was reduced bile acid absorption, higher prevalence of lactose malabsorption associated with a reduced dietary intake of dairy products and faster small intestinal and whole gut transit when compared with the normal subjects. There was no significant difference in gastric emptying between the two groups. Treatment with loperamide-N-oxide was associated with a reduced frequency of bowel actions, slower small intestinal and total gut transit, more rapid gastric emptying improved absorption of bile acid and increased permeability to 51 Cr EDTA. These observations indicate that: (1) diarrhoea caused by chronic radiation enteritis is associated with more rapid intestinal transit and a high prevalence of bile acid and lactose malabsorption, and (2) loperamide-N-oxide slows small intestinal transit, increases bile acid absorption, and is effective in the treatment of diarrhoea associated with chronic radiation enteritis. (Author)

  11. Functionalized carbon nanotubes containing isocyanate groups

    International Nuclear Information System (INIS)

    Zhao Chungui; Ji Lijun; Liu Huiju; Hu Guangjun; Zhang Shimin; Yang Mingshu; Yang Zhenzhong

    2004-01-01

    Functionalized carbon nanotubes containing isocyanate groups can extend the nanotube chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized carbon nanotubes containing highly reactive isocyanate groups on its surface via the reaction between toluene 2,4-diisocyanate and carboxylated carbon nanotubes. Fourier-transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that reactive isocyanate groups were covalently attached to carbon nanotubes. The content of isocyanate groups were determined by chemical titration and thermogravimetric analysis (TGA)

  12. Mitochondrial oxidative function and type 2 diabetes

    DEFF Research Database (Denmark)

    Rabøl, Rasmus; Boushel, Robert; Dela, Flemming

    2006-01-01

    The cause of insulin resistance and type 2 diabetes is unknown. The major part of insulin-mediated glucose disposal takes place in the skeletal muscle, and increased amounts of intramyocellular lipid has been associated with insulin resistance and linked to decreased activity of mitochondrial...... oxidative phosphorylation. This review will cover the present knowledge and literature on the topics of the activity of oxidative enzymes and the electron transport chain (ETC) in skeletal muscle of patients with type 2 diabetes. Different methods of studying mitochondrial function are described, including...... biochemical measurements of oxidative enzyme and electron transport activity, isolation of mitochondria for measurements of respiration, and ATP production and indirect measurements of ATP production using nuclear magnetic resonance (NMR) - spectroscopy. Biochemical markers of mitochondrial content are also...

  13. Electrical behavior of amide functionalized graphene oxide and graphene oxide films annealed at different temperatures

    International Nuclear Information System (INIS)

    Rani, Sumita; Kumar, Mukesh; Kumar, Dinesh; Sharma, Sumit

    2015-01-01

    Films of graphene oxide (GO) and amide functionalized graphene oxides (AGOs) were deposited on SiO 2 /Si(100) by spin coating and were thermally annealed at different temperatures. Sheet resistance of GO and AGOs films was measured using four probe resistivity method. GO an insulator at room temperature, exhibits decrease in sheet resistance with increase in annealing temperature. However, AGOs' low sheet resistance (250.43 Ω) at room temperature further decreases to 39.26 Ω after annealing at 800 °C. It was observed that the sheet resistance of GO was more than AGOs up to 700 °C, but effect was reversed after annealing at higher temperature. At higher annealing temperatures the oxygen functionality reduces in GO and sheet resistance decreases. Sheet resistance was found to be annealing time dependent. Longer duration of annealing at a particular temperature results in decrease of sheet resistance. - Highlights: • Amide functionalized graphene oxides (AGOs) were synthesized at room temperature (RT). • AGO films have low sheet resistance at RT as compared to graphene oxide (GO). • Fast decrease in the sheet resistance of GO with annealing as compared to AGOs • AGOs were found to be highly dispersible in polar solvents

  14. Nitrile-assisted oxidation over oxidative-annulation: Pd-catalyzed α,β-dehydrogenation of α-cinnamyl β-keto nitriles.

    Science.gov (United States)

    Nallagonda, Rajender; Reddy, Reddy Rajasekhar; Ghorai, Prasanta

    2017-09-13

    A palladium-catalyzed oxidation reaction is disclosed where the nitrile functionality on the substrate simply changes the course of the reaction. Our previous finding showed that using the Pd(ii)-catalyst in the presence of benzoquinone as an oxidant, 2-cinnamyl-1,3-dicarbonyls provides functionalized furans via oxidative cyclization. When a nitrile group is replaced with one of the carbonyl functionalities of the same substrate, the oxidative cyclization was completely suppressed; instead, the oxidation at the α,β-position occurred to provide α,β,γ,δ-diene containing β-keto nitriles.

  15. Effects of Xueshuantong combined with antioxidant drugs on nerve conduction function and oxidative stress in patients with diabetic peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Yuan-Zhen Chu

    2017-07-01

    Full Text Available Objective: To study the effect of Xueshuantong combined with antioxidant drugs on nerve conduction function and oxidative stress in patients with diabetic peripheral neuropathy. Methods: 138 cases of patients with diabetic peripheral neuropathy who were treated in endocrinology department of our hospital between June 2014 and October 2016 were enrolled and randomly divided into two groups. The combination group received Xueshuantong combined with antioxidant drug therapy, and the control group received antioxidant drug therapy. Before and after treatment, the nerve conduction velocity as well as serum content of oxidative stress indexes and nerve cytokines was measured. Results: 4 weeks and 8 weeks after treatment, common peroneal nerve and median nerve MNCV and SNCV as well as serum SOD, GSH-Px, HO-1, CAT, CNTF, BDNF and SDF-1α levels of both groups were significantly higher than those before treatment while serum MDA, AOPP and 8-OHdG levels were significantly lower than those before treatment, and common peroneal nerve and median nerve MNCV and SNCV as well as serum SOD, GSH-Px, HO-1, CAT, CNTF, BDNF and SDF-1α levels of combination group were significantly higher than those of control group while serum MDA, AOPP and 8-OHdG levels were significantly lower than those of control group. Conclusion: Xueshuantong combined with antioxidant drugs can improve the nerve conduction function, inhibit oxidative stress response and improve neurotrophy status in patients with diabetic peripheral neuropathy.

  16. Oxidative stress decreases functional airway mannose binding lectin in COPD.

    Directory of Open Access Journals (Sweden)

    Hai B Tran

    Full Text Available We have previously established that a defect in the ability of alveolar macrophages (AM to phagocytose apoptotic cells (efferocytosis and pathogens is a potential therapeutic target in COPD. We further showed that levels of mannose binding lectin (MBL; required for effective macrophage phagocytic function were reduced in the airways but not circulation of COPD patients. We hypothesized that increased oxidative stress in the airway could be a cause for such disturbances. We therefore studied the effects of oxidation on the structure of the MBL molecule and its functional interactions with macrophages. Oligomeric structure of plasma derived MBL (pdMBL before and after oxidation (oxMBL with 2,2'-azobis(2-methylpropionamidinedihydrochroride (AAPH was investigated by blue native PAGE. Macrophage function in the presence of pd/oxMBL was assessed by measuring efferocytosis, phagocytosis of non-typeable Haemophilus influenzae (NTHi and expression of macrophage scavenger receptors. Oxidation disrupted higher order MBL oligomers. This was associated with changed macrophage function evident by a significantly reduced capacity to phagocytose apoptotic cells and NTHi in the presence of oxMBL vs pdMBL (eg, NTHi by 55.9 and 27.0% respectively. Interestingly, oxidation of MBL significantly reduced macrophage phagocytic ability to below control levels. Flow cytometry and immunofluorescence revealed a significant increase in expression of macrophage scavenger receptor (SRA1 in the presence of pdMBL that was abrogated in the presence of oxMBL. We show the pulmonary macrophage dysfunction in COPD may at least partially result from an oxidative stress-induced effect on MBL, and identify a further potential therapeutic strategy for this debilitating disease.

  17. Photoelectron binding energy shifts observed during oxidation of group IIA, IIIA and IVA elemental surfaces

    International Nuclear Information System (INIS)

    Heide, P.A.W. van der

    2006-01-01

    An extensive re-evaluation of XPS binding energies (BE's) and binding energy shifts (ΔBE's) from metals, oxides and the carbonates of the group II, III and IVA elements (exceptions are Be, Mg and Hf) has been carried out using a substrate specific BE referencing approach. From this, O-1s BE's are found to fall into surface oxide, bulk oxide and carbonate groupings, with bulk oxides showing the lowest BE's followed by surface oxides (+∼1.5 eV) and then carbonates (+∼3.0 eV). The O-1s BE's from the bulk oxides also appear to scale with 1/d, where d is inter-atomic distance. The same is noted in the ΔBE's observed from the metallic counterparts during oxidation of the elemental surfaces. This, and the decreasing BE exhibited by Ca, Sr and Ba on oxidation is explained within the charge potential model as resulting from competing inter- and intra-atomic effects, and is shown to be consistent with partial covalency arguments utilizing Madulung potentials. The ΔBE's also fall into groups according to the elements location in the periodic table, i.e. s, p or d block. These trends open up the possibility of approximating ΔBE's arising from initial and final state effects, and bond distances

  18. Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.; Chisholm, Matthew F.

    2000-01-01

    A process for growing a crystalline oxide epitaxially upon the surface of a Group IV semiconductor, as well as a structure constructed by the process, is described. The semiconductor can be germanium or silicon, and the crystalline oxide can generally be represented by the formula (AO).sub.n (A'BO.sub.3).sub.m in which "n" and "m" are non-negative integer repeats of planes of the alkaline earth oxides or the alkaline earth-containing perovskite oxides. With atomic level control of interfacial thermodynamics in a multicomponent semiconductor/oxide system, a highly perfect interface between a semiconductor and a crystalline oxide can be obtained.

  19. Graphene oxide and adsorption of chloroform: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Kuisma, Elena; Hansson, C. Fredrik; Lindberg, Th. Benjamin; Gillberg, Christoffer A.; Idh, Sebastian; Schröder, Elsebeth, E-mail: schroder@chalmers.se [Quantum Device Physics Laboratory, Microtechnology and Nanoscience (MC2), Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2016-05-14

    Chlorinated hydrocarbon compounds are of environmental concerns, since they are toxic to humans and other mammals, and are widespread, and exposure is hard to avoid. Understanding and improving methods to reduce the amount of the substances are important. We present an atomic-scale calculational study of the adsorption of chlorine-based substance chloroform (CHCl{sub 3}) on graphene oxide, as a step in estimating the capacity of graphene oxide for filtering out such substances, e.g., from drinking water. The calculations are based on density functional theory, and the recently developed consistent-exchange functional for the van der Waals density-functional method is employed. We obtain values of the chloroform adsorption energy varying from roughly 0.2 to 0.4 eV per molecule. This is comparable to previously found results for chloroform adsorbed directly on clean graphene, using similar calculations. In a wet environment, like filters for drinking water, the graphene will not stay clean and will likely oxidize, and thus adsorption onto graphene oxide, rather than clean graphene, is a more relevant process to study.

  20. Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19). Application of dynamic mean-field density functional theory

    NARCIS (Netherlands)

    van Vlimmeren, BAC; Maurits, NM; Zvelindovsky, AV; Sevink, GJA; Fraaije, JGEM

    1999-01-01

    We simulate the microphase separation dynamics of aqueous solutions of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19) by a dynamic variant of mean-field density functional theory for

  1. Oxidative stress induced inflammation initiates functional decline of tear production.

    Directory of Open Access Journals (Sweden)

    Yuichi Uchino

    Full Text Available Oxidative damage and inflammation are proposed to be involved in an age-related functional decline of exocrine glands. However, the molecular mechanism of how oxidative stress affects the secretory function of exocrine glands is unclear. We developed a novel mev-1 conditional transgenic mouse model (Tet-mev-1 using a modified tetracycline system (Tet-On/Off system. This mouse model demonstrated decreased tear production with morphological changes including leukocytic infiltration and fibrosis. We found that the mev-1 gene encodes Cyt-1, which is the cytochrome b(560 large subunit of succinate-ubiquinone oxidoreductase in complex II of mitochondria (homologous to succinate dehydrogenase C subunit (SDHC in humans. The mev-1 gene induced excessive oxidative stress associated with ocular surface epithelial damage and a decrease in protein and aqueous secretory function. This new model provides evidence that mitochondrial oxidative damage in the lacrimal gland induces lacrimal dysfunction resulting in dry eye disease. Tear volume in Tet-mev-1 mice was lower than in wild type mice and histopathological analyses showed the hallmarks of lacrimal gland inflammation by intense mononuclear leukocytic infiltration and fibrosis in the lacrimal gland of Tet-mev-1 mice. These findings strongly suggest that oxidative stress can be a causative factor for the development of dry eye disease.

  2. Special functions and the theory of group representations

    CERN Document Server

    Vilenkin, N Ja

    1968-01-01

    A standard scheme for a relation between special functions and group representation theory is the following: certain classes of special functions are interpreted as matrix elements of irreducible representations of a certain Lie group, and then properties of special functions are related to (and derived from) simple well-known facts of representation theory. The book combines the majority of known results in this direction. In particular, the author describes connections between the exponential functions and the additive group of real numbers (Fourier analysis), Legendre and Jacobi polynomials and representations of the group SU(2), and the hypergeometric function and representations of the group SL(2,R), as well as many other classes of special functions.

  3. A fast chemical route for the synthesis of TBHQ functionalized reduced graphene oxide and its electrochemical performances

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Subhasis; Sen, Pintu, E-mail: psen@vecc.gov.in; Bandyopadhyay, S.K.

    2016-02-01

    A fast chemical route for the synthesis of tertiary butyl hydroquinone (TBHQ) functionalized reduced graphene oxide (FRGO) and their application as high performance electrode materials for supercapacitors have been reported. Reductions of chemically exfoliated graphene oxides (GO) in the presence of small amount of TBHQ (1–2 wt % with respect to GO) at various time periods were investigated through XRD, FTIR and Raman studies. Reappearance of broad diffraction peak close to graphite peak (002) reveals an efficient method of reduction of different oxygen containing functional groups present in GO/FGO resulting in a decrease of interlayer d-spacing (∼3.5 Å). Absence of the absorption peaks in FTIR for –C=O, t-O–H, epoxide and alkoxy groups supports the complete reduction of GO to FRGO by hydrazine hydrate within a short time period of 4 h reduction under reflux condition. A large red shift in UV spectrum of FRGO – 4 h (270 nm) reveals the complete reduction of graphene oxide. The average crystallite sp{sup 2} domains sizes have been estimated through Raman spectroscopy. Plausible mechanism of TBHQ assisted fast chemical reduction of FGO has been enumerated. 1.5 wt % TBHQ in FRGO shows the best electrochemical performance where TBHQ not only acts as a reducing agent during functionalization, but also plays as an active redox molecule for enhanced capacitance of 200 F/g. - Highlights: • A fast chemical route has been adopted for the synthesis of TBHQ functionalized RGO. • The kinetics of chemical reduction becomes faster in the presence of TBHQ. • The FTIR spectrum of functionalized RGO supports the complete reduction process. • TBHQ also plays a vital role for enhancing capacitance of functionalized RGO.

  4. Chaperones, but not oxidized proteins, are ubiquitinated after oxidative stress

    DEFF Research Database (Denmark)

    Kästle, Marc; Reeg, Sandra; Rogowska-Wrzesinska, Adelina

    2012-01-01

    of these proteins by MALDI tandem mass spectrometry (MALDI MS/MS). As a result we obtained 24 different proteins which can be categorized into the following groups: chaperones, energy metabolism, cytoskeleton/intermediate filaments, and protein translation/ribosome biogenesis. The special set of identified......, ubiquitinated proteins confirm the thesis that ubiquitination upon oxidative stress is no random process to degrade the mass of oxidized proteins, but concerns a special group of functional proteins....

  5. Functionalized graphene oxide quantum dot-PVA hydrogel: a colorimetric sensor for Fe2+, Co2+ and Cu2+ ions

    Science.gov (United States)

    Baruah, Upama; Chowdhury, Devasish

    2016-04-01

    Functionalized graphene oxide quantum dots (GOQDs)-poly(vinyl alcohol) (PVA) hybrid hydrogels were prepared using a simple, facile and cost-effective strategy. GOQDs bearing different surface functional groups were introduced as the cross-linking agent into the PVA matrix thereby resulting in gelation. The four different types of hybrid hydrogels were prepared using graphene oxide, reduced graphene oxide, ester functionalized graphene oxide and amine functionalized GOQDs as cross-linking agents. It was observed that the hybrid hydrogel prepared with amine functionalized GOQDs was the most stable. The potential applicability of using this solid sensing platform has been subsequently explored in an easy, simple, effective and sensitive method for optical detection of M2+ (Fe2+, Co2+ and Cu2+) in aqueous media involving colorimetric detection. Amine functionalized GOQDs-PVA hybrid hydrogel when put into the corresponding solution of Fe2+, Co2+ and Cu2+ renders brown, orange and blue coloration respectively of the solution detecting the presence of Fe2+, Co2+ and Cu2+ ions in the solution. The minimum detection limit observed was 1 × 10-7 M using UV-visible spectroscopy. Further, the applicability of the sensing material was also tested for a mixture of co-existing ions in solution to demonstrate the practical applicability of the system. Insight into the probable mechanistic pathway involved in the detection process is also being discussed.

  6. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States); Qin, Ying [Alabama Innovation and Mentoring of Entrepreneurs, The University of Alabama, Tuscaloosa, AL 35487 (United States); Bao, Yuping, E-mail: ybao@eng.ua.edu [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States)

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  7. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    International Nuclear Information System (INIS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-01-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  8. Photoluminescence study in diaminobenzene functionalized graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Abhisek, E-mail: guptaabhisek017@gmail.com, E-mail: cnssks@iacs.res.in; Saha, Shyamal K., E-mail: guptaabhisek017@gmail.com, E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2014-10-15

    Being an excellent electronic material graphene is a very poor candidate for optoelectronic applications. One of the major strategies to develop the optical property in GO is the functionalization of graphene oxide (GO). In the present work GO sheets are functionalized by o-phenylenediamine to achieve diaminobenzene functionalized GO composite (DAB-GO). Formation of DAB-GO composite is further characterized by FTIR, UV, Raman studies. Excellent photoluminescence is observed in DAB-GO composite via passivation of the surface reactive sites by ring-opening amination of epoxides of GO.

  9. Growth functions for some uniformly amenable groups

    Directory of Open Access Journals (Sweden)

    Dronka Janusz

    2017-04-01

    Full Text Available We present a simple constructive proof of the fact that every abelian discrete group is uniformly amenable. We improve the growth function obtained earlier and find the optimal growth function in a particular case. We also compute a growth function for some non-abelian uniformly amenable group.

  10. Oxidative stress and lung function profiles of male smokers free from ...

    African Journals Online (AJOL)

    Oxidative stress and lung function profiles of male smokers free from COPD compared to those with COPD: A case-control study. ... However, conclusions about the role of blood or lung oxidative stress markers were disparate. Aims: To ... Keywords: inflammation; lung disease; spirometry; tobacco; sedentarily; stress oxidant ...

  11. The oxidative costs of reproduction are group-size dependent in a wild cooperative breeder.

    Science.gov (United States)

    Cram, Dominic L; Blount, Jonathan D; Young, Andrew J

    2015-11-22

    Life-history theory assumes that reproduction entails a cost, and research on cooperatively breeding societies suggests that the cooperative sharing of workloads can reduce this cost. However, the physiological mechanisms that underpin both the costs of reproduction and the benefits of cooperation remain poorly understood. It has been hypothesized that reproductive costs may arise in part from oxidative stress, as reproductive investment may elevate exposure to reactive oxygen species, compromising survival and future reproduction and accelerating senescence. However, experimental evidence of oxidative costs of reproduction in the wild remains scarce. Here, we use a clutch-removal experiment to investigate the oxidative costs of reproduction in a wild cooperatively breeding bird, the white-browed sparrow weaver, Plocepasser mahali. Our results reveal costs of reproduction that are dependent on group size: relative to individuals in groups whose eggs were experimentally removed, individuals in groups that raised offspring experienced an associated cost (elevated oxidative damage and reduced body mass), but only if they were in small groups containing fewer or no helpers. Furthermore, during nestling provisioning, individuals that provisioned at higher rates showed greater within-individual declines in body mass and antioxidant protection. Our results provide rare experimental evidence that reproduction can negatively impact both oxidative status and body mass in the wild, and suggest that these costs can be mitigated in cooperative societies by the presence of additional helpers. These findings have implications for our understanding of the energetic and oxidative costs of reproduction, and the benefits of cooperation in animal societies. © 2015 The Authors.

  12. Effect of oxidative stress on racial differences in vascular function at rest and during hand grip exercise.

    Science.gov (United States)

    Kappus, Rebecca M; Bunsawat, Kanokwan; Brown, Michael D; Phillips, Shane A; Haus, Jacob M; Baynard, Tracy; Fernhall, Bo

    2017-10-01

    African-Americans have a higher prevalence of hypertension compared with whites, possibly due to elevated oxidative stress and subsequent vascular dysfunction. It is unclear the contribution of aging on oxidative stress and vascular function in a racially diverse cohort. Ninety-three young and older African-American and white participants received antioxidant (AOX) or placebo supplementation in a double-blind, randomized, cross-over design. Measures of endothelial function (reactive hyperemia, flow-mediated dilation), exercise blood flow, and biomarkers of oxidative stress and AOX activity were measured following supplementation. In young adults, there were racial differences in resistance vessel response to reactive hyperemia and no effects of race on macrovascular function following AOX supplementation. Following AOX supplementation, older white adults improved while African-Americans reduced resistance vessel function responses to reactive hyperemia, whereas macrovascular function improved in both races, with a greater increase in African-Americans. There were racial differences in blood flow normalized to lean mass during handgrip exercise at 20% maximal voluntary contraction in the young group and AOX supplementation led to increased forearm vascular conductance in older whites with a decrease in older African-Americans. There was a supplement effect in superoxide dismutase activity in younger adults only. The results of the current study show that there are differential effects of AOX supplementation on macrovascular and resistance vessel function, and this is impacted by both age and race.

  13. Oxidative Addition and Reductive Elimination at Main-Group Element Centers.

    Science.gov (United States)

    Chu, Terry; Nikonov, Georgii I

    2018-04-11

    Oxidative addition and reductive elimination are key steps in a wide variety of catalytic reactions mediated by transition-metal complexes. Historically, this reactivity has been considered to be the exclusive domain of d-block elements. However, this paradigm has changed in recent years with the demonstration of transition-metal-like reactivity by main-group compounds. This Review highlights the substantial progress achieved in the past decade for the activation of robust single bonds by main-group compounds and the more recently realized activation of multiple bonds by these elements. We also discuss the significant discovery of reversible activation of single bonds and distinct examples of reductive elimination at main-group element centers. The review consists of three major parts, starting with oxidative addition of single bonds, proceeding to cleavage of multiple bonds, and culminated by the discussion of reversible bond activation and reductive elimination. Within each subsection, the discussion is arranged according to the type of bond being cleaved or formed and considers elements from the left to the right of each period and down each group of the periodic table. The majority of results discussed in this Review come from the past decade; however, earlier reports are also included to ensure completeness.

  14. Click chemistry approach to functionalize two-dimensional macromolecules of graphene oxide nanosheets

    Institute of Scientific and Technical Information of China (English)

    Liang Kou; Hongkun He; Chao Gao

    2010-01-01

    A facile 'click chemistry' approach to functionalize 2D macromolecules of graphene oxide nanosheets with poly(ethylene glycol) of different molecular weights,polystyrene,palmitic acid and various amino acids was presented.FTIR,TGA,Raman spectroscopy,XPS,XRD,TEM,AFM and SEM were utilized to characterize the products.High degree of functionalization was achieved on the flat surfaces of graphene oxide,affording polymer-grafted 2D brushes and amino acids-immobilized nanosheets,which show improved solubility in organic solvents.The click chemistry strategy reported herein provides a facile and general method for functionalization of graphene oxide with macromolecules and desired biomolecules.

  15. Chemical solution deposition of functional oxide thin films

    CERN Document Server

    Schneller, Theodor; Kosec, Marija

    2014-01-01

    Chemical Solution Deposition (CSD) is a highly-flexible and inexpensive technique for the fabrication of functional oxide thin films. Featuring nearly 400 illustrations, this text covers all aspects of the technique.

  16. Functionality of the iron oxides

    International Nuclear Information System (INIS)

    Castano, J.G.; Arroyave, C.

    1998-01-01

    Some iron oxides have a great scientific and technological possibilities, not only for their importance in the present, but also for their great potential in the development of the future technologies. They have adequate properties to carry out several functions. They are plentiful in the nature and their synthetic obtention is not complex. This paper shows five of them (hematite, magnetite, maghemite, goethite and akaganeite) and their utilization in fields like chemical industry, biotechnology medicine, new materials and electromagnetism. (Author) 77 refs

  17. Facile synthesis of glucose-functionalized reduced graphene oxide (GFRGO)/poly(vinyl alcohol) nanocomposites for improving thermal and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Abdolmaleki, Amir, E-mail: abdolmaleki@cc.iut.ac.ir [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Center of Excellence in Sensors and Green Chemistry, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Center of Excellence in Sensors and Green Chemistry, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Karshenas, Azam [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2017-03-15

    Highlights: • GFRGO composites were synthesized and used for fabrication of PVA/GFRGO NCs. • Attached glucose on RGO enhances RGO interaction with PVA hydroxyl groups. • PVA/GFRGO NCs exhibited enhanced thermal and mechanical properties. • FE-SEM and TEM micrographs prove good dispersion of GFRGO into PVA matrix. - Abstract: In this work, we provided a facile pathway to the modification of reduced graphene oxide (RGO) nanosheets by glucose as a biologically active molecule through covalent functionalization. Then, flexible and smooth poly(vinyl alcohol) (PVA)/glucose-functionalized reduced graphene oxide (PVA/GFRGO) nanocomposite (NC) films were fabricated using 0, 1, 3 and 5 wt% concentrations of RGO-glucose in water. As a reducing sugar, glucose can reduce graphene oxide. Thus, graphene oxide was converted to reduced graphene oxide (RGO) by hydrazine hydrate. Then, RGO was functionalized with glucose to achieve good dispersion in the polymer matrix. Due to the increased interfacial interaction between GFRGO and PVA matrix, the prepared PVA/GFRGO NCs showed a 52% increase in tensile strength and a 47% improvement in Young’s modulus by adding of only 5 wt% of GFRGO. Thermal analysis results showed that the thermal stability of the PVA/GFRGO NCs increased compared to the neat PVA film.

  18. Facile synthesis of glucose-functionalized reduced graphene oxide (GFRGO)/poly(vinyl alcohol) nanocomposites for improving thermal and mechanical properties

    International Nuclear Information System (INIS)

    Abdolmaleki, Amir; Mallakpour, Shadpour; Karshenas, Azam

    2017-01-01

    Highlights: • GFRGO composites were synthesized and used for fabrication of PVA/GFRGO NCs. • Attached glucose on RGO enhances RGO interaction with PVA hydroxyl groups. • PVA/GFRGO NCs exhibited enhanced thermal and mechanical properties. • FE-SEM and TEM micrographs prove good dispersion of GFRGO into PVA matrix. - Abstract: In this work, we provided a facile pathway to the modification of reduced graphene oxide (RGO) nanosheets by glucose as a biologically active molecule through covalent functionalization. Then, flexible and smooth poly(vinyl alcohol) (PVA)/glucose-functionalized reduced graphene oxide (PVA/GFRGO) nanocomposite (NC) films were fabricated using 0, 1, 3 and 5 wt% concentrations of RGO-glucose in water. As a reducing sugar, glucose can reduce graphene oxide. Thus, graphene oxide was converted to reduced graphene oxide (RGO) by hydrazine hydrate. Then, RGO was functionalized with glucose to achieve good dispersion in the polymer matrix. Due to the increased interfacial interaction between GFRGO and PVA matrix, the prepared PVA/GFRGO NCs showed a 52% increase in tensile strength and a 47% improvement in Young’s modulus by adding of only 5 wt% of GFRGO. Thermal analysis results showed that the thermal stability of the PVA/GFRGO NCs increased compared to the neat PVA film.

  19. Molecular Mechanisms behind Free Radical Scavengers Function against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Fereshteh Ahmadinejad

    2017-07-01

    Full Text Available Accumulating evidence shows that oxidative stress is involved in a wide variety of human diseases: rheumatoid arthritis, Alzheimer’s disease, Parkinson’s disease, cancers, etc. Here, we discuss the significance of oxidative conditions in different disease, with the focus on neurodegenerative disease including Parkinson’s disease, which is mainly caused by oxidative stress. Reactive oxygen and nitrogen species (ROS and RNS, respectively, collectively known as RONS, are produced by cellular enzymes such as myeloperoxidase, NADPH-oxidase (nicotinamide adenine dinucleotide phosphate-oxidase and nitric oxide synthase (NOS. Natural antioxidant systems are categorized into enzymatic and non-enzymatic antioxidant groups. The former includes a number of enzymes such as catalase and glutathione peroxidase, while the latter contains a number of antioxidants acquired from dietary sources including vitamin C, carotenoids, flavonoids and polyphenols. There are also scavengers used for therapeutic purposes, such as 3,4-dihydroxyphenylalanine (L-DOPA used routinely in the treatment of Parkinson’s disease (not as a free radical scavenger, and 3-methyl-1-phenyl-2-pyrazolin-5-one (Edaravone that acts as a free radical detoxifier frequently used in acute ischemic stroke. The cell surviving properties of L-DOPA and Edaravone against oxidative stress conditions rely on the alteration of a number of stress proteins such as Annexin A1, Peroxiredoxin-6 and PARK7/DJ-1 (Parkinson disease protein 7, also known as Protein deglycase DJ-1. Although they share the targets in reversing the cytotoxic effects of H2O2, they seem to have distinct mechanism of function. Exposure to L-DOPA may result in hypoxia condition and further induction of ORP150 (150-kDa oxygen-regulated protein with its concomitant cytoprotective effects but Edaravone seems to protect cells via direct induction of Peroxiredoxin-2 and inhibition of apoptosis.

  20. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods

    International Nuclear Information System (INIS)

    Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I.

    2014-01-01

    Highlights: • Graphene oxide (FL-GOc) and reduced graphene oxide (FL-RGOc): XRD, TEM, XPS, REELS. • FL-GOc: stacking nanostructure—22 × 6 nm (DxH), 0.9 nm layers separation (XRD). • FL-RGOc: stacking nanostructure—8 × 1 nm (DxH), 0.4 nm layers separation (XRD). • Reduction: oxygen group degradation, decreasing distance between graphene layers. • Number of graphene layers in stacking nanostructure: 6–7 (FL-GOc), 2–3 (FL-RGOc). - Abstract: The commercial and synthesised few-layer graphene oxide, prepared using oxidation reactions, and few-layer reduced graphene oxide samples were structurally and chemically investigated by the X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron spectroscopy methods, i.e. X-ray photoelectron spectroscopy (XPS) and reflection electron energy loss spectroscopy (REELS). The commercial graphene oxide (FL-GOc) shows a stacking nanostructure of about 22 × 6 nm average diameter by height with the distance of 0.9 nm between 6-7 graphene layers, whereas the respective reduced graphene oxide (FL-RGOc)—about 8 × 1 nm average diameter by height stacking nanostructure with the distance of 0.4 nm between 2-3 graphene layers (XRD). The REELS results are consistent with those by the XRD indicating 8 (FL-GOc) and 4 layers (FL-RGOc). In graphene oxide and reduced graphene oxide prepared from the graphite the REELS indicates 8–11 and 7–10 layers. All graphene oxide samples show the C/O ratio of 2.1–2.3, 26.5–32.1 at% of C sp 3 bonds and high content of functional oxygen groups (hydroxyl—C-OH, epoxy—C-O-C, carbonyl—C=O, carboxyl—C-OOH, water) (XPS). Reduction increases the C/O ratio to 2.8–10.3, decreases C sp 3 content to 11.4–20.3 at% and also the content of C-O-C and C=O groups, accompanied by increasing content of C-OH and C-OOH groups. Formation of additional amount of water due to functional oxygen group reduction leads to layer delamination. Removing of functional oxygen groups

  1. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum group II CF-1

    Directory of Open Access Journals (Sweden)

    Gloria Paz Levicán

    2016-05-01

    Full Text Available Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species. Cobalamin (vitamin B12 is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular reactive oxygen species and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective.

  2. Novel function of lecithin-cholesterol acyltransferase. Hydrolysis of oxidized polar phospholipids generated during lipoprotein oxidation.

    Science.gov (United States)

    Goyal, J; Wang, K; Liu, M; Subbaiah, P V

    1997-06-27

    Although the major function of lecithin-cholesterol acyltransferase (LCAT) is cholesterol esterification, our previous studies showed that it can also hydrolyze platelet-activating factor (PAF). Because of the structural similarities between PAF and the truncated phosphatidylcholines (polar PCs) generated during lipoprotein oxidation, we investigated the possibility that LCAT may also hydrolyze polar PCs to lyso-PC during the oxidation of plasma. PAF acetylhydrolase (PAF-AH), which is known to hydrolyze polar PCs in human plasma, was completely inhibited by 0.2 mM p-aminoethyl benzenesulfonyl fluoride (Pefabloc), a new serine esterase inhibitor, which had no effect on LCAT at this concentration. On the other hand, 1 mM diisopropylfluorophosphate (DFP) completely inhibited LCAT but had no effect on PAF-AH. Polar PC accumulation during the oxidation of plasma increased by 44% in the presence of 0.2 mM Pefabloc and by 30% in the presence of 1 mM DFP. The formation of lyso-PC was concomitantly inhibited by both of the inhibitors. The combination of the two inhibitors resulted in the maximum accumulation of polar PCs, suggesting that both PAF-AH and LCAT are involved in their breakdown. Oxidation of chicken plasma, which has no PAF-AH activity, also resulted in the formation of lyso-PC from the hydrolysis of polar PC, which was inhibited by DFP. Polar PCs, either isolated from oxidized plasma or by oxidation of labeled synthetic PCs, were hydrolyzed by purified LCAT, which had no detectable PAF-AH activity. These results demonstrate a novel function for LCAT in the detoxification of polar PCs generated during lipoprotein oxidation, especially when the PAF-AH is absent or inactivated.

  3. Wigner functions from the two-dimensional wavelet group.

    Science.gov (United States)

    Ali, S T; Krasowska, A E; Murenzi, R

    2000-12-01

    Following a general procedure developed previously [Ann. Henri Poincaré 1, 685 (2000)], here we construct Wigner functions on a phase space related to the similitude group in two dimensions. Since the group space in this case is topologically homeomorphic to the phase space in question, the Wigner functions so constructed may also be considered as being functions on the group space itself. Previously the similitude group was used to construct wavelets for two-dimensional image analysis; we discuss here the connection between the wavelet transform and the Wigner function.

  4. Inverse electron-demand 1,3-dipolar cycloaddition of nitrile oxide with common nitriles leading to 3-functionalized 1,2,4-oxadiazoles.

    Science.gov (United States)

    Nishiwaki, Nagatoshi; Kobiro, Kazuya; Hirao, Shotaro; Sawayama, Jun; Saigo, Kazuhiko; Ise, Yumiko; Okajima, Yoshikazu; Ariga, Masahiro

    2011-10-07

    A carbamoyl-substituted nitrile oxide was generated upon treatment of easily available 2-methyl-4-nitro-3-isoxazolin-5(2H)-one with THF (not dried); the reaction proceeded efficiently even in the absence of any special reagents and reaction conditions. The nitrile oxide caused 1,3-dipolar cycloaddition with common aliphatic nitriles or electron-rich aromatic nitriles to afford 3-functionalized 1,2,4-oxadiazoles, which are expected to serve as precursors for the preparation of a variety of functional materials by the chemical transformation of the carbamoyl group. While conventional preparative methods for 1,2,4-oxadiazoles involve the cycloaddition of an electron-rich nitrile oxide with an electron-deficient nitrile or a nitrile activated by a Lewis acid, our method employs the complementary combination of an electron-rich nitrile and an electron-deficient nitrile oxide- the inverse electron-demand 1,3-cycloaddition. The DFT calculations using B3LYP 6-31G* supported the abovementioned inverse reactivity, and also suggested the presence of an accelerating effect by the carbamoyl group as a result of hydrogen bond formation with a dipolarophilic nitrile.

  5. Relating Functional Groups to the Periodic Table

    Science.gov (United States)

    Struyf, Jef

    2009-01-01

    An introduction to organic chemistry functional groups and their ionic variants is presented. Functional groups are ordered by the position of their specific (hetero) atom in the periodic table. Lewis structures are compared with their corresponding condensed formulas. (Contains 5 tables.)

  6. Oxidative stress and psychological functioning among medical students

    Directory of Open Access Journals (Sweden)

    Rani Srivastava

    2014-01-01

    Full Text Available Background: Oxidative stress has gained attention recently in behavioral medicine and has been reported to be associated with various psychological disturbances and their prognoses. Objectives: Study aims to evaluate the oxidative stress (malonylaldehyde (MDA levels and its relation with psychological factors (dimensions of personality, levels of anxiety, stress, and depression among medical/paramedical students of 1 st and 3 rd year. Materials and Methods: A total of 150 students; 75 from 1 st year (2010-2011 and75 from 3 rd year (2009-2010; of medical and paramedical background were assessed on level of MDA (oxidative stress and personality variables, that is, level of anxiety, stress, and depression. These psychological variables were correlated with the level of their oxidative stress. Results: Findings revealed that both groups are influenced by oxidative stress and their psychological variables are also compatible in order to confirm their vulnerabilities to stress. Conclusions: Stress in 3 rd year students was significantly higher and it was noted that it adversely affects the psychological parameters. Hence, special attention on mental health aspect in these students may be given.

  7. Anderson-Type Polyoxometalates Functionalized by Tetrathiafulvalene Groups: Synthesis, Electrochemical Studies, and NLO Properties.

    Science.gov (United States)

    Boulmier, Amandine; Vacher, Antoine; Zang, Dejin; Yang, Shu; Saad, Ali; Marrot, Jérôme; Oms, Olivier; Mialane, Pierre; Ledoux, Isabelle; Ruhlmann, Laurent; Lorcy, Dominique; Dolbecq, Anne

    2018-04-02

    Three polyoxometalates (POMs) functionalized by tetrathiafulvalene (TTF) molecules have been synthesized by a coupling reaction between the Anderson-type POMs [MnMo 6 O 18 {(OCH 2 ) 3 CNH 2 } 2 ] 3- or [AlMo 6 O 18 (OH) 3 {(OCH 2 ) 3 CNH 2 }] 3- and the TTF carboxylic acid derivative (MeS) 3 TTF(S-CH 2 -CO 2 H). The monofunctionalized TTF-AlMo 6 POM contains one TTF group covalently grafted on an Al Anderson platform. The symmetrical TTF-MnMo 6 -TTF POM possesses two TTF groups grafted on each side of a Mn Anderson derivative while the asymmetrical TTF-MnMo 6 -SP POM contains a TTF and a spiropyran groups. These three trianionic species have been characterized by elemental analysis, 1 H and 13 C NMR, FT-IR spectroscopy, ESI-MS spectrometry, and single-crystal X-ray diffraction (for TTF-MnMo 6 -TTF). In the solid state, the grafted TTF molecules of TTF-MnMo 6 -TTF POMs interact via S···S and π···π interactions and form chains. The electrochemical properties of the complexes reflect the contributions of both the inorganic POM and the TTF moieties. Despite adsorption of the oxidized hybrid species on the Pt grid working electrode, UV-vis-NIR spectroelectrochemical investigations evidence peaks characteristic of the oxidation of the TTF units. Finally, hyper-Rayleigh scattering (HRS) measurements show that the three novel TTF derivatives exhibit β values between 20 and 37 × 10 -30 esu. Moreover it is observed that the oxidation of the TTF moieties by Fe 3+ ions increases the NLO response. These values are in the order of magnitude of that found for the well-known 4-dimethylamino- N-methyl-4-stilbazolium (DAS + ) cation (β = 60 × 10 -30 esu).

  8. Functionalized graphene oxide-reinforced electrospun carbon nanofibers as ultrathin supercapacitor electrode

    Institute of Scientific and Technical Information of China (English)

    W.K.Chee; H.N.Lim; Y.Andou; Z.Zainal; A.A.B.Hamra; I.Harrison; M.Altarawneh; Z.T.Jiang; N.M.Huang

    2017-01-01

    Graphene oxide has been used widely as a starting precursor for applications that cater to the needs of tunable graphene. However, the hydrophilic characteristic limits their application, especially in a hydrophobic condition. Herein, a novel non-covalent surface modification approach towards graphene oxide was conducted via a UV-induced photo-polymerization technique that involves two major routes; a UV-sensitive initiator embedded via pi-pi interactions on the graphene planar rings, and the polymerization of hydrophobic polymeric chains along the surface. The functionalized graphene oxide successfully achieved the desired hydrophobicity as it displayed the characteristic of being readily dissolved in organic solvent. Upon its addition into a polymeric solution and subjected to an electrospinning process,non-woven random nanofibers embedded with graphene oxide sheets were obtained. The prepared polymeric nanofibers were subjected to two-step thermal treatments that eventually converted the polymeric chains into a carbon-rich conductive structure. A unique morphology was observed upon the addition of the functionalized graphene oxide, whereby the sheets were embedded and intercalated within the carbon nanofibers and formed a continuous structure. This reinforcement effectively enhanced the electrochemical performance of the carbon nanofibers by recording a specific capacitance of up to 140.10 F/g at the current density of 1 A/g, which was approximately three folds more than that of pristine nanofibers.It also retained the capacitance up to 96.2% after 1000 vigorous charge/discharge cycles. This functionalization technique opens up a new pathway in tuning the solubility nature of graphene oxide towards the synthesis of a graphene oxide-reinforced polymeric structure.

  9. Silsesquioxane nanoparticles with reactive internal functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Brozek, Eric M . [University of Utah, Department of Chemistry (United States); Washton, Nancy M.; Mueller, Karl T. [Environmental Molecular Sciences Laboratory (United States); Zharov, Ilya, E-mail: i.zharov@utah.edu [University of Utah, Department of Chemistry (United States)

    2017-02-15

    A series of silsesquioxane nanoparticles containing reactive internal organic functionalities throughout the entire particle body have been synthesized using a surfactant-free method with organosilanes as the sole precursors and a base catalyst. The organic functional groups incorporated are vinyl, allyl, mercapto, cyanoethyl, and cyanopropyl groups. The sizes and morphologies of the particles were characterized using SEM and nitrogen adsorption, while the compositions were confirmed using TGA, FT-IR, solid state NMR, and elemental analysis. The accessibility and reactivity of the functional groups inside the particles were demonstrated by performing bromination and reduction reactions in the interior of the particles.

  10. Tomato (Lycopersicon esculentum) Supplementation Induces Changes in Cardiac miRNA Expression, Reduces Oxidative Stress and Left Ventricular Mass, and Improves Diastolic Function.

    Science.gov (United States)

    Pereira, Bruna L B; Arruda, Fernanda C O; Reis, Patrícia P; Felix, Tainara F; Santos, Priscila P; Rafacho, Bruna P; Gonçalves, Andrea F; Claro, Renan T; Azevedo, Paula S; Polegato, Bertha F; Okoshi, Katashi; Fernandes, Ana A H; Paiva, Sergio A R; Zornoff, Leonardo A M; Minicucci, Marcos F

    2015-11-19

    The aim of this study was to evaluate the effects of tomato supplementation on the normal rat heart and the role of oxidative stress in this scenario. Male Wistar rats were assigned to two groups: a control group (C; n = 16), in which animals received a control diet + 0.5 mL of corn oil/kg body weight/day, and a tomato group (T; n = 16), in which animals received a control diet supplemented with tomato +0.5 mL of corn oil/kg body weight/day. After three months, morphological, functional, and biochemical analyses were performed. Animals supplemented with tomato had a smaller left atrium diameter and myocyte cross-sectional area (CSA) compared to the control group (C group: 474 (415-539); T group: 273 (258-297) µm²; p = 0.004). Diastolic function was improved in rats supplemented with tomato. In addition, lipid hydroperoxide was lower (C group: 267 ± 46.7; T group: 219 ± 23.0 nmol/g; p = 0.039) in the myocardium of rats supplemented with tomato. Tomato intake was also associated with up-regulation of miR-107 and miR-486 and down-regulation of miR-350 and miR-872. In conclusion, tomato supplementation induces changes in miRNA expression and reduces oxidative stress. In addition, these alterations may be responsible for CSA reduction and diastolic function improvement.

  11. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions.

    Science.gov (United States)

    Mailloux, Ryan J; Jin, Xiaolei; Willmore, William G

    2014-01-01

    Mitochondria have a myriad of essential functions including metabolism and apoptosis. These chief functions are reliant on electron transfer reactions and the production of ATP and reactive oxygen species (ROS). The production of ATP and ROS are intimately linked to the electron transport chain (ETC). Electrons from nutrients are passed through the ETC via a series of acceptor and donor molecules to the terminal electron acceptor molecular oxygen (O2) which ultimately drives the synthesis of ATP. Electron transfer through the respiratory chain and nutrient oxidation also produces ROS. At high enough concentrations ROS can activate mitochondrial apoptotic machinery which ultimately leads to cell death. However, if maintained at low enough concentrations ROS can serve as important signaling molecules. Various regulatory mechanisms converge upon mitochondria to modulate ATP synthesis and ROS production. Given that mitochondrial function depends on redox reactions, it is important to consider how redox signals modulate mitochondrial processes. Here, we provide the first comprehensive review on how redox signals mediated through cysteine oxidation, namely S-oxidation (sulfenylation, sulfinylation), S-glutathionylation, and S-nitrosylation, regulate key mitochondrial functions including nutrient oxidation, oxidative phosphorylation, ROS production, mitochondrial permeability transition (MPT), apoptosis, and mitochondrial fission and fusion. We also consider the chemistry behind these reactions and how they are modulated in mitochondria. In addition, we also discuss emerging knowledge on disorders and disease states that are associated with deregulated redox signaling in mitochondria and how mitochondria-targeted medicines can be utilized to restore mitochondrial redox signaling.

  12. Catalytic oxidative desulfurization of diesel utilizing hydrogen peroxide and functionalized-activated carbon in a biphasic diesel-acetonitrile system

    Energy Technology Data Exchange (ETDEWEB)

    Haw, Kok-Giap; Bakar, Wan Azelee Wan Abu; Ali, Rusmidah; Chong, Jiunn-Fat [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Kadir, Abdul Aziz Abdul [Department of Petroleum Engineering, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2010-09-15

    This paper presents the development of granular functionalized-activated carbon as catalysts in the catalytic oxidative desulfurization (Cat-ODS) of commercial Malaysian diesel using hydrogen peroxide as oxidant. Granular functionalized-activated carbon was prepared from oil palm shell using phosphoric acid activation method and carbonized at 500 C and 700 C for 1 h. The activated carbons were characterized using various analytical techniques to study the chemistry underlying the preparation and calcination treatment. Nitrogen adsorption/desorption isotherms exhibited the characteristic of microporous structure with some contribution of mesopore property. The Fourier Transform Infrared Spectroscopy results showed that higher activation temperature leads to fewer surface functional groups due to thermal decomposition. Micrograph from Field Emission Scanning Electron Microscope showed that activation at 700 C creates orderly and well developed pores. Furthermore, X-ray Diffraction patterns revealed that pyrolysis has converted crystalline cellulose structure of oil palm shell to amorphous carbon structure. The influence of the reaction temperature, the oxidation duration, the solvent, and the oxidant/sulfur molar ratio were examined. The rates of the catalytic oxidative desulfurization reaction were found to increase with the temperature, and H{sub 2}O{sub 2}/S molar ratio. Under the best operating condition for the catalytic oxidative desulfurization: temperature 50 C, atmospheric pressure, 0.5 g activated carbon, 3 mol ratio of hydrogen peroxide to sulfur, 2 mol ratio of acetic acid to sulfur, 3 oxidation cycles with 1 h for each cycle using acetonitrile as extraction solvent, the sulfur content in diesel was reduced from 2189 ppm to 190 ppm with 91.3% of total sulfur removed. (author)

  13. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation.

    Science.gov (United States)

    Kajimoto, Masaki; Ledee, Dolena R; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G; Portman, Michael A

    2014-01-01

    Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. It has previously been shown that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. METHODS AND RESULTS: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 h) and wean: normal circulation (Group-C); transient coronary occlusion (10 min) for ischemia-reperfusion (IR) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon ((13)C)-labeled lactate, medium-chain and long-chain FAs, was infused as oxidative substrates. Substrate fractional contribution (FC) to the citric acid cycle was analyzed by(13)C-nuclear magnetic resonance. ECMO depressed circulating T3 levels to 40% of the baseline at 4 h and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [adenosine triphosphate]/[adenosine diphosphate] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. T3 releases inhibition of lactate oxidation following IR injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.

  14. Selective chloroform sensor using thiol functionalized reduced graphene oxide at room temperature

    Science.gov (United States)

    Midya, Anupam; Mukherjee, Subhrajit; Roy, Shreyasee; Santra, Sumita; Manna, Nilotpal; Ray, Samit K.

    2018-02-01

    This paper presents a highly selective chloroform sensor using functionalised reduced graphene oxide (RGO) as a sensing layer. Thiol group is covalently attached on the basal plan of RGO film by a simple one-step aryl diazonium chemistry to improve its selectivity. Several spectroscopic techniques like X-ray photoelectron, Raman and Fourier transform infrared spectroscopy confirm successful thiol functionalization of RGO. Finally, the fabricated chemiresistor type sensor is exposed to chloroform in the concentration range 200-800 ppm (parts per million). The sensor shows a 4.3% of response towards 800 ppm chloroform. The selectivity of the sensor is analyzed using various volatile organic compounds as well. The devices show enhanced response and faster recovery attributed to the physiosorption of chloroform onto thiol functionalized graphene making them attractive for 2D materials based sensing applications.

  15. Comparative effects of enzogenol and vitamin C supplementation versus vitamin C alone on endothelial function and biochemical markers of oxidative stress and inflammation in chronic smokers.

    Science.gov (United States)

    Young, Joanna M; Shand, Brett I; McGregor, Patrice M; Scott, Russell S; Frampton, Christopher M

    2006-01-01

    Chronic smoking is associated with endothelial dysfunction and inflammation, with oxidative stress contributing to both these processes. In this study, we investigated the effect of combined antioxidant treatment with Enzogenol, a flavonoid extract from the bark of Pinus radiata and vitamin C, over and above vitamin C alone, on endothelial function, plasma markers of inflammation and oxidative stress, blood pressure (BP) and anthropometrics. Forty-four chronic smokers without established cardiovascular disease were assigned randomly to receive either 480 mg Enzogenol and 60 mg vitamin C, or 60 mg vitamin C alone daily for 12 weeks. Endothelial function in the brachial artery was assessed by flow-mediated vasodilation (FMD). FMD improved in both treatment groups (p effect on macrovascular endothelial function over and above that seen in the vitamin C alone group. However, Enzogenol did demonstrate additional favourable effects on protein oxidative damage and fibrinogen levels.

  16. Cooperative catalysis by silica-supported organic functional groups

    OpenAIRE

    Margelefsky, Eric L.; Zeidan, Ryan K.; Davis, Mark E.

    2008-01-01

    Hybrid inorganic–organic materials comprising organic functional groups tethered from silica surfaces are versatile, heterogeneous catalysts. Recent advances have led to the preparation of silica materials containing multiple, different functional groups that can show cooperative catalysis; that is, these functional groups can act together to provide catalytic activity and selectivity superior to what can be obtained from either monofunctional materials or homogeneous catalysts. This tutorial...

  17. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  18. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions☆

    Science.gov (United States)

    Mailloux, Ryan J.; Jin, Xiaolei; Willmore, William G.

    2013-01-01

    Mitochondria have a myriad of essential functions including metabolism and apoptosis. These chief functions are reliant on electron transfer reactions and the production of ATP and reactive oxygen species (ROS). The production of ATP and ROS are intimately linked to the electron transport chain (ETC). Electrons from nutrients are passed through the ETC via a series of acceptor and donor molecules to the terminal electron acceptor molecular oxygen (O2) which ultimately drives the synthesis of ATP. Electron transfer through the respiratory chain and nutrient oxidation also produces ROS. At high enough concentrations ROS can activate mitochondrial apoptotic machinery which ultimately leads to cell death. However, if maintained at low enough concentrations ROS can serve as important signaling molecules. Various regulatory mechanisms converge upon mitochondria to modulate ATP synthesis and ROS production. Given that mitochondrial function depends on redox reactions, it is important to consider how redox signals modulate mitochondrial processes. Here, we provide the first comprehensive review on how redox signals mediated through cysteine oxidation, namely S-oxidation (sulfenylation, sulfinylation), S-glutathionylation, and S-nitrosylation, regulate key mitochondrial functions including nutrient oxidation, oxidative phosphorylation, ROS production, mitochondrial permeability transition (MPT), apoptosis, and mitochondrial fission and fusion. We also consider the chemistry behind these reactions and how they are modulated in mitochondria. In addition, we also discuss emerging knowledge on disorders and disease states that are associated with deregulated redox signaling in mitochondria and how mitochondria-targeted medicines can be utilized to restore mitochondrial redox signaling. PMID:24455476

  19. Probing functional groups at the gas-aerosol interface using heterogeneous titration reactions: a tool for predicting aerosol health effects?

    Science.gov (United States)

    Setyan, Ari; Sauvain, Jean-Jacques; Guillemin, Michel; Riediker, Michael; Demirdjian, Benjamin; Rossi, Michel J

    2010-12-17

    The complex chemical and physical nature of combustion and secondary organic aerosols (SOAs) in general precludes the complete characterization of both bulk and interfacial components. The bulk composition reveals the history of the growth process and therefore the source region, whereas the interface controls--to a large extent--the interaction with gases, biological membranes, and solid supports. We summarize the development of a soft interrogation technique, using heterogeneous chemistry, for the interfacial functional groups of selected probe gases [N(CH(3))(3), NH(2)OH, CF(3)COOH, HCl, O(3), NO(2)] of different reactivity. The technique reveals the identity and density of surface functional groups. Examples include acidic and basic sites, olefinic and polycyclic aromatic hydrocarbon (PAH) sites, and partially and completely oxidized surface sites. We report on the surface composition and oxidation states of laboratory-generated aerosols and of aerosols sampled in several bus depots. In the latter case, the biomarker 8-hydroxy-2'-deoxyguanosine, signaling oxidative stress caused by aerosol exposure, was isolated. The increase in biomarker levels over a working day is correlated with the surface density N(i)(O3) of olefinic and/or PAH sites obtained from O(3) uptakes as well as with the initial uptake coefficient, γ(0), of five probe gases used in the field. This correlation with γ(0) suggests the idea of competing pathways occurring at the interface of the aerosol particles between the generation of reactive oxygen species (ROS) responsible for oxidative stress and cellular antioxidants.

  20. Development of functionally graded anti-oxidation coatings for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, J.H. [Dept. of Materials Technology, Korea Inst. of Machinery and Materials, Changwon (Korea); Fang Hai-Tao; Lai Zhong-Hong; Yin Zhong-Da [Materials Science and Engineering School, Harbin Inst. of Tech., Harbin (China)

    2005-07-01

    The concept of functionally graded materials (FGMs) was originated in the research field of thermal barrier coatings. Continuous changes in the composition, grain size, porosity, etc., of these materials result in gradients in such properties as mechanical strength and thermal conductivity. In recent years, functionally graded structural composite materials have received increased attention as promising candidate materials to exhibit better mechanical and functional properties than homogeneous materials or simple composite materials. Therefore the research area of FGMs has been expending in the development of various structural and functional materials, such as cutting tools, photonic crystals, dielectric and piezoelectric ceramics, thermoelectric semiconductors, and biomaterials. We have developed functionally graded structural ceramic/metal composite materials for relaxation of thermal stress, functionally graded anti-oxidation coatings for carbon/carbon composites, and functionally graded dielectric ceramic composites to develop advanced dielectric ceramics with flat characteristics of dielectric constant in a wide temperature range. This paper introduces functionally graded coatings for C/C composites with superior oxidation resistance at high temperatures. (orig.)

  1. PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells.

    Science.gov (United States)

    Cui, Zhiming; Li, Chang Ming; Jiang, San Ping

    2011-09-28

    A simple self-assembly approach has been developed to functionalize carbon nanotubes (CNTs) with chitosan (CS) and heteropolyacids (HPAs) of phosphomolybdic acid (H(3)PMo(12)O(40), HPMo) and phosphotungstic acid (H(3)PW(12)O(40), HPW). The non-covalent functionalization method, which introduces homogenous surface functional groups with no detrimental effect on graphene structures of CNTs, can be carried out at room temperature without the use of corrosive acids. The PtRu nanoparticles supported on HPAs-CS-CNTs have a uniform distribution and much smaller size as compared to those of the PtRu nanoparticles supported on conventional acid treated CNTs (PtRu/AO-CNTs). The onset and peak potentials for CO(ad) oxidation on PtRu/HPAs-CS-CNTs catalysts are more negative than those on PtRu/AO-CNTs, indicating that HPAs facilitate the electro-oxidation of CO. The PtRu/HPMo-CS-CNTs catalyst has a higher electrocatalytic activity for methanol oxidation and higher tolerance toward CO poisoning than PtRu/HPW-CS-CNTs. The better electrocatalytic enhancement of HPMo on the PtRu/HPAs-CS-CNTs catalyst is most likely related to the fact that molybdenum-containing HPAs such as HPMo have more labile terminal oxygen to provide additional active oxygen sites while accelerating the CO and methanol oxidation in a similar way to that of Ru in the PtRu binary alloy system.

  2. Tomato (Lycopersicon esculentum Supplementation Induces Changes in Cardiac miRNA Expression, Reduces Oxidative Stress and Left Ventricular Mass, and Improves Diastolic Function

    Directory of Open Access Journals (Sweden)

    Bruna L. B. Pereira

    2015-11-01

    Full Text Available The aim of this study was to evaluate the effects of tomato supplementation on the normal rat heart and the role of oxidative stress in this scenario. Male Wistar rats were assigned to two groups: a control group (C; n = 16, in which animals received a control diet + 0.5 mL of corn oil/kg body weight/day, and a tomato group (T; n = 16, in which animals received a control diet supplemented with tomato +0.5 mL of corn oil/kg body weight/day. After three months, morphological, functional, and biochemical analyses were performed. Animals supplemented with tomato had a smaller left atrium diameter and myocyte cross-sectional area (CSA compared to the control group (C group: 474 (415–539; T group: 273 (258–297 µm2; p = 0.004. Diastolic function was improved in rats supplemented with tomato. In addition, lipid hydroperoxide was lower (C group: 267 ± 46.7; T group: 219 ± 23.0 nmol/g; p = 0.039 in the myocardium of rats supplemented with tomato. Tomato intake was also associated with up-regulation of miR-107 and miR-486 and down-regulation of miR-350 and miR-872. In conclusion, tomato supplementation induces changes in miRNA expression and reduces oxidative stress. In addition, these alterations may be responsible for CSA reduction and diastolic function improvement.

  3. Enhanced optical limiting effect in fluorine-functionalized graphene oxide

    Science.gov (United States)

    Zhang, Fang; Wang, Zhengping; Wang, Duanliang; Wang, Shenglai; Xu, Xinguang

    2017-09-01

    Nonlinear optical absorption of fluorine-functionalized graphene oxide (F-GO) solution was researched by the open-aperture Z-scan method using 1064 and 532 nm lasers as the excitation sources. The F-GO dispersion exhibited strong optical limiting property and the fitted results demonstrated that the optical limiting behavior was the result of a two-photon absorption process. For F-GO nanosheets, the two-photon absorption coefficients at 1064 nm excitation are 20% larger than the values at 532 nm excitation and four times larger than that of pure GO nanosheets. It indicates that the doping of fluorine can effectively improve the nonlinear optical property of GO especially in infrared waveband, and fluorine-functionalized graphene oxide is an excellent nonlinear absorption material in infrared waveband.

  4. New insight of high temperature oxidation on self-exfoliation capability of graphene oxide

    Science.gov (United States)

    Liu, Yuhang; Zeng, Jie; Han, Di; Wu, Kai; Yu, Bowen; Chai, Songgang; Chen, Feng; Fu, Qiang

    2018-05-01

    The preparation of graphene oxide (GO) via Hummers method is usually divided into two steps: low temperature oxidation at 35 °C (step I oxidation) and high temperature oxidation at 98 °C (step II oxidation). However, the effects of these two steps on the exfoliation capability and chemical structure of graphite oxide remain unclear. In this study, both the functional group content of graphite oxide and the entire evolution of interlayer spacing were investigated during the two steps. Step I oxidation is a slowly inhomogeneous oxidation step to remove unoxidized graphite flakes. The prepared graphite oxide can be easily self-exfoliated but contains a lot of organic sulfur. During the first 20 min of step II oxidation, the majority of organic sulfur can be efficiently removed and graphite oxide still remains a good exfoliation capability due to sharp increasing of carboxyl groups. However, with a longer oxidation time at step II oxidation, the decrease of organic sulfur content is slowed down apparently but without any carboxyl groups forming, then graphite oxide finally loses self-exfoliation capability. It is concluded that a short time of step II oxidation can produce purer and ultralarge GO sheets via self-exfoliation. The pure GO is possessed with better thermal stability and liquid crystal behavior. Besides, reduced GO films prepared from step II oxidation show better mechanical and electric properties after reducing compared with that obtained only via step I oxidation.

  5. Improving the performance of water desalination through ultra-permeable functionalized nanoporous graphene oxide membrane

    Science.gov (United States)

    Hosseini, Mostafa; Azamat, Jafar; Erfan-Niya, Hamid

    2018-01-01

    Molecular dynamics simulations were performed to investigate the water desalination performance of nanoporous graphene oxide (NPGO) membranes. The simulated systems consist of a NPGO as a membrane with a functionalized pore in its center immersed in an aqueous ionic solution and a graphene sheet as a barrier. The considered NPGO membranes are involved four types of pore with different size and chemistry. The results indicated that the NPGO membrane has effective efficiency in salt rejection as well as high performance in water flux. For all types of pore with the radius size of 2.9-4.5 Å, the NPGO shows salt rejection of >89%. Functional groups on the surface and edge of pores have a great effect on water flux. To precisely understand the effect of functional groups on the surface of nanostructured membranes, nanoporous graphene was simulated under the same condition for comparison. Hydrophilic groups on the surface make the NPGO as an ultra-permeable membrane. As a result, the obtained water flux for NPGO was about 77% greater than graphene. Also, it was found that the water flux of NPGO is 2-5 orders of magnitude greater than other existing reverse osmosis membranes. Therefore, the investigated systems can be recommended as a model for the water desalination.

  6. Introduction to the nonequilibrium functional renormalization group

    International Nuclear Information System (INIS)

    Berges, J.; Mesterházy, D.

    2012-01-01

    In these lectures we introduce the functional renormalization group out of equilibrium. While in thermal equilibrium typically a Euclidean formulation is adequate, nonequilibrium properties require real-time descriptions. For quantum systems specified by a given density matrix at initial time, a generating functional for real-time correlation functions can be written down using the Schwinger-Keldysh closed time path. This can be used to construct a nonequilibrium functional renormalization group along similar lines as for Euclidean field theories in thermal equilibrium. Important differences include the absence of a fluctuation-dissipation relation for general out-of-equilibrium situations. The nonequilibrium renormalization group takes on a particularly simple form at a fixed point, where the corresponding scale-invariant system becomes independent of the details of the initial density matrix. We discuss some basic examples, for which we derive a hierarchy of fixed point solutions with increasing complexity from vacuum and thermal equilibrium to nonequilibrium. The latter solutions are then associated to the phenomenon of turbulence in quantum field theory.

  7. Structure and properties of tempo-oxidized cotton fibers

    Directory of Open Access Journals (Sweden)

    Milanovic Jovana

    2012-01-01

    Full Text Available In this paper, the influence of the catalytic oxidation using water soluble and stable nitroxyl radical 2,2´,6,6´-tetramethylpiperidine-1-oxyl (TEMPO on structure and properties of cotton fibers was studied. In particular, the selective TEMPO-mediated oxidation has become very interesting way for introduction of functional groups into cellulose fibers with the aim to obtain oxycellulose fibers with specific properties. Unmodified and modified fibers were characterized in terms of weight loss values, introduced functional groups and crystallinity index. Also, oxidized fibers were characterized in terms of the sorption, morphological, and physico-mechanical properties. The TEMPO-oxidized cotton fibers show a minimum increase of fineness (from 1.32 to 1.28 dtex and increase of crystallinity index (up to 91.9%, while the tensile strength of fibers decreases (up to 10.82 cN/tex. By the TEMPO-mediated oxidation of cotton fibers significant amount of carboxyl groups (up to 0.795 mmol/g cell can be introduced into cellulose fibers. Introduced hydrophilic carboxyl groups increases the sorption properties of oxidized fibers, that can be used directly or for further chemical modification.

  8. Change in the work function of zirconium by oxidation at high temperatures and low oxygen pressures

    International Nuclear Information System (INIS)

    Maeno, Yutaka; Yamamoto, Masahiro; Naito, Shizuo; Mabuchi, Mahito; Hashino, Tomoyasu

    1991-01-01

    Changes in the work function of zirconium on oxidation are measured at oxygen pressures of 3.0 x 10 -6 - 3.0 x 10 -4 Pa and at temperatures in the range 426-775 K. The work function first decreases then increases until a final saturation stage is reached. Use of secondary-ion mass spectroscopy (SIMS) shows that the changes correspond to oxygen adsorption, oxide nucleation and oxide growth, respectively. The initial decrease in work function is interpreted by the incorporation of oxygen adatoms into the subsurface. The oxygen adsorption potential of zirconium is evaluated by an effective medium theory, and the physical origin of the incorporation of oxygen adatoms is discussed. The positive change in the work function caused by oxide formation and the temperature and pressure dependences of the change in the work function by oxidation are explained qualitatively. (author)

  9. Functional renormalization group and Kohn-Sham scheme in density functional theory

    Science.gov (United States)

    Liang, Haozhao; Niu, Yifei; Hatsuda, Tetsuo

    2018-04-01

    Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional renormalization group and the Kohn-Sham scheme in density functional theory. The key idea is to solve the renormalization group flow for the effective action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical method to quantify the uncertainty associated with the truncation of the correlation part. By taking the φ4 theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast convergence to the exact result even for the highly strong coupling regime.

  10. Effect of combined gliclazide/metformin treatment on oxidative stress, lipid profile, and hepatorenal functions in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Mansour Alsharidah

    2018-01-01

    Full Text Available Background: Type 2 diabetes is a chronic condition that requires pharmacotherapy interventions. Metformin and gliclazide are widely used drugs in monotherapy. However, their complementary action made utilization of the combination of these drugs an appealing approach. Aims: The study compared major therapeutic potentials of combined metformin/gliclazide treatment over metformin monotherapy based on the following parameters: oxidative stress, lipid profile, and hepatorenal functions. Subjects and methods: This is a comparative study was conducted from March 2015 to March 2016. The study screened 80 type 2 diabetic patients, of which 40 patients underwent combined metformin + gliclazide therapy (500 mg BD + 80 mg OD, respectively. The other 40 were matched for age and duration of diabetes mellitus with the previous group and received metformin monotherapy (500 mg BD. The levels of fasting blood glucose (FBG, total glycated hemoglobin (HbA1c, lipid peroxidation, total antioxidant capacity, serum creatinine, aspartate and alanine transaminases, total cholesterol, triglycerides, high-density lipoproteins, and low-density lipoproteins were measured according to the standard methods. Results: Oxidative stress, lipid profile, and hepatorenal functions were comparable in patients of both groups. However, patients on metformin treatment showed significantly lower levels of FBG [7.61 (6.70–8.89 mmol/L vs. 9.00 (7.30–10.68 mmol/L; P = .022] and HBA1c [7.00 (6.40–7.65% vs. 8.20 (7.20–9.75%; P < .001] compared to those on combined therapy. Conclusion: Oxidative stress, lipids profile, and hepatorenal functions were not different in patients who were on combined metformin/gliclazide therapy and compared to those metformin alone. In contrast, glycemic control was poor in the diabetic patients undergoing combined therapy. Keywords: Diabetes mellitus, Gliclazide, Glucose, Lipids, Metformin, Oxidative stress

  11. Beneficial Effects of Physical Exercise on Functional Capacity and Skeletal Muscle Oxidative Stress in Rats with Aortic Stenosis-Induced Heart Failure

    Directory of Open Access Journals (Sweden)

    Mariana Janini Gomes

    2016-01-01

    Full Text Available Objective. We evaluated the influence of exercise on functional capacity, cardiac remodeling, and skeletal muscle oxidative stress, MAPK, and NF-κB pathway in rats with aortic stenosis- (AS- induced heart failure (HF. Methods and Results. Eighteen weeks after AS induction, rats were assigned into sedentary control (C-Sed, exercised control (C-Ex, sedentary AS (AS-Sed, and exercised AS (AS-Ex groups. Exercise was performed on treadmill for eight weeks. Statistical analyses were performed with Goodman and ANOVA or Mann-Whitney. HF features frequency and mortality did not differ between AS groups. Exercise improved functional capacity, assessed by maximal exercise test on treadmill, without changing echocardiographic parameters. Soleus cross-sectional areas did not differ between groups. Lipid hydroperoxide concentration was higher in AS-Sed than C-Sed and AS-Ex. Activity of antioxidant enzymes superoxide dismutase and glutathione peroxidase was changed in AS-Sed and restored in AS-Ex. NADPH oxidase activity and gene expression of its subunits did not differ between AS groups. Total ROS generation was lower in AS-Ex than C-Ex. Exercise modulated MAPK in AS-Ex and did not change NF-κB pathway proteins. Conclusion. Exercise improves functional capacity in rats with AS-induced HF regardless of echocardiographic parameter changes. In soleus, exercise reduces oxidative stress, preserves antioxidant enzyme activity, and modulates MAPK expression.

  12. Iron carbide on titania surface modified with group VA oxides as Fischer-Tropsch catalysts

    International Nuclear Information System (INIS)

    Wachs, I.E.; Fiato, R.A.; Chersich, C.C.

    1986-01-01

    A catalyst is described comprising iron carbide supported on a surface modified titania wherein the support comprises an oxide of a metal selected form the group consisting of niobium, vanadium, tantalum or mixture thereof supported on the titania wherein at least a portion of the supported oxide of niobium, vanandium, tantalum or mixture is in a non-crystalline form. The amount of the supported oxide ranges from about 0.5 to 25 weight percent metal oxide on the titania support based on the total support composition and the catalyst contains at least about 2 milligrams of iron, calculated as Fe/sub 2/O/sub 3/, per square meter of support surface

  13. Low pressure bottom-up synthesis of metal@oxide and oxide nanoparticles: control of structure and functional properties

    Science.gov (United States)

    D'Addato, Sergio; Chiara Spadaro, Maria

    2018-03-01

    Experimental activity on core@shell, metal@oxide, and oxide nanoparticles (NPs) grown with physical synthesis, and more specifically by low pressure gas aggregation sources (LPGAS) is reviewed, through a selection of examples encompassing some potential applications in nanotechnology. After an introduction to the applications of NPs, a brief description of the main characteristics of the growth process of clusters and NPs in LPGAS is given. Thereafter, some relevant case studies are reported: • Formation of native oxide shells around the metal cores in core@shell NPs. • Experimental efforts to obtain magnetic stabilization in magnetic core@shell NPs by controlling their structure and morphology. • Recent advancements in NP source design and new techniques of co-deposition, with relevant results in the realization of NPs with a greater variety of functionalities. • Recent results on reducible oxide NPs, with potentialities in nanocatalysis, energy storage, and other applications. Although this list is far from being exhaustive, the aim of the authors is to provide the reader a descriptive glimpse into the physics behind the growth and studies of low pressure gas-phase synthesized NPs, with their ever-growing potentialities for the rational design of new functional materials.

  14. Halophilic and haloalkaliphilic sulfur-oxidizing bacteria

    NARCIS (Netherlands)

    Sorokin, D.Y.; Banciu, H.; Robertson, L.A.; Kuenen, J.G.; Muntyan, M.S.; Muyzer, G.; Rosenberg, E.; DeLong, F.; Delong, E.; Lory, S.; Stackebrandt, E.; Thompson, F.

    2013-01-01

    Chemotrophic sulfur-oxidizing bacteria (SOB) represent an important functional group of microorganisms responsible for the dark oxidation of reduced sulfur compounds generated by sulfidogens. Until recently, only a single genus of halophilic SOB (Halothiobacillus) has been described, and nothing was

  15. Impact of aging on cardiac function in a female rat model of menopause: role of autonomic control, inflammation, and oxidative stress

    Science.gov (United States)

    Machi, Jacqueline Freire; Dias, Danielle da Silva; Freitas, Sarah Cristina; de Moraes, Oscar Albuquerque; da Silva, Maikon Barbosa; Cruz, Paula Lázara; Mostarda, Cristiano; Salemi, Vera M C; Morris, Mariana; De Angelis, Kátia; Irigoyen, Maria-Cláudia

    2016-01-01

    Objective The aim of this study was to evaluate the effects of aging on metabolic, cardiovascular, autonomic, inflammatory, and oxidative stress parameters after ovarian hormone deprivation (OVX). Methods Female Wistar rats (3 or 22 months old) were divided into: young controls, young ovariectomized, old controls, and old ovariectomized (bilateral ovaries removal). After a 9-week follow-up, physical capacity, metabolic parameters, and morphometric and cardiac functions were assessed. Subsequently, arterial pressure was recorded and cardiac autonomic control was evaluated. Oxidative stress was measured on the cardiac tissue, while inflammatory profile was assessed in the plasma. Results Aging or OVX caused an increase in body and fat weight and triglyceride concentration and a decrease in both insulin sensitivity and aerobic exercise capacity. Left ventricular diastolic dysfunction and increased cardiac overload (myocardial performance index) were reported in old groups when compared with young groups. Aging and OVX led to an increased sympathetic tonus, and vagal tonus was lower only for the old groups. Tumor necrosis factor-α and interleukin-6 were increased in old groups when compared with young groups. Glutathione redox balance (GSH/GSSG) was reduced in young ovariectomized, old controls, and old ovariectomized groups when compared with young controls, indicating an increased oxidative stress. A negative correlation was found between GSH/GSSG and tumor necrosis factor-α (r=−0.6, P<0.003). Correlations were found between interleukin-6 with adipose tissue (r=0.5, P<0.009) and vagal tonus (r=−0.7, P<0.0002); and among myocardial performance index with interleukin-6 (r=0.65, P<0.0002), sympathetic tonus (r=0.55, P<0.006), and physical capacity (r=−0.55, P<0.003). The findings in this trial showed that ovariectomy aggravated the impairment of cardiac and functional effects of aging in female rats, probably associated with exacerbated autonomic dysfunction

  16. Extraction complexes of Pu(IV) with carbamoylmethylphosphine oxide ligands. A relativistic density functional study

    International Nuclear Information System (INIS)

    Wang, Cong-Zhi; Lan, Jian-Hui; Feng, Yi-Xiao; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun; Wei, Yue-Zhou

    2014-01-01

    The extraction complexes of Pu(IV) with n-octyl(phenyl)-N,N-diisobutyl-methylcarbamoyl phosphine oxide (CMPO) and diphenyl-N,N-diisobutyl carbamoyl phosphine oxide (Ph 2 CMPO) have been studied by using density functional theory (DFT) combined with relativistic small-core pseudopotentials. For most complexes, the CMPO and Ph 2 CMPO molecules are coordinated as bidentate chelating ligands through the carbonyl oxygen and phosphoric oxygen atoms. The metal-ligand bonding is mainly ionic for all of these complexes. The neutral PuL(NO 3 ) 4 and PuL 2 (NO 3 ) 4 complexes are predicted to be the most thermodynamically stable molecules according to the metal-ligand complexation reactions. In addition, hydration energies may also play a significant role in the extractability of CMPO and Ph 2 CMPO for the plutonium cations. In most cases, the complexes with CMPO possess qualitatively similar geometries and electron structures to those with Ph 2 CMPO, and they also have comparable metal-ligand binding energies. Thus, replacement of alkyl groups by phenyl groups at the phosphorus atom of CMPO seems to have no obvious influence on the extraction of Pu(IV). (orig.)

  17. Exercise and postprandial lipaemia: effects on peripheral vascular function, oxidative stress and gastrointestinal transit

    Directory of Open Access Journals (Sweden)

    McLaughlin Jim

    2007-10-01

    Full Text Available Abstract Postprandial lipaemia may lead to an increase in oxidative stress, inducing endothelial dysfunction. Exercise can slow gastric emptying rates, moderating postprandial lipaemia. The purpose of this study was to determine if moderate exercise, prior to fat ingestion, influences gastrointestinal transit, lipaemia, oxidative stress and arterial wall function. Eight apparently healthy males (age 23.6 ± 2.8 yrs; height 181.4 ± 8.1 cm; weight 83.4 ± 16.2 kg; all data mean ± SD participated in the randomised, crossover design, where (i subjects ingested a high-fat meal alone (control, and (ii ingested a high-fat meal, preceded by 1 h of moderate exercise. Pulse Wave Velocity (PWV was examined at baseline, post-exercise, and in the postprandial period. Gastric emptying was measured using the 13C-octanoic acid breath test. Measures of venous blood were obtained prior to and following exercise and at 2, 4 and 6 hours post-ingestion. PWV increased (6.5 ± 1.9 m/sec at 2 (8.9 ± 1.7 m/sec and 4 hrs (9.0 ± 1.6 m/sec post-ingestion in the control group (time × group interaction, P

  18. Preparation and charaterization of Pt/functionalized graphene and its electrocatalysis for methanol oxidation

    International Nuclear Information System (INIS)

    Liang, Qingsheng; Zhang, Li; Cai, Maolin; Li, Yong; Jiang, Kun; Zhang, Xin; Shen, Pei Kang

    2013-01-01

    Water-dispersible 8-hydroxy-1,3,6-pyrene trisulfonic acid trisodium salt (PyS)-functionalized graphene (PyS-graphene) sheets were prepared by a π–π interaction method, in which the aromatic organic molecules of PyS were reacted with graphene. The PyS-graphene sheets were used as Pt nanoparticle support to prepare a Pt/PyS-graphene catalyst for direct methanol fuel cells. The prepared materials were characterized by ultraviolet spectrometry (UV–vis), Fourier transform infrared spectrometry (FT-IR), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy (SERS), and transmission electron microscopy (TEM). The electrocatalytic properties of the catalysts for methanol oxidation were evaluated by cyclic voltammetry (CV). The Pt/PyS-graphene catalysts were found to have higher electrocatalytic activity for methanol oxidation than Pt/graphene catalyst. This finding can be attributed to the introduction of negative sulfonic (SO 3 − ) groups to the graphene sheet surface, which makes the graphene sheets dispersible in water. Consequently, the Pt nanoparticles were uniformly and securely deposited onto the graphene sheet surface. These results suggested that the sulfonic group-modified water-dispersible graphene sheets can be used to improve the electrocatalytic activity of catalysts for fuel cells

  19. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules

    KAUST Repository

    Guo, Lin; Rueping, Magnus

    2018-01-01

    The utilization of carboxylic acid esters as electrophiles in metal-catalyzed cross-coupling reactions is increasingly popular, as environmentally friendly and readily available ester derivatives can be powerful alternatives to the commonly used organohalides. However, key challenges associated with the use of these chemicals remain to be addressed, including the stability of ester substrates and the high energy barrier associated with their oxidative addition to low-valent metal species. Due to recent developments in nickel catalysis that make it easier to perform oxidative additions, chemists have become interested in applying less reactive electrophiles as coupling counterparts in nickel-catalyzed transformations. Hence, our group and others have independently investigated various ester group substitutions and functionalizations enabled by nickel catalysis. Such methods are of great interest as they enable the exchange of ester groups, which can be used as directing groups in metal-catalyzed C-H functionalizations prior to their replacement. Here, we summarize our recent efforts toward the development of nickel-catalyzed decarbonylative cross-coupling reactions of carboxylic esters. Achievements accomplished by other groups in this area are also included. To this day, a number of new transformations have been successfully developed, including decarbonylative arylations, alkylations, cyanations, silylations, borylations, aminations, thioetherifications, stannylations, and hydrogenolysis reactions. These transformations proceed via a nickel-catalyzed decarbonylative pathway and have shown a high degree of reactivity and chemoselectivity, as well as several other unique advantages in terms of substrate availability, due to the use of esters as coupling partners. Although the mechanisms of these reactions have not yet been fully understood, chemists have already provided some important insights. For example, Yamamoto explored the stoichiometric nickel

  20. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules.

    Science.gov (United States)

    Guo, Lin; Rueping, Magnus

    2018-05-15

    The utilization of carboxylic acid esters as electrophiles in metal-catalyzed cross-coupling reactions is increasingly popular, as environmentally friendly and readily available ester derivatives can be powerful alternatives to the commonly used organohalides. However, key challenges associated with the use of these chemicals remain to be addressed, including the stability of ester substrates and the high energy barrier associated with their oxidative addition to low-valent metal species. Due to recent developments in nickel catalysis that make it easier to perform oxidative additions, chemists have become interested in applying less reactive electrophiles as coupling counterparts in nickel-catalyzed transformations. Hence, our group and others have independently investigated various ester group substitutions and functionalizations enabled by nickel catalysis. Such methods are of great interest as they enable the exchange of ester groups, which can be used as directing groups in metal-catalyzed C-H functionalizations prior to their replacement. Here, we summarize our recent efforts toward the development of nickel-catalyzed decarbonylative cross-coupling reactions of carboxylic esters. Achievements accomplished by other groups in this area are also included. To this day, a number of new transformations have been successfully developed, including decarbonylative arylations, alkylations, cyanations, silylations, borylations, aminations, thioetherifications, stannylations, and hydrogenolysis reactions. These transformations proceed via a nickel-catalyzed decarbonylative pathway and have shown a high degree of reactivity and chemoselectivity, as well as several other unique advantages in terms of substrate availability, due to the use of esters as coupling partners. Although the mechanisms of these reactions have not yet been fully understood, chemists have already provided some important insights. For example, Yamamoto explored the stoichiometric nickel

  1. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules

    KAUST Repository

    Guo, Lin

    2018-04-13

    The utilization of carboxylic acid esters as electrophiles in metal-catalyzed cross-coupling reactions is increasingly popular, as environmentally friendly and readily available ester derivatives can be powerful alternatives to the commonly used organohalides. However, key challenges associated with the use of these chemicals remain to be addressed, including the stability of ester substrates and the high energy barrier associated with their oxidative addition to low-valent metal species. Due to recent developments in nickel catalysis that make it easier to perform oxidative additions, chemists have become interested in applying less reactive electrophiles as coupling counterparts in nickel-catalyzed transformations. Hence, our group and others have independently investigated various ester group substitutions and functionalizations enabled by nickel catalysis. Such methods are of great interest as they enable the exchange of ester groups, which can be used as directing groups in metal-catalyzed C-H functionalizations prior to their replacement. Here, we summarize our recent efforts toward the development of nickel-catalyzed decarbonylative cross-coupling reactions of carboxylic esters. Achievements accomplished by other groups in this area are also included. To this day, a number of new transformations have been successfully developed, including decarbonylative arylations, alkylations, cyanations, silylations, borylations, aminations, thioetherifications, stannylations, and hydrogenolysis reactions. These transformations proceed via a nickel-catalyzed decarbonylative pathway and have shown a high degree of reactivity and chemoselectivity, as well as several other unique advantages in terms of substrate availability, due to the use of esters as coupling partners. Although the mechanisms of these reactions have not yet been fully understood, chemists have already provided some important insights. For example, Yamamoto explored the stoichiometric nickel

  2. Disparate effects of oxidation on plasma acyltransferase activities: inhibition of cholesterol esterification but stimulation of transesterification of oxidized phospholipids.

    Science.gov (United States)

    Subbaiah, P V; Liu, M

    1996-05-31

    Oxidation of lipoproteins results in the formation of several polar phospholipids with pro-inflammatory and pro-atherogenic properties. To examine the possible role of lecithin/cholesterol acyltransferase (LCAT) in the metabolism of these oxidized phospholipids, we oxidized whole plasma with either Cu(2+) or a free-radical generator, and determined the various activities of LCAT. Oxidation caused a reduction in plasma phosphatidylcholine (PC), an increase in a short-chain polar PC (SCP-PC), and an inhibition of the transfer of long-chain acyl groups to cholesterol (LCAT activity) or to lyso PC (lysolecithin acyltransferase (LAT) I activity). However, the transfer of short-chain acyl groups from SCP-PC to lyso PCLAT II activity) was stimulated several fold, in direct correlation with the degree of oxidation. LAT II activity was not stimulated by oxidation in LCAT-deficient plasma, showing that it is carried out by LCAT. Oxidized normal plasma exhibited low LCAT activity even in the presence of exogenous proteoliposome substrate, indicating that the depletion of substrate PC was not responsible for the loss of activity. Oxidation of isolated LDL or HDL abolished their ability to support LCAT and LAT I activities of exogenous enzyme, but promoted the LAT II activity. Purified LCAT lost its LCAT and LAT I functions, but not its LAT II function, when oxidized in vitro. These results show that while oxidation of plasma causes a loss of LCAT's ability to transfer long-chain acyl groups, its ability to transfer short-chain acyl groups, from SCP-PC is retained, and even stimulated, suggesting that LCAT may have a physiological role in the metabolism of oxidized PC in plasma.

  3. Huperzine A alleviates neuroinflammation, oxidative stress and improves cognitive function after repetitive traumatic brain injury.

    Science.gov (United States)

    Mei, Zhengrong; Zheng, Peiying; Tan, Xiangping; Wang, Ying; Situ, Bing

    2017-12-01

    Traumatic brain injury (TBI) may trigger secondary injury cascades including endoplasmic reticulum stress, oxidative stress, and neuroinflammation. Unfortunately, there are no effective treatments targeting either primary or secondary injuries that result in long-term detrimental consequences. Huperzine A (HupA) is a potent acetylcholinesterase inhibitor (AChEI) that has been used treatment of Alzheimer's disease (AD). This study aimed to explore the neuroprotective effects of HupA in TBI and its possible mechanisms. Repetitive mild closed head injury (CHI) model was used to mimic concussive TBI. Mice were randomly assigned into three groups including sham, vehicle-treated and HupA-treated injured mice. The HupA was given at dose of 1.0 mg/kg/day and was initiated 30 min after the first injury, then administered daily for a total of 30 days. The neuronal functions including motor functions, emotion-like behaviors, learning and memory were tested. Axonal injury, reactive oxygen species (ROS), and neuroinflammation were examined as well. The results showed that injured mice treated with HupA had significant improvement in Morris water maze performance compared with vehicle-treated injured mice. HupA treatment significantly attenuated markers of neuroinflammation and oxidative stress in the injured mice. Taken together, HupA was effective in reducing neuroinflammation, oxidative stress and behavioral recovery after TBI. HupA is a promising candidate for treatment of TBI.

  4. Bicarbonate modulates oxidative and functional damage in ischemia-reperfusion.

    Science.gov (United States)

    Queliconi, Bruno B; Marazzi, Thire B M; Vaz, Sandra M; Brookes, Paul S; Nehrke, Keith; Augusto, Ohara; Kowaltowski, Alicia J

    2013-02-01

    The carbon dioxide/bicarbonate (CO(2)/HCO(3)(-)) pair is the main biological pH buffer. However, its influence on biological processes, and in particular redox processes, is still poorly explored. Here we study the effect of CO(2)/HCO(3)(-) on ischemic injury in three distinct models (cardiac HL-1 cells, perfused rat heart, and Caenorhabditis elegans). We found that, although various concentrations of CO(2)/HCO(3)(-) do not affect function under basal conditions, ischemia-reperfusion or similar insults in the presence of higher CO(2)/HCO(3)(-) resulted in greater functional loss associated with higher oxidative damage in all models. Because the effect of CO(2)/HCO(3)(-) was observed in all models tested, we believe this buffer is an important determinant of oxidative damage after ischemia-reperfusion. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Research progress in nanographene oxide with tumor imaging and therapy

    Directory of Open Access Journals (Sweden)

    YOU Peihong

    2015-04-01

    Full Text Available Nanographene oxide,one of graphene oxide derivatives and a novel two-dimensional carbon nanomaterial,has become a popular research topic in nanomedicine due to its unique properties such as ultra-high surface-to-volume ratio and great photo-thermal effect.It contains a large amount of reactive chemical groups,including carboxy group,carbonyl group,hydroxyl group and epoxy group,which enable its easy biological and chemical functionalization and excellent biocompatibility.Therefore,it has potential applications in biomedical field.This paper briefly describes the preparation and functionalization of nanographeme oxide,and then mainly focuses on its application studies in the biomedical field,including in vitro and in vivo toxicity tests and advanced research progress of tumor imaging and treatment.

  6. Functionalized TiO2 nanoparticle containing isocyanate groups

    International Nuclear Information System (INIS)

    Ou, Baoli; Li, Duxin; Liu, Qingquan; Zhou, Zhihua; Liao, Bo

    2012-01-01

    Functionalized TiO 2 nanoparticle containing isocyanate groups can extend the TiO 2 nanoparticle chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized TiO 2 nanoparticle with highly reactive isocyanate groups on its surface, via the reaction between toluene-2, 4-diisocyanate (TDI) and hydroxyl on TiO 2 nanoparticle surface. The main effect factors on the reaction of TiO 2 with TDI were studied by determining the reaction extent of hydroxyl groups on TiO 2 surface. Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed that reactive isocyanate groups were covalently attached to the TiO 2 nanoparticle surface. The dispersion of the TDI-functionalized TiO 2 nanoparticle was studied by transmission electron microscopy (TEM). Owing to the TDI molecules covalently bonded on TiO 2 nanoparticle surface, it was established that the TiO 2 nanoparticle can be uniformly dispersed in toluene, thus indicating that this functionalization method can prevent TiO 2 nanoparticle from agglomerating. -- Highlights: ► TiO 2 nanoparticle was functionalized with toluene-2, 4-diisocyanate. ► Functionalized TiO 2 nanoparticle can be uniformly dispersed in xylene. ► Compatibility of TiO 2 nanoparticle and organic solvent is significantly improved. ► TiO 2 containing isocyanate groups can extend the TiO 2 nanoparticle chemistry.

  7. Sulfophenyl-Functionalized Reduced Graphene Oxide Networks on Electrospun 3D Scaffold for Ultrasensitive NO₂ Gas Sensor.

    Science.gov (United States)

    Zou, Bin; Guo, Yunlong; Shen, Nannan; Xiao, Anshan; Li, Mingjun; Zhu, Liang; Wan, Pengbo; Sun, Xiaoming

    2017-12-19

    Ultrasensitive room temperature real-time NO₂ sensors are highly desirable due to potential threats on environmental security and personal respiratory. Traditional NO₂ gas sensors with highly operated temperatures (200-600 °C) and limited reversibility are mainly constructed from semiconducting oxide-deposited ceramic tubes or inter-finger probes. Herein, we report the functionalized graphene network film sensors assembled on an electrospun three-dimensional (3D) nanonetwork skeleton for ultrasensitive NO₂ sensing. The functional 3D scaffold was prepared by electrospinning interconnected polyacrylonitrile (PAN) nanofibers onto a nylon window screen to provide a 3D nanonetwork skeleton. Then, the sulfophenyl-functionalized reduced graphene oxide (SFRGO) was assembled on the electrospun 3D nanonetwork skeleton to form SFRGO network films. The assembled functionalized graphene network film sensors exhibit excellent NO₂ sensing performance (10 ppb to 20 ppm) at room temperature, reliable reversibility, good selectivity, and better sensing cycle stability. These improvements can be ascribed to the functionalization of graphene with electron-withdrawing sulfophenyl groups, the high surface-to-volume ratio, and the effective sensing channels from SFRGO wrapping onto the interconnected 3D scaffold. The SFRGO network-sensing film has the advantages of simple preparation, low cost, good processability, and ultrasensitive NO₂ sensing, all advantages that can be utilized for potential integration into smart windows and wearable electronic devices for real-time household gas sensors.

  8. Invariance group of the Finster metric function

    International Nuclear Information System (INIS)

    Asanov, G.S.

    1985-01-01

    An invariance group of the Finsler metric function is introduced and studied that directly generalized the respective concept (a group of Euclidean rolations) of the Rieman geometry. A sequential description of the isotopic invariance of physical fields on the base of the Finsler geometry is possible in terms of this group

  9. Effect of Reaction Temperature on Structure, Appearance and Bonding Type of Functionalized Graphene Oxide Modified P-Phenylene Diamine

    Directory of Open Access Journals (Sweden)

    Hong-Juan Sun

    2018-04-01

    Full Text Available In this study, graphene oxides with different functionalization degrees were prepared by a facile one-step hydrothermal reflux method at various reaction temperatures using graphene oxide (GO as starting material and p-phenylenediamine (PPD as the modifier. The effects of reaction temperature on structure, appearance and bonding type of the obtained materials were investigated by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, and scanning electron microscopy (SEM. The results showed that when the reaction temperature was 10–70 °C, the GO reacted with PPD through non-covalent ionic bonds (–COO−H3+N–R and hydrogen bonds (C–OH…H2N–X. When the reaction temperature reached 90 °C, the GO was functionalized with PPD through covalent bonds of C–N. The crystal structure of products became more ordered and regular, and the interlayer spacing (d value and surface roughness increased as the temperature increased. Furthermore, the results suggested that PPD was grafted on the surface of GO through covalent bonding by first attacking the carboxyl groups and then the epoxy groups of GO.

  10. Effect of atorvastatin combined with trimetazidine on heart function, oxidative stress and inflammatory factors in patients with coronary heart disease

    Directory of Open Access Journals (Sweden)

    De-Mao Yi

    2017-05-01

    Full Text Available Objective: To investigate the effects of atorvastatin combined with trimetazidine on heart function, oxidative stress and inflammatory factors in patients with coronary heart disease, Methods: 110 patients with coronary heart disease from June 2015 to June 2016 in our hospital were selected as the research objects, randomly divided into observation group 55 cases and control group 55 cases, The patients in both groups received conventional treatment of coronary heart disease, and the control group was given orally atorvastatin calcium capsules at the same time. The observation group was added with trimetazidine hydrochloride tablets on the basis of the control group. The left ventricular ejection fraction (LVEF, left ventricular end diastolic diameter (LVEDD, left ventricular end-diastolic diameter (LVESD, C reactive protein (CRP, tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, superoxide dismutase (SOD and MDA levels of two groups were compared respectively before and after treatment. Results: Before treatment, the LVESD, LVEDD and LVEF levels between observation group and the control group had no significant difference (P>0.05; Compared with before treatment, LVESD and LVEDD levels in the observation group and control group after treatment were significantly decreased, LVEF increased significantly, and there were significant differences (P0.05; After treatment, SOD in the observation group and the control group were significantly increased, MDA decreased significantly, and the differences were statistically significant (P0.05; compared with before treatment, the CRP, TNF-α, and IL-6 of observation group and control group after treatment were significantly decreased, and the differences were statistically significant (P<0.05; After treatment, CRP, TNF-α, and IL-6 of the observation group were lower than the control group, and the difference was statistically significant (P<0.05. Conclusions: Atorvastatin combined with trimetazidine can

  11. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances.

    Science.gov (United States)

    Hola, Katerina; Markova, Zdenka; Zoppellaro, Giorgio; Tucek, Jiri; Zboril, Radek

    2015-11-01

    In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Magnetic susceptibility of functional groups

    International Nuclear Information System (INIS)

    Herr, T.; Ferraro, M.B.; Contreras, R.H.

    1990-01-01

    Proceeding with a series of works where new criteria are applied to the the calculation of the contribution of molecular fragments to certain properties, results are presented for a group of 1-X-benzenes and 1-X-naphtalenes for the magnetic susceptibility constant. Both the diamagnetic and paramagnetic parts are taken into account. To reduce the problems associated with the Gauge dependence originated in the approximations made, Gauge independent atomic orbitals (GIAO) orbitals are used in the atomic orbital basis. Results are discussed in terms of functional groups. (Author). 17 refs., 1 fig., 3 tabs

  13. Topological properties and functionalities in oxide thin films and interfaces

    Science.gov (United States)

    Uchida, Masaki; Kawasaki, Masashi

    2018-04-01

    As symbolized by the Nobel Prize in Physics 2016, ‘topology’ has been recognized as an essential standpoint to understand and control the physics of condensed matter. This concept may be spreading even into application areas such as novel electronics. In this trend, there has been reported a number of studies for oxide films and heterostructures with topologically non-trivial electronic or magnetic states. In this review, we overview the trends of new topological properties and functionalities in oxide materials by sorting out a number of examples. The technological advances in oxide film growth achieved over the last few decades are now opening the door for harnessing novel topological properties.

  14. Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization

    Science.gov (United States)

    Hidayah, N. M. S.; Liu, Wei-Wen; Lai, Chin-Wei; Noriman, N. Z.; Khe, Cheng-Seong; Hashim, U.; Lee, H. Cheun

    2017-10-01

    Graphene oxide (GO) and reduced graphene oxide (RGO) are known to have superior properties for various applications. This work compares the properties of GO and RGO with graphite. GO was prepared by using Improved Hummer's method whereas the produced GO was subjected to chemical reduction with the use of hydrazine hydrate. Graphite, GO and RGO had different morphologies, quality, functionalized groups, UV-Vis absorption peaks and crystallinity. With the removal of oxygen-containing functional group during reduction for RGO, the quality of samples was decreased due to higher intensity of D band than G band was seen in Raman results. In addition, platelet-like surface can be observed on the surface of graphite as compared to GO and RGO where wrinkled and layered flakes, and crumpled thin sheets were observed on GO and RGO surface respectively. Fourier Transform Infra-Red (FTIR) analysis showed the presence of abundant oxygen-containing functional groups in GO as compared to RGO and graphite. The characteristic peaks at 26.62°, 9.03° and 24.10° for graphite, GO and RGO, respectively, can be detected from X-Ray diffraction (XRD). Furthermore, the reduction also caused red shift at 279nm from 238nm, as obtained from ultraviolet visible (UV-Vis) analysis. The results proved that GO was successfully oxidized from graphite whereas RGO was effectively reduced from GO.

  15. Functional groups grafted nonwoven fabrics for blood filtration-The effects of functional groups and wettability on the adhesion of leukocyte and platelet

    Energy Technology Data Exchange (ETDEWEB)

    Yang Chao [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Cao Ye [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610081 (China); Sun Kang, E-mail: ksun@sjtu.edu.cn [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Liu Jiaxin; Wang Hong [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610081 (China)

    2011-01-15

    In this work, the effects of grafted functional groups and surface wettability on the adhesion of leukocyte and platelet were investigated by the method of blood filtration. The filter materials, poly(butylene terephthalate) nonwoven fabrics bearing different functional groups including hydroxyl (OH), carboxyl (COOH), sulfonic acid group (SO{sub 3}H) and zwitterionic sulfobetaine group ({sup +}N((CH{sub 3}){sub 2})(CH{sub 2}){sub 3}SO{sub 3}{sup Circled-Minus }) with controllable wettability were prepared by UV radiation grafting vinyl monomers with these functional groups. Our results emphasized that both surface functional groups and surface wettability had significant effects on the adhesion of leukocyte and platelet. In the case of filter materials with the same wettability, leukocytes adhering to filter materials decreased in the order: the surface bearing OH only > the surface bearing both OH and COOH > the surface bearing sulfobetaine group > the surface bearing SO{sub 3}H, while platelets adhering to filter materials decreased as the following order: the surface bearing SO{sub 3}H > the surface bearing both OH and COOH > the surface bearing OH only > the surface bearing sulfobetaine group. As the wettability of filter materials increased, both leukocyte and platelet adhesion to filter materials declined, except that leukocyte adhesion to the surface bearing OH only remained unchanged.

  16. Malonamide, phosphine oxide and calix[4]arene functionalized ionic liquids: synthesis and extraction of actinides and lanthanides

    International Nuclear Information System (INIS)

    Ternova, Dariia

    2014-01-01

    Radioactive waste treatment is a crucial problem nowadays. This work was dedicated to the development of the new extracting systems for radionuclides on the basis of 'green' solvents Ionic Liquids (Ils). For this purpose Ils were functionalized with various extracting patterns: phosphine oxide, carbamoyl phosphine oxide groups and malonamide fragment. Also the calix[4]arene platforms were used for the synthesis of functionalized ionic liquids (Fils) and their precursors. The Fils of both types cationic and anionic have been obtained. The synthesized Fils were tested for the liquid-liquid extraction of radionuclides. lt was found that extraction well occurs due to the extracting patterns, however a charge of a modified ion influences extraction.The various extracting experiments and mathematical modelling have been performed to determine the mechanisms of extraction. These studies showed that each extracting system is characterized by a different set of extracting equilibria, based mostly on cationic exchange. (author)

  17. DISTINCT FUNCTIONS OF JNK AND C-JUN IN OXIDANT-INDUCED HEPATOCYTE DEATH

    Science.gov (United States)

    Amir, Muhammad; Liu, Kun; Zhao, Enpeng; Czaja, Mark J.

    2013-01-01

    Overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling is a central mechanism of hepatocyte injury and death including that from oxidative stress. However, the functions of JNK and c-Jun are still unclear, and this pathway also inhibits hepatocyte death. Previous studies of menadione-induced oxidant stress demonstrated that toxicity resulted from sustained JNK/c-Jun activation as death was blocked by the c-Jun dominant negative TAM67. To further delineate the function of JNK/c-Jun signaling in hepatocyte injury from oxidant stress, the effects of direct JNK inhibition on menadione-induced death were examined. In contrast to the inhibitory effect of TAM67, pharmacological JNK inhibition by SP600125 sensitized the rat hepatocyte cell line RALA255-10G to death from menadione. SP600125 similarly sensitized mouse primary hepatocytes to menadione toxicity. Death from SP600125/menadione was c-Jun dependent as it was blocked by TAM67, but independent of c-Jun phosphorylation. Death occurred by apoptosis and necrosis and activation of the mitochondrial death pathway. Short hairpin RNA knockdowns of total JNK or JNK2 sensitized to death from menadione, whereas a jnk1 knockdown was protective. Jnk2 null mouse primary hepatocytes were also sensitized to menadione death. JNK inhibition magnified decreases in cellular ATP content and β-oxidation induced by menadione. This effect mediated cell death as chemical inhibition of β-oxidation also sensitized cells to death from menadione, and supplementation with the β-oxidation substrate oleate blocked death. Components of the JNK/c-Jun signaling pathway have opposing functions in hepatocyte oxidant stress with JNK2 mediating resistance to cell death and c-Jun promoting death. PMID:22644775

  18. Nitrogen-Containing Functional Groups-Facilitated Acetone Adsorption by ZIF-8-Derived Porous Carbon

    Directory of Open Access Journals (Sweden)

    Liqing Li

    2018-01-01

    Full Text Available Nitrogen-doped porous carbon (ZC is prepared by modification with ammonia for increasing the specific surface area and surface polarity after carbonization of zeolite imidazole framework-8 (ZIF-8. The structure and properties of these ZCs were characterized by Transmission electron microscopy, X-ray diffraction, N2 sorption, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Through static adsorption tests of these carbons, the sample obtained at 600 °C was selected as an excellent adsorbent, which exhibited an excellent acetone capacity of 417.2 mg g−1 (25 °C with a very large surface area and high-level nitrogen doping (13.55%. The microporosity, surface area and N-containing groups of the materials, pyrrolic-N, pyridinic-N, and oxidized-N groups in particular, were found to be the determining factors for acetone adsorption by means of molecular simulation with density functional theory. These findings indicate that N-doped microporous carbon materials are potential promising adsorbents for acetone.

  19. High-Performance Supercapacitor of Functionalized Carbon Fiber Paper with High Surface Ionic and Bulk Electronic Conductivity: Effect of Organic Functional Groups

    International Nuclear Information System (INIS)

    Suktha, Phansiri; Chiochan, Poramane; Iamprasertkun, Pawin; Wutthiprom, Juthaporn; Phattharasupakun, Nutthaphon; Suksomboon, Montakan; Kaewsongpol, Tanon; Sirisinudomkit, Pichamon; Pettong, Tanut; Sawangphruk, Montree

    2015-01-01

    Highlights: • A supercapacitor of organic functionalized carbon fiber paper (f-CFP) exhibits high areal and volumetric capacitances. • The performance of the supercapacitor depends on the organic functional group on the surface of the f-CFP. • Hydroxyl and carboxylic groups modified on the surface of f-CFP have higher pseudocapacitive property than amide and amine functional groups. • The f-CFP exhibits high surface ionic and bulk electrical conductivities. - Abstract: Although carbon fiber paper (CFP) or nonwovens are widely used as a non-corrosive and conductive substrate or current collector in batteries and supercapacitors as well as a gas diffusion layer in proton exchange membrane fuel cells, the CFP cannot store charges due to its poor ionic conductivity and its hydrophobic surface. In this work, the chemically functionalized CFP (f-CFP) consisting of hydroxyl and carboxylic groups on its surface was produced by an oxidation reaction of CFP in a mixed concentrated acid solution of H 2 SO 4 :HNO 3 (3:1 v/v) at 60 °C for 1 h. Other amide and amine groups modified CFP were also synthesized for comparison using a dehydration reaction of carboxylic modified CFP with ethylenediamine and n-butylamine. Interestingly, it was found that hydroxyl and carboxylic groups modified CFP behave as a pseudocapacitor electrode, which can store charges via the surface redox reaction in addition to electrochemical double layer capacitance. The aqueous-based supercapacitor of f-CFP has high areal, volumetric, and specific energy (49.0 μW.h/cm 2 , 1960 mW.h/L, and 5.2 W.h/Kg) and power (3.0 mW/cm 2 , 120 W/L, and 326.2 W/Kg) based on the total geometrical surface area and volume as well as the total weight of positive and negative electrodes. High charge capacity of the f-CFP stems from high ionic charge and pseudocapacitive behavior due to hydroxyl and carboxylic groups on its surface and high bulk electronic conductivity (2.03 mS/cm) due to 1D carbon fiber paper. The

  20. A conceptual basis to encode and detect organic functional groups in XML.

    Science.gov (United States)

    Sankar, Punnaivanam; Krief, Alain; Vijayasarathi, Durairaj

    2013-06-01

    A conceptual basis to define and detect organic functional groups is developed. The basic model of a functional group is termed as a primary functional group and is characterized by a group center composed of one or more group center atoms bonded to terminal atoms and skeletal carbon atoms. The generic group center patterns are identified from the structures of known functional groups. Accordingly, a chemical ontology 'Font' is developed to organize the existing functional groups as well as the new ones to be defined by the chemists. The basic model is extended to accommodate various combinations of primary functional groups as functional group assemblies. A concept of skeletal group is proposed to define the characteristic groups composed of only carbon atoms to be regarded as equivalent to functional groups. The combination of primary functional groups with skeletal groups is categorized as skeletal group assembly. In order to make the model suitable for reaction modeling purpose, a Graphical User Interface (GUI) is developed to define the functional groups and to encode in XML format appropriate to detect them in chemical structures. The system is capable of detecting multiple instances of primary functional groups as well as the overlapping poly-functional groups as the respective assemblies. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Effects of Graphene Oxide and Chemically-Reduced Graphene Oxide on the Dynamic Mechanical Properties of Epoxy Amine Composites

    Directory of Open Access Journals (Sweden)

    Cristina Monteserín

    2017-09-01

    Full Text Available Composites based on epoxy/graphene oxide (GO and epoxy/reduced graphene oxide (rGO were investigated for thermal-mechanical performance focusing on the effects of the chemical groups present on nanoadditive-enhanced surfaces. GO and rGO obtained in the present study have been characterized by Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, and X-ray powder diffraction (XRD demonstrating that materials with different oxidation degrees have been obtained. Thereafter, GO/epoxy and rGO/epoxy nanocomposites were successfully prepared and thoroughly characterized by dynamic mechanical thermal analysis (DMTA and transmission electron microscopy (TEM. A significant increase in the glass transition temperature was found in comparison with the neat epoxy. The presence of functional groups on the graphene surface leads to chemical interactions between these functional groups on GO and rGO surfaces with the epoxy, contributing to the possible formation of covalent bonds between GO and rGO with the matrix. The presence of oxidation groups on GO also contributes to an improved exfoliation, intercalation, and distribution of the GO sheets in the composites with respect to the rGO based composites.

  2. Serum ferritin, serum nitric oxide, and cognitive function in pediatric thalassemia major

    Directory of Open Access Journals (Sweden)

    Septiana Nur Qurbani

    2017-06-01

    Full Text Available Background Hemolysis and repeated blood transfusions in children with thalassemia major cause iron overload in various organs, including the brain, and may lead to neurodegeneration. Hemolysis also causes decreased levels of nitric oxide, which serves as a volume transmitter and slow dynamic modulation, leading to cognitive impairment. Objective To assess for correlations between serum ferritin as well as nitric oxide levels and cognitive function in children with thalassemia major.  Methods This analytical study with cross-sectional design on 40 hemosiderotic thalassemia major patients aged 6−14 years, was done at the Thalassemia Clinic in Dr. Hasan Sadikin Hospital, Bandung, West Java, from May to June 2015. Serum ferritin measurements were performed by an electrochemiluminescence immunoassay; serum nitric oxide was assayed by a colorimetric procedure based on Griess reaction; and cognitive function was assessed by the Wechsler Intelligence Scale for Children test. Statistical analysis was done using Spearman’s Rank correlation, with a significance value of 0.05. Results Abnormal values in verbal, performance, and full scale IQ were found in 35%, 57.5% and 57.5%, respectively. Serum nitric oxide level was significantly correlated with performance IQ (P=0.022, but not with verbal IQ (P=0.359 or full scale IQ (P=0.164. There were also no significant correlations between serum ferritin level and full scale, verbal, or performance IQ (P=0.377, 0.460, and 0.822, respectively. Conclusion Lower serum nitric oxide level is significantly correlated to lower cognitive function, specifically in the performance IQ category. However, serum ferritin level has no clear correlation with cognitive function.

  3. Functionalization of 2D macroporous silicon under the high-pressure oxidation

    Science.gov (United States)

    Karachevtseva, L.; Kartel, M.; Kladko, V.; Gudymenko, O.; Bo, Wang; Bratus, V.; Lytvynenko, O.; Onyshchenko, V.; Stronska, O.

    2018-03-01

    Addition functionalization after high-pressure oxidation of 2D macroporous silicon structures is evaluated. X-ray diffractometry indicates formation of orthorhombic SiO2 phase on macroporous silicon at oxide thickness of 800-1200 nm due to cylindrical symmetry of macropores and high thermal expansion coefficient of SiO2. Pb center concentration grows with the splitting energy of LO- and TO-phonons and SiO2 thickness in oxidized macroporous silicon structures. This increase EPR signal amplitude and GHz radiation absorption and is promising for development of high-frequency devices and electronically controlled elements.

  4. Carbon nanostructures reduced from graphite oxide as electrode materials for supercapacitors

    Directory of Open Access Journals (Sweden)

    Yurii M. Shulga

    2015-03-01

    Full Text Available In this review we present information about obtaining and properties of carbon nanomaterials (graphite oxide, grapheme oxide, reduced graphene oxide, which are used as electrodes for supercapacitors (SC. This review describes methods of obtaining graphite oxide, followed by separation of graphene oxide and reducing graphene oxide by thermal, photochemical and chemical methods. Information on the composition and concentration of functional groups in graphene oxide and the elemental composition is described in detail. Results of the analysis of еру physical, electrochemical, thermal and optical properties of the graphene oxide and its derivatives are shown. The ratio of oxygen-containing functional groups was estimated by XPS. The presence of partial surface reduction is found. Hydroge-containing functional groups are characterized by IR spectroscopy. Method of estimating the size of graphene crystallites by Raman spectroscopy is shown. Mass loss upon heating is analyzed by thermogravimetry. The gassing of graphene oxide at thermal and photochemical reduction is studied by mass spectrometry. The difference between the abovementioned reduction methods is clearly demonstrated by the difference in the composition of the evolved gases. Also the chemical method of graphene oxide reduction with hydrazine is described. Review considers the literature data which illustrate the most interesting, from the Authors׳ point of view, aspects of that field of research.

  5. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function

    International Nuclear Information System (INIS)

    Pi Jingbo; Zhang Qiang; Fu Jingqi; Woods, Courtney G.; Hou Yongyong; Corkey, Barbara E.; Collins, Sheila; Andersen, Melvin E.

    2010-01-01

    This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H 2 O 2 , act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function.

  6. Brazil nuts intake improves lipid profile, oxidative stress and microvascular function in obese adolescents: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Koury Josely C

    2011-05-01

    Full Text Available Abstract Background Obesity is a chronic disease associated to an inflammatory process resulting in oxidative stress that leads to morpho-functional microvascular damage that could be improved by some dietary interventions. In this study, the intake of Brazil nuts (Bertholletia excelsa, composed of bioactive substances like selenium, α- e γ- tocopherol, folate and polyunsaturated fatty acids, have been investigated on antioxidant capacity, lipid and metabolic profiles and nutritive skin microcirculation in obese adolescents. Methods Obese female adolescents (n = 17, 15.4 ± 2.0 years and BMI of 35.6 ± 3.3 kg/m2, were randomized 1:1 in two groups with the diet supplemented either with Brazil nuts [BNG, n = 08, 15-25 g/day (equivalent to 3 to 5 units/day] or placebo [PG (lactose, n = 09, one capsule/day] and followed for 16 weeks. Anthropometry, metabolic-lipid profiles, oxidative stress and morphological (capillary diameters and functional [functional capillary density, red blood cell velocity (RBCV at baseline and peak (RBCVmax and time (TRBCVmax to reach it during post-occlusive reactive hyperemia, after 1 min arterial occlusion] microvascular variables were assessed by nailfold videocapillaroscopy at baseline (T0 and after intervention (T1. Results T0 characteristics were similar between groups. At T1, BNG (intra-group variation had increased selenium levels (p = 0.02, RBCV (p = 0.03 and RBCVmax (p = 0.03 and reduced total (TC (p = 0.02 and LDL-cholesterol (p = 0.02. Compared to PG, Brazil nuts intake reduced TC (p = 0.003, triglycerides (p = 0.05 and LDL-ox (p = 0.02 and increased RBCV (p = 0.03. Conclusion Brazil nuts intake improved the lipid profile and microvascular function in obese adolescents, possibly due to its high level of unsaturated fatty acids and bioactive substances. Trial Registration Clinical Trials.gov NCT00937599

  7. N-butylamine functionalized graphene oxide for detection of iron(III) by photoluminescence quenching.

    Science.gov (United States)

    Gholami, Javad; Manteghian, Mehrdad; Badiei, Alireza; Ueda, Hiroshi; Javanbakht, Mehran

    2016-02-01

    An N-butylamine functionalized graphene oxide nanolayer was synthesized and characterized by ultraviolet (UV)-visible spectrometry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Detection of iron(III) based on photoluminescence spectroscopy was investigated. The N-butylamine functionalized graphene oxide was shown to specifically interact with iron (III), compared with other cationic trace elements including potassium (I), sodium (I), calcium (II), chromium (III), zinc (II), cobalt (II), copper (II), magnesium (II), manganese (II), and molybdenum (VI). The quenching effect of iron (III) on the luminescence emission of N-butylamine functionalized graphene oxide layer was used to detect iron (III). The limit of detection (2.8 × 10(-6)  M) and limit of quantitation (2.9 × 10(-5)  M) were obtained under optimal conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  8. The Evolution of the Personnel Function in Capital Group (Case of Zywiec Group

    Directory of Open Access Journals (Sweden)

    Anna Borkowska

    2008-04-01

    Full Text Available This article constitutes a detailed case study on the evolution on the personnel function in Zywiec Group that followed from the restructuring of the member breweries of the capital group. It covers the process of integration of the Group and changes to the human resources management system. It also contains theoretical reflections upon the role of HR specialists in the process of the integration of the companies. The organization of the personnel function has been presented here against a period spanning 3 years of G activity (wider range of HR responsibility, increase in the number of specialists employed in HR, lower age, higher level of education.

  9. Subgroups of class groups of algebraic quadratic function fields

    International Nuclear Information System (INIS)

    Wang Kunpeng; Zhang Xianke

    2001-09-01

    Ideal class groups H(K) of algebraic quadratic function fields K are studied, by using mainly the theory of continued fractions of algebraic functions. Properties of such continued fractions are discussed first. Then a necessary and sufficient condition is given for the class group H(K) to contain a cyclic subgroup of any order n, this criterion condition holds true for both real and imaginary fields K. Furthermore, several series of function fields K, including real, inertia imaginary, as well as ramified imaginary quadratic function fields, are given, and their class groups H(K) are proved to contain cyclic subgroups of order n. (author)

  10. Protein oxidation in aquatic foods

    DEFF Research Database (Denmark)

    Baron, Caroline P.

    2014-01-01

    The chapter discusses general considerations about protein oxidation and reviews the mechanisms involved in protein oxidation and consequences of protein oxidation on fish proteins. It presents two case studies, the first deals with protein and lipid oxidation in frozen rainbow trout......, and the second with oxidation in salted herring. The mechanisms responsible for initiation of protein oxidation are unclear, but it is generally accepted that free radical species initiating lipid oxidation can also initiate protein oxidation. The chapter focuses on interaction between protein and lipid...... oxidation. The protein carbonyl group measurement is the widely used method for estimating protein oxidation in foods and has been used in fish muscle. The chapter also talks about the impact of protein oxidation on protein functionality, fish muscle texture, and food nutritional value. Protein oxidation...

  11. Plant species and functional group combinations affect green roof ecosystem functions.

    Science.gov (United States)

    Lundholm, Jeremy; Macivor, J Scott; Macdougall, Zachary; Ranalli, Melissa

    2010-03-12

    Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green

  12. Walnut supplementation reverses the scopolamine-induced memory impairment by restoration of cholinergic function via mitigating oxidative stress in rats: a potential therapeutic intervention for age related neurodegenerative disorders.

    Science.gov (United States)

    Haider, Saida; Batool, Zehra; Ahmad, Saara; Siddiqui, Rafat Ali; Haleem, Darakhshan Jabeen

    2018-02-01

    The brain is highly susceptible to the damaging effects of oxidative reactive species. The free radicals which are produced as a consequence of aerobic respiration can cause cumulative oxygen damage which may lead to age-related neurodegeneration. Scopolamine, the anti-muscarinic agent, induces amnesia and oxidative stress similar to that observed in the older age. Studies suggest that antioxidants derived from plant products may provide protection against oxidative stress. Therefore, the present study was designed to investigate the attenuation of scopolamine-induced memory impairment and oxidative stress by walnut supplementation in rats. Rats in test group were administrated with walnut suspension (400 mg/kg/day) for four weeks. Both control and walnut-treated rats were then divided into saline and scopolamine-treated groups. Rats in the scopolamine group were injected with scopolamine (0.5 mg/kg dissolved in saline) five minutes before the start of each memory test. Memory was assessed by elevated plus maze (EPM), Morris water maze (MWM), and novel object recognition task (NOR) followed by estimation of regional acetylcholine levels and acetylcholinesterase activity. In the next phase, brain oxidative status was determined by assaying lipid peroxidation, and measuring superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) activities. Results showed that scopolamine-treatment impaired memory function, caused cholinergic dysfunction, and induced oxidative stress in rats compared to that saline-treated controls. These impairments were significantly restored by pre-administration of walnut. This study demonstrates that antioxidant properties of walnut may provide augmented effects on cholinergic function by reducing oxidative stress and thus improving memory performance.

  13. Evaluation of group electronegativities and hardness (softness) of group 14 elements and containing functional groups through density functional theory and correlation with NMR spectra data

    International Nuclear Information System (INIS)

    Vivas-Reyes, R.; Aria, A.

    2008-01-01

    Quantum Chemical calculations for group 14 elements of Periodic Table (C, Si, Ge, Sn, Pb) and their functional groups have been carried out using Density Functional Theory (DFT) based reactivity descriptors such as group electronegativities, hardness and softness. DFT calculations were performed for a large series of tetra coordinated Sn compounds of the CH 3 SnRR'X type, where X is a halogen and R and R' are alkyl, halogenated alkyl, alkoxy, or alkyl thio groups. The results were interpreted in terms of calculated electronegativity and hardness of the SnRR'X groups, applying a methodology previously developed by Geerlings and coworkers (J. Phys. Chem. 1993, 97, 1826). These calculations allowed to see the regularities concerning the influence of the nature of organic groups RR' and inorganic group X on electronegativities and hardness of the SnRR'X groups; in this case, it was found a very good correlation between the electronegativity of the fragment and experimental 119 Sn chemical shifts, a property that sensitively reflects the change in the valence electronic structure of molecules. This work was complemented with the study of some compounds of the EX and ER types, where E= C, Si, Ge, Sn and R= CH 3 , H, which was performed to study the influence that the central atom has on the electronegativity and hardness of molecules, or whether these properties are mainly affected for the type of ligand bound to the central atom. All these calculations were performed using the B3PW91 functional together with the 6-3 1 1 + + G basis set level for H, C, Si, Ge, F, Cl and Br atoms and the 3-21G for Sn and I atoms. (author)

  14. Evaluation of group electronegativities and hardness (softness) of group 14 elements and containing functional groups through density functional theory and correlation with NMR spectra data

    Energy Technology Data Exchange (ETDEWEB)

    Vivas-Reyes, R.; Aria, A. [Universidad de Cartagena, Cartagena (Colombia). Facultad de Ciencias Naturales y Exactas. Grupo de Quimica Cuantica y Computacional]. E-mail: rvivasr@unicartagena.edu.co

    2008-07-01

    Quantum Chemical calculations for group 14 elements of Periodic Table (C, Si, Ge, Sn, Pb) and their functional groups have been carried out using Density Functional Theory (DFT) based reactivity descriptors such as group electronegativities, hardness and softness. DFT calculations were performed for a large series of tetra coordinated Sn compounds of the CH{sub 3}SnRR'X type, where X is a halogen and R and R' are alkyl, halogenated alkyl, alkoxy, or alkyl thio groups. The results were interpreted in terms of calculated electronegativity and hardness of the SnRR'X groups, applying a methodology previously developed by Geerlings and coworkers (J. Phys. Chem. 1993, 97, 1826). These calculations allowed to see the regularities concerning the influence of the nature of organic groups RR' and inorganic group X on electronegativities and hardness of the SnRR'X groups; in this case, it was found a very good correlation between the electronegativity of the fragment and experimental {sup 119}Sn chemical shifts, a property that sensitively reflects the change in the valence electronic structure of molecules. This work was complemented with the study of some compounds of the EX and ER types, where E= C, Si, Ge, Sn and R= CH{sub 3}, H, which was performed to study the influence that the central atom has on the electronegativity and hardness of molecules, or whether these properties are mainly affected for the type of ligand bound to the central atom. All these calculations were performed using the B3PW91 functional together with the 6-3 1 1 + + G basis set level for H, C, Si, Ge, F, Cl and Br atoms and the 3-21G for Sn and I atoms. (author)

  15. Gold nanoparticle catalyzed oxidation of alcohols - From biomass to commodity chemicals

    DEFF Research Database (Denmark)

    Taarning, Esben; Christensen, Claus H.

    2007-01-01

    and glycerol are rich in alcohol functionalities. Thus, a key step in utilizing these resources lies in the conversion of this functional group. Benign oxidations involving oxygen as the stoichiometric oxidant are important from both an environmental and economical perspective. Recently, it has become clear...... that supported gold nanoparticles are highly active catalysts for oxidizing alcohols and aldehydes using oxygen as the oxidant. This perspective will focus on the use of gold nanoparticles in the oxidation of renewables....

  16. Using solvent-free sample preparation to promote protonation of poly(ethylene oxide)s with labile end-groups in matrix-assisted laser desorption/ionisation.

    Science.gov (United States)

    Mazarin, Michael; Phan, Trang N T; Charles, Laurence

    2008-12-01

    Protonation is usually required to observe intact ions during matrix-assisted laser desorption/ionization (MALDI) of polymers containing fragile end-groups while cation adduction induces chain-end degradation. These polymers, generally obtained via living free radical polymerization techniques, are terminated with a functionality in which a bond is prone to homolytic cleavage, as required by the polymerization process. A solvent-free sample preparation method was used here to avoid salt contaminant from the solvent traditionally used in the dried-droplet MALDI procedure. Solvent-based and solvent-free sample preparations were compared for a series of three poly(ethylene oxide) polymers functionalized with a labile end-group in a nitroxide-mediated polymerization reaction, using 2,4,6-trihydroxyacetophenone (THAP) as the matrix without any added salt. Intact oligomer ions could only be produced as protonated molecules in solvent-free MALDI while sodium adducts of degraded polymers were formed from the dried-droplet samples. Although MALDI analysis was performed at the laser threshold, fragmentation of protonated macromolecules was still observed to occur. However, in contrast to sodiated molecules, dissociation of protonated oligomers does not involve the labile C--ON bond of the end-group. As the macromolecule size increased, protonation appeared to be less efficient and sodium adduction became the dominant ionization process, although no sodium salt was added in the preparation. Formation of sodiated degraded macromolecules would be dictated by increasing cation affinity as the size of the oligomers increases and would reveal the presence of salts at trace levels in the MALDI samples.

  17. Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications

    International Nuclear Information System (INIS)

    Luo, Honglin; Xiong, Guangyao; Hu, Da; Ren, Kaijing; Yao, Fanglian; Zhu, Yong; Gao, Chuan; Wan, Yizao

    2013-01-01

    Introduction of active groups on the surface of bacterial cellulose (BC) nanofibers is one of the promising routes of tailoring the performance of BC scaffolds for tissue engineering. This paper reported the introduction of aldehyde groups to BC nanofibers by 2,2,6,6-tetramethylpyperidine-1-oxy radical (TEMPO)-mediated oxidation and evaluation of the potential of the TEMPO-oxidized BC as tissue engineering scaffolds. Periodate oxidation was also conducted for comparison. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses were carried out to determine the existence of aldehyde groups on BC nanofibers and the crystallinity. In addition, properties relevant to scaffold applications such as morphology, fiber diameter, mechanical properties, and in vitro degradation were characterized. The results indicated that periodate oxidation could introduce free aldehyde to BC nanofibers and the free aldehyde groups on the TEMPO-oxidized BC tended to transfer to acetal groups. It was also found that the advantageous 3D structure of BC scaffolds remained unchanged and that no significant changes in morphology, fiber diameter, tensile structure and in vitro degradation were found after TEMPO-mediated oxidation while significant differences were observed upon periodate oxidation. The present study revealed that TEMPO-oxidation could impart BC scaffolds with new functions while did not degrade their intrinsic advantages. - Highlights: • TEMPO-mediated oxidation on BC scaffold for tissue engineering use was conducted. • TEMPO-mediated oxidation did not degrade the intrinsic advantages of BC scaffold. • TEMPO-mediated oxidation could impart BC scaffold with new functional groups. • Feasibility of TEMPO-oxidized BC as tissue engineering scaffold was confirmed

  18. Increased electrochemical properties of ruthenium oxide and graphene/ruthenium oxide hybrid dispersed by polyvinylpyrrolidone

    International Nuclear Information System (INIS)

    Chen, Yao; Zhang, Xiong; Zhang, Dacheng; Ma, Yanwei

    2012-01-01

    Highlights: ► A good dispersion of RuO 2 and graphene/RuO 2 is obtained by polyvinylpyrrolidone. ► PVP as a dispersant also can prevent the formation of metal Ru in graphene/RuO 2 . ► The max capacitances of the hybrid and RuO 2 reach 435 and 597 F g −1 at 0.2 A g −1 . ► The hybrid shows the best rate capability of 39% at 50 A g −1 . - Abstract: Ruthenium oxide has been prepared by a sol–gel method. Polyvinylpyrrolidone (PVP) as an excellent polymeric dispersant is adopted to prevent aggregation of ruthenium oxide. In order to enhance the rate capability of ruthenium oxide, graphene with residual oxygen functional groups as a 2D support has been merged into ruthenium oxide. These oxygen functional groups not only favor to form stable few layers of graphene colloids, but also offer the sites to anchor ruthenium oxide nanoparticles. X-ray diffraction infers that PVP can also hinder the partial formation of Ru by blocking the direct contact between the Ru 3+ and the graphene in the sol–gel synthesis of the hybrids. The ruthenium oxide and the graphene/ruthenium oxide hybrids dispersed by PVP have superior electrochemical properties due to good dispersing and protecting ability of PVP. Especially, the hybrids using PVP exhibit the best rate capability, indicating that the composites possess an advanced structure of combining sheets and particles in nano-scale.

  19. Functionalization of group IV semiconductors; Funktionalisierung von Gruppe IV-Halbleitern

    Energy Technology Data Exchange (ETDEWEB)

    Hoeb, Marco Andreas

    2011-01-15

    The present work is focused on the structural and electronic properties of thermally and photochemically grafted alkene molecules. The semiconductor substrates used in this work are the group IV-semiconductors silicon, diamond, and silicon carbide. On silicon, functionalization via the commonly known hydrosilylation reaction was performed. During thermal treatment in vacuum-distilled 1-octadecene, the alkene molecules covalently added to the substrate via Si-C bond formation, resulting in self-assembled organic monolayers. The reaction resulted in smooth and homogeneous alkyl-terminated surfaces. Static water contact angles were determined to be 113 . Photoelectron spectroscopy was performed and showed no evidence of surface oxidation. The high packing of the organic layers is indicated by the asymmetric methylene vibrational mode, which has been redshifted by -4 cm{sup -1} with respect to the liquid alkene mode position. The average molecular tilt-angle of the alkyl-molecules, relative to the surface normal, has been identified to be 34 . The transport properties have been determined to be dominated by tunneling processes. On diamond, first results on the thermal functionalization of hydrogen- and oxygen-terminated surfaces are demonstrated. Thermal functionalization with octadecene showed high selectivity, while hydrogenated diamond surfaces were found to be inert to the thermally induced reaction with alkenes. In contrast, alkene molecules were successfully grafted to oxygen-terminated sites via covalent C-O-C bonds. Reaction temperatures as high as 160 C were necessary to initiate the functionalization process.Wetting experiments on the alkyl-modified surfaces revealed contact angle values of 103 . The high quality of the monolayers on oxygenated surfaces was confirmed by IR-spectroscopy. In addition, polarized IR-measurements indicated a tilt angle of 23 . On silicon carbide, thermal and UV-induced alkoxylation were studied. Hydrofluoric acid treatment

  20. Enhanced Performance of Polyurethane Hybrid Membranes for CO2 Separation by Incorporating Graphene Oxide: The Relationship between Membrane Performance and Morphology of Graphene Oxide.

    Science.gov (United States)

    Wang, Ting; Zhao, Li; Shen, Jiang-nan; Wu, Li-guang; Van der Bruggen, Bart

    2015-07-07

    Polyurethane hybrid membranes containing graphene oxide (GO) with different morphologies were prepared by in situ polymerization. The separation of CO2/N2 gas mixtures was studied using these novel membranes. The results from the morphology characterization of GO samples indicated that the oxidation process in the improved Hummers method introduced oxygenated functional groups into graphite, making graphite powder exfoliate into GO nanosheets. The surface defects on the GO sheets increased when oxidation increased due to the introduction of more oxygenated functional groups. Both the increase in oxygenated functional groups on the GO surface and the decrease in the number of GO layers leads to a better distribution of GO in the polymer matrix, increasing thermal stability and gas separation performance of membranes. The addition of excess oxidant destroyed the structure of GO sheets and forms structural defects, which depressed the separation performance of membranes. The hybrid membranes containing well-distributed GO showed higher permeability and permeability selectivity for the CO2. The formation of GO aggregates in the hybrid membranes depressed the membrane performance at a high content of GO.

  1. Control of Surface Functional Groups on Pertechnetate Sorption on Activated Carbon

    International Nuclear Information System (INIS)

    Y. Wang; H. Gao; R. Yeredla; H. Xu; M. Abrecht; G.D. Stasio

    2006-01-01

    99 Tc is highly soluble and poorly adsorbed by natural materials under oxidizing conditions, thus being of particular concern for radioactive waste disposal. Activated carbon can potentially be used as an adsorbent for removing Tc from aqueous solutions. We have tested six commercial activated carbon materials for their capabilities for sorption of pertechnetate (TcO 4 - ). The tested materials can be grouped into two distinct types: Type I materials have high sorption capabilities with the distribution coefficients (K d ) varying from 9.5 x 10 5 to 3.2 x 10 3 mL/g as the pH changes from 4.5 to 9.5, whereas type II materials have relatively low sorption capabilities with K d remaining more or less constant (1.1 x 10 3 - 1.8 x 10 3 mL/g) over a similar pH range. The difference in sorption behavior between the two types of materials is attributed to the distribution of surface functional groups. The predominant surface groups are identified to be carboxylic and phenolic groups. The carboxylic group can be further divided into three subgroups A, B, and C in the order of increasing acidity. The high sorption capabilities of type I materials are found to be caused by the presence of a large fraction of carboxylic subgroups A and B, while the low sorption capabilities of type II materials are due to the exclusive presence of phenolic and carboxylic subgroup C. Therefore, the performance of activated carbon for removing TcO 4 - can be improved by enhancing the formation of carboxylic subgroups A and B during material processing

  2. Quaternary oxide halides of group 15 with zinc and cadmium

    International Nuclear Information System (INIS)

    Rueck, Nadia

    2014-01-01

    The present thesis ''Quaternary oxide halides of group 15 with zinc and cadmium'' deals with the chemical class of oxide halides, which contain d-block element cations and pnicogens. Over the past few years compounds containing pnicogene cations are intensively investigated. The reason for this is the free electron pair of the Pn"3"+ cation, which is responsible for some interesting properties. Free electron pairs do not only impact the spatial structure of molecules but also the properties of materials. The object of this work was the synthesis and characterization of compounds containing Pn"3"+ cations with free electron pairs. Due to the structure-determining effect of these free electron pairs and in combination with halides it is possible to synthesize compounds with low-dimensional structures like chains and layers. In these compounds the structure is separated into halophilic and chalcophilic sub-structures, which are held together only by weak Van der Waals forces.

  3. Functional Group Analysis of Biomass Burning Particles Using Infrared Spectroscopy

    Science.gov (United States)

    Horrell, K.; Lau, A.; Bond, T.; Iraci, L. T.

    2008-12-01

    Biomass burning is a significant source of particulate organic carbon in the atmosphere. These particles affect the energy balance of the atmosphere directly by absorbing and scattering solar radiation, and indirectly through their ability to act as cloud condensation nuclei (CCN). The chemical composition of biomass burning particles influences their ability to act as CCN, thus understanding the chemistry of these particles is required for understanding their effects on climate and air quality. As climate change influences the frequency and severity of boreal forest fires, the influence of biomass burning aerosols on the atmosphere may become significantly greater. Only a small portion of the organic carbon (OC) fraction of these particles has been identified at the molecular level, although several studies have explored the general chemical classes found in biomass burning smoke. To complement those studies and provide additional information about the reactive functional groups present, we are developing a method for polarity-based separation of compound classes found in the OC fraction, followed by infrared (IR) spectroscopic analysis of each polarity fraction. It is our goal to find a simple, relatively low-tech method which will provide a moderate chemical understanding of the entire suite of compounds present in the OC fraction of biomass burning particles. Here we present preliminary results from pine and oak samples representative of Midwestern United States forests burned at several different temperatures. Wood type and combustion temperature are both seen to affect the composition of the particles. The latter seems to affect relative contributions of certain functional groups, while oak demonstrates at least one additional chemical class of compounds, particularly at lower burning temperatures, where gradual solid-gas phase reactions can produce relatively large amounts of incompletely oxidized products.

  4. Whippits, nitrous oxide and the dangers of legal highs.

    Science.gov (United States)

    Thompson, Alexander G; Leite, M Isabel; Lunn, Michael P; Bennett, David L H

    2015-06-01

    Nitrous oxide is increasingly being used as a recreational drug. Prolonged use of nitrous oxide can have disabling neurological sequelae due to functional inactivation of vitamin B₁₂. We present three cases illustrating the neurological complications of using nitrous oxide. Two of these patients received nitrous oxide as a consequence of repeated hospital attendance and the third via 'Whippit' canisters used in cream dispensers, which are now widely available. Two patients developed sensorimotor peripheral neuropathy with demyelinating features with no clinical or imaging evidence of myelopathy, emphasising that not all patients develop subacute combined degeneration of the spinal cord (the typical presentation of functional vitamin B12 deficiency). The diagnosis was based upon the history of nitrous oxide use and raised levels of homocysteine and/or methylmalonic acid. All patients were treated with parenteral vitamin B12 with partial recovery, though two were left significantly disabled. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Cathodic arc sputtering of functional titanium oxide thin films, demonstrating resistive switching

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, Petr, E-mail: pshvets@innopark.kantiana.ru; Maksimova, Ksenia; Demin, Maxim; Dikaya, Olga; Goikhman, Alexander

    2017-05-15

    The formation of thin films of the different stable and metastable titanium oxide phases is demonstrated by cathode arc sputtering of a titanium target in an oxygen atmosphere. We also show that sputtering of titanium in vacuum yields the formation of titanium silicides on the silicon substrate. The crystal structure of the produced samples was investigated using Raman spectroscopy and X-ray diffraction. We conclude that cathode arc sputtering is a flexible method suitable for producing the functional films for electronic applications. The functionality is verified by the memory effect demonstration, based on the resistive switching in the titanium oxide thin film structure.

  6. Enhanced Stem Cell Osteogenic Differentiation by Bioactive Glass Functionalized Graphene Oxide Substrates

    Directory of Open Access Journals (Sweden)

    Xiaoju Mo

    2016-01-01

    Full Text Available An unmet need in engineered bone regeneration is to develop scaffolds capable of manipulating stem cells osteogenesis. Graphene oxide (GO has been widely used as a biomaterial for various biomedical applications. However, it remains challenging to functionalize GO as ideal platform for specifically directing stem cell osteogenesis. Herein, we report facile functionalization of GO with dopamine and subsequent bioactive glass (BG to enhance stem cell adhesion, spreading, and osteogenic differentiation. On the basis of graphene, we obtained dopamine functionalized graphene oxide/bioactive glass (DGO/BG hybrid scaffolds containing different content of DGO by loading BG nanoparticles on graphene oxide surface using sol-gel method. To enhance the dispersion stability and facilitate subsequent nucleation of BG in GO, firstly, dopamine (DA was used to modify GO. Then, the modified GO was functionalized with bioactive glass (BG using sol-gel method. The adhesion, spreading, and osteoinductive effects of DGO/BG scaffold on rat bone marrow mesenchymal stem cells (rBMSCs were evaluated. DGO/BG hybrid scaffolds with different content of DGO could influence rBMSCs’ behavior. The highest expression level of osteogenic markers suggests that the DGO/BG hybrid scaffolds have great potential or elicit desired bone reparative outcome.

  7. Sorption of uranyl ions on hydrous oxides

    International Nuclear Information System (INIS)

    Gupta, A.R.; Venkataramani, B.

    1988-01-01

    Sorption of uranyl ions on hydrous titanium oxide (HTiO), magnetite (MAG), and hydrous thorium oxide (HThO) has been studied as a function of pH. Hydrous oxides have been characterized by their pH-titration curves, intrinsic dissociation constants (pK ai * ) and point of zero charge (pH pzc ). The fraction of protonated surface hydroxyl groups as well as the surface pH (pH surf ) as a function of solution pH have been computed. The distribution of various hydrolyzed species of uranyl ions with solution pH have been compared with uranyl sorption isotherm on these oxides. Sorption edge in all the cases occurs when free hydroxyl groups are available on the surface and pH surf is sufficiently high to favor the formation of dimer-like species on the surface. A new model for the sorption process, called surface hydrolysis model, which explains these and other features of uranyl sorption on hydrous oxides has been proposed. The model visualizes the sorption process as linking of uranyl ions with two adjacent free surface hydroxyl groups without deprotonation (provided the surface pH is high for the hydrolysis of uranyl ions) and formation of dimer-like structures on the surface. The new model has been successfully applied to the present and other available data on uranyl ion sorption on hydrous oxides. (author)

  8. Reduced graphene oxide for Li–air batteries

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Overgaard, Marc; Younesi, Reza

    2015-01-01

    Reduced graphene oxide (rGO) has shown great promise as an air-cathode for Li-air batteries with high capacity. In this article we demonstrate how the oxidation time of graphene oxide (GO) affects the ratio of different functional groups and how trends of these in GO are extended to chemically...... and thermally reduced GO. We investigate how differences in functional groups and synthesis may affect the performance of Li-O-2 batteries. The oxidation timescale of the GO was varied between 30 min and 3 days before reduction. Powder Xray diffraction, micro-Raman, FE-SEM, BET analysis, and XPS were used...... techniques can enhance the structural understanding of rGO. Different rGO cathodes were tested in Li-O-2 batteries which revealed a difference in overpotentials and discharge capacities for the different rGO's. We report the highest Li-O-2 battery discharge capacity recorded of approximately 60,000 m...

  9. Sulfhydryl group content of chicken progesterone receptor: effect of oxidation on DNA binding activity

    International Nuclear Information System (INIS)

    Peleg, S.; Schrader, W.T.; O'Malley, B.W.

    1988-01-01

    DNA binding activity of chicken progesterone receptor B form (PRB) and A form (PRA) has been examined. This activity is strongly dependent upon the presence of thiols in the buffer. Stability studies showed that PRB was more sensitive to oxidation that was PRA. Receptor preparations were fractionated by DNA-cellulose chromatography to DNA-positive and DNA-negative subpopulations, and sulfhydryl groups were quantified on immunopurified receptor by labeling with [ 3 H]-N-ethylmaleimide. Labeling of DNA-negative receptors with [ 3 H]-N-ethylmaleimide showed 21-23 sulfhydryl groups on either PRA or PRB form when the proteins were reduced and denatured. A similar number was seen without reduction if denatured DNA-positive receptor species were tested. In contrast, the DNA-negative PRB had only 10-12 sulfhydryl groups detectable without reduction. A similar number (12-13 sulfhydryl groups) was found for PRA species that lost DNA binding activity after exposure to a nonreducing environment in vitro. The authors conclude that the naturally occurring receptor forms unable to bind to DNA, as well as receptor forms that have lost DNA binding activity due to exposure to nonreducing environment in vitro, contain 10-12 oxidized cysteine residues, likely present as disulfide bonds. Since they were unable to reduce the disulfide bonds when the native DNA-negative receptor proteins were treated with dithiothreitol (DTT), they speculate that irreversible loss of DNA binding activity of receptor in vitro is due to oxidation of cysteine residues that are not accessible to DTT in the native state

  10. Polyethyleneglycol/silver functionalized reduced graphene oxide aerogel for environmental application

    Science.gov (United States)

    Kumari, G. Vanitha; Asha, S.; Ananth, A. Nimrodh; Rajan, M. A. Jothi; Mathavan, T.

    2018-04-01

    Polyethylene glycol (PEG)/Silver (Ag) functionalized reduced graphene oxide aerogel (RGOA) was synthesized. PEG/Ag decorated reduced graphene oxide aerogel was characterized using XRD, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR). The surface morphology of PEG/Ag/RGOA was analyzed using scanning electron microscope. The non-covalent interaction between reduced graphene oxide layers and the interaction between PEG and Ag on RGOA were studied by FT-IR spectra. It was observed that the interaction between Ag and PEG could enhance the properties of RGOA. Methyl Orange (MO) dye degradation was observed from UV-Vis Spectra. The process was studied by monitoring the simultaneous decrease in the height of UV-Vis absorption peak of dye solution. The results show that PEG/RGOA and PEG/Ag/RGOA are an efficient catalyst for dye degradation.

  11. Group functioning of a collaborative family research team.

    Science.gov (United States)

    Johnson, S K; Halm, M A; Titler, M G; Craft, M; Kleiber, C; Montgomery, L A; Nicholson, A; Buckwalter, K; Cram, E

    1993-07-01

    Collaborative research teams are an attractive means of conducting nursing research in the clinical setting because of the many opportunities that collaboration can supply. These opportunities include a chance to: (1) network with other nurses who have similar interests, (2) share knowledge and expertise for designing clinical studies that directly affect daily practice, (3) develop instruments, (4) write grant proposals, (5) collect and analyze data, and (6) prepare manuscripts for publication. The effectiveness of research teams, however, is strongly influenced by group functioning. This article describes the functioning of a collaborative family interventions research team of nursing faculty members and CNSs at a large Midwestern university setting. The formation of the group and membership characteristics are described, along with strategies used to identify the research focus and individual and group goals. Aspects related to the influence of the group on members and the internal operations of the group are also addressed. Future strategies to be explored will focus on the size of the group and joint authorship issues. The authors also set forth a number of recommendations for development of collaborative research groups.

  12. A facile synthesis of functionalized 7,8-diaza[5]helicenes through an oxidative ring-closure of 1,1’-binaphthalene-2,2’-diamines (BINAMs

    Directory of Open Access Journals (Sweden)

    Youhei Takeda

    2015-01-01

    Full Text Available A facile and moderately functional-group-tolerant synthetic method for the preparation of 7,8-diaza[5]helicenes has been developed. It comprises of an oxidative ring-closing process of 1,1’-binaphthalene-2,2’-diamine (BINAM derivatives with a chlorine-containing oxidant (t-BuOCl in the presence of a base (2,6-lutidine. In addition the basic physicochemical properties of newly synthesized compounds have been investigated.

  13. Calculating the knowledge-based similarity of functional groups using crystallographic data

    Science.gov (United States)

    Watson, Paul; Willett, Peter; Gillet, Valerie J.; Verdonk, Marcel L.

    2001-09-01

    A knowledge-based method for calculating the similarity of functional groups is described and validated. The method is based on experimental information derived from small molecule crystal structures. These data are used in the form of scatterplots that show the likelihood of a non-bonded interaction being formed between functional group A (the `central group') and functional group B (the `contact group' or `probe'). The scatterplots are converted into three-dimensional maps that show the propensity of the probe at different positions around the central group. Here we describe how to calculate the similarity of a pair of central groups based on these maps. The similarity method is validated using bioisosteric functional group pairs identified in the Bioster database and Relibase. The Bioster database is a critical compilation of thousands of bioisosteric molecule pairs, including drugs, enzyme inhibitors and agrochemicals. Relibase is an object-oriented database containing structural data about protein-ligand interactions. The distributions of the similarities of the bioisosteric functional group pairs are compared with similarities for all the possible pairs in IsoStar, and are found to be significantly different. Enrichment factors are also calculated showing the similarity method is statistically significantly better than random in predicting bioisosteric functional group pairs.

  14. Beneficial effects of a Q-ter based nutritional mixture on functional performance, mitochondrial function, and oxidative stress in rats.

    Directory of Open Access Journals (Sweden)

    Jinze Xu

    2010-05-01

    Full Text Available Mitochondrial dysfunction and oxidative stress are central mechanisms underlying the aging process and the pathogenesis of many age-related diseases. Selected antioxidants and specific combinations of nutritional compounds could target many biochemical pathways that affect both oxidative stress and mitochondrial function and, thereby, preserve or enhance physical performance.In this study, we evaluated the potential anti-aging benefits of a Q-ter based nutritional mixture (commercially known as Eufortyn mainly containing the following compounds: terclatrated coenzyme Q(10 (Q-ter, creatine and a standardized ginseng extract. We found that Eufortyn supplementation significantly ameliorated the age-associated decreases in grip strength and gastrocnemius subsarcolemmal mitochondria Ca(2+ retention capacity when initiated in male Fischer344 x Brown Norway rats at 21 months, but not 29 months, of age. Moreover, the increases in muscle RNA oxidation and subsarcolemmal mitochondrial protein carbonyl levels, as well as the decline of total urine antioxidant power, which develop late in life, were mitigated by Eufortyn supplementation in rats at 29 months of age.These data imply that Eufortyn is efficacious in reducing oxidative damage, improving the age-related mitochondrial functional decline, and preserving physical performance when initiated in animals at early midlife (21 months. The efficacy varied, however, according to the age at which the supplementation was provided, as initiation in late middle age (29 months was incapable of restoring grip strength and mitochondrial function. Therefore, the Eufortyn supplementation may be particularly beneficial when initiated prior to major biological and functional declines that appear to occur with advancing age.

  15. Beneficial effects of a Q-ter based nutritional mixture on functional performance, mitochondrial function, and oxidative stress in rats.

    Science.gov (United States)

    Xu, Jinze; Seo, Arnold Y; Vorobyeva, Darya A; Carter, Christy S; Anton, Stephen D; Lezza, Angela M S; Leeuwenburgh, Christiaan

    2010-05-11

    Mitochondrial dysfunction and oxidative stress are central mechanisms underlying the aging process and the pathogenesis of many age-related diseases. Selected antioxidants and specific combinations of nutritional compounds could target many biochemical pathways that affect both oxidative stress and mitochondrial function and, thereby, preserve or enhance physical performance. In this study, we evaluated the potential anti-aging benefits of a Q-ter based nutritional mixture (commercially known as Eufortyn) mainly containing the following compounds: terclatrated coenzyme Q(10) (Q-ter), creatine and a standardized ginseng extract. We found that Eufortyn supplementation significantly ameliorated the age-associated decreases in grip strength and gastrocnemius subsarcolemmal mitochondria Ca(2+) retention capacity when initiated in male Fischer344 x Brown Norway rats at 21 months, but not 29 months, of age. Moreover, the increases in muscle RNA oxidation and subsarcolemmal mitochondrial protein carbonyl levels, as well as the decline of total urine antioxidant power, which develop late in life, were mitigated by Eufortyn supplementation in rats at 29 months of age. These data imply that Eufortyn is efficacious in reducing oxidative damage, improving the age-related mitochondrial functional decline, and preserving physical performance when initiated in animals at early midlife (21 months). The efficacy varied, however, according to the age at which the supplementation was provided, as initiation in late middle age (29 months) was incapable of restoring grip strength and mitochondrial function. Therefore, the Eufortyn supplementation may be particularly beneficial when initiated prior to major biological and functional declines that appear to occur with advancing age.

  16. Phosphor Dysprosium-Doped Layered Double Hydroxides Exchanged with Different Organic Functional Groups

    Directory of Open Access Journals (Sweden)

    David Ricardo Martínez Vargas

    2013-01-01

    Full Text Available The layers of a Zn/Al layered double hydroxide (LDH were doped with Dy3+ cations. Among some compositions, the Zn2+ : Al3+ : Dy3+ molar ratio equal to 30 : 9 : 1 presented a single crystalline phase. Organic anions with carboxylic, amino, sulfate, or phosphate functional groups were intercalated as single layers between LDH layers as confirmed by X-ray diffraction and infrared spectroscopy. Photoluminescence spectra of the nitrate intercalated LDH showed a wide emission band with strong intensity in the yellow region (around 574 nm, originated due to symmetry distortion of the octahedral coordination in dysprosium centers. Moreover, a broad red band emission was also detected apparently due to the presence of zinc oxide. The distorted symmetry of the dysprosium coordination environment, also confirmed by X-ray photoelectron spectroscopy analysis, was modified after the intercalation with phenyl phosphonate (PP, aspartate (Asp, adipate (Adip, and serinate (Ser anions; the emission as measured from PL spectra of these LDH was more intense in the blue region (ca. 486 nm, thus indicating an increase in symmetry of dysprosium octahedrons. The red emission band from zinc oxide kept the same intensity after intercalation of dodecyl sulfate (DDS. An additional emission of unknown origin at λ = 767 nm was present in all LDHs.

  17. Eco-friendly one-pot synthesis of highly dispersible functionalized graphene nanosheets with free amino groups

    International Nuclear Information System (INIS)

    Liu Zhiting; Duan Xuezhi; Qian Gang; Zhou Xinggui; Yuan Weikang

    2013-01-01

    An eco-friendly, facile and scalable hydrothermal approach, in which the reduction and functionalization of graphite oxide (GO) are completed in one pot, is proposed for the synthesis of monolayer 3-aminopropyltriethoxysilane (APTES)-functionalized graphenes (A-FGs). Atomic force microscopy, transmission electron microscopy and x-ray diffraction analyses indicate that the as-synthesized A-FGs consist of only one or a few layered graphenes, while x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis reveal that APTES is bonded to graphene by the dehydration reaction between the Si–OH (produced by APTES hydration) and the –OH on the GO surface. As a result, free amino groups are left on the A-FGs. Moreover, A-FGs are highly dispersible in dimethylsulfoxide, APTES and ethylene glycol, and their solubilities are up to 0.89, 4.03 and 0.90 mg ml −1 , respectively. (paper)

  18. Sulfophenyl-Functionalized Reduced Graphene Oxide Networks on Electrospun 3D Scaffold for Ultrasensitive NO2 Gas Sensor

    Directory of Open Access Journals (Sweden)

    Bin Zou

    2017-12-01

    Full Text Available Ultrasensitive room temperature real-time NO2 sensors are highly desirable due to potential threats on environmental security and personal respiratory. Traditional NO2 gas sensors with highly operated temperatures (200–600 °C and limited reversibility are mainly constructed from semiconducting oxide-deposited ceramic tubes or inter-finger probes. Herein, we report the functionalized graphene network film sensors assembled on an electrospun three-dimensional (3D nanonetwork skeleton for ultrasensitive NO2 sensing. The functional 3D scaffold was prepared by electrospinning interconnected polyacrylonitrile (PAN nanofibers onto a nylon window screen to provide a 3D nanonetwork skeleton. Then, the sulfophenyl-functionalized reduced graphene oxide (SFRGO was assembled on the electrospun 3D nanonetwork skeleton to form SFRGO network films. The assembled functionalized graphene network film sensors exhibit excellent NO2 sensing performance (10 ppb to 20 ppm at room temperature, reliable reversibility, good selectivity, and better sensing cycle stability. These improvements can be ascribed to the functionalization of graphene with electron-withdrawing sulfophenyl groups, the high surface-to-volume ratio, and the effective sensing channels from SFRGO wrapping onto the interconnected 3D scaffold. The SFRGO network-sensing film has the advantages of simple preparation, low cost, good processability, and ultrasensitive NO2 sensing, all advantages that can be utilized for potential integration into smart windows and wearable electronic devices for real-time household gas sensors.

  19. Tables of thermodynamic functions for gaseous thorium, uranium, and plutonium oxides

    International Nuclear Information System (INIS)

    Green, D.W.

    1980-03-01

    Measured and estimated spectroscopic data for thorium, uranium, and plutonium oxide vapor species have been used with the methods of statistical mechanics to calculate thermodynamic functions. Some inconsistencies between spectroscopic data and some thermodynamic data have been resolved by recalculating ΔH 0 /sub f/ (298.15 0 K) values for the vapor species of these oxides. Evaluation of the uncertainties in data, methods of estimating molecular parameters, and effects of assumptions have been discussed elsewhere. The tables of thermodynamic functions that were reported earlier have been revised principally because the low-frequency vibrational modes of UO 2 and UO 3 have now been measured. These new empirical data resulted in changes in the electronic contributions to the calculated thermodynamic functions of UO 2 and the estimated vibrational contributions for PuO 2 . In addition, some minor changes have been made in the methods of calculation of the electronic contributions for all molecules

  20. Circadian Rhythms of Oxidative Stress Markers and Melatonin Metabolite in Patients with Xeroderma Pigmentosum Group A.

    Science.gov (United States)

    Miyata, Rie; Tanuma, Naoyuki; Sakuma, Hiroshi; Hayashi, Masaharu

    2016-01-01

    Xeroderma pigmentosum group A (XPA) is a genetic disorder in DNA nucleotide excision repair (NER) with severe neurological disorders, in which oxidative stress and disturbed melatonin metabolism may be involved. Herein we confirmed the diurnal variation of melatonin metabolites, oxidative stress markers, and antioxidant power in urine of patients with XPA and age-matched controls, using enzyme-linked immunosorbent assay (ELISA). The peak of 6-sulfatoxymelatonin, a metabolite of melatonin, was seen at 6:00 in both the XPA patients and controls, though the peak value is lower, specifically in the younger age group of XPA patients. The older XPA patients demonstrated an increase in the urinary levels of 8-hydroxy-2'-deoxyguanosine and hexanoyl-lysine, a marker of oxidative DNA damage and lipid peroxidation, having a robust peak at 6:00 and 18:00, respectively. In addition, the urinary level of total antioxidant power was decreased in the older XPA patients. Recently, it is speculated that oxidative stress and antioxidant properties may have a diurnal variation, and the circadian rhythm is likely to influence the NER itself. We believe that the administration of melatonin has the possibility of ameliorating the augmented oxidative stress in neurodegeneration, especially in the older XPA patients, modulating the melatonin metabolism and the circadian rhythm.

  1. Circadian Rhythms of Oxidative Stress Markers and Melatonin Metabolite in Patients with Xeroderma Pigmentosum Group A

    Directory of Open Access Journals (Sweden)

    Rie Miyata

    2016-01-01

    Full Text Available Xeroderma pigmentosum group A (XPA is a genetic disorder in DNA nucleotide excision repair (NER with severe neurological disorders, in which oxidative stress and disturbed melatonin metabolism may be involved. Herein we confirmed the diurnal variation of melatonin metabolites, oxidative stress markers, and antioxidant power in urine of patients with XPA and age-matched controls, using enzyme-linked immunosorbent assay (ELISA. The peak of 6-sulfatoxymelatonin, a metabolite of melatonin, was seen at 6:00 in both the XPA patients and controls, though the peak value is lower, specifically in the younger age group of XPA patients. The older XPA patients demonstrated an increase in the urinary levels of 8-hydroxy-2′-deoxyguanosine and hexanoyl-lysine, a marker of oxidative DNA damage and lipid peroxidation, having a robust peak at 6:00 and 18:00, respectively. In addition, the urinary level of total antioxidant power was decreased in the older XPA patients. Recently, it is speculated that oxidative stress and antioxidant properties may have a diurnal variation, and the circadian rhythm is likely to influence the NER itself. We believe that the administration of melatonin has the possibility of ameliorating the augmented oxidative stress in neurodegeneration, especially in the older XPA patients, modulating the melatonin metabolism and the circadian rhythm.

  2. Aspects of the functional renormalisation group

    International Nuclear Information System (INIS)

    Pawlowski, Jan M.

    2007-01-01

    We discuss structural aspects of the functional renormalisation group. Flows for a general class of correlation functions are derived, and it is shown how symmetry relations of the underlying theory are lifted to the regularised theory. A simple equation for the flow of these relations is provided. The setting includes general flows in the presence of composite operators and their relation to standard flows, an important example being NPI quantities. We discuss optimisation and derive a functional optimisation criterion. Applications deal with the interrelation between functional flows and the quantum equations of motion, general Dyson-Schwinger equations. We discuss the combined use of these functional equations as well as outlining the construction of practical renormalisation schemes, also valid in the presence of composite operators. Furthermore, the formalism is used to derive various representations of modified symmetry relations in gauge theories, as well as to discuss gauge-invariant flows. We close with the construction and analysis of truncation schemes in view of practical optimisation

  3. Influence of functional groups on charge transport in molecular junctions

    DEFF Research Database (Denmark)

    Mowbray, Duncan; Jones, Glenn; Thygesen, Kristian Sommer

    2008-01-01

    Using density functional theory (DFT), we analyze the influence of five classes of functional groups, as exemplified by NO2, OCH3, CH3, CCl3, and I, on the transport properties of a 1,4-benzenedithiolate (BDT) and 1,4-benzenediamine (BDA) molecular junction with gold electrodes. Our analysis...... demonstrates how ideas from functional group chemistry may be used to engineer a molecule's transport properties, as was shown experimentally and using a semiempirical model for BDA [Nano Lett. 7, 502 (2007)]. In particular, we show that the qualitative change in conductance due to a given functional group can...... be predicted from its known electronic effect (whether it is sigma/pi donating/withdrawing). However, the influence of functional groups on a molecule's conductance is very weak, as was also found in the BDA experiments. The calculated DFT conductances for the BDA species are five times larger than...

  4. Polymer supported gold nanoparticles: Synthesis and characterization of functionalized polystyrene-supported gold nanoparticles and their application in catalytic oxidation of alcohols in water

    Science.gov (United States)

    Kaboudin, Babak; Khanmohammadi, Hamid; Kazemi, Foad

    2017-12-01

    Sulfonated polystyrene microsphere were functionalized using ethylene diamine to introduce amine groups to the polymer chains. The amine functionalized polymers were used as a support for gold nanoparticles. A thorough structural characterization has been carried out by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM) images, EDS, CHN and atomic absorption spectroscopy. The polymer supported gold nanoparticles was found to be an efficient catalyst for the oxidation of alcohols in water.

  5. Group-ICA model order highlights patterns of functional brain connectivity

    Directory of Open Access Journals (Sweden)

    Ahmed eAbou Elseoud

    2011-06-01

    Full Text Available Resting-state networks (RSNs can be reliably and reproducibly detected using independent component analysis (ICA at both individual subject and group levels. Altering ICA dimensionality (model order estimation can have a significant impact on the spatial characteristics of the RSNs as well as their parcellation into sub-networks. Recent evidence from several neuroimaging studies suggests that the human brain has a modular hierarchical organization which resembles the hierarchy depicted by different ICA model orders. We hypothesized that functional connectivity between-group differences measured with ICA might be affected by model order selection. We investigated differences in functional connectivity using so-called dual-regression as a function of ICA model order in a group of unmedicated seasonal affective disorder (SAD patients compared to normal healthy controls. The results showed that the detected disease-related differences in functional connectivity alter as a function of ICA model order. The volume of between-group differences altered significantly as a function of ICA model order reaching maximum at model order 70 (which seems to be an optimal point that conveys the largest between-group difference then stabilized afterwards. Our results show that fine-grained RSNs enable better detection of detailed disease-related functional connectivity changes. However, high model orders show an increased risk of false positives that needs to be overcome. Our findings suggest that multilevel ICA exploration of functional connectivity enables optimization of sensitivity to brain disorders.

  6. Hydrophobic and optical characteristics of graphene and graphene oxide films transferred onto functionalized silica particles deposited glass surface

    Science.gov (United States)

    Yilbas, B. S.; Ibrahim, A.; Ali, H.; Khaled, M.; Laoui, T.

    2018-06-01

    Hydrophobic and optical transmittance characteristics of the functionalized silica particles on the glass surface prior and after transfer of graphene and graphene oxide films on the surface are examined. Nano-size silica particles are synthesized and functionalized via chemical grafting and deposited onto a glass surface. Graphene film, grown on copper substrate, was transferred onto the functionalized silica particles surface through direct fishing method. Graphene oxide layer was deposited onto the functionalized silica particles surface via spin coating technique. Morphological, hydrophobic, and optical characteristics of the functionalized silica particles deposited surface prior and after graphene and graphene oxide films transfer are examined using the analytical tools. It is found that the functionalized silica particles are agglomerated at the surface forming packed structures with few micro/nano size pores. This arrangement gives rise to water droplet contact angle and contact angle hysteresis in the order of 163° and 2°, respectively, and remains almost uniform over the entire surface. Transferring graphene and depositing graphene oxide films over the functionalized silica particles surface lowers the water droplet contact angle slightly (157-160°) and increases the contact angle hysteresis (4°). The addition of the graphene and graphene oxide films onto the surface of the deposited functionalized silica particles improves the optical transmittance.

  7. Effects of Exercise Intensity on Postexercise Endothelial Function and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Conor McClean

    2015-01-01

    Full Text Available Purpose. To measure endothelial function and oxidative stress immediately, 90 minutes, and three hours after exercise of varying intensities. Methods. Sixteen apparently healthy men completed three exercise bouts of treadmill running for 30 minutes at 55% V˙O2max (mild; 20 minutes at 75% V˙O2max (moderate; or 5 minutes at 100% V˙O2max (maximal in random order. Brachial artery flow-mediated dilation (FMD was assessed with venous blood samples drawn for measurement of endothelin-1 (ET-1, lipid hydroperoxides (LOOHs, and lipid soluble antioxidants. Results. LOOH increased immediately following moderate exercise (P0.05. Conclusions. Acute exercise at different intensities elicits varied effects on oxidative stress, shear rate, and ET-1 that do not appear to mediate changes in endothelial function measured by FMD.

  8. Thermal oxidation of InP in the presence of nitrates and sulfates of the 4-th group

    International Nuclear Information System (INIS)

    Mittova, I.Ya.; Shchukarev, A.V.; Soshnikov, V.V.; Kashkarov, V.M.

    1999-01-01

    Kinetics and thermal oxidation of indium phosphide were investigated in gas phase of 4 group metal (lead and zirconium) salts. These compound promotors were determined to accelerate oxidation. The mechanism of the effect of promoter cation and anion constituents on formation of the resultant heterostructure were discussed [ru

  9. An investigation of the functional groups on the surface of activated carbons

    Directory of Open Access Journals (Sweden)

    MARYTE DERVINYTE

    2004-05-01

    Full Text Available Activated carbons were produced in the laboratory from wood using a 20-run Plackett–Burman experimental design for 19 factors. The obtained batches of activated carbon were analysed by potentiometric titration and FTIR spectroscopy to determine the surface functional groups. The results obtained by potentiometric titration displayed the distribution of individual acidity constants of those groups in the pK range. Considering this parameter, the surface functional groups were divided into carboxyl, lactone and phenol. The linear regression equations reflecting the influence of each operation used for the synthesis on the amount of these functional groups in the obtained activated carbons were generated. The FTIR spectra were used in parallel for the evaluation of the amount and the type of the surface functional groups. Relationships between the two data sets obtained by potentiometric titration and FTIR spectroscopy were evaluated by correlation analysis. It was established that the amount of surface functional groups determined by potentiometric titration positively correlates with the intensity of the peaks of hydrophilic functional groups in the FTIR spectra. At the same time, the negative correlation between potentiometrically determined amount of surface functional groups and the intensity of peaks of hydrophobic functional groups was observed. Most probably, these non-polar formations can take part in the interaction of carbon surface with H+/OH- ions and diminish the strength of existent functional groups.

  10. Vanadium-substituted heteropolyacids immobilized on amine- functionalized mesoporous MCM-41: A recyclable catalyst for selective oxidation of alcohols with H2O2

    International Nuclear Information System (INIS)

    Dong, Xinbo; Wang, Danjun; Li, Kebin; Zhen, Yanzhong; Hu, Huaiming; Xue, Ganglin

    2014-01-01

    Graphical abstract: Vanadium-substituted phosphotungstic acids are immobilized on amine- functionalized mesoporous MCM-41 and the hybrid catalyst is proved to be a highly efficient solid catalyst for the oxidation of aromatic alcohols to the corresponding carbonyl compounds with H 2 O 2 , featured by the high conversion and selectivity, easy recovery, and quite steady reuse. - Highlights: • Vanadium-substituted phosphotungstic acid immobilized on amine-functionalized mesoporous MCM-41 are prepared. • HPAs were fixed on the inner surface of mesoporous MCM-41 by chemical bonding to aminosilane groups. • The hybrid catalyst showed much higher catalytic activity than the pure HPAs. • The hybrid catalyst is a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols. - Abstract: New hybrid materials of vanadium-substituted phosphotungstic acids (VHPW) immobilized on amine-functionalized mesoporous MCM-41 (VHPW/MCM-41/NH 2 ) are prepared and characterized by FT-IR, XRD, N 2 adsorption, elemental analysis, SEM and TEM for their structural integrity and physicochemical properties. It is found that the structure of the heteropolyacids is retained upon immobilization over mesoporous materials. The catalytic activities of these hybrid materials are tested in the selective oxidation of alcohols to the carbonyl products with 30% aqueous H 2 O 2 as oxidant in toluene. The catalytic activities of different number of vanadium-substituted phosphotungstic acid are investigated, and among the catalysts, H 5 [PV 2 W 10 O 40 ] immobilized on amine-functionalized MCM-41 exhibits the highest activity with 97% conversion and 99% selectivity in the oxidation of benzyl alcohol to benzaldehyde. The hybrid catalyst is proved to be a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols to the corresponding aldehydes with H 2 O 2

  11. Functional group quantification of polymer nanomembranes with soft x-rays

    Science.gov (United States)

    Sunday, Daniel F.; Chan, Edwin P.; Orski, Sara V.; Nieuwendaal, Ryan C.; Stafford, Christopher M.

    2018-03-01

    Polyamide nanomembranes are at the heart of water desalination, a process which plays a critical role in clean water production. Improving their efficiency requires a better understanding of the relationship between chemistry, network structure, and performance but few techniques afford compositional information in ultrathin films (reference materials to establish quantitative relationships between changes in the optical constants and functional group density, and then use the results to evaluate the functional group concentrations of polyamide nanomembranes. We demonstrate that the difference in the amide carbonyl and carboxylic acid group concentrations can be used to calculate the crosslink density, which is shown to vary significantly across three different polyamide chemistries. A clear relationship is established between the functional group density and the permselectivity (α ), indicating that more densely crosslinked materials result in a higher α of the nanomembranes. Finally, measurements on a polyamide/poly(acrylic acid) bilayer demonstrate the ability of this approach to quantify depth-dependent functional group concentrations in thin films.

  12. Functional group diversity is key to Southern Ocean benthic carbon pathways.

    Directory of Open Access Journals (Sweden)

    David K A Barnes

    Full Text Available High latitude benthos are globally important in terms of accumulation and storage of ocean carbon, and the feedback this is likely to have on regional warming. Understanding this ecosystem service is important but difficult because of complex taxonomic diversity, history and geography of benthic biomass. Using South Georgia as a model location (where the history and geography of benthic biology is relatively well studied we investigated whether the composition of functional groups were critical to benthic accumulation, immobilization and burial pathway to sequestration-and also aid their study through simplification of identification. We reclassified [1], [2] morphotype and carbon mass data to 13 functional groups, for each sample of 32 sites around the South Georgia continental shelf. We investigated the influence on carbon accumulation, immobilization and sequestration estimate by multiple factors including the compositions of functional groups. Functional groups showed high diversity within and between sites, and within and between habitat types. Carbon storage was not linked to a functional group in particular but accumulation and immobilization increased with the number of functional groups present and the presence of hard substrata. Functional groups were also important to carbon burial rate, which increased with the presence of mixed (hard and soft substrata. Functional groups showed high surrogacy for taxonomic composition and were useful for examining contrasting habitat categorization. Functional groups not only aid marine carbon storage investigation by reducing time and the need for team size and speciality, but also important to benthic carbon pathways per se. There is a distinct geography to seabed carbon storage; seabed boulder-fields are hotspots of carbon accumulation and immobilization, whilst the interface between such boulder-fields and sediments are key places for burial and sequestration.

  13. Simultaneous Reduction and Functionalization of Graphene Oxide by 4-Hydrazinobenzenesulfonic Acid for Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Song-Jie Qiao

    2016-02-01

    Full Text Available Graphene oxide (GO was functionalized and reduced simultaneously by a new reductant, 4-hydrazinobenzenesulfonic acid (HBS, with a one-step and environmentally friendly process. The hydrophilic sulfonic acid group in HBS was grafted onto the surface of GO through a covalent bond. The successful preparation of HBS reduced GO (HBS-rGO was testified by scanning electron microscope (SEM, X-ray diffraction (XRD, Raman spectroscopy, Fourier transform infrared spectra (FTIR, X-ray photoelectron spectroscopic (XPS and thermogravimetric analysis (TGA. The interlayer space of HBS-rGO was increased to 1.478 nm from 0.751 nm for GO, resulting in a subdued Van der Waals’ force between layers and less possibility to form aggregations. The aqueous dispersibility of graphene was improved to 13.49 mg/mL from 0.58 mg/mL after the functionalization. The viscosity of the epoxy resin based HBS-rGO composite could be regulated by an adjustment of the content of HBS-rGO. This study provides a new and applicable approach for the preparation of hydrophilic functionalized graphene, and makes it possible for the application of graphene in some functional polymer nanocomposites, such as specialty water-based coatings.

  14. Oxidation of Proteins in Plants-Mechanisms and Consequences

    DEFF Research Database (Denmark)

    Sweetlove, Lee J; Møller, Ian M

    2009-01-01

    The production of reactive oxygen and reactive nitrogen species in plant cells can lead to a variety of modifications of proteins through oxidation of amino acid side groups. The widespread occurrence of such modifications is becoming appreciated as new proteomic approaches allow their systematic....... A view that such modifications could have signalling ramifications is emerging. However, in many cases there is a lack of information as to the effect of oxidation on protein activity or function. Severe protein oxidation is costly to the cell since oxidatively damaged proteins need to be degraded...... of modified proteins by affinity purification. Although there are several technical caveats with such approaches, they have been useful in documenting the extent of oxidative modification of proteins and have highlighted a number of proteins where oxidative modification is critical for protein function...

  15. Reduced graphene oxide synthesis by high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, O. [Department of Physics, M.U.C Women' s College, Burdwan 713104 (India); Mitra, S. [MLS Prof' s Unit, Indian Association for the Cultivation of Science, Kolkata 700032 (India); Pal, M. [CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); Datta, A. [University School of Basic and Applied Science (USBAS), Guru Gobind Singh Indraprastha University, New Delhi 110075 (India); Dhara, S. [Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Chakravorty, D., E-mail: mlsdc@iacs.res.in [MLS Prof' s Unit, Indian Association for the Cultivation of Science, Kolkata 700032 (India)

    2015-07-01

    Graphene oxide is transformed to reduced graphene oxide by high energy ball milling in inert atmosphere. The process of ball milling introduces defects and removes oxygen functional groups, thereby creating the possibility of fine tuning the band gap of all intermediate stages of the structural evolution. A limit of the backbone sp{sup 2} network structure has been found which should be able to accommodate defects, before amorphization sets in. The amorphization of graphene oxide is achieved rather quickly in comparison to that of graphite. From thermogravimetric and differential scanning calorimetric analysis along with Fourier transform infrared (FTIR) and Raman spectroscopic studies, it is found that the number of oxygen-containing groups decreases at a faster rate than that of aromatic double bonds with increasing ball milling time with a maximum limit of 3 h. Several characterization techniques (FTIR, Raman, UV–Visible and X-ray photoelectron spectroscopy) have confirmed that the material synthesized is, indeed, reduced graphene oxide. - Highlights: • Graphene oxide is transformed to reduced graphene oxide by high energy ball milling in inert atmosphere. • Fine tuning the band gap by introducing defects and removing oxygen functional groups. • Introduction of excess defects leads to amorphization. • Photoluminescence has been observed in the UV-blue region.

  16. Pd(II)-Catalyzed C–H Functionalizations Directed by Distal Weakly Coordinating Functional Groups

    Science.gov (United States)

    Li, Gang; Wan, Li; Zhang, Guofu; Leow, Dasheng; Spangler, Jillian

    2015-01-01

    Ortho-C(sp2)–H olefination and acetoxylation of broadly useful synthetic building blocks phenylacetyl Weinreb amides, esters, and ketones are developed without installing an additional directing group. The interplay between the distal weak coordination and the ligand-acceleration is crucial for these reactions to proceed under mild conditions. The tolerance of longer distance between the target C–H bonds and the directing functional groups also allows for the functionalizations of more distal C–H bonds in hydrocinnamoyl ketones, Weinreb amides and biphenyl Weinreb amides. Mechanistically, the coordination of these carbonyl groups and the bisdentate amino acid ligand with Pd(II) centers provides further evidence for our early hypothesis that the carbonyl groups of the potassium carboxylate is responsible for the directed C–H activation of carboxylic acids. PMID:25768039

  17. Variable Lysozyme Transport Dynamics on Oxidatively Functionalized Polystyrene Films.

    Science.gov (United States)

    Moringo, Nicholas A; Shen, Hao; Tauzin, Lawrence J; Wang, Wenxiao; Bishop, Logan D C; Landes, Christy F

    2017-10-17

    Tuning protein adsorption dynamics at polymeric interfaces is of great interest to many biomedical and material applications. Functionalization of polymer surfaces is a common method to introduce application-specific surface chemistries to a polymer interface. In this work, single-molecule fluorescence microscopy is utilized to determine the adsorption dynamics of lysozyme, a well-studied antibacterial protein, at the interface of polystyrene oxidized via UV exposure and oxygen plasma and functionalized by ligand grafting to produce varying degrees of surface hydrophilicity, surface roughness, and induced oxygen content. Single-molecule tracking indicates lysozyme loading capacities, and surface mobility at the polymer interface is hindered as a result of all functionalization techniques. Adsorption dynamics of lysozyme depend on the extent and the specificity of the oxygen functionalities introduced to the polystyrene surface. Hindered adsorption and mobility are dominated by hydrophobic effects attributed to water hydration layer formation at the functionalized polystyrene surfaces.

  18. Spectral functions and transport coefficients from the functional renormalization group

    Energy Technology Data Exchange (ETDEWEB)

    Tripolt, Ralf-Arno

    2015-06-03

    In this thesis we present a new method to obtain real-time quantities like spectral functions and transport coefficients at finite temperature and density using the Functional Renormalization Group approach. Our non-perturbative method is thermodynamically consistent, symmetry preserving and based on an analytic continuation from imaginary to real time on the level of the flow equations. We demonstrate the applicability of this method by calculating mesonic spectral functions as well as the shear viscosity for the quark-meson model. In particular, results are presented for the pion and sigma spectral function at finite temperature and chemical potential, with a focus on the regime near the critical endpoint in the phase diagram of the quark-meson model. Moreover, the different time-like and space-like processes, which give rise to a complex structure of the spectral functions, are discussed. Finally, based on the momentum dependence of the spectral functions, we calculate the shear viscosity and the shear viscosity to entropy density ratio using the corresponding Green-Kubo formula.

  19. Fish functional groups in a tropical wetland of the Yucatan Peninsula, Mexico

    Directory of Open Access Journals (Sweden)

    Fernando Córdova-Tapia

    Full Text Available ABSTRACT The characterization of species' functional traits is a major step in the understanding and description of communities in natural habitats. The classification of species into functional groups is a useful tool to identify redundancy and uniqueness. We studied the fish community of a pristine freshwater wetland in the Sian Ka'an Biosphere Reserve by analysing two multidimensional functions: food acquisition and locomotion. We investigated changes in the functional group structure between habitats (permanent and temporary pools and seasons (dry and wet. Six functional groups with different ecological characteristics were detected, two of which had high functional redundancy and three of them were represented by single species with unique ecological functions. In permanent pools during the dry season, functional group richness and diversity were lower, while evenness was higher. During the wet season, all functional groups were detected and similar functional group structure was found between habitats. These results suggest an effect of environmental filtering during the dry season and niche complementarity during the wet season.

  20. Oxidation of Peptides by Methyl(trifluoromethyl)dioxirane: the Protecting Group Matters

    Science.gov (United States)

    Rella, Maria Rosaria; Williard, Paul G.

    2011-01-01

    Representative Boc protected and acetyl protected peptide methyl esters bearing alkyl side chains undergo effective oxidation using methyl(trifluoromethyl)dioxirane (1b) under mild conditions. We observe a protecting group dependency in the chemoselectivity displayed by the dioxirane 1b. N-hydroxylation occurs in the case of the Boc protected peptides, side chain hydroxylation takes place in the case of acetyl protected peptides. Both are attractive transformations since they yield derivatized peptides that serve as valuable synthons. PMID:17221970

  1. Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognitive Functions

    Science.gov (United States)

    2017-05-14

    the impact of oxidative stress on brain function, but also enable development of reliable screening tools for cognitive performance of individuals in...of Brain Oxidative Stress and its Correlation with Cognitive Functions Date 04/20/2017 PI information: Dr. Pravat K. Mandal,Ph.D Professor...relationship between the brain oxidative status and stress at a cellular, physiological as well as a psychological level. These stressors, in turn, have

  2. Influence of metformin and insulin on myocardial substrate oxidation under conditions encountered during cardiac surgery.

    Science.gov (United States)

    Holmes, Cyonna; Powell, LaShondra; Clarke, Nicholas S; Jessen, Michael E; Peltz, Matthias

    2018-02-01

    The influence of diabetic therapies on myocardial substrate selection during cardiac surgery is unknown but may be important to ensure optimal surgical outcomes. We hypothesized that metformin and insulin alter myocardial substrate selection during cardiac surgery and may affect reperfusion cardiac function. Rat hearts (n = 8 per group) were evaluated under 3 metabolic conditions: normokalemia, cardioplegia, or bypass. Groups were perfused with Krebs-Henseleit buffer in the presence of no additives, metformin, insulin, or both insulin and metformin. Perfusion buffer containing physiologic concentrations of energetic substrates with different carbon-13 ( 13 C) labeling patterns were used to determine substrate oxidation preferences using 13 C magnetic resonance spectroscopy and glutamate isotopomer analysis. Rate pressure product and oxygen consumption were measured. Myocardial function was not different between groups. For normokalemia, ketone oxidation was reduced in the presence of insulin and the combination of metformin and insulin reduced fatty acid oxidation. Metformin reduced fatty acid and ketone oxidation during cardioplegia. Fatty acid oxidation was increased in the bypass group compared with all other conditions. Metformin and insulin affect substrate utilization and reduce fatty acid oxidation before reperfusion. These alterations in substrate oxidation did not affect myocardial function in otherwise normal hearts. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effects of isolated vitamin B6 supplementation on oxidative stress and heart function parameters in experimental hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    Roberta Hack Mendes

    2017-07-01

    Full Text Available Introduction: The purpose of this study was to investigate the effects of isolated vitamin B6 (VB6 supplementation on experimental hyperhomocysteinemia (Hhe induced by homocysteine thiolactone (HcyT. Methods: Fifteen male Wistar rats were divided into three groups according to their treatment. Animals received water and food ad libitum and an intragastric probe was used to administer water for 60 days (groups: CB6, HcyT, and HB6. On the 30th day of treatment, two groups were supplemented with VB6 in the drinking water (groups: CB6 and HB6. After 60 days of treatment, homocysteine (Hcy, cysteine, and hydrogen peroxide concentration, nuclear factor (erythroid-derived 2-like 2 (NRF2 and glutathione S-transferase (GST immunocontent, and superoxide dismutase (SOD, catalase (CAT, and GST activities were measured. Results: The HcyT group showed an increase in Hcy concentration (62% in relation to the CB6 group. Additionally, GST immunocontent was enhanced (51% in the HB6 group compared to the HcyT group. Also, SOD activity was lower (17% in the HB6 group compared to the CB6 group, and CAT activity was higher in the HcyT group (53% compared to the CB6 group. Ejection fraction (EF was improved in the HB6 group compared to the HcyT group. E/A ratio was enhanced in the HB6 group compared to the CB6 group. Correlations were found between CAT activity with myocardial performance index (MPI (r = 0.71; P = 0.06 and E/A ratio (r = 0.6; P = 0.01, and between EF and GST activity (r = 0.62; P = 0.02. Conclusions: These findings indicate that isolated VB6 supplementation may lead to the reduction of Hcy concentration and promotes additional benefits to oxidative stress and heart function parameters.   Keywords: Homocysteine; oxidative stress; vitamin B6.

  4. Iron accumulation with age, oxidative stress and functional decline.

    Directory of Open Access Journals (Sweden)

    Jinze Xu

    2008-08-01

    Full Text Available Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accumulates with senescence in several organs, but little is known about iron accumulation in muscle and how it may affect muscle function. In addition, it is unclear if interventions which reduced age-related loss of muscle quality, such as calorie restriction, impact iron accumulation. We investigated non-heme iron concentration, oxidative stress to nucleic acids in gastrocnemius muscle and key indices of sarcopenia (muscle mass and grip strength in male Fischer 344 X Brown Norway rats fed ad libitum (AL or a calorie restricted diet (60% of ad libitum food intake starting at 4 months of age at 8, 18, 29 and 37 months of age. Total non-heme iron levels in the gastrocnemius muscle of AL rats increased progressively with age. Between 29 and 37 months of age, the non-heme iron concentration increased by approximately 200% in AL-fed rats. Most importantly, the levels of oxidized RNA in gastrocnemius muscle of AL rats were significantly increased as well. The striking age-associated increase in non-heme iron and oxidized RNA levels and decrease in sarcopenia indices were all attenuated in the calorie restriction (CR rats. These findings strongly suggest that the age-related iron accumulation in muscle contributes to increased oxidative damage and sarcopenia, and that CR effectively attenuates these negative effects.

  5. Amide-N-oxide heterosynthon and amide dimer homosynthon in cocrystals of carboxamide drugs and pyridine N-oxides.

    Science.gov (United States)

    Babu, N Jagadeesh; Reddy, L Sreenivas; Nangia, Ashwini

    2007-01-01

    The carboxamide-pyridine N-oxide heterosynthon is sustained by syn(amide)N-H...O-(oxide) hydrogen bond and auxiliary (N-oxide)C-H...O(amide) interaction (Reddy, L. S.; Babu, N. J.; Nangia, A. Chem. Commun. 2006, 1369). We evaluate the scope and utility of this heterosynthon in amide-containing molecules and drugs (active pharmaceutical ingredients, APIs) with pyridine N-oxide cocrystal former molecules (CCFs). Out of 10 cocrystals in this study and 7 complexes from previous work, amide-N-oxide heterosynthon is present in 12 structures and amide dimer homosynthon occurs in 5 structures. The amide dimer is favored over amide-N-oxide synthon in cocrystals when there is competition from another H-bonding functional group, e.g., 4-hydroxybenzamide, or because of steric factors, as in carbamazepine API. The molecular organization in carbamazepine.quinoxaline N,N'-dioxide 1:1 cocrystal structure is directed by amide homodimer and anti(amide)N-H...O-(oxide) hydrogen bond. Its X-ray crystal structure matches with the third lowest energy frame calculated in Polymorph Predictor (Cerius(2), COMPASS force field). Apart from generating new and diverse supramolecular structures, hydration is controlled in one substance. 4-Picoline N-oxide deliquesces within a day, but its cocrystal with barbital does not absorb moisture at 50% RH and 30 degrees C up to four weeks. Amide-N-oxide heterosynthon has potential utility in both amide and N-oxide type drug molecules with complementary CCFs. Its occurrence probability in the Cambridge Structural Database is 87% among 27 structures without competing acceptors and 78% in 41 structures containing OH, NH, H(2)O functional groups.

  6. Electrical Properties of Conductive Cotton Yarn Coated with Eosin Y Functionalized Reduced Graphene Oxide.

    Science.gov (United States)

    Kim, Eunju; Arul, Narayanasamy Sabari; Han, Jeong In

    2016-06-01

    This study reports the fabrication and investigation of the electrical properties of two types of conductive cotton yarns coated with eosin Y or eosin B functionalized reduced graphene (RGO) and bare graphene oxide (GO) using dip-coating method. The surface morphology of the conductive cotton yarn coated with reduced graphene oxide was observed by Scanning Electron Microscope (SEM). Due to the strong electrostatic attractive forces, the negatively charged surface such as the eosin Y functionalized reduced graphene oxide or bare GO can be easily coated to the positively charged polyethyleneimine (PEI) treated cotton yarn. The maximum current for the conductive cotton yarn coated with eosin Y functionalized RGO and bare GO with 20 cycles repetition of (5D + R) process was found to be 793.8 μA and 3482.8 μA. Our results showed that the electrical conductivity of bare GO coated conductive cotton yarn increased by approximately four orders of magnitude with the increase in the dipping cycle of (5D+R) process.

  7. Enhanced Cell Capture on Functionalized Graphene Oxide Nanosheets through Oxygen Clustering.

    Science.gov (United States)

    Bardhan, Neelkanth M; Kumar, Priyank V; Li, Zeyang; Ploegh, Hidde L; Grossman, Jeffrey C; Belcher, Angela M; Chen, Guan-Yu

    2017-02-28

    With the global rise in incidence of cancer and infectious diseases, there is a need for the development of techniques to diagnose, treat, and monitor these conditions. The ability to efficiently capture and isolate cells and other biomolecules from peripheral whole blood for downstream analyses is a necessary requirement. Graphene oxide (GO) is an attractive template nanomaterial for such biosensing applications. Favorable properties include its two-dimensional architecture and wide range of functionalization chemistries, offering significant potential to tailor affinity toward aromatic functional groups expressed in biomolecules of interest. However, a limitation of current techniques is that as-synthesized GO nanosheets are used directly in sensing applications, and the benefits of their structural modification on the device performance have remained unexplored. Here, we report a microfluidic-free, sensitive, planar device on treated GO substrates to enable quick and efficient capture of Class-II MHC-positive cells from murine whole blood. We achieve this by using a mild thermal annealing treatment on the GO substrates, which drives a phase transformation through oxygen clustering. Using a combination of experimental observations and MD simulations, we demonstrate that this process leads to improved reactivity and density of functionalization of cell capture agents, resulting in an enhanced cell capture efficiency of 92 ± 7% at room temperature, almost double the efficiency afforded by devices made using as-synthesized GO (54 ± 3%). Our work highlights a scalable, cost-effective, general approach to improve the functionalization of GO, which creates diverse opportunities for various next-generation device applications.

  8. Biological applications of graphene oxide

    International Nuclear Information System (INIS)

    Gürel, Hikmet Hakan; Salmankurt, Bahadır

    2016-01-01

    Graphene as a 2D material has unique chemical and electronic properties. Because of its unique physical, chemical, and electronic properties, its interesting shape and size make it a promising nanomaterial in many biological applications. However, the lower water-solubility and the irreversible aggregation due to the strong π-π stacking hinder the wide application of graphene nanosheets in biomedical field. Thus, graphene oxide (GO), one derivative of graphene, has been used more frequently in the biological system owing to its relatively higher water solubility and biocompatibility. Recently, it has been demonstrated that nanomaterials with different functional groups on the surface can be used to bind the drug molecules with high affinity. GO has different functional groups such as H, OH and O on its surface; it can be a potential candidate as a drug carrier. The interactions of biomolecules and graphene like structures are long-ranged and very weak. Development of new techniques is very desirable for design of bioelectronics sensors and devices. In this work, we present first-principles spin polarized calculations within density functional theory to calculate effects of charging on DNA/RNA nucleobases on graphene oxide. It is shown that how modify structural and electronic properties of nucleobases on graphene oxide by applied charging.

  9. Relationships Among Cognitive Function and Cerebral Blood Flow, Oxidative Stress, and Inflammation in Older Heart Failure Patients.

    Science.gov (United States)

    Kure, Christina E; Rosenfeldt, Franklin L; Scholey, Andrew B; Pipingas, Andrew; Kaye, David M; Bergin, Peter J; Croft, Kevin D; Wesnes, Keith A; Myers, Stephen P; Stough, Con

    2016-07-01

    The mechanisms for cognitive impairment in heart failure (HF) are unclear. We investigated the relative contributions of cerebral blood flow velocity (BFV), oxidative stress, and inflammation to HF-associated cognitive impairment. Thirty-six HF patients (≥60 years) and 40 healthy controls (68 ± 7 vs 67 ± 5 years, P > .05; 69% vs 50% male, P > .05) completed the Cognitive Drug Research computerized assessment battery and Stroop tasks. Common carotid (CCA) and middle cerebral arterial BFV were obtained by transcranial Doppler. Blood samples were collected for oxidant (diacron-reactive oxygen metabolites; F2-isoprostanes), antioxidant (coenzyme Q10; CoQ10), and inflammatory markers (high-sensitivity C-reactive protein). Compared with controls, patients exhibited impaired attention (Cognitive Drug Research's Power of Attention domain, congruent Stroop) and executive function (incongruent Stroop). Multiple regression modeling showed that CCA-BFV and CoQ10 but not group predicted performance on attention and executive function. Additionally, in HF patients, CCA-BFV and CoQ10 (β = -0.34 vs β = -0.35) were significant predictors of attention, and CCA-BFV (β = -0.34) was a predictor of executive function. Power of Attention and executive function is impaired in older HF patients, and reduced CCA-BFV and CoQ10 are associated with worse cognition. Interventions addressing these mechanisms may improve cognition in older HF patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Implement the medical group revenue function. Create competitive advantage.

    Science.gov (United States)

    Colucci, C

    1998-01-01

    This article shows medical groups how they can employ new financial management and information technology techniques to safeguard their revenue and income streams. These managerial techniques stem from the application of the medical group revenue function, which is defined herein. This article also describes how the medical group revenue function can be used to create value by employing a database and a decision support system. Finally, the article describes how the decision support system can be used to create competitive advantage. Through the wise use of internally generated information, medical groups can negotiate better contract terms, improve their operations, cut their costs, embark on capital investment programs and improve market share. As medical groups gain market power by improving in these areas, they will be more attractive to potential strategic allies, payers and investment bankers.

  11. Salt and nitric oxide synthase inhibition-induced hypertension: kidney dysfunction and brain anti-oxidant capacity.

    Science.gov (United States)

    Oktar, Süleyman; Ilhan, Selçuk; Meydan, Sedat; Aydin, Mehmet; Yönden, Zafer; Gökçe, Ahmet

    2010-01-01

    The specific aim of this study was to examine the effects of salt-loading on kidney function and brain antioxidant capacity. Wistar rats were divided into four groups: Control rats were given normal drinking water and no drug treatment for 2 weeks. LNNA group: rats were given normal drinking water and the nitric oxide (NO) inhibitor NG-nitro-L-arginine (L-NNA), 3 mg/kg/day. LNNA + Salt group: rats were given drinking water containing salt 2% and 3 mg/kg L-NNA. Salt group: rats were given drinking water containing salt 2% and no drug treatment. Basal blood pressure and the levels of serum BUN, creatinine, uric acid, cortisol, electrolyte, serum antioxidant capacity, and oxidative stress were measured. NO, superoxide dismutase (SOD), and catalase (CAT) levels were measured in the hypothalamus, brainstem, and cerebellum. Salt overload increased the blood pressure of the LNNA + Salt group. Salt-loading enhanced BUN, creatinine, sodium retention. High salt produced an increase in uric acid levels and a decrease in cortisol levels in serum. Additionally, the oxidative stress index in serum increased in the LNNA + Salt group. Salt-loading enhanced brain NO levels, but not SOD and CAT activity. L-NNA increased brain SOD activity, but not CAT and NO levels. In conclusion, salt-loading causes hypertension, kidney dysfunction, and enhances oxidative stress in salt-sensitive rats.

  12. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis

    DEFF Research Database (Denmark)

    Su, Hai-Yan; Gorlin, Yelena; Man, Isabela Costinela

    2012-01-01

    Progress in the field of electrocatalysis is often hampered by the difficulty in identifying the active site on an electrode surface. Herein we combine theoretical analysis and electrochemical methods to identify the active surfaces in a manganese oxide bi-functional catalyst for the oxygen...... reduction reaction (ORR) and the oxygen evolution reaction (OER). First, we electrochemically characterize the nanostructured α-Mn2O3 and find that it undergoes oxidation in two potential regions: initially, between 0.5 V and 0.8 V, a potential region relevant to the ORR and, subsequently, between 0.8 V...

  13. Surface functionalization of carbon nanofibers by sol-gel coating of zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shao Dongfeng [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Changzhou Textile Garment Institute, Changzhou 213164 (China); Wei Qufu [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China)], E-mail: qfwei@jiangnan.edu.cn; Zhang Liwei; Cai Yibing; Jiang Shudong [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China)

    2008-08-15

    In this paper the functional carbon nanofibers were prepared by the carbonization of ZnO coated PAN nanofibers to expand the potential applications of carbon nanofibers. Polyacrylonitrile (PAN) nanofibers were obtained by electrospinning. The electrospun PAN nanofibers were then used as substrates for depositing the functional layer of zinc oxide (ZnO) on the PAN nanofiber surfaces by sol-gel technique. The effects of coating, pre-oxidation and carbonization on the surface morphology and structures of the nanofibers were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM), respectively. The results of SEM showed a significant increase of the size of ZnO nanograins on the surface of nanofibers after the treatments of coating, pre-oxidation and carbonization. The observations by SEM also revealed that ZnO nanoclusters were firmly and clearly distributed on the surface of the carbon nanofibers. FTIR examination also confirmed the deposition of ZnO on the surface of carbon nanofibers. The XRD analysis indicated that the crystal structure of ZnO nanograins on the surface of carbon nanofibers.

  14. Prediction of functional sites in proteins using conserved functional group analysis.

    Science.gov (United States)

    Innis, C Axel; Anand, A Prem; Sowdhamini, R

    2004-04-02

    A detailed knowledge of a protein's functional site is an absolute prerequisite for understanding its mode of action at the molecular level. However, the rapid pace at which sequence and structural information is being accumulated for proteins greatly exceeds our ability to determine their biochemical roles experimentally. As a result, computational methods are required which allow for the efficient processing of the evolutionary information contained in this wealth of data, in particular that related to the nature and location of functionally important sites and residues. The method presented here, referred to as conserved functional group (CFG) analysis, relies on a simplified representation of the chemical groups found in amino acid side-chains to identify functional sites from a single protein structure and a number of its sequence homologues. We show that CFG analysis can fully or partially predict the location of functional sites in approximately 96% of the 470 cases tested and that, unlike other methods available, it is able to tolerate wide variations in sequence identity. In addition, we discuss its potential in a structural genomics context, where automation, scalability and efficiency are critical, and an increasing number of protein structures are determined with no prior knowledge of function. This is exemplified by our analysis of the hypothetical protein Ydde_Ecoli, whose structure was recently solved by members of the North East Structural Genomics consortium. Although the proposed active site for this protein needs to be validated experimentally, this example illustrates the scope of CFG analysis as a general tool for the identification of residues likely to play an important role in a protein's biochemical function. Thus, our method offers a convenient solution to rapidly and automatically process the vast amounts of data that are beginning to emerge from structural genomics projects.

  15. Electronic, vibrational and related properties of group IV metal oxides by ab initio calculations

    International Nuclear Information System (INIS)

    Leite Alves, H.W.; Silva, C.C.; Lino, A.T.; Borges, P.D.; Scolfaro, L.M.R.; Silva, E.F. da

    2008-01-01

    We present our theoretical results for the structural, electronic, vibrational and optical properties of MO 2 (M = Sn, Zr, Hf and Ti) obtained by first-principles calculations. Relativistic effects are demonstrated to be important for a realistic description of the detailed structure of the electronic frequency-dependent dielectric function, as well as of the carrier effective masses. Based on our results, we found that the main contribution of the high values calculated for the oxides dielectric constants arises from the vibrational properties of these oxides, and the vibrational static dielectric constant values diminish with increasing pressure

  16. Functionalization and modification of carbon nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Diachkova, Tatyana P.; Tkachev, Alexey G.; Orlova, Nataliya V.; Orlov, Andrej Yu. [Tambov State Technical University, Tambov (Russian Federation)

    2013-07-01

    Some regularities of covalent functionalization multiwalled carbon nanotubes (MWCNTs) by oxygen- containing groups were studied. The resulting materials were characterized by electron microscopy, thermogravimetric analysis, FTIR and Raman spectroscopy. The dependence of the degree of functionalization of MWCNTs from the process conditions was stated. The advantages of the gas phase to the liquid phase oxidation were shown. The effect of pristine and functionalized MWCNTs on the properties of composites with polysulfone was studied. Pristine and functionalized MWCNTs were modified with polyaniline. The effect of the method and degree of pre-functionalization of carbon nanotubes on the regularities of the oxidative polymerization of aniline and the properties of the obtained materials was shown. Key words: multiwalled carbon nanotubes, functionalization, modification, oxidation, composites, polyaniline.

  17. Graphene oxide reduction by microwave heating

    International Nuclear Information System (INIS)

    Longo, Angela; Carotenuto, Gianfranco

    2016-01-01

    The possibility to prepare thermal reduced graphene oxide (Tr-GO) colloidal suspensions by microwave heating of graphene oxide (GO) suspensions in N-methyl-2-pyrrolidone (NMP) has been investigated. According to transmission electron microscopy (TEM) and absorption and emission spectroscopy characterization, such a type of thermal reduction does not lead to graphene quantum dots formation because only mono-functional oxygen-containing groups are removed.

  18. Graphene oxide reduction by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Angela; Carotenuto, Gianfranco [Institute for Polymers, Composites, and Biomaterials, National Research Council, Piazzale Enrico Fermi 1, 80055 Portici (Italy)

    2016-05-18

    The possibility to prepare thermal reduced graphene oxide (Tr-GO) colloidal suspensions by microwave heating of graphene oxide (GO) suspensions in N-methyl-2-pyrrolidone (NMP) has been investigated. According to transmission electron microscopy (TEM) and absorption and emission spectroscopy characterization, such a type of thermal reduction does not lead to graphene quantum dots formation because only mono-functional oxygen-containing groups are removed.

  19. Oxidation of an activated carbon commercial and characterization of the content of superficial acid groups

    International Nuclear Information System (INIS)

    Cortes, Juan Carlos; Giraldo Liliana; Garcia, Andres A; Garcia, Cesar; Moreno, Juan C

    2008-01-01

    The changes of the surface acid groups of an activated commercial carbon after placing it under oxidation treatment with nitric acid are studied. The time used was in the range 1.5 and 9 hours, the concentrations range was from 4 to 7 molL -1 . The study included the determination of immersion enthalpy. Boehm's type titrations, FTIR, and pH at the point of zero charge, pH p zc. It was found that total acid groups are in a range from 0.207 mmolg -1 to 1.247 mmolg -1 , and that they are proportional to the immersion enthalpy in NaOH that are between 40 and 54Jg -1 . The pH p zc decreases with the oxidation treatment and have values between 8.3 and 4.3

  20. Altered mitochondrial function and oxidative stress in leukocytes of anorexia nervosa patients.

    Directory of Open Access Journals (Sweden)

    Victor M Victor

    Full Text Available CONTEXT: Anorexia nervosa is a common illness among adolescents and is characterised by oxidative stress. OBJECTIVE: The effects of anorexia on mitochondrial function and redox state in leukocytes from anorexic subjects were evaluated. DESIGN AND SETTING: A multi-centre, cross-sectional case-control study was performed. PATIENTS: Our study population consisted of 20 anorexic patients and 20 age-matched controls, all of which were Caucasian women. MAIN OUTCOME MEASURES: Anthropometric and metabolic parameters were evaluated in the study population. To assess whether anorexia nervosa affects mitochondrial function and redox state in leukocytes of anorexic patients, we measured mitochondrial oxygen consumption, membrane potential, reactive oxygen species production, glutathione levels, mitochondrial mass, and complex I and III activity in polymorphonuclear cells. RESULTS: Mitochondrial function was impaired in the leukocytes of the anorexic patients. This was evident in a decrease in mitochondrial O2 consumption (P<0.05, mitochondrial membrane potential (P<0.01 and GSH levels (P<0.05, and an increase in ROS production (P<0.05 with respect to control subjects. Furthermore, a reduction of mitochondrial mass was detected in leukocytes of the anorexic patients (P<0.05, while the activity of mitochondrial complex I (P<0.001, but not that of complex III, was found to be inhibited in the same population. CONCLUSIONS: Oxidative stress is produced in the leukocytes of anorexic patients and is closely related to mitochondrial dysfunction. Our results lead us to propose that the oxidative stress that occurs in anorexia takes place at mitochondrial complex I. Future research concerning mitochondrial dysfunction and oxidative stress should aim to determine the physiological mechanism involved in this effect and the physiological impact of anorexia.

  1. Altered mitochondrial function and oxidative stress in leukocytes of anorexia nervosa patients.

    Science.gov (United States)

    Victor, Victor M; Rovira-Llopis, Susana; Saiz-Alarcon, Vanessa; Sangüesa, Maria C; Rojo-Bofill, Luis; Bañuls, Celia; Falcón, Rosa; Castelló, Raquel; Rojo, Luis; Rocha, Milagros; Hernández-Mijares, Antonio

    2014-01-01

    Anorexia nervosa is a common illness among adolescents and is characterised by oxidative stress. The effects of anorexia on mitochondrial function and redox state in leukocytes from anorexic subjects were evaluated. A multi-centre, cross-sectional case-control study was performed. Our study population consisted of 20 anorexic patients and 20 age-matched controls, all of which were Caucasian women. Anthropometric and metabolic parameters were evaluated in the study population. To assess whether anorexia nervosa affects mitochondrial function and redox state in leukocytes of anorexic patients, we measured mitochondrial oxygen consumption, membrane potential, reactive oxygen species production, glutathione levels, mitochondrial mass, and complex I and III activity in polymorphonuclear cells. Mitochondrial function was impaired in the leukocytes of the anorexic patients. This was evident in a decrease in mitochondrial O2 consumption (Panorexia takes place at mitochondrial complex I. Future research concerning mitochondrial dysfunction and oxidative stress should aim to determine the physiological mechanism involved in this effect and the physiological impact of anorexia.

  2. Differential symptomatology and functioning in borderline personality disorder across age groups.

    Science.gov (United States)

    Frías, Álvaro; Palma, Carol; Solves, Laia; Martínez, Bárbara; Salvador, Ana

    2017-12-01

    There is increasing research aimed at addressing whether patients with borderline personality disorder (BPD) may exhibit variations in symptomatology and functioning according to their chronological age. The current study consisted of 169 outpatients diagnosed with BPD, who were divided into four age groups as follows: 16-25 years (n = 41), 26-35 years (n = 43), 36-45 years (n = 45), and 46 and more years (n = 40). Age groups were compared for symptomatology, normal personality traits, psychiatric comorbidities, functioning, and treatment-related features. The younger group had significantly higher levels of physical/verbal aggression and suicide attempts relative to the older group. Conversely, the older group had significantly greater severity of somatization, depression, and anxiety symptoms. In addition, the older group showed significantly greater functional impairment overall and across physical/psychological domains, specifically when compared to the younger group. Overall, these findings may suggest that age-related symptoms should be considered when diagnosing BPD. Also, functional impairments should be the target interventions for older BPD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Observations of Adolescent Peer Group Interactions as a Function of Within- and Between-Group Centrality Status

    Science.gov (United States)

    Ellis, Wendy E.; Dumas, Tara M.; Mahdy, Jasmine C.; Wolfe, David A.

    2012-01-01

    Observations of adolescent (n = 258; M age = 15.45) peer group triads (n = 86) were analyzed to identify conversation and interaction styles as a function of within-group and between-group centrality status. Group members' discussions about hypothetical dilemmas were coded for agreements, disagreements, commands, and opinions. Interactions during…

  4. Spectral characterization of superficial coal groups

    International Nuclear Information System (INIS)

    Ahmad, I.; Khan, M.A.; Ishaq, M.; Shakirullah; Bahadur, A.

    2004-01-01

    Spectral characterization of superficial coal groups was performed in KBr pellets. KBr Pellets were prepared for virgin and variously pretreated coal samples. Spectra of satisfactory resolution were obtained in wave number range-4000-400 cm /sup -1/. Presence of broad absorption bands corresponds to hydroxyl, carbonyl, carboxyl and phenolic functionalities in the spectra clearly define their presence in all samples understudy. Forced oxidation proved effective for oxidation of both aliphatic and aromatic configurations, which can be revealed from the respective spectra. (author)

  5. Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction

    Directory of Open Access Journals (Sweden)

    Víctor M. Castaño

    2013-03-01

    Full Text Available Carbon nanostructures have played an important role in creating a new field of materials based on carbon. Chemical modification of carbon nanostructures through grafting has been a successful step to improve dispersion and compatibility in solvents, with biomolecules and polymers to form nanocomposites. In this sense carbohydrates such as chitosan are extremely valuable because their functional groups play an important role in diversifying the applications of carbon nanomaterials. This paper reports the covalent attachment of chitosan onto graphene oxide, taking advantage of this carbohydrate at the nanometric level. Grafting is an innovative route to modify properties of graphene, a two-dimensional nanometric arrangement, which is one of the most novel and promising nanostructures. Chitosan grafting was achieved by redox reaction using different temperature conditions that impact on the morphology and features of graphene oxide sheets. Transmission Electron Microscopy, Fourier Transform Infrared, Raman and Energy Dispersive spectroscopies were used to study the surface of chitosan-grafted-graphene oxide. Results show a successful modification indicated by the functional groups found in the grafted material. Dispersions of chitosan-grafted-graphene oxide samples in water and hexane revealed different behavior due to the chemical groups attached to the graphene oxide sheet.

  6. Oxidation behavior of IG and NBG nuclear graphites

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woong-Ki; Kim, Byung-Joo [Jeonju Institute of Machinery and Carbon Composites Palbokdong-2ga, 817, Jeonju, Jeollabuk-do 561-844 (Korea, Republic of); Kim, Eung-Seon; Chi, Se-Hwan [Dept. of Nuclear Hydrogen Project, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.k [Dept. of Chemistry, Inha Univ., 253, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2011-01-15

    Graphical abstract: Water contact angles on nuclear graphite before and after oxidation treatments: the pictures show the contact angles obtained under deionized water on oxidation-treated and untreated nuclear graphite. The water contact angles are decreased after oxidation due to the increase in the hydrophilic. Display Omitted Research highlights: The average pore size of graphites shows an increase after the oxidation treatments. They also show that oxidation produces the surface functional groups on the graphite surfaces. The surface area of each graphite behaves in a unique manner. - Abstract: This work studies the oxidation-induced characteristics of four nuclear graphites (NBG-17, NBG-25, IG-110, and IG-430). The oxidation characteristics of the nuclear graphites were measured at 600 {sup o}C. The surface properties of the oxidation graphites were characterized by means of scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle methods. The N{sub 2}/77 K adsorption isotherm characteristics, including the specific surface area and micropore volume, were investigated by means of BET and t-plot methods. The experimental results show an increase in the average pore size of graphites; they also show that oxidation produces the surface functional groups on the graphite surfaces. The surface area of each graphite behaves in a unique manner. For example the surface area of NBG-17 increases slightly whereas the surface area of IG-110 increases significantly. This result confirms that the original surface state of each graphite is unique.

  7. Nitric oxide and TGF-β1 inhibit HNF-4α function in HEPG2 cells

    International Nuclear Information System (INIS)

    Lucas, Susana de; Lopez-Alcorocho, Juan Manuel; Bartolome, Javier; Carreno, Vicente

    2004-01-01

    This study analyzes if the profibrogenic factors nitric oxide and transforming growth factor-β1 (TGF-β1) affect hepatocyte nuclear factor-4α (HNF-4α) function. For this purpose, HepG2 cells were treated with TGF-β1 or with a nitric oxide donor to determine mRNA levels of coagulation factor VII and HNF-4α. Treatment effect on factor VII gene promoter was assessed by chloramphenicol acetyl-transferase assays in cells transfected with the pFVII-CAT plasmid. HNF-4α binding and protein levels were determined by gel shift assays and Western blot. TGF-β1 and nitric oxide downregulated factor VII mRNA levels by inhibiting its gene promoter activity. This inhibition is caused by a decrease in the DNA binding of HNF-4α. TGF-β1 induces degradation of HNF-4α in the proteasome while nitric oxide provokes nitrosylation of cysteine residues in this factor. TGF-β1 and nitric oxide inhibit HNF-4α activity. These findings may explain the loss of liver functions that occurs during fibrosis progression

  8. Bromide-free TEMPO-mediated oxidation of primary alcohol groups in starch and methyl alpha-D-glucopyranoside.

    Science.gov (United States)

    Bragd, P L; Besemer, A C; van Bekkum, H

    2000-09-22

    TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-mediated oxidation of potato starch and methyl alpha-D-glucopyranoside (MGP) was performed in the absence of sodium bromide (NaBr) as co-catalyst, solely using sodium hypochlorite (NaOCl) as the primary oxidant. The low reaction rate associated with a bromide-free process was increased by performing the oxidation at increased temperatures. The reaction proceeded stoichiometrically and with high selectivity and with only minor depolymerisation, provided that temperature and pH were kept or = 25 degrees C) and under more alkaline conditions (pH > or = 9.0) degradation of the starch skeleton occurred. Simultaneously, side-reactions of the nitrosonium ion lowered the yield of the oxidation. Despite the absence of the NaBr catalyst, the reaction rate-controlling step was found to be the oxidation of the primary hydroxyl groups with the nitrosonium ion. The reaction was first-order in MGP and in TEMPO.

  9. Magnetic amine-functionalized graphene oxide as a novel and recyclable bifunctional nanocatalyst for solvent-free synthesis of pyrano[3,2-c]pyridine derivatives

    Directory of Open Access Journals (Sweden)

    Shahnaz Rostamizadeh

    2017-01-01

    Full Text Available The new magnetic amine-functionalized graphene oxide (Fe3O4-GO-NH2 nanocatalyst was prepared through the reaction of 3-aminopropyltriethoxysilane (APTES with magnetic graphene oxide (Fe3O4-GO. It was characterized by XRD, TEM, SEM, FT-IR and EDX techniques. The intrinsic carboxylic acids on the edges of Fe3O4-GO along with the amine groups post grafted to the surface of Fe3O4-GO led to preparation of an acid-base bifunctional magnetically recyclable nanocatalyst. It proved to be efficient nanocatalyst for solvent-free synthesis of pyrano[3,2-c]pyridine derivatives under mild reaction conditions with good to excellent yields. This heterogeneous catalyst also exhibited higher activities than acid or base functionalized mesoporous silica, magnetic GO or basic Al2O3 an even higher than some basic homogeneous catalysts such as triethylamine and piperazine. More importantly, due to the loaded iron oxide nanoparticles, this catalyst could be easily recovered from the reaction mixture using an external magnet and reused without significant decrease in activity even after 7 runs.

  10. Executive function in different groups of university students

    OpenAIRE

    Prosen, Simona; Smrtnik Vitulić, Helena

    2015-01-01

    The present study analyses the executive function (EF) skills of 369 students of primary education (n = 116), preschool education (n = 72), social pedagogy (n = 54), and biology (n = 128). It explores how the different groups of students use selected executive skills and whether there are any differences between the groups in this respect. Eleven EF skills were self-assessed using the Executive Skills Questionnaire for Students (Dawson & Guare, 2010). All of the groups of students experien...

  11. Synthesis, radiometric determination of functional groups, complexation

    International Nuclear Information System (INIS)

    Pompe, S.; Bubner, M.; Schmeide, K.; Heise, K.H.; Bernhard, G.; Nitsche, H.

    2000-01-01

    The interaction behavior of humic acids with uranium(VI) and the influence of humic substances on the migration behavior of uranium was investigated. A main focus of this work was the synthesis of four different humic acid model substances and their characterization and comparison to the natural humic acid from Aldrich. A radiometric method for the determination of humic acid functional groups was applied in addition to conventional methods for the determination of the functionality of humic acids. The humic acid model substances show functional and structural properties comparable to natural humic acids. Modified humic acids with blocked phenolic OH were synthesized to determine the influence of phenolic OH groups on the complexation behavior of humic acids. A synthesis method for 14 C-labeled humic acids with high specific activity was developed. The complexation behavior of synthetic and natural humic acids with uranium(VI) was investigated by X-ray absorption spectroscopy, laser-induced fluorescence spectroscopy and FTIR spectroscopy. The synthetic model substances show an interaction behavior with uranium(VI) that is comparable to natural humic acids. This points to the fact that the synthetic humic acids simulate the functionality of their natural analogues very well. For the first time the influence of phenolic OH groups on the complexation behavior of humic acids was investigated by applying a modified humic acid with blocked phenolic OH groups. The formation of a uranyl hydroxy humate complex was identified by laserspectroscopic investigations of the complexation of Aldrich humic acid with uranium(VI) at pH 7. The migration behavior of uranium in a sandy aquifer system rich is humic substances was investigated in column experiments. A part of uranium migrates non-retarded through the sediment, bound to humic colloids. The uranium migration behavior is strongly influenced by the kinetically controlled interaction processes of uranium with the humic colloids

  12. HIGHLY MICROBIAL RESISTANT GRAPHEME OXIDE NANOPARTICLES: SYNTHESIS, CHARACTERIZATION AND ITS ANTIBACTERIAL ACTIVITY

    OpenAIRE

    Vijaylaxmee Mishra; Richa Sharma

    2014-01-01

    The present work deigned to prepare graphene oxide nanoparticles and their antimicrobial activity has been evaluated. Graphene oxide is a singal layer of carbon arranged in a hexagonal pattern the basal planes and the edges of graphene oxide nanoparticles contain functional exogenous groups such as hydroxyl, carbonyl and epoxy group, which not only expand the interlayer distance but also make the atomic thick layer hydrophilic. Most important application in area related to transparent conduct...

  13. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peñ a, Gerardo D.J.; Alrefaai, Mhd Maher; Yang, Seung Yeon; Raj, Abhijeet; Brito, Joaquin L.; Stephen, Samuel; Anjana, Tharalekshmy; Pillai, Vinu; Al Shoaibi, Ahmed; Chung, Suk-Ho

    2016-01-01

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  14. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peña, Gerardo D.J.

    2016-07-23

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  15. Impact of aging on cardiac function in a female rat model of menopause: role of autonomic control, inflammation, and oxidative stress

    Directory of Open Access Journals (Sweden)

    Machi JF

    2016-03-01

    Full Text Available Jacqueline Freire Machi,1,2 Danielle da Silva Dias,3 Sarah Cristina Freitas,3 Oscar Albuquerque de Moraes,1 Maikon Barbosa da Silva,1 Paula Lázara Cruz,1 Cristiano Mostarda,4 Vera M C Salemi,1 Mariana Morris,2 Kátia De Angelis,3 Maria-Cláudia Irigoyen1 1Hypertension Unit, Heart Institute (InCor, School of Medicine, University of Sao Paulo, São Paulo, Brazil; 2Institute of Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; 3Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE, São Paulo, 4Health Adult and Child, Federal University of Maranhao (UFMA, São Luiz, Maranhão, Brazil Objective: The aim of this study was to evaluate the effects of aging on metabolic, cardiovascular, autonomic, inflammatory, and oxidative stress parameters after ovarian hormone deprivation (OVX. Methods: Female Wistar rats (3 or 22 months old were divided into: young controls, young ovariectomized, old controls, and old ovariectomized (bilateral ovaries removal. After a 9-week follow-up, physical capacity, metabolic parameters, and morphometric and cardiac functions were assessed. Subsequently, arterial pressure was recorded and cardiac autonomic control was evaluated. Oxidative stress was measured on the cardiac tissue, while inflammatory profile was assessed in the plasma. Results: Aging or OVX caused an increase in body and fat weight and triglyceride concentration and a decrease in both insulin sensitivity and aerobic exercise capacity. Left ventricular diastolic dysfunction and increased cardiac overload (myocardial performance index were reported in old groups when compared with young groups. Aging and OVX led to an increased sympathetic tonus, and vagal tonus was lower only for the old groups. Tumor necrosis factor-α and interleukin-6 were increased in old groups when compared with young groups. Glutathione redox balance (GSH/GSSG was reduced in young ovariectomized, old controls, and old ovariectomized

  16. Curing characteristics of an epoxy resin in the presence of functional graphite oxide with amine-rich surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Le [The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Zeng, Zhong [Safety Environment Quality Surveillance and Inspection Research Institute of CNPC Chuanqing Drilling & Exploration Corporation, Chengdu 618300 (China); Zou, Huawei, E-mail: hwzou@163.com [The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Liang, Mei, E-mail: liangmeiww@163.com [The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China)

    2015-08-20

    Highlights: • Functional graphite oxide with amine-rich surface was prepared and characterized. • Kinetic parameters were calculated by Kissinger method and autocatalytic model. • The incorporation of GO and DGO brings in an effect of inhibition on curing. • The inhibition effect weakens for its good compatibility and catalytic effect of DGO. - Abstract: Functional graphite oxide (DGO) with amine-rich surface was successfully prepared through the amidation reaction and characterized by X-ray diffraction analyses (XRD), Fourier transform infrared spectra (FTIR) and Raman spectra. The effects of functional graphite oxide on the curing kinetics of epoxy (EP) were investigated by means of differential scanning calorimetry (DSC). The curing kinetic parameters of EP, EP/graphite oxide (GO) and EP/functional graphite oxide were obtained. There was not much difference in total heat of reaction ΔH and peak temperature T{sub p} with the incorporation of GO or DGO. However, the activation energy, E{sub a}, and the overall order of reaction m + n were enhanced. Comprehensive kinetic analyses indicated that the incorporation of GO sheets brought in an effect of inhibition on curing process. While the inhibition effect weaken when the GO is modified with amine-rich surface. The possible curing mechanism and reaction pathways were proposed to provide a reasonable explanation.

  17. Curing characteristics of an epoxy resin in the presence of functional graphite oxide with amine-rich surface

    International Nuclear Information System (INIS)

    Li, Le; Zeng, Zhong; Zou, Huawei; Liang, Mei

    2015-01-01

    Highlights: • Functional graphite oxide with amine-rich surface was prepared and characterized. • Kinetic parameters were calculated by Kissinger method and autocatalytic model. • The incorporation of GO and DGO brings in an effect of inhibition on curing. • The inhibition effect weakens for its good compatibility and catalytic effect of DGO. - Abstract: Functional graphite oxide (DGO) with amine-rich surface was successfully prepared through the amidation reaction and characterized by X-ray diffraction analyses (XRD), Fourier transform infrared spectra (FTIR) and Raman spectra. The effects of functional graphite oxide on the curing kinetics of epoxy (EP) were investigated by means of differential scanning calorimetry (DSC). The curing kinetic parameters of EP, EP/graphite oxide (GO) and EP/functional graphite oxide were obtained. There was not much difference in total heat of reaction ΔH and peak temperature T p with the incorporation of GO or DGO. However, the activation energy, E a , and the overall order of reaction m + n were enhanced. Comprehensive kinetic analyses indicated that the incorporation of GO sheets brought in an effect of inhibition on curing process. While the inhibition effect weaken when the GO is modified with amine-rich surface. The possible curing mechanism and reaction pathways were proposed to provide a reasonable explanation

  18. Phosphotungstic acid encapsulated in the mesocages of amine-functionalized metal-organic frameworks for catalytic oxidative desulfurization.

    Science.gov (United States)

    Wang, Xu-Sheng; Huang, Yuan-Biao; Lin, Zu-Jin; Cao, Rong

    2014-08-21

    Highly dispersed Keggin-type phosphotungstic acid (H3PW12O40, PTA) encapsulated in the mesocages of amine-functionalized metal-organic frameworks MIL-101(Cr)-NH2 has been prepared by an anion-exchange method. PTA anions (PW12O40(3-)) are stabilized in the mesocages via the electrostatic interaction with amino groups of the MIL-101(Cr)-NH2. The obtained catalyst (denoted PTA@MIL-101(Cr)-NH2) exhibits high catalytic activity in the extractive and catalytic oxidative desulfurization (ECODS) system under mild conditions. Moreover, it can be easily recovered and recycled several times without leaching and loss of activity.

  19. Photoinduced hydrophobic surface of graphene oxide thin films

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Song Peng; Cui Xiaoli

    2012-01-01

    Graphene oxide (GO) thin films were deposited on transparent conducting oxide substrates and glass slides by spin coating method at room temperature. The wettability of GO thin films before and after ultraviolet (UV) irradiation was characterized with water contact angles, which increased from 27.3° to 57.6° after 3 h of irradiation, indicating a photo-induced hydrophobic surface. The UV–vis absorption spectra, Raman spectroscopy, X-ray photoelectron spectroscopy, and conductivity measurements of GO films before and after UV irradiation were taken to study the mechanism of photoinduced hydrophobic surface of GO thin films. It is demonstrated that the photoinduced hydrophobic surface is ascribed to the elimination of oxygen-containing functional groups on GO molecules. This work provides a simple strategy to control the wettability properties of GO thin films by UV irradiation. - Highlights: ► Photoinduced hydrophobic surface of graphene oxide thin films has been demonstrated. ► Elimination of oxygen-containing functional groups in graphene oxide achieved by UV irradiation. ► We provide novel strategy to control surface wettability of GO thin films by UV irradiation.

  20. Studying sulfur functional groups in Norway spruce year rings using S L-edge total electron yield spectroscopy

    International Nuclear Information System (INIS)

    Struis, Rudolf P.W.J.; Ludwig, Christian; Barrelet, Timothee; Kraehenbuehl, Urs; Rennenberg, Heinz

    2008-01-01

    Profiles of the major sulfur functional groups in mature Norway spruce wood tissue have been established for the first time. The big challenge was the development of a method suitable for sulfur speciation in samples with very low sulfur content (< 100 ppm). This became possible by synchrotron X-ray absorption spectroscopy at the sulfur L-edge in total electron yield (TEY) detection mode with thin gold-coated wood slices. Functional groups were identified using sulfur compound spectra as fingerprints. Latewood of single year rings revealed metabolic plausible sulfur forms, particularly inorganic sulfide, organic disulfide, methylthiol, and highly oxidized sulfur. Form-specific profiles with Norway spruces from three different Swiss forest sites revealed high, but hitherto little-noticed, sulfur intensities attributable to natural heartwood formation and a common, but physiologically unexpected maximum around year ring 1986 with trees from the industrialized Swiss Plateau. It is hypothesized whether it may have resulted from the huge reduction in sulfur emissions after 1980 due to Swiss policy. Comparison with total S content profiles from optical emission spectroscopy underlined the more accurate and temporally better resolved TEY data with single wood year rings and it opened novel insights into the wood cell chemistry

  1. Vanadium-substituted heteropolyacids immobilized on amine- functionalized mesoporous MCM-41: A recyclable catalyst for selective oxidation of alcohols with H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xinbo [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Wang, Danjun [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan' an 716000 (China); Li, Kebin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Zhen, Yanzhong [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan' an 716000 (China); Hu, Huaiming [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Xue, Ganglin, E-mail: xglin707@163.com [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China)

    2014-09-15

    Graphical abstract: Vanadium-substituted phosphotungstic acids are immobilized on amine- functionalized mesoporous MCM-41 and the hybrid catalyst is proved to be a highly efficient solid catalyst for the oxidation of aromatic alcohols to the corresponding carbonyl compounds with H{sub 2}O{sub 2}, featured by the high conversion and selectivity, easy recovery, and quite steady reuse. - Highlights: • Vanadium-substituted phosphotungstic acid immobilized on amine-functionalized mesoporous MCM-41 are prepared. • HPAs were fixed on the inner surface of mesoporous MCM-41 by chemical bonding to aminosilane groups. • The hybrid catalyst showed much higher catalytic activity than the pure HPAs. • The hybrid catalyst is a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols. - Abstract: New hybrid materials of vanadium-substituted phosphotungstic acids (VHPW) immobilized on amine-functionalized mesoporous MCM-41 (VHPW/MCM-41/NH{sub 2}) are prepared and characterized by FT-IR, XRD, N{sub 2} adsorption, elemental analysis, SEM and TEM for their structural integrity and physicochemical properties. It is found that the structure of the heteropolyacids is retained upon immobilization over mesoporous materials. The catalytic activities of these hybrid materials are tested in the selective oxidation of alcohols to the carbonyl products with 30% aqueous H{sub 2}O{sub 2} as oxidant in toluene. The catalytic activities of different number of vanadium-substituted phosphotungstic acid are investigated, and among the catalysts, H{sub 5}[PV{sub 2}W{sub 10}O{sub 40}] immobilized on amine-functionalized MCM-41 exhibits the highest activity with 97% conversion and 99% selectivity in the oxidation of benzyl alcohol to benzaldehyde. The hybrid catalyst is proved to be a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols to the corresponding aldehydes with H{sub 2}O{sub 2}.

  2. Effect of backbond oxidation on silicon nanocrystallites

    International Nuclear Information System (INIS)

    Ramos, L.E.; Furthmueller, J.; Bechstedt, F.

    2004-01-01

    We employ density functional calculations to study properties of Si nanocrystals after backbond oxidation in comparison to the ones passivated with hydrogen or hydroxyl. Structural parameters, pair excitation energies, quasiparticle gaps, and electrostatic potentials vary significantly in dependence on degree of oxidation and surface passivation. The variations are discussed within a quantum confinement picture. Blueshifts and redshifts observed in photoluminescence are related to the size of the Si nanocrystallite cores and the oxygen incorporation via passivation with group OH or oxidation

  3. ATR-FTIR Spectroscopic Evidence for Biomolecular Phosphorus and Carboxyl Groups Facilitating Bacterial Adhesion to Iron Oxides

    Science.gov (United States)

    Parikh, Sanjai J.; Mukome, Fungai N.D.; Zhang, Xiaoming

    2014-01-01

    Attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy has been used to probe the binding of bacteria to hematite (α-Fe2O3) and goethite (α-FeOOH). In situ ATR-FTIR experiments with bacteria (Pseudomonas putida, P. aeruginosa, Escherichia coli), mixed amino acids, polypeptide extracts, deoxyribonucleic acid (DNA), and a suite of model compounds were conducted. These compounds represent carboxyl, catecholate, amide, and phosphate groups present in siderophores, amino acids, polysaccharides, phospholipids, and DNA. Due in part to the ubiquitous presence of carboxyl groups in biomolecules, numerous IR peaks corresponding to outer-sphere or unbound (1400 cm−1) and inner-sphere (1310-1320 cm−1) coordinated carboxyl groups are noted following reaction of bacteria and biomolecules with α-Fe2O3 and α-FeOOH. However, the data also reveal that the presence of low-level amounts (i.e., 0.45-0.79%) of biomolecular phosphorous groups result in strong IR bands at ~1043 cm−1, corresponding to inner-sphere Fe-O-P bonds, underscoring the importance of bacteria associated P-containing groups in biomolecule and cell adhesion. Spectral comparisons also reveal slightly greater P-O-Fe contributions for bacteria (Pseudomonad, E. coli) deposited on α-FeOOH, as compared to α-Fe2O3. This data demonstrates that slight differences in bacterial adhesion to Fe oxides can be attributed to bacterial species and Fe-oxide minerals. However, more importantly, the strong binding affinity of phosphate in all bacteria samples to both Fe-oxides results in the formation of inner-sphere Fe-O-P bonds, signifying the critical role of biomolecular P in the initiation of bacterial adhesion. PMID:24859052

  4. Reaction of oxygen with γ, δ-ethylenic phenylhydrazones. Model reaction of end-group behavior in phenylhydrazine-accelerated oxidation of natural rubber

    International Nuclear Information System (INIS)

    El Hamdaoui, A.; Reyx, D.; Campistron, I.

    1995-01-01

    An accurate definition of terminal groups of chains in the liquid polymers obtained by the phenylhydrazine-accelerated oxidation of natural rubber is needed. The object of the work was to use model molecules to explore the behavior of γ,δ-ethylenic methylketone phenylhydrazone end-groups in oxidation conditions. We have investigated the synthesis and characterization of models of these hypothetical end-groups, methylketones and phenones 1, their phenylhydrazones 2, the α-(phenyldiazenyl)hydroperoxides 3 resulting from reaction of 2 with oxygen, and the α-(phenyldiazenyl)alcohols 4 as characteristic derivatives of 3 or as models of possible reduced structures in oxidized liquid natural rubber. Three original syntheses of γ,δ-ethylenic ketones were carried out. In the case of γ,δ-ethylenic phenylhydrazones, the oxidation led to the expected α-(phenyldiazenyl)hydroperoxides and to epoxide derivatives of α-(phenyldiazenyl)alcohols 5 and ketones 6. An intramolecular mechanism is proposed. The results are used to predict the possibilities of identification of the corresponding end-groups in liquid rubbers produced in this way. (authors). 16 refs., 12 figs., 3 tabs

  5. Model parameters for representative wetland plant functional groups

    Science.gov (United States)

    Williams, Amber S.; Kiniry, James R.; Mushet, David M.; Smith, Loren M.; McMurry, Scott T.; Attebury, Kelly; Lang, Megan; McCarty, Gregory W.; Shaffer, Jill A.; Effland, William R.; Johnson, Mari-Vaughn V.

    2017-01-01

    Wetlands provide a wide variety of ecosystem services including water quality remediation, biodiversity refugia, groundwater recharge, and floodwater storage. Realistic estimation of ecosystem service benefits associated with wetlands requires reasonable simulation of the hydrology of each site and realistic simulation of the upland and wetland plant growth cycles. Objectives of this study were to quantify leaf area index (LAI), light extinction coefficient (k), and plant nitrogen (N), phosphorus (P), and potassium (K) concentrations in natural stands of representative plant species for some major plant functional groups in the United States. Functional groups in this study were based on these parameters and plant growth types to enable process-based modeling. We collected data at four locations representing some of the main wetland regions of the United States. At each site, we collected on-the-ground measurements of fraction of light intercepted, LAI, and dry matter within the 2013–2015 growing seasons. Maximum LAI and k variables showed noticeable variations among sites and years, while overall averages and functional group averages give useful estimates for multisite simulation modeling. Variation within each species gives an indication of what can be expected in such natural ecosystems. For P and K, the concentrations from highest to lowest were spikerush (Eleocharis macrostachya), reed canary grass (Phalaris arundinacea), smartweed (Polygonum spp.), cattail (Typha spp.), and hardstem bulrush (Schoenoplectus acutus). Spikerush had the highest N concentration, followed by smartweed, bulrush, reed canary grass, and then cattail. These parameters will be useful for the actual wetland species measured and for the wetland plant functional groups they represent. These parameters and the associated process-based models offer promise as valuable tools for evaluating environmental benefits of wetlands and for evaluating impacts of various agronomic practices in

  6. Renormalization group, principle of invariance and functional automodelity

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1981-01-01

    There exists a remarkable identity of functional equations describing the property of functional automodelity in diverse branches of physics: renormalization group equations in quantum field theory, functional equations of the invariance principle of the one-dimensional transport theory and some others. The origin of this identity is investigated. It is shown that the structure of these equations reflects the simple and general property of transitivity with respect to the way of fixatio of initial on effective degrees of freedom [ru

  7. Mechanical properties of PET composites using multi-walled carbon nanotubes functionalized by inorganic and itaconic acids

    Directory of Open Access Journals (Sweden)

    A. May-Pat

    2012-02-01

    Full Text Available Multi-walled carbon nanotubes (MWCNTs were oxidized by two different acid treatments and further functionalized with itaconic acid (IA. The functionalized MWCNTs were used to fabricate Poly(ethylene terephthalate (PET composites by melt mixing. The presence of functional groups on the surface of the treated MWCNTs was confirmed by infrared spectroscopy and thermogravimetric analysis. The MWCNTs oxidized with a concentrated mixture of HNO3 and H2SO4 exhibited more oxygen containing functional groups (OH, COOH but also suffer larger structural degradation than those oxidized by a mild treatment based on diluted HNO3 followed by H2O2. PET composites were fabricated using the oxidized-only and oxidized followed by functionalization with IA MWCNTs. PET composites fabricated with MWCNT oxidized by mild conditions showed improved tensile strength and failure strain, while harsh MWCNT oxidation render them overly brittle.

  8. Resolving Microzooplankton Functional Groups In A Size-Structured Planktonic Model

    Science.gov (United States)

    Taniguchi, D.; Dutkiewicz, S.; Follows, M. J.; Jahn, O.; Menden-Deuer, S.

    2016-02-01

    Microzooplankton are important marine grazers, often consuming a large fraction of primary productivity. They consist of a great diversity of organisms with different behaviors, characteristics, and rates. This functional diversity, and its consequences, are not currently reflected in large-scale ocean ecological simulations. How should these organisms be represented, and what are the implications for their biogeography? We develop a size-structured, trait-based model to characterize a diversity of microzooplankton functional groups. We compile and examine size-based laboratory data on the traits, revealing some patterns with size and functional group that we interpret with mechanistic theory. Fitting the model to the data provides parameterizations of key rates and properties, which we employ in a numerical ocean model. The diversity of grazing preference, rates, and trophic strategies enables the coexistence of different functional groups of micro-grazers under various environmental conditions, and the model produces testable predictions of the biogeography.

  9. Bioconjugated iron oxide nanocubes: synthesis, functionalization, and vectorization.

    Science.gov (United States)

    Wortmann, Laura; Ilyas, Shaista; Niznansky, Daniel; Valldor, Martin; Arroub, Karim; Berger, Nadja; Rahme, Kamil; Holmes, Justin; Mathur, Sanjay

    2014-10-08

    A facile bottom-up approach for the synthesis of inorganic/organic bioconjugated nanoprobes based on iron oxide nanocubes as the core with a nanometric silica shell is demonstrated. Surface coating and functionalization protocols developed in this work offered good control over the shell thickness (8-40 nm) and enabled biovectorization of SiO2@Fe3O4 core-shell structures by covalent attachment of folic acid (FA) as a targeting unit for cellular uptake. The successful immobilization of folic acid was investigated both quantitatively (TGA, EA, XPS) and qualitatively (AT-IR, UV-vis, ζ-potential). Additionally, the magnetic behavior of the nanocomposites was monitored after each functionalization step. Cell viability studies confirmed low cytotoxicity of FA@SiO2@Fe3O4 conjugates, which makes them promising nanoprobes for targeted internalization by cells and their imaging.

  10. High performance of phosphate-functionalized graphene oxide for the selective adsorption of U(VI) from acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); University of Science and Technology of China, Hefei, 230026 (China); Li, Jiaxing, E-mail: lijx@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions (China); School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 215123, Suzhou (China); Wang, Xiangxue; Chen, Changlun [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Wang, Xiangke [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions (China); School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 215123, Suzhou (China); Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-11-15

    In this study, phosphate-functionalized graphene oxide (PGO) was prepared by grafting triethyl phosphite onto the surface of GO using Arbuzov reaction. The as-prepared PGO was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy and Zeta potential. The application of the PGO to remove U(VI) from aqueous solution was investigated with a maximum adsorption capacity of 251.7 mg/g at pH = 4.0 ± 0.1 and T = 303 K. The adsorption mechanism was also investigated by X-ray photoelectron spectroscopy analysis, indicating a chemical adsorption of U(VI) on PGO surface. Moreover, experimental results gave a better removal efficiency toward U(VI) on PGO surface than other heavy metal ions at acidic solution, indicating the selective extraction of U(VI) from environmental pollutants. - Highlights: • The successful grafting phosphonate to graphene oxide by the Arbuzov reaction. • Selective adsorption of U(VI) on PGO surface over other heavy metal ions from acidic solution. • Electrostatic interactions of U(VI) with phosphonate and oxygen-containing functional groups on PGO surface. • Higher sorption capacity on PGO surface than GO surface for the U(VI) removal.

  11. Synthesis of graphene oxide through different oxidation degrees for solar cells

    Science.gov (United States)

    Zhang, Xiaoshan; Wang, Huan; Huang, Tianjiao; Wen, Lingling; Zhou, Liya

    2018-03-01

    Graphene is known as an electro-chemical material and widely used in electro-chemical devices, especially in solar cell. Decreasing the thickness of the layer is a critical way to improve the electrochemical property of solar cells as far as possible. Among the various oxidation approaches, presented herein is a facile approach, which is easier, less cost and more effective, environmental benign with the greener processing and without any requirement for post purification, towards the synthesis of graphene oxide (GO) with different oxidation degrees by potassium ferrate (K2FeO4). A modified method using less amount of oxidizing agent is reported herein. It is the pretreatment of the synthesis of graphite, which maintains the thermal cycle of the system. This novel reports to compound GO with controlled oxidation degrees can not only increase the quantity of oxygen-containing functional groups on GO surface, increase space between graphene oxide layer and facilitate the dispersion of graphene in aqueous solution. Thus, the modified method shows prospect for large-scale production of graphene oxide and its novel application, in addition to its derivative and market potential for solar cells.

  12. Attenuation of oxidative stress in Type 1 diabetic rats supplemented with a seasoning obtained from winemaking by-products and its effect on endothelial function.

    Science.gov (United States)

    Del Pino-García, Raquel; Rivero-Pérez, María D; González-SanJosé, María L; Castilla-Camina, Pablo; Croft, Kevin D; Muñiz, Pilar

    2016-10-12

    Type 1 diabetes mellitus (DM) is characterized by hyperglycemia resulting from insulin deficiency. This is usually accompanied by a pro-oxidative environment, dyslipidemia and endothelial dysfunction, thus leading to several micro- and macro-vascular complications. This study investigated the potential benefits of a seasoning obtained from seedless red wine pomace (RWPS) in protecting against oxidative damage and preserving endothelial function in Type 1 DM, and the underlying mechanisms involved at the level of gene expression. The diet of streptozotocin (45 mg kg -1 )-induced diabetic (DB) and control (CN) male Wistar rats (n = 5 rats per group) was supplemented with RWPS (300 mg per kg per day) or vehicle for 4 weeks. Characteristic indicators of DM such as increased food and water intakes and weight loss were significantly ameliorated in DB + RWPS rats, with a notable normalization in their fasting glycemic control and cholesterol profile. Plasma total antioxidant capacity (TAC) was substantially increased, and biomarkers of oxidative damage to lipids (F 2 -isoprostanes, 24.9%; malondialdehyde, 28.4%) and proteins (carbonyl groups, 5.91%) were significantly decreased. Nitric oxide availability tended to improve in plasma of DB + RWPS compared with DB rats. Insulin levels were increased (1.51-fold) and aortic tissue antioxidant enzymes such as mitochondrial superoxide dismutase (SOD2, 1.93-fold) were up-regulated. Other important genes for endothelial function, including endothelial β-nicotinamide adenine dinucleotide phosphate oxidase (NOX4), endothelial and inducible nitric oxide synthases (eNOS, iNOS), and angiotensin-converting enzyme-I (ACE), were non-significantly modulated, although certain potentially positive trends were observed. These results indicate that RWPS supplementation might be a useful nutritional approach to manage Type 1 DM and ameliorate its vascular complications.

  13. Unique determination of the effective potential in terms of renormalization group functions

    International Nuclear Information System (INIS)

    Chishtie, F. A.; Hanif, T.; McKeon, D. G. C.; Steele, T. G.

    2008-01-01

    The perturbative effective potential V in the massless λφ 4 model with a global O(N) symmetry is uniquely determined to all orders by the renormalization group functions alone when the Coleman-Weinberg renormalization condition (d 4 V/dφ 4 )| φ=μ =λ is used, where μ represents the renormalization scale. Systematic methods are developed to express the n-loop effective potential in the Coleman-Weinberg scheme in terms of the known n-loop minimal-subtraction (MS) renormalization group functions. Moreover, it also proves possible to sum the leading- and subsequent-to-leading-logarithm contributions to V. An essential element of this analysis is a conversion of the renormalization group functions in the Coleman-Weinberg scheme to the renormalization group functions in the MS scheme. As an example, the explicit five-loop effective potential is obtained from the known five-loop MS renormalization group functions and we explicitly sum the leading-logarithm, next-to-leading-logarithm, and further subleading-logarithm contributions to V. Extensions of these results to massless scalar QED are also presented. Because massless scalar QED has two couplings, conversion of the renormalization group functions from the MS scheme to the Coleman-Weinberg scheme requires the use of multiscale renormalization group methods.

  14. Measurement of exercise-induced oxidative stress in lymphocytes.

    Science.gov (United States)

    Turner, James E; Bosch, Jos A; Aldred, Sarah

    2011-10-01

    Vigorous exercise is associated with oxidative stress, a state that involves modifications to bodily molecules due to release of pro-oxidant species. Assessment of such modifications provides non-specific measures of oxidative stress in human tissues and blood, including circulating lymphocytes. Lymphocytes are a very heterogeneous group of white blood cells, consisting of subtypes that have different functions in immunity. Importantly, exercise drastically changes the lymphocyte composition in blood by increasing the numbers of some subsets, while leaving other cells unaffected. This fact may imply that observed changes in oxidative stress markers are confounded by changes in lymphocyte composition. For example, lymphocyte subsets may differ in exposure to oxidative stress because of subset differences in cell division and the acquisition of cytotoxic effector functions. The aim of the present review is to raise awareness of interpretational issues related to the assessment of oxidative stress in lymphocytes with exercise and to address the relevance of lymphocyte subset phenotyping in these contexts.

  15. Role of oxidants/inflammation in declining renal function in chronic kidney disease and normal aging.

    Science.gov (United States)

    Vlassara, Helen; Torreggiani, Massimo; Post, James B; Zheng, Feng; Uribarri, Jaime; Striker, Gary E

    2009-12-01

    Oxidant stress (OS) and inflammation increase in normal aging and in chronic kidney disease (CKD), as observed in human and animal studies. In cross-sectional studies of the US population, these changes are associated with a decrease in renal function, which is exhibited by a significant proportion of the population. However, since many normal adults have intact renal function, and longitudinal studies show that some persons maintain normal renal function with age, the link between OS, inflammation, and renal decline is not clear. In aging mice, greater oxidant intake is associated with increased age-related CKD and mortality, which suggests that interventions that reduce OS and inflammation may be beneficial for older individuals. Both OS and inflammation can be readily lowered in normal subjects and patients with CKD stage 3-4 by a simple dietary modification that lowers intake and results in reduced serum and tissue levels of advanced glycation end products. Diabetic patients, including those with microalbuminuria, have a decreased ability to metabolize and excrete oxidants prior to observable changes in serum creatinine. Thus, OS and inflammation may occur in the diabetic kidney at an early time. We review the evidence that oxidants in the diet directly lead to increased serum levels of OS and inflammatory mediators in normal aging and in CKD. We also discuss a simple dietary intervention that helps reduce OS and inflammation, an important and achievable therapeutic goal for patients with CKD and aging individuals with reduced renal function.

  16. Direct quantification of negatively charged functional groups on membrane surfaces

    KAUST Repository

    Tiraferri, Alberto

    2012-02-01

    Surface charge plays an important role in membrane-based separations of particulates, macromolecules, and dissolved ionic species. In this study, we present two experimental methods to determine the concentration of negatively charged functional groups at the surface of dense polymeric membranes. Both techniques consist of associating the membrane surface moieties with chemical probes, followed by quantification of the bound probes. Uranyl acetate and toluidine blue O dye, which interact with the membrane functional groups via complexation and electrostatic interaction, respectively, were used as probes. The amount of associated probes was quantified using liquid scintillation counting for uranium atoms and visible light spectroscopy for the toluidine blue dye. The techniques were validated using self-assembled monolayers of alkanethiols with known amounts of charged moieties. The surface density of negatively charged functional groups of hand-cast thin-film composite polyamide membranes, as well as commercial cellulose triacetate and polyamide membranes, was quantified under various conditions. Using both techniques, we measured a negatively charged functional group density of 20-30nm -2 for the hand-cast thin-film composite membranes. The ionization behavior of the membrane functional groups, determined from measurements with toluidine blue at varying pH, was consistent with published data for thin-film composite polyamide membranes. Similarly, the measured charge densities on commercial membranes were in general agreement with previous investigations. The relative simplicity of the two methods makes them a useful tool for quantifying the surface charge concentration of a variety of surfaces, including separation membranes. © 2011 Elsevier B.V.

  17. Effects of the alkylamine functionalization of graphene oxide on the properties of polystyrene nanocomposites

    Science.gov (United States)

    Jang, Jinhee; Pham, Viet Hung; Rajagopalan, Balasubramaniyan; Hur, Seung Hyun; Chung, Jin Suk

    2014-05-01

    Alkylamine-functionalized graphene oxides (FGOs) have superior dispersibility in low-polar solvents and, as a result, they interact with low-polar polymers such as polystyrene. In this work, the functionalization of graphene oxide using three types of alkylamines, octylamine (OA), dodecylamine (DDA), and hexadecylamine (HDA), was performed, and nanocomposites of polystyrene (PS) and FGOs were prepared via solution blending. Different dispersions of FGOs over PS were obtained for the three alkylamines, and the properties of the PS composites were influenced by the length of the alkylamine. A better thermal stability was observed with a longer chain length of the alkylamine. On the other hand, functionalization with the shortest chain length alkylamine resulted in the highest increase in the storage modulus (3,640 MPa, 140%) at a 10 wt.% loading of FGO.

  18. A minimalist functional group (MFG) approach for surrogate fuel formulation

    KAUST Repository

    Abdul Jameel, Abdul Gani

    2018-03-20

    Surrogate fuel formulation has drawn significant interest due to its relevance towards understanding combustion properties of complex fuel mixtures. In this work, we present a novel approach for surrogate fuel formulation by matching target fuel functional groups, while minimizing the number of surrogate species. Five key functional groups; paraffinic CH, paraffinic CH, paraffinic CH, naphthenic CH–CH and aromatic C–CH groups in addition to structural information provided by the Branching Index (BI) were chosen as matching targets. Surrogates were developed for six FACE (Fuels for Advanced Combustion Engines) gasoline target fuels, namely FACE A, C, F, G, I and J. The five functional groups present in the fuels were qualitatively and quantitatively identified using high resolution H Nuclear Magnetic Resonance (NMR) spectroscopy. A further constraint was imposed in limiting the number of surrogate components to a maximum of two. This simplifies the process of surrogate formulation, facilitates surrogate testing, and significantly reduces the size and time involved in developing chemical kinetic models by reducing the number of thermochemical and kinetic parameters requiring estimation. Fewer species also reduces the computational expenses involved in simulating combustion in practical devices. The proposed surrogate formulation methodology is denoted as the Minimalist Functional Group (MFG) approach. The MFG surrogates were experimentally tested against their target fuels using Ignition Delay Times (IDT) measured in an Ignition Quality Tester (IQT), as specified by the standard ASTM D6890 methodology, and in a Rapid Compression Machine (RCM). Threshold Sooting Index (TSI) and Smoke Point (SP) measurements were also performed to determine the sooting propensities of the surrogates and target fuels. The results showed that MFG surrogates were able to reproduce the aforementioned combustion properties of the target FACE gasolines across a wide range of conditions

  19. A minimalist functional group (MFG) approach for surrogate fuel formulation

    KAUST Repository

    Abdul Jameel, Abdul Gani; Naser, Nimal; Issayev, Gani; Touitou, Jamal; Ghosh, Manik Kumer; Emwas, Abdul-Hamid M.; Farooq, Aamir; Dooley, Stephen; Sarathy, Mani

    2018-01-01

    Surrogate fuel formulation has drawn significant interest due to its relevance towards understanding combustion properties of complex fuel mixtures. In this work, we present a novel approach for surrogate fuel formulation by matching target fuel functional groups, while minimizing the number of surrogate species. Five key functional groups; paraffinic CH, paraffinic CH, paraffinic CH, naphthenic CH–CH and aromatic C–CH groups in addition to structural information provided by the Branching Index (BI) were chosen as matching targets. Surrogates were developed for six FACE (Fuels for Advanced Combustion Engines) gasoline target fuels, namely FACE A, C, F, G, I and J. The five functional groups present in the fuels were qualitatively and quantitatively identified using high resolution H Nuclear Magnetic Resonance (NMR) spectroscopy. A further constraint was imposed in limiting the number of surrogate components to a maximum of two. This simplifies the process of surrogate formulation, facilitates surrogate testing, and significantly reduces the size and time involved in developing chemical kinetic models by reducing the number of thermochemical and kinetic parameters requiring estimation. Fewer species also reduces the computational expenses involved in simulating combustion in practical devices. The proposed surrogate formulation methodology is denoted as the Minimalist Functional Group (MFG) approach. The MFG surrogates were experimentally tested against their target fuels using Ignition Delay Times (IDT) measured in an Ignition Quality Tester (IQT), as specified by the standard ASTM D6890 methodology, and in a Rapid Compression Machine (RCM). Threshold Sooting Index (TSI) and Smoke Point (SP) measurements were also performed to determine the sooting propensities of the surrogates and target fuels. The results showed that MFG surrogates were able to reproduce the aforementioned combustion properties of the target FACE gasolines across a wide range of conditions

  20. Fluorescence studies of Rhodamine 6G functionalized silicon oxide nanostructures

    International Nuclear Information System (INIS)

    Baumgaertel, Thomas; Borczyskowski, Christian von; Graaf, Harald

    2010-01-01

    Selective anchoring of optically active molecules on nanostructured surfaces is a promising step towards the creation of nanoscale devices with new functionalities. Recently we have demonstrated the electrostatic attachment of charged fluorescent molecules on silicon oxide nanostructures prepared by atomic force microscopy (AFM) nanolithography via local anodic oxidation (LAO) of dodecyl-terminated silicon. In this paper we report on our findings from a more detailed optical investigation of the bound dye Rhodamine 6G. High sensitivity optical wide field microscopy as well as confocal laser microscopy have been used to characterize the Rhodamine fluorescence emission. A highly interesting question concerns the interaction between an emitter close to a silicon surface because mechanisms such as energy transfer and fluorescence quenching will occur which are still not fully understood. Since the oxide thickness can be varied during preparation continuously from 1 to ∼ 5 nm, it is possible to investigate the fluorescence of the bound dye in close proximity to the underlying silicon. Using confocal laser microscopy we were also able to obtain optical spectra from the bound molecules. Together with the results from an analysis of their photochemical bleaching behaviour, we conjecture that some of the Rhodamine 6G molecules on the structure are interacting with the oxide, causing a spectral shift and differences in their photochemical properties.

  1. Functionalized Graphene Metal-Free Carbocatalysis of Persulfate and Emerging Contaminant Oxidative Degradation

    Science.gov (United States)

    Carroll, K. C.; Chen, H.

    2016-12-01

    We evaluated three types of functionalized, graphene-based materials for activating persulfate (PS) and removing (i.e., sorption and oxidation) sulfamethoxazole (SMX) as a model emerging contaminant. Although advanced oxidative water treatment requires PS activation, activation requires energy or chemical inputs, and toxic substances are contained in many catalysts. Graphene-based materials were examined herein as an alternative to metal-based catalysts. Results show that nitrogen-doped graphene (N-GP) and aminated graphene (NH2-GP) can effectively activate PS. Overall, PS activation by graphene oxide was not observed in this study. N-GP (50 mg L-1) can rapidly activate PS (1 mM) to remove >99.9% SMX within 3 hours, and NH2-GP (50 mg L-1) activated PS (1 mM) can also remove 50% SMX within 10 hours. SMX sorption and total removal was greater for N-GP, which suggests oxidation was enhanced by increasing proximity to PS activation sites. Increasing pH enhanced the N-GP catalytic ability, and >99.9% SMX removal time decreased from 3 hours to 1 hour when pH increased from 3 to 9. However, the PS catalytic ability was inhibited at pH 9 for NH2-GP. Increases in ionic strength (100 mM NaCl or Na2SO4) and addition of radical scavengers (500 mM ethanol) both had negligible impacts on SMX removal. With bicarbonate addition (100 mM), while the catalytic ability of N-GP remained unaltered, NH2-GP catalytic ability was inhibited completely. Humic acid (250 mg L-1) was partially effective in inhibiting SMX removal in both N-GP and NH2-GP systems. These results have implications for elucidating oxidant catalysis mechanisms, and they quantify the ability of functionalization of graphene with hetero-atom doping to effectively catalyze PS for water treatment of organic pollutants including emerging contaminants.

  2. Rational design of reduced graphene oxide for superior performance of supercapacitor electrodes

    KAUST Repository

    Rasul, Shahid

    2016-10-24

    Strategies to synthesize reduced graphene oxide (rGO) abound but, in most studies, research teams select one particular oxidation-reduction method without providing a methodic reasoning for doing so. Herein, it is analyzed how diverse oxidation-reduction strategies commonly used can result in considerable performance differences of rGO for supercapacitor applications. Depending on the graphite oxidation method followed, the surface chemistry analysis of the products confirms that there is a marked disparity in the degree of oxidation and the nature of the oxygen functional groups present. Subsequent reduction of the oxidized graphite (using three different methods) showed that the maximum specific capacitance of rGOs produced from the classical Hummers\\' method was 128 F g−1 whereas an analogous material obtained from an improved Hummers\\' method reached ∼274 F g−1 (both via an hydrothermal reduction route). Besides showing that the improved oxidation method results in superior capacitance performance, explained by the higher number of structural defects allied to a surface chemistry where residual hydroxyl and epoxy functional groups predominate, this study highlights the need to rationalize the oxidation-reduction strategies followed when investigating applications of rGO materials.

  3. Plant functional group classifications and a generalized hierarchical ...

    African Journals Online (AJOL)

    Yomi

    2010-12-27

    Dec 27, 2010 ... functional traits ranging from the molecular to the biospherical level, and operating on ... Many researchers have discussed landscape dynamics ... concept groups plant species into distinct clusters accor- ..... simulations. Ecol.

  4. Molecular evolution and the role of oxidative stress in the expansion and functional diversification of cytosolic glutathione transferases

    Directory of Open Access Journals (Sweden)

    Vasconcelos Vítor

    2010-09-01

    Full Text Available Abstract Background Cytosolic glutathione transferases (cGST are a large group of ubiquitous enzymes involved in detoxification and are well known for their undesired side effects during chemotherapy. In this work we have performed thorough phylogenetic analyses to understand the various aspects of the evolution and functional diversification of cGSTs. Furthermore, we assessed plausible correlations between gene duplication and substrate specificity of gene paralogs in humans and selected species, notably in mammalian enzymes and their natural substrates. Results We present a molecular phylogeny of cytosolic GSTs that shows that several classes of cGSTs are more ubiquitous and thus have an older ancestry than previously thought. Furthermore, we found that positive selection is implicated in the diversification of cGSTs. The number of duplicate genes per class is generally higher for groups of enzymes that metabolize products of oxidative damage. Conclusions 1 Protection against oxidative stress seems to be the major driver of positive selection in mammalian cGSTs, explaining the overall expansion pattern of this subfamily; 2 Given the functional redundancy of GSTs that metabolize xenobiotic chemicals, we would expect the loss of gene duplicates, but by contrast we observed a gene expansion of this family, which likely has been favored by: i the diversification of endogenous substrates; ii differential tissue expression; and iii increased specificity for a particular molecule; 3 The increased availability of sequence data from diversified taxa is likely to continue to improve our understanding of the early origin of the different cGST classes.

  5. Synthesis, characterization, and nonlinear optical properties of graphene oxide functionalized with tetra-amino porphyrin

    Science.gov (United States)

    Yamuna, R.; Ramakrishnan, S.; Dhara, Keerthy; Devi, R.; Kothurkar, Nikhil K.; Kirubha, E.; Palanisamy, P. K.

    2013-01-01

    The synthesis of a porphyrin-graphene oxide hybrid (GO-TAP) was carried out by covalently functionalizing graphene oxide (GO) with 5,10,15,20 mesotetra (4-aminophenyl) porphyrin (TAP) through an amide linkage. The GO-TAP hybrid has been characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-visible spectroscopy. The peak intensity of the Soret band of the material was suppressed compared to neat TAP. This indicates a strong interaction between the electronic energy level of TAP and GO in the GO-TAP hybrid. The functionalization of GO with TAP significantly improved its solubility and dispersion stability in organic solvents. Scanning electron micrographs reveal that the hybrid was found to be similar to the unmodified GO but slightly more wrinkled. Transmission electron micrographs also demonstrate that GO sheet in the hybrid is more wrinkled with some dark spot due to functionalization. Atomic force microscopy results also reveal that the TAP functionalization increases the thickness of GO sheet to 2.0-3.0 nm from 1.2 to 1.8 nm. We observed improved nonlinear optical and optical limiting properties for the hybrid compared to both graphene oxide and porphyrin. GO-TAP shows fluorescence quenching compared with porphyrin, indicating excellent electron and/or energy transfer to GO from TAP. Thermogravimetric analysis confirms that the GO-TAP hybrid has outstanding thermal stability.

  6. Synthesis, characterization, and nonlinear optical properties of graphene oxide functionalized with tetra-amino porphyrin

    International Nuclear Information System (INIS)

    Yamuna, R.; Ramakrishnan, S.; Dhara, Keerthy; Devi, R.; Kothurkar, Nikhil K.; Kirubha, E.; Palanisamy, P. K.

    2013-01-01

    The synthesis of a porphyrin–graphene oxide hybrid (GO–TAP) was carried out by covalently functionalizing graphene oxide (GO) with 5,10,15,20 mesotetra (4-aminophenyl) porphyrin (TAP) through an amide linkage. The GO–TAP hybrid has been characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV–visible spectroscopy. The peak intensity of the Soret band of the material was suppressed compared to neat TAP. This indicates a strong interaction between the electronic energy level of TAP and GO in the GO–TAP hybrid. The functionalization of GO with TAP significantly improved its solubility and dispersion stability in organic solvents. Scanning electron micrographs reveal that the hybrid was found to be similar to the unmodified GO but slightly more wrinkled. Transmission electron micrographs also demonstrate that GO sheet in the hybrid is more wrinkled with some dark spot due to functionalization. Atomic force microscopy results also reveal that the TAP functionalization increases the thickness of GO sheet to 2.0–3.0 nm from 1.2 to 1.8 nm. We observed improved nonlinear optical and optical limiting properties for the hybrid compared to both graphene oxide and porphyrin. GO–TAP shows fluorescence quenching compared with porphyrin, indicating excellent electron and/or energy transfer to GO from TAP. Thermogravimetric analysis confirms that the GO–TAP hybrid has outstanding thermal stability.

  7. Plant-soil feedbacks: role of plant functional group and plant traits

    NARCIS (Netherlands)

    Cortois, R.; Schröder-Georgi, T.; Weigelt, A.; van der Putten, W.H.; De Deyn, G.B.

    2016-01-01

    Plant-soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew

  8. Sub-grouping and sub-functionalization of the RIFIN multi-copy protein family

    Directory of Open Access Journals (Sweden)

    Sonnhammer Erik L

    2008-01-01

    Full Text Available Abstract Background Parasitic protozoans possess many multicopy gene families which have central roles in parasite survival and virulence. The number and variability of members of these gene families often make it difficult to predict possible functions of the encoded proteins. The families of extra-cellular proteins that are exposed to a host immune response have been driven via immune selection to become antigenically variant, and thereby avoid immune recognition while maintaining protein function to establish a chronic infection. Results We have combined phylogenetic and function shift analyses to study the evolution of the RIFIN proteins, which are antigenically variant and are encoded by the largest multicopy gene family in Plasmodium falciparum. We show that this family can be subdivided into two major groups that we named A- and B-RIFIN proteins. This suggested sub-grouping is supported by a recently published study that showed that, despite the presence of the Plasmodium export (PEXEL motif in all RIFIN variants, proteins from each group have different cellular localizations during the intraerythrocytic life cycle of the parasite. In the present study we show that function shift analysis, a novel technique to predict functional divergence between sub-groups of a protein family, indicates that RIFINs have undergone neo- or sub-functionalization. Conclusion These results question the general trend of clustering large antigenically variant protein groups into homogenous families. Assigning functions to protein families requires their subdivision into meaningful groups such as we have shown for the RIFIN protein family. Using phylogenetic and function shift analysis methods, we identify new directions for the investigation of this broad and complex group of proteins.

  9. Oxidative stress response in Lactobacillus plantarum WCFS1: a functional genomics approach

    NARCIS (Netherlands)

    Serrano, L.M.

    2008-01-01

    Control of activity and functionality of microbial starter and probiotic cultures under industrial fermentation conditions is essential in order to provide a tasty, appealing, healthy, and safe product. Oxidative stress is one of the harsh conditions that fermentative microbes have managed to endure

  10. Functional Group Analysis for Diesel-like Mixing-Controlled Compression Ignition Combustion Blendstocks

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Daniel J.; McCormick, Robert L.; Polikarpov, Evgueni; Fioroni, Gina; George, Anthe; Albrecht, Karl O.

    2016-12-30

    This report addresses the suitability of hydrocarbon and oxygenate functional groups for use as a diesel-like fuel blending component in an advanced, mixing-controlled, compression ignition combustion engine. The functional groups are chosen from those that could be derived from a biomass feedstock, and represent a full range of chemistries. This first systematic analysis of functional groups will be of value to all who are pursuing new bio-blendstocks for diesel-like fuels.

  11. Chronic prostatitis/chronic pelvic pain syndrome impairs erectile function through increased endothelial dysfunction, oxidative stress, apoptosis, and corporal fibrosis in a rat model.

    Science.gov (United States)

    Hu, Y; Niu, X; Wang, G; Huang, J; Liu, M; Peng, B

    2016-11-01

    Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is an independent risk factor for the development of erectile dysfunction (ED). But the molecular mechanisms underlying the relationship between CP/CPPS and ED are still unclear. The aim of this study was to investigate the effect of CP/CPPS on erectile function in a rat model and the possible mechanisms. A rat model of experimental autoimmune prostatitis (EAP) was established to mimic human CP⁄CPPS. Then twenty 2-month-old male Sprague-Dawley rats were divided into EAP group and control group. Intracavernosal pressure (ICP) and mean arterial pressure (MAP) were measured during cavernous nerve electrostimulation, the ratio of max ICP/MAP was calculated. Blood was collected to measure the levels of serum C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and testosterone, respectively. The expression of endothelial nitric oxide synthase (eNOS), cyclic guanosine monophosphate (cGMP) levels, superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels in corpus cavernosum were detected. We also evaluated the smooth muscle/collagen ratio and apoptotic index (AI). The ratio of max ICP/MAP in EAP group were significantly lower than that in control group. The levels of serum CRP, TNF-α, IL-1β, and IL-6 in EAP group were all significantly higher than these in control group. The expression of eNOS and cGMP levels in corpus cavernosum of EAP rats were significantly downregulated. Furthermore, decreased SOD activity and smooth muscle/collagen ratio, increased MDA levels and AI were found in corpus cavernosum of EAP rats. In conclusion, CP/CPPS impaired penile erectile function in a rat model. The declines of eNOS expression and cGMP levels in corpus cavernosum may be an important mechanism of CP/CPPS-induced ED. CP/CPPS also increased oxidative stress, cell apoptosis and decreased smooth muscle/collagen ratio in corpus cavernosum of rats, which were

  12. Wetting transitions: A functional renormalization-group approach

    International Nuclear Information System (INIS)

    Fisher, D.S.; Huse, D.A.

    1985-01-01

    A linear functional renormalization group is introduced as a framework in which to treat various wetting transitions of films on substrates. A unified treatment of the wetting transition in three dimensions with short-range interactions is given. The results of Brezin, Halperin, and Leibler in their three different regimes are reproduced along with new results on the multicritical behavior connecting the various regimes. In addition, the critical behavior as the coexistence curve is approached at complete wetting is analyzed. Wetting in the presence of long-range substrate-film interactions that fall off as power laws is also studied. The possible effects of the nonlinear terms in the renormalization group are examined briefly and it appears that they do not alter the critical behavior found using the truncated linear renormalization group

  13. Oxidative markers, nitric oxide and homocysteine alteration in hypercholesterolimic rats: role of atorvastatine and cinnamon.

    Science.gov (United States)

    Amin, Kamal A; Abd El-Twab, Thanaa M

    2009-10-05

    To investigate the effects of atorvastatin and cinnamon on serum lipid profile, oxidative stress, antioxidant capacity, hepatic enzymes activities, nitric oxide (NO) as well as homocysteine (Hcy) in hypercholesterolemic rats, 48 male albino rats, weighing 130-190 gm were divided into 2 groups, normal group fed on basal rat chow diet (n=12) and high cholesterol group (HCD) were fed on 1% cholesterol-enriched diet for 15 day (n=36). Hypercholesterolemic rats were divided into 3 subgroups (n=12 for each) fed the same diet and treated with atorvastatine (HCD+Atorvastatin) or cinnamon extract (HCD+cinnamon) or none treated (HCD) for 3&6 weeks. Serum triglycerides (TG), Total cholesterol (TC), low density lipoprotein (LDL), high density lipoprotein (HDL), ALT, AST, NO, Hcy, hepatic reduced glutathione (GSH), Malondialdehyde (MDA) and antioxidant enzymes, Superoxide dismutase (SOD) and catalase activity were measured. Results showed that HCD increased significantly TG, TC, LDL-C, ALT, AST, Hcy and hepatic MDA, while lowered significantly antioxidant enzyme activities and NO levels. Atorvastatin therapy significantly increased HDL-C, NO and antioxidant activity while decreased LDL-C, MDA and Hcy concentrations. Serum TG, TC, LDL-C, ALT, AST and hepatic MDA levels were significantly lowered meanwhile, serum HDL, NO values and hepatic antioxidant activities were significantly, higher in cinnamon-treated than untreated group. These results indicate that lipid abnormalities, oxidative injury and hyperhomocystienemia were induced by HCD and this study recommend that administration of atorvastatine or cinnamon provided protection against the lipemic-oxidative disorder and act as hypocholesterolemic, hepatoprotective agent and improve cardiovascular function through modulation of oxidative stress, NO and Hcy.

  14. Diversity of Chemical Bonding and Oxidation States in MS 4 Molecules of Group 8 Elements

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wei [Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084 P.R. China; Jiang, Ning [Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084 P.R. China; Schwarz, W. H. Eugen [Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084 P.R. China; Physical and Theoretical Chemistry, University of Siegen, Siegen 57068 Germany; Yang, Ping [Theoretical Division, Los Alamos National Laboratory, Los Alamos New Mexico 87545 USA; Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland Washington 953002 USA; Li, Jun [Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084 P.R. China; Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland Washington 953002 USA

    2017-07-11

    The geometric and electronic ground-state structures of six MS4 molecules (M = group-8 metals Fe, Ru, Os, Hs, Sm, and Pu) have been studied by using quantum-chemical density-functional and correlated wave-function approaches. The MS4 species are compared to analogous MO4 species recently investi-gated (Inorg. Chem. 2016, 55: 4616). Metal oxidation state (MOS) of high value VIII appears in low- spin singlet Td geometric species (Os,Hs)S4 and (Ru,Os,Hs)O4, whereas low MOS=II appears in high- spin septet D2d species Fe(S2)2 and (slightly excited) metastable Fe(O2)2. The ground states of all other molecules have intermediate MOS values, containing S2-, S22-, S21- (and resp. O2--, O1-, O22-, O21-) ligands, bonded by ionic, covalent and correlative contributions.

  15. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    Science.gov (United States)

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  16. Directed C-H Bond Oxidation of (+)-Pleuromutilin.

    Science.gov (United States)

    Ma, Xiaoshen; Kucera, Roman; Goethe, Olivia F; Murphy, Stephen K; Herzon, Seth B

    2018-05-01

    Antibiotics derived from the diterpene fungal metabolite (+)-pleuromutilin (1) are useful agents for the treatment Gram-positive infections in humans and farm animals. Pleuromutilins elicit slow rates of resistance development and minimal cross-resistance with existing antibiotics. Despite efforts aimed at producing new derivatives by semisynthesis, modification of the tricyclic core is underexplored, in part due to a limited number of functional group handles. Herein, we report methods to selectively functionalize the methyl groups of (+)-pleuromutilin (1) by hydroxyl-directed iridium-catalyzed C-H silylation, followed by Tamao-Fleming oxidation. These reactions provided access to C16, C17, and C18 monooxidized products, as well as C15/C16 and C17/C18 dioxidized products. Four new functionalized derivatives were prepared from the protected C17 oxidation product. C6 carboxylic acid, aldehyde, and normethyl derivatives were prepared from the C16 oxidation product. Many of these sequences were executed on gram scales. The efficiency and practicality of these routes provides an easy method to rapidly interrogate structure-activity relationships that were previously beyond reach. This study will inform the design of fully synthetic approaches to novel pleuromutilins and underscores the power of the hydroxyl-directed iridium-catalyzed C-H silylation reaction.

  17. Pulmonary function and oxidative stress in workers exposed to styrene in plastic factory: occupational hazards in styrene-exposed plastic factory workers.

    Science.gov (United States)

    Sati, Prakash Chandra; Khaliq, Farah; Vaney, Neelam; Ahmed, Tanzeel; Tripathi, Ashok K; Banerjee, Basu Dev

    2011-11-01

    Styrene is a volatile organic compound used in factories for synthesis of plastic products. The pneumotoxicity of styrene in experimental animals is known. The aim of the present study was to study the effect of styrene on lung function and oxidative stress in occupationally exposed workers in plastic factory. Thirty-four male workers, between 18 and 40 years of age, exposed to styrene for atleast 8 hours a day for more than a year were studied, while 30 age- and sex-matched healthy subjects not exposed to styrene served as controls. Assessment of lung functions showed a statistically significant reduction (p volumes, capacities (FVC, FEV(1), VC, ERV, IRV, and IC) and flow rates (PEFR, MEF(75%), and MVV) in the study group (workers) as compared to controls. Malondialdehyde (MDA) was observed to be significantly high (p < 0.05) while ferric-reducing ability of plasma (FRAP) was significantly low (p < 0.05) in styrene-exposed subjects. Reduced glutathione (GSH) level was significantly depleted in exposed subjects as compared to control group. The mean value of serum cytochrome c in styrene-exposed subjects was found to be 1.1 ng/ml (0.89-1.89) while in control its levels were under detection limit (0.05 ng/ml). It shows that styrene inhalation by workers leads to increased level of oxidative stress, which is supposed to be the cause of lung damage.

  18. Phenylboronic acid functionalized reduced graphene oxide based fluorescence nano sensor for glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Basiruddin, SK; Swain, Sarat K., E-mail: swainsk2@yahoo.co.in

    2016-01-01

    Reduced graphene has emerged as promising tools for detection based application of biomolecules as it has high surface area with strong fluorescence quenching property. We have used the concept of fluorescent quenching property of reduced graphene oxide to the fluorescent probes which are close vicinity of its surface. In present work, we have synthesized fluorescent based nano-sensor consist of phenylboronic acid functionalized reduced graphene oxide (rGO–PBA) and di-ol modified fluorescent probe for detection of biologically important glucose molecules. This fluorescent graphene based nano-probe has been characterized by high resolution transmission electron microscope (HRTEM), Atomic force microscope (AFM), UV–visible, Photo-luminescence (PL) and Fourier transformed infrared (FT-IR) spectroscopy. Finally, using this PBA functionalized reduced GO based nano-sensor, we were able to detect glucose molecule in the range of 2 mg/mL to 75 mg/mL in aqueous solution of pH 7.4. - Highlights: • Easy and simple synthesis of PBA functionalized reduced GO based nano probe. • PBA functionalized reduced GO graphene based nano-probes are characterized. • PBA functionalized reduced GO nano probe is used to detect glucose molecules. • It is very cost-effective and enzyme-free detection of glucose in solution.

  19. Protective effect of thymoquinone improves cardiovascular function, and attenuates oxidative stress, inflammation and apoptosis by mediating the PI3K/Akt pathway in diabetic rats.

    Science.gov (United States)

    Liu, Hui; Liu, Hong-Yang; Jiang, Yi-Nong; Li, Nan

    2016-03-01

    Thymoquinone is the main active monomer extracted from black cumin and has anti‑inflammatory, antioxidant and anti‑apoptotic functions. However, the protective effects of thymoquinone on cardiovascular function in diabetes remain to be fully elucidated. The present study aimed to investigate the molecular mechanisms underling the beneficial effects of thymoquinone on the cardiovascular function in streptozotocin‑induced diabetes mellitus (DM) rats. Supplement thymoquinone may recover the insulin levels and body weight, inhibit blood glucose levels and reduce the heart rate in DM‑induced rats. The results indicated that the heart, liver and lung to body weight ratios, in addition to the blood pressure levels, were similar for each experimental group. Treatment with thymoquinone significantly reduced oxidative stress damage, inhibited the increased endothelial nitric oxide synthase protein expression and suppressed the elevation of cyclooxygenase‑2 levels in DM‑induced rats. In addition, thymoquinone significantly suppressed the promotion of tumor necrosis factor‑α and interleukin‑6 levels in the DM‑induced rats. Furthermore, administration of thymoquinone significantly reduced caspase‑3 activity and the promotion of phosphorylated‑protein kinase B (Akt) protein expression levels in DM‑induced rats. These results suggest that the protective effect of thymoquinone improves cardiovascular function and attenuates oxidative stress, inflammation and apoptosis by mediating the phosphatidylinositol 3‑kinase/Akt pathway in DM‑induced rats.

  20. Sulfur-Hz(CHx)y(z = 0,1) functionalized metal oxide nanostructure decorated interfaces: Evidence of Lewis base and Brönsted acid sites – Influence on chemical sensing

    International Nuclear Information System (INIS)

    Laminack, William; Baker, Caitlin; Gole, James

    2015-01-01

    Nanostructure metal oxide decorated n-type extrinsic porous silicon (PS) semiconductor interfaces are modified through in-situ interaction with acidic ethane and butane thiols (EtSH, BuSH) and basic diethyl sulfide (Et 2 S). Highly sensitive conductometric sensor evaluations and X-ray Photoelectron Spectroscopy demonstrate the effect of sulfur group functionalization modifying the acidity of the metal oxides and their interaction with NH 3 . SEM micrographs demonstrate that the sulfur treated particles are less than 30 nm in size. EDAX studies confirm the chemical composition of the modified nanoparticles and suggest the surface interaction of the sulfides and thiols. The acidic thiols can form Brönsted acidic sites enhancing the acidity of the metal oxides, thus broadening the initial metal oxide acidity range. The sulfides interact to lower the Lewis acidity of nanostructured metal oxide sites. Conductometric response matrices with NH 3 at room temperature, corresponding to the thiol and sulfide treated nanostructures of the metal oxides TiO 2 , SnO x , Ni x O, Cu x O, and Au x O (x >> 1) are evaluated for a dominant electron transduction process forming the basis for reversible chemical sensing in the absence of chemical bond formation. Treatment with the acidic thiols enhances the metal center acidity. It is suggested that the thiols can interact to increase the Brönsted acidity of the doped metal oxide surface if they maintain SH bonds. This process may account for the shift in Lewis acidity as the Brönsted acid sites counter the decrease in Lewis acidity resulting from the interaction of S-(CH x ) y groups. In contrast, treatment with basic Et 2 S decreases the Lewis acidity of the metal oxide sites, enhancing the basicity of the decorated interface. XPS measurements indicate a change in binding energy (BE) of the metal and oxygen centers. The observed changes in conductometric response do not represent a simple increase in surface acidity or basicity but

  1. Discretization of four types of Weyl group orbit functions

    International Nuclear Information System (INIS)

    Hrivnák, Jiří

    2013-01-01

    The discrete Fourier calculus of the four families of special functions, called C–, S–, S s – and S l -functions, is summarized. Functions from each of the four families of special functions are discretely orthogonal over a certain finite set of points. The generalizations of discrete cosine and sine transforms of one variable — the discrete S s – and S l -transforms of the group F 4 — are considered in detail required for their exploitation in discrete Fourier spectral methods. The continuous interpolations, induced by the discrete expansions, are presented

  2. Catalytic routes and oxidation mechanisms in photoreforming of polyols

    Energy Technology Data Exchange (ETDEWEB)

    Sanwald, Kai E.; Berto, Tobias F.; Eisenreich, Wolfgang; Gutiérrez, Oliver Y.; Lercher, Johannes A.

    2016-12-01

    Photocatalytic reforming of biomass-derived oxygenates leads to H2 generation and evolution of CO2 via parallel formation of organic intermediates through anodic oxidations on a Rh/TiO2 photocatalyst. The reaction pathways and kinetics in the photoreforming of C3–C6 polyols were explored. Polyols are converted via direct and indirect hole transfer pathways resulting in (i) oxidative rupture of C–C bonds, (ii) oxidation to a-oxygen functionalized aldoses and ketoses (carbonyl group formation) and (iii) light-driven dehydration. Direct hole transfer to chemisorbed oxygenates on terminal Ti(IV)-OH groups, generating alkoxy-radicals that undergo ß-C–C-cleavage, is proposed for the oxidative C–C rupture. Carbonyl group formation and dehydration are attributed to indirect hole transfer at surface lattice oxygen sites [Ti_ _ _O_ _ _Ti] followed by the generation of carbon-centered radicals. Polyol chain length impacts the contribution of the oxidation mechanisms favoring the C–C bond cleavage (internal preferred over terminal) as the dominant pathway with higher polyol carbon number.

  3. Dominance Weighted Social Choice Functions for Group Recommendations

    Directory of Open Access Journals (Sweden)

    Silvia ROSSI

    2015-12-01

    Full Text Available In travel domains, decision support systems provide support to tourists in the planning of their vacation. In particular, when the number of possible Points of Interest (POI to visit is large, the system should help tourists providing recommendations on the POI that could be more interesting for them. Since traveling is, usually, an activity that involves small groups of people, the system should take simultaneously into account the preferences of each group's member. At the same time, it also should model possible intra-group relationships, which can have an impact in the group decision-making process. In this paper, we model this problem as a multi-agent aggregation of preferences by using weighted social choice functions, whereas such weights are automatically evaluated by analyzing the interactions of the group's members on Online Social Networks.

  4. Association between Diastolic Dysfunction with Inflammation and Oxidative Stress in Females ob/ob Mice

    Science.gov (United States)

    Sartori, Michelle; Conti, Filipe F.; Dias, Danielle da Silva; dos Santos, Fernando; Machi, Jacqueline F.; Palomino, Zaira; Casarini, Dulce E.; Rodrigues, Bruno; De Angelis, Kátia; Irigoyen, Maria-Claudia

    2017-01-01

    Objective: To evaluate autonomic and cardiovascular function, as well as inflammatory and oxidative stress markers in ob/ob female mice. Methods: Metabolic parameters, cardiac function, arterial pressure (AP), autonomic, hormonal, inflammatory, and oxidative stress markers were evaluated in 12-weeks female wild-type (WT group) and ob/ob mice (OB group). Results: OB animals showed increased body weight, blood glucose, and triglyceride levels, along with glucose intolerance, when compared to WT animals. Ejection fraction (EF) and AP were similar between groups; however, the OB group presented diastolic dysfunction, as well as an impairment on myocardial performance index. Moreover, the OB group exhibited important autonomic dysfunction and baroreflex sensitivity impairment, when compared to WT group. OB group showed increased Angiotensin II levels in heart and renal tissues; decreased adiponectin and increased inflammatory markers in adipose tissue and spleen. Additionally, OB mice presented a higher damage to proteins and lipoperoxidation and lower activity of antioxidant enzymes in kidney and heart. Correlations were found between autonomic dysfunction with angiotensin II and inflammatory mediators, as well as between inflammation and oxidative stress. Conclusions: Our results showed that female adult ob/ob mice presented discrete diastolic dysfunction accompanied by autonomic disorder, which is associated with inflammation and oxidative stress in these animals. PMID:28878683

  5. Association between Diastolic Dysfunction with Inflammation and Oxidative Stress in Females ob/ob Mice

    Directory of Open Access Journals (Sweden)

    Michelle Sartori

    2017-08-01

    Full Text Available Objective: To evaluate autonomic and cardiovascular function, as well as inflammatory and oxidative stress markers in ob/ob female mice.Methods: Metabolic parameters, cardiac function, arterial pressure (AP, autonomic, hormonal, inflammatory, and oxidative stress markers were evaluated in 12-weeks female wild-type (WT group and ob/ob mice (OB group.Results: OB animals showed increased body weight, blood glucose, and triglyceride levels, along with glucose intolerance, when compared to WT animals. Ejection fraction (EF and AP were similar between groups; however, the OB group presented diastolic dysfunction, as well as an impairment on myocardial performance index. Moreover, the OB group exhibited important autonomic dysfunction and baroreflex sensitivity impairment, when compared to WT group. OB group showed increased Angiotensin II levels in heart and renal tissues; decreased adiponectin and increased inflammatory markers in adipose tissue and spleen. Additionally, OB mice presented a higher damage to proteins and lipoperoxidation and lower activity of antioxidant enzymes in kidney and heart. Correlations were found between autonomic dysfunction with angiotensin II and inflammatory mediators, as well as between inflammation and oxidative stress.Conclusions: Our results showed that female adult ob/ob mice presented discrete diastolic dysfunction accompanied by autonomic disorder, which is associated with inflammation and oxidative stress in these animals.

  6. In situ chemical synthesis of ruthenium oxide/reduced graphene oxide nanocomposites for electrochemical capacitor applications.

    Science.gov (United States)

    Kim, Ji-Young; Kim, Kwang-Heon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Park, Sang-Hoon; Kim, Kwang-Bum

    2013-08-07

    An in situ chemical synthesis approach has been developed to prepare ruthenium oxide/reduced graphene oxide (RGO) nanocomposites. It is found that as the C/O ratio increases, the number density of RuO2 nanoparticles decreases, because the chemical interaction between the Ru ions and the oxygen-containing functional groups provides anchoring sites where the nucleation of particles takes place. For electrochemical capacitor applications, the microwave-hydrothermal process was carried out to improve the conductivity of RGO in RuO2/RGO nanocomposites. The significant improvement in capacitance and high rate capability might result from the RuO2 nanoparticles used as spacers that make the interior layers of the reduced graphene oxide electrode available for electrolyte access.

  7. High-efficiency synthesis of dendrimer-like poly(ethylene oxide) via “arm-first” approach

    KAUST Repository

    Zhu, Saisai

    2017-04-14

    In this study, a dendrimer-like polymer based on poly(ethylene oxide) (PEO) was synthesized through a combination of anionic ring-opening polymerization (AROP) and click reaction via arm-first method. Firstly, the polymeric arm, a linear PEO with one alkynyl group and two bromo groups, was synthesized by AROP of ethylene oxide followed by functionalization with propargyl bromide and esterified with 2-bromopropionic bromide. Second, a star PEO carrying three azide groups was synthesized though AROP of ethylene oxide used 1,1,1-tris(hydrosymethyl) ethane as initiator followed esterificated with 2-bromopropionic acid and azidation. By azide–alkyne click reactions between the azide-terminated PEO star polymer and linear PEO with functionalization alkynyl group, a three generation dendrimer-like PEO, G3-PEO-24Br, was successfully synthesized. The resulting polymers were observed to have precisely controlled molecular weights and compositions with narrow molecular weight distributions.

  8. Dual-functional Pt-on-Pd supported on reduced graphene oxide hybrids: peroxidase-mimic activity and an enhanced electrocatalytic oxidation characteristic.

    Science.gov (United States)

    Zhang, Xiahong; Wu, Genghuang; Cai, Zhixiong; Chen, Xi

    2015-03-01

    In this study, a facile hydrothermal method was developed to synthesize Pt-on-Pd supported on reduced graphene oxide (Pt-on-Pd/RGO) hybrids. Because of the synergistic effect between Pt-on-Pd and RGO, the obtained Pt-on-Pd/RGO had superior peroxidase-mimic activities in H2O2 reduction and TMB oxidation. The reaction medium was optimized and a sensing approach for H2O2 was developed with a linear range from 0.98 to 130.7 μM of H2O2. In addition, the characteristic of electrocatalytic oxidation of methanol was investigated. The peak current density value, j(f), for the Pt-on-Pd/RGO hybrid (328 mA mg(Pt)(-1)) was about 1.85 fold higher than that of commercial Pt black (177 mA mg(Pt)(-1)) and, also, more durable electrocatalytic activity could be obtained. For the first time, the dual-functional Pt-on-Pd/RGO with peroxidase-mimic activity and an enhanced electrocatalytic oxidation characteristic was reported. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Syncytiotrophoblast extracellular vesicles impair rat uterine vascular function via the lectin-like oxidized LDL receptor-1.

    Directory of Open Access Journals (Sweden)

    Floor Spaans

    Full Text Available Syncytiotrophoblast extracellular vesicles (STBEVs are placenta derived particles that are released into the maternal circulation during pregnancy. Abnormal levels of STBEVs have been proposed to affect maternal vascular function. The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1 is a multi-ligand scavenger receptor. Increased LOX-1 expression and activation has been proposed to contribute to endothelial dysfunction. As LOX-1 has various ligands, we hypothesized that, being essentially packages of lipoproteins, STBEVs are able to activate the LOX-1 receptor thereby impairing vascular function via the production of superoxide and decreased nitric oxide bioavailability. Uterine arteries were obtained in late gestation from Sprague-Dawley rats and incubated for 24h with or without human STBEVs (derived from a normal pregnant placenta in the absence or presence of a LOX-1 blocking antibody. Vascular function was assessed using wire myography. Endothelium-dependent maximal vasodilation to methylcholine was impaired by STBEVs (MCh Emax: 57.7±5.9% in STBEV-incubated arteries vs. 77.8±2.9% in controls, p<0.05. This was prevented by co-incubation of STBEV-incubated arteries with LOX-1 blocking antibodies (MCh Emax: 78.8±4.3%, p<0.05. Pre-incubation of the vessels with a nitric oxide synthase inhibitor (L-NAME demonstrated that the STBEV-induced impairment in vasodilation was due to decreased nitric oxide contribution (ΔAUC 12.2±11.7 in STBEV-arteries vs. 86.5±20 in controls, p<0.05, which was abolished by LOX-1 blocking antibody (ΔAUC 98.9±17, p<0.05. In STBEV-incubated vessels, LOX-1 inhibition resulted in an increased endothelial nitric oxide synthase expression (p<0.05, to a level similar to control vessels. The oxidant scavenger, superoxide dismutase, did not improve this impairment, nor were vascular superoxide levels altered. Our data support an important role for STBEVs in impairment of vascular function via activation of

  10. Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Sousa, Marcelo de; Martinez, Diego Stéfani Teodoro; Alves, Oswaldo Luiz

    2016-01-01

    Mannosylation is a method commonly used to deliver nanomaterials to specific organs and tissues via cellular macrophage uptake. In this work, for the first time, we proposed a method that involves the binding of d-mannose to ethylenediamine to form mannosylated ethylenediamine, which is then coupled to oxidized and purified multiwalled carbon nanotubes. The advantage of this approach is that mannosylated ethylenediamine precipitates in methanol, which greatly facilitates the separation of this product in the synthesis process. Carbon nanotubes were oxidized using concentrated H_2SO_4 and HNO_3 by conventional reflux method. However, during this oxidation process, carbon nanotubes generated carboxylated carbonaceous fragments (oxidation debris). These by-products were removed from the oxidized carbon nanotubes to ensure that the functionalization would occur only on the carbon nanotube surface. The coupling of mannosylated ethylenediamine to debris-free carbon nanotubes was accomplished using n-(3-dimethylaminopropyl)-n-ethylcarbodiimide and n-hydroxysuccinimide. Deconvoluted N1s spectra obtained from X-ray photoelectron spectroscopy gave binding energies of 399.8 and 401.7 eV, which we attributed to the amide and amine groups, respectively, of carbon nanotubes functionalized with mannosylated ethylenediamine. Deconvoluted O1s spectra showed a binding energy of 532.4 eV, which we suggest is caused by an overlap in the binding energies of the aliphatic CO groups of d-mannose and the O=C group of the amide bond. The functionalization degree was approximately 3.4 %, according to the thermogravimetric analysis. Scanning electron microscopy demonstrated that an extended carbon nanotube morphology was preserved following the oxidation, purification, and functionalization steps.

  11. Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Marcelo de, E-mail: marcelosousap2@yahoo.com.br [University of Campinas (Unicamp), Solid State Chemistry Laboratory (LQES) and NanoBioss Laboratory, Institute of Chemistry (Brazil); Martinez, Diego Stéfani Teodoro, E-mail: diego.martinez@lnnano.cnpem.br [Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Nanotechnology National Laboratory (LNNano) (Brazil); Alves, Oswaldo Luiz, E-mail: oalves@iqm.unicamp.br [University of Campinas (Unicamp), Solid State Chemistry Laboratory (LQES) and NanoBioss Laboratory, Institute of Chemistry (Brazil)

    2016-06-15

    Mannosylation is a method commonly used to deliver nanomaterials to specific organs and tissues via cellular macrophage uptake. In this work, for the first time, we proposed a method that involves the binding of d-mannose to ethylenediamine to form mannosylated ethylenediamine, which is then coupled to oxidized and purified multiwalled carbon nanotubes. The advantage of this approach is that mannosylated ethylenediamine precipitates in methanol, which greatly facilitates the separation of this product in the synthesis process. Carbon nanotubes were oxidized using concentrated H{sub 2}SO{sub 4} and HNO{sub 3} by conventional reflux method. However, during this oxidation process, carbon nanotubes generated carboxylated carbonaceous fragments (oxidation debris). These by-products were removed from the oxidized carbon nanotubes to ensure that the functionalization would occur only on the carbon nanotube surface. The coupling of mannosylated ethylenediamine to debris-free carbon nanotubes was accomplished using n-(3-dimethylaminopropyl)-n-ethylcarbodiimide and n-hydroxysuccinimide. Deconvoluted N1s spectra obtained from X-ray photoelectron spectroscopy gave binding energies of 399.8 and 401.7 eV, which we attributed to the amide and amine groups, respectively, of carbon nanotubes functionalized with mannosylated ethylenediamine. Deconvoluted O1s spectra showed a binding energy of 532.4 eV, which we suggest is caused by an overlap in the binding energies of the aliphatic CO groups of d-mannose and the O=C group of the amide bond. The functionalization degree was approximately 3.4 %, according to the thermogravimetric analysis. Scanning electron microscopy demonstrated that an extended carbon nanotube morphology was preserved following the oxidation, purification, and functionalization steps.

  12. Effect of combined gliclazide/metformin treatment on oxidative stress, lipid profile, and hepatorenal functions in type 2 diabetic patients.

    Science.gov (United States)

    Alsharidah, Mansour; Algeffari, Metab; Abdel-Moneim, Abdel-Moneim Hafez; Lutfi, Mohamed Faisal; Alshelowi, Haila

    2018-01-01

    Type 2 diabetes is a chronic condition that requires pharmacotherapy interventions. Metformin and gliclazide are widely used drugs in monotherapy. However, their complementary action made utilization of the combination of these drugs an appealing approach. The study compared major therapeutic potentials of combined metformin/gliclazide treatment over metformin monotherapy based on the following parameters: oxidative stress, lipid profile, and hepatorenal functions. This is a comparative study was conducted from March 2015 to March 2016. The study screened 80 type 2 diabetic patients, of which 40 patients underwent combined metformin + gliclazide therapy (500 mg BD + 80 mg OD, respectively). The other 40 were matched for age and duration of diabetes mellitus with the previous group and received metformin monotherapy (500 mg BD). The levels of fasting blood glucose (FBG), total glycated hemoglobin (HbA1c), lipid peroxidation, total antioxidant capacity, serum creatinine, aspartate and alanine transaminases, total cholesterol, triglycerides, high-density lipoproteins, and low-density lipoproteins were measured according to the standard methods. Oxidative stress, lipid profile, and hepatorenal functions were comparable in patients of both groups. However, patients on metformin treatment showed significantly lower levels of FBG [7.61 (6.70-8.89) mmol/L vs. 9.00 (7.30-10.68) mmol/L; P = .022] and HBA1c [7.00 (6.40-7.65)% vs. 8.20 (7.20-9.75)%; P metformin/gliclazide therapy and compared to those metformin alone. In contrast, glycemic control was poor in the diabetic patients undergoing combined therapy.

  13. Wigner functions for a class of semi-direct product groups

    International Nuclear Information System (INIS)

    Krasowska, Anna E; Ali, S Twareque

    2003-01-01

    Following a general method proposed earlier, we construct here Wigner functions defined on coadjoint orbits of a class of semidirect product groups. The groups in question are such that their unitary duals consist purely of representations from the discrete series and each unitary irreducible representation is associated with a coadjoint orbit. The set of all coadjoint orbits (hence UIRs) is finite and their union is dense in the dual of the Lie algebra. The simple structure of the groups and the orbits enables us to compute the various quantities appearing in the definition of the Wigner function explicitly. A large number of examples, with potential use in image analysis, is worked out

  14. A functionalized superparamagnetic iron oxide colloid as a receptor directed MR contrast agent

    International Nuclear Information System (INIS)

    Josephson, L.; Groman, E.V.; Menz, E.; Lewis, J.M.; Bengele, H.

    1990-01-01

    We have synthesized a surface functionalized superparamagnetic iron oxide colloid whose clearance from the vascular compartment was inhibited by asialofetuin but not fetuin. Unlike other particulate or colloidal magnetic resonance (MR) contrast agents, the agent of the current communication is not withdrawn from the vascular compartment by cells of the macrophage-monocyte phagocytic system, as indicated by its selective increase in hepatic relaxation rates. Because of this we refer to this colloid as a hepatic selective (HS) MR contrast agent. At 20 mumol Fe/kg the HS MR agent darkened MR images of liver. The HS MR agent exhibited no acute toxicity when injected into rats at 1800 mumol Fe/kg. Based on these observations, surface functionalized superparamagnetic iron oxide colloids may be the basis of MR contrast agents internalized by receptor mediated endocytosis generally, and by the asialoglycoprotein receptor in particular

  15. Nonperturbative renormalization-group approach preserving the momentum dependence of correlation functions

    Science.gov (United States)

    Rose, F.; Dupuis, N.

    2018-05-01

    We present an approximation scheme of the nonperturbative renormalization group that preserves the momentum dependence of correlation functions. This approximation scheme can be seen as a simple improvement of the local potential approximation (LPA) where the derivative terms in the effective action are promoted to arbitrary momentum-dependent functions. As in the LPA, the only field dependence comes from the effective potential, which allows us to solve the renormalization-group equations at a relatively modest numerical cost (as compared, e.g., to the Blaizot-Mendéz-Galain-Wschebor approximation scheme). As an application we consider the two-dimensional quantum O(N ) model at zero temperature. We discuss not only the two-point correlation function but also higher-order correlation functions such as the scalar susceptibility (which allows for an investigation of the "Higgs" amplitude mode) and the conductivity. In particular, we show how, using Padé approximants to perform the analytic continuation i ωn→ω +i 0+ of imaginary frequency correlation functions χ (i ωn) computed numerically from the renormalization-group equations, one can obtain spectral functions in the real-frequency domain.

  16. Physiology and genetics of sulfur-oxidizing bacteria.

    Science.gov (United States)

    Friedrich, C G

    1998-01-01

    Reduced inorganic sulfur compounds are oxidized by members of the domains Archaea and Bacteria. These compounds are used as electron donors for anaerobic phototrophic and aerobic chemotrophic growth, and are mostly oxidized to sulfate. Different enzymes mediate the conversion of various reduced sulfur compounds. Their physiological function in sulfur oxidation is considered (i) mostly from the biochemical characterization of the enzymatic reaction, (ii) rarely from the regulation of their formation, and (iii) only in a few cases from the mutational gene inactivation and characterization of the resulting mutant phenotype. In this review the sulfur-metabolizing reactions of selected phototrophic and of chemotrophic prokaryotes are discussed. These comprise an archaeon, a cyanobacterium, green sulfur bacteria, and selected phototrophic and chemotrophic proteobacteria. The genetic systems are summarized which are presently available for these organisms, and which can be used to study the molecular basis of their dissimilatory sulfur metabolism. Two groups of thiobacteria can be distinguished: those able to grow with tetrathionate and other reduced sulfur compounds, and those unable to do so. This distinction can be made irrespective of their phototrophic or chemotrophic metabolism, neutrophilic or acidophilic nature, and may indicate a mechanism different from that of thiosulfate oxidation. However, the core enzyme for tetrathionate oxidation has not been identified so far. Several phototrophic bacteria utilize hydrogen sulfide, which is considered to be oxidized by flavocytochrome c owing to its in vitro activity. However, the function of flavocytochrome c in vivo may be different, because it is missing in other hydrogen sulfide-oxidizing bacteria, but is present in most thiosulfate-oxidizing bacteria. A possible function of flavocytochrome c is discussed based on biophysical studies, and the identification of a flavocytochrome in the operon encoding enzymes involved

  17. Faraday cage-type electrochemiluminescence immunosensor for ultrasensitive detection of Vibrio vulnificus based on multi-functionalized graphene oxide.

    Science.gov (United States)

    Guo, Zhiyong; Sha, Yuhong; Hu, Yufang; Yu, Zhongqing; Tao, Yingying; Wu, Yanjie; Zeng, Min; Wang, Sui; Li, Xing; Zhou, Jun; Su, Xiurong

    2016-10-01

    A novel Faraday cage-type electrochemiluminescence (ECL) immunosensor devoted to the detection of Vibrio vulnificus (VV) was fabricated. The sensing strategy was presented by a unique Faraday cage-type immunocomplex based on immunomagnetic beads (IMBs) and multi-functionalized graphene oxide (GO) labeled with (2,2'-bipyridine)(5-aminophenanthroline)ruthenium (Ru-NH2). The multi-functionalized GO could sit on the electrode surface directly due to the large surface area, abundant functional groups, and good electronic transport property. It ensures that more Ru-NH2 is entirely caged and become "effective," thus improving sensitivity significantly, which resembles extending the outer Helmholtz plane (OHP) of the electrode. Under optimal conditions, the developed immunosensor achieves a limit of detection as low as 1 CFU/mL. Additionally, the proposed immunosensor with high sensitivity and selectivity can be used for the detection of real samples. The novel Faraday cage-type method has shown potential application for the diagnosis of VV and opens up a new avenue in ECL immunoassay. Graphical abstract Faraday cage-type immunoassay mode for ultrasensitive detection by extending OHP.

  18. Evolution of Functional Groups during Pyrolysis Oil Upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Stankovikj, Filip [Department; Tran, Chi-Cong [Department; Kaliaguine, Serge [Department; Olarte, Mariefel V. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Garcia-Perez, Manuel [Department

    2017-07-14

    In this paper, we examine the evolution of functional groups (carbonyl, carboxyl, phenol, and hydroxyl) during stabilization at 100–200 °C of two typical wood derived pyrolysis oils from BTG and Amaron in a batch reactor over Ru/C catalyst for 4h. An aqueous and an oily phase were obtained. The content of functional groups in both phases were analyzed by GC/MS, 31P-NMR, 1H-NMR, elemental analysis, KF titration, carbonyl groups by Faix, Folin – Ciocalteu method and UV-Fluorescence. The consumption of hydrogen was between 0.007 and 0.016 g/g oil, and 0.001-0.020 g of CH4/g of oil, 0.005-0.016 g of CO2/g oil and 0.03-0.10 g H2O/g oil were formed. The content of carbonyl, hydroxyl, and carboxyl groups in the volatile GC-MS detectable fraction decreased (80, 65, and ~70% respectively), while their behavior in the total oil and hence in the non-volatile fraction was more complex. The carbonyl groups initially decreased having minimum at ~125-150°C and then increased, while the hydroxyl groups had reversed trend. This might be explained by initial hydrogenation of the carbonyl groups to form hydroxyls, followed by continued dehydration reactions at higher temperatures that may increase their content. The 31P-NMR was on the limit of its sensitivity for the carboxylic groups to precisely detect changes in the non-volatile fraction, however the more precise titration method showed that the concentration of carboxylic groups in the non-volatile fraction remains constant with increased stabilization temperature. The UV-Fluorescence results show that repolymerization increases with temperature. ATR-FTIR method coupled with deconvolution of the region between 1490 and 1850 cm-1 showed to be a good tool for following the changes in carbonyl groups and phenols of the stabilized pyrolysis oils. The deconvolution of the IR bands around 1050 and 1260 cm-1 correlated very well with the changes in the 31P-NMR silent O groups (likely ethers). Most of the H2O formation could be

  19. Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates

    Science.gov (United States)

    Phuong, Nguyenthi; Andisetiawan, Anugrah; van Lam, Do; Kim, Jeong Hwan; Choi, Doo-Sun; Whang, Kyung-Hyun; Nham, Jeasun; Lee, Yun Jung; Yoo, Yeong-Eun; Yoon, Jae Sung

    2016-11-01

    Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can be considered as effective pores in nanoscale dimension. Anodic aluminum oxide (AAO) membrane has been used as the working template, and the nanoparticles have been injected and embedded within the pores of the AAO template. Nanoparticles with multiple sizes have been used in order to obtain smaller voids. Moreover, the nanoparticles have been functionalized, or electrically charged, with arginine/phenylalanine (RF) peptide group. In this way, filtration performance for charged particles or molecules, such as methylene blue, has been enhanced. Consequently, this study is expected to provide a new principle for fabrication of nano voids, or nano pores, and for filtration in nanoscale dimension.

  20. Fractional exhaled nitric oxide has a good correlation with asthma control and lung function in latino children with asthma.

    Science.gov (United States)

    Soto-Ramos, Mario; Castro-Rodríguez, Jose A; Hinojos-Gallardo, Luis Carlos; Hernández-Saldaña, Raul; Cisneros-Castolo, Martin; Carrillo-Rodríguez, Victor

    2013-08-01

    Although the measurement of fractional exhaled nitric oxide (FE(NO)) has been recommended for observational studies and clinical trials of asthma, FE(NO) has not been examined in studies of childhood asthma in Latin America, To examine the relationship between FE(NO) and indicators of disease control or severity [asthma control test/childhood asthma control test (ACT/C-ACT), lung function, and exercise challenge test (ECT)] in Mexican children with persistent asthma, Children (6-18 years of age) with persistent asthma were consecutively recruited in a tertiary asthma clinic and divided into two groups, e.g. FE(NO) children, Children with FE(NO)children with FE(NO) ≥20 ppb, those with FE(NO) children with persistent asthma, low levels of FE(NO) ( asthma control, and higher lung function.

  1. Overview on the Surface Functionalization Mechanism and Determination of Surface Functional Groups of Plasma Treated Carbon Nanotubes.

    Science.gov (United States)

    Saka, Cafer

    2018-01-02

    The use of carbon materials for many applications is due to the unique diversity of structures and properties ranging from chemical bonds between the carbon atoms of the materials to nanostructures, crystallite alignment, and microstructures. Carbon nanotubes and other nanoscale carbonaceous materials draw much attention due to their physical and chemical properties, such as high strength, high resistance to corrosion, electrical and thermal conductivity, stability and a qualified adsorbent. Carbon-based nanomaterials, which have a relatively large specific area and layered structure, can be used as an adsorbent for efficient removal of organic and inorganic contaminants. However, one of the biggest obstacles to the development of carbon-based nanomaterials adsorbents is insolubility and the lack of functional groups on the surface. There are several approaches to introduce functional groups on carbon nanotubes. One of these approaches, plasma applications, now has an important place in the creation of surface functional groups as a flexible, fast, and environmentally friendly method. This review focuses on recent information concerning the surface functionalization and modification of plasma treated carbon nanotube. This review considers the surface properties, advantages, and disadvantages of plasma-applied carbon nanotubes. It also examines the reaction mechanisms involved in the functional groups on the surface.

  2. Hydrogen peroxide-induced reduction of delayed rectifier potassium current in hippocampal neurons involves oxidation of sulfhydryl groups.

    Science.gov (United States)

    Hasan, Sonia M K; Redzic, Zoran B; Alshuaib, Waleed B

    2013-07-03

    This study examined the effect of H2O2 on the delayed rectifier potassium current (IKDR) in isolated hippocampal neurons. Whole-cell voltage-clamp experiments were performed on freshly dissociated hippocampal CA1 neurons of SD rats before and after treatment with H2O2. To reveal the mechanism behind H2O2-induced changes in IKDR, cells were treated with different oxidizing and reducing agents. External application of membrane permeable H2O2 reduced the amplitude and voltage-dependence of IKDR in a concentration dependent manner. Desferoxamine (DFO), an iron-chelator that prevents hydroxyl radical (OH) generation, prevented H2O2-induced reduction in IKDR. Application of the sulfhydryl-oxidizing agent 5,5 dithio-bis-nitrobenzoic acid (DTNB) mimicked the effect of H2O2. Sulfhydryl-reducing agents dithiothreitol (DTT) and glutathione (GSH) alone did not affect IKDR; however, DTT and GSH reversed and prevented the H2O2-induced inhibition of IKDR, respectively. Membrane impermeable agents GSH and DTNB showed effects only when added intracellularly identifying intracellular sulfhydryl groups as potential targets for hydroxyl-mediated oxidation. However, the inhibitory effects of DTNB and H2O2 at the positive test potentials were completely and partially abolished by DTT, respectively, suggesting an additional mechanism of action for H2O2, that is not shared by DTNB. In summary, this study provides evidence for the redox modulation of IKDR, identifies hydroxyl radical as an intermediate oxidant responsible for the H2O2-induced decrease in current amplitude and identifies intracellular sulfhydryl groups as an oxidative target. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands

    NARCIS (Netherlands)

    Neouze, M.A.; Schubert, U.S.

    2008-01-01

    Metal or metal oxide nanoparticles possess unique features compared to equivalent larger-scale materials. For applications, it is often necessary to stabilize or functionalize such nanoparticles. Thus, modification of the surface of nanoparticles is an important chemical challenge. In this survey,

  4. Synthesis of γ-hydroxypropyl P-chirogenic (±-phosphorus oxide derivatives by regioselective ring-opening of oxaphospholane 2-oxide precursors

    Directory of Open Access Journals (Sweden)

    Iris Binyamin

    2015-07-01

    Full Text Available The synthesis of P-chirogenic (±-phosphine oxides and phosphinates via selective nucleophilic ring opening of the corresponding oxaphospholanes is described. Two representative substrates: the phosphonate 2-ethoxy-1,2-oxaphospholane 2-oxide and the phosphinate 2-phenyl-1,2-oxaphospholane 2-oxide were reacted with various Grignard reagents to produce a single alkyl/aryl product. These products may possess further functionalities in addition to the phosphorus center such as the γ-hydroxypropyl group which results from the ring opening and π-donor moieties such as aryl, allyl, propargyl and allene which originates from the Grignard reagent.

  5. Oxidative stress induces caveolin 1 degradation and impairs caveolae functions in skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Alexis Mougeolle

    Full Text Available Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2 at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle.

  6. Coordination functionalization of graphene oxide with tetraazamacrocyclic complexes of nickel(II): Generation of paramagnetic centers

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Vladimir A., E-mail: basiuk@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Alzate-Carvajal, Natalia [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Henao-Holguín, Laura V. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Rybak-Akimova, Elena V. [Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Basiuk, Elena V., E-mail: elbg1111@gmail.com [Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico)

    2016-05-15

    Highlights: • [Ni(cyclam)]{sup 2+} and [Ni(tet b)]{sup 2+} cations coordinate to carboxylic groups of GO. • The coordination takes place under basic conditions in aqueous-based medium. • The coordination results in the conversion from low-spin to high-spin Ni(II). • Functionalized GO samples were characterized by various instrumental techniques. - Abstract: We describe a novel approach to functionalization of graphene oxide (GO) which allows for a facile generation of paramagnetic centers from two diamagnetic components. Coordination attachment of [Ni(cyclam)]{sup 2+} or [Ni(tet b)]{sup 2+} tetraazamacrocyclic cations to carboxylic groups of GO takes place under basic conditions in aqueous-based reaction medium. The procedure is very straightforward and does not require high temperatures or other harsh conditions. Changing the coordination geometry of Ni(II) from square-planar tetracoordinated to pseudooctahedral hexacoordinated brings about the conversion from low-spin to high-spin state of the metal centers. Even though the content of tetraazamacrocyclic complexes in functionalized GO samples was found to be relatively low (nickel content of ca. 1 wt%, as determined by thermogravimetric analysis, elemental analysis and energy dispersive X-ray spectroscopy), room temperature magnetic susceptibility measurements easily detected the appearance of paramagnetic properties in GO + [Ni(cyclam)] and GO + [Ni(tet b)] nanohybrids, with effective magnetic moments of 1.95 BM and 2.2 BM for, respectively. According to density functional theory calculations, the main spin density is localized at the macrocyclic complexes, without considerable extension to graphene sheet, which suggests insignificant ferromagnetic coupling in the nanohybrids, in agreement with the results of magnetic susceptibility measurements. The coordination attachment of Ni(II) tetraazamacrocycles to GO results in considerable changes in Fourier-transform infrared and X-ray photoelectron spectra

  7. Effect of functional groups on thermal conductivity of graphene/paraffin nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Zabihi, Zabiholah; Araghi, Houshang, E-mail: araghi@aut.ac.ir

    2016-11-25

    In this paper, thermal conductivity of graphene/paraffin nanocomposite using micromechanical model has been studied. The behavior of thermal conductivity of nanocomposite as a function of volume fraction of graphene is studied. Then is shown that as the interfacial thermal resistance at the graphene–paraffin interface decreases, the thermal conductivity of nanocomposite increases. In order to reduce the interfacial thermal resistance, functional groups in the interface between graphene and paraffin are used. It can be observed that using functional groups of hydrogen, methyl and phenyl in the interface of nanocomposite, contributes to the improvement of the thermal conductivity. Moreover, as the rate of coverage of the surface of graphene with functional groups of H, CH{sub 3} and C{sub 6}H{sub 5} increases, the thermal conductivity of nanocomposite improves. - Highlights: • Thermal conductivity nanocomposite exhibit nonlinear behavior with volume faction. • Phenyl is better to form the thermal conductivity network in paraffin. • The thickness of interfacial layer can be obtained 12.75 nm.

  8. Variation of phytoplankton functional groups modulated by hydraulic controls in Hongze Lake, China.

    Science.gov (United States)

    Tian, Chang; Pei, Haiyan; Hu, Wenrong; Hao, Daping; Doblin, Martina A; Ren, Ying; Wei, Jielin; Feng, Yawei

    2015-11-01

    Hongze Lake is a large, shallow, polymictic, eutrophic lake in the eastern China. Phytoplankton functional groups in this lake were investigated from March 2011 to February 2013, and a comparison was made between the eastern, western, and northern regions. The lake shows strong fluctuations in water level caused by monsoon rains and regular hydraulic controls. By application of the phytoplankton functional group approach, this study aims to investigate the spatial and temporal dynamics and analyze their influencing factors. Altogether, 18 functional groups of phytoplankton were identified, encompassing 187 species. In order to seek the best variable describing the phytoplankton functional group distribution, 14 of the groups were analyzed in detail using redundancy analysis. Due to the turbid condition of the lake, the dominant functional groups were those tolerant of low light. The predominant functional groups in the annual succession were D (Cyclotella spp. and Synedra acus), T (Planctonema lauterbornii), P (Fragilaria crotonensis), X1 (Chlorella vulgaris and Chlorella pyrenoidosa), C (Cyclotella meneghiniana and Cyclotella ocellata), and Y (Cryptomonas erosa). An opposite relationship between water level and the biomass of predominant groups was observed in the present study. Water level fluctuations, caused by monsoonal climate and artificial drawdown, were significant factors influencing phytoplankton succession in Hongze Lake, since they alter the hydrological conditions and influence light and nutrient availability. The clearly demonstrated factors, which significantly influence phytoplankton dynamics in Hongze Lake, will help government manage the large shallow lakes with frequent water level fluctuations.

  9. Application of macrobenthos functional groups to estimate the ecosystem health in a semi-enclosed bay.

    Science.gov (United States)

    Peng, Shitao; Zhou, Ran; Qin, Xuebo; Shi, Honghua; Ding, Dewen

    2013-09-15

    In this study, the functional group concept was first applied to evaluate the ecosystem health of Bohai Bay. Macrobenthos functional groups were defined according to feeding types and divided into five groups: a carnivorous group (CA), omnivorous group (OM), planktivorous group (PL), herbivorous group (HE), and detritivorous group (DE). Groups CA, DE, OM, and PL were identified, but the HE group was absent from Bohai Bay. Group DE was dominant during the study periods. The ecosystem health was assessed using a functional group evenness index. The functional group evenness values of most sampling stations were less than 0.40, indicating that the ecosystem health was deteriorated in Bohai Bay. Such deterioration could be attributed to land reclamation, industrial and sewage effluents, oil pollution, and hypersaline water discharge. This study demonstrates that the functional group concept can be applied to ecosystem health assessment in a semi-enclosed bay. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Sub-50 nm patterning of functional oxides by soft lithographic edge printing

    NARCIS (Netherlands)

    George, A.; ten Elshof, Johan E.

    2012-01-01

    We report a fast, versatile and reproducible method to make arbitrary nanoscale patterns of functional metal oxides by edge transfer printing of aqueous metal-loaded water-soluble polyacrylic acid (PAA) solutions on silicon. Patterns of ZnO, CuO, NiO and Fe2O3 with lateral dimensions below 50 nm

  11. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme

    Science.gov (United States)

    Yui, Daishi; Nishida, Yoichiro; Nishina, Tomoko; Mogushi, Kaoru; Tajiri, Mio; Ishibashi, Satoru; Ajioka, Itsuki; Ishikawa, Kinya; Mizusawa, Hidehiro; Murayama, Shigeo; Yokota, Takanori

    2015-01-01

    Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa -/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa -/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa -/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD. PMID:26637123

  12. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme.

    Directory of Open Access Journals (Sweden)

    Daishi Yui

    Full Text Available Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD model mice showed decreased insulin-degrading enzyme (IDE levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/- mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3; Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa-/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD.

  13. [Effect of obesity on pulmonary function in asthmatic children of different age groups].

    Science.gov (United States)

    Xu, Xiao-Wen; Huang, Ying; Wang, Jian; Zhang, Xue-Li; Liang, Fan-Mei; Luo, Rong

    2017-05-01

    To study the effect of obesity on pulmonary function in newly diagnosed asthmatic children of different age groups. Two hundred and ninety-four children with newly diagnosed asthma were classified into preschool-age (age (6 to 12.5 years) groups. They were then classified into obese, overweight, and normal-weight subgroups based on their body mass index (BMI). All the children underwent pulmonary function tests, including large airway function tests [forced vital capacity (FVC%) and forced expiratory volume in one second (FEV1%)] and small airway function tests [maximal expiratory flow at 25% of vital capacity (MEF25%), maximal expiratory flow at 50% of vital capacity (MEF50%), and maximal expiratory flow at 75% of vital capacity (MEF75%)]. The school-age group showed lower FEV1%, MEF25%, and MEF50% than the preschool-age group (Page group had lower FEV1%, MEF25%, and MEF50% compared with their counterparts in the preschool-age group (Page group showed lower FVC% and MEF50% than those in the preschool-age group. However, all the pulmonary function parameters showed no significant differences between the obese children in the preschool-age and school-age groups. In the preschool-age group, FVC%, FEV1%, and MEF75% of the obese children were lower than those of the normal-weight children. In the school-age group, only FVC% and FEV1% showed differences between the obese and normal-weight children (Page in children with asthma, and the effect is more obvious in those of preschool age.

  14. β-cyclodextrin functionalized on glass micro-particles: A green catalyst for selective oxidation of toluene to benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, M. Nazir, E-mail: tahir.muhammad_nazir@courrier.uqam.ca [Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220, Aalborg East (Denmark); Department of Chemistry, University of Quebec at Montreal, QC, H3C 3P8 (Canada); Nielsen, Thorbjørn T.; Larsen, Kim L. [Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220, Aalborg East (Denmark)

    2016-12-15

    Highlights: • Functionalization of βCD onto glass micro-particles (GMP-βCD). • Application of GMP-βCD as a green catalyst for the oxidation of toluene. • 82% yield at room temperature. • Repeated use of the catalyst for several cycles. - Abstract: Oxidation of toluene is considered an important process which often requires high temperatures and specific conditions along with heavy-metals based catalysts. In this study, we have developed a green catalyst by functionalizing beta-cyclodextrin onto glass micro-particle surfaces. All surfaces were characterized by X-ray photoelectron spectroscopy and applied to catalyze the selective oxidation of toluene into benzaldehyde (82% yield) at room temperature. The catalyst was stable and could be used repeatedly for several cycles without losing efficiency.

  15. Impact of primary amine group from aminophospholipids and amino acids on marine phospholipids stability: Non-enzymatic browning and lipid oxidation

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2013-01-01

    The main objective of this study was to investigate the oxidative stability and non-enzymatic browning reactions of marine PL in the presence or in the absence of primary amine group from aminophospholipids and amino acids. Marine phospholipids liposomal dispersions were prepared from two authentic......) Strecker derived volatiles, (ii) yellowness index (YI), (iii) hydrophobic and (iv) hydrophilic pyrroles content. The oxidative stability of the samples was assessed through measurement of secondary lipid derived volatile oxidation products. The result showed that the presence of PE and amino acids caused...... the formation of pyrroles, generated Strecker derived volatiles, decreased the YI development and lowered lipid oxidation. The lower degree of lipid oxidation in liposomal dispersions containing amino acids might be attributed to antioxidative properties of pyrroles or amino acids....

  16. The effect of gamma radiation on the structure of graphene oxide and graphene oxide functionalized with amino-PEG

    International Nuclear Information System (INIS)

    Soares, Jaqueline J.S.; Jacovone, Raynara M.S.; Santos, Paulo S.; Zaim, Márcio H.; Faria, Dalva L.A. de; Sakata, Solange K.; Universidade de Sao Paulo

    2017-01-01

    The functionalization of graphene oxide (GO) with polyethylene glycol (PEG) has been widely used in drug delivery systems. This nanocomposite exhibits excellent stability in the presence of high concentrations of salts and proteins and shows to be less toxic than its raw form in vitro and in vivo. However, it must be sterilized before use in the medical field and the gamma irradiation shows a promising option for this purpose. Sterilization by ionizing energy through gamma rays, generated by Cobalt-60 self-disintegration, consists in exposing the materials to short electromagnetic waves. The irradiation process provides substantial advantages when compared to thermal and chemical processes such as more precise control of the process, production of products with superior qualities, lower energy consumption and less environmental pollution. In this work the effect of gamma radiation on the structure of GO and GO functionalized com Amino-PEG (GO-PEG-NH_2) irradiated with different doses (15, 25, 35 and 50 kGy) and rate dose 7.31 kGy.h"-"1 was evaluated. The analyses were performed by Fourier-transform infrared spectroscopy (FT-IR) and Raman spectroscopy. The results showed that the methods for the synthesis of GO and GO-PEG-NH_2 was effective since there was confirmation of the surface oxidation of materials and functionalization with the PEG-NH_2 and the sterilization by gamma radiation does not caused any defects on materials. (author)

  17. The effect of gamma radiation on the structure of graphene oxide and graphene oxide functionalized with amino-PEG

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Jaqueline J.S.; Jacovone, Raynara M.S.; Santos, Paulo S.; Zaim, Márcio H.; Faria, Dalva L.A. de; Sakata, Solange K., E-mail: jaque.soares@ipen.br, E-mail: sksakata@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de Sao Paulo (IQ/USP), SP (Brazil). Instituto de Química

    2017-07-01

    The functionalization of graphene oxide (GO) with polyethylene glycol (PEG) has been widely used in drug delivery systems. This nanocomposite exhibits excellent stability in the presence of high concentrations of salts and proteins and shows to be less toxic than its raw form in vitro and in vivo. However, it must be sterilized before use in the medical field and the gamma irradiation shows a promising option for this purpose. Sterilization by ionizing energy through gamma rays, generated by Cobalt-60 self-disintegration, consists in exposing the materials to short electromagnetic waves. The irradiation process provides substantial advantages when compared to thermal and chemical processes such as more precise control of the process, production of products with superior qualities, lower energy consumption and less environmental pollution. In this work the effect of gamma radiation on the structure of GO and GO functionalized com Amino-PEG (GO-PEG-NH{sub 2}) irradiated with different doses (15, 25, 35 and 50 kGy) and rate dose 7.31 kGy.h{sup -1} was evaluated. The analyses were performed by Fourier-transform infrared spectroscopy (FT-IR) and Raman spectroscopy. The results showed that the methods for the synthesis of GO and GO-PEG-NH{sub 2} was effective since there was confirmation of the surface oxidation of materials and functionalization with the PEG-NH{sub 2} and the sterilization by gamma radiation does not caused any defects on materials. (author)

  18. Catalytic Oxidation of Benzophenone Hydrazone with Alumina-supported KMnO4 under Oxygen Atmosphere

    International Nuclear Information System (INIS)

    Lee, Kang Hyeok; Ko, Kwang Youn

    2006-01-01

    KMnO 4 /alumina reagent, which is cheap and environmentally safe, can serve as a catalytic oxidant under O 2 atmosphere for the oxidation of benzophenone hydrazone. To the best of our knowledge, the present works are the first example where KMnO 4 /alumina reagent acts as a catalytic oxidant under O 2 atmosphere. Diphenyldiazomethane (Ph 2 CN 2 ) is widely used for the protection of carboxylic acids by conversion to their diphenylmethyl (dpm) esters since dpm group can be easily deprotected by mild acidic condition or hydrogenolysis, especially in the field of b-lactams and peptides. Diphenyldiazomethane has been prepared by the oxidation of benzophenone hydrazone with reagents such as active manganese dioxide, mercuric oxide, peracetic acid, iodosobenzene diacetate or OXONE. However, some methods suffer from a disadvantage such as toxic nature of reagent, strong oxidative conditions or incompatibility with certain functional groups. For example, OXONE may not be employed for the in situ protection of carboxylic acid containing sulfide group due to the possibility of the concomitant oxidation of sulfide group

  19. Non-asthmatic patients show increased exhaled nitric oxide concentrations

    Directory of Open Access Journals (Sweden)

    Beatriz M. Saraiva-Romanholo

    2009-01-01

    Full Text Available OBJECTIVE: Evaluate whether exhaled nitric oxide may serve as a marker of intraoperative bronchospasm. INTRODUCTION: Intraoperative bronchospasm remains a challenging event during anesthesia. Previous studies in asthmatic patients suggest that exhaled nitric oxide may represent a noninvasive measure of airway inflammation. METHODS: A total of 146,358 anesthesia information forms, which were received during the period from 1999 to 2004, were reviewed. Bronchospasm was registered on 863 forms. From those, three groups were identified: 9 non-asthmatic patients (Bronchospasm group, 12 asthmatics (Asthma group and 10 subjects with no previous airway disease or symptoms (Control group. All subjects were submitted to exhaled nitric oxide measurements (parts/billion, spirometry and the induced sputum test. The data was compared by ANOVA followed by the Tukey test and Kruskal-Wallis followed by Dunn's test. RESULTS: The normal lung function test results for the Bronchospasm group were different from those of the asthma group (p <0.05. The median percentage of eosinophils in induced sputum was higher for the Asthma [2.46 (0.45-6.83] compared with either the Bronchospasm [0.55 (0-1.26] or the Control group [0.0 (0] (p <0.05; exhaled nitric oxide followed a similar pattern for the Asthma [81.55 (57.6-86.85], Bronchospasm [46.2 (42.0 -62.6] and Control group [18.7 (16.0-24.7] (p< 0.05. CONCLUSIONS: Non-asthmatic patients with intraoperative bronchospasm detected during anesthesia and endotracheal intubation showed increased expired nitric oxide.

  20. Oxidative DNA damage and oxidative stress in lead-exposed workers.

    Science.gov (United States)

    Dobrakowski, M; Pawlas, N; Kasperczyk, A; Kozłowska, A; Olewińska, E; Machoń-Grecka, A; Kasperczyk, S

    2017-07-01

    There are many discrepancies among the results of studies on the genotoxicity of lead. The aim of the study was to explore lead-induced DNA damage, including oxidative damage, in relation to oxidative stress intensity parameters and the antioxidant defense system in human leukocytes. The study population consisted of 100 male workers exposed to lead. According to the blood lead (PbB) levels, they were divided into the following three subgroups: a group with PbB of 20-35 μg/dL (low exposure to lead (LE) group), a group with a PbB of 35-50 µg/dL (medium exposure to lead (ME) group), and a group with a PbB of >50 μg/dL (high exposure to lead (HE) group). The control group consisted of 42 healthy males environmentally exposed to lead (PbB lead exposure induces DNA damage, including oxidative damage, in human leukocytes. The increase in DNA damage was accompanied by an elevated intensity of oxidative stress.

  1. Work function tuning of tin-doped indium oxide electrodes with solution-processed lithium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Ow-Yang, C.W., E-mail: cleva@sabanciuniv.edu [Materials Science and Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Nanotechnology Application Center, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Jia, J. [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258 (Japan); Aytun, T. [Materials Science and Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Zamboni, M.; Turak, A. [Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L8 (Canada); Saritas, K. [Materials Science and Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Shigesato, Y. [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258 (Japan)

    2014-05-30

    Solution-processed lithium fluoride (sol-LiF) nanoparticles synthesized in polymeric micelle nanoreactors enabled tuning of the surface work function of tin-doped indium oxide (ITO) films. The micelle reactors provided the means for controlling surface coverage by progressively building up the interlayer through alternating deposition and plasma etch removal of the polymer. In order to determine the surface coverage and average interparticle distance, spatial point pattern analysis was applied to scanning electron microscope images of the nanoparticle dispersions. The work function of the sol-LiF modified ITO, obtained from photoelectron emission yield spectroscopy analysis, was shown to increase with surface coverage of the sol-LiF particles, suggesting a lateral depolarization effect. Analysis of the photoelectron emission energy distribution in the near threshold region revealed the contribution of surface states for surface coverage in excess of 14.1%. Optimization of the interfacial barrier was achieved through contributions from both work function modification and surface states. - Highlights: • Work function of indium tin oxide increased with LiF nanoparticle coverage. • Work function was analyzed via photoelectron emission yield (PEYS). • At higher surface coverage, the energy distribution of PEYS increased. • Pre-threshold increase in PEYS consistent with emission from surface states.

  2. Facet-Dependent Oxidative Goethite Growth As a Function of Aqueous Solution Conditions.

    Science.gov (United States)

    Strehlau, Jennifer H; Stemig, Melissa S; Penn, R Lee; Arnold, William A

    2016-10-04

    Nitroaromatic compounds are groundwater pollutants that can be degraded through reactions with Fe(II) adsorbed on iron oxide nanoparticles, although little is known about the evolving reactivity of the minerals with continuous pollutant exposure. In this work, Fe(II)/goethite reactivity toward 4-chloronitrobenzene (4-ClNB) as a function of pH, organic matter presence, and reactant concentrations was explored using sequential-spike batch reactors. Reaction rate constants were smaller with lower pH, introduction of organic matter, and diluted reactant concentrations as compared to a reference condition. Reaction rate constants did not change with the number of 4-ClNB spikes for all reaction conditions. Under all conditions, oxidative goethite growth was demonstrated through X-ray diffraction, magnetic characterization, and transmission electron microscopy. Nonparametric statistics were applied to compare histograms of lengths and widths of goethite nanoparticles as a function of varied solution conditions. The conditions that slowed the reaction also resulted in statistically shorter and wider particles than for the faster reactions. Additionally, added organic matter interfered with particle growth on the favorable {021} faces to a greater extent, with statistically reduced rate of growth on the tip facets and increased rate of growth on the side facets. These data demonstrate that oxidative growth of goethite in aqueous systems is dependent on major groundwater variables, such as pH and the presence of organic matter, which could lead to the evolving reactivity of goethite particles in natural environments.

  3. N-oxide as a traceless oxidizing directing group: mild rhodium(III)-catalyzed C-H olefination for the synthesis of ortho-alkenylated tertiary anilines.

    Science.gov (United States)

    Huang, Xiaolei; Huang, Jingsheng; Du, Chenglong; Zhang, Xingyi; Song, Feijie; You, Jingsong

    2013-12-02

    Double role: A traceless directing group also acts as an internal oxidant in a novel Rh(III) -catalyzed protocol developed for the synthesis of ortho-alkenylated tertiary anilines. A five-membered cyclometalated Rh(III) complex is proposed as a plausible intermediate and confirmed by X-ray crystallographic analysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Group IIB-VIA semiconductor oxide cluster ions

    Science.gov (United States)

    Jayasekharan, Thankan

    2018-05-01

    Metal oxide cluster ions, MnOm± (M = Zn, Cd) and HgnOm- of various stoichiometry have been generated from solid IIB-VIA semiconductor oxides targets, (ZnO(s), CdO(s), and HgO(s)) by using pulse laser desorption ionization time of flight mass spectrometry with a laser of λ = 355 nm. Analysis of mass spectral data indicates the formation of stoichiometric cluster ions viz., (ZnO)n=1-30+ and (CdO)n=1-40+ along with -O bound anions, (ZnO)n=1-30O-, (CdO)n=1-40O- and (HgO)n=1-36O- from their respective solids. Further, metal oxoanions such as ZnOn=2,3-, CdOn=2,3,6-, and HgOn=2,3,6,7- have also been noted signifying the higher coordination ability of both Cd and Hg with O/O2/O3 species.

  5. Electro-oxidation of ethylene glycol and glycerol at palladium-decorated FeCo@Fe core–shell nanocatalysts for alkaline direct alcohol fuel cells: functionalized MWCNT supports and impact on product selectivity

    CSIR Research Space (South Africa)

    Fashedemi, OO

    2015-04-01

    Full Text Available (ARTEM). The functional groups of the MWCNTs show a huge impact on the physico-chemical properties of the FeCo@Fe@Pd nanocatalyst towards the electrocatalytic oxidation of EG and GLY in alkaline media. The FeCo@Fe@Pd on –COOH-treated MWCNTs showed...

  6. Restoration using Azolla imbricata increases nitrogen functional bacterial groups and genes in soil.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen; Yang, Ke

    2017-05-01

    Microbial groups are major factors that influence soil function. Currently, there is a lack of studies on microbial functional groups. Although soil microorganisms play an important role in the nitrogen cycle, systematic studies of the effects of environmental factors on microbial populations in relation to key metabolic processes in the nitrogen cycle are seldom reported. In this study, we conducted a systematic analysis of the changes in nitrogen functional groups in mandarin orange garden soil treated with Azolla imbricata. The structures of the major functional bacterial groups and the functional gene abundances involved in key processes of the soil nitrogen cycle were analyzed using high-throughput sequencing (HTS) and quantitative real-time PCR, respectively. The results indicated that returning A. imbricata had an important influence on the composition of soil nitrogen functional bacterial communities. Treatment with A. imbricata increased the diversity of the nitrogen functional bacteria. The abundances of nitrogen functional genes were significantly higher in the treated soil compared with the control soil. Both the diversity of the major nitrogen functional bacteria (nifH bacteria, nirK bacteria, and narG bacteria) and the abundances of nitrogen functional genes in the soil showed significant positive correlations with the soil pH, the organic carbon content, available nitrogen, available phosphorus, and NH 4 + -N and NO 3 - -N contents. Treatment with 12.5 kg fresh A. imbricata per mandarin orange tree was effective to improve the quality of the mandarin orange garden soil. This study analyzed the mechanism of the changes in functional bacterial groups and genes involved in key metabolic processes of the nitrogen cycle in soil treated by A. imbricata.

  7. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  8. Carbon aerogels by pyrolysis of TEMPO-oxidized cellulose

    Science.gov (United States)

    Zhang, Sizhao; Feng, Jian; Feng, Junzong; Jiang, Yonggang; Ding, Feng

    2018-05-01

    Although carbon aerogels derived from naturally occurring materials have been developed extensively, a reasonable synthetic approach using cellulose-resource remains unclear. Here, we report a strategy to prepare carbon aerogels originated from cellulose position-selectively oxidized by TEMPO-oxidized process. Contrary to non-TEMPO-oxidized cellulose-derived carbon aerogels (NCCA) with relative loose structure, TEMPO-oxidized cellulose-derived carbon aerogels (TCCA) with tight fibrillar-continuous network are monitored, suggesting the importance of TEMPO-oxidized modification towards creating the architecture of subsequently produced carbon aerogels. TCCA endows a higher BET area despite owning slightly dense bulk density comparing with that of NCCA. The structural texture of TCCA could be maintained in a way in comparison to TEMPO-oxidized cellulose-derived aerogel, due to the integration and aggregation effect by losing the electric double layer repulsion via ionization of the surface carboxyl groups. FTIR and XPS analyses signify the evidence of non-functionalized carbon-skeleton network formation in terms of TCCA. Further, the mechanism concerning the creation of carbon aerogels is also established. These findings not only provide new insights into the production of carbon aerogels but also open up a new opportunity in the field of functional carbon materials.

  9. Convergent modulation of singlet and triplet excited states of phosphine-oxide hosts through the management of molecular structure and functional-group linkages for low-voltage-driven electrophosphorescence.

    Science.gov (United States)

    Han, Chunmiao; Zhang, Zhensong; Xu, Hui; Xie, Guohua; Li, Jing; Zhao, Yi; Deng, Zhaopeng; Liu, Shiyong; Yan, Pengfei

    2013-01-02

    The controllable tuning of the excited states in a series of phosphine-oxide hosts (DPExPOCzn) was realized through introducing carbazolyl and diphenylphosphine-oxide (DPPO) moieties to adjust the frontier molecular orbitals, molecular rigidity, and the location of the triplet excited states by suppressing the intramolecular interplay of the combined multi-insulating and meso linkage. On increasing the number of substituents, simultaneous lowering of the first singlet energy levels (S(1)) and raising of the first triplet energy levels (T(1), about 3.0 eV) were achieved. The former change was mainly due to the contribution of the carbazolyl group to the HOMOs and the extended conjugation. The latter change was due to an enhanced molecular rigidity and the shift of the T(1) states from the diphenylether group to the carbazolyl moieties. This kind of convergent modulation of excited states not only facilitates the exothermic energy transfer to the dopants in phosphorescent organic light-emitting diodes (PHOLEDs), but also realizes the fine-tuning of electrical properties to achieve the balanced carrier injection and transportation in the emitting layers. As the result, the favorable performance of blue-light-emitting PHOLEDs was demonstrated, including much-lower driving voltages of 2.6 V for onset and 3.0 V at 100 cd m(-2), as well as a remarkably improved E.Q.E. of 12.6%. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Inefficient skeletal muscle oxidative function flanks impaired motor neuron recruitment in Amyotrophic Lateral Sclerosis during exercise.

    Science.gov (United States)

    Lanfranconi, F; Ferri, A; Corna, G; Bonazzi, R; Lunetta, C; Silani, V; Riva, N; Rigamonti, A; Maggiani, A; Ferrarese, C; Tremolizzo, L

    2017-06-07

    This study aimed to evaluate muscle oxidative function during exercise in amyotrophic lateral sclerosis patients (pALS) with non-invasive methods in order to assess if determinants of reduced exercise tolerance might match ALS clinical heterogeneity. 17 pALS, who were followed for 4 months, were compared with 13 healthy controls (CTRL). Exercise tolerance was assessed by an incremental exercise test on cycle ergometer measuring peak O 2 uptake ([Formula: see text]O 2peak ), vastus lateralis oxidative function by near infrared spectroscopy (NIRS) and breathing pattern ([Formula: see text]E peak ). pALS displayed: (1) 44% lower [Formula: see text]O 2peak vs. CTRL (p motor units recruitment, is a major determinant of pALS clinical heterogeneity and working capacity exercise tolerance. CPET and NIRS are useful tools for detecting early stages of oxidative deficiency in skeletal muscles, disclosing individual impairments in the O 2 transport and utilization chain.

  11. Oxidative stress, neuroendocrine function and behavior in an animal model of extended longevity

    NARCIS (Netherlands)

    Berry, Alessandra

    2010-01-01

    Stress and oxidative stress (OS) might act synergistically to exacerbate the neuronal decay associated with aging. Recent evidence has shown a redox regulation of the function of the glucocorticoid receptors as nuclear transcription factors. The lack of the p66Shc gene reduces OS and increases

  12. Functional Group of Spiders in Cultivated Landscape Dominated by Paddy Fields in West Java, Indonesia

    Directory of Open Access Journals (Sweden)

    I WAYAN SUANA

    2009-03-01

    Full Text Available Distribution of spiders in all colonized environments is limited by biotic and abiotic factors requiring adaptations with respect to, for example microhabitat choice and hunting behavior. These two factors were frequently used to group spiders into functional groups. In this study our objectives were to (i group of genera of spiders into functional group based on their microhabitat specificity, hunting behavior, and daily activity; and (ii compare the number and composition of functional group of spider at each habitat type and period of paddy growth. The study was conducted at a landscape dominated by paddy fields in Cianjur Watershed for a period of 9 months. Four different habitat types (paddy, vegetable, non-crop, and mixed garden, were sampled using five trapping techniques (pitfall traps, farmcop suction, sweep netting, yellow-pan traps, and sticky traps. The Unweighted Pair-Group Average and the Euclidean Distances were used to generate dendrogram of functional group of spider. We found 14 functional groups of spider at genus level. The number of functional group of spider at four habitat types was differing, but the composition was similar, because all habitats were closed to each other. Habitat structure diversity and disturbance level influenced the number of functional group of spider. Different architecture of vegetation and availability of differ prey during paddy growth, causing the composition of functional group of spider in each period of paddy growth was changed, although its number was unchanged.

  13. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study.

    Science.gov (United States)

    Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng

    2017-09-07

    To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system.

  14. Oxidant/antioxidant balance in animal nutrition and health: the role of protein oxidation

    Directory of Open Access Journals (Sweden)

    Pietro eCeli

    2015-10-01

    Full Text Available This review examines the role that oxidative stress, and protein oxidation in particular, plays in nutrition, metabolism and health of farm animals. The route by which redox homeostasis is involved in some important physiological functions and the implications of the impairment of oxidative status on animal health and diseases is also examined. Proteins have various and, at the same time, unique biological functions and their oxidation can result in structural changes and various functional modifications. Protein oxidation seems to be involved in pathological conditions such as respiratory diseases and parasitic infection; however some studies also suggest that protein oxidation plays a crucial role in the regulation of important physiological functions such as reproduction, nutrition, metabolism, lactation, gut health and neonatal physiology. As the characterization of the mechanisms by which oxidative stress may influence metabolism and health is attracting considerable scientific interest, the aim of this review is to present veterinary scientists and clinicians with various aspects of oxidative damage to proteins.

  15. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing, E-mail: liujing27@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Cheney, Marcos A. [Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853 (United States); Wu Fan; Li Meng [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-02-15

    A systematic theoretical study using density functional theory is performed to provide molecular-level understanding of the effects of chemical functional groups on mercury adsorption on carbonaceous surfaces. The zigzag and armchair edges were used in modeling the carbonaceous surfaces to simulate different adsorption sites. The edge atoms on the upper side of the models are unsaturated to simulate active sites. All calculations (optimizations, energies, and frequencies) were made at B3PW91 density functional theory level, using RCEP60VDZ basis set for mercury and 6-31G(d) pople basis set for other atoms. The results indicate that the embedding of halogen atom can increase the activity of its neighboring site which in turn increases the adsorption capacity of the carbonaceous surface for Hg{sup 0}. The adsorption belongs to chemisorptions, which is in good agreement with the experimental results. For the effects of oxygen functional groups, lactone, carbonyl and semiquinone favor Hg{sup 0} adsorption because they increase the neighboring site's activity for mercury adsorption. On the contrary, phenol and carboxyl functional groups show a physisorption of Hg{sup 0}, and reduce Hg capture. This result can explain the seemingly conflicting experimental results reported in the literature concerning the influence of oxygen functional groups on mercury adsorption on carbonaceous surface.

  16. A metal-free general procedure for oxidation of secondary amines to nitrones.

    Science.gov (United States)

    Gella, Carolina; Ferrer, Eric; Alibés, Ramon; Busqué, Félíx; de March, Pedro; Figueredo, Marta; Font, Josep

    2009-08-21

    An efficient and metal-free protocol for direct oxidation of secondary amines to nitrones has been developed, using Oxone in a biphasic basic medium as the sole oxidant. The method is general and tolerant with other functional groups or existing stereogenic centers, providing rapid access to enantiomerically pure compounds in good yields.

  17. A Generalized Logistic Regression Procedure to Detect Differential Item Functioning among Multiple Groups

    Science.gov (United States)

    Magis, David; Raiche, Gilles; Beland, Sebastien; Gerard, Paul

    2011-01-01

    We present an extension of the logistic regression procedure to identify dichotomous differential item functioning (DIF) in the presence of more than two groups of respondents. Starting from the usual framework of a single focal group, we propose a general approach to estimate the item response functions in each group and to test for the presence…

  18. Reinforcing graphene oxide/cement composite with NH2 ...

    Indian Academy of Sciences (India)

    Reinforcing graphene oxide/cement composite with NH2 functionalizing group. M EBRAHIMIZADEH ABRISHAMI1,∗ and V ZAHABI2. 1Materials and Electroceramics Laboratory, Department of Physics, Ferdowsi University of Mashhad, Mashhad. 9177948974, Iran. 2Department of Civil Engineering, Islamic Azad University, ...

  19. Catalytic Oxidation of Benzophenone Hydrazone with Alumina-supported KMnO{sub 4} under Oxygen Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hyeok; Ko, Kwang Youn [Ajou University, Suwon (Korea, Republic of)

    2006-02-15

    KMnO{sub 4}/alumina reagent, which is cheap and environmentally safe, can serve as a catalytic oxidant under O{sub 2} atmosphere for the oxidation of benzophenone hydrazone. To the best of our knowledge, the present works are the first example where KMnO{sub 4}/alumina reagent acts as a catalytic oxidant under O{sub 2} atmosphere. Diphenyldiazomethane (Ph{sub 2}CN{sub 2}) is widely used for the protection of carboxylic acids by conversion to their diphenylmethyl (dpm) esters since dpm group can be easily deprotected by mild acidic condition or hydrogenolysis, especially in the field of b-lactams and peptides. Diphenyldiazomethane has been prepared by the oxidation of benzophenone hydrazone with reagents such as active manganese dioxide, mercuric oxide, peracetic acid, iodosobenzene diacetate or OXONE. However, some methods suffer from a disadvantage such as toxic nature of reagent, strong oxidative conditions or incompatibility with certain functional groups. For example, OXONE may not be employed for the in situ protection of carboxylic acid containing sulfide group due to the possibility of the concomitant oxidation of sulfide group.

  20. Polyurethane Nanocomposites Containing Reduced Graphene Oxide, FTIR, Raman, and XRD Studies

    Directory of Open Access Journals (Sweden)

    Michał Strankowski

    2016-01-01

    Full Text Available Recently, graphene and other graphene-based materials have become an essential part of composite science and technology. Their unique properties are not only restricted to graphene but also shared with derivative compounds like graphene oxide, reduced graphene oxide, functionalized graphene, and so forth. One of the most structurally important materials, graphene oxide (GO, is prepared by the oxidation of graphite. Though removal of the oxide groups can create vacancies and structural defects, reduced graphene oxide (rGO is used in composites as effective filler similar to GO. Authors developed a new polyurethane nanocomposite using a derivative of grapheme, thermally reduced graphene oxide (rGO, to modify the matrix of polyurethane elastomers, by rGO.

  1. Wigner functions for noncommutative quantum mechanics: A group representation based construction

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, S. Hasibul Hassan, E-mail: shhchowdhury@gmail.com [Chern Institute of Mathematics, Nankai University, Tianjin 300071 (China); Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8 (Canada); Ali, S. Twareque, E-mail: twareque.ali@concordia.ca [Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8 (Canada)

    2015-12-15

    This paper is devoted to the construction and analysis of the Wigner functions for noncommutative quantum mechanics, their marginal distributions, and star-products, following a technique developed earlier, viz, using the unitary irreducible representations of the group G{sub NC}, which is the three fold central extension of the Abelian group of ℝ{sup 4}. These representations have been exhaustively studied in earlier papers. The group G{sub NC} is identified with the kinematical symmetry group of noncommutative quantum mechanics of a system with two degrees of freedom. The Wigner functions studied here reflect different levels of non-commutativity—both the operators of position and those of momentum not commuting, the position operators not commuting and finally, the case of standard quantum mechanics, obeying the canonical commutation relations only.

  2. Chromium oxide over activated carbons as catalyst for oxidative dehydrogenation of isobutane

    International Nuclear Information System (INIS)

    Cardenas, Agobardo; Acero Fabio N; Diaz, Jose de J

    2007-01-01

    The functional groups at the surface of an activated carbon Norit ROX 08 were modified through reaction with nitric acid, 8.8% 0 2 in N 2 and H 2 . the modified carbons were impregnated with a CrO 3 aqueous solution and used in the oxidative dehydrogenation of isobutane to isobutene (ODH). The formation of isobutene was observed at 443 k, with a maximum selectivity of 85% and a yield of 9%

  3. Effects of taurine and housing density on renal function in laying hens.

    Science.gov (United States)

    Ma, Zi-Li; Gao, Yang; Ma, Hai-Tian; Zheng, Liu-Hai; Dai, Bin; Miao, Jin-Feng; Zhang, Yuan-Shu

    This study investigated the putative protective effects of supplemental 2-aminoethane sulfonic acid (taurine) and reduced housing density on renal function in laying hens. We randomly assigned fifteen thousand green-shell laying hens into three groups: a free range group, a low-density caged group, and a high-density caged group. Each group was further divided equally into a control group (C) and a taurine treatment group (T). After 15 d, we analyzed histological changes in kidney cells, inflammatory mediator levels, oxidation and anti-oxidation levels. Experimental data revealed taurine supplementation, and rearing free range or in low-density housing can lessen morphological renal damage, inflammatory mediator levels, and oxidation levels and increase anti-oxidation levels. Our data demonstrate that taurine supplementation and a reduction in housing density can ameliorate renal impairment, increase productivity, enhance health, and promote welfare in laying hens.

  4. pH responsiveness of dendrimer-like poly(ethylene oxide)s.

    Science.gov (United States)

    Feng, Xiaoshuang; Taton, Daniel; Borsali, Redouane; Chaikof, Elliot L; Gnanou, Yves

    2006-09-06

    Poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA), two polymers known to form pH-sensitive aggregates through noncovalent interactions, were assembled in purposely designed architecture -a dendrimer-like PEO scaffold carrying short inner PAA chains-to produce unimolecular systems that exhibit pH responsiveness. Because of the particular placement of the PAA chains within the dendrimer-like structure, intermolecular complexation between acrylic acid (AA) and ethylene oxide (EO) units-and thus macroscopic aggregation or even mesoscopic micellization-could be avoided in favor of the sole intramolecular complexation. The sensitivity of such interactions to pH was exploited to generate dendrimer-like PEOs that reversibly shrink and expand with the pH. Such PAA-carrying dendrimer-like PEOs were synthesized in two main steps. First, a fifth-generation dendrimer-like PEO was obtained by combining anionic ring-opening polymerization (AROP) of ethylene oxide from a tris-hydroxylated core and selective branching reactions of PEO chain ends. To this end, an AB(2)C-type branching agent was designed: the latter includes a chloromethyl (A) group for its covalent attachment to the arm ends, two geminal hydroxyls (B(2)) protected in the form of a ketal ring for the growth of subsequent PEO generations by AROP, and a vinylic (C) double bonds for further functionalization of the interior of dendrimer-like PEOs. Reiteration of AROP and derivatization of PEO branches allowed us to prepare a dendrimer-like PEO of fourth generation with a total molar mass of 52,000 g x mol(-1), containing 24 external hydroxyl functions and 21 inner vinylic groups in the interior. A fifth generation of PEO chains was generated from this parent dendrimer-like PEO of fourth generation using a "conventional" AB(2)-type branching agent, and 48 PEO branches could be grown by AROP. The 48 outer hydroxy-end groups of the fifth-generation dendrimer-like PEO obtained were subsequently quantitatively

  5. Oxidant/antioxidant balance in animal nutrition and health: the role of protein oxidation

    OpenAIRE

    Pietro eCeli; Pietro eCeli; Gianfranco eGabai

    2015-01-01

    This review examines the role that oxidative stress, and protein oxidation in particular, plays in nutrition, metabolism and health of farm animals. The route by which redox homeostasis is involved in some important physiological functions and the implications of the impairment of oxidative status on animal health and diseases is also examined. Proteins have various and, at the same time, unique biological functions and their oxidation can result in structural changes and various functional m...

  6. Polyacrylamide grafting of modified graphene oxides by in situ free radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Xu, Xiaoyang, E-mail: xiaoyangxu2012@163.com [School of Science, Tianjin University, Tianjin 30072 (China); Wu, Tao [School of Science, Tianjin University, Tianjin 30072 (China); Zhang, Sai; Li, Xianxian [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Li, Yi, E-mail: liyi@tju.edu.cn [School of Science, Tianjin University, Tianjin 30072 (China)

    2014-12-15

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide.

  7. Polyacrylamide grafting of modified graphene oxides by in situ free radical polymerization

    International Nuclear Information System (INIS)

    Tang, Mingyi; Xu, Xiaoyang; Wu, Tao; Zhang, Sai; Li, Xianxian; Li, Yi

    2014-01-01

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide

  8. Nest Digging by Leaf-Cutting Ants: Effect of Group Size and Functional Structures

    Directory of Open Access Journals (Sweden)

    Roberto da Silva Camargo

    2012-01-01

    Full Text Available Leaf-cutting ant workers dig underground chambers, for housing their symbiotic fungus, interconnected by a vast quantity of tunnels whose function is to permit the entrance of food (leaves, gaseous exchanges, and movement of workers, offspring, and the queen. Digging is a task executed by a group of workers, but little is known about the group effect and group-constructed functional structures. Thus, we analyzed the structures formed by worker groups (5, 10, 20, and 40 individuals of the leaf-cutting ant, Atta sexdens rubropilosa, for 2 days of excavation. The digging arena was the same for the 4 groups, with each group corresponding to a different density. Our results verified a pattern of tunneling by the workers, but no chamber was constructed. The group effect is well known, since the 40-worker group dug significantly more than the groups of 5, 10, and 20. These groups did not differ statistically from each other. Analysis of load/worker verified that workers of the smallest group carried the greatest load. Our paper demonstrates the group effect on the digging of nests, namely, that excavation is proportional to group size, but without emergence of a functional structure such as a chamber.

  9. Chemical constraints governing the origin of metabolism: the thermodynamic landscape of carbon group transformations under mild aqueous conditions

    Science.gov (United States)

    Weber, Arthur L.

    2002-01-01

    The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies (deltaG) were estimated for four types of reactions of biochemical importance carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed (1) that generally when carbon-carbon bond cleavage involves groups from different functional group classes (i.e., carboxylic acids, carbonyl groups, alcohols, and hydrocarbons), the transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) that the energy of carbon-carbon bond transformation is primarily determined by the functional group class of the group that changes oxidation state in the reaction (i.e., the functional group class of the group that donates the shared electron-pair during cleavage, or that accepts the incipient shared electron-pair during synthesis). In contrast, the energy of hydrogen transfer between carbon groups is determined by the functional group class of both the hydrogen-donor group and the hydrogen-acceptor group. From these and other observations we concluded that the chemistry involved in the origin of metabolism (and to a lesser degree modern metabolism) was strongly constrained by (1) the limited redox-based transformation energy of organic substrates that is readily dissipated in a few energetically favorable irreversible reactions; (2) the energy dominance of a few transformation half-reactions that determines whether carbon-carbon bond transformation (cleavage or synthesis) is energetically favorable (deltaG +3.5 kcal/mol); and (3) the dependence of carbon group transformation energy on the

  10. Effectiveness of exercise and protein supplementation intervention on body composition, functional fitness, and oxidative stress among elderly Malays with sarcopenia.

    Science.gov (United States)

    Shahar, Suzana; Kamaruddin, Norshafarina Shari; Badrasawi, Manal; Sakian, Noor Ibrahim Mohamed; Abd Manaf, Zahara; Yassin, Zaitun; Joseph, Leonard

    2013-01-01

    Sarcopenia, characterized as muscle loss that occurs with aging, is a major health problem in an aging population, due to its implications on mobility, quality of life, and fall risk. Protein supplementation could improve the physical fitness by increasing protein anabolism, and exercise has a documented evidence of positive effect on functional status among the elderly. However, the combined effect of both protein supplementation and exercise has not been investigated among sarcopenic elderly in the Asian population. Thus, this study aimed to determine the effectiveness of exercise intervention and protein supplementation either alone or in combination for 12 weeks, on body composition, functional fitness, and oxidative stress among elderly Malays with sarcopenia. Sixty five sarcopenic elderly Malays aged 60-74 years were assigned to the control group, exercise group (ExG), protein supplementation group (PrG), or the combination of exercise and protein supplementation group. A significant interaction effect between body weight and body mass index (BMI) was observed, with the PrG (-2.1% body weight, -1.8% BMI) showing the highest reductions. Further, there was a decrease in % body fat (-4.5%) and an increase in fat-free mass (kg) (+5.7%) in the ExG after 12 weeks (P exercise program was found to improve muscle strength and body composition, while protein supplementation reduced body weight and increased upper body strength, among sarcopenic elderly in Malaysia.

  11. Extremely low frequency electromagnetic field (ELF-EMF) reduces oxidative stress and improves functional and psychological status in ischemic stroke patients.

    Science.gov (United States)

    Cichoń, Natalia; Bijak, Michał; Miller, Elżbieta; Saluk, Joanna

    2017-07-01

    As a result of ischaemia/reperfusion, massive generation of reactive oxygen species occurs, followed by decreased activity of antioxidant enzymes. Extremely low frequency electromagnetic fields (ELF-EMF) can modulate oxidative stress, but there are no clinical antioxidant studies in brain stroke patients. The aim of our study was to investigate the effect of ELF-EMF on clinical and antioxidant status in post-stroke patients. Fifty-seven patients were divided into two groups: ELF-EMF and non-ELF-EMF. Both groups underwent the same 4-week rehabilitation program. Additionally, the ELF-EMF group was exposed to an ELF-EMF field of 40 Hz, 7 mT for 15 min/day for 4 weeks (5 days a week). The activity of catalase and superoxide dismutase was measured in hemolysates, and total antioxidant status (TAS) determined in plasma. Functional status was assessed before and after the series of treatments using Activities of Daily Living (ADL), Mini-Mental State Examination (MMSE), and Geriatric Depression Scale (GDS). Applied ELF-EMF significantly increased enzymatic antioxidant activity; however, TAS levels did not change in either group. Results show that ELF-EMF induced a significant improvement in functional (ADL) and mental (MMSE, GDS) status. Clinical parameters had positive correlation with the level of enzymatic antioxidant protection. Bioelectromagnetics. 38:386-396, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. DMPD: Nitric oxide and cell viability in inflammatory cells: a role for NO inmacrophage function and fate. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15691589 Nitric oxide and cell viability in inflammatory cells: a role for NO inmacrophage function...(.png) (.svg) (.html) (.csml) Show Nitric oxide and cell viability in inflammatory cells: a role for NO inmacrophage function...ty in inflammatory cells: a role for NO inmacrophage function and fate. Authors Bosca L, Zeini M, Traves PG,

  13. Continuous Hydrothermal Flow Synthesis of Functional Oxide Nanomaterials Used in Energy Conversion Devices

    DEFF Research Database (Denmark)

    Xu, Yu

    Continuous hydrothermal flow synthesis (CHFS) was used to prepare functional oxide nanoparticles. Materials synthesized include NiO, Y-doped ZrO2, Gd-doped CeO2, LaCrO3 and Ni-substituted CoFe2O4. These types of oxides can be applied in several energy conversion devices, e.g. as active materials...... as materials are continuously produced, and the technology can be scaled-up to an industrial-relevant production capacity. The thesis starts with investigating the most appropriate mixer design for a novel two-stage reactor by computational fluid dynamics modelling. On basis of the modelling results, a two......, dense continuous layers (

  14. Computing the effective action with the functional renormalization group

    Energy Technology Data Exchange (ETDEWEB)

    Codello, Alessandro [CP3-Origins and the Danish IAS University of Southern Denmark, Odense (Denmark); Percacci, Roberto [SISSA, Trieste (Italy); INFN, Sezione di Trieste, Trieste (Italy); Rachwal, Leslaw [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Tonero, Alberto [ICTP-SAIFR and IFT, Sao Paulo (Brazil)

    2016-04-15

    The ''exact'' or ''functional'' renormalization group equation describes the renormalization group flow of the effective average action Γ{sub k}. The ordinary effective action Γ{sub 0} can be obtained by integrating the flow equation from an ultraviolet scale k = Λ down to k = 0. We give several examples of such calculations at one-loop, both in renormalizable and in effective field theories. We reproduce the four-point scattering amplitude in the case of a real scalar field theory with quartic potential and in the case of the pion chiral Lagrangian. In the case of gauge theories, we reproduce the vacuum polarization of QED and of Yang-Mills theory. We also compute the two-point functions for scalars and gravitons in the effective field theory of scalar fields minimally coupled to gravity. (orig.)

  15. Facile synthesis of amine-functional reduced graphene oxides as modified quick, easy, cheap, effective, rugged and safe adsorbent for multi-pesticide residues analysis of tea.

    Science.gov (United States)

    Ma, Guicen; Zhang, Minglu; Zhu, Li; Chen, Hongping; Liu, Xin; Lu, Chengyin

    2018-01-05

    Amine-functional reduced graphene oxide (amine-rGO) with different carbon chain length amino groups were successfully synthesized. The graphene oxides (GO) reduction as well as amino grafting were achieved simultaneously in one step via a facile solvothermal synthetic strategy. The obtained materials were characterized by X-ray diffraction, Raman spectroscopy, Fourier-transform infrared spectrometry and X-ray photoelectron spectroscopy to confirm the modification of GO with different amino groups. The adsorption performance of catechins and caffeine from tea acetonitrile extracts on different amine functional rGO samples were evaluated. It was found that tributylamine-functional rGO (tri-BuA-rGO) exhibited the highest adsorption ability for catechins and caffeine compared to GO and other amino group functional rGO samples. It was worth to note that the adsorption capacity of catechins on tri-BuA-rGO was 11 times higher than that of GO (203.7mgg -1 vs 18.7mgg -1 ). Electrostatic interaction, π-π interaction and surface hydrophilic-hydrophobic properties of tri-BuA-rGO played important roles in the adsorption of catechins as well as caffeine. The gravimetric analysis confirmed that the tri-BuA-rGO achieved the highest efficient cleanup preformance compared with traditional dispersive solid phase extraction (dSPE) adsorbents like primary-secondary amine (PSA), graphitized carbon black (GCB) or C18. A multi-pesticides analysis method based on tri-BuA-rGO is validated on 33 representative pesticides in tea using gas chromatography coupled to tandem mass spectrometry or high-performance liquid chromatography coupled with tandem mass spectrometry. The analysis method gave a high coefficient of determination (r 2 >0.99) for each pesticide and satisfactory recoveries in a range of 72.1-120.5%. Our study demonstrated that amine functional rGO as a new type of QuEChERS adsorbent is expected to be widely applied for analysis of pesticides at trace levels. Copyright © 2017

  16. Biogeographical boundaries, functional group structure and diversity of Rocky Shore communities along the Argentinean coast.

    Directory of Open Access Journals (Sweden)

    Evie A Wieters

    Full Text Available We investigate the extent to which functional structure and spatial variability of intertidal communities coincide with major biogeographical boundaries, areas where extensive compositional changes in the biota are observed over a limited geographic extension. We then investigate whether spatial variation in the biomass of functional groups, over geographic (10's km and local (10's m scales, could be associated to species diversity within and among these groups. Functional community structure expressed as abundance (density, cover and biomass and composition of major functional groups was quantified through field surveys at 20 rocky intertidal shores spanning six degrees of latitude along the southwest Atlantic coast of Argentina and extending across the boundaries between the Argentinean and Magellanic Provinces. Patterns of abundance of individual functional groups were not uniformly matched with biogeographical regions. Only ephemeral algae showed an abrupt geographical discontinuity coincident with changes in biogeographic boundaries, and this was limited to the mid intertidal zone. We identified 3-4 main 'groups' of sites in terms of the total and relative abundance of the major functional groups, but these did not coincide with biogeographical boundaries, nor did they follow latitudinal arrangement. Thus, processes that determine the functional structure of these intertidal communities are insensitive to biogeographical boundaries. Over both geographical and local spatial scales, and for most functional groups and tidal levels, increases in species richness within the functional group was significantly associated to increased total biomass and reduced spatial variability of the group. These results suggest that species belonging to the same functional group are sufficiently uncorrelated over space (i.e. metres and site-to-site to stabilize patterns of biomass variability and, in this manner, provide a buffer, or "insurance", against

  17. Morphological and functional diversity of primary producers group in savannas

    International Nuclear Information System (INIS)

    Medina, E.

    1996-01-01

    The meaning of biological diversity for the operation and stability of natural ecosystems is matter of great theoretical and practical interest. The appearance and permanency of species in a given atmosphere indicates its capacity to compete with other species with similar habit and requirements, and to accumulate the resources that allow its reproduction. On the other hand, the coexistence of similar species in the same ecosystem allows to wonder if ever biological redundancy exists, that is to say, if several species coexist with the same function inside the ecosystem, so that the disappearance of one of them would not have biological significant consequences. A strategy to simplify the analysis of relationships between biodiversity and ecosystems operation is by grouping species with similar function, called functional groups. In this work the the primary producers functional group is analyzed, essentially superiors plants, in a savannas ecosystems. The analysis establishes that the gives the primary producers group is heterogeneous and complex, so much morphological as functionally: 1) the structural complexity and diversity forms of life in an savannas ecosystem are associated with the stratified exploitation of resources over (light) and under the floor (nourishment and water). Changes in diversity that affect the system structure will probably also affect its operations. 2 )Very similar morphological species can differ physiologically up to constitute production units with contrasting nutritional requirements. The echo-physiologic analysis of this differentiation can explain the habitat preferences that are naturally observed. 3) The long-time permanency of rare species, of low frequency, show the inability of dominant species to capture all the available resources. 4) The primary producers and the floor microorganisms have strong interactions. Changes in the community composition can generate significant changes in other community. These biotic interactions

  18. Internalization of annexin A5-functionalized iron oxide particles by apoptotic Jurkat cells

    NARCIS (Netherlands)

    van Tilborg, Geralda A. F.; Geelen, Tessa; Duimel, Hans; Bomans, Paul H. H.; Frederik, Peter M.; Sanders, Honorius M. H. F.; Deckers, Niko M.; Deckers, Roel; Reutelingsperger, Chris P. M.; Strijkers, Gustav J.; Nicolay, Klaas

    2009-01-01

    Apoptosis plays an important role in the etiology of various diseases. Several studies have reported on the use of annexin A5-functionalized iron oxide particles for the detection of apoptosis with MRI, both in vitro and in vivo. The protein annexin A5 binds with high affinity to the phospholipid

  19. Amorphous structure of iron oxide of bacterial origin

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hideki; Fujii, Tatsuo [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Asaoka, Hiroshi [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Kusano, Yoshihiro [Department of Fine and Applied Arts, Kurashiki University of Science and the Arts, Kurashiki, Okayama 712-8505 (Japan); Ikeda, Yasunori [Research Institute for Production Development, Sakyo-ku, Kyoto 606-0805 (Japan); Nakanishi, Makoto [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Benino, Yasuhiko; Nanba, Tokuro [Graduate School of Environmental Science, Okayama University, Okayama 700-8530 (Japan); Takada, Jun, E-mail: jtakada@cc.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan)

    2012-12-14

    In nature, there are various iron oxides produced by the water-habitant bacterial group called 'iron-oxidizing bacteria'. These iron oxides have been studied mainly from biological and geochemical perspectives. Today, attempts are made to use such iron oxides as novel functional materials in several applications. However, their quantitative structural characteristics are still unclear. We studied the structure of iron oxide of microtubular form consisting of amorphous nanoparticles formed by an iron-oxidizing bacterium, Leptothrix ochracea, using a combination of high-energy X-ray diffraction and reverse Monte Carlo simulation. We found that its structure consists of a framework of corner- and edge-sharing distorted FeO{sub 6} octahedral units, while SiO{sub 4} tetrahedral units are isolated in the framework. The results reveal the atomic arrangement of iron oxide of bacterial origin, which is essential for investigating its potential as a functional material. -- Highlights: Black-Right-Pointing-Pointer The amorphous structure of bacterial iron oxide was investigated. Black-Right-Pointing-Pointer The structure was simulated by high-energy X-ray diffraction and reverse Monte Carlo simulation. Black-Right-Pointing-Pointer The structure was constructed of a framework of corner- and edge-sharing distorted FeO{sub 6} octahedral units. Black-Right-Pointing-Pointer SiO{sub 4} tetrahedral units were distributed isolatedly in the framework of FeO{sub 6} octahedral units.

  20. Interpersonal distance regulates functional grouping tendencies of agents in team sports.

    Science.gov (United States)

    Passos, Pedro; Milho, João; Fonseca, Sofia; Borges, João; Araújo, Duarte; Davids, Keith

    2011-01-01

    The authors examined whether, similar to collective agent behaviors in complex, biological systems (e.g., schools of fish and colonies of ants), performers in team sports displayed functional coordination tendencies, based on local interaction rules during performance. To investigate this issue, they used videogrammetry and digitizing procedures to observe interpersonal interactions in common 4 versus 2 + 2 subphases of the team sport of rugby union, involving 16 participants aged between 16 and 17 years of age. They observed pattern-forming dynamics in attacking subunits (n = 4 players) attempting to penetrate 2 defensive lines (n = 2 players in each). Data showed that within each attacking subunit, the 4 players displayed emergent functional grouping tendencies that differed between the 2 defensive lines. Results confirmed that grouping tendencies in attacking subunits of team games are sensitive to different task constraints, such as relative positioning to nearest defenders. It was concluded that running correlations were particularly useful for measuring the level of interpersonal coordination in functional grouping tendencies within attacking subunits.

  1. Toward a standardized structural-functional group connectome in MNI space.

    Science.gov (United States)

    Horn, Andreas; Blankenburg, Felix

    2016-01-01

    The analysis of the structural architecture of the human brain in terms of connectivity between its subregions has provided profound insights into its underlying functional organization and has coined the concept of the "connectome", a structural description of the elements forming the human brain and the connections among them. Here, as a proof of concept, we introduce a novel group connectome in standard space based on a large sample of 169 subjects from the Enhanced Nathan Kline Institute-Rockland Sample (eNKI-RS). Whole brain structural connectomes of each subject were estimated with a global tracking approach, and the resulting fiber tracts were warped into standard stereotactic (MNI) space using DARTEL. Employing this group connectome, the results of published tracking studies (i.e., the JHU white matter and Oxford thalamic connectivity atlas) could be largely reproduced directly within MNI space. In a second analysis, a study that examined structural connectivity between regions of a functional network, namely the default mode network, was reproduced. Voxel-wise structural centrality was then calculated and compared to others' findings. Furthermore, including additional resting-state fMRI data from the same subjects, structural and functional connectivity matrices between approximately forty thousand nodes of the brain were calculated. This was done to estimate structure-function agreement indices of voxel-wise whole brain connectivity. Taken together, the combination of a novel whole brain fiber tracking approach and an advanced normalization method led to a group connectome that allowed (at least heuristically) performing fiber tracking directly within MNI space. Such an approach may be used for various purposes like the analysis of structural connectivity and modeling experiments that aim at studying the structure-function relationship of the human connectome. Moreover, it may even represent a first step toward a standard DTI template of the human brain

  2. 40 CFR Appendix B to Part 76 - Procedures and Methods for Estimating Costs of Nitrogen Oxides Controls Applied to Group 1, Boilers

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Procedures and Methods for Estimating Costs of Nitrogen Oxides Controls Applied to Group 1, Boilers B Appendix B to Part 76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES...

  3. Functional Groups Quantification of Chondritic Organics by XANES Spectroscopy

    Science.gov (United States)

    Le Guillou, C.; Bernard, S.

    2017-07-01

    We have developed a new method to quantify the functional group concentration of organics using STXM-XANES. Applied to IOM and in situ FIB sections measurement, it reveals a lower aromaticity than expected from previous NMR results (35% vs. 60%).

  4. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiying, E-mail: ysy@ouc.edu.cn [Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100 (China); College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100 (China); Li, Lei [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Xiao, Tuo [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); China City Environment Protection Engineering Limited Company, Wuhan 430071 (China); Zheng, Di; Zhang, Yitao [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2016-10-15

    Highlights: • ACF can efficiently activate peroxymonosulfate to degrade organic pollutants. • Basic functional groups may mainly increase the adsorption capacity of ACF. • C1, N1, N2 have promoting effect on the ACF catalyzed PMS oxidation. • Modification by heat after nitric acid is also a way of ACF regeneration. - Abstract: A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N{sub 2} adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the −NO{sub 2} has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  5. Oxidant/Antioxidant Balance in Animal Nutrition and Health: The Role of Protein Oxidation.

    Science.gov (United States)

    Celi, Pietro; Gabai, Gianfranco

    2015-01-01

    This review examines the role that oxidative stress (OS), and protein oxidation in particular, plays in nutrition, metabolism, and health of farm animals. The route by which redox homeostasis is involved in some important physiological functions and the implications of the impairment of oxidative status on animal health and diseases is also examined. Proteins have various and, at the same time, unique biological functions and their oxidation can result in structural changes and various functional modifications. Protein oxidation seems to be involved in pathological conditions, such as respiratory diseases and parasitic infection; however, some studies also suggest that protein oxidation plays a crucial role in the regulation of important physiological functions, such as reproduction, nutrition, metabolism, lactation, gut health, and neonatal physiology. As the characterization of the mechanisms by which OS may influence metabolism and health is attracting considerable scientific interest, the aim of this review is to present veterinary scientists and clinicians with various aspects of oxidative damage to proteins.

  6. Hydrological-niche models predict water plant functional group distributions in diverse wetland types.

    Science.gov (United States)

    Deane, David C; Nicol, Jason M; Gehrig, Susan L; Harding, Claire; Aldridge, Kane T; Goodman, Abigail M; Brookes, Justin D

    2017-06-01

    Human use of water resources threatens environmental water supplies. If resource managers are to develop policies that avoid unacceptable ecological impacts, some means to predict ecosystem response to changes in water availability is necessary. This is difficult to achieve at spatial scales relevant for water resource management because of the high natural variability in ecosystem hydrology and ecology. Water plant functional groups classify species with similar hydrological niche preferences together, allowing a qualitative means to generalize community responses to changes in hydrology. We tested the potential for functional groups in making quantitative prediction of water plant functional group distributions across diverse wetland types over a large geographical extent. We sampled wetlands covering a broad range of hydrogeomorphic and salinity conditions in South Australia, collecting both hydrological and floristic data from 687 quadrats across 28 wetland hydrological gradients. We built hydrological-niche models for eight water plant functional groups using a range of candidate models combining different surface inundation metrics. We then tested the predictive performance of top-ranked individual and averaged models for each functional group. Cross validation showed that models achieved acceptable predictive performance, with correct classification rates in the range 0.68-0.95. Model predictions can be made at any spatial scale that hydrological data are available and could be implemented in a geographical information system. We show the response of water plant functional groups to inundation is consistent enough across diverse wetland types to quantify the probability of hydrological impacts over regional spatial scales. © 2017 by the Ecological Society of America.

  7. The Effectiveness of Transactional Analysis Group-counseling on the Improvement of Couples’ Family Functioning

    Directory of Open Access Journals (Sweden)

    Ghorban Ali Yahyaee

    2015-06-01

    Full Text Available Background & Aims of the Study: Family functioning is among the most important factors ensuring the mental health of family members. Disorder or disturbance in family functioning would cause many psychological problems for family members. Current study intended to examine the effectiveness of transactional analysis group counseling on the improvement of couple's family functioning. Materials & Methods: The design of the study is as semi experimental research with pretest and posttest with follow up and control group. Statistical population consists all couples referring to the psychological and counseling centers of Rasht city in 2012. Samples were selected at first by available sampling method and after completing family assessment  device, and obtaining score for enter to research, were placement using random sampling method in two experimental and control groups (N = 8 couples per group. The experimental group participated in 12 sessions of group counseling based on transactional analysis and control group received no intervention. The gathered data were analyzed using covariance analysis. Results: The results show that there are significant differences between the pre-test and post test scores of the experimental group. This difference is significant at the level of 0.05. Therefore it seems that transactional group therapy improved the dimensions of family functioning in couples. Conclusions: The results indicated that transactional analysis group counseling can improve the family functioning and use this approach to working with couples is recommended.

  8. Novel graphene-oxide-coated SPR interfaces for biosensing applications

    DEFF Research Database (Denmark)

    Volkov, V. S.; Stebunov, Yu V.; Yakubovsky, D. I.

    2017-01-01

    Carbon allotropes-based nanomaterials possess unique physical and chemical properties including high surface area, the possibility of pi-stacking interaction with a wide range of biological objects, rich availability of oxygen-containing functional groups in graphene-oxide (GO), and excellent...

  9. Enrichment and genome sequence of the group I.1a ammonia-oxidizing Archaeon "Ca. Nitrosotenuis uzonensis" representing a clade globally distributed in thermal habitats.

    Directory of Open Access Journals (Sweden)

    Elena V Lebedeva

    Full Text Available The discovery of ammonia-oxidizing archaea (AOA of the phylum Thaumarchaeota and the high abundance of archaeal ammonia monooxygenase subunit A encoding gene sequences in many environments have extended our perception of nitrifying microbial communities. Moreover, AOA are the only aerobic ammonia oxidizers known to be active in geothermal environments. Molecular data indicate that in many globally distributed terrestrial high-temperature habits a thaumarchaeotal lineage within the Nitrosopumilus cluster (also called "marine" group I.1a thrives, but these microbes have neither been isolated from these systems nor functionally characterized in situ yet. In this study, we report on the enrichment and genomic characterization of a representative of this lineage from a thermal spring in Kamchatka. This thaumarchaeote, provisionally classified as "Candidatus Nitrosotenuis uzonensis", is a moderately thermophilic, non-halophilic, chemolithoautotrophic ammonia oxidizer. The nearly complete genome sequence (assembled into a single scaffold of this AOA confirmed the presence of the typical thaumarchaeotal pathways for ammonia oxidation and carbon fixation, and indicated its ability to produce coenzyme F420 and to chemotactically react to its environment. Interestingly, like members of the genus Nitrosoarchaeum, "Candidatus N. uzonensis" also possesses a putative artubulin-encoding gene. Genome comparisons to related AOA with available genome sequences confirmed that the newly cultured AOA has an average nucleotide identity far below the species threshold and revealed a substantial degree of genomic plasticity with unique genomic regions in "Ca. N. uzonensis", which potentially include genetic determinants of ecological niche differentiation.

  10. Enrichment and genome sequence of the group I.1a ammonia-oxidizing Archaeon "Ca. Nitrosotenuis uzonensis" representing a clade globally distributed in thermal habitats.

    Science.gov (United States)

    Lebedeva, Elena V; Hatzenpichler, Roland; Pelletier, Eric; Schuster, Nathalie; Hauzmayer, Sandra; Bulaev, Aleksandr; Grigor'eva, Nadezhda V; Galushko, Alexander; Schmid, Markus; Palatinszky, Marton; Le Paslier, Denis; Daims, Holger; Wagner, Michael

    2013-01-01

    The discovery of ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota and the high abundance of archaeal ammonia monooxygenase subunit A encoding gene sequences in many environments have extended our perception of nitrifying microbial communities. Moreover, AOA are the only aerobic ammonia oxidizers known to be active in geothermal environments. Molecular data indicate that in many globally distributed terrestrial high-temperature habits a thaumarchaeotal lineage within the Nitrosopumilus cluster (also called "marine" group I.1a) thrives, but these microbes have neither been isolated from these systems nor functionally characterized in situ yet. In this study, we report on the enrichment and genomic characterization of a representative of this lineage from a thermal spring in Kamchatka. This thaumarchaeote, provisionally classified as "Candidatus Nitrosotenuis uzonensis", is a moderately thermophilic, non-halophilic, chemolithoautotrophic ammonia oxidizer. The nearly complete genome sequence (assembled into a single scaffold) of this AOA confirmed the presence of the typical thaumarchaeotal pathways for ammonia oxidation and carbon fixation, and indicated its ability to produce coenzyme F420 and to chemotactically react to its environment. Interestingly, like members of the genus Nitrosoarchaeum, "Candidatus N. uzonensis" also possesses a putative artubulin-encoding gene. Genome comparisons to related AOA with available genome sequences confirmed that the newly cultured AOA has an average nucleotide identity far below the species threshold and revealed a substantial degree of genomic plasticity with unique genomic regions in "Ca. N. uzonensis", which potentially include genetic determinants of ecological niche differentiation.

  11. Vertically grown zinc oxide nanorods functionalized with ferric oxide for in vivo and non-enzymatic glucose detection

    Science.gov (United States)

    Marie, Mohammed; Manoharan, Anishkumar; Kuchuk, Andrian; Ang, Simon; Manasreh, M. O.

    2018-03-01

    An enzyme-free glucose sensor based on vertically grown zinc oxide nanorods (NRs) functionalized with ferric oxide (Fe2O3) is investigated. The well-aligned and high density ZnO NRs were synthesized on an FTO/glass substrate by a sol-gel and hydrothermal growth method. A dip-coating technique was utilized to modify the surface of the as-grown ZnO NRs with Fe2O3. The immobilized surface was coated with a layer of nafion membrane. The fabricated glucose sensor was characterized amperometrically at room temperature using three electrodes stationed in the phosphate buffer solution, where ZnO NRs/Fe2O3/nafion membrane was the sensing or working electrode, and platinum plate and silver/silver chloride were used as the counter and reference electrodes, respectively. The proposed non-enzymatic and modified glucose sensor exhibited a high sensitivity in the order of 0.052 μA cm-2 (mg/dL)-1, a lower detection limit of around 0.95 mmol L-1, a sharp and fast response time of ˜1 s, and a linear response to changes in glucose concentrations from 100-400 mg dL-1. The linear amperometric response of the sensor covers the physiological and clinical interest of glucose levels for diabetic patients. The device continues to function accurately after multiple measurements with a good reproducibility. The proposed glucose sensor is expected to be used clinically for in vivo monitoring of glucose.

  12. Enzymatic Oxidation of Cholesterol: Properties and Functional Effects of Cholestenone in Cell Membranes

    DEFF Research Database (Denmark)

    Neuvonen, M.; Manna, M.; Mokkila, S.

    2014-01-01

    of cholestenone using simulations and cell biological experiments and assessed the functional effects of cholestenone in human cells. Atomistic simulations predicted that cholestenone reduces membrane order, undergoes faster flip-flop and desorbs more readily from membranes than cholesterol. In primary human...... fibroblasts, cholestenone was released from membranes to physiological extracellular acceptors more avidly than cholesterol, but without acceptors it remained in cells over a day. To address the functional effects of cholestenone, we studied fibroblast migration during wound healing. When cells were either...... similarly to control cells. Thus, cholesterol oxidation produces long-term functional effects in cells and these are in part due to the generated membrane active cholestenone....

  13. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    Science.gov (United States)

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani; Manivannan, Venkatesan

    2004-07-13

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  14. Synthesis and functionalization of magnetite nanoparticles with different amino-functional alkoxysilanes

    International Nuclear Information System (INIS)

    Bini, Rafael A.; Marques, Rodrigo Fernando C.; Santos, Francisco J.; Chaker, Juliano A.; Jafelicci, Miguel

    2012-01-01

    Superparamagnetic iron oxide (SPIO) nanoparticles show great promise for many biotechnological applications. This paper addresses the synthesis and characterization of SPIO nanoparticles grafted with three different alkoxysilanes: 3-aminopropyl-triethoxysilane (APTES), 3-aminopropyl-ethyl-diethoxysilane (APDES) and 3-aminopropyl-diethy-ethoxysilane (APES). SPIO nanoparticles with an average particle diameter of 10 nm were prepared by chemical sonoprecipitation. As confirmed by Fourier transform infrared (FTIR) spectroscopy, silylation of these nanoparticles occurs through a two-step process. Decreasing the number of alkoxide groups reduced the concentration of free amino groups on the SPIO surface ([SPIO-NH 2 ]-APTES>APDES>APES). This phenomenon results from steric contributions and the formation of H-bonded amines provided by the ethyl groups present in the APDES and APES molecules. A simulation of SPIO nanoparticles in a saline physiologic solution shows that the ethyl groups impart larger steric stability onto the ferrofluids, which reduces aggregation. The magnetization (M) versus magnetic field (H) curves show that the synthesized iron oxide nanoparticles display superparamagnetic behavior. The zero-field cooling (ZFC) and field cooling (FC) curves show that the changes in the blocking temperature depend on the alkoxysilane-functionalized particle surface. - Highlights: → Superparamagnetic iron oxide nanoparticles were grafted with different alkoxysilanes. → The decrease of alkoxide group number reduced the concentration of free amino group. → We correlate the influence of the amino and ethyl groups with their colloidal property. → Inter-particles aggregation analyzed by magnetic measurement.

  15. Functionalization of silicon oxide using supercritical fluid deposition of 3,4-epoxybutyltrimethoxysilane for the immobilization of amino-modified oligonucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Rull, Jordi [Université Grenoble Alpes, Grenoble F38000 (France); CEA, LETI, MINATEC Campus, Grenoble Cedex 9 F38054 (France); CEA, iRTSV, LCBM, Grenoble 38054 (France); CNRS, UMR 5249, Grenoble (France); Nonglaton, Guillaume, E-mail: guillaume.nonglaton@cea.fr [Université Grenoble Alpes, Grenoble F38000 (France); CEA, LETI, MINATEC Campus, Grenoble Cedex 9 F38054 (France); Costa, Guillaume; Fontelaye, Caroline [Université Grenoble Alpes, Grenoble F38000 (France); CEA, LETI, MINATEC Campus, Grenoble Cedex 9 F38054 (France); Marchi-Delapierre, Caroline; Ménage, Stéphane [Université Grenoble Alpes, Grenoble F38000 (France); CEA, iRTSV, LCBM, Grenoble 38054 (France); CNRS, UMR 5249, Grenoble (France); Marchand, Gilles [Université Grenoble Alpes, Grenoble F38000 (France); CEA, LETI, MINATEC Campus, Grenoble Cedex 9 F38054 (France)

    2015-11-01

    Graphical abstract: - Highlights: • First example of grafting of 3,4-epoxybutyltrimethoxysilane (EBTMOS) onto silicon oxide by supercritical fluid deposition. • Extraordinary efficiency of the supercritical fluid deposition for the grafting of the EBTMOS compared with the conventional solution or vapor phase methodologies. • Demonstration of the efficiency of this functionalization process for the immobilization of amino-modified oligonucleotides. - Abstract: The functionalization of silicon oxide based substrates using silanes is generally performed through liquid phase methodologies. These processes involve a huge quantity of potentially toxic solvents and present some important disadvantages for the functionalization of microdevices or porous materials, for example the low diffusion. To overcome this drawback, solvent-free methodologies like molecular vapor deposition (MVD) or supercritical fluid deposition (SFD) have been developed. In this paper, the deposition process of 3,4-epoxybutyltrimethoxysilane (EBTMOS) on silicon oxide using supercritical carbon dioxide (scCO{sub 2}) as a solvent is studied for the first time. The oxirane ring of epoxy silanes readily reacts with amine group and is of particular interest for the grafting of amino-modified oligonucleotides or antibodies for diagnostic application. Then the ability of this specific EBTMOS layer to react with amine functions has been evaluated using the immobilization of amino-modified oligonucleotide probes. The presence of the probes is revealed by fluorescence using hybridization with a fluorescent target oligonucleotide. The performances of SFD of EBTMOS have been optimized and then compared with the dip coating and molecular vapor deposition methods, evidencing a better grafting efficiency and homogeneity, a lower reaction time in addition to the eco-friendly properties of the supercritical carbon dioxide. The epoxysilane layers have been characterized by surface enhanced ellipsometric

  16. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    Science.gov (United States)

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  17. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, J.; El Haddad, I.; Temime-Roussel, B.; Wortham, H.; Marchand, N. [Univ Aix Marseille, CNRS, Lab Chim Provence, Equipe Instrumentat and React Atmospher, UMR 6264, F-13331 Marseille 3 (France); Jaffrezo, J.L. [Univ Grenoble 1, CNRS, UMR 5183, Lab Glaciol and Geophys Environm, F-38402 St Martin Dheres (France)

    2010-07-01

    The functional group composition of various organic aerosols (OA) is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCIMS/MS). The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R' respectively) and precursor ion (nitro groups, R-NO{sub 2}) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular) to 13.5% (o-xylene photooxidation) of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalization rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60%. Finally, examples of functional

  18. Template-directed formation of functional complex metal-oxide nanostructures by combination of sol-gel processing and spin coating

    International Nuclear Information System (INIS)

    Choi, Y.C.; Kim, J.; Bu, S.D.

    2006-01-01

    We report the template-based formation of functional complex metal-oxide nanostructures by a combination of sol-gel processing and spin coating. This method employs the spin-coating of a sol-gel solution into an anodic aluminum oxide membrane (SSAM). Various metal-oxide nanowires and nanotubes with a high aspect-ratio were prepared. The aspect-ratios of the PbO 2 nanowires and Pb(Zr 0.52 Ti 0.48 )O 3 nanowires were about 300 and 400, respectively, and their diameters were about 50 nm. The fabricated PbTiO 3 nanotubes have a relatively constant wall thickness of about 20 nm with an outer diameter of about 60 nm. The deposition time for all of the fabricated metal-oxide nanowires and nanotubes is less than 120 s, which is far shorter than those required in both the sol-gel dipping and sol-gel electrophoretic methods. These results indicate that the SSAM method can be a versatile pathway to prepare functional complex metal-oxide nanowires and nanotubes with a high aspect-ratio. The possible formation process for the one-dimensional nanostructures by SSAM is discussed

  19. PREVENTION OF POLYURETHANE OXIDATIVE DEGRADATION WITH PHENOLIC-ANTIOXIDANTS COVALENTLY ATTACHED TO THE HARD SEGMENTS: STRUCTURE FUNCTION RELATIONSHIPS

    Science.gov (United States)

    Stachelek, Stanley J; Alferiev, Ivan; Ueda, Masako; Eckels, Edward C.; Gleason, Kevin T.; Levy, Robert J

    2010-01-01

    Oxidative degradation of the polyurethane elastomeric (PU) components greatly reduces the efficacy of PU containing cardiovascular devices. Covalently appending the phenol-based antioxidant, 4-substituted 2,6-di-tert-butylphenol (DBP), to PU hard segments effectively reduced oxidative degradation of the PU in vivo and in vitro in prior studies by our group. In these experiments we analyze the contribution of the tethering molecule to the antioxidant capabilities of the DBP modified PU. Bromoalkylation chemistry was used to link DBP to the hard segment of the polyether polyurethane, Tecothane, via our original linker (PU-DBP), or variants containing side chains with 1 (PU-C-DBP) or 3 (PU-3C-DBP) carbons. Two additional DBP variants were fabricated in which the DBP group was appended to the alkyl chain via an oxygen atom (PU-O-DBP) or an amide linkage in the middle of the tether (PU-NHCO-DBP). All DBP variant films and unmodified control films were subject to oxidative degradation via 15 day immersion in a solution of 20% H2O2 + 0.1 M CoCl2. At the end of the oxidation protocol films were analyzed for the presence of oxidation related endpoints via scanning electron microscopy, contact angle measurements and Fourier transformation infrared spectroscopy (FTIR). All DBP containing variants resisted oxidation damage significantly better than the unmodified control PU. SEM analysis of oxidized PU-C-DBP and PU-O-DBP showed evidence of surface cracking consistent with oxidative degradation of the PU surfaces. Similarly there was a trend in increased ether cross-linking, a marker for oxidative degradation, in PU-C-DBP and PU-NHCO-DBP films. Consistent with these FTIR results, both PU-C-DBP and PU-NHCO-DBP had significant reductions in measured surface hydrophobicity as a result of oxidation. These data show for the first time that the choice of linker molecule significantly affects the efficiency of the linked phenolic antioxidant. PMID:20306526

  20. Functional electrolyte for lithium-ion batteries

    Science.gov (United States)

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2015-04-14

    Functional electrolyte solvents include compounds having at least one aromatic ring with 2, 3, 4 or 5 substituents, at least one of which is a substituted or unsubstituted methoxy group, at least one of which is a tert-butyl group and at least one of which is a substituted or unsubstituted polyether or poly(ethylene oxide) (PEO) group bonded through oxygen to the aromatic ring, are provided.

  1. Radical O-O coupling reaction in diferrate-mediated water oxidation studied using multireference wave function theory.

    Science.gov (United States)

    Kurashige, Yuki; Saitow, Masaaki; Chalupský, Jakub; Yanai, Takeshi

    2014-06-28

    The O-O (oxygen-oxygen) bond formation is widely recognized as a key step of the catalytic reaction of dioxygen evolution from water. Recently, the water oxidation catalyzed by potassium ferrate (K2FeO4) was investigated on the basis of experimental kinetic isotope effect analysis assisted by density functional calculations, revealing the intramolecular oxo-coupling mechanism within a di-iron(vi) intermediate, or diferrate [Sarma et al., J. Am. Chem. Soc., 2012, 134, 15371]. Here, we report a detailed examination of this diferrate-mediated O-O bond formation using scalable multireference electronic structure theory. High-dimensional correlated many-electron wave functions beyond the one-electron picture were computed using the ab initio density matrix renormalization group (DMRG) method along the O-O bond formation pathway. The necessity of using large active space arises from the description of complex electronic interactions and varying redox states both associated with two-center antiferromagnetic multivalent iron-oxo coupling. Dynamic correlation effects on top of the active space DMRG wave functions were additively accounted for by complete active space second-order perturbation (CASPT2) and multireference configuration interaction (MRCI) based methods, which were recently introduced by our group. These multireference methods were capable of handling the double shell effects in the extended active space treatment. The calculations with an active space of 36 electrons in 32 orbitals, which is far over conventional limitation, provide a quantitatively reliable prediction of potential energy profiles and confirmed the viability of the direct oxo coupling. The bonding nature of Fe-O and dual bonding character of O-O are discussed using natural orbitals.

  2. Porous Silica Sol-Gel Glasses Containing Reactive V2O5 Groups

    Science.gov (United States)

    Stiegman, Albert E.

    1995-01-01

    Porous silica sol-gel glasses into which reactive vanadium oxide functional groups incorporated exhibit number of unique characteristics. Because they bind molecules of some species both reversibly and selectively, useful as chemical sensors or indicators or as scrubbers to remove toxic or hazardous contaminants. Materials also oxidize methane gas photochemically: suggests they're useful as catalysts for conversion of methane to alcohol and for oxidation of hydrocarbons in general. By incorporating various amounts of other metals into silica sol-gel glasses, possible to synthesize new materials with broad range of new characteristics.

  3. Effect of pistachio diet on lipid parameters, endothelial function, inflammation, and oxidative status: a prospective study.

    Science.gov (United States)

    Sari, Ibrahim; Baltaci, Yasemin; Bagci, Cahit; Davutoglu, Vedat; Erel, Ozcan; Celik, Hakim; Ozer, Orhan; Aksoy, Nur; Aksoy, Mehmet

    2010-04-01

    Recent studies have suggested that nuts have favorable effects beyond lipid lowering. We aimed to investigate effect of the Antep pistachio (Pistacia vera L.) on blood glucose, lipid parameters, endothelial function, inflammation, and oxidation in healthy young men living in a controlled environment. A Mediterranean diet was administered to normolipidemic 32 healthy young men (mean age 22 y, range 21-24) for 4 wk. After 4 wk, participants continued to receive the Mediterranean diet but pistachio was added for 4 wk by replacing the monounsaturated fat content constituting approximately 20% of daily caloric intake. Fasting blood samples and brachial endothelial function measurements were performed at baseline and after each diet. Compared with the Mediterranean diet, the pistachio diet decreased glucose (Ppistachio diet significantly improved endothelium-dependent vasodilation (P=0.002, 30% relative increase), decreased serum interleukin-6, total oxidant status, lipid hydroperoxide, and malondialdehyde and increased superoxide dismutase (Ppistachio diet improved blood glucose level, endothelial function, and some indices of inflammation and oxidative status in healthy young men. These findings are in accordance with the idea that nuts, in particular pistachio nuts, have favorable effects beyond lipid lowering that deserve to be evaluated with prospective follow-up studies. Copyright 2010. Published by Elsevier Inc.

  4. Direct modeling of the electrochemistry in the three-phase boundary of solid oxide fuel cell anodes by density functional theory: a critical overview.

    Science.gov (United States)

    Shishkin, M; Ziegler, T

    2014-02-07

    The first principles modeling of electrochemical reactions has proven useful for the development of efficient, durable and low cost solid oxide full cells (SOFCs). In this account we focus on recent advances in modeling of structural, electronic and catalytic properties of the SOFC anodes based on density functional theory (DFT) first principle calculations. As a starting point, we highlight that the adequate analysis of cell electrochemistry generally requires modeling of chemical reactions at the metal/oxide interface rather than on individual metal or oxide surfaces. The atomic models of Ni/YSZ and Ni/CeO2 interfaces, required for DFT simulations of reactions on SOFC anodes are discussed next, together with the analysis of the electronic structure of these interfaces. Then we proceed to DFT-based findings on charge transfer mechanisms during redox reactions on these two anodes. We provide a comparison of the electronic properties of Ni/YSZ and Ni/CeO2 interfaces and present an interpretation of their different chemical performances. Subsequently we discuss the computed energy pathways of fuel oxidation mechanisms, obtained by various groups to date. We also discuss the results of DFT studies combined with microkinetic modeling as well as the results of kinetic Monte Carlo simulations. In conclusion we summarize the key findings of DFT modeling of metal/oxide interfaces to date and highlight possible directions in the future modeling of SOFC anodes.

  5. Effect of selective inhibition of renal inducible nitric oxide synthase on renal blood flow and function in experimental hyperdynamic sepsis.

    Science.gov (United States)

    Ishikawa, Ken; Calzavacca, Paolo; Bellomo, Rinaldo; Bailey, Michael; May, Clive N

    2012-08-01

    Nitric oxide plays an important role in the control of renal blood flow and renal function. In sepsis, increased levels of inducible nitric oxide synthase produce excessive nitric oxide, which may contribute to the development of acute kidney injury. We, therefore, examined the effects of intrarenal infusion of selective inducible nitric oxide synthase inhibitors in a large animal model of hyperdynamic sepsis in which acute kidney injury occurs in the presence of increased renal blood flow. Prospective crossover randomized controlled interventional studies. University-affiliated research institute. Twelve unilaterally nephrectomized Merino ewes. Infusion of a selective (1400W) and a partially selective inducible nitric oxide synthase inhibitor (aminoguanidine) into the renal artery for 2 hrs after the induction of sepsis, and comparison with a nonselective inhibitor (Nω-nitro-L-arginine methyl ester). In sheep with nonhypotensive hyperdynamic sepsis, creatinine clearance halved (32 to 16 mL/min, ratio [95% confidence interval] 0.51 [0.28-0.92]) despite increased renal blood flow (241 to 343 mL/min, difference [95% confidence interval] 102 [78-126]). Infusion of 1400W did not change renal blood flow, urine output, or creatinine clearance, whereas infusion of Nω-nitro-L-arginine methyl ester and a high dose of aminoguanidine normalized renal blood flow, but did not alter creatinine clearance. In hyperdynamic sepsis, intrarenal infusion of a highly selective inducible nitric oxide synthase inhibitor did not reduce the elevated renal blood flow or improve renal function. In contrast, renal blood flow was reduced by infusion of a nonselective NOS inhibitor or a high dose of a partially selective inducible nitric oxide synthase inhibitor. The renal vasodilatation in septic acute kidney injury may be due to nitric oxide derived from the endothelial and neural isoforms of nitric oxide synthase, but their blockade did not restore renal function.

  6. Thermodynamic properties of 4-tert-butyl-diphenyl oxide

    International Nuclear Information System (INIS)

    Druzhinina, A.I.; Pimenova, S.M.; Tarazanov, S.V.; Nesterova, T.N.; Varushchenko, R.M.

    2015-01-01

    Highlights: • The sample of the 4-tert-butyl-diphenyl oxide was synthesized and purified. • Heat capacities, energy of combustion, saturation vapor pressures were measured. • The temperature, the enthalpy and the entropy of fusion were determined. • The enthalpy of sublimation at T = 298.15 K was derived. • The main thermodynamic functions and functions of formation were computed. - Abstract: The main thermodynamic functions (changes of the entropy, enthalpy, and Gibbs free energy) and functions of formation at T = 298.15 K of 4-tert-butyl-diphenyl oxide in condensed and ideal gas states were computed on the basis of experimental results obtained. The heat capacities of 4-tert-butyl-diphenyl oxide was measured by vacuum adiabatic calorimetry over the temperature range (8 to 371) K. The temperature, the enthalpy and the entropy of fusion were determined. The energy of combustion of the sample was determined by static-bomb combustion calorimetry. The saturation vapor pressures of the substance were measured by dynamic transpiration method over the temperature and pressure intervals (298 to 325) K and (0.05 to 1.2) Pa. The enthalpy of sublimation at T = 298.15 K was derived. The contribution of O-(2C b ) group (where C b is the carbon atom in a benzene ring) into the absolute entropies of diphenyl oxide derivatives was assessed

  7. Novel PEPA-functionalized graphene oxide for fire safety enhancement of polypropylene

    International Nuclear Information System (INIS)

    Xu, Jia You; Liu, Jie; Li, Kai Dan; Miao, Lei; Tanemura, Sakae

    2015-01-01

    Polypropylene (PP) is a general-purpose plastic, but some applications are constrained by its high flammability. Thus, flame retardant PP is urgently demanded. In this article, intumescent flame retardant PP (IFRPP) composites with enhanced fire safety were prepared using 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane (PEPA) functionalized graphene oxide (PGO) as synergist. The PGO was prepared through a mild chemical reaction by the covalent attachment of a caged-structure organic compound, PEPA, onto GO nanosheets using toluene diisocynate (TDI) as the intermediary agent. The novel PEPA-functionalized graphene oxide not only improves the heat resistance of GO but also converts GO and PEPA from hydrophobic to hydrophilic materials, which leads to even distribution in PP. In our case, 7 wt% addition of PGO as one of the fillers for IFRPP composites significantly reduces its inflammability and fire hazards when compared with PEPA, by the improvement of first release rate peak (PHRR), total heat release, first smoke release rate peak (PSRR) and total smoke release, suggesting its great potential as the IFR synergist in industry. The reason is mainly attributed to the barrier effect of the unburned graphene sheets, which protects by the decomposition products of PEPA and TDI, promotes the formation of graphitized carbon and inhibits the heat and gas release. (paper)

  8. Novel PEPA-functionalized graphene oxide for fire safety enhancement of polypropylene

    Science.gov (United States)

    Xu, Jia You; Liu, Jie; Li, Kai Dan; Tanemura, Sakae

    2015-01-01

    Polypropylene (PP) is a general-purpose plastic, but some applications are constrained by its high flammability. Thus, flame retardant PP is urgently demanded. In this article, intumescent flame retardant PP (IFRPP) composites with enhanced fire safety were prepared using 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane (PEPA) functionalized graphene oxide (PGO) as synergist. The PGO was prepared through a mild chemical reaction by the covalent attachment of a caged-structure organic compound, PEPA, onto GO nanosheets using toluene diisocynate (TDI) as the intermediary agent. The novel PEPA-functionalized graphene oxide not only improves the heat resistance of GO but also converts GO and PEPA from hydrophobic to hydrophilic materials, which leads to even distribution in PP. In our case, 7 wt% addition of PGO as one of the fillers for IFRPP composites significantly reduces its inflammability and fire hazards when compared with PEPA, by the improvement of first release rate peak (PHRR), total heat release, first smoke release rate peak (PSRR) and total smoke release, suggesting its great potential as the IFR synergist in industry. The reason is mainly attributed to the barrier effect of the unburned graphene sheets, which protects by the decomposition products of PEPA and TDI, promotes the formation of graphitized carbon and inhibits the heat and gas release. PMID:27877775

  9. Graphene Oxide/Silver Nanohybrid as Multi-functional Material for Highly Efficient Bacterial Disinfection and Detection of Organic Dye

    DEFF Research Database (Denmark)

    Tam, L.T.; Dinh, N. X.; Cuong, N. V.

    2016-01-01

    In this work, a multi-functional hybrid system consisting of graphene oxide and silver nanoparticles (GO-Ag NPs) was successfully synthesized by using a two-step chemical process. We firstly demonstrated noticeable bactericidal ability of the GO-Ag hybrid system. We provide more chemo-physical ev......In this work, a multi-functional hybrid system consisting of graphene oxide and silver nanoparticles (GO-Ag NPs) was successfully synthesized by using a two-step chemical process. We firstly demonstrated noticeable bactericidal ability of the GO-Ag hybrid system. We provide more chemo...... media. With the aforementioned properties, the GO-Ag hybrid system is found to be very promising as a multi-functional material for advanced biomedicine and environmental monitoring applications....

  10. Fabrication and electrocatalytic application of functionalized nanoporous carbon material with different transition metal oxides

    International Nuclear Information System (INIS)

    Samiee, L.; Shoghi, F.; Vinu, A.

    2013-01-01

    Highlights: ► Fabrication of highly ordered functionalized nanoporous carbon material with different types of transition metal oxides. ► Novel electrocatalytic activity of functionalized nanoporous carbon material. ► Simultaneous effect of surface area and surface reactivity parameters on electrocatalytic activity. - Abstract: In the work presented here, an attempt is made to study the effect of functionalization with different transition metal oxides on the mesostructural properties as well as electrochemical behavior of Pt/nanoporous carbon supports. In this respect, the functionalized samples have been synthesized by using CMK-3 and metallocene as transition metal sources. The platinum catalysts (5 wt% Pt) obtained through a conventional wet impregnation method. All the materials have been characterized by XRD (low and high), N 2 adsorption–desorption isotherms, high-resolution transmission electron microscopy, high-resolution field emission scanning electron, EDX mapping images and cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. The results showed that the mesostructural order has been destroyed by functionalization of CMK-3 with CoO, whereas it is not that much affected in NiO and CuO functionalized samples. EDX image mapping exhibited the good and uniform dispersion of functionalizing elements (Ni, Cu, Fe and Co), Pt in the carbon supports. Moreover, XRD studies revealed the formation of smaller platinum crystallite sizes in NiO and CuO functionalized samples in relative to other functionalized supports. Electrochemical measurements were performed using CV and RDE method. Kinetic analysis revealed an activity increases in the following order: CMK-3-NiO-Pt > CMK-3-CuO-Pt > CMK-3-CoO-Pt > CMK-3-Fe 2 O 3 -Pt which is showing of simultaneous effect of surface area and surface reactivity parameters.

  11. Fabrication and electrocatalytic application of functionalized nanoporous carbon material with different transition metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Samiee, L., E-mail: Leila.Samiee83@gmail.com [Development and Optimization of Energy Technologies Research Division, Research Institute of Petroleum Industry (RIPI), West Boulevard, Near Azadi Sports Complex, Tehran (Iran, Islamic Republic of); Shoghi, F. [Development and Optimization of Energy Technologies Research Division, Research Institute of Petroleum Industry (RIPI), West Boulevard, Near Azadi Sports Complex, Tehran (Iran, Islamic Republic of); Vinu, A., E-mail: a.vinu@uq.edu.au [Australian Institute for Bioengineering and Nanotechnology(AIBN), University of Queensland, Corner College and Cooper Roads (Bld75), Brisbane, Qld 4072 (Australia)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Fabrication of highly ordered functionalized nanoporous carbon material with different types of transition metal oxides. Black-Right-Pointing-Pointer Novel electrocatalytic activity of functionalized nanoporous carbon material. Black-Right-Pointing-Pointer Simultaneous effect of surface area and surface reactivity parameters on electrocatalytic activity. - Abstract: In the work presented here, an attempt is made to study the effect of functionalization with different transition metal oxides on the mesostructural properties as well as electrochemical behavior of Pt/nanoporous carbon supports. In this respect, the functionalized samples have been synthesized by using CMK-3 and metallocene as transition metal sources. The platinum catalysts (5 wt% Pt) obtained through a conventional wet impregnation method. All the materials have been characterized by XRD (low and high), N{sub 2} adsorption-desorption isotherms, high-resolution transmission electron microscopy, high-resolution field emission scanning electron, EDX mapping images and cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. The results showed that the mesostructural order has been destroyed by functionalization of CMK-3 with CoO, whereas it is not that much affected in NiO and CuO functionalized samples. EDX image mapping exhibited the good and uniform dispersion of functionalizing elements (Ni, Cu, Fe and Co), Pt in the carbon supports. Moreover, XRD studies revealed the formation of smaller platinum crystallite sizes in NiO and CuO functionalized samples in relative to other functionalized supports. Electrochemical measurements were performed using CV and RDE method. Kinetic analysis revealed an activity increases in the following order: CMK-3-NiO-Pt > CMK-3-CuO-Pt > CMK-3-CoO-Pt > CMK-3-Fe{sub 2}O{sub 3}-Pt which is showing of simultaneous effect of surface area and surface reactivity parameters.

  12. Participation of Low Molecular Weight Electron Carriers in Oxidative Protein Folding

    Directory of Open Access Journals (Sweden)

    József Mandl

    2009-03-01

    Full Text Available Oxidative protein folding is mediated by a proteinaceous electron relay system, in which the concerted action of protein disulfide isomerase and Ero1 delivers the electrons from thiol groups to the final acceptor. Oxygen appears to be the final oxidant in aerobic living organisms, although the existence of alternative electron acceptors, e.g. fumarate or nitrate, cannot be excluded. Whilst the protein components of the system are well-known, less attention has been turned to the role of low molecular weight electron carriers in the process. The function of ascorbate, tocopherol and vitamin K has been raised recently. In vitro and in vivo evidence suggests that these redox-active compounds can contribute to the functioning of oxidative folding. This review focuses on the participation of small molecular weight redox compounds in oxidative protein folding.

  13. Impedance function of a group of vertical piles

    International Nuclear Information System (INIS)

    Wolf, J.P.; Arx, G.A. von

    1978-01-01

    Impedance and transfer functions of a group of vertical piles located in any desired configuration in plan in a horizontally stratified soil layer are derived. Hysteretic and radiation damping are accounted for. The method separates the piles and the soil, introducing unknown interaction forces. The total flexibility matrix of the soil is constructed, superposing the (complex) flexibility coefficients caused by the interaction forces of a single pile only. The dependence of the impedance and transfer functions on the oscllating frequency for foundations with different numbers of piles is investigated. Pile-soil-pile interaction is shown to be very important for all modes of vibration. The procedure is used in the seismic analysis of a reactor building. (Author)

  14. Nonthermal fixed points and the functional renormalization group

    International Nuclear Information System (INIS)

    Berges, Juergen; Hoffmeister, Gabriele

    2009-01-01

    Nonthermal fixed points represent basic properties of quantum field theories, in addition to vacuum or thermal equilibrium fixed points. The functional renormalization group on a closed real-time path provides a common framework for their description. For the example of an O(N) symmetric scalar theory it reveals a hierarchy of fixed point solutions, with increasing complexity from vacuum and thermal equilibrium to nonequilibrium

  15. Facile fabrication of siloxane @ poly (methylacrylic acid) core-shell microparticles with different functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zheng-Bai; Tai, Li; Zhang, Da-Ming; Jiang, Yong, E-mail: yj@seu.edu.cn [Southeast University, School of Chemistry and Chemical Engineering (China)

    2017-02-15

    Siloxane @ poly (methylacrylic acid) core-shell microparticles with functional groups were prepared by a facile hydrolysis-condensation method in this work. Three different silane coupling agents 3-methacryloxypropyltrimethoxysilane (MPS), 3-triethoxysilylpropylamine (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS) were added along with tetraethoxysilane (TEOS) into the polymethylacrylic acid (PMAA) microparticle ethanol dispersion to form the Si@PMAA core-shell microparticles with different functional groups. The core-shell structure and the surface special functional groups of the resulting microparticles were measured by transmission electron microscopy and FTIR. The sizes of these core-shell microparticles were about 350–400 nm. The corresponding preparation conditions and mechanism were discussed in detail. This hydrolysis-condensation method also could be used to functionalize other microparticles which contain active groups on the surface. Meanwhile, the Si@PMAA core-shell microparticles with carbon-carbon double bonds and amino groups have further been applied to prepare hydrophobic coatings.

  16. Facile fabrication of siloxane @ poly (methylacrylic acid) core-shell microparticles with different functional groups

    International Nuclear Information System (INIS)

    Zhao, Zheng-Bai; Tai, Li; Zhang, Da-Ming; Jiang, Yong

    2017-01-01

    Siloxane @ poly (methylacrylic acid) core-shell microparticles with functional groups were prepared by a facile hydrolysis-condensation method in this work. Three different silane coupling agents 3-methacryloxypropyltrimethoxysilane (MPS), 3-triethoxysilylpropylamine (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS) were added along with tetraethoxysilane (TEOS) into the polymethylacrylic acid (PMAA) microparticle ethanol dispersion to form the Si@PMAA core-shell microparticles with different functional groups. The core-shell structure and the surface special functional groups of the resulting microparticles were measured by transmission electron microscopy and FTIR. The sizes of these core-shell microparticles were about 350–400 nm. The corresponding preparation conditions and mechanism were discussed in detail. This hydrolysis-condensation method also could be used to functionalize other microparticles which contain active groups on the surface. Meanwhile, the Si@PMAA core-shell microparticles with carbon-carbon double bonds and amino groups have further been applied to prepare hydrophobic coatings.

  17. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Directory of Open Access Journals (Sweden)

    Magdalena Cristóbal-García

    2015-01-01

    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  18. Functional and toxicological consequences of metabolic bioactivation of methapyrilene via thiophene S-oxidation: Induction of cell defence, apoptosis and hepatic necrosis

    International Nuclear Information System (INIS)

    Mercer, Amy E.; Regan, Sophie L.; Hirst, Charlotte M.; Graham, Emma E.; Antoine, Daniel J.; Benson, Craig A.; Williams, Dominic P.; Foster, John; Kenna, J. Gerry; Park, B. Kevin

    2009-01-01

    Methapyrilene, [N,N-dimethyl-N'-pyridyl-N'(2-thienylmethyl)-1,2-ethanediamine] (MP) was withdrawn from, clinical use due to reported periportal hepatic necrosis and hepatocarcinogenicity in the rat, via S-oxidation of the thiophene group. In this study MP is used as a model hepatotoxin to further characterise the functional consequences of S-oxidation of the thiophene group in vivo, in rat models and in vitro, in freshly isolated rat hepatocyte suspensions. In vivo histological studies revealed the early depletion of glutathione (GSH), which was confined to the damaged periportal area, in contrast to an increase in GSH levels in the centrilobular region. Additionally, the induction of cell defence was demonstrated by an increase in the protein levels of heme-oxygenase 1 (HO-1) and glutamate cysteine ligase, catalytic subunit (GCLC) in vivo. Histological examination demonstrated that cytotoxicity progresses initially via apoptosis before an increase in necrosis over the 3-day administration. An apoptotic-like mechanism was observed in vitro via the measurement of cytochrome c release and caspase activation. Conclusion: This study provides evidence for a complex pathway of MP-induced hepatotoxicity which progresses through early adaptation, apoptosis, necrosis and inflammation, all underpinned by the zonal induction and depletion of GSH within the liver.

  19. Improvement of the effective work function and transmittance of thick indium tin oxide/ultrathin ruthenium doped indium oxide bilayers as transparent conductive oxide

    International Nuclear Information System (INIS)

    Taweesup, Kattareeya; Yamamoto, Ippei; Chikyow, Toyohiro; Lothongkum, Gobboon; Tsukagoshi, Kazutoshi; Ohishi, Tomoji; Tungasmita, Sukkaneste; Visuttipitukul, Patama; Ito, Kazuhiro; Takahashi, Makoto; Nabatame, Toshihide

    2016-01-01

    Ruthenium doped indium oxide (In_1_−_xRu_xO_y) films fabricated using DC magnetron co-sputtering with In_2O_3 and Ru targets were investigated for use as transparent conductive oxides. The In_1_−_xRu_xO_y films had an amorphous structure in the wide compositional range of x = 0.3–0.8 and had an extremely smooth surface. The transmittance and resistivity of the In_1_−_xRu_xO_y films increased as the Ru content increased. The transmittance of the In_0_._3_8Ru_0_._6_2O_y film improved to over 80% when the film thickness was less than 5 nm, while the specific resistivity (ρ) was kept to a low value of 1.6 × 10"−"4 Ω cm. Based on these experimental data, we demonstrated that thick indium tin oxide (In_0_._9Sn_0_._1O_y, ITO) (150 nm)/ultrathin In_0_._3_8Ru_0_._6_2O_y (3 nm) bilayers have a high effective work function of 5.3 eV, transmittance of 86%, and low ρ of 9.2 × 10"−"5 Ω cm. This ITO/In_0_._3_8Ru_0_._6_2O_y bilayer is a candidate for use as an anode for organic electroluminescent devices. - Highlights: • We investigated characteristics of thick ITO/ultrathin Ru doped In_2O_3 bilayers. • Effect of Ru addition in In_2O_3 results in smooth surface because of an amorphous structure. • The In_0_._3_8Ru_0_._6_2O_y film with less than 5 nm improves to high transmittance over 80%. • ITO/In_0_._3_8Ru_0_._6_2O_y bilayer has a high effective work function of 5.3 eV. • We conclude that ITO/ultrathin In_0_._3_8Ru_0_._6_2O_y bilayer is a candidate as an anode of OEL.

  20. A Simple Method to Functionalize the Surface of Plasma Electrolytic Oxidation Produced TiO2 Coatings for Growing Hydroxyapatite

    International Nuclear Information System (INIS)

    Teng, Huan-Ping; Yang, Chia-Jung; Lin, Jia-Fu; Huang, Yu-Hsin; Lu, Fu-Hsing

    2016-01-01

    Highlights: • TiO 2 coatings with porous surfaces were produced by plasma electrolytic oxidation. • Simple pre-immersion in K 2 HPO 4 could functionalize the surfaces of the TiO 2 . • Such pre-immersion enhanced substantially the growth of hydroxyapatite in SBF. • Growth mechanisms of hydroxyapatite via the pre-immersion have been proposed. • MTT assay shows great osteoblast-like cell activity on the obtained hydroxyapatite. - Abstract: Conventionally, hydrothermal treatment was often used to modify the TiO 2 surface prior to the growth of hydroxyapatite (HA) that is one of the most important implant biomaterials. In this work, a simple pre-immersion of the obtained TiO 2 in a weak base, instead of the conventionally high pressure-temperature hydrothermal pre-treatment, was conducted prior to the growth of HA. Firstly, anatase TiO 2 coatings with porous surfaces were produced by plasma electrolytic oxidation with optimized processing parameters. X-ray diffraction patterns and field-emission microscopy reveal that the anatase TiO 2 films with porous surfaces were produced by plasma electrolytic oxidation. Subsequently, the films were pre-immersed in 0.1–2 M K 2 HPO 4 solutions for only 10 min. Fourier transform infrared spectroscopy shows that the −OH functional groups were generated after such pre-immersion, which could enhance significantly the growth of a single phase of HA in simulated body fluid (SBF). Growth mechanisms of HA via the pre-immersion treatment and soaking in SBF have been proposed. Moreover, the proliferation rate and attachment of the MG-63 osteoblast cells were greatly enhanced on the obtained HA compared to that without the immersion pre-treatment from the MTT assay and morphology analyses. This simple immersion pre-treatment evidently provides an easy route for the growth of HA and has great potential for biomedical applications.

  1. Influence of nutrition on liver oxidative metabolism.

    Science.gov (United States)

    Jorquera, F; Culebras, J M; González-Gallego, J

    1996-06-01

    The liver plays a major role in the disposition of the majority of drugs. This is due to the presence of several drug-metabolizing enzyme systems, including a group of membrane-bound mixed-function oxidative enzymes, mainly the cytochrome P450 system. Hepatic oxidative capacity can be assessed by changes in antipyrine metabolism. Different drugs and other factors may induce or inhibit the cytochrome P450-dependent system. This effect is important in terms of the efficacy or toxicity of drugs that are substrates for the system. Microsomal oxidation in animals fed with protein-deficient diets is depressed. The mixed-function oxidase activity recovers after a hyperproteic diet or the addition of lipids. Similar findings have been reported in patients with protein-calorie malnutrition, although results in the elderly are conflicting. Different studies have revealed that microsomal oxidation is impaired by total parenteral nutrition and that this effect is absent when changing the caloric source from carbohydrates to a conventional amino acid solution or after lipid addition, especially when administered as medium-chain/long-chain triglyceride mixtures. Peripheral parenteral nutrition appears to increase antipyrine clearance.

  2. Electrochemical modification of carbon electrode with benzylphosphonic groups

    International Nuclear Information System (INIS)

    Benjamin, Ossonon Diby; Weissmann, Martin; Bélanger, Daniel

    2014-01-01

    Electrochemical modification of carbon electrodes by aryl groups bearing a phosphonate terminal functionality was carried out by both electrochemical reduction of diazonium ions (diazobenzylphosphonic acid) and electrochemical oxidation of an amine (aminobenzylphosphonic acid). The grafting by electrochemical reduction of aryl diazonium ions was found to be more efficient. The surface concentration of phosphonate groups, estimated by electrochemical reduction of electrostatically bound Pb(II) ions, was found to be about 25% higher for the layer formed by electrochemical reduction of diazonium ions than for the layer formed by oxidation of the amine. The acid–base properties of the grafted films were slightly influenced by the grafting procedure and the difference in the apparent pK a was most likely related to the presence of the substrate –NH-aryl linkage for the film generated by amine oxidation. X-ray photoelectron spectroscopy was used to get some insight on the chemical species present at the carbon electrode surface. For both procedures, the films consist in mixture of at least two different covalently grafted species

  3. A Highly Practical Copper(I)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols

    Science.gov (United States)

    Hoover, Jessica M.; Stahl, Shannon S.

    2011-01-01

    Aerobic oxidation reactions have been the focus of considerable attention, but their use in mainstream organic chemistry has been constrained by limitations in their synthetic scope and by practical factors, such as the use of pure O2 as the oxidant or complex catalyst synthesis. Here, we report a new (bpy)CuI/TEMPO catalyst system that enables efficient and selective aerobic oxidation of a broad range of primary alcohols, including allylic, benzylic and aliphatic derivatives, to the corresponding aldehydes using readily available reagents, at room temperature with ambient air as the oxidant. The catalyst system is compatible with a wide range of functional groups and the high selectivity for 1° alcohols enables selective oxidation of diols that lack protecting groups. PMID:21861488

  4. Reaction Mechanism for the Formation of Nitrogen Oxides (NO x ) During Coke Oxidation in Fluidized Catalytic Cracking Units

    KAUST Repository

    Chaparala, Sree Vidya

    2015-06-11

    Fluidized catalytic cracking (FCC) units in refineries process heavy feedstock obtained from crude oil distillation. While cracking feed, catalysts get deactivated due to coke deposition. During catalyst regeneration by burning coke in air, nitrogen oxides (NOx) are formed. The increase in nitrogen content in feed over time has resulted in increased NOx emissions. To predict NOx concentration in flue gas, a reliable model for FCC regenerators is needed that requires comprehensive understanding and accurate kinetics for NOx formation. Based on the nitrogen-containing functional groups on coke, model molecules are selected to study reactions between coke-bound nitrogen and O2 to form NO and NO2 using density functional theory. The reaction kinetics for the proposed pathways are evaluated using transition state theory. It is observed that the addition of O2 on coke is favored only when the free radical is present on the carbon atom instead of nitrogen atom. Thus, NOx formation during coke oxidation does not result from the direct attack by O2 on N atoms of coke, but from the transfer of an O atom to N from a neighboring site. The low activation energies required for NO formation indicate that it is more likely to form than NO2 during coke oxidation. The favorable pathways for NOx formation that can be used in FCC models are identified. Copyright © 2015 Taylor & Francis Group, LLC.

  5. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Dron

    2010-08-01

    Full Text Available The functional group composition of various organic aerosols (OA is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS. The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R´ respectively and precursor ion (nitro groups, R-NO2 scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular to 13.5% (o-xylene photooxidation of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60

  6. Nanotoxic Profiling of Novel Iron Oxide Nanoparticles Functionalized with Perchloric Acid and SiPEG as a Radiographic Contrast Medium

    Directory of Open Access Journals (Sweden)

    Muhamad Idham Mohamed

    2015-01-01

    Full Text Available Emerging syntheses and findings of new metallic nanoparticles (MNPs have become an important aspect in various fields including diagnostic imaging. To date, iodine has been utilized as a radiographic contrast medium. However, the raise concern of iodine threats on iodine-intolerance patient has led to search of new contrast media with lower toxic level. In this animal modeling study, 14 nm iron oxide nanoparticles (IONPs with silane-polyethylene glycol (SiPEG and perchloric acid have been assessed for toxicity level as compared to conventional iodine. The nanotoxicity of IONPs was evaluated in liver biochemistry, reactive oxygen species production (ROS, lipid peroxidation mechanism, and ultrastructural evaluation using transmission electron microscope (TEM. The hematological analysis and liver function test (LFT revealed that most of the liver enzymes were significantly higher in iodine-administered group as compared to those in normal and IONPs groups P<0.05. ROS production assay and lipid peroxidation indicator, malondialdehyde (MDA, also showed significant reductions in comparison with iodine group P<0.05. TEM evaluation yielded the aberration of nucleus structure of iodine-administered group as compared to those in control and IONPs groups. This study has demonstrated the less toxic properties of IONPs and it may postulate that IONPs are safe to be applied as radiographic contrast medium.

  7. Morphology and conductivity of PEO-based polymers having various end functional groups

    Science.gov (United States)

    Jung, Ha Young; Mandal, Prithwiraj; Park, Moon Jeong

    Poly(ethylene oxide) (PEO)-based polymers have been considered most promising candidates of polymer electrolytes for lithium batteries owing to the high ionic conductivity of PEO/lithium salt complexes. This positive aspect prompted researchers to investigate PEO-containing block copolymers prepared by linking mechanically robust block to PEO covalently. Given that the microphase separation of block copolymers can affect both mechanical properties and ion transport properties, various strategies have been reported to tune the morphology of PEO-containing block copolymers. In the present study, we describe a simple means for modulating the morphologies of PEO-based block copolymers with an aim to improve ion transport properties. By varying terminal groups of PEO in block copolymers, the disordered morphology can be readily transformed into ordered lamellae or gyroid phases, depending on the type and number density of end group. In particular, the existence of terminal groups resulted in a large reduction in crystallinity of PEO chains and thereby increasing room temperature ionic conductivity.

  8. Diabetes-Induced Oxidative Stress in Endothelial Progenitor Cells May Be Sustained by a Positive Feedback Loop Involving High Mobility Group Box-1

    Directory of Open Access Journals (Sweden)

    Han Wu

    2016-01-01

    Full Text Available Oxidative stress is considered to be a critical factor in diabetes-induced endothelial progenitor cell (EPC dysfunction, although the underlying mechanisms are not fully understood. In this study, we investigated the role of high mobility group box-1 (HMGB-1 in diabetes-induced oxidative stress. HMGB-1 was upregulated in both serum and bone marrow-derived monocytes from diabetic mice compared with control mice. In vitro, advanced glycation end productions (AGEs induced, expression of HMGB-1 in EPCs and in cell culture supernatants in a dose-dependent manner. However, inhibition of oxidative stress with N-acetylcysteine (NAC partially inhibited the induction of HMGB-1 induced by AGEs. Furthermore, p66shc expression in EPCs induced by AGEs was abrogated by incubation with glycyrrhizin (Gly, while increased superoxide dismutase (SOD activity in cell culture supernatants was observed in the Gly treated group. Thus, HMGB-1 may play an important role in diabetes-induced oxidative stress in EPCs via a positive feedback loop involving the AGE/reactive oxygen species/HMGB-1 pathway.

  9. Synthesis, characterization, and in vitro biological evaluation of highly stable diversely functionalized superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Bhattacharya, Dipsikha; Sahu, Sumanta K.; Banerjee, Indranil; Das, Manasmita; Mishra, Debashish; Maiti, Tapas K.; Pramanik, Panchanan

    2011-01-01

    In this article, we report the design and synthesis of a series of well-dispersed superparamagnetic iron oxide nanoparticles (SPIONs) using chitosan as a surface modifying agent to develop a potential T 2 contrast probe for magnetic resonance imaging (MRI). The amine, carboxyl, hydroxyl, and thiol functionalities were introduced on chitosan-coated magnetic probe via simple reactions with small reactive organic molecules to afford a series of biofunctionalized nanoparticles. Physico-chemical characterizations of these functionalized nanoparticles were performed by TEM, XRD, DLS, FTIR, and VSM. The colloidal stability of these functionalized iron oxide nanoparticles was investigated in presence of phosphate buffer saline, high salt concentrations and different cell media for 1 week. MRI analysis of human cervical carcinoma (HeLa) cell lines treated with nanoparticles elucidated that the amine-functionalized nanoparticles exhibited higher amount of signal darkening and lower T 2 relaxation in comparison to the others. The cellular internalization efficacy of these functionalized SPIONs was also investigated with HeLa cancer cell line by magnetically activated cell sorting (MACS) and fluorescence microscopy and results established selectively higher internalization efficacy of amine-functionalized nanoparticles to cancer cells. These positive attributes demonstrated that these nanoconjugates can be used as a promising platform for further in vitro and in vivo biological evaluations.

  10. Psychosocial functioning in patients with treatment-resistant depression after group cognitive behavioral therapy

    Directory of Open Access Journals (Sweden)

    Kunisato Yoshihiko

    2010-03-01

    Full Text Available Abstract Background Although patients with Treatment Resistant Depression (TRD often have impaired social functioning, few studies have investigated the effectiveness of psychosocial treatment for these patients. We examined whether adding group cognitive behavioral therapy (group-CBT to medication would improve both the depressive symptoms and the social functioning of patient with mild TRD, and whether any improvements would be maintained over one year. Methods Forty-three patients with TRD were treated with 12 weekly sessions of group-CBT. Patients were assessed with the Global Assessment of Functioning scale (GAF, the 36-item Short-Form Health Survey (SF-36, the Hamilton Rating Scale for Depression (HRSD, the Dysfunctional Attitudes Scale (DAS, and the Automatic Thought Questionnaire-Revised (ATQ-R at baseline, at the termination of treatment, and at the 12-month follow-up. Results Thirty-eight patients completed treatment; five dropped out. For the patients who completed treatment, post-treatment scores on the GAF and SF-36 were significantly higher than baseline scores. Scores on the HRSD, DAS, and ATQ-R were significantly lower after the treatment. Thus patients improved on all measurements of psychosocial functioning and mood symptoms. Twenty patients participated in the 12-month follow-up. Their improvements for psychosocial functioning, depressive symptoms, and dysfunctional cognitions were sustained at 12 months following the completion of group-CBT. Conclusions These findings suggest a positive effect that the addition of cognitive behavioural group therapy to medication on depressive symptoms and social functioning of mildly depressed patients, showing treatment resistance.

  11. Chronic exposure to iron oxide, chromium oxide, and nickel oxide fumes of metal dressers in a steelworks

    Science.gov (United States)

    Jones, J. Graham; Warner, C. G.

    1972-01-01

    Graham Jones, J., and Warner, C. G. (1972).Brit. J. industr. Med.,29, 169-177. Chronic exposure to iron oxide, chromium oxide, and nickel oxide fumes of metal dressers in a steelworks. Occupational and medical histories, smoking habits, respiratory symptoms, chest radiographs, and ventilatory capacities were studied in 14 steelworkers employed as deseamers of steel ingots for periods of up to 16 years. The men were exposed for approximately five hours of each working shift to fume concentrations ranging from 1·3 to 294·1 mg/m3 made up mainly of iron oxide with varying proportions of chromium oxide and nickel oxide. Four of the men, with 14 to 16 years' exposure, showed radiological evidence of pneumoconiosis classified as ILO categories 2 or 3. Of these, two had pulmonary function within the normal range and two had measurable loss of function, moderate in one case and mild in the other. Many observers would diagnose these cases as siderosis but the authors consider that this term should be reserved for cases exposed to pure iron compounds. The correct diagnosis is mixed-dust pneumoconiosis and the loss of pulmonary function is caused by the effects of the mixture of metallic oxides. It is probable that inhalation of pure iron oxide does not cause fibrotic pulmonary changes, whereas the inhalation of iron oxide plus certain other substances obviously does. Images PMID:5021996

  12. Reduction of Graphene Oxide to Graphene by Using Gamma Irradiation

    International Nuclear Information System (INIS)

    Shamellia Sharin; Irman Abdul Rahman; Ainee Fatimah Ahmad

    2015-01-01

    This research aims to gauge the ability of gamma radiation to induce the reduction of graphene oxide to graphene. Graphene oxide powders were dispersed into a mixture of alcohol and deionized water, and the mixture was then irradiated with a "6"0Co source using a GammaCell 220 Excel irradiator at absorbed doses of 0, 5, 15, 20 and 35 kGy. According to characterization using Fourier Transformed Infrared Spectroscopy (FTIR), it can be seen that almost every oxygen-containing functional group has been removed after irradiation of the graphene oxide mixture. Reduction of graphene oxide was also proven from the characterization using UV-Vis Spectroscopy, in which the wavelength of graphene oxide at 237 nm was red-shifted to 277 nm after being irradiated and the peak at 292 nm, (indicating the carboxyl group) disappears in the UV-Vis spectrum of reduced graphene oxide. Morphology of graphene oxide also changed from a smooth and flat surface to crumpled. The ratio of carbon/ oxygen in the graphene oxide was lower than the carbon/ oxygen of reduced graphene oxide. At the end of the experiment, it can be deduced that graphene oxide underwent reduction, characterized before and after irradiation using Emission Scanned Electron Microscopy and Energy Dispersive X-ray, Fourier Transformed Infrared Spectroscopy and UV-Vis Spectroscopy. Therefore, we postulate that the irradiation technique that induces reduction, can be used to obtain reduced graphene oxide from graphene oxide. (author)

  13. Interactions between the glass fiber coating and oxidized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ku-Herrera, J.J., E-mail: jesuskuh@live.com.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Nistal, A. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Cauich-Rodríguez, J.V. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Rubio, F.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Bartolo-Pérez, P. [Departamento de Física Aplicada, Cinvestav, Unidad Mérida, C.P., 97310 Mérida, Yucatán (Mexico)

    2015-03-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  14. Interactions between the glass fiber coating and oxidized carbon nanotubes

    International Nuclear Information System (INIS)

    Ku-Herrera, J.J.; Avilés, F.; Nistal, A.; Cauich-Rodríguez, J.V.; Rubio, F.; Rubio, J.; Bartolo-Pérez, P.

    2015-01-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible

  15. Work function and quantum efficiency study of metal oxide thin films on Ag(100)

    Science.gov (United States)

    Chang, V.; Noakes, T. C. Q.; Harrison, N. M.

    2018-04-01

    Increasing the quantum efficiency (QE) of metal photocathodes is in the design and development of photocathodes for free-electron laser applications. The growth of metal oxide thin films on certain metal surfaces has previously been shown to reduce the work function (WF). Using a photoemission model B. Camino et al. [Comput. Mater. Sci. 122, 331 (2016), 10.1016/j.commatsci.2016.05.025] based on the three-step model combined with density functional theory calculations we predict that the growth of a finite number of MgO(100) or BaO(100) layers on the Ag(100) surface increases significantly the QE compared with the clean Ag(100) surface for a photon energy of 4.7 eV. Different mechanisms for affecting the QE are identified for the different metal oxide thin films. The addition of MgO(100) increases the QE due to the reduction of the WF and the direct excitation of electrons from the Ag surface to the MgO conduction band. For BaO(100) thin films, an additional mechanism is in operation as the oxide film also photoemits at this energy. We also note that a significant increase in the QE for photons with an energy of a few eV above the WF is achieved due to an increase in the inelastic mean-free path of the electrons.

  16. Cultivation and genomic analysis of Candidatus Nitrosocaldus islandicus, a novel obligately thermophilic ammonia-oxidizing Thaumarchaeon

    OpenAIRE

    De La Torre, Jose; Kirkegaard, Rasmus; Daebeler, Anne; Sedlacek, Christopher; Wagner, Michael; Daims, Holger; Pjevac, Petra; Albersten, Mads; Vierheilig, Julia; Herbold, Craig

    2017-01-01

    Ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaea are the only known aerobic ammonia oxidizers in geothermal environments. Although molecular data indicate the presence of phylogenetically diverse AOA from the Nitrosocaldus clade, group 1.1b and group 1.1a Thaumarchaea in terrestrial high-temperature habitats, only one enrichment culture of an AOA thriving above 50 C has been reported and functionally analyzed. In this study, we physiologically and genomically characterized a nov...

  17. Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xuebing, E-mail: xuebinghu2010@gmail.com [Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); Yu, Yun, E-mail: yunyush@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); Wang, Yongqing; Zhou, Jianer [Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); Song, Lixin [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China)

    2015-02-28

    Graphical abstract: By adding an alkaline (NaOH or KOH) solution, the unprecipitated nano graphene oxide undergoes fast aggregation from the residual strong-acid filtrate of the modified Hummers method and forms the stable floccules when the pH value of the filtrate is about 1.7. The acid–base interaction with the surface functional groups of the carbon layers plays a role in the aggregation of the unprecipitated nano graphene oxide. - Highlights: • The novel and high-efficient method for separating graphene oxide was showed. • Graphene oxide undergoes aggregation and forms the floccules when pH value is ∼1.7. • The acid–base interaction plays a role in the aggregation of graphene oxide. - Abstract: In the modified Hummers method for preparing graphene oxide, the yellow slurry can be obtained. After filtering through a quantitative filter paper, the strong-acid filtrate containing the unprecipitated nano graphene oxide was gained. The corresponding filtrate was added gradually with an alkaline (NaOH or KOH) solution at room temperature. The unprecipitated nano graphene oxide could undergo fast aggregation when the pH value of the filtrate was about 1.7 and formed the stable floccules. X-ray diffraction analysis shows the dominant peak of the floccules is about 11°, which accords to the peak of graphene oxide. Spectra of X-ray photoelectron spectroscopy confirm the presence in the floccules of an abundance of oxygen functional groups and the purified graphene oxide floccules can be obtained. Atomic force microscopy measurement shows the graphene oxide floccules consists of sheet-like objects, mostly containing only a few layers (about 5 layers). Zeta potential analysis demonstrates the surface charge of the graphene oxide is pH-sensitive and its isoelectric point is ∼1.7. The flocculation mechanism of graphene oxide ascribes to the acid–base interaction with the surface functional groups of the carbon layers.

  18. Natural antioxidant ice cream acutely reduces oxidative stress and improves vascular function and physical performance in healthy individuals.

    Science.gov (United States)

    Sanguigni, Valerio; Manco, Melania; Sorge, Roberto; Gnessi, Lucio; Francomano, Davide

    2017-01-01

    The formation of reactive oxygen species (ROS) contributes to the pathogenesis and progression of several diseases. Polyphenols have been shown to be beneficial against ROS. The aim of this study was to evaluate the effects of a natural antioxidant ice cream on oxidative stress, vascular function, and physical performance. In this controlled, single-blind, crossover study, 14 healthy individuals were randomized to consume 100 g of either antioxidant ice cream containing dark cocoa powder and hazelnut and green tea extracts or milk chocolate ice cream (control ice cream). Participants were studied at baseline and 2 h after ingesting ice cream. Serum polyphenols, antioxidant status (ferric-reducing ability of plasma [FRAP]), nitric oxide (NOx) bioavailability, markers of oxidative stress (determination of reactive oxygen metabolites [d-ROMs] and hydrogen peroxide [H 2 O 2 ]), endothelium function (flow-mediated dilation [FMD] and reactive hyperemia index [RHI]), and exercise tolerance (stress test) were assessed, and the double product was measured. Serum polyphenols (P ice cream ingestion. No changes were found after control ice cream ingestion. To our knowledge, this is the first study to demonstrate that a natural ice cream rich in polyphenols acutely improved vascular function and physical performance in healthy individuals through a reduction in oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. TRICHLOROETHYLENE SORPTION AND OXIDATION USING A DUAL FUNCTION SORBENT/CATALYST IN A FALLING FURNACE REACTOR

    Science.gov (United States)

    A dual function medium (Cr-ZSM-5), capable of physisorbing trichloroethylene (TCE) at ambient temperature and catalytically oxidizing it at elevated temperature (-350 degrees C) was utilized in a novel continuous falling furnace reactor system to store and periodically destroy t...

  20. Effect of Oxidation Time on Humic Acid Yields

    International Nuclear Information System (INIS)

    Khin Thidar Cho; May Zin Lwin

    2010-12-01

    In this study,humic acids were produced from coal under controlled conditions by using different oxidation time. This research studies on the behaviour of coal during oxidation process. The coal used as raw material in this research was obtained from Ka Lay Wa, Sagaing Division . The coals were oxidized at the different oxidation times from 76 hr to 380 hr at the temperature 150 5C. The yields of humic acid, the ultimate analysis (percentage of carbon, hydrogen, nitrogen and oxygen) and the proximate analysis (percentage of volatile, ash and moisture) were done in this study. The functional groups and structural entities of the obtained humic acids were identified by using Fourier Transform Infrared Spectrophotometer (FTIR). The yield percentage of prepared humic acid in Ka Lay Wa coal was found to be 3%.

  1. Matrix intensification alters avian functional group composition in adjacent rainforest fragments.

    Directory of Open Access Journals (Sweden)

    Justus P Deikumah

    Full Text Available Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining.

  2. Selective Oxidation of Lignin Model Compounds.

    Science.gov (United States)

    Gao, Ruili; Li, Yanding; Kim, Hoon; Mobley, Justin K; Ralph, John

    2018-05-02

    Lignin, the planet's most abundant renewable source of aromatic compounds, is difficult to degrade efficiently to welldefined aromatics. We developed a microwave-assisted catalytic Swern oxidation system using an easily prepared catalyst, MoO 2 Cl 2 (DMSO) 2 , and DMSO as the solvent and oxidant. It demonstrated high efficiency in transforming lignin model compounds containing the units and functional groups found in native lignins. The aromatic ring substituents strongly influenced the selectivity of β-ether phenolic dimer cleavage to generate sinapaldehyde and coniferaldehyde, monomers not usually produced by oxidative methods. Time-course studies on two key intermediates provided insight into the reaction pathway. Owing to the broad scope of this oxidation system and the insight gleaned with regard to its mechanism, this strategy could be adapted and applied in a general sense to the production of useful aromatic chemicals from phenolics and lignin. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ultracold atoms and the Functional Renormalization Group

    International Nuclear Information System (INIS)

    Boettcher, Igor; Pawlowski, Jan M.; Diehl, Sebastian

    2012-01-01

    We give a self-contained introduction to the physics of ultracold atoms using functional integral techniques. Based on a consideration of the relevant length scales, we derive the universal effective low energy Hamiltonian describing ultracold alkali atoms. We then introduce the concept of the effective action, which generalizes the classical action principle to full quantum status and provides an intuitive and versatile tool for practical calculations. This framework is applied to weakly interacting degenerate bosons and fermions in the spatial continuum. In particular, we discuss the related BEC and BCS quantum condensation mechanisms. We then turn to the BCS-BEC crossover, which interpolates between both phenomena, and which is realized experimentally in the vicinity of a Feshbach resonance. For its description, we introduce the Functional Renormalization Group approach. After a general discussion of the method in the cold atoms context, we present a detailed and pedagogical application to the crossover problem. This not only provides the physical mechanism underlying this phenomenon. More generally, it also reveals how the renormalization group can be used as a tool to capture physics at all scales, from few-body scattering on microscopic scales, through the finite temperature phase diagram governed by many-body length scales, up to critical phenomena dictating long distance physics at the phase transition. The presentation aims to equip students at the beginning PhD level with knowledge on key physical phenomena and flexible tools for their description, and should enable to embark upon practical calculations in this field.

  4. Chemical linkage to injected tissues is a distinctive property of oxidized avidin.

    Directory of Open Access Journals (Sweden)

    Rita De Santis

    Full Text Available We recently reported that the oxidized avidin, named AvidinOX®, resides for weeks within injected tissues as a consequence of the formation of Schiff's bases between its aldehyde groups and tissue protein amino groups. We also showed, in a mouse pre-clinical model, the usefulness of AvidinOX for the delivery of radiolabeled biotin to inoperable tumors. Taking into account that AvidinOX is the first oxidized glycoprotein known to chemically link to injected tissues, we tested in the mouse a panel of additional oxidized glycoproteins, with the aim of investigating the phenomenon. We produced oxidized ovalbumin and mannosylated streptavidin which share with avidin glycosylation pattern and tetrameric structure, respectively and found that neither of them linked significantly to cells in vitro nor to injected tissues in vivo, despite the presence of functional aldehyde groups. The study, extended to additional oxidized glycoproteins, showed that the in vivo chemical conjugation is a distinctive property of the oxidized avidin. Relevance of the high cationic charge of avidin into the stable linkage of AvidinOX to tissues is demonstrated as the oxidized acetylated avidin lost the property. Plasmon resonance on matrix proteins and cellular impedance analyses showed in vitro that avidin exhibits a peculiar interaction with proteins and cells that allows the formation of highly stable Schiff's bases, after oxidation.

  5. The visibility function and its effect on the observed characteristics of sunspot groups. 1

    International Nuclear Information System (INIS)

    Kopecky, M.; Kuklin, G.V.; Starkova, I.P.

    1985-01-01

    The paper is an introductory study to a series dealing with the visibility function, the function of foreshortening of sunspot group areas, and with the effect of these functions on the results of the statistical processing of observations, which has to be taken into account in interpreting the results. A ''diagram of observational conditions'' is described, which enables a number of statistical problems of sunspot groups on the rotating Sun to be solved by computer modelling or by graphical methods. Examples are given of the use of this diagram in studying the distribution of the observed lifetime of sunspot groups with a given actual lifetime, of the decrease in the number of sunspot groups towards the limb of the solar disc, of the east-west asymmetry of sunspot group appearance and disappearance. (author)

  6. Electrosynthesis of Biomimetic Manganese-Calcium Oxides for Water Oxidation Catalysis--Atomic Structure and Functionality.

    Science.gov (United States)

    González-Flores, Diego; Zaharieva, Ivelina; Heidkamp, Jonathan; Chernev, Petko; Martínez-Moreno, Elías; Pasquini, Chiara; Mohammadi, Mohammad Reza; Klingan, Katharina; Gernet, Ulrich; Fischer, Anna; Dau, Holger

    2016-02-19

    Water-oxidizing calcium-manganese oxides, which mimic the inorganic core of the biological catalyst, were synthesized and structurally characterized by X-ray absorption spectroscopy at the manganese and calcium K edges. The amorphous, birnesite-type oxides are obtained through a simple protocol that involves electrodeposition followed by active-site creation through annealing at moderate temperatures. Calcium ions are inessential, but tune the electrocatalytic properties. For increasing calcium/manganese molar ratios, both Tafel slopes and exchange current densities decrease gradually, resulting in optimal catalytic performance at calcium/manganese molar ratios of close to 10 %. Tracking UV/Vis absorption changes during electrochemical operation suggests that inactive oxides reach their highest, all-Mn(IV) oxidation state at comparably low electrode potentials. The ability to undergo redox transitions and the presence of a minor fraction of Mn(III) ions at catalytic potentials is identified as a prerequisite for catalytic activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nonenzymatic electrochemical sensor based on imidazole-functionalized graphene oxide for progesterone detection.

    Science.gov (United States)

    Gevaerd, Ava; Blaskievicz, Sirlon F; Zarbin, Aldo J G; Orth, Elisa S; Bergamini, Márcio F; Marcolino-Junior, Luiz H

    2018-07-30

    The modification of electrode surfaces has been the target of study for many researchers in order to improve the analytical performance of electrochemical sensors. Herein, the use of an imidazole-functionalized graphene oxide (GO-IMZ) as an artificial enzymatic active site for voltammetric determination of progesterone (P4) is described for the first time. The morphology and electrochemical performance of electrode modified with GO-IMZ were characterized by scanning electron microscopy and cyclic voltammetry, respectively. Under optimized conditions, the proposed sensor showed a synergistic effect of the GO sheets and the imidazole groups anchored on its backbone, which promoted a significant enhancement on electrochemical reduction of P4. Figures of merits such as linear dynamic response for P4 concentration ranging from 0.22 to 14.0 μmol L -1 , limit of detection of 68 nmol L -1 and limit of quantification and 210 nmol L -1 were found. In addition, presented a higher sensitivity, 426 nA L µmol -1 , when compared to the unmodified electrode. Overall, the proposed device showed to be a promising platform for a simple, rapid, and direct analysis of progesterone. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Correlations between blood glucose,lipid,oxidative stress and pancreatic β-cell function in patients with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Yong-ling LI

    2011-06-01

    Full Text Available Objective To investigate the relationship between glucose,lipid,oxidative stress and the first-phase of pancreatic β-cell insulin secretion in individuals with different degrees of glucose tolerance.Methods The intravenous glucose tolerance test(IVGTT was performed in 40 patients with newly diagnosed type 2 diabetes mellitus(DM group,37 patients with impaired glucose tolerance(IGT group,and 43 subjects with normal glucose tolerance(NGT group.Glucose,lipid,fasting plasma 8-hydroxydeoxyguanosin(8-OHdG,malondialdehyde(MDA and the activity of superoxide dismutase(SOD were measured.0-10 minutes of insulin area under the curve(AUC,acute insulin response(AIR3-5,homeostasis model assessment(HOMA-IR and homeostasis model assessment-B(HOMA-B were calculated to analyze the relationship between oxidative stress and the fasting plasma glucose(FPG,high density lipoprotein cholesterol(HDL-C,low density lipoprotein cholesterol(LDL-C,triglyceride(TG,total cholesterol(TC,AUC,AIR3-5,HOMA-B and HOMA-IR.Results SOD,AIR3-5 and AUC were significantly lower in DM and IGT group than in NGT group(P < 0.05;LDL-C,TG,8-OHdG and MDA were significantly higher in IGT and DM group than in NGT group(P < 0.05;SOD,AIR3-5 and AUC were significantly lower in DM group than in IGT group(P < 0.05;LDL-C,TG,8-OHdG and MDA were significantly higher in DM group than in IGT group(P < 0.05.MDA and 8-OHdG were positively correlated with FPG,TG and LDL-C,and negatively correlated with FINS,HOMA-B,AUC and AIR3-5.SOD was positively correlated with FINS,HOMA-B,AUC and AIR3-5,and negatively correlated with FPG,TG and LDL-C.Multiple stepwise regression analysis showed that FPG and LDL-C were the independent factors of plasma 8-OHdG and SOD,while 8-OHdG and SOD were the independent factors of AIR3-5.Conclusion Patients with type 2 diabetes have obvious glycometabolic disorder,lipoidosis and oxidative stress.Oxidative stress takes a significant effect on the first phase of pancreatic β cell insulin

  9. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.; Morandi, Bill; Grubbs, Robert H.

    2013-01-01

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  10. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.

    2013-09-13

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  11. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    International Nuclear Information System (INIS)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-01-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  12. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Okoli, Chuka [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden); Boutonnet, Magali; Jaeras, Sven [Royal Institute of Technology (KTH), Chemical Technology (Sweden); Rajarao-Kuttuva, Gunaratna, E-mail: gkr@kth.se [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden)

    2012-10-15

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  13. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Science.gov (United States)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-10-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  14. Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks.

    Science.gov (United States)

    Zhang, WenJun

    2007-07-01

    Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance

  15. Effects of complete water fasting and regeneration diet on kidney function, oxidative stress and antioxidants.

    Science.gov (United States)

    Mojto, V; Gvozdjakova, A; Kucharska, J; Rausova, Z; Vancova, O; Valuch, J

    2018-01-01

    The aim of the study was to observe the influence of 11-days complete water fasting (WF) and regeneration diet (RD) on renal function, body weight, blood pressure and oxidative stress. Therapeutic WF is considered a healing method. Ten volunteers drank only water for 11 days, followed by RD for the next 11 days. Data on body weight, blood pressure, kidney functions, antioxidants, lipid peroxidation, cholesterols, triacylglycerols and selected biochemical parameters were obtained. WF increased uric acid and creatinine and decreased glomerular filtration rate. After RD, the parameters were comparable to baseline values. Urea was not affected. Lipid peroxidation (TBARS) decreased and maintained stable after RD. Fasting decreased α-tocopherol and increased γ-tocopherol, no significant changes were found after RD. Coenzyme Q10 decreased after RD. HDL-cholesterol decreased in WF. Total- and LDL-cholesterol decreased after RD. Other biochemical parameters were within the range of reference values. The effect of the complete fasting on kidney function was manifested by hyperuricemia. Renal function was slightly decreased, however maintained within the reference values. After RD, it returned to baseline values. The positive effect of the complete water fasting was in the reduction of oxidative stress, body weight and blood pressure (Tab. 3, Ref. 25).

  16. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    International Nuclear Information System (INIS)

    Sun, Bolu; Gou, Xiaodan; Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping; Hu, Fangdi

    2017-01-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s −1 , respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10 −7 to 1.0 × 10 −4 mol/L with detection limit (S/N = 3)of 4.3 × 10 −8 mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM. • The proposed

  17. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bolu [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Gou, Xiaodan [School of Chemistry and Chemical Engineering, Nanjing University, 210046 (China); Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Hu, Fangdi, E-mail: hufd@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China)

    2017-05-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s{sup −1}, respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10{sup −7} to 1.0 × 10{sup −4} mol/L with detection limit (S/N = 3)of 4.3 × 10{sup −8} mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM.

  18. Oxide films at the nanoscale: new structures, new functions, and new materials.

    Science.gov (United States)

    Giordano, Livia; Pacchioni, Gianfranco

    2011-11-15

    flexibility, electronic modifications, and nanoporosity) are now largely understood, thus paving the way for the rational design of new catalytic systems based on oxide ultrathin films. Many of the mechanisms involved (electron tunneling, work function changes, defects engineering, and so forth) are typical of semiconductor physics and allow a direct link between the two fields. A related conceptual framework, the "electronic theory of catalysis", was proposed a long time ago but has been largely neglected by the catalytic community. A renewed appreciation of this catalytic framework, together with spectacular advances in modeling and electronic structure methods, now makes it possible to combine theory with advanced experimental setups and meet the challenge of designing new materials with tailored properties. In this Account, we discuss some of the recent advances with nanoscale oxide films, highlighting contributions from our laboratory. Once mastered, ultrathin oxide films on metals will provide vast and unforeseen opportunities in heterogeneous catalysis as well as in other fields of science and technology.

  19. Oxidant/Antioxidant Balance in Animal Nutrition and Health: The Role of Protein Oxidation

    OpenAIRE

    Celi, Pietro; Gabai, Gianfranco

    2015-01-01

    This review examines the role that oxidative stress (OS), and protein oxidation in particular, plays in nutrition, metabolism, and health of farm animals. The route by which redox homeostasis is involved in some important physiological functions and the implications of the impairment of oxidative status on animal health and diseases is also examined. Proteins have various and, at the same time, unique biological functions and their oxidation can result in structural changes and various functi...

  20. Effect of fast-track cardiac anesthesia on myocardial oxidative damage, inflammation and nerve related peptides of patients undergoing cardiac operation

    Directory of Open Access Journals (Sweden)

    Xing-Tao Cai

    2016-01-01

    Full Text Available Objective: To study the effect of fast-track cardiac anesthesia on myocardial oxidative damage, inflammation and nerve related peptides of patients undergoing cardiac operation. Methods: Sixty patients with rheumatic heart disease undergoing heart valve surgery were randomly divided into the fast track group (n=30 and conventional group (n=30. Then myocardial injury indicators, mitochondrial oxidative stress indicators, inflammation indicators and nerverelated peptides of both groups were analyzed. Results: cTnI contents at T2-T4 points in time of both groups showed an increasing trend and the increasing trend of fast track group was weaker than that of conventional group; SOD contents as well as mitochondrial tristate respiratory function, respiratory control ratios and phosphorus oxygen ratios in myocardial tissue of fast track group were higher than those of conventional group, and MDA contents was lower than those of conventional group; plasma TNF-α, IL-6, IL-8, NSE, S100β and Aβ contents of fast track group were lower than those of conventional group. Conclusions: Fasttrack cardiac anesthesia can protect myocardial cells, reduce mitochondrial oxidative stress, relieve inflammation and improve nerve function; it is an ideal anesthesia method for cardiac operation.