WorldWideScience

Sample records for oxide boron carbide

  1. Oxidation of boron carbide at high temperatures

    International Nuclear Information System (INIS)

    Steinbrueck, Martin

    2005-01-01

    The oxidation kinetics of various types of boron carbides (pellets, powder) were investigated in the temperature range between 1073 and 1873 K. Oxidation rates were measured in transient and isothermal tests by means of mass spectrometric gas analysis. Oxidation of boron carbide is controlled by the formation of superficial liquid boron oxide and its loss due to the reaction with surplus steam to volatile boric acids and/or direct evaporation at temperatures above 1770 K. The overall reaction kinetics is paralinear. Linear oxidation kinetics established soon after the initiation of oxidation under the test conditions described in this report. Oxidation is strongly influenced by the thermohydraulic boundary conditions and in particular by the steam partial pressure and flow rate. On the other hand, the microstructure of the B 4 C samples has a limited influence on oxidation. Very low amounts of methane were produced in these tests

  2. Graphite and boron carbide composites made by hot-pressing

    International Nuclear Information System (INIS)

    Miyazaki, K.; Hagio, T.; Kobayashi, K.

    1981-01-01

    Composites consisting of graphite and boron carbide were made by hot-pressing mixed powders of coke carbon and boron carbide. The change of relative density, mechanical strength and electrical resistivity of the composites and the X-ray parameters of coke carbon were investigated with increase of boron carbide content and hot-pressing temperature. From these experiments, it was found that boron carbide powder has a remarkable effect on sintering and graphitization of coke carbon powder above the hot-pressing temperature of 2000 0 C. At 2200 0 C, electrical resistivity of the composite and d(002) spacing of coke carbon once showed minimum values at about 5 to 10 wt% boron carbide and then increased. The strength of the composite increased with increase of boron carbide content. It was considered that some boron from boron carbide began to diffuse substitutionally into the graphite structure above 2000 0 C and densification and graphitization were promoted with the diffusion of boron. Improvements could be made to the mechanical strength, density, oxidation resistance and manufacturing methods by comparing with the properties and processes of conventional graphites. (author)

  3. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    Crossley, D.; Wood, A.J.; McInnes, C.A.J.; Jones, I.G.

    1978-09-01

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 300 0 C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 1050 0 C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  4. Helium diffusion in irradiated boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.

    1981-03-01

    Boron carbide has been internationally adopted as the neutron absorber material in the control and safety rods of large fast breeder reactors. Its relatively large neutron capture cross section at high neutron energies provides sufficient reactivity worth with a minimum of core space. In addition, the commercial availability of boron carbide makes it attractive from a fabrication standpoint. Instrumented irradiation experiments in EBR-II have provided continuous helium release data on boron carbide at a variety of operating temperatures. Although some microstructural and compositional variations were examined in these experiments most of the boron carbide was prototypic of that used in the Fast Flux Test Facility. The density of the boron carbide pellets was approximately 92% of theoretical. The boron carbide pellets were approximately 1.0 cm in diameter and possessed average grain sizes that varied from 8 to 30 μm. Pellet centerline temperatures were continually measured during the irradiation experiments

  5. Pulverization of boron element and proportions of boron carbide in boron

    International Nuclear Information System (INIS)

    Lang, F.M.; Finck, C.

    1956-01-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 μ. Grain sizes smaller than 1μ are required for applying thin layers of such boron. (author) [fr

  6. Shock Response of Boron Carbide

    National Research Council Canada - National Science Library

    Dandekar, D. P. (Dattatraya Purushottam)

    2001-01-01

    .... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...

  7. Study and optimization of the carbothermic reduction process for obtaining boron carbide

    International Nuclear Information System (INIS)

    Castro, A.R.M. de.

    1989-01-01

    Boron carbide - B sub(4)C - is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Moreover, its high neutron capture cross section makes it suitable for application as neutron absorber in nuclear technology. The process for obtaining carbothermally derived boron carbide has been studied in two steps: firstly, the parameters of the boric acid → boron oxide dehydration reaction have been defined; secondly, the optimization of the carbothermal reduction reaction using boron oxide has been undertaken looking for boron carbide having low level of free carbon. The starting materials as well as the main products have been studied by chemical and spectrographic analyses, X-ray diffractometry, granulometric classification and scanning electron microscopy. The optimization of the carbothermic reduction process allowed for the development and set up of a fabrication procedure yielding high quality B sub(4) C powders, starting from low cost and easily available (in the Brazilian market) raw materials. (author)

  8. New Icosahedral Boron Carbide Semiconductors

    Science.gov (United States)

    Echeverria Mora, Elena Maria

    Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto

  9. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    Science.gov (United States)

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  10. Boron carbide synthesis by carbothermic reduction of boron oxide

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Paschoal, J.O.A.

    1988-01-01

    Boron carbide (B 4 C) is a ceramic material of technological applications due to its extreme hardness and high chemical as well as thermal stability. Some parameters of the process for obtaining B 4 C by carbothermic reduction of B 2 O 3 have been determined. The starting powders and the final products have been analysed by chemical, spectrographic and X-ray diffraction methods. The results show that the B 4 C obtained by the carbothermic reduction process is suitable for applications with a definite determination of the free carbon content. (author) [pt

  11. Highly thermal conductive carbon fiber/boron carbide composite material

    International Nuclear Information System (INIS)

    Chiba, Akio; Suzuki, Yasutaka; Goto, Sumitaka; Saito, Yukio; Jinbo, Ryutaro; Ogiwara, Norio; Saido, Masahiro.

    1996-01-01

    In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)

  12. Design, Fabrication and Performance of Boron-Carbide Control Elements

    International Nuclear Information System (INIS)

    Brammer, H.A.; Jacobson, J.

    1964-01-01

    A control blade design, incorporating boron-carbide (B 4 C) in stainless-steel tubes, was introduced into service in boiling water reactors in April 1961. Since that time this blade has become the standard reference control element in General Electric boiling-water reactors, replacing the 2% boron-stainless-steel blades previously used. The blades consist of a sheathed, cruciform array of small vertical stainless-steel tubes filled with compácted boron-carbide powder. The boron-carbide powder is confined longitudinally into several independent compartments by swaging over ball bearings located inside the tubes. The development and use of boron-carbide control rods is discussed in five phases: 1. Summary of experience with boron-steel blades and reasons for transition to boron-carbide control; 2. Design of the boron-carbide blade, beginning with developmental experiments, including early measurements performed in the AEC ''Control Rod Material and Development Program'' at the Vallecitos Atomic Laboratory, through a description of the final control blade configuration; 3. Fabrication of the blades and quality control procedures; 4. Results of confirmatory pre-operational mechanical and reactivity testing; and 5. Post-operational experience with the blades, including information on the results of mechanical inspection and reactivity testing after two years of reactor service. (author) [fr

  13. Determination of free carbon content in boron carbide ceramic powders

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Lima, N.B. de; Paschoal, J.O.A.

    1990-01-01

    Boron carbide is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Free carbon is always found as a process dependent impurity in boron carbide. The development of procedures for its detection is required because its presence leads to a degradation of the boron carbide properties. In this work, several procedures for determining free carbon content in boron carbide specimens are reported and discussed for comparison purposes. (author) [pt

  14. Joining of boron carbide using nickel interlayer

    International Nuclear Information System (INIS)

    Vosughi, A.; Hadian, A. M.

    2008-01-01

    Carbide ceramics such as boron carbide due to their unique properties such as low density, high refractoriness, and high strength to weight ratio have many applications in different industries. This study focuses on direct bonding of boron carbide for high temperature applications using nickel interlayer. The process variables such as bonding time, temperature, and pressure have been investigated. The microstructure of the joint area was studied using electron scanning microscope technique. At all the bonding temperatures ranging from 1150 to 1300 d eg C a reaction layer formed across the ceramic/metal interface. The thickness of the reaction layer increased by increasing temperature. The strength of the bonded samples was measured using shear testing method. The highest strength value obtained was about 100 MPa and belonged to the samples bonded at 1250 for 75 min bonding time. The strength of the joints decreased by increasing the bonding temperature above 1250 d eg C . The results of this study showed that direct bonding technique along with nickel interlayer can be successfully utilized for bonding boron carbide ceramic to itself. This method may be used for bonding boron carbide to metals as well.

  15. Structure and single-phase regime of boron carbides

    International Nuclear Information System (INIS)

    Emin, D.

    1988-01-01

    The boron carbides are composed of twelve-atom icosahedral clusters which are linked by direct covalent bonds and through three-atom intericosahedral chains. The boron carbides are known to exist as a single phase with carbon concentrations from about 8 to about 20 at. %. This range of carbon concentrations is made possible by the substitution of boron and carbon atoms for one another within both the icosahedra and intericosahedral chains. The most widely accepted structural model for B 4 C (the boron carbide with nominally 20% carbon) has B/sub 11/C icosahedra with C-B-C intericosahedral chains. Here, the free energy of the boron carbides is studied as a function of carbon concentration by considering the effects of replacing carbon atoms within B 4 C with boron atoms. It is concluded that entropic and energetic considerations both favor the replacement of carbon atoms with boron atoms within the intericosahedral chains, C-B-C→C-B-B. Once the carbon concentration is so low that the vast majority of the chains are C-B-B chains, near B/sub 13/C 2 , subsequent substitutions of carbon atoms with boron atoms occur within the icosahedra, B/sub 11/C→B/sub 12/. Maxima of the free energy occur at the most ordered compositions: B 4 C,B/sub 13/C 2 ,B/sub 14/C. This structural model, determined by studying the free energy, agrees with that previously suggested by analysis of electronic and thermal transport data. These considerations also provide an explanation for the wide single-phase regime found for boron carbides

  16. Elastic modulus and fracture of boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Walther, G.

    1978-12-01

    The elastic modulus of hot-pressed boron carbide with 1 to 15% porosity was measured at room temperature. K/sub IC/ values were determined for the same porosity range at 500 0 C by the double torsion technique. The critical stress intensity factor of boron carbide with 8% porosity was evaluated from 25 to 1200 0 C

  17. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    Vast, N.

    1999-01-01

    The atomic structure and the lattice dynamics of α boron and of B 4 C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B 4 C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  18. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 microm to 100 microm) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both α-SiC and β-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the α-SiC and β-SiC polytypes were similar

  19. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade aluminum oxide and aluminum oxide-boron carbide composite pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Boron by Titrimetry 7 to 13 Separation of Boron for Mass Spectrometry 14 to 19 Isotopic Composition by Mass Spectrometry 20 to 23 Separation of Halides by Pyrohydrolysis 24 to 27 Fluoride by Ion-Selective Electrode 28 to 30 Chloride, Bromide, and Iodide by Amperometric Microtitrimetry 31 to 33 Trace Elements by Emission Spectroscopy 34 to 46 1.3 The values stated in SI units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (F...

  20. Boron carbide nanostructures: A prospective material as an additive in concrete

    Science.gov (United States)

    Singh, Paviter; Kaur, Gurpreet; Kumar, Rohit; Kumar, Umesh; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Kumar, Akshay

    2018-05-01

    In recent decades, manufacture and ingestion of concrete have increased particularly in developing countries. Due to its low cost, safety and strength, concrete have become an economical choice for protection of radiation shielding material in nuclear reactors. As boron carbide has been known as a neutron absorber material makes it a great candidate as an additive in concrete for shielding radiation. This paper presents the synthesis of boron carbide nanostructures by using ball milling method. The X-ray diffraction pattern, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope analysis confirms the formation of boron carbide nanostructures. The effect of boron carbide nanostructures on the strength of concrete samples was demonstrated. The compressive strength tests of concrete cube B4C powder additives for 0 % and 5 % of total weight of cement was compared for different curing time period such as 7, 14, 21 and 28 days. The high compressive strength was observed when 5 wt % boron carbide nanostructures were used as an additive in concrete samples after 28 days curing time and showed significant improvement in strength.

  1. Determination of free and combined carbon in boron carbide

    International Nuclear Information System (INIS)

    Shankaran, P.S.; Kulkarni, Amit S.; Pandey, K.L.; Ramanjaneyulu, P.S.; Yadav, C.S.; Sayi, Y.S.; Ramakumar, K.L.

    2009-01-01

    A simple, sensitive and fast method for the determination of free and combined carbon in boron carbide samples, based on combustion in presence of oxygen at different temperatures, has been developed. Method has been standardized by analyzing mixture of two different boron carbide samples. Error associated with the method in the determination of free carbon is less than 5%. (author)

  2. Investigations on the conditions for obtaining high density boron carbide by sintering

    International Nuclear Information System (INIS)

    Kislyj, P.S.; Grabtschuk, B.L.

    1975-01-01

    The results of investigations on kinetics of condensation and mechanisms of mass transfer in the process of sintering of technical, chemically pure and synthesized boron carbide are generalized. Laws on boron carbide densification depending upon temperature, time of isothermic endurance, thermal speed, size of powder particles and variable composition in homogeneity are determined. From the results obtained on condensation kinetics and special experiments on studying the changes in properties after heating under different conditions, the role of dislocation and diffusion processes in mass transfer during boron carbide sintering is exposed. The properties of sintered boron carbide are 15-20% lower than the properties of high-pressed one, that is conditioned by intercrystallite distortion of the first one and transcrystallite of the second one

  3. Development of a process to recover boron carbide from nuclear reactor absorber rods

    International Nuclear Information System (INIS)

    Roth, C.; Lehnert, T.

    1991-01-01

    Boron carbide enriched with 10 B is used as a control rod in reactor engineering. At present spent rods are disposed of, although major amounts of 10 B are still 'unused'. The objective was to recover 10 B from the control rods by an energy and cost saving method in order to use it for making new control rods, thus saving raw materials and minimizing the radioactive waste volume. For this purpose, the well-known pyrohydrolysis process was taken and analysed for possible improvements. By mixing boron carbide with CO 2 as an oxidation-supporting agent, a lowering of the reaction temperature by 300deg C, and an increase in the oxidation speed by 350% were achieved. Since C0 2 is not consumed and can be circulated, the method for reprocessing spent control rods presented in this paper is both an economy-priced an energy-saving one. (orig.) With 98 refs., 9 tabs., 14 figs [de

  4. Disorder and defects are not intrinsic to boron carbide

    Science.gov (United States)

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure-high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C-B-C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials.

  5. The All Boron Carbide Diode Neutron Detector: Experiment and Modeling Approach

    International Nuclear Information System (INIS)

    Sabirianov, Ildar F.; Brand, Jennifer I.; Fairchild, Robert W.

    2008-01-01

    Boron carbide diode detectors, fabricated from two different polytypes of semiconducting boron carbide, will detect neutrons in reasonable agreement with theoretical expectations. The performance of the all boron carbide neutron detector differs, as expected, from devices where a boron rich neutron capture layer is distinct from the diode charge collection region (i.e. a conversion layer solid state detector). Diodes were fabricated from natural abundance boron (20% 10 B and 80% 11 B.) directly on the metal substrates and metal contacts applied to the films as grown. The total boron depth was on the order of 2 microns. This is clearly not a conversion-layer configuration. The diodes were exposed to thermal neutrons generated from a paraffin moderated plutonium-beryllium source in moderated and un-moderated, as well as shielded and unshielded experimental configurations, where the expected energy peaks at at 2.31 MeV and 2.8 MeV were clearly observed, albeit with some incomplete charge collection typical of thinner diode structures. The results are compared with other boron based thin film detectors and literature models. (authors)

  6. Synergistic methods for the production of high-strength and low-cost boron carbide

    Science.gov (United States)

    Wiley, Charles Schenck

    2011-12-01

    Boron carbide (B4C) is a non-oxide ceramic in the same class of nonmetallic hard materials as silicon carbide and diamond. The high hardness, high elastic modulus and low density of B4C make it a nearly ideal material for personnel and vehicular armor. B4C plates formed via hot-pressing are currently issued to U.S. soldiers and have exhibited excellent performance; however, hot-pressed articles contain inherent processing defects and are limited to simple geometries such as low-curvature plates. Recent advances in the pressureless sintering of B4C have produced theoretically-dense and complex-shape articles that also exhibit superior ballistic performance. However, the cost of this material is currently high due to the powder shape, size, and size distribution that are required, which limits the economic feasibility of producing such a product. Additionally, the low fracture toughness of pure boron carbide may have resulted in historically lower transition velocities (the projectile velocity range at which armor begins to fail) than competing silicon carbide ceramics in high-velocity long-rod tungsten penetrator tests. Lower fracture toughness also limits multi-hit protection capability. Consequently, these requirements motivated research into methods for improving the densification and fracture toughness of inexpensive boron carbide composites that could result in the development of a superior armor material that would also be cost-competitive with other high-performance ceramics. The primary objective of this research was to study the effect of titanium and carbon additives on the sintering and mechanical properties of inexpensive B4C powders. The boron carbide powder examined in this study was a sub-micron (0.6 mum median particle size) boron carbide powder produced by H.C. Starck GmbH via a jet milling process. A carbon source in the form of phenolic resin, and titanium additives in the form of 32 nm and 0.9 mum TiO2 powders were selected. Parametric studies of

  7. Preparation of fiber reinforced titanium diboride and boron carbide composite bodies

    International Nuclear Information System (INIS)

    Newkirk, L.R.; Riley, R.E.; Sheinberg, H.; Valencia, F.A.; Wallace, T.C.

    1979-01-01

    A process is described for uniformly infiltrating woven carbon cloth with either titanium diboride or boron carbide at reduced pressure (15 to 25 torr). The effects of deposition temperature on the uniformity of penetration and on coating rate are described for temperatures from 750 to 1000 0 C and deposit loadings from 20 to 43 vol. %. For the boron carbides, boron composition is discussed and evidence is presented suggesting that propene is the dominant rate controlling reactant

  8. Electronic and vibrational hopping transport in boron carbides

    International Nuclear Information System (INIS)

    Emin, D.

    1991-01-01

    General concepts of hopping-type transport and localization are reviewed. Disorder, electronic correlations and atomic displacements, effects ignored in electronic band structure calculations, foster localization of electronic charge carriers. Examples are given that illustrate the efficacy of these effects in producing localization. This introduction is followed by a brief discussion of the relation between hopping-type transport and localization. The fundamentals of the formation, localization, and hopping transport of small polarons and/or bipolarons is then described. Electronic transport in boron carbides is presented as an example of the adiabatic hopping of small bipolarons. Finally, the notion of vibrational hopping is introduced. The high-temperature thermal diffusion in boron carbides is presented as a potential application of this idea

  9. Effect of boron on the microstructure and mechanical properties of carbidic austempered ductile iron

    International Nuclear Information System (INIS)

    Peng Yuncheng; Jin Huijin; Liu Jinhai; Li Guolu

    2011-01-01

    Highlights: → Boron are applied to carbidic austempered ductile iron (CADI). → Boron microalloying CADI is a new high hardenability of wear-resistant cast iron. → Addition of boron to CADI significantly improves hardenability. → Effect of boron on the CADI grinding ball were investigated. → Optimum property is obtained when boron content at 0.03 wt%. - Abstract: Carbidic austempered ductile iron (CADI) castings provide a unique combination of high hardness and toughness coupled with superior wear resistance properties, but their hardenability restricts their range of applications. The purpose of this study was to investigate the influence of boron on the microstructure and mechanical properties of CADI. The experimental results indicate that the CADI comprises graphite nodules, which are dispersive boron-carbides that are distributed in the form of strips, and the matrix is a typical ausferritic matrix. Microscopic amounts of boron can improve the hardenability of CADI, but higher boron content reduces the hardenability and toughness of CADI. The results are discussed in the context of the influence of boron content on the microstructure and mechanical properties of grinding balls.

  10. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  11. Production of boron carbide powder by carbothermal synthesis of ...

    Indian Academy of Sciences (India)

    TECS

    weight armour plates etc (Alizadeh et al 2004). It can also be used as a reinforcing material for ceramic matrix composites. It is an excellent neutron absorption material in nuclear industry due to its high neutron absorption co- efficient (Sinha et al 2002). Boron carbide can be prepared by reaction of elemental boron and ...

  12. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together ...

  13. Erosion wear of boron carbide ceramic nozzles by abrasive air-jets

    International Nuclear Information System (INIS)

    Deng Jianxin

    2005-01-01

    Boron carbide nozzles were produced by hot pressing. The erosion wear of this nozzle caused by abrasive particle impact was investigated by abrasive air-jets. Silica, silicon carbide and alumina powders with different hardness were used as the erodent abrasive particles. Results showed that the hardness of the erodent particles played an important role with respect to the erosion wear of the boron carbide nozzles. As the hardness of the erodent particles increases, there is a dramatic increase in erosion rate of the nozzles. The nozzle entrance area suffered from severe abrasive impact under large impact angles, and generated maximum tensile stresses. The wear mechanisms of boron carbide nozzle at this area appeared to be entirely brittle in nature with the evidence of large scale-chipping, and exhibited a brittle fracture induced removal process. While at the nozzle center wall section, most of the particles traveled parallel to the nozzle wall, and showed minimum tensile stresses. The wear mode in this area of the nozzle changed from impact to sliding erosion, and the wear mechanisms appeared to be the lateral cracking owing to a surface fatigue fracture mechanism

  14. Epithermal neutron activation analysis using a boron carbide irradiation filter

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Brueckner, J.

    1980-01-01

    The use of boron carbide as a thermal neutron filter in epithermal neutron activation (ENAA) analysis has been investigated. As compared to the use of a cadmium filter, boron provides a greater reduction of activities from elements relatively abundant in terrestrial rocks and fossil fuels, such as Na, La, Sc and Fe. These elements have excitation functions which follow the 1/v law in the 1 to 10 eV lower epithermal region. This enhances the sensitivity of ENAA for elements such as U, Th, Ba and etc. which have strong resonances in the higher epithermal region above 10 eV. In addition, a boron carbide filter has the advantages over cadmium of acquiring a relatively low level of induced activity which poses minimal radiation safety problems, when used for ENAA. (author)

  15. Determination of soluble carbon in nuclear grade boron carbide

    International Nuclear Information System (INIS)

    Vega Bustillos, J.O.; Gomes, R.; Camaro, J.; Zorzetto, F.; Domingues, P.; Riella, H.

    1990-05-01

    The present work describes two different techniques (manometric and wet chemical) for the soluble carbon determination in nuclear grade boron carbide. The techniques are based on the reaction of the boron carbide with a sulfocromic mixture, generating CO 2 . The techniques differ on the mode they do the measurement of CO 2 produced. By wet chemical technique the CO 2 is absorved in a barium hydroxide solution and is determinated by titration. In the manometric technique the CO 2 gas is measured using a McLeod gauge. The gas produced by the latter technique is analysed by mass spectrometry. The details of the analytical technique and the data obtained are discussed. (author) [pt

  16. Boron Carbide: Stabilization of Highly-Loaded Aqueous Suspensions, Pressureless Sintering, and Room Temperature Injection Molding

    Science.gov (United States)

    Diaz-Cano, Andres

    Boron carbide (B4C) is the third hardest material after diamond and cubic boron nitride. It's unique combination of properties makes B4C a highly valuable material. With hardness values around 35 MPa, a high melting point, 2450°C, density of 2.52 g/cm3, and high chemical inertness, boron carbide is used in severe wear components, like cutting tools and sandblasting nozzles, nuclear reactors' control rots, and finally and most common application, armor. Production of complex-shaped ceramic component is complex and represents many challenges. Present research presents a new and novel approach to produce complex-shaped B4C components. Proposed approach allows forming to be done at room temperatures and under very low forming pressures. Additives and binder concentrations are kept as low as possible, around 5Vol%, while ceramics loadings are maximized above 50Vol%. Given that proposed approach uses water as the main solvent, pieces drying is simple and environmentally safe. Optimized formulation allows rheological properties to be tailored and adjust to multiple processing approaches, including, injection molding, casting, and additive manufacturing. Boron carbide samples then were pressureless sintered. Due to the high covalent character of boron carbide, multiples sintering aids and techniques have been proposed in order to achieve high levels of densification. However, is not possible to define a clear sintering methodology based on literature. Thus, present research developed a comprehensive study on the effect of multiple sintering aids on the densification of boron carbide when pressureless sintered. Relative densities above 90% were achieved with values above 30MPa in hardness. Current research allows extending the uses and application of boron carbide, and other ceramic systems, by providing a new approach to produce complex-shaped components with competitive properties.

  17. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...

  18. Electrical Characterization of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide

    Science.gov (United States)

    Peterson, George Glenn

    Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon substrates through the use of plasma enhanced chemical vapor deposition (PECVD). Many forms of structural and electrical measurements and analysis have been performed on the p-n heterojunction devices as a function of both He+ ion and neutron irradiation including: transmission electron microscopy (TEM), selected area electron diffraction (SAED), current versus voltage I(V), capacitance versus voltage C(V), conductance versus frequency G(f), and charge carrier lifetime (tau). In stark contrast to nearly all other electronic devices, the electrical performance of these p-n heterojunction diodes improved with irradiation. This is most likely the result of bond defect passivation and resolution of degraded icosahedral based carborane structures (icosahedral molecules missing a B, C, or H atom(s)).

  19. Pulverization of boron element and proportions of boron carbide in boron; Broyage de bore element et dosage de carbure de bore dans le bore

    Energy Technology Data Exchange (ETDEWEB)

    Lang, F M; Finck, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 {mu}. Grain sizes smaller than 1{mu} are required for applying thin layers of such boron. (author) [French] Il est possible de pulveriser finement du bore element au moyen de mortier et pilon en carbure de bore fritte, le taux de carbure de bore introduit etant inferieur a 1 pour cent. Le bore element dont nous disposons est constitue de petits grains brun fonce, a aretes vives, de dimension moyenne superieure a 5 {mu}. L'application de ce bore en couches minces demande des grains de dimensions inferieures a 1 {mu}. (aute0008.

  20. Irradiation damage in boron carbide: point defects, clusters and helium bubbles

    International Nuclear Information System (INIS)

    Stoto, T.; Zuppiroli, L.

    1986-06-01

    Boron carbide is a refractory hard and light material of interest in nuclear technology (fission and also fusion). Transmission electron microscopy was used to examine the properties of radiation induced damage. Firstly, the production of point defects and their clustering was studied in samples irradiated by 1 MeV electron in a high voltage electron microscope at selected temperatures from 12 K to 1000 K. Secondly, conventional transmission electron microscopy was used to understand the production of helium bubbles in neutron irradiated boron carbide and their role in the generation of microcracks. Finally, the interaction between point defects and bubbles was also examined

  1. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Daniels, B.K.; Brown, D.W.; Kimock, F.M.

    1997-01-01

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  2. Reaction of boron carbide with molybdenum disilicide

    International Nuclear Information System (INIS)

    Novikov, A.V.; Melekhin, V.F.; Pegov, V.S.

    1989-01-01

    The investigation results of interaction in the B 4 C-MoSi 2 system during sintering in vacuum are presented. Sintering of boron carbide with molybdenum disilicide is shown to lead to the formation of MoB 2 , SiC, Mo 5 Si 3 compounds, the presence of carbon-containing covering plays an important role in sintering

  3. Determination of boron in graphite, boron carbide and glass by ICP-MS, ICP-OES and conventional wet chemical methods

    International Nuclear Information System (INIS)

    Venkatesh, K.; Kamble, Granthali S.; Venkatesh, Manisha; Kumar, Sanjukta A.; Reddy, A.V.R.

    2014-01-01

    Boron is an important element of interest in nuclear reactor materials due to its high neutron absorption cross section (σ 0 =3837 barns for 10 B). In the present paper, R and D work and routinely used methods have been described for the analysis of case samples (1) Graphite where boron is present at trace levels, (2) Boron Carbide having boron concentration of about 80% and (3) Glass containing 4-6 % boron. (author)

  4. Method of accurate thickness measurement of boron carbide coating on copper foil

    Science.gov (United States)

    Lacy, Jeffrey L.; Regmi, Murari

    2017-11-07

    A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.

  5. Method for fabricating boron carbide articles

    International Nuclear Information System (INIS)

    Ardary, Z.; Reynolds, C.

    1980-01-01

    Described is a method for fabricating an essentially uniformly dense boron carbide article of a length-to-diameter or width ratio greater than 2 to 1 comprising the steps of providing a plurality of article segments to be joined together to form the article with each of said article segments having a length-to-diameter or width ratio less than 1.5 to 1. Each segment is fabricated by hot pressing a composition consisting of boron carbide powder at a pressure and temperature effective to provide the article segment with a density greater than about 85% of theoretical density, providing each article segment with parallel planar end surfaces, placing a plurality of said article segments in a hot-pressing die in a line with the planar surfaces of adjacent article segments being disposed in intimate contact, and hot pressing the aligned article segments at a temperature and pressure effective to provide said article with a density over the length thereof in the range of about 94 to 98 percent theoretical density and greater than the density provided in the discrete hot pressing of each of the article segments and to provide a bond between adjacent article segments with said bond being at least equivalent in hardness, strength and density to a remainder of said article

  6. Equations of state and melting curve of boron carbide in the high-pressure range of shock compression

    Energy Technology Data Exchange (ETDEWEB)

    Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Shakhrai, D. V. [Russian Academy of Sciences, Institute for Problems in Chemical Physics (Russian Federation)

    2017-03-15

    We have constructed the equations of state for crystalline boron carbide B{sub 11}C (C–B–C) and its melt under high dynamic and static pressures. A kink on the shock adiabat for boron carbide has been revealed in the pressure range near 100 GPa, and the melting curve with negative curvature in the pressure range 0–120 GPa has been calculated. The results have been used for interpreting the kinks on the shock adiabat for boron carbide in the pressure range of 0–400 GPa.

  7. Analytical chemistry methods for boron carbide absorber material. [Standard

    Energy Technology Data Exchange (ETDEWEB)

    DELVIN WL

    1977-07-01

    This standard provides analytical chemistry methods for the analysis of boron carbide powder and pellets for the following: total C and B, B isotopic composition, soluble C and B, fluoride, chloride, metallic impurities, gas content, water, nitrogen, and oxygen. (DLC)

  8. Lattice dynamics of {alpha} boron and of boron carbide; Proprietes vibrationnelles du bore {alpha} et du carbure de bore

    Energy Technology Data Exchange (ETDEWEB)

    Vast, N

    1999-07-01

    The atomic structure and the lattice dynamics of {alpha} boron and of B{sub 4}C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In {alpha} boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B{sub 4}C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  9. Determination of isotopic composition of boron in boron carbide by TIMS and PIGE: an inter-comparison study

    International Nuclear Information System (INIS)

    Sasibhushan, K.; Rao, R.M.; Parab, A.R.; Alamelu, D.; Aggarwal, S.K.; Acharya, R.; Chhillar, S.; Pujari, P.K.

    2015-01-01

    The paper reports a comparison of results on the determination of isotopic composition of boron in boron carbide (B 4 C) samples by Thermal Ionisation Mass Spectrometry (TIMS) and Particle Induced Gamma ray Spectrometry (PIGE). B 4 C samples having varying boron isotopic composition (natural, enriched with respect to 10 B) and their synthetic mixtures) have been analysed by both the techniques. The 10 B atom% was found to be in the range of 20-67%. (author)

  10. Evidence for multiple polytypes of semiconducting boron carbide (C2B10) from electronic structure

    International Nuclear Information System (INIS)

    Lunca-Popa, Petru; Brand, J I; Balaz, Snjezana; Rosa, Luis G; Boag, N M; Bai Mengjun; Robertson, B W; Dowben, P A

    2005-01-01

    Boron carbides fabricated via plasma enhanced chemical vapour deposition from different isomeric source compounds with the same C 2 B 10 H 12 closo-icosahedral structure result in materials with very different direct (optical) band gaps. This provides compelling evidence for the existence of multiple polytypes of C 2 B 10 boron carbide and is consistent with electron diffraction results

  11. Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites

    International Nuclear Information System (INIS)

    Vijaya Ramnath, B.; Elanchezhian, C.; Jaivignesh, M.; Rajesh, S.; Parswajinan, C.; Siddique Ahmed Ghias, A.

    2014-01-01

    Highlights: • Fabrication of MMC with aluminium alloy–alumina–boron carbide is done. • Different proportions of reinforcements are added. • The effects of varying proportions are studied. • Investigation on mechanical properties above composites is performed. • Failure morphology analysis is done using SEM. - Abstract: This paper deals with the fabrication and mechanical investigation of aluminium alloy, alumina (Al 2 O 3 ) and boron carbide metal matrix composites. Aluminium is the matrix metal having properties like light weight, high strength and ease of machinability. Alumina which has better wear resistance, high strength, hardness and boron carbide which has excellent hardness and fracture toughness are added as reinforcements. Here, the fabrication is done by stir casting which involves mixing the required quantities of additives into stirred molten aluminium. After solidification, the samples are prepared and tested to find the various mechanical properties like tensile, flexural, impact and hardness. The internal structure of the composite is observed using Scanning Electron Microscope (SEM)

  12. Superconductivity in heavily boron-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    Full Text Available The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  13. Manufacturing method for boron carbide/carbon composite neutron shielding material

    International Nuclear Information System (INIS)

    Inoue, Takenori; Ukai, Shigeharu; Maruyama, Tadashi; Suya, Kiyoshi; Sunami, Yoshihiko.

    1994-01-01

    A less volatile binder pitch which is melted upon heating is used as a binder. Raw materials mainly comprising 60 to 85% by volume of a boron carbide powder and 15 to 40% by volume of a binder pitch are mixed, molded under pressure and heating at 480 to 600degC, then baked under non-pressurization, further impregnated with pitch under a reduced pressure and then baked again. The volume percentage of each of the materials is calculated based on the volume obtained by dividing the blending weight for each of raw materials with the intrinsic density respectively. The binding property relative to the boron carbide powder is improved by using a pitch having satisfactory melting performance and reduction of strength is decreased. Moreover, if the binder pitch is baked at about 2,000degC, it is easily converted into a graphitized tissues to have excellent slidability and fabricability. With such procedures, high bending strength and high heat conductivity can be ensured while keeping high boron content and neutron absorbing performance. (T.M.)

  14. Studies on the influence of surface pre-treatments on electroless copper coating of boron carbide particles

    International Nuclear Information System (INIS)

    Deepa, J.P.; Resmi, V.G.; Rajan, T.P.D.; Pavithran, C.; Pai, B.C.

    2011-01-01

    Boron carbide is one of the hard ceramic particles which find application as structural materials and neutron shielding material due to its high neutron capture cross section. Copper coating on boron carbide particle is essential for the synthesis of metal-ceramic composites with enhanced sinterability and dispersibility. Surface characteristics of the substrate and the coating parameters play a foremost role in the formation of effective electroless coating. The effect of surface pre-treatment conditions and pH on electroless copper coating of boron carbide particles has been studied. Surface pre-treatement of B 4 C when compared to acid treated and alkali treated particles were carried out. Uniform copper coating was observed at pH 12 in alkali treated particles when compared to others due to the effective removal of inevitable impurities during the production and processing of commercially available B 4 C. A threshold pH 11 was required for initiation of copper coating on boron carbide particles. The growth pattern of the copper coating also varies depending on the surface conditions from acicular to spherical morphology.

  15. Defects in boron carbide: First-principles calculations and CALPHAD modeling

    International Nuclear Information System (INIS)

    Saengdeejing, Arkapol; Saal, James E.; Manga, Venkateswara Rao; Liu Zikui

    2012-01-01

    The energetics of defects in B 4+x C boron carbide and β-boron are studied through first-principles calculations, the supercell phonon approach and the Debye–Grüneisen model. It is found that suitable sublattice models for β-boron and B 4+x C are B 101 (B,C) 4 and B 11 (B,C) (B,C,Va) (B,Va) (B,C,Va), respectively. The thermodynamic properties of B 4+x C, β-boron, liquid and graphite are modeled using the CALPHAD approach based on the thermochemical data from first-principles calculations and experimental phase equilibrium data in the literature. The concentrations of various defects are then predicted as a function of carbon composition and temperature.

  16. High resolution imaging of boron carbide microstructures

    International Nuclear Information System (INIS)

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-01-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B 13 C 2 sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B 4 C powder showed little evidence of stacking disorder in crystalline regions

  17. Boron carbide-coated carbon material, manufacturing method therefor and plasma facing material

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Kikuchi, Yoshihiro; Hyakki, Yasuo.

    1997-01-01

    The present invention concerns a plasma facing material suitable to a thermonuclear device. The material comprises a carbon material formed by converting the surface of a carbon fiber-reinforced carbon material comprising a carbon matrix and carbon fibers to a boron carbide, the material has a surface comprising vertically or substantially vertically oriented carbon fibers, and the thickness of the surface converted to boron carbide is reduced in the carbon fiber portion than in the carbon matrix portion. Alternatively, a carbon fiber-reinforced carbon material containing carbon fibers having a higher graphitizing degree than the carbon matrix is converted to boron carbide on the surface where the carbon fibers are oriented vertically or substantially vertically. The carbon fiber-reinforced material is used as a base material, and a resin material impregnated into a shaped carbon fiber product is carbonized or thermally decomposed carbon is filled as a matrix. The material of the present invention has high heat conduction and excellent in heat resistance thereby being suitable to a plasma facing material for a thermonuclear device. Electric specific resistivity of the entire coating layer can be lowered, occurrence of arc discharge is prevented and melting can be prevented. (N.H.)

  18. Design of boron carbide-shielded irradiation channel of the outer irradiation channel of the Ghana Research Reactor-1 using MCNP.

    Science.gov (United States)

    Abrefah, R G; Sogbadji, R B M; Ampomah-Amoako, E; Birikorang, S A; Odoi, H C; Nyarko, B J B

    2011-01-01

    The MCNP model for the Ghana Research Reactor-1 was redesigned to incorporate a boron carbide-shielded irradiation channel in one of the outer irradiation channels. Extensive investigations were made before arriving at the final design of only one boron carbide covered outer irradiation channel; as all the other designs that were considered did not give desirable results of neutronic performance. The concept of redesigning a new MCNP model, which has a boron carbide-shielded channel is to equip the Ghana Research Reactor-1 with the means of performing efficient epithermal neutron activation analysis. After the simulation, a comparison of the results from the original MCNP model for the Ghana Research Reactor-1 and the new redesigned model of the boron carbide shielded channel was made. The final effective criticality of the original MCNP model for the GHARR-1 was recorded as 1.00402 while that of the new boron carbide designed model was recorded as 1.00282. Also, a final prompt neutron lifetime of 1.5245 × 10(-4)s was recorded for the new boron carbide designed model while a value of 1.5571 × 10(-7)s was recorded for the original MCNP design of the GHARR-1. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Experimental determination of boron and carbon thermodynamic activities in the carbide phase of the boron-carbon system

    International Nuclear Information System (INIS)

    Froment, A.K.

    1990-01-01

    - The boron-carbon phase diagram presents a single phase area ranging from 9 to 20 atomic percent of carbon. The measurement of carbon activity, in this range of composition, has been measured according to the following methods: - quantitative analysis of the methane-hydrogen mixture in equilibrium with the carbide, - high temperature mass spectrometry measurements. The first method turned out to be a failure; however, the apparatus used enabled the elaboration of a B 4 C composition pure phase from a two-phase (B 4 C + graphite) industrial product. The results obtained with the other two methods are consistent and lead to a law expressing the increase of the carbon activity in relation with the amount of this element; the high temperature mass spectrometry method has also made it possible to measure the boron activity which decreases when the carbon activity increases, but with a variation of amplitude much lower, according to the theoretical calculations. These results are a first step towards the knowledge of the boron carbide thermodynamical data for compositions different from B 4 C [fr

  20. Role of intericosahedral chains on the hardness of sputtered boron carbide films

    International Nuclear Information System (INIS)

    Jacobsohn, L.G.; Averitt, R.D.; Wetteland, C.J.; Schulze, R.K.; Nastasi, M.; Daemen, L.L.; Jenei, Z.; Asoka-Kumar, P.

    2004-01-01

    The relationship between the structure and mechanical properties of sputter-deposited boron carbide films was investigated. Changes in the structure induced by annealing were characterized in terms of chemical composition, chemical bonding, and concentrations of defects and trapped impurities. The creation of intericosahedral chains for higher annealing temperatures was revealed by infrared and Raman measurements, and the intensity of the infrared band at 1500 cm-1 was found to be related to the hardness. The presence of residual trapped Ar atoms and of open-volume defects is insensitive to relatively high annealing temperatures and does not influence the recovery of the hardness. Our results suggest postdeposition annealing as a pathway to enhance the mechanical properties of boron carbide films

  1. Electron microscopy study of radiation effects in boron carbide

    International Nuclear Information System (INIS)

    Stoto, T.

    1987-03-01

    Boron carbide is a disordered non-stoechiometric material with a strongly microtwinned polycristallyne microstructure. This ceramic is among the candidate materials for the first wall coating in fusion reactor and is used as a neutron absorber in the control rods of fast breeder reactors. The present work deals with the nature of radiation damage in this solid. Because of helium internal production, neutron irradiated boron carbide is affected by swelling and by a strong microcracking which can break up a pellet in fine powder. These processes are rather intensitive to the irradiation parameters (temperature, flux and even neutron spectrum). Transmission electron microscopy of samples irradiated by the fast neutrons of a reactor, the electrons of a high voltage electron microscope and of samples implanted with helium ions was used to understand the respective roles of helium and point defects in the processes of swelling and microcracking. The design of an irradiation chamber for helium implantation at controlled temperature from 600 to 1700 0 C was an important technical part of this work [fr

  2. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  3. Evidence of amorphisation of B{sub 4}C boron carbide under slow, heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gosset, D., E-mail: dominique.gosset@cea.fr [CEA, DEN, DMN-SRMA-LA2M, F-91191 Gif/Yvette (France); Miro, S. [CEA, DEN, DMN-SRMP-JANNUS, F-91191 Gif/Yvette (France); Doriot, S. [CEA, DEN, DMN-SRMA-LA2M, F-91191 Gif/Yvette (France); Victor, G. [CNRS-IN2P3-IPNL, F-69622 Villeurbanne (France); Motte, V. [CEA, DEN, DMN-SRMA-LA2M, F-91191 Gif/Yvette (France)

    2015-12-15

    Boron carbide is widely used either as armor-plate or neutron absorber. In both cases, a good structural stability is required. However, a few studies have shown amorphisation may occur in severe conditions. Hard impacts lead to the formation of amorphous bands. Some irradiations in electronic regime with H or He ions have also shown amorphisation of the material. Most authors however consider the structure is not drastically affected by irradiations in the ballistic regime. Here, we have irradiated at room temperature dense boron carbide pellets with Au 4 MeV ions, for which most of the damage is in the ballistic regime. This study is part of a program devoted to the behavior of boron carbide under irradiation. Raman observations have been performed after the irradiations together with transmission electron microscopy (TEM). Raman observations show a strong structural damage at moderate fluences (10{sup 14}/cm{sup 2}, about 0.1 dpa), in agreement with previous studies. On the other hand, TEM shows the structure remains crystalline up to 10{sup 15}/cm{sup 2} then partially amorphises. The amorphisation is heterogeneous, with the formation of nanometric amorphous zones with increasing density. It then appears short range and long range disorder occurs at quite different damage levels. Further experiments are in progress aiming at studying the structural stability of boron carbide and isostructural materials (α-B, B{sub 6}Si,…).

  4. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    Wang, Lumin; Wierschke, Jonathan Brett

    2015-01-01

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised of boron trioxide and sassolite (H 3 BO 3 ). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.

  5. Structural phase transitions in boron carbide under stress

    International Nuclear Information System (INIS)

    Korotaev, P; Pokatashkin, P; Yanilkin, A

    2016-01-01

    Structural transitions in boron carbide B 4 C under stress were studied by means of first-principles molecular dynamics in the framework of density functional theory. The behavior depends strongly on degree of non-hydrostatic stress. Under hydrostatic stress continuous bending of the three-atom C–B–C chain was observed up to 70 GPa. The presence of non-hydrostatic stress activates abrupt reversible chain bending, which is displacement of the central boron atom in the chain with the formation of weak bonds between this atom and atoms in the nearby icosahedra. Such structural change can describe a possible reversible phase transition in dynamical loading experiments. High non-hydrostatic stress achieved in uniaxial loading leads to disordering of the initial structure. The formation of carbon chains is observed as one possible transition route. (paper)

  6. Dynamic Failure and Fragmentation of a Hot-Pressed Boron Carbide

    Science.gov (United States)

    Sano, Tomoko; Vargas-Gonzalez, Lionel; LaSalvia, Jerry; Hogan, James David

    2017-12-01

    This study investigates the failure and fragmentation of a hot-pressed boron carbide during high rate impact experiments. Four impact experiments are performed using a composite-backed target configuration at similar velocities, where two of the impact experiments resulted in complete target penetration and two resulted in partial penetration. This paper seeks to evaluate and understand the dynamic behavior of the ceramic that led to either the complete or partial penetration cases, focusing on: (1) surface and internal failure features of fragments using optical, scanning electron, and transmission electron microscopy, and (2) fragment size analysis using state-of-the-art particle-sizing technology that informs about the consequences of failure. Detailed characterization of the mechanical properties and the microstructure is also performed. Results indicate that transgranular fracture was the primary mode of failure in this boron carbide material, and no stress-induced amorphization features were observed. Analysis of the fragment sizes for the partial and completely penetrated experiments revealed a possible correlation between larger fragment sizes and impact performance. The results will add insight into designing improved advanced ceramics for impact protection applications.

  7. Effect of material variables on the irradiation performance of boron carbide

    International Nuclear Information System (INIS)

    Basmajian, J.A.; Hollenberg, G.W.

    1980-01-01

    Boron carbide pellets were fabricated with variations in material parameters. These pellets were irradiated in the Experimental Breeder Reactor-II (EBR-II) to determine the effect of these variations on the performance. Helium release from the material and swelling of the pellets are the primary measures of performance. It was determined that material with a smaller grain size released more helium and swelled less. The pellets with boron-to-carbon ratios greater than 4 to 1 did not perform well. Iron additions improved the performance of the material while density variations had little effect

  8. Sodium erosion of boron carbide from breached absorber pins

    International Nuclear Information System (INIS)

    Basmajian, J.A.; Baker, D.E.

    1981-03-01

    The purpose of the irradiation experiment was to provide an engineering demonstration of the irradiation behavior of breached boron carbide absorber pins. By building defects into the cladding of prototypic absorber pins, and performing the irradiation under typical FFTF operating conditions, a qualitative assessment of the consequences of a breach was achieved. Additionally, a direct comparison of pin behavior with that of the ex-reactor test could be made

  9. The preparation method of solid boron solution in silicon carbide in the form of micro powder

    International Nuclear Information System (INIS)

    Pampuch, R.; Stobierski, L.; Lis, J.; Bialoskorski, J.; Ermer, E.

    1993-01-01

    The preparation method of solid boron solution in silicon carbide in the form of micro power has been worked out. The method consists in introducing mixture of boron, carbon and silicon and heating in the atmosphere of inert gas to the 1573 K

  10. Novel semiconducting boron carbide/pyridine polymers for neutron detection at zero bias

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria, Elena; Enders, A.; Dowben, P.A. [University of Nebraska-Lincoln, Department of Physics and Astronomy, Lincoln, NE (United States); James, Robinson; Chiluwal, Umesh; Gapfizi, Richard; Tae, Jae-Do; Driver, M. Sky; Kelber, Jeffry A. [University of North Texas, Department of Chemistry, Denton, TX (United States); Pasquale, Frank L. [University of North Texas, Department of Chemistry, Denton, TX (United States); Lam Research Corporation, PECVD Business Unit, Tualatin, OR (United States); Colon Santana, Juan A. [Center for Energy Sciences Research, Lincoln, NE (United States)

    2014-09-19

    Thin films containing aromatic pyridine moieties bonded to boron, in the partially dehydrogenated boron-rich icosahedra (B{sub 10}C{sub 2}H{sub X}), prove to be an effective material for neutron detection applications when deposited on n-doped (100) silicon substrates. The characteristic I-V curves for the heterojunction diodes exhibit strong rectification and largely unperturbed normalized reverse bias leakage currents with increasing pyridine content. The neutron capture generated pulses from these heterojunction diodes were obtained at zero bias voltage although without the signatures of complete electron-hole collection. These results suggest that modifications to boron carbide may result in better neutron voltaic materials. (orig.)

  11. Structural modifications induced by ion irradiation and temperature in boron carbide B4C

    Science.gov (United States)

    Victor, G.; Pipon, Y.; Bérerd, N.; Toulhoat, N.; Moncoffre, N.; Djourelov, N.; Miro, S.; Baillet, J.; Pradeilles, N.; Rapaud, O.; Maître, A.; Gosset, D.

    2015-12-01

    Already used as neutron absorber in the current French nuclear reactors, boron carbide (B4C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B4C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (Se ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B4C structure under irradiation.

  12. In search of amorphization-resistant boron carbide

    International Nuclear Information System (INIS)

    Subhash, Ghatu; Awasthi, Amnaya P.; Kunka, Cody; Jannotti, Phillip; DeVries, Matthew

    2016-01-01

    Despite its superior mechanical properties, boron carbide suffers from amorphization, a pressure-induced phenomenon that disturbs crystalline order and likely reduces shear strength. Numerous experimental and computational studies have investigated the structure and origins of amorphization, yet strategies to mitigate this deleterious phenomenon elude. However, recent investigations have revealed three new research avenues for addressing this issue. First, we identify crystallographic cage spaces that may accommodate foreign atoms to potentially prevent structural collapse. Second, we propose polymorph-level tailoring through strict control of processing conditions. Finally, we demonstrate that reducing grain size to nanometer scale increases hardness and may counter amorphization.

  13. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lumin [Univ. of Michigan, Ann Arbor, MI (United States). Department of Nuclear Engineering and Radiological Science; Wierschke, Jonathan Brett [Univ. of Michigan, Ann Arbor, MI (United States). Department of Nuclear Engineering and Radiological Science

    2015-04-08

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised of boron trioxide and sassolite (H3BO3). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.

  14. Electron microscopy of boron carbide before and after electron irradiation

    International Nuclear Information System (INIS)

    Stoto, T.; Zuppiroli, L.; Beauvy, M.; Athanassiadis, T.

    1984-06-01

    The microstructure of boron carbide has been studied by electron microscopy and related to the composition of the material. After electron irradiations in an usual transmission electron microscope and in a high voltage electron microscope at different temperatures and fluxes no change of these microstructures have been observed but a sputtering of the surface of the samples, which has been studied quantitatively [fr

  15. Advanced Boron Carbide-Based Visual Obscurants for Military Smoke Grenades

    Science.gov (United States)

    2014-07-13

    components on grenade burning time must be accounted for. Also, how these factors affect smoke cloud thickness and perceived visible obscuration...of Boron Carbide-Based Smoke Compositions. Propellants, Explos., Pyrotech. 2013, 38, 622-628. (30) Commission Internationale de l’Éclairage ( CIE ...volume, gives equation 2. Since αm is only a characteristic of the aerosol, it does not account for

  16. High pressure synthesis and investigations of properties of boron allotropes and boron carbide

    International Nuclear Information System (INIS)

    Chuvashova, Irina

    2017-01-01

    This work aimed at the development of the high-pressure high-temperature (HPHT) synthesis of single crystals of boron allotropes and boron-rich compounds, which could be used further for precise investigations of their structures, properties, and behavior at extreme conditions. To summarize, the present work resulted in the HPHT synthesis of the first previously unknown non-icosahedral boron allotrope ζ-B. This finding confirmed earlier theoretical predictions, which stayed unproven for decades because of experimental challenges which couldn't be overcome until recently. Structural stability of α-B and β-B in the Mbar pressure range and B 13 C 2 up to 68 GPa was experimentally proven. Accurate measurements of the unit cell and B 12 icosahedra volumes of the stoichiometric boron carbide B 13 C 2 as a function of pressure led to conclusion that they undergo a similar reduction upon compression that is typical for covalently bonded solids. Neither 'molecular-like' nor 'inversed molecular-like' solid behavior upon compression was detected that has closed a long-standing scientific dispute. A comparison of the compressional behavior of B 13 C 2 with that of α-B and γ-B allotropes and B 4 C showed that it is determined by the types of bonding involved in the course of compression.

  17. High pressure synthesis and investigations of properties of boron allotropes and boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Chuvashova, Irina

    2017-06-12

    This work aimed at the development of the high-pressure high-temperature (HPHT) synthesis of single crystals of boron allotropes and boron-rich compounds, which could be used further for precise investigations of their structures, properties, and behavior at extreme conditions. To summarize, the present work resulted in the HPHT synthesis of the first previously unknown non-icosahedral boron allotrope ζ-B. This finding confirmed earlier theoretical predictions, which stayed unproven for decades because of experimental challenges which couldn't be overcome until recently. Structural stability of α-B and β-B in the Mbar pressure range and B{sub 13}C{sub 2} up to 68 GPa was experimentally proven. Accurate measurements of the unit cell and B{sub 12} icosahedra volumes of the stoichiometric boron carbide B{sub 13}C{sub 2} as a function of pressure led to conclusion that they undergo a similar reduction upon compression that is typical for covalently bonded solids. Neither 'molecular-like' nor 'inversed molecular-like' solid behavior upon compression was detected that has closed a long-standing scientific dispute. A comparison of the compressional behavior of B{sub 13}C{sub 2} with that of α-B and γ-B allotropes and B{sub 4}C showed that it is determined by the types of bonding involved in the course of compression.

  18. Structural models of increasing complexity for icosahedral boron carbide with compositions throughout the single-phase region from first principles

    Science.gov (United States)

    Ektarawong, A.; Simak, S. I.; Alling, B.

    2018-05-01

    We perform first-principles calculations to investigate the phase stability of boron carbide, concentrating on the recently proposed alternative structural models composed not only of the regularly studied B11Cp (CBC) and B12(CBC), but also of B12(CBCB) and B12( B4 ). We find that a combination of the four structural motifs can result in low-energy electron precise configurations of boron carbide. Among several considered configurations within the composition range of B10.5C and B4C , we identify in addition to the regularly studied B11Cp (CBC) at the composition of B4C two low-energy configurations, resulting in a new view of the B-C convex hull. Those are [B12 (CBC)]0.67[B12(B4)] 0.33 and [B12 (CBC)]0.67[ B12 (CBCB)]0.33, corresponding to compositions of B10.5C and B6.67C , respectively. As a consequence, B12(CBC) at the composition of B6.5C , previously suggested in the literature as a stable configuration of boron carbide, is no longer part of the B -C convex hull. By inspecting the electronic density of states as well as the elastic moduli, we find that the alternative models of boron carbide can provide a reasonably good description for electronic and elastic properties of the material in comparison with the experiments, highlighting the importance of considering B12(CBCB) and B12( B4 ), together with the previously proposed B11Cp (CBC) and B12(CBC), as the crucial ingredients for modeling boron carbide with compositions throughout the single-phase region.

  19. Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Behzad, Somayeh, E-mail: somayeh.behzad@gmail.co [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Moradian, Rostam [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Science and Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of); Computational Physical Science Research Laboratory, Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Chegel, Raad [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)

    2010-12-01

    The effects of boron doping on the structural and electronic properties of (6,0)-(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.

  20. Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes

    International Nuclear Information System (INIS)

    Behzad, Somayeh; Moradian, Rostam; Chegel, Raad

    2010-01-01

    The effects of boron doping on the structural and electronic properties of (6,0)-(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.

  1. Structural and electronic properties of boron-doped double-walled silicon carbide nanotubes

    Science.gov (United States)

    Behzad, Somayeh; Moradian, Rostam; Chegel, Raad

    2010-12-01

    The effects of boron doping on the structural and electronic properties of (6,0)@(14,0) double-walled silicon carbide nanotube (DWSiCNT) are investigated by using spin-polarized density functional theory. It is found that boron atom could be more easily doped in the inner tube. Our calculations indicate that a Si site is favorable for B under C-rich condition and a C site is favorable under Si-rich condition. Additionally, B-substitution at either single carbon or silicon atom site in DWSiCNT could induce spontaneous magnetization.

  2. Process for manufacturing boron carbide pellets that can be used for the realization, of the control rods of water reactors

    International Nuclear Information System (INIS)

    Ballagny, Alain; Brie, Michel.

    1982-01-01

    The subject of the invention is a process for manufacturing boron carbide pellets with a boron carbide content of not less than 68% by volume and having an open porosity. This process consists in (a) preparing a mix comprising boron carbide powder of which at least 90% of the particles are under 3 μ in size, and an organic binder that can be transformed into carbon by thermal treatment, (b) compressing the hot mix thus obtained to form unbaked pellets, under a pressure of 1000 to 6000 bars, at a temperature of 80 to 250 0 C and (c) submitting the unbaked pellets thus obtained to vacuum thermal treatment to transform this binder into porous carbon. The finished pellets are used in the control rods of water reactors [fr

  3. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation

    International Nuclear Information System (INIS)

    Mrotchek, I.

    2007-01-01

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and ∼5.10 17 ions/cm 2 fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co 3 W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load

  4. Structural modifications induced by ion irradiation and temperature in boron carbide B{sub 4}C

    Energy Technology Data Exchange (ETDEWEB)

    Victor, G., E-mail: g.victor@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Pipon, Y.; Bérerd, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); CEA-DEN, Saclay, 91191 Gif-sur-Yvette (France); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Djourelov, N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee blvd, BG-1784 Sofia (Bulgaria); ELI-NP, IFIN-HH, 30 Reactorului Str, MG-6 Bucharest-Magurele (Romania); Miro, S. [CEA-DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Baillet, J. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Pradeilles, N.; Rapaud, O.; Maître, A. [SPCTS, UMR CNRS 7315, Centre Européen de la céramique, University of Limoges (France); Gosset, D. [CEA, Saclay, DMN-SRMA-LA2M, 91191 Gif-sur-Yvette (France)

    2015-12-15

    Already used as neutron absorber in the current French nuclear reactors, boron carbide (B{sub 4}C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B{sub 4}C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (S{sub e} ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B{sub 4}C structure under irradiation.

  5. The irradiation behaviour of boron carbide/graphite between 800 and 1,1000C

    International Nuclear Information System (INIS)

    Hattenbach, K.; Hilgendorff, W.; Weiler, K.; Zimmermann, H.U.

    1975-01-01

    64 samples of boron carbide/graphite, a material used as burnable poison in high temperature reactors, were irradiated at temperatures between 800 and 1,100 0 C up to a fluence of 1-2 x 10 20 nvt. The following post-investigations were extended to dimensional measurements to determime a possible swelling or shrinking of the pellet, corrosion tests in completely desalinated water at 300 0 C, preparation of metallographic microsections to check for crack formation, determination of the helium hold back power and the thus involved gas chromatic analysis, as well as burn-up determinations by determining the boron 10/boron 11 ratio and the lithium concentration. (orig./LN) [de

  6. Correlation for boron carbide helium release in fast reactors

    International Nuclear Information System (INIS)

    Basmajian, J.A.; Pitner, A.L.

    1977-04-01

    An empirical helium correlation for the helium release from boron carbide has been developed. The correlation provides a good fit to the experimental data in the temperature range from 800 to 1350 0 K, and burnup levels up to 80 x 10 20 captures/cm 3 . The correlation has the capability of extrapolation to 2200 0 K (3500 0 F) and 200 x 10 20 captures/cm 3 . In this range the helium release rate will not exceed the generation rate

  7. Boron carbide in pile behaviour Rapsodie experience

    International Nuclear Information System (INIS)

    Kryger, B.; Colin, M.

    1983-04-01

    Results concerning boron carbide irradiation experiments performed in RAPSODIE up to 10 22 .cm - 3 capture density in the temperature range 600-1100 0 lead to the following main conclusions: initial density and grain size lowering contribute to swelling decrease but density is the major parameter for swelling limitation; swelling rate can vary in a wide range (ratio 1 to 3) according to combinations of density (1.8 to 2.3) and grain size (10 to 50 μm) values; a swelling balance reveals that the most important contribution to swelling should be a high density of helium small bubbles (<400 A); helium retention increases with density and grain size and decreases with temperature elevation. A diffusion law is proposed to describe the rate of helium release

  8. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    International Nuclear Information System (INIS)

    Zhang, L.L.; Yang, Q.; Tang, Y.; Yang, L.; Zhang, C.; Hu, Y.; Cui, X.

    2015-01-01

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B 4 C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B 4 C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp 3 bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp 3 bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp 3 bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films

  9. Hydrothermal development and characterization of the wear-resistant boron carbide from Pandanus: a natural carbon precursor

    Science.gov (United States)

    Saritha Devi, H. V.; Swapna, M. S.; Ambadas, G.; Sankararaman, S.

    2018-04-01

    Boron carbide (B4C) is a prominent semiconducting material that finds applications in the field of science and technology. The excellent physical, thermal and electronic properties make it suitable as ceramic armor, wear-resistant, lens polisher and neutron absorber in the nuclear industry. The existing methods of synthesis of boron carbide involve the use of toxic chemicals that adversely affect the environment. In the present work, we report for the first time the use of the hydrothermal method, for converting the cellulose from Pandanus leaves as the carbon precursor for the synthesis of B4C. The carbon precursor is changed into porous functionalized carbon by treating with sodium borohydride (NaBH4), followed by treating with boric acid to obtain B4C. The samples are characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared, Raman, photoluminescent and Ultraviolet-Visible absorption spectroscopy. The formation of B4C from natural carbon source— Pandanus presents an eco-friendly, economic and non-toxic approach for the synthesis of refractory carbides.

  10. Kerma factors in interaction of neutrons with boron carbide

    International Nuclear Information System (INIS)

    Bondarenko, I.M.

    1979-01-01

    Heat generation in neutron interactions with boron carbide B 10 ; B 11 and 12 C is calculated. Kerma-factors (kerma-kinetic energy released in materials) were calculated for neutron energies between 10 -4 eV and 15 MeV. No major simplifying assumptions are introduced, and the accuracy of the calculated kerma-factors depends only on availability and accuracy of the basic nuclear data. The ENDF/B-4 data and recent experimental information are used for the calculation of kerma-factors. Plots of these kerma-factors are presented in units of eVxb/atom and wtxsec/(cmxn) as a function of neutron energy

  11. Oxide film assisted dopant diffusion in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Tin, Chin-Che, E-mail: cctin@physics.auburn.ed [Department of Physics, Auburn University, Alabama 36849 (United States); Mendis, Suwan [Department of Physics, Auburn University, Alabama 36849 (United States); Chew, Kerlit [Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur (Malaysia); Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin [Physical Technical Institute, Uzbek Academy of Sciences, 700084 Tashkent (Uzbekistan); Atabaev, Bakhtiyar [Institute of Electronics, Uzbek Academy of Sciences, 700125 Tashkent (Uzbekistan); Adedeji, Victor [Department of Chemistry, Geology and Physics, Elizabeth City State University, North Carolina 27909 (United States); Rusli [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2010-10-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  12. Oxide film assisted dopant diffusion in silicon carbide

    International Nuclear Information System (INIS)

    Tin, Chin-Che; Mendis, Suwan; Chew, Kerlit; Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin; Atabaev, Bakhtiyar; Adedeji, Victor; Rusli

    2010-01-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  13. Effects of heat treatment on the microstructure of amorphous boron carbide coating deposited on graphite substrates by chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Siwei; Zeng Bin; Feng Zude; Liu Yongsheng; Yang Wenbin; Cheng Laifei; Zhang Litong

    2010-01-01

    A two-layer boron carbide coating is deposited on a graphite substrate by chemical vapor deposition from a CH 4 /BCl 3 /H 2 precursor mixture at a low temperature of 950 o C and a reduced pressure of 10 KPa. Coated substrates are annealed at 1600 o C, 1700 o C, 1800 o C, 1900 o C and 2000 o C in high purity argon for 2 h, respectively. Structural evolution of the coatings is explored by electron microscopy and spectroscopy. Results demonstrate that the as-deposited coating is composed of pyrolytic carbon and amorphous boron carbide. A composition gradient of B and C is induced in each deposition. After annealing, B 4 C crystallites precipitate out of the amorphous boron carbide and grow to several hundreds nanometers by receiving B and C from boron-doped pyrolytic carbon. Energy-dispersive spectroscopy proves that the crystallization is controlled by element diffusion activated by high temperature annealing, after that a larger concentration gradient of B and C is induced in the coating. Quantified Raman spectrum identifies a graphitization enhancement of pyrolytic carbon. Transmission electron microscopy exhibits an epitaxial growth of B 4 C at layer/layer interface of the annealed coatings. Mechanism concerning the structural evolution on the basis of the experimental results is proposed.

  14. Characterization of plastic and boron carbide additive manufactured neutron collimators

    Science.gov (United States)

    Stone, M. B.; Siddel, D. H.; Elliott, A. M.; Anderson, D.; Abernathy, D. L.

    2017-12-01

    Additive manufacturing techniques allow for the production of materials with complicated geometries with reduced costs and production time over traditional methods. We have applied this technique to the production of neutron collimators for use in thermal and cold neutron scattering instrumentation directly out of boron carbide. We discuss the design and generation of these collimators. We also provide measurements at neutron scattering beamlines which serve to characterize the performance of these collimators. Additive manufacturing of parts using neutron absorbing material may also find applications in radiography and neutron moderation.

  15. Thermal expansion measurements on boron carbide and europium sesquioxide by laser interferometry

    International Nuclear Information System (INIS)

    Preston, S.D.

    1980-01-01

    A laser interferometer technique for measuring the absolute linear thermal expansion of small annular specimens is described. Results are presented for unirradiated boron carbide (B 4 C) and europia (Eu 2 O 3 ) up to 1000 0 C. Both compounds are neutron-absorbing materials of potential use in fast-reactor control rods and data on their thermophysical properties, in particular linear thermal expansion, are essential to the control rod designers. (author)

  16. Boron carbide-carbon composites and composites for cryogenic applications

    International Nuclear Information System (INIS)

    Sheinberg, H.

    1979-01-01

    Because of its neutronic properties, high hardness, and high melting temperature, boron carbide (B 4 C) is widely used at the Los Alamos Scientific Laboratory. However because of its hardness and mode of manufacture, it is expensive to machine finish to tight dimensional specifictions. For some neutronic applications, a density considerably below the theoretical 2.52 Mg/m 3 was acceptable, and this relaxation in density specification permitted addition of carbon as a second phase to reduce machining costs. We conducted an experimental program to prepare 50.8-mm-diam by 34.8-mm-thick cylinders of B 4 C and B 4 C-C composites with concentrations of carbon varying from 5.5 to 30 volume percent. Additionally we used three forms of carbon, natural flake graphite, synthetic graphite flour, and a fine furnace black as the source of the second phase. We determined the sound velocity, compressive strength, coefficient of thermal expansion, electrical resistivity, and microstructure as functions of composition. Additionally, an enriched boron ( 10 B)-carbon composite was studied as an alternate material

  17. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide powder and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Total Carbon by Combustion and Gravimetry 7-17 Total Boron by Titrimetry 18-28 Isotopic Composition by Mass Spectrometry 29-38 Chloride and Fluoride Separation by Pyrohydrolysis 39-45 Chloride by Constant-Current Coulometry 46-54 Fluoride by Ion-Selective Electrode 55-63 Water by Constant-Voltage Coulometry 64-72 Impurities by Spectrochemical Analysis 73-81 Soluble Boron by Titrimetry 82-95 Soluble Carbon by a Manometric Measurement 96-105 Metallic Impurities by a Direct Reader Spectrometric Method 106-114

  18. Kerma factors in interaction of neutrons with boron carbide

    International Nuclear Information System (INIS)

    Bondarenko, I.M.

    1986-03-01

    Heat generation in neutron interactions with boron carbide B 10 ; B 11 and 12 C is calculated. Kerma-factors (kerma-kinetic energy released in materials) were calculated for neutron energies between 10 -4 eV and 15 MeV. No major simplifying assumptions are introduced, and the accuracy of the calculated kerma-factors depends only on availability and accuracy of the basic nuclear data. The ENDF/B-4 data and recent experimental information are used for the calculation of kerma-factors. Plots of these kerma-factors are presented in units of eVxb/atom and wtxsec/(cmxn) as a function of neutron energy [fr

  19. Synthesis, characterization and thermoelectric properties of metal borides, boron carbides and carbaborides; Synthese, Charakterisierung und thermoelektrische Eigenschaften ausgewaehlter Metallboride, Borcarbide und Carbaboride

    Energy Technology Data Exchange (ETDEWEB)

    Guersoy, Murat

    2015-07-06

    This work reports on the solid state synthesis and structural and thermoelectrical characterization of hexaborides (CaB{sub 6}, SrB{sub 6}, BaB{sub 6}, EuB{sub 6}), diboride dicarbides (CeB{sub 2}C{sub 2}, LaB{sub 2}C{sub 2}), a carbaboride (NaB{sub 5}C) and composites of boron carbide. The characterization was performed by X-ray diffraction methods and Rietveld refinements based on structure models from literature. Most of the compounds were densified by spark plasma sintering at 100 MPa. As high-temperature thermoelectric properties the Seebeck coefficients, electrical conductivities, thermal diffusivities and heat capacities were measured between room temperature and 1073 K. ZT values as high as 0.5 at 1273 K were obtained for n-type conducting EuB{sub 6}. High-temperature X-ray diffraction also confirmed its thermal stability. The solid solutions Ca{sub x}Sr{sub 1-x}B{sub 6}, Ca{sub x}Ba{sub 1-x}B{sub 6} and Sr{sub x}Ba{sub 1-x}B{sub 6} (x = 0, 0.25, 0.5, 0.75, 1) are also n-type but did not show better ZT values for the ternary compounds compared to the binaries, but for CaB{sub 6} the values of the figure of merit (ca. 0.3 at 1073 K) were significantly increased (ca. 50 %) compared to earlier investigations which is attributed to the densification process. Sodium carbaboride, NaB{sub 5}C, was found to be the first p-type thermoelectric material that crystallizes with the hexaboride-structure type. Seebeck coefficients of ca. 80 μV . K{sup -1} were obtained. Cerium diboride dicarbide, CeB{sub 2}C{sub 2}, and lanthanum diboride dicarbide, LaB{sub 2}C{sub 2}, are metallic. Both compounds were used as model compounds to develop compacting strategies for such layered borides. Densities obtained at 50 MPa were determined to be higher than 90 %. A new synthesis route using single source precursors that contain boron and carbon was developed to open the access to new metal-doped boron carbides. It was possible to obtain boron carbide, but metal-doping could not be

  20. Compatibility of heat resistant alloys with boron carbide, 5

    International Nuclear Information System (INIS)

    Baba, Shinichi; Kurasawa, Toshimasa; Endow, Taichi; Someya, Hiroyuki; Tanaka, Isao.

    1986-08-01

    This paper includes an experimental result of out-of-pile compatibility and capsule design for irradiation test in Japan Materials Testing Reactor (JMTR). The compatibility between sheath material and neutron absorber materials for control rod devices (CRD) was examined for potential use in a very high temperature reactor (VHTR) which is under development at JAERI. The purpose of the compatibility tests are preliminary evaluation of safety prior to irradiation tests. Preliminary compatibility evaluation was concerned with three items as follows : 1) Lithium effects on the penetrating reaction of Incoloy 800H alloy in contact with a mixture of boronated graphite and lithium hydroxide powders, 2) Short term tensile properties of Incoloy 800H and Hastelloy XR alloy reacted with boronated graphite and fracture mode analysis, 3) Reaction behavior of both alloys under transient power conditions of a VHTR. It was clear that the reaction rate constant of the Incoloy 800H alloy was accelerated by doping lithium hydroxide into the boron carbide and graphite powder. The mechanical properties of Incoloy 800H and Hastelloy XR alloy reacted with boronated graphite were decreased. Ultimate tensile strength and tensile ductilities at temperatures over 850 deg C were reduced, but there was no change in the proof (yield) stress. Both alloys exhibited a brittle intergranular fracture mode during transient power conditions of a VHTR and also exhibited severe penetration. Irradiation capsules for compatibility test were designed to simulate three irradiation conditions of VHTR: 1) steady state for VHTR, 2) Transient power condition, 3) Service limited life of CRD. Capsule irradiation experiments have been carried out satisfactorily and thus confirm the validity of the capsule design procedure. (author)

  1. Catalytic activity of metall-like carbides in carbon oxide oxidation reaction

    International Nuclear Information System (INIS)

    Kharlamov, A.I.; Kosolapova, T.Ya.; Rafal, A.N.; Kirillova, N.V.

    1980-01-01

    Kinetics of carbon oxide oxidation upon carbides of hafnium, niobium, tantalum, molybdenum, zirconium and chromium is studied. Probable mechanism of the catalysts action is suggested. The established character of the change of the carbide catalytic activity is explained by the change of d-electron contribution to the metal-metal interaction

  2. Thick boron carbide coatings for protection of tokamak first wall and divertor

    International Nuclear Information System (INIS)

    Buzhinskij, O.I.; Semenets, Yu.M.

    1999-01-01

    A review of characteristics of various types of boron carbide coatings considered as candidate materials for protection of tokamak inner surfaces against high energy heat fluxes is presented. Such coatings are produced by various methods: chemical vapor deposition by means of chloride and fluoride techniques, gas conversion, plasma spray and reaction-sintering. Contrary to pure carbon materials, B 4 C has much lower chemical and high-temperature sputtering, is capable to oxygen gettering and lower hydrogen recycling. In contrast to thin boronization films, the thick coatings can resist high heat fluxes such as in tokamak divertors. Comparative analysis shows that coatings produced by the diffusion methods, such as fluoride CVD and gas conversion, are more resistent to heat loads, and one of the most promising candidates are the fluoride CVD coatings. (orig.)

  3. Study of the processes of changing the crystal structure of boron carbide after the destruction of a nuclear reactor as a result of earthquake

    International Nuclear Information System (INIS)

    Mammadov, Kh.; Mirzayev, M.; Garibov, R.; Allahverdiyev, G.

    2017-01-01

    boron carbide and as results of oxidation of these sites. It is also possible that the rate of oxidation of these sections in irradiated B 4 C samples increases at high temperatures (723-1300 K). Melting of the oxidized part of boron carbide (B 2 O 3 ) at temperatures above 773 K is observed in the samples irradiated with a dose of 19 kGy and this process are continued up to 1300 K up to the conversion of ∼26 percent of this structure to the amorphous phase.

  4. The role of free carbon in the transport and magnetic properties of boron carbide

    International Nuclear Information System (INIS)

    Bandyopadhyay, A.K.; Beuneu, F.; Zuppiroli, L.; Beauvy, M.

    1984-01-01

    Boron carbide is a ceramic which has a wide field of application because of its mechanical and nuclear properties. This material is difficult to characterise due to the presence of different levels of disorder and inhomogeneities which are found in the usual available samples. The transport and magnetic properties of several samples of boron carbide have been measured from liquid helium to room temperature as a function of temperature and composition. We have attempted to attribute the different features of these properties to the different levels of disorder. The role of free carbon, in form of thin layers of graphite within the disordered semi-conducting matrix, was investigated in particular details, because it was either ignored or neglected by others. Free carbon is found to dominate the D.C. transport when its concentration is larger than 5%; while the principal features of the electron spin resonance (E.S.R.) line show a dominance of free carbon when the concentration is larger than 3.5%. Below these concentrations conductivities as well as spin relaxation rates do not depend very much on free carbon; neither these have been found to be correlated in a simple way to the stoichiometry. (author)

  5. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Serra, R., E-mail: ricardo.serra@dem.uc.pt [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal); Oliveira, V. [ICEMS-Instituto de Ciência e Engenharia de Materiais e Superfícies, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Oliveira, J.C. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal); Kubart, T. [The Ångström Laboratory, Solid State Electronics, P.O. Box 534, SE-751 21 Uppsala (Sweden); Vilar, R. [Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Instituto Superior Técnico, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal)

    2015-03-15

    Highlights: • Large-area LIPSS were formed by femtosecond laser processing B-C films surface. • The LIPSS spatial period increases with laser fluence (140–200 nm). • Stress-related sinusoidal-like undulations were formed on the B-C films surface. • The undulations amplitude (down to a few nanometres) increases with laser fluence. • Laser radiation absorption increases with surface roughness. - Abstract: Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm{sup 2}. Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under

  6. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    International Nuclear Information System (INIS)

    Serra, R.; Oliveira, V.; Oliveira, J.C.; Kubart, T.; Vilar, R.; Cavaleiro, A.

    2015-01-01

    Highlights: • Large-area LIPSS were formed by femtosecond laser processing B-C films surface. • The LIPSS spatial period increases with laser fluence (140–200 nm). • Stress-related sinusoidal-like undulations were formed on the B-C films surface. • The undulations amplitude (down to a few nanometres) increases with laser fluence. • Laser radiation absorption increases with surface roughness. - Abstract: Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm 2 . Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under different

  7. Sintering of beryllium oxide with 3-4 per cent elemental boron

    International Nuclear Information System (INIS)

    Pointud, R.; Rispal, Ch.; Le Garec, M.

    1958-01-01

    In order to manufacture a baffle absorbing neutrons of various energies, there was developed or mixture of a slower and an absorber. It is made by hot pressing impure beryllium containing boron carbide. The dense briquette has 100 x 100 x 50 mm and is machined on all her faces. She is of 2,85 density and about 3 to 4 per cent porosity, according to 5 per cent of boron. Difference of boron amount is lower than ten per cent between any two points of the briquette. (author) [fr

  8. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  9. Corrosion-electrochemical characteristics of oxide-carbide and oxide-nitride coatings formed by electrolytic plasma

    International Nuclear Information System (INIS)

    Tomashov, N.D.; Chukalovskaya, T.V.; Medova, I.L.; Duradzhi, V.N.; Plavnik, G.M.

    1990-01-01

    The composition, structure, microhardness and corrosion-electrochemical properties of oxide-carbide and oxide-nitride coatings on titanium in 5n H 2 SO 4 , 50 deg, produced by the method of chemical-heat treatment in electrolytic plasma, containing saturation components of nitrogen and carbon, were investigated. It is shown that the coatings produced have increased hardness, possess high corrosion resistance in sulfuric acid solution at increased temperature, as to their electrochemcial behaviour they are similar to titanium carbide and nitride respectively. It is shown that high corrosion resistance is ensured by electrochemical mechanism of the oxide-carbide and oxide-nitride coating protection

  10. Comparative studies of electrochemical properties of carbon nanotubes and nanostructured boron carbide

    Science.gov (United States)

    Singh, Paviter; Kaur, Gurpreet; Singh, Kulwinder; Singh, Bikramjeet; Kaur, Manjot; Kumar, Manjeet; Bala, Rajni; Kumar, Akshay

    2018-05-01

    Boron carbide (B4C) and carbon nanotubes (CNTs) have the potential to act as electrocatalyst as these material show bifunctional behavior. B4C and CNTs were synthesized using solvothermal method. B4C display great catalytic activity as compared to CNTs. Raman spectra confirmed the formation of nanostructured carbon nanotubes. The observed onset potential was smaller 1.58 V in case of B4C as compared to CNTs i.e. 1.96 V in cyclic voltammetry. B4C material can emerge as a promising bifunctional electrocatalyst for battery applications.

  11. Frequency mixing in boron carbide laser ablation plasmas

    Science.gov (United States)

    Oujja, M.; Benítez-Cañete, A.; Sanz, M.; Lopez-Quintas, I.; Martín, M.; de Nalda, R.; Castillejo, M.

    2015-05-01

    Nonlinear frequency mixing induced by a bichromatic field (1064 nm + 532 nm obtained from a Q-switched Nd:YAG laser) in a boron carbide (B4C) plasma generated through laser ablation under vacuum is explored. A UV beam at the frequency of the fourth harmonic of the fundamental frequency (266 nm) was generated. The dependence of the efficiency of the process as function of the intensities of the driving lasers differs from the expected behavior for four-wave mixing, and point toward a six-wave mixing process. The frequency mixing process was strongly favored for parallel polarizations of the two driving beams. Through spatiotemporal mapping, the conditions for maximum efficiency were found for a significant delay from the ablation event (200 ns), when the medium is expected to be a low-ionized plasma. No late components of the harmonic signal were detected, indicating a largely atomized medium.

  12. Structure and properties of hot-pressed boron carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Koval' chenko, M S; Tkachenko, IU G; Koval' chuk, V V; Iurchenko, D Z; Satanin, S V [Institut Problem Materialovedeniia, Kiev (Ukrainian SSR)

    1990-07-01

    The microstructure and strength of B4C-TiB2-TiO{sub 2} ceramics samples, hot-compacted from a mixture of two types of B4C-TiO2-C powder, are examined. The two types are obtained by combining boric acid with either sucrose or carbon black. The grain-sizes of the two powders are found to be distinctly different from one another both before and after the grinding procedure and the degree of dispersion is not high. The strength tests show 600 MPa, the Vicker's hardness is 34.5 GPa, and the crack resistance coefficient of ceramics containing 15 percent TiB2 by mass is 5 MPa m exp 1/2. The use of soluble boron carbide powder helps achieve higher levels of strength and crack resistance. 5 refs.

  13. Corrosion behaviour of porous chromium carbide/oxide based ceramics in supercritical water

    International Nuclear Information System (INIS)

    Dong, Z.; Xin, T.; Chen, W.; Zheng, W.; Guzonas, D.

    2011-01-01

    Porous chromium carbide with a high density of open pores was fabricated by a reactive sintering method. Chromium oxide ceramics were obtained by re-oxidizing the porous chromium carbides formed. Some samples were added with yttria at 5 wt. %, prior to reactive sintering to form porous structures. Corrosion tests in SCW were performed at temperatures ranging from 375 o C to 625 o C with a fixed pressure at around 25∼30 MPa. The results show that chromium carbide is stable in SCW environments at temperatures up to 425 o C, above which disintegration of carbides through oxidation occurs. Porous chromium oxide samples show better corrosion resistance than porous chromium carbide, but disintegrate in SCW at around 625 o C. Among all the samples tested, chromium oxide ceramics with added yttria exhibited much better corrosion resistance compared with the pure chromium carbide/oxides. No evidence of weight change or disintegration of porous chromium oxides with 5 wt % added yttria was observed after exposure at 625 o C in SCW for 600 hours. (author)

  14. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C

    Science.gov (United States)

    Zeng, Yi; Wang, Dini; Xiong, Xiang; Zhang, Xun; Withers, Philip J.; Sun, Wei; Smith, Matthew; Bai, Mingwen; Xiao, Ping

    2017-06-01

    Ultra-high temperature ceramics are desirable for applications in the hypersonic vehicle, rockets, re-entry spacecraft and defence sectors, but few materials can currently satisfy the associated high temperature ablation requirements. Here we design and fabricate a carbide (Zr0.8Ti0.2C0.74B0.26) coating by reactive melt infiltration and pack cementation onto a C/C composite. It displays superior ablation resistance at temperatures from 2,000-3,000 °C, compared to existing ultra-high temperature ceramics (for example, a rate of material loss over 12 times better than conventional zirconium carbide at 2,500 °C). The carbide is a substitutional solid solution of Zr-Ti containing carbon vacancies that are randomly occupied by boron atoms. The sealing ability of the ceramic's oxides, slow oxygen diffusion and a dense and gradient distribution of ceramic result in much slower loss of protective oxide layers formed during ablation than other ceramic systems, leading to the superior ablation resistance.

  15. Determination of nitrogen in boron carbide with the Leco UO-14 Nitrogen Determinator

    International Nuclear Information System (INIS)

    Gardner, R.D.; Ashley, W.H.; Henicksman, A.L.

    1977-11-01

    Use of various metals as fluxes for releasing nitrogen from boron carbide in the Leco Nitrogen Determinator was investigated. Metals such as iron, chromium, and molybdenum that wet the graphite crucible all promoted nitrogen release. Tin, copper, aluminum, and platinum did not wet the graphite and were of no value as fluxes. A procedure for sample handling and the resulting performance of the method are described. The precision at 0.06 to 0.6 percent nitrogen averaged 4 percent relative standard deviation

  16. Deposition of multicomponent chromium carbide coatings using a non-conventional source of chromium and silicon with micro-additions of boron

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Ruiz, Jesus Eduardo, E-mail: jesus.gonzalez@biomat.uh.cu [Biomaterials Center, University of Havana (Cuba); Rodriguez Cristo, Alejandro [Mechanical Plants Company, Road of the Sub-Plan, Farm La Cana, Santa Clara, Villa Clara (Cuba); Ramos, Adrian Paz [Department of Chemistry, Universite de Montreal, Quebec (Canada); Quintana Puchol, Rafael [Welding Research Center, Central University Marta Abreu of Las Villas, Villa Clara (Cuba)

    2017-01-15

    The chromium carbide coatings are widely used in the mechanical industry due to its corrosion resistance and mechanical properties. In this work, we evaluated a new source of chromium and silicon with micro-additions of boron on the deposition of multi-component coatings of chromium carbides in W108 steel. The coatings were obtained by the pack cementation method, using a simultaneous deposition at 1000 deg for 4 hours. The coatings were analyzed by X-ray diffraction, X-ray energy dispersive spectroscopy, optical microscopy, microhardness test method and pin-on-disc wear test. It was found that the coatings formed on W108 steel were mainly constituted by (Cr,Fe){sub 23}C{sub 6} , (Cr,Fe){sub 7} C{sub 3} , Cr{sub 5-x}Si{sub 3-x} C{sub x+z}, Cr{sub 3} B{sub 0,44}C{sub 1,4} and (or) Cr{sub 7} BC{sub 4} . The carbide layers showed thicknesses between 14 and 15 μm and maximum values of microhardness between 15.8 and 18.8 GPa. Also, the micro-additions of boron to the mixtures showed statistically significant influence on the thickness, microhardness and abrasive wear resistance of the carbide coatings. (author)

  17. Effect of sintering temperature and boron carbide content on the wear behavior of hot pressed diamond cutting segments

    Directory of Open Access Journals (Sweden)

    Islak S.

    2015-01-01

    Full Text Available The aim of this study was to investigate the effect of sintering temperature and boron carbide content on wear behavior of diamond cutting segments. For this purpose, the segments contained 2, 5 and 10 wt.% B4C were prepared by hot pressing process carried out under a pressure of 35 MPa, at 600, 650 and 700 °C for 3 minutes. The transverse rupture strength (TRS of the segments was assessed using a three-point bending test. Ankara andesite stone was cut to examine the wear behavior of segments with boron carbide. Microstructure, surfaces of wear and fracture of segments were determined by scanning electron microscopy (SEM-EDS, and X-ray diffraction (XRD analysis. As a result, the wear rate decreased significantly in the 0-5 wt.% B4C contents, while it increased in the 5-10 wt.% B4C contents. With increase in sintering temperature, the wear rate decreased due to the hard matrix.

  18. Exploiting the enantioselectivity of Baeyer-Villiger monooxygenases via boron oxidation

    NARCIS (Netherlands)

    Brondani, Patricia B.; Dudek, Hanna; Reis, Joel S.; Fraaije, Marco W.; Andrade, Leandro H.

    2012-01-01

    The enantioselective carbon-boron bond oxidation of several chiral boron-containing compounds by Baeyer-Villiger monooxygenases was evaluated. PAMO and M446G PAMO conveniently oxidized 1-phenylethyl boronate into the corresponding 1-(phenyl)ethanol (ee = 82-91%). Cyclopropyl boronic esters were also

  19. Microscopic origin of the composition-dependent change of the thermal conductivity in boron carbides

    International Nuclear Information System (INIS)

    Emin, D.; Howard, I.A.; Green, T.A.; Beckel, C.L.

    1987-01-01

    Large grain polycrystalline boron carbides have a high-temperature thermal conductivity which changes from being characteristic of a crystal to being glass-like as the carbon content is reduced from its maximal value. We relate this phenomenon, to compositional changes within the three-atom intericosahedral chains. With a reduction of the carbon concentration from its maximal concentration (20%), a carbon atom within some of the three-atoms (CBC) intericosahedral chains is replaced by a boron atom, thereby producing CBB chains. We estimate that the CBB chains are significantly softer than the CBC chains. Thus, with this reduction of carbon content the intericosahedral chains are inhomogeneously softened. This suppresses the coherent transport of heat through the chains. The remaining thermal transport occurs incoherently through vibrationally inequivalent structural units, i.e. ''phonon hopping.''

  20. Optimizing Grain Boundary Complexions to Produce Dense Pressure-Less Sintered Boron Carbide (B4C)

    Science.gov (United States)

    2008-11-14

    discontinuous distribution of the yttria. At this stage it is difficult to determine if the discontinuity is genuine or results from dewetting upon cooling...sample. However, the tendency of the film to form beads indicates a dewetting behavior. The weak interface between the yttria and the boron carbide...conform to the dewetting behavior. There is a possibility of a complexion transition as the sample is cooled down in the furnace. At high temperature the

  1. Size-scaling of tensile failure stress in boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Kirkland, Timothy Philip [ORNL; Strong, Kevin T [ORNL; Jadaan, Osama M. [University of Wisconsin, Platteville; Thompson, G. A. [U.S. Army Dental and Trauma Research Detachment, Greak Lakes

    2010-01-01

    Weibull strength-size-scaling in a rotary-ground, hot-pressed boron carbide is described when strength test coupons sampled effective areas from the very small (~ 0.001 square millimeters) to the very large (~ 40,000 square millimeters). Equibiaxial flexure and Hertzian testing were used for the strength testing. Characteristic strengths for several different specimen geometries are analyzed as a function of effective area. Characteristic strength was found to substantially increase with decreased effective area, and exhibited a bilinear relationship. Machining damage limited strength as measured with equibiaxial flexure testing for effective areas greater than ~ 1 mm2 and microstructural-scale flaws limited strength for effective areas less than 0.1 mm2 for the Hertzian testing. The selections of a ceramic strength to account for ballistically-induced tile deflection and to account for expanding cavity modeling are considered in context with the measured strength-size-scaling.

  2. Effect of the reinforced boron carbide particulate content of AA6061 alloy on formation of the passive film in seawater

    International Nuclear Information System (INIS)

    Katkar, V.A.; Gunasekaran, G.; Rao, A.G.; Koli, P.M.

    2011-01-01

    Highlights: → Presence of boron carbide increases the corrosion rate of A6061 alloy in seawater. → Increasing the B 4 C content decreases passive layer thickness. → Passive films formed on A6061 and its B 4 C composites are n-type semiconductors. - Abstract: The effect of boron carbide (B 4 C) reinforcement on the corrosion of AA6061 alloy was studied by investigating passive films formed in seawater. The higher passive current and its potential-dependence for these composites indicated formation of porous passive film. Electrochemical impedance spectroscopy (EIS) graph suggests that the alloy surface is partly or totally active. The formed passive film is n-type semiconductor junction in nature. The difference between corrosion potential (E corr ) and potential at zero charge (PZC) suggests that the chloride ions responsible for film breakdown exist within the passive film. A suitable mechanism is proposed for the passive film breakdown.

  3. Growth of boron doped hydrogenated nanocrystalline cubic silicon carbide (3C-SiC) films by Hot Wire-CVD

    Energy Technology Data Exchange (ETDEWEB)

    Pawbake, Amit [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Mayabadi, Azam; Waykar, Ravindra; Kulkarni, Rupali; Jadhavar, Ashok [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Waman, Vaishali [Modern College of Arts, Science and Commerce, Shivajinagar, Pune 411 005 (India); Parmar, Jayesh [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Bhattacharyya, Somnath [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600 036 (India); Ma, Yuan‐Ron [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Devan, Rupesh; Pathan, Habib [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Jadkar, Sandesh, E-mail: sandesh@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-04-15

    Highlights: • Boron doped nc-3C-SiC films prepared by HW-CVD using SiH{sub 4}/CH{sub 4}/B{sub 2}H{sub 6}. • 3C-Si-C films have preferred orientation in (1 1 1) direction. • Introduction of boron into SiC matrix retard the crystallanity in the film structure. • Film large number of SiC nanocrystallites embedded in the a-Si matrix. • Band gap values, E{sub Tauc} and E{sub 04} (E{sub 04} > E{sub Tauc}) decreases with increase in B{sub 2}H{sub 6} flow rate. - Abstract: Boron doped nanocrystalline cubic silicon carbide (3C-SiC) films have been prepared by HW-CVD using silane (SiH{sub 4})/methane (CH{sub 4})/diborane (B{sub 2}H{sub 6}) gas mixture. The influence of boron doping on structural, optical, morphological and electrical properties have been investigated. The formation of 3C-SiC films have been confirmed by low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy and high resolution-transmission electron microscopy (HR-TEM) analysis whereas effective boron doping in nc-3C-SiC have been confirmed by conductivity, charge carrier activation energy, and Hall measurements. Raman spectroscopy and HR-TEM analysis revealed that introduction of boron into the SiC matrix retards the crystallanity in the film structure. The field emission scanning electron microscopy (FE-SEM) and non contact atomic force microscopy (NC-AFM) results signify that 3C-SiC film contain well resolved, large number of silicon carbide (SiC) nanocrystallites embedded in the a-Si matrix having rms surface roughness ∼1.64 nm. Hydrogen content in doped films are found smaller than that of un-doped films. Optical band gap values, E{sub Tauc} and E{sub 04} decreases with increase in B{sub 2}H{sub 6} flow rate.

  4. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation; Oberflaechenmodifikation des Hartmetalls Wolframkarbid-Kobalt durch Bor-Ionenimplantation

    Energy Technology Data Exchange (ETDEWEB)

    Mrotchek, I.

    2007-09-07

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and {approx}5.10{sup 17} ions/cm{sup 2} fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co{sub 3}W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load.

  5. Investigation of effects of boron additives and heat treatment on carbides and phase transition of highly alloyed duplex cast iron

    International Nuclear Information System (INIS)

    Tasgin, Yahya; Kaplan, Mehmet; Yaz, Mehmet

    2009-01-01

    The effect of boron additives and heat treatment on the microstructural morphology of the transition zone in a duplex cast iron, which has an outer shell of white cast iron (with a high Cr-content and containing boron additives) and an inner side composed of normal gray cast iron, has been investigated. For this purpose, two experimental materials possessing different compositions of white-gray duplex cast iron were produced. Subsequently, metallographic investigations were carried out to study the effect of heat treatment applied to the experimental materials by using the scanning electron microscopy technique, along with optical microscopy and energy dispersive X-ray spectroscopy. Moreover, the formation of various phases and carbide composites in the samples and their effects on the hardness were also investigated using X-ray diffraction techniques. The results of investigations, and hardness showed that addition of the elements Cr and B to high-alloyed white cast iron affected carbide formation significantly, while simultaneously hardening the microstructure, and consequently the carbide present in the transition area of white-gray cast iron was spread out and became thinner. However, B additives and heat treatment did not cause any damage to the transition region of high Cr-content duplex cast iron.

  6. Kinetics and mechanism of oxidation of carbidized electrolytic chromium coatings

    International Nuclear Information System (INIS)

    Arkharov, V.I.; Yar-Mukhamedov, Sh.Kh.

    1978-01-01

    Thermal stability carbidized electrolytic chromium coatings has been studied depending on the conditions of their formation; the specific features of the mechanism of oxidation at 1200 deg in an air atmosphere have been elucidated. It has been established that kinetics of high temperature oxidation of the coatings depends essentially on the conditions of their formation and on the composition of steel to which the coating is applied. It has been shown that two oxidation mechanisms are possible: by diffusion of the residual chromium through a carbide layer along the carbide grain boundaries outwards or, when there is no residual chromium, by chemical reaction of carbon combustion and oxidation of the liberated chromium. The comparison of oxidation kinetic curves of the samples of 38KhMYuA, 35KhGSA, and DI-22 steels with and without coating has shown that the coatings under study have a better protective effect on 38KhMYuA steel than on 35KhGSA, although without coating oxidability of the first steel is higher than that of the second

  7. Reduction of metal oxides in metal carbide fusion superheated with plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hedai, L

    1981-01-01

    A significant part of metals is capable of binding a high quantity of carbon in the form of carbide. The carbide fusion produced as a result of smelting and superheating, metal carbides with the use of plasma might be a medium to be utilized for the reduction of different metal oxides, whilst also the original carbide structure of the metal carbides will be reduced to metallic structure. The experiments conducted by making use of plasma equipment, of 20, 55 and 100 kW performances are described. On the basis of the results of the experiments performed, the following statements are to be made. The oxide reductions taking place in the metal carbide fusion might also be carried out in open-hearth furnaces, because reducing atmosphere is not necessitated during this procedure. The quantity of energy required is basically defined by the energy needed for smelting and superheating the metal carbide. The method for producing the metal described may be mainly applied for the allied production of high-purity steels as well as for that of ferro-alloys.

  8. Hafnium carbide formation in oxygen deficient hafnium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbücher, C. [Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-7), JARA-FIT, 52425 Jülich (Germany); Hildebrandt, E.; Sharath, S. U.; Kurian, J.; Komissinskiy, P.; Alff, L. [Technische Universität Darmstadt, Institute of Materials Science, 64287 Darmstadt (Germany); Szot, K. [Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-7), JARA-FIT, 52425 Jülich (Germany); University of Silesia, A. Chełkowski Institute of Physics, 40-007 Katowice (Poland); Breuer, U. [Forschungszentrum Jülich GmbH, Central Institute for Engineering, Electronics and Analytics (ZEA-3), 52425 Jülich (Germany); Waser, R. [Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-7), JARA-FIT, 52425 Jülich (Germany); RWTH Aachen, Institute of Electronic Materials (IWE 2), 52056 Aachen (Germany)

    2016-06-20

    On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO{sub 2−x}) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfC{sub x}) at the surface during vacuum annealing at temperatures as low as 600 °C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfC{sub x} surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO{sub 2} thin films prepared and measured under identical conditions, the formation of HfC{sub x} was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating.

  9. Fabrication and tribological response of aluminium 6061 hybrid composite reinforced with bamboo char and boron carbide micro-fillers

    Science.gov (United States)

    Chethan, K. N.; Pai, Anand; Keni, Laxmikant G.; Singhal, Ashish; Sinha, Shubham

    2018-02-01

    Metal matrix composites (MMCs) have a wide scope of industrial applications and triumph over conventional materials due to their light weight, higher specific strength, good wear resistance and lower coefficient of thermal expansion. The present study aims at establishing the feasibility of using Bamboo charcoal particulate and boron carbide as reinforcements in Al-6061 alloy matrix and to investigate their effect on the wear of composites taking into consideration the interfacial adhesion of the reinforcements in the alloy. Al-6061 alloy was chosen as a base metallic alloy matrix. Sun-dried bamboo canes were used for charcoal preparation with the aid of a muffle furnace. The carbon content in the charcoal samples was determined by EDS (energy dispersive spectroscopy). In present study, stir casting technique was used to prepare the samples with 1%, 2%, and 3% weight of bamboo charcoal and boron carbide with Al-6061. The fabricated composites were homogenised at 570°C for 6 hours and cooled at room temperature. Wear studies were carried out on the specimens with different speed and loads. It was found that wear rate and coefficient of friction decreased with increase in the reinforcement content.

  10. Versatile Boron Carbide-Based Visual Obscurant Compositions for Smoke Munitions

    Science.gov (United States)

    2015-04-17

    volatilize and disperse reaction products and inert diluents. Unlike the refractory oxides of common pyrotechnic fuels such as magnesium and aluminum, boron...peaks marked. [1] Akagi, R.; Ohtori, N.; Umesaki, N. Raman spectra of K2O–B2O3 glasses and melts. Journal of Non-Crystalline Solids. 2001

  11. Effect of Dissolved Silica on Immobilization of Boron by Magnesium Oxide

    Directory of Open Access Journals (Sweden)

    Shoko Nozawa

    2018-02-01

    Full Text Available The effect of silica on the immobilization reaction of boron by magnesium oxide was investigated by laboratory experiments. In the absence of silica, due to dissolution of the magnesium oxide, boron was removed from solutions by the precipitation of multiple magnesium borates. In the presence of silica, magnesium silica hydrate (M-S-H was formed as a secondary mineral, which takes up boron. Here 11B magic-angle spinning nuclear magnetic resonance (MAS-NMR and Fourier transform infrared spectrometer (FT-IR data show that a part of the boron would be incorporated into M-S-H structures by isomorphic substitution of silicon. Another experiment where magnesium oxide and amorphous silica were reacted beforehand and boron was added later showed that the shorter the reaction time of the preceding reaction, the higher the sorption ratio of boron. That is, boron was incorporated into the M-S-H mainly by coprecipitation. The experiments in the study here show that the sorption of boron in the presence of silica is mainly due to the incorporation of boron during the formation of the M-S-H structure, which suggests that boron would not readily leach out, and that stable immobilization of boron can be expected.

  12. Optical properties of boron carbide near the boron K edge evaluated by soft-x-ray reflectometry from a Ru/B4C multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitriy; Panzner, Tobias; Schlemper, Christoph; Morawe, Christian; Pietsch, Ullrich

    2009-12-10

    Soft-x-ray Bragg reflection from two Ru/B4C multilayers with 10 and 63 periods was used for independent determination of both real and imaginary parts of the refractive index n = 1 -{delta} + i{beta} close to the boron K edge ({approx}188 eV). Prior to soft x-ray measurements, the structural parameters of the multilayers were determined by x-ray reflectometry using hard x rays. For the 63-period sample, the optical properties based on the predictions made for elemental boron major deviations were found close to the K edge of boron for the 10-period sample explained by chemical bonding of boron to B4C and various boron oxides.

  13. Oxidation of mullite-zirconia-alumina-silicon carbide composites

    International Nuclear Information System (INIS)

    Baudin, C.; Moya, J.S.

    1990-01-01

    This paper reports the isothermal oxidation of mullite-alumina-zirconia-silicon carbide composites obtained by reaction sintering studied in the temperature interval 800 degrees to 1400 degrees C. The kinetics of the oxidation process was related to the viscosity of the surface glassy layer as well as to the crystallization of the surface film. The oxidation kinetics was halted to T ≤ 1300 degrees C, presumably because of crystallization

  14. Enhanced oxidation resistance of carbon fiber reinforced lithium aluminosilicate composites by boron doping

    International Nuclear Information System (INIS)

    Xia, Long; Jin, Feng; Zhang, Tao; Hu, Xueting; Wu, Songsong; Wen, Guangwu

    2015-01-01

    Highlights: • C f /LAS composites exhibit enhanced oxidation resistance by boron doping. • Boron doping is beneficial to the improvement of graphitization degree of carbon fibers. • Graphitization of carbon fibers together with the decrease of viscosity of LAS matrix is responsible to the enhancement of oxidation resistance of C f /LAS composites. - Abstract: Carbon fiber reinforced lithium aluminosilicate matrix composites (C f /LAS) modified with boron doping were fabricated and oxidized for 1 h in static air. Weight loss, residual strength and microstructure were analyzed. The results indicate that boron doping has a remarkable effect on improving the oxidation resistance for C f /LAS. The synergism of low viscosity of LAS matrix at high temperature and formation of graphite crystals on the surface of carbon fibers, is responsible for excellent oxidation resistance of the boron doped C f /LAS.

  15. performance calculations of gadolinium oxide and boron nitride coated fuel

    International Nuclear Information System (INIS)

    Tanker, E.; Uslu, I.; Disbudak, H.; Guenduez, G.

    1997-01-01

    A comparative study was performed on the behaviour of natural uranium dioxide-gadolinium oxide mixture fuel and boron nitride coated low enriched fuel in a pressurized water reactor. A fuel element containing one burnable poison fuel pins was modeled with the computer code WIMS, and burn-up dependent critically, fissile isotope inventory and two dimensional power distribution were obtained. Calculations were performed for burnable poison fuels containing 5% and 10% gadolinium oxide and for those coated with 1μ,5μ and 10μ of boron nitride. Boron nitride coating was found superior to gadolinium oxide on account of its smoother criticality curve, lower power peaks and insignificant change in fissile isotope content

  16. Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component

    Science.gov (United States)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2009-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  17. Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same

    Science.gov (United States)

    Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

    2013-01-22

    Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

  18. High temperature oxidation of carbide-carbon materials of NbC-C, NbC-TiC-C systems

    International Nuclear Information System (INIS)

    Afonin, Yu.D.; Shalaginov, V.N.; Beketov, A.R.

    1981-01-01

    The effect of titanium carbide additions on the oxidation of carbide - carbon composition NbC-TiC-C in oxygen under the pressure of 10 mm Hg and in the air at atmospheric pressure in the temperature range 800-1300 deg is studied. It is shown that the region of negative temperature coefficient during oxidation in the system NbC+C is determined by the processes of sintering and polymorphous transformation. The specific character of the oxide film, formed during oxidation of Nbsub(x)Tisub(y)C+C composites is connected with non-equilibrium nature of carbide grain in its composition. Carbon gasification takes place with the formation of carbon dioxide. Composite materials, containing titanium carbide in complex carbide up to 50-83 mol. %, are the most corrosion resisting ones [ru

  19. Single-Crystal Tungsten Carbide in High-Temperature In-Situ Additive Manufacturing Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kolopus, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boatner, Lynn A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-18

    Nanoindenters are commonly used for measuring the mechanical properties of a wide variety of materials with both industrial and scientific applications. Typically, these instruments employ an indenter made of a material of suitable hardness bonded to an appropriate shaft or holder to create an indentation on the material being tested. While a variety of materials may be employed for the indenter, diamond and boron carbide are by far the most common materials used due to their hardness and other desirable properties. However, as the increasing complexity of new materials demands a broader range of testing capabilities, conventional indenter materials exhibit significant performance limitations. Among these are the inability of diamond indenters to perform in-situ measurements at temperatures above 600oC in air due to oxidation of the diamond material and subsequent degradation of the indenters mechanical properties. Similarly, boron carbide also fails at high temperature due to fracture. [1] Transition metal carbides possess a combination of hardness and mechanical properties at high temperatures that offer an attractive alternative to conventional indenter materials. Here we describe the technical aspects for the growth of single-crystal tungsten carbide (WC) for use as a high-temperature indenter material, and we examine a possible approach to brazing these crystals to a suitable mount for grinding and attachment to the indenter instrument. The use of a by-product of the recovery process is also suggested as possibly having commercial value.

  20. Detection of a leaking boron-carbide control rod in a TRIGA Mark I reactor

    Energy Technology Data Exchange (ETDEWEB)

    Blotcky, A J; Arsenault, L J [General Medical Research, Veterans Administration Hospital, Omaha (United States)

    1974-07-01

    During a routine quarterly inspection of the boron-carbide control rods of the Omaha Veterans Administration Hospital 18 kW Triga Mark I reactor, a pin hole leak was detected approximately 3 mm from the chamfered edge. The leak was found by observing bubbles when the rod was withdrawn from the reactor tank for visual observation, and could not be seen with the naked eye. This suggests that pin hole leaks could occur and not be visually detected in control rods and fuel elements examined underwater. A review of the rod calibrations showed that the leak had not caused a loss in rod worth. Slides will be presented showing the bubbles observed during the inspection, together with an unmagnified and magnified view of the pin hole. (author)

  1. Detection of a leaking boron-carbide control rod in a TRIGA Mark I reactor

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Arsenault, L.J.

    1974-01-01

    During a routine quarterly inspection of the boron-carbide control rods of the Omaha Veterans Administration Hospital 18 kW Triga Mark I reactor, a pin hole leak was detected approximately 3 mm from the chamfered edge. The leak was found by observing bubbles when the rod was withdrawn from the reactor tank for visual observation, and could not be seen with the naked eye. This suggests that pin hole leaks could occur and not be visually detected in control rods and fuel elements examined underwater. A review of the rod calibrations showed that the leak had not caused a loss in rod worth. Slides will be presented showing the bubbles observed during the inspection, together with an unmagnified and magnified view of the pin hole. (author)

  2. Amorphisation of boron carbide under slow heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gosset, D., E-mail: Dominique.gosset@cea.fr [CEA Saclay, DEN, DANS, DMN, SRMA, LA2M, Université Paris-Saclay, 91191, Gif/Yvette (France); Miro, S. [CEA Saclay, DEN, DANS, DMN, SRMP, Laboratoire JANNUS, Université Paris-Saclay, 91191, Gif/Yvette (France); Doriot, S. [CEA Saclay, DEN, DANS, DMN, SRMA, LA2M, Université Paris-Saclay, 91191, Gif/Yvette (France); Moncoffre, N. [CNRS/IN2P3/IPNL, 69622, Villeurbanne (France)

    2016-08-01

    Boron carbide B{sub 4}C is widely used as a neutron absorber in nuclear plants. Most of the post-irradiation examinations have shown that the structure of the material remains crystalline, in spite of very high atomic displacement rates. Here, we have irradiated B{sub 4}C samples with 4 MeV Au ions with different fluences at room temperature. Transmission electron microscopy (TEM) and Raman spectroscopy have been performed. The Raman analyses show a high structural disorder at low fluence, around 10{sup −2} displacements per atoms (dpa). However, the TEM observations show that the material remains crystalline up to a few dpa. At high fluence, small amorphous areas a few nanometers large appear in the damaged zone but the long range order is preserved. Moreover, the size and density of the amorphous zones do not significantly grow when the damage increases. On the other hand, full amorphisation is observed in the implanted zone at a Au concentration of about 0.0005. It can be inferred from those results that short range and long range damages arise at highly different fluences, that heavy ions implantation has drastic effects on the structure stability and that in this material self-healing mechanisms are active in the damaged zone.

  3. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  4. Structural stability of boron carbide under pressure proven by spectroscopic studies up to 73 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Chuvashova, Irina [Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth (Germany); Bayerisches Geoinstitut, University of Bayreuth (Germany); Gasharova, Biliana; Mathis, Yves-Laurent [IBPT, Karlsruhe Institute of Technology, Karlsruhe (Germany); Dubrovinsky, Leonid [Bayerisches Geoinstitut, University of Bayreuth (Germany); Dubrovinskaia, Natalia [Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth (Germany)

    2017-11-17

    Being a material of choice for lightweight armor applications, boron carbide has been intensively studied. Its behavior under pressure was investigated using both theoretical and experimental methods, such as powder X-ray diffraction and vibrational spectroscopy. As there is a discrepancy in experimental observations, in the presented work we studied vibrational properties of commercially available, ''nearly stoichiometric'' B{sub 4}C using IR and Raman spectroscopy up to 73 GPa. No phase transitions were found in the entire pressure range. Our results are at odds with the recent report of a phase transition in B{sub 4.3}C at about 40 GPa. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Effects of Oxidation on Oxidation-Resistant Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Windes, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Rebecca [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carroll, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The Advanced Reactor Technology (ART) Graphite Research and Development Program is investigating doped nuclear graphite grades that exhibit oxidation resistance through the formation of protective oxides on the surface of the graphite material. In the unlikely event of an oxygen ingress accident, graphite components within the VHTR core region are anticipated to oxidize so long as the oxygen continues to enter the hot core region and the core temperatures remain above 400°C. For the most serious air-ingress accident which persists over several hours or days the continued oxidation can result in significant structural damage to the core. Reducing the oxidation rate of the graphite core material during any air-ingress accident would mitigate the structural effects and keep the core intact. Previous air oxidation testing of nuclear-grade graphite doped with varying levels of boron-carbide (B4C) at a nominal 739°C was conducted for a limited number of doped specimens demonstrating a dramatic reduction in oxidation rate for the boronated graphite grade. This report summarizes the conclusions from this small scoping study by determining the effects of oxidation on the mechanical strength resulting from oxidation of boronated and unboronated graphite to a 10% mass loss level. While the B4C additive did reduce mechanical strength loss during oxidation, adding B4C dopants to a level of 3.5% or more reduced the as-fabricated compressive strength nearly 50%. This effectively minimized any benefits realized from the protective film formed on the boronated grades. Future work to infuse different graphite grades with silicon- and boron-doped material as a post-machining conditioning step for nuclear components is discussed as a potential solution for these challenges in this report.

  6. Neutron shielding behavior of thermoplastic natural rubber/boron carbide composites

    Science.gov (United States)

    Mat Zali, Nurazila; Yazid, Hafizal; Megat Ahmad, Megat Harun Al Rashid

    2018-01-01

    Many shielding materials have been designed against the harm of different types of radiation to the human body. Today, polymer-based lightweight composites have been chosen by the radiation protection industry. In the present study, thermoplastic natural rubber (TPNR) composites with different weight percent of boron carbide (B4C) fillers (0% to 30%) were fabricated as neutron shielding through melt blending method. Neutron attenuation properties of TPNR/B4C composites have been investigated. The macroscopic cross section (Σ), half value layer (HVL) and mean free path length (λ) of the composites have been calculated and the transmission curves have been plotted. The obtained results show that Σ, HVL and λ greatly depend on the B4C content. Addition of B4C fillers into TPNR matrix were found to enhance the macroscopic cross section values thus decrease the mean free path length (λ) and half value layer (HVL) of the composites. The transmission curves exhibited that the neutron transmission of the composites decreased with increasing shielding thickness. These results showed that TPNR/B4C composites have high potential for neutron shielding applications.

  7. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Fitzsimmons, M.; Pynn, R.

    1997-01-01

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  8. Tungsten carbide and tungsten-molybdenum carbides as automobile exhaust catalysts

    International Nuclear Information System (INIS)

    Leclercq, L.; Daubrege, F.; Gengembre, L.; Leclercq, G.; Prigent, M.

    1987-01-01

    Several catalyst samples of tungsten carbide and W, Mo mixed carbides with different Mo/W atom ratios, have been prepared to test their ability to remove carbon monoxide, nitric oxide and propane from a synthetic exhaust gas simulating automobile emissions. Surface characterization of the catalysts has been performed by X-ray photoelectron spectroscopy (XPS) and selective chemisorption of hydrogen and carbon monoxide. Tungsten carbide exhibits good activity for CO and NO conversion, compared to a standard three-way catalyst based on Pt and Rh. However, this W carbide is ineffective in the oxidation of propane. The Mo,W mixed carbides are markedly different having only a very low activity. 9 refs.; 10 figs.; 5 tabs

  9. Study of boron carbide evolution under neutron irradiation

    International Nuclear Information System (INIS)

    Simeone, D.

    1999-01-01

    Owing to its high neutron efficiency, boron carbide (B 4 C) is used as a neutron absorber in control rods of nuclear plants. Its behaviour under irradiation has been extensively studied for many years. It now seems clear that brittleness of the material induced by the 10 B(n,α) 7 Li capture reaction is due to penny shaped helium bubbles associated to a high strain field around them. However, no model explains the behaviour of the material under neutron irradiation. In order to build such a model, this work uses different techniques: nuclear microprobe X-ray diffraction profile analysis and Raman and Nuclear Magnetic Resonance Spectroscopy to present an evolution model of B 4 C under neutron irradiation. The use of nuclear reactions produced by a nuclear microprobe such as the 7 Li(p,p'γ) 7 Li reaction, allows to measure lithium profile in B 4 C pellets irradiated either in Pressurised Water Reactors or in Fast Breeder Reactors. Examining such profiles enables us to describe the migration of lithium atoms out of B 4 C materials under neutron irradiation. The analysis of X-ray diffraction profiles of irradiated B 4 C samples allows us to quantify the concentrations of helium bubbles as well as the strain fields around such bubbles.Furthermore Raman spectroscopy studies of different B 4 C samples lead us to propose that under neutron irradiation. the CBC linear chain disappears. Such a vanishing of this CBC chain. validated by NMR analysis, may explain the penny shaped of helium bubbles inside irradiated B 4 C. (author)

  10. Hydrogen chemisorption and oxidation of transition metal carbides

    International Nuclear Information System (INIS)

    Bethin, J.R.

    1979-01-01

    A study was made of the catalytic activity of WC, focusing on the possible influence of point defects. The chemisorption of H on WC and titanium oxycarbides was studied with differential scanning calorimetry. The catalytic activity of these materials for oxidation of H was determined by potentiostatic steady-state and potentiodynamic measurements in acid electrolyte. Compositions of WC surfaces were determined by x-ray photoemission and related to the catalytic behavior. Titanium oxycarbide surfaces were analyzed by Auger electron spectroscopy. Of the carbides tested only one WC preparation was able to chemisorb H. Both WC powders investigated catalyzed H oxidation with similar specific activities. Spectroscopic studies showed that the active surface of WC was a mixture of WO 3 and a carbon-deficient WC phase. This result indicates that carbon vacancies are the active sites in tungsten carbide. Theoretical models of a carbon vacancy surrounded by metal atoms suggested by calculations by other workers support this assignment and identify the important role of the W6s level. The measured value of the heat of chemisorption is consistent with the proposed model

  11. Thermal-hydraulics and neutronics studies on the FP7 CP-ESFR oxide and carbide cores

    Energy Technology Data Exchange (ETDEWEB)

    Ammirabile, L.; Tsige-Tamirat, H. [European Commission, JRC, Inst. for Energy, Petten (Netherlands)

    2011-07-01

    In the framework of the the Collaborative Project on European Sodium Fast Reactor (CP-ESFR) two core designs that are currently being proposed for the 3600 MWth sodium-cooled reactor concept: one is based on oxide fuel and the other on carbide fuel. Using the European Safety Assessment Platform (ESAP), JRC-IE has conducted static calculation on neutronics (incl. reactivity coefficients) and thermal-hydraulic characteristics for both oxide and carbide reference cores. The quantities evaluated include: keff, coolant heat-up, void, and Doppler reactivity coefficients, axial and radial expansion reactivity coefficients, pin-by-pin calculated power profiles, average and peak channel temperatures. This paper presents the ESAP models applied in the study together with the relevant results for the oxide and carbide core. (author)

  12. Thermal-hydraulics and neutronics studies on the FP7 CP-ESFR oxide and carbide cores

    International Nuclear Information System (INIS)

    Ammirabile, L.; Tsige-Tamirat, H.

    2011-01-01

    In the framework of the the Collaborative Project on European Sodium Fast Reactor (CP-ESFR) two core designs that are currently being proposed for the 3600 MWth sodium-cooled reactor concept: one is based on oxide fuel and the other on carbide fuel. Using the European Safety Assessment Platform (ESAP), JRC-IE has conducted static calculation on neutronics (incl. reactivity coefficients) and thermal-hydraulic characteristics for both oxide and carbide reference cores. The quantities evaluated include: keff, coolant heat-up, void, and Doppler reactivity coefficients, axial and radial expansion reactivity coefficients, pin-by-pin calculated power profiles, average and peak channel temperatures. This paper presents the ESAP models applied in the study together with the relevant results for the oxide and carbide core. (author)

  13. Dispersion toughened silicon carbon ceramics

    Science.gov (United States)

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  14. Phase Field Theory and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic

    Directory of Open Access Journals (Sweden)

    John D. Clayton

    2014-07-01

    Full Text Available A nonlinear continuum phase field theory is developed to describe amorphization of crystalline elastic solids under shear and/or pressure loading. An order parameter describes the local degree of crystallinity. Elastic coefficients can depend on the order parameter, inelastic volume change may accompany the transition from crystal to amorphous phase, and transitional regions parallel to bands of amorphous material are penalized by interfacial surface energy. Analytical and simple numerical solutions are obtained for an idealized isotropic version of the general theory, for an element of material subjected to compressive and/or shear loading. Solutions compare favorably with experimental evidence and atomic simulations of amorphization in boron carbide, demonstrating the tendency for structural collapse and strength loss with increasing shear deformation and superposed pressure.

  15. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 30-09-2014 to 29-09-2015 4. TITLE AND SUBTITLE The Oxidation Products of Aluminum ...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT

  16. Dosage of boron traces in graphite, uranium and beryllium oxide

    International Nuclear Information System (INIS)

    Coursier, J.; Hure, J.; Platzer, R.

    1955-01-01

    The problem of the dosage of the boron in the materials serving to the construction of nuclear reactors arises of the following way: to determine to about 0,1 ppm close to the quantities of boron of the order of tenth ppm. We have chosen the colorimetric analysis with curcumin as method of dosage. To reach the indicated contents, it is necessary to do a previous separation of the boron and the materials of basis, either by extraction of tetraphenylarsonium fluoborate in the case of the boron dosage in uranium and the beryllium oxide, either by the use of a cations exchanger resin of in the case of graphite. (M.B.) [fr

  17. Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Alver, Ü.; Tanrıverdi, A.

    2016-01-01

    Highlights: • Boron doped ZnO particles are fabricated and embedded into reduced graphene oxide (RGO) by hydrothermal method. • RGO/ZnO:B composites are used as electrodes for supercapacitors. • Presence of boron in RGO/ZnO composites caused increasing the stability and specific capacitance of electrodes. - Abstract: In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).

  18. Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Alver, Ü., E-mail: ualver@ktu.edu.tr [Karadeniz Technical University, Dept. of Metallurgical and Materials Engineering, 61080 Trabzon (Turkey); Tanrıverdi, A. [Kahramanmaras Sutcu Imam University, Department of Physics, 46100 Kahramanmaraş (Turkey)

    2016-08-15

    Highlights: • Boron doped ZnO particles are fabricated and embedded into reduced graphene oxide (RGO) by hydrothermal method. • RGO/ZnO:B composites are used as electrodes for supercapacitors. • Presence of boron in RGO/ZnO composites caused increasing the stability and specific capacitance of electrodes. - Abstract: In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).

  19. Effect of boron oxide on the cubic-to-monoclinic phase transition in yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Florio, D.Z. de; Muccillo, R.

    2004-01-01

    Specimens of yttria fully stabilized zirconia with different amounts of boron oxide have been studied by X-ray diffraction at room temperature and at higher temperatures up to 1250 deg. C. A boron oxide-assisted cubic-to-monoclinic phase transformation was determined in the temperature range 800-1250 deg. C. In situ high temperature X-ray diffraction experiments gave evidences of the dependence of the phase transformation on the heating rate. The possibility of tuning the cubic-monoclinic phase ratio by suitable addition of boron oxide before pressing and sintering is proposed

  20. Manufacture of sintered bricks of high density from beryllium oxide

    International Nuclear Information System (INIS)

    Pointud, R.; Rispal, Ch.; Le Garec, M.

    1959-01-01

    Beryllium oxide bricks of nuclear purity 100 x 100 x 50 and 100 x 100 x 100 mm of very high density (between 2.85 and 3.00) are manufactured by sintering under pressure in graphite moulds at temperatures between 1,750 and 1,850 deg. C, and under a pressure of 150 kg/cm 2 . The physico-chemical state of the saw material is of considerable importance with regard to the success of the sintering operation. In addition, a study of the sintering of a BeO mixture with 3 to 5 per cent of boron introduced in the form of boric acid, boron carbide or elementary boron shows that high densities can only be obtained by sintering under pressure. For technical reasons of manufacture, only the mixture based on boron carbide is used. The sintering is carried out in graphite moulds at 1500 deg. C under 150 kg/cm 2 pressure, and bricks can be obtained with density between 2,85 and 2,90. Laboratory studies and the industrial manufacture of various sinters are described in detail. (author) [fr

  1. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  2. B4C solid target boronization of the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Cekic, M.; Fiksel, G.; Hokin, S.A.; Kendrick, R.D.; Prager, S.C.; Stoneking, M.R.

    1992-10-01

    A solid rod of hot-pressed boron carbide is being used as the source of boron during boronization of MST. The most striking result of this procedure is the reduction in oxygen contamination of the plasma (O III radiation, characteristic of oxygen at the edge, falls by about a factor of 3 after boronization.). The radiated power fraction drops to about half its initial value. Particle reflux from the wall is also lowered, making density control simpler. The rod (12.7 mm diameter) is inserted into the edge plasma of normal high-power RFP discharges. B 4 C is ablated from the surface of the rod and deposited in a thin film (a-B/C:H) on the walls and limiters. The energy flux carried by ''superthermal'' (not ''runaway'') electrons at the edge of MST appears to enhance the efficient, non-destructive ablation of the boron carbide rod

  3. Porosity determination of alumina and boron carbide ceramic samples by gamma ray transmission

    International Nuclear Information System (INIS)

    Moreira, Anderson Camargo; Appoloni, Carlos Roberto

    2009-01-01

    The aim of this work is to apply the Gamma Ray Transmission (GRT), a non destructive technique, for structural characterization of ceramic samples. With this technique, the porosity of Alumina (Al 2 O 3 ) and Boron Carbide (B 4 C) ceramic samples, in tablet format, was determined. The equipment employed is constituted by a 241 Am gamma ray source (59.6 keV and 100mCi), a 2''x2'' diameter NaI (Tl) scintillation detector coupled to a standard gamma ray transmission electronic and a micrometric and automated table for sample movement. The porosity profile of the samples shows a homogeneous porosity distribution, within the spatial resolution of the employed transmission system. The mean porosity determined for Al 2 O 3 and B 4 C were 17.8±1.3% and 3.87±0.43%, respectively. A statistical treatment of these results was performed and showed that the mean porosity values determinate by the GRT are the same as those supplied by the manufacturer. (author)

  4. Properties of p-type amorphous silicon carbide window layers prepared using boron trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    Gandia, J J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Gutierrez, M T [Inst. de Energias Renovables, CIEMAT, Madrid (Spain); Carabe, J [Inst. de Energias Renovables, CIEMAT, Madrid (Spain)

    1993-03-01

    One set (A) of undoped and three sets (B, C and D) of doped hydrogenated amorphous silicon carbide samples have been made in the framework of a research plan for obtaining high quality p-type window layers by radiofrequency glow discharge of silane-based gas mixtures. The samples of sets A and B were made using different RF-power-density to mass-flow ratios for various methane percentages in the gas mixture. The best carbon incorporation in the amorphous silicon lattice was obtained at the highest RF-power density. The properties of sets C and D, prepared using different RF-power densities and silane and methane proportions have been analysed as functions of the concentration of boron trifluoride with respect to silane. In both cases, the optical gap E[sub G], after a slight initial decrease, remains at a value of approximately 2.1 eV without quenching in the doping ranges covered. The best conductivity obtained is 2x10[sup -7] ([Omega] cm)[sup -1]. IR spectra allow to associate these features with the structural quality of the films. (orig.)

  5. Review of the literature for dry reprocessing oxide, metal, and carbide fuel: The AIROX, RAHYD, and CARBOX pyrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, R.C.; Rhee, B.W. [Rockwell International Corp., Canoga Park, CA (United States). Energy Systems Group

    1979-09-30

    The state of the art of dry processing oxide, carbide, and metal fuel has been determined through an extensive literature review. Dry processing in one of the most proliferation resistant fuel reprocessing technologies available to date, and is one of the few which can be exported to other countries. Feasibility has been established for oxide, carbide, and metal fuel on a laboratory scale, and large-scale experiments on oxide and carbide fuel have shown viability of the dry processing concept. A complete dry processing cycle has been demonstrated by multicycle processing-refabrication-reirradiation experiments on oxide fuel. Additional experimental work is necessary to: (1) demonstrate the complete fuel cycle for carbide and metal fuel, (2) optimize dry processing conditions, and (3) establish fission product behavior. Dry process waste management is easier than for an aqueous processing facility since wastes are primarily solids and gases. Waste treatment can be accomplished by techniques which have been, or are being, developed for aqueous plants.

  6. Influence of boron oxide on protective properties of zinc coating on steel

    International Nuclear Information System (INIS)

    Alimov, V.I.; Berezin, A.V.

    1986-01-01

    The authors study the properties of zinc coating when boron oxide is added to the melt for galvanization. The authors found that a rise in the degree of initial deformation of the steel leads to the production of varying thickness of the zinc coating. The results show the favorable influence of small amounts of added boron oxide on the corrosion resistance of a zinc coating on cold-deformed high-carbon steel; this influence is also manifested in the case of deformation of the zinc coating itself

  7. Micromechanical analysis of a hybrid composite—effect of boron carbide particles on the elastic properties of basalt fiber reinforced polymer composite

    Science.gov (United States)

    Krishna Golla, Sai; Prasanthi, P.

    2016-11-01

    A fiber reinforced polymer (FRP) composite is an important material for structural application. The diversified application of FRP composites has become the center of attention for interdisciplinary research. However, improvements in the mechanical properties of this class of materials are still under research for different applications. The reinforcement of inorganic particles in a composite improves its structural properties due to their high stiffness. The present research work is focused on the prediction of the mechanical properties of the hybrid composites where continuous fibers are reinforced in a micro boron carbide particle mixed polypropylene matrix. The effectiveness of the addition of 30 wt. % of boron carbide (B4C) particle contributions regarding the longitudinal and transverse properties of the basalt fiber reinforced polymer composite at various fiber volume fractions is examined by finite element analysis (FEA). The experimental approach is the best way to determine the properties of the composite but it is expensive and time-consuming. Therefore, the finite element method (FEM) and analytical methods are the viable methods for the determination of the composite properties. The FEM results were obtained by adopting a micromechanics approach with the support of FEM. Assuming a uniform distribution of reinforcement and considering one unit-cell of the whole array, the properties of the composite materials are determined. The predicted elastic properties from FEA are compared with the analytical results. The results suggest that B4C particles are a good reinforcement for the enhancement of the transverse properties of basalt fiber reinforced polypropylene.

  8. Helium generation and diffusion in graphite and some carbides

    International Nuclear Information System (INIS)

    Holt, J.B.; Guinan, M.W.; Hosmer, D.W.; Condit, R.H.; Borg, R.J.

    1976-01-01

    The cross section for the generation of helium in neutron irradiated carbon was found to be 654 mb at 14.4 MeV and 744 mb at 14.9 MeV. Extrapolating to 14.1 MeV (the fusion reactor spectrum) gives 615 mb. The diffusion of helium in dense polycrystalline graphite and in pyrographite was measured and found to be D = 7.2 x 10 -7 m 2 s -1 exp (-80 kJ/RT). It is assumed that diffusion is primarily in the basal plane direction in crystals of the graphite. In polycrystalline graphite the path length is a factor of √2 longer than the measured distance due to the random orientation mismatch between successive grains. Isochronal anneals (measured helium release as the specimen is steadily heated) were run and maximum release rates were found at 200 0 C in polycrystalline graphite, 1000 0 C in pyrographite, 1350 0 C in boron carbide, and 1350 0 and 2400 0 C (two peaks) in silicon carbide. It is concluded that in these candidates for curtain materials in fusion reactors the helium releases can probably occur without bubble formation in graphites, may occur in boron carbide, but will probably cause bubble formation in silicon carbide. 7 figures

  9. Additive-assisted synthesis of boride, carbide, and nitride micro/nanocrystals

    International Nuclear Information System (INIS)

    Chen, Bo; Yang, Lishan; Heng, Hua; Chen, Jingzhong; Zhang, Linfei; Xu, Liqiang; Qian, Yitai; Yang, Jian

    2012-01-01

    General and simple methods for the syntheses of borides, carbides and nitrides are highly desirable, since those materials have unique physical properties and promising applications. Here, a series of boride (TiB 2 , ZrB 2 , NbB 2 , CeB 6 , PrB 6 , SmB 6 , EuB 6 , LaB 6 ), carbide (SiC, TiC, NbC, WC) and nitride (TiN, BN, AlN, MgSiN 2 , VN) micro/nanocrystals were prepared from related oxides and amorphous boron/active carbon/NaN 3 with the assistance of metallic Na and elemental S. In-situ temperature monitoring showed that the reaction temperature could increase quickly to ∼850 °C, once the autoclave was heated to 100 °C. Such a rapid temperature increase was attributed to the intense exothermic reaction between Na and S, which assisted the formation of borides, carbides and nitrides. The as-obtained products were characterized by XRD, SEM, TEM, and HRTEM techniques. Results in this report will greatly benefit the future extension of this approach to other compounds. - Graphical abstract: An additive-assisted approach is successfully developed for the syntheses of borides, carbides and nitrides micro/nanocrystals with the assistance of the exothermic reaction between Na and S. Highlights: ► An additive-assisted synthesis strategy is developed for a number of borides, carbides and nitrides. ► The reaction mechanism is demonstrated by the case of SiC nanowires. ► The formation of SiC nanowires is initiated by the exothermic reaction of Na and S.

  10. Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors

    Science.gov (United States)

    Alver, Ü.; Tanrıverdi, A.

    2016-08-01

    In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).

  11. Oxidation-enhanced diffusion of boron in very low-energy N2+-implanted silicon

    Science.gov (United States)

    Skarlatos, D.; Tsamis, C.; Perego, M.; Fanciulli, M.

    2005-06-01

    In this article we study the interstitial injection during oxidation of very low-energy nitrogen-implanted silicon. Buried boron δ layers are used to monitor the interstitial supersaturation during the oxidation of nitrogen-implanted silicon. No difference in boron diffusivity enhancement was observed compared to dry oxidation of nonimplanted samples. This result is different from our experience from N2O oxynitridation study, during which a boron diffusivity enhancement of the order of 20% was observed, revealing the influence of interfacial nitrogen on interstitial kinetics. A possible explanation may be that implanted nitrogen acts as an excess interstitial sink in order to diffuse towards the surface via a non-Fickian mechanism. This work completes a wide study of oxidation of very low-energy nitrogen-implanted silicon related phenomena we performed within the last two years [D. Skarlatos, C. Tsamis, and D. Tsoukalas, J. Appl. Phys. 93, 1832 (2003); D. Skarlatos, E. Kapetanakis, P. Normand, C. Tsamis, M. Perego, S. Ferrari, M. Fanciulli, and D. Tsoukalas, J. Appl. Phys. 96, 300 (2004)].

  12. Effect of molybdenum, vanadium, boron on mechanical properties of high chromium white cast iron in as-cast condition

    Science.gov (United States)

    Nurjaman, F.; Sumardi, S.; Shofi, A.; Aryati, M.; Suharno, B.

    2016-02-01

    In this experiment, the effect of the addition carbide forming elements on high chromium white cast iron, such as molybdenum, vanadium and boron on its mechanical properties and microstructure was investigated. The high chromium white cast iron was produced by casting process and formed in 50 mm size of grinding balls with several compositions. Characterization of these grinding balls was conducted by using some testing methods, such as: chemical and microstructure analysis, hardness, and impact test. From the results, the addition of molybdenum, vanadium, and boron on high chromium white cast iron provided a significant improvement on its hardness, but reduced its toughness. Molybdenum induced fully austenitic matrix and Mo2C formation among eutectic M7C3 carbide. Vanadium was dissolved in the matrix and carbide. While boron was played a role to form fine eutectic carbide. Grinding balls with 1.89 C-13.1 Cr-1.32 Mo-1.36 V-0.00051 B in as-cast condition had the highest hardness, which was caused by finer structure of eutectic carbide, needle like structure (upper bainite) matrix, and martensite on its carbide boundary.

  13. Synthesis, Characterization, and Evaluation of Boron-Doped Iron Oxides for the Photocatalytic Degradation of Atrazine under Visible Light

    Directory of Open Access Journals (Sweden)

    Shan Hu

    2012-01-01

    Full Text Available Photocatalytic degradation of atrazine by boron-doped iron oxides under visible light irradiation was investigated. In this work, boron-doped goethite and hematite were successfully prepared by sol-gel method with trimethylborate as boron precursor. The powders were characterized by XRD, UV-vis diffuse reflectance spectra, and porosimetry analysis. The results showed that boron doping could influence the crystal structure, enlarge the BET surface area, improve light absorption ability, and narrow their band-gap energy. The photocatalytic activity of B-doped iron oxides was evaluated in the degradation of atrazine under the visible light irradiation, and B-doped iron oxides showed higher atrazine degradation rate than that of pristine iron oxides. Particularly, B-doped goethite exhibited better photocatalytic activity than B-doped hematite.

  14. Boron carbide reinforced aluminium matrix composite: Physical, mechanical characterization and mathematical modelling

    International Nuclear Information System (INIS)

    Shirvanimoghaddam, K.; Khayyam, H.; Abdizadeh, H.; Karbalaei Akbari, M.; Pakseresht, A.H.; Ghasali, E.; Naebe, M.

    2016-01-01

    This paper investigates the manufacturing of aluminium–boron carbide composites using the stir casting method. Mechanical and physical properties tests to obtain hardness, ultimate tensile strength (UTS) and density are performed after solidification of specimens. The results show that hardness and tensile strength of aluminium based composite are higher than monolithic metal. Increasing the volume fraction of B_4C, enhances the tensile strength and hardness of the composite; however over-loading of B_4C caused particle agglomeration, rejection from molten metal and migration to slag. This phenomenon decreases the tensile strength and hardness of the aluminium based composite samples cast at 800 °C. For Al-15 vol% B_4C samples, the ultimate tensile strength and Vickers hardness of the samples that were cast at 1000 °C, are the highest among all composites. To predict the mechanical properties of aluminium matrix composites, two key prediction modelling methods including Neural Network learned by Levenberg–Marquardt Algorithm (NN-LMA) and Thin Plate Spline (TPS) models are constructed based on experimental data. Although the results revealed that both mathematical models of mechanical properties of Al–B_4C are reliable with a high level of accuracy, the TPS models predict the hardness and tensile strength values with less error compared to NN-LMA models.

  15. A DMS kinetic study of the boron oxides vapor in the combustion front of SHS system Mo + B

    International Nuclear Information System (INIS)

    Kashireninov, O.E.; Yuranov, I.A.

    1994-01-01

    The distribution of the boron oxides vapor in the combustion wave of the SHS system Mo + B has been studied by the dynamic mass spectrometry technique (DMS) to test the thermodynamically based hypothesis for the key role of gas-phase transport in solid-state combustion. The molecular beam sampling of the gases over the burning tablet was performed by a stationary probe cone from the moving combustion wave. Ion currents of boron oxides were recorded at 10--20 ms intervals that afforded spatial resolution of 0.1--0.2 mm. It has been found that the distribution of the boron oxides vapor pressure along the combustion wave corresponds to the known zones of preheating, reaction, and postcombustion. The rapid increase of B 2 O 2 pressure takes place in the preheating zone as a result of the reaction B(s) + B 2 O 3 (g) = B 2 O 2 (g). Boron oxides are not observed over the reaction zone because of their complete decay in the reaction with Mo(s) to form molybdenum boride(s). The appearance The appearance of boron oxide vapors over the postcombustion zone is due to the evaporation of B 2 O 3 (l). The effective kinetic parameters are estimated from the data obtained. The results show that solid-state combustion of the Mo + B system proceeds predominantly through formation of gas-phase boron oxides

  16. Plasma-induced high efficient synthesis of boron doped reduced graphene oxide for supercapacitors

    DEFF Research Database (Denmark)

    Li, Shaobo; Wang, Zhaofeng; Jiang, Hanmei

    2016-01-01

    In this work, we presented a novel route to synthesize boron doped reduced graphene oxide (rGO) by using the dielectric barrier discharge (DBD) plasma technology under ambient conditions. The doping of boron (1.4 at%) led to a significant improvement in the capacitance of rGO and supercapacitors ...

  17. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Unknown

    tions, they concluded that either reaction sintering or liquid phase .... α-6H silicon carbide single crystal by three different laboratories ... silicon carbide particles by the overall reaction .... layer displacement is likely to occur in such a manner as.

  18. Doped Boron Carbide-Based Polymers: Fundamental Studies of a Novel Class of Materials for Enhanced Neutron Detection

    Science.gov (United States)

    2016-03-01

    heterojunction diodes fabricated from these films show no evidence of Schottky barrier formation or of significant leakage current in reverse bias [8...all of summer 2012 for this purpose. Related project work: measuring the electronic structure and the surface oxide of thorium oxide ThO2 with Tony...Detecting and Nanoelectronic Applications, Techon 2012. 4. “The History and Development of Boron Carbon Alloy Devices and Rare Earth Heterojunction

  19. Study through potentiodynamic techniques of the corrosion resistance of different aluminium base MMC's with boron additions

    International Nuclear Information System (INIS)

    Abenojar, J.; Bautista, A.; Guzman, S.; Velasco, F.; Martinez, M.A.

    2009-01-01

    This paper compares a wrought aluminium with a PM aluminium and PM aluminium alloys with boron-base additions, containing boron carbide and Fe/B (obtained by mechanical alloying during 36 hours from a Fe-B 50% mixture by weight). The effect of sintering temperature for the Fe/B containing material and the effect of mechanical alloying for the boron carbide containing aluminium alloy on the corrosion resistance of those materials have been studied. Their behaviour is followed through cyclic anodic polarization curves in chloride media. In the Al+20%Fe/B composite, low sintering temperatures (650- 950 deg C) exert a negative effect. However, when the material was sintered at high temperature (1000-1100 deg C) its behaviour was very similar to the PM pure aluminium. The effect of mechanical alloying studied in aluminium with boron carbide was also important in corrosion resistance, finding a lower corrosion rate in the mechanically alloyed material. (author)

  20. Natural precursor based hydrothermal synthesis of sodium carbide for reactor applications

    Science.gov (United States)

    Swapna, M. S.; Saritha Devi, H. V.; Sebastian, Riya; Ambadas, G.; Sankararaman, S.

    2017-12-01

    Carbides are a class of materials with high mechanical strength and refractory nature which finds a wide range of applications in industries and nuclear reactors. The existing synthesis methods of all types of carbides have problems in terms of use of toxic chemical precursors, high-cost, etc. Sodium carbide (Na2C2) which is an alkali metal carbide is the least explored one and also that there is no report of low-cost and low-temperature synthesis of sodium carbide using the eco-friendly, easily available natural precursors. In the present work, we report a simple low-cost, non-toxic hydrothermal synthesis of refractory sodium carbide using the natural precursor—Pandanus. The formation of sodium carbide along with boron carbide is evidenced by the structural and morphological characterizations. The sample thus synthesized is subjected to field emission scanning electron microscopy (FESEM), x-ray powder diffraction (XRD), ultraviolet (UV)—visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman, and photoluminescent (PL) spectroscopic techniques.

  1. The optical properties of boron carbide near boron K-edge inside periodical multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitriy; Schlemper, Christoph; Pietsch, Ullrich [University of Siegen (Germany)

    2010-07-01

    Multilayer mirrors made for the use in the wavelength range near K-edge of boron (188 eV) are of great interest for X-ray fluorescence analysis of boron content in doped semiconductors, plasma diagnostics, astronomy and lithography. Moreover, multilayer mirrors composed by a metal and a low Z element like boron are used as optical elements in both the soft x-ray spectral range as well as at higher photon energies on 3rd generation synchrotron beamlines. Using an energy-resolved photon-in-photon-out method we reconstructed the optical data from energy dependence of both integrated peak intensity and FWHM of the 1st order ML Bragg peak measured at the UHV triple axis soft-x-ray reflectometer at BESSY II. The experiments clearly demonstrate that the peak shape of the ML Bragg peak is most sensitive to any kind of electronic excitation and recombination in solid. The soft-ray reflectivity can give detailed information for MLs with thickness up to several tens of nanometers. In addition, measurements close to a resonance edge probe the chemical state of the respective constituent accompanied with a high sensitivity of changes close to the sample surface.

  2. Effect of mechanical and thermal loading on boron carbide particles reinforced Al-6061 alloy

    International Nuclear Information System (INIS)

    Manjunatha, B.; Niranjan, H.B.; Satyanarayana, K.G.

    2015-01-01

    Metal Matrix Composites (MMC) considered as one of the ‘advanced materials’ have evoked growing interest during the last three decades due to their high performance and applications in strategic sectors. These composites exhibit unique and attractive properties over the monolithic alloys, but suffer from low ductility, which makes them not so attractive for some of the applications where high toughness is one of the design criteria. This limitation of MMCs has been overcome by resorting to various treatments such as mechanical and thermal loading. Considering very limited reports available on Al alloy reinforced with boron carbide (B 4 C) particles, this paper presents (i) preparation of Al-6061 alloy reinforced with 1.5–10 wt% B 4 C, (ii) subjecting them to mechanical and thermal treatments and (iii) characterization of all the above samples. Specific ultimate tensile strength and hardness of all the composites were higher than those of matrix. Also, these values increased with increasing amount of particles, with composites containing 8 wt% B 4 C showing the maximum values in all the three conditions. These observations are supported by the uniform distribution of particles in the matrix as observed in their microstructure

  3. Natural cotton as precursor for the refractory boron carbide—a hydrothermal synthesis and characterization

    Science.gov (United States)

    Saritha Devi, H. V.; Swapna, M. S.; Raj, Vimal; Ambadas, G.; Sankararaman, S.

    2018-01-01

    Boron carbide (B4C) is an excellent covalent carbide that finds applications in industries and nuclear power plants. The present synthesis methods of boron carbide are expensive and involve the use of toxic chemicals that adversely affect environment. In the present work, we report for the first time the use of the hydrothermal method for converting the cellulose from cotton as the carbon precursor for B4C. The carbon precursor is converted into functionalized porous carbonaceous material by hydrothermal treatment followed by sodium borohydride. It is further treated with boric acid to make it a B4C precursor. The precursor is characterized by UV-visible diffuse reflectance, Raman, Fourier transform infrared, photoluminescent and energy dispersive spectroscopy. The morphology and structure analysis is carried out using field emission scanning electron microscopy and x-ray diffraction techniques. The results of structural and optical characterization of the sample synthesized are compared with the commercial B4C. The thermal stability of the sample is studied by thermogravimetric analysis. The sample annealed at 700 °C is found to be B4C devoid of amorphous carbon with a yield of 44.7%. The analysis reveals the formation of boron carbide from the sample.

  4. Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors.

    Science.gov (United States)

    Li, Shaobo; Wang, Zhaofeng; Jiang, Hanmei; Zhang, Limei; Ren, Jingzheng; Zheng, Mingtao; Dong, Lichun; Sun, Luyi

    2016-09-21

    In this work, we presented a novel route to synthesize boron doped reduced graphene oxide (rGO) by using the dielectric barrier discharge (DBD) plasma technology under ambient conditions. The doping of boron (1.4 at%) led to a significant improvement in the capacitance of rGO and supercapacitors based on the as-synthesized B-rGO exhibited an outstanding specific capacitance.

  5. Surface impurity removal from DIII-D graphite tiles by boron carbide grit blasting

    International Nuclear Information System (INIS)

    Lee, R.L.; Hollerbach, M.A.; Holtrop, K.L.; Kellman, A.G.; Taylor, P.L.; West, W.P.

    1993-11-01

    During the latter half of 1992, the DIII-D tokamak at General Atomics (GA) underwent several modifications of its interior. One of the major tasks involved the removal of accumulated metallic impurities from the surface of the graphite tiles used to line the plasma facing surfaces inside of the tokamak. Approximately 1500 graphite tiles and 100 boron nitride tiles from the tokamak were cleaned to remove the metallic impurities. The cleaning process consisted of several steps: the removed graphite tiles were permanently marked, surface blasted using boron carbide (B 4 C) grit media (approximately 37 μm. diam.), ultrasonically cleaned in ethanol to remove loose dust, and outgassed at 1000 degrees C. Tests were done using, graphite samples and different grit blaster settings to determine the optimum propellant and abrasive media pressures to remove a graphite layer approximately 40-50 μm deep and yet produce a reasonably smooth finish. EDX measurements revealed that the blasting technique reduced the surface Ni, Cr, and Fe impurity levels to those of virgin graphite. In addition to the surface impurity removal, tritium monitoring was performed throughout the cleaning process. A bubbler system was set up to monitor the tritium level in the exhaust gas from the grit blaster unit. Surface wipes were also performed on over 10% of the tiles. Typical surface tritium concentrations of the tiles were reduced from about 500 dpm/100 cm 2 to less than 80 dpm/100 cm 2 following the cleaning. This tile conditioning, and the installation of additional graphite tiles to cover a high fraction of the metallic plasma facing surfaces, has substantially reduced metallic impurities in the plasma discharges which has allowed rapid recovery from a seven-month machine opening and regimes of enhanced plasma energy confinement to be more readily obtained. Safety issues concerning blaster operator exposure to carcinogenic metals and radioactive tritium will also be addressed

  6. Tritium release from fast neutron irradiated boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.

    1977-01-01

    A high-energy neutron reaction with boron produces tritium. In the LMFBR control material, B 4 C, most of the tritium that is generated remains in the pellets. Potential retention mechanisms are discussed. 5 figures

  7. Conceptual design study of LMFBR core with carbide fuel

    International Nuclear Information System (INIS)

    Tezuka, H.; Hojuyama, T.; Osada, H.; Ishii, T.; Hattori, S.; Nishimura, T.

    1987-01-01

    Carbide fuel is a hopeful candidate for demonstration FBR(DFBR) fuel from the plant cost reduction point of view. High thermal conductivity and high heavy metal content of carbide fuel lead to high linear heat rate and high breeding ratio. We have analyzed carbide fuel core characteristics and have clarified the concept of carbide fuel core. By survey calculation, we have obtained a correlation map between core parameters and core characteristics. From the map, we have selected a high efficiency core whose features are better than those of an oxide core, and have obtained reactivity coefficients. The core volume and the reactor fuel inventory are approximately 20% smaller, and the burn-up reactivity loss is 50% smaller compared with the oxide fuel core. These results will reduce the capital cost. The core reactivity coefficients are similar to the conventional oxide DFBR's. Therefore the carbide fuel core is regarded as safe as the oxide core. Except neutron fluence, the carbide fuel core has better nuclear features than the oxide core

  8. Chemical erosion of sintered boron carbide due to H+ impact

    International Nuclear Information System (INIS)

    Davis, J.W.; Haasz, A.A.

    1990-06-01

    The production of hydrocarbons and boron hydrides due to H + bombardment of sintered B 4 C has been investigated as a function of sample temperature and incident ion energy. While hydrocarbon production was observed, the yields were approximately two orders of magnitude smaller than observed for graphite. There was no evidence to indicate the production of any volatile boron-containing compounds. (3 figs., 11 refs.)

  9. High temperature synthesis of ceramic composition by directed reaction of molten titanium or zirconium with boron carbide

    International Nuclear Information System (INIS)

    Johnson, W.B.

    1990-01-01

    Alternative methods of producing ceramics and ceramic composites include sintering, hot pressing and more recently hot isostatic pressing (HIP) and self-propagating high temperature synthesis (SHS). Though each of these techniques has its advantages, each suffers from several restrictions as well. Sintering may require long times at high temperatures and for most materials requires sintering aids to get full density. These additives can, and generally do, change (often degrade) the properties of the ceramic. Hot pressing and hot isostatic pressing are convenient methods to quickly prepare samples of some materials to full density, but generally are expensive and may damage some types of reinforcements during densification. This paper focuses on the preparation and processing of composites prepared by the directed reaction of molten titanium or zirconium with boron carbide. Advantages and disadvantages of this approach when compared to traditional methods are discussed, with reference to specific examples. Examples of microstructure are properties of these materials are reported

  10. Preparation and oxidation protection of CVD SiC/a-BC/SiC coatings for 3D C/SiC composites

    International Nuclear Information System (INIS)

    Liu Yongsheng; Zhang Litong; Cheng Laifei; Yang Wenbin; Zhang Weihua; Xu Yongdong

    2009-01-01

    An amorphous boron carbide (a-BC) coating was prepared by LPCVD process from BCl 3 -CH 4 -H 2 -Ar system. XPS result showed that the boron concentration was 15.0 at.%, and carbon was 82.0 at.%. One third of boron was distributed to a bonding with carbon and 37.0 at.% was dissolved in graphite lattice. A multiple-layered structure of CVD SiC/a-BC/SiC was coated on 3D C/SiC composites. Oxidation tests were conducted at 700, 1000, and 1200 deg. C in 14 vol.% H 2 O/8 vol.% O 2 /78 vol.% Ar atmosphere up to 100 h. The 3D C/SiC composites with the modified coating system had a good oxidation resistance. This resulted in the high strength retained ratio of the composites even after the oxidation.

  11. [Synergetic effects of silicon carbide and molecular sieve loaded catalyst on microwave assisted catalytic oxidation of toluene].

    Science.gov (United States)

    Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong

    2013-06-01

    Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly.

  12. Alloy Design of Martensitic 9Cr-Boron Steel for A-USC Boiler at 650 °C — Beyond Grades 91, 92 and 122

    Science.gov (United States)

    Abe, Fujio; Tabuchi, M.; Tsukamoto, S.

    Boundary hardening is shown to be the most important strengthening mechanism in creep of tempered martensitic 9% Cr steel base metal and welded joints at 650 °C. The enrichment of soluble boron near prior austenite grain boundaries (PAGBs) by the GB segregation is essential for the reduction of coarsening rate of M23C6 carbides near PAGBs, enhancing the boundary and sub-boundary hardening near PAGBs, and also for the change in α/γ transformation behavior in heat-affected-zone (HAZ) of welded joints during heating of welding, producing the same microstructure in HAZ as in the base metal. Excess addition of nitrogen to the 9Cr-boron steel promotes the formation of boron nitrides during normalizing heat treatment, which consumes most of soluble boron and degrades the creep strength. A NIMS 9Cr steel (MARBN; Martensitic 9Cr steel strengthened by boron and MX nitrides) with 120-150 ppm boron and 60-90 ppm nitrogen, where no boron nitride forms during normalizing heat treatment, exhibits not only much higher creep strength of base metal than Grades 91, 92 and 122 but also substantially no degradation in creep strength due to Type IV fracture in HAZ of welded joints at 650°C. The protective Cr2O3-rich scale forms on the surface of 9Cr steel by pre-oxidation treatment in Ar gas, which significantly improves the oxidation resistance in steam at 650°C.

  13. Seebeck effect of some thin film carbides

    International Nuclear Information System (INIS)

    Beensh-Marchwicka, G.; Prociow, E.

    2002-01-01

    Several materials have been investigated for high-temperature thin film thermocouple applications. These include silicon carbide with boron (Si-C-B), ternary composition based on Si-C-Mn, fourfold composition based on Si-C-Zr-B and tantalum carbide (TaC). All materials were deposited on quartz or glass substrates using the pulse sputter deposition technique. Electrical conduction and thermoelectric power were measured for various compositions at 300-550 K. It has been found, that the efficiency of thermoelectric power of films containing Si-C base composition was varied from 0.0015-0.034 μW/cmK 2 . However for TaC the value about 0.093 μW/cmK 2 was obtained. (author)

  14. Abrasive wear behavior of heat-treated ABC-silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da; Ritchie, Robert O.; De Jonghe, Lutgard C.

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  15. Microstructure evolution of SiC sintered bodies activated by boron and carbon

    International Nuclear Information System (INIS)

    Gubernat, A.; Stobierski, L.

    2003-01-01

    Investigation on the role of sintering aids on densification of silicon carbide indicate that boron and carbon modify mass transport mechanisms. It leads to changes of microstructure of polycrystalline silicon carbide. In the present work the influence of varying proportions of sintering aids on the material microstructure was studied. The microstructural changes were related to the changes of the selected properties of the resulting materials. (author)

  16. Metallographic preparation of sintered oxides, carbides and nitrides of uranium and plutonium

    International Nuclear Information System (INIS)

    Martin, A.; Arles, L.

    1967-12-01

    We describe the methods of polishing, attack and coloring used at the section of plutonium base ceramics studies. These methods have stood the test of experience on the uranium and plutonium carbides, nitrides and carbonitrides as well on the mixed uranium and plutonium oxides. These methods have been particularly adapted to fit to the low dense and sintered samples [fr

  17. Laser cladding in-situ carbide particle reinforced Fe-based composite coatings with rare earth oxide addition

    Institute of Scientific and Technical Information of China (English)

    吴朝锋; 马明星; 刘文今; 钟敏霖; 张红军; 张伟明

    2009-01-01

    Particulate reinforced metal matrix composite(PR-MMC) has excellent properties such as good wear resistance,corrosion resistance and high temperature properties.Laser cladding is usually used to form PR-MMC on metal surface with various volume fractions of ceramic particles.Recent literatures showed that laser melting of powder mixture containing carbon and carbide-forming elements,was favorable for the formation of in-situ synthesized carbide particles.In this paper,rare earth oxide(RE2O3) was added into t...

  18. Fine Structure Study of the Plasma Coatings B4C-Ni-P

    Science.gov (United States)

    Kornienko, E. E.; Bezrukova, V. A.; Kuz'min, V. I.; Lozhkin, V. S.; Tutunkova, M. K.

    2017-12-01

    The article considers structure of coatings formed of the B4C-Ni-P powder. The coatings were deposited using air-plasma spraying with the unit for annular injection of powder. The pipes from steel 20 (0.2 % C) were used as a substrate. The structure and phase composition of the coatings were studied by optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. It is shown that high-density composite coatings consisting of boron carbide particles distributed in the nickel boride metal matrix are formed using air-plasma spraying. The areas with round inclusions characterized by the increased amount of nickel, phosphorus and boron are located around the boron carbide particles. Boron oxides and nickel oxides are also present in the coatings. Thin interlayers with amorphous-crystalline structure are formed around the boron carbide particles. The thickness of these interlayers does not exceed 1 μm. The metal matrix material represents areas with nanocrystalline structure and columnar crystals.

  19. Nanomechanical and in situ TEM characterization of boron carbide thin films on helium implanted substrates: Delamination, real-time cracking and substrate buckling

    Energy Technology Data Exchange (ETDEWEB)

    Framil Carpeño, David, E-mail: david.framil-carpeno@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand); Ohmura, Takahito; Zhang, Ling [Strength Design Group, Structural Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Leveneur, Jérôme [National Isotope Centre, GNS Science, 30 Gracefield Road, Gracefield, Lower Hutt 5010 (New Zealand); Dickinson, Michelle [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand); Seal, Christopher [International Centre for Advanced Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Kennedy, John [National Isotope Centre, GNS Science, 30 Gracefield Road, Gracefield, Lower Hutt 5010 (New Zealand); Hyland, Margaret [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand)

    2015-07-15

    Boron carbide coatings deposited on helium-implanted and unimplanted Inconel 600 were characterized using a combination of nanoindentation and transmission electron microscopy. Real-time coating, cracking and formation of slip bands were recorded using in situ TEM-nanoindentation, allowing site specific events to be correlated with specific features in their load–displacement curves. Cross-sections through the residual indent impression showed a correlation between pop-outs in the load–displacement curves and coating delamination, which was confirmed with cyclic indentation experiments. Inconel exhibits (-11-1) and (1-1-1) twin variants in its deformed region beneath the indenter, organized in bands with a ladder-like arrangement. The nanomechanical properties of the metal–ceramic coating combinations exhibit a marked substrate effect as a consequence of helium implantation.

  20. Nanomechanical and in situ TEM characterization of boron carbide thin films on helium implanted substrates: Delamination, real-time cracking and substrate buckling

    International Nuclear Information System (INIS)

    Framil Carpeño, David; Ohmura, Takahito; Zhang, Ling; Leveneur, Jérôme; Dickinson, Michelle; Seal, Christopher; Kennedy, John; Hyland, Margaret

    2015-01-01

    Boron carbide coatings deposited on helium-implanted and unimplanted Inconel 600 were characterized using a combination of nanoindentation and transmission electron microscopy. Real-time coating, cracking and formation of slip bands were recorded using in situ TEM-nanoindentation, allowing site specific events to be correlated with specific features in their load–displacement curves. Cross-sections through the residual indent impression showed a correlation between pop-outs in the load–displacement curves and coating delamination, which was confirmed with cyclic indentation experiments. Inconel exhibits (-11-1) and (1-1-1) twin variants in its deformed region beneath the indenter, organized in bands with a ladder-like arrangement. The nanomechanical properties of the metal–ceramic coating combinations exhibit a marked substrate effect as a consequence of helium implantation

  1. Non-oxidic nanoscale composites: single-crystalline titanium carbide nanocubes in hierarchical porous carbon monoliths.

    Science.gov (United States)

    Sonnenburg, Kirstin; Smarsly, Bernd M; Brezesinski, Torsten

    2009-05-07

    We report the preparation of nanoscale carbon-titanium carbide composites with carbide contents of up to 80 wt%. The synthesis yields single-crystalline TiC nanocubes 20-30 nm in diameter embedded in a hierarchical porous carbon matrix. These composites were generated in the form of cylindrical monoliths but can be produced in various shapes using modern sol-gel and nanocasting methods in conjunction with carbothermal reduction. The monolithic material is characterized by a combination of microscopy, diffraction and physisorption. Overall, the results presented in this work represent a concrete design template for the synthesis of non-oxidic nanoscale composites with high surface areas.

  2. Borides and vitreous compounds sintered as high-energy fuels

    International Nuclear Information System (INIS)

    Mota, J.M.; Abenojar, J.; Martinez, M.A.; Velasco, F.; Criado, A.J.

    2004-01-01

    Boron was chosen as fuel in view of its excellent thermodynamic values for combustion, as compared to traditional fuels. The problem of the boron in combustion is the formation of a surface layer of oxide, which delays the ignition process, reducing the performance of the rocket engine. This paper presents a high-energy fuel for rocket engines. It is composed of sintered boron (borides and carbides and vitreous compounds) with a reducing chemical agent. Borides and boron carbide were prepared since the combustion heat of the latter is similar to that of the amorphous boron (in: K.K. Kuo (Ed.), Boron-Based Solid Propellant and Solid Fuel, Vol. 427, CRC Press, Boca Raton, FL, 1993). Several chemical reducing elements were used, such as aluminum, magnesium, and coke. As the raw material for boron, different compounds were used: amorphous boron, boric acid and boron oxide

  3. Electrophoretic deposits of boron on duralumin plates used for measuring neutron flux

    International Nuclear Information System (INIS)

    Lang, F.M.; Magnier, P.; Finck, C.

    1956-01-01

    Preparation of boron thin film deposits of around 1 mg per cm 2 on duralumin plates with a diameter of 8 cm. The boron coated plates for ionization chambers were originally prepared at the CEA by pulverization of boron carbides on sodium silicates. This method is not controlling precisely enough the quantity of boron deposit. Thus, an electrophoretic method is considered for a better control of the quantity of boron deposit in the scope of using in the future boron 10 which is costly and rare. The method described by O. Flint is not satisfying enough and a similar electrophoretic process has been developed. Full description of the method is given as well as explanation of the use of dried methanol as solvent, tannin as electrolyte and magnesium chloride to avoid alumina formation. (M.P.)

  4. Ceramic-bonded abrasive grinding tools

    Science.gov (United States)

    Holcombe, Jr., Cressie E.; Gorin, Andrew H.; Seals, Roland D.

    1994-01-01

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  5. Ceramic-bonded abrasive grinding tools

    Science.gov (United States)

    Holcombe, C.E. Jr.; Gorin, A.H.; Seals, R.D.

    1994-11-22

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  6. Joining elements of silicon carbide

    International Nuclear Information System (INIS)

    Olson, B.A.

    1979-01-01

    A method of joining together at least two silicon carbide elements (e.g.in forming a heat exchanger) is described, comprising subjecting to sufficiently non-oxidizing atmosphere and sufficiently high temperature, material placed in space between the elements. The material consists of silicon carbide particles, carbon and/or a precursor of carbon, and silicon, such that it forms a joint joining together at least two silicon carbide elements. At least one of the elements may contain silicon. (author)

  7. Structure and microhardness of alloy VT22 granules additionally doped with carbon and boron

    International Nuclear Information System (INIS)

    Sysoeva, N.V.; Polyakova, I.G.; Karpova, I.G.

    1996-01-01

    Aimed to improve heat resistance and strength of titanium base alloys due to carbon and boron additions (up to 0.3%) a study was made into regularities of phase decomposition in VT22 alloy during its rapid quenching from a liquid state on manufacturing granules 100-400 μm in size. Cooling rates on quenching were found to be sufficiently high to prevent precipitating carbides and borides. Subsequent annealing of granules promotes homogeneous precipitation of strengthening phases in the form of titanium carbides and borides, a reasonable amount of carbon and boron remaining in solid solution. An increase in microhardness of annealed granules reaches 20-25% compared to the standard alloy. 6 refs.; 2 figs.; 2 tabs

  8. Characterization and evaluation of boron carbide for plate-impact conditions

    International Nuclear Information System (INIS)

    Holmquist, T. J.; Johnson, G. R.

    2006-01-01

    This article addresses the response of boron carbide (B 4 C) to high-velocity impact. The authors previously characterized this material in 1999, using the Johnson-Holmquist [AIP Conf. Proc. 309, 981 (1994)] (JH-2) model. Since then, there have been additional experimental data presented in the literature that better describe the hydrostatic pressure (including a phase change). In addition, a series of plate-impact experiments (one-dimensional, uniaxial strain) that used configurations that produced either a shock, a shock release, or a shock reshock was performed. These experiments provide material behavior regarding the damage, failed strength, and hydrostat for which previously there has been little or no data. Constitutive model constants were obtained for the Johnson-Holmquist-Beissel [J. Appl. Phys. 94, 1639 (2003)] model using some of these plate-impact experiments. Computations of all the experiments were performed and analyzed to better understand the material response. The analysis provided the following findings: (1) The material fails and loses strength when the Hugoniot elastic limit (HEL) is exceeded. (2) The material has significant strength after failure and gradually increases as the pressure increases. (3) The shear modulus does not degrade when the material fails (as has been postulated), but rather increases. (4) When the material is reloaded from an initial shocked (failed) state, the loading appears to be elastic, indicating the material is not on the yield surface after failure. To provide more insight into the behavior of B 4 C, the strength versus pressure response was compared to that of silicon carbide (SiC). The strength of SiC increases as the pressure increases beyond the HEL, probably due to pressure hardening or strain hardening. It appears that B 4 C does not experience any hardening effects and fails at the HEL. Although the HEL for B 4 C is higher than that of SiC, the hardening ability of SiC produces a similar maximum strength

  9. Boron-Doped Diamond Electrodes for the Electrochemical Oxidation and Cleavage of Peptides

    NARCIS (Netherlands)

    Roeser, Julien; Alting, Niels F. A.; Permentier, Hjalmar P.; Bruins, Andries P.; Bischoff, Rainer

    2013-01-01

    Electrochemical oxidation of peptides and proteins is traditionally performed on carbon-based electrodes. Adsorption caused by the affinity of hydrophobic and aromatic amino acids toward these surfaces leads to electrode fouling. We compared the performance of boron-doped diamond (BDD) and glassy

  10. One-pot synthesis of reduced graphene oxide@boron nitride nanosheet hybrids with enhanced oxidation-resistant properties

    Science.gov (United States)

    Sun, Guoxun; Bi, Jianqiang; Wang, Weili; Zhang, Jingde

    2017-12-01

    Reduced graphene oxide@boron nitride nanosheet (RGO@BNNS) hybrids were prepared for the first time using template-assisted autoclave pyrolysis technique at the temperature as low as 600 °C. The developed method can be scaled into gram-scale synthesis of the material. The BNNSs combine with RGO through van der Waals interplanar interaction without damaging the structures of RGO. Such ultrathin BNNSs on the surface of RGO can serve as high-performance oxidation-resistant coatings in oxidizing atmospheres at high temperatures. The RGO@BNNS hybrids can sustain up to 800 °C over a relatively long period of time.

  11. Iron carbide on titania surface modified with group VA oxides as Fischer-Tropsch catalysts

    International Nuclear Information System (INIS)

    Wachs, I.E.; Fiato, R.A.; Chersich, C.C.

    1986-01-01

    A catalyst is described comprising iron carbide supported on a surface modified titania wherein the support comprises an oxide of a metal selected form the group consisting of niobium, vanadium, tantalum or mixture thereof supported on the titania wherein at least a portion of the supported oxide of niobium, vanandium, tantalum or mixture is in a non-crystalline form. The amount of the supported oxide ranges from about 0.5 to 25 weight percent metal oxide on the titania support based on the total support composition and the catalyst contains at least about 2 milligrams of iron, calculated as Fe/sub 2/O/sub 3/, per square meter of support surface

  12. Characterizing the Effect of Laser Power on Laser Metal Deposited Titanium Alloy and Boron Carbide

    Science.gov (United States)

    Akinlabi, E. T.; Erinosho, M. F.

    2017-11-01

    Titanium alloy has gained acceptance in the aerospace, marine, chemical, and other related industries due to its excellent combination of mechanical and corrosion properties. In order to augment its properties, a hard ceramic, boron carbide has been laser cladded with it at varying laser powers between 0.8 and 2.4 kW. This paper presents the effect of laser power on the laser deposited Ti6Al4V-B4C composites through the evolving microstructures and microhardness. The microstructures of the composites exhibit the formation of α-Ti phase and β-Ti phase and were elongated towards the heat affected zone. These phases were terminated at the fusion zone and globular microstructures were found growing epitaxially just immediately after the fusion zone. Good bondings were formed in all the deposited composites. Sample A1 deposited at a laser power of 0.8 kW and scanning speed of 1 m/min exhibits the highest hardness of HV 432 ± 27, while sample A4 deposited at a laser power of 2.0 kW and scanning speed of 1 m/min displays the lowest hardness of HV 360 ± 18. From the hardness results obtained, ceramic B4C has improved the mechanical properties of the primary alloy.

  13. Porous silicon carbide (SIC) semiconductor device

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  14. Compatibility of heat resistant alloys with boron carbide, (4)

    International Nuclear Information System (INIS)

    Baba, Sinichi; Saruta, Toru; Ooka, Kiichi; Tanaka, Isao; Aoyama, Isao

    1985-07-01

    This paper relates to the compatibility test of control rod sheath (Hastelloy XR alloy) and neutron absorber (boronated graphite) for the VHTR, which has been researched and developed by JAERI. The irradiation was conducted by using the OGL-1 irradiation facility in the JMTR in order to study reaction behaviour between Hastelloy XR alloy and boronated graphite as well as to determine a reaction barrier performance of refractory metal foils Nb, Mo, W and Re. Irradiation conditions were as follows. Neutron dose : 4.05 x 10 22 m -2 (E 18 m -2 (E > 0.16 pJ, 1 Mev). Helium coolant : Average temperature 855 0 C, Pressure 2.94 MPa, Total impurity concentration 400 kBq/m 3 . Irradiation time : 5.0 Ms (1390 hours). Post-irradiation examinations i.e. visual inspection, dimensional inspection, weight measurement, metallography, hardness test, morphological observations by SEM and analysis of element distributions by EPMA were carried out. In the result, reaction products of Hastelloy XR alloy were observed in the ellipsoidal form locally. These results were same as those of the out-of-pile tests. Obvious irradiation effects were not detectable but a little accelarated increase in reaction depth of Hastelloy XR alloy by heat effect of specimens was observed. The refractory metal foils had a good performance of reaction barrier between Hastelloy XR alloy and boronated graphite. Furthermore, movement of Ni, Fe and Cr in the reaction area of Hastelloy XR alloy, difference in the reaction depth of B and C, irradiation effects on diffusion coefficient, lithium production and heat effect are discussed. (author)

  15. Sequential Electrodeposition of Platinum-Ruthenium at Boron-Doped Diamond Electrodes for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Ileana González-González

    2011-01-01

    Full Text Available Sequential electrodeposition of Pt and Ru on boron-doped diamond (BDD films, in 0.5 M H2SO4 by cyclic voltammetry, has been prepared. The potential cycling, in the aqueous solutions of the respective metals, was between 0.00 and 1.00 V versus Ag/AgCl. The catalyst composites, Pt and PtRu, deposited on BDD film substrates, were tested for methanol oxidation. The modified diamond surfaces were also characterized by scanning electron microscopy-X-ray fluorescence-energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The scanning Auger electron spectroscopy mapping showed the ruthenium signal only in areas where platinum was electrodeposited. Ruthenium does not deposit on the oxidized diamond surface of the boron-doped diamond. Particles with 5–10% of ruthenium with respect to platinum exhibited better performance for methanol oxidation in terms of methanol oxidation peak current and chronoamperometric current stability. The electrogenerated •OH radicals on BDD may interact with Pt surface, participating in the methanol oxidation as shown in oxidation current and the shift in the peak position. The conductive diamond surface is a good candidate as the support for the platinum electrocatalyst, because it ensures catalytic activity, which compares with the used carbon, and higher stability under severe anodic and cathodic conditions.

  16. ICP-MS determination of boron: method optimization during preparation of graphite reference material for boron

    International Nuclear Information System (INIS)

    Granthali, S.K.; Shailaja, P.P.; Mainsha, V.; Venkatesh, K.; Kallola, K.S.; Sanjukta, A.K.

    2017-01-01

    Graphite finds widespread use in nuclear reactors as moderator, reflector, and fuel fabricating components because of its thermal stability and integrity. The manufacturing process consists of various mixing, moulding and baking operations followed by heat-treatment between 2500 °C and 3000 °C. The high temperature treatment is required to drive the amorphous carbon-to-graphite phase transformation. Since synthetic graphite is processed at high temperature, impurity concentrations in the precursor carbon get significantly reduced due to volatilization. However boron may might partly gets converted into boron carbide at high temperatures in the carbon environment of graphite and remains stable (B_4C: boiling point 3500 °C) in the matrix. Literature survey reveals the use of various methods for determination of boron. Previously we have developed a method for determination of boron in graphite electrodes using inductively coupled plasma mass spectrometry (ICP-MS). The method involves removal of graphite matrix by ignition of the sample at 800°C in presence of saturated barium hydroxide solution to prevent the loss of boron. Here we are reporting a modification in the method by using calcium carbonate in place of barium hydroxide and using beryllium (Be) as an internal standard, which resulted in a better precession. The method was validated by spike recovery experiments as well as using another technique viz. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The modified method was applied in evaluation of boron concentration in the graphite reference material prepared

  17. Basic visualization experiments on eutectic reaction of boron carbide and stainless steel under sodium-cooled fast reactor conditions

    International Nuclear Information System (INIS)

    Yamano, Hidemasa; Suzuki, Tohru; Kamiyama, Kenji; Kudo, Isamu

    2016-01-01

    This paper describes basic visualization experiments on eutectic reaction and relocation of boron carbide (B 4 C) and stainless steel (SS) under a high temperature condition exceeding 1500degC as well as the importance of such behaviors in molten core during a core disruptive accident in a Generation-IV sodium-cooled fast reactor (750 MWe class) designed in Japan. At first, a reactivity history was calculated using an exact perturbation calculation tool taking into account expected behaviors. This calculation indicated the importance of a relocation behavior of the B 4 C-SS eutectic because its behavior has a large uncertainty in the reactivity history. To clarify this behavior, basic experiments were carried out by visualizing the reaction of a B 4 C pellet contacted with molten SS in a high temperature-heating furnace. The experiments have shown the eutectic reaction visualization as well as freezing and relocation of the B 4 C-SS eutectic in upper part of the solidified test piece due to the density separation. (author)

  18. Electrocatalysis on tungsten carbide

    International Nuclear Information System (INIS)

    Fleischmann, R.

    1975-01-01

    General concepts of electrocatalysis, the importance of the equilibrium rest potential and its standardization on polished WC-electrodes, the influence of oxygen in the catalysts upon the oxidation of hydrogen, and the attained results of the hydrogen oxidation on tungsten carbide are treated. (HK) [de

  19. Anode performance of boron-doped graphites prepared from shot and sponge cokes

    Science.gov (United States)

    Liu, Tao; Luo, Ruiying; Yoon, Seong-Ho; Mochida, Isao

    The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g -1 and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by "molecular bridging" between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper.

  20. The conflicting roles of boron on the radiation response of precipitate-forming austenitic alloys

    International Nuclear Information System (INIS)

    Okita, T.; Sekimura, N.; Garner, F.

    2007-01-01

    Full text of publication follows: Boron is often a deliberately added solute to improve the radiation resistance of austenitic structural alloys, with boron exerting its greatest influence on carbide precipitation. However, boron also a source of helium via transmutation and therefore tends to accelerate the onset of void nucleation. These conflicting contributions of boron with respect to radiation resistance are not easily separated, but are sometimes utilized to mimic fusion-relevant gas generation rates when testing in surrogate fission spectra. In an earlier study the authors demonstrated that in simple model ternary alloys that boron additions tended to homogenize swelling somewhat via increased helium generation but not to exert any significant influence on the total swelling. In these easily swelling alloys void nucleation was not significantly influenced by additional helium or by boron's chemical effect, with boron remaining primarily in solution. In the current study, Fe-15Cr-16Ni-0.25 Ti-0.05C alloys with four levels of natural boron addition (0, 100, 500, 2500 appm) were irradiated side-by-side at ∼400 deg. C in the Fast Flux Test Facility under active temperature control in the Materials Open Test Assembly. Although three sets of irradiation conditions were explored, the boron variation was the only variable operating in each data set. The bulk swelling was measured using an immersion density technique and electron microscopy was employed to determine the details of void, dislocation and precipitate microstructure. It was found that by 100 appm B the strongest and most immediate effect of boron was to reduce swelling at all irradiation conditions explored, but the boron-induced increases in overall helium content were rather small over the 0-100 appm B range. This indicates that boron's primary effect was chemical in nature, expressed via its effect on precipitation. As the boron level was progressively increased, however, there was a reversal in

  1. Construction of reduced graphene oxide supported molybdenum carbides composite electrode as high-performance anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Minghua; Zhang, Jiawei [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Chen, Qingguo, E-mail: qgchen@263.net [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Qi, Meili [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Xia, Xinhui, E-mail: helloxxh@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-01-15

    Highlights: • Reduced graphene oxide supported molybdenum carbides are prepared by two-step strategy. • A unique sheet-on-sheet integrated nanostructure is favorable for fast ion/electron transfer. • The integrated electrode shows excellent Li ion storage performance. - Abstract: Metal carbides are emerging as promising anodes for advanced lithium ion batteries (LIBs). Herein we report reduced graphene oxide (RGO) supported molybdenum carbides (Mo{sub 2}C) integrated electrode by the combination of solution and carbothermal methods. In the designed integrated electrode, Mo{sub 2}C nanoparticles are uniformly dispersed among graphene nanosheets, forming a unique sheet-on-sheet integrated nanostructure. As anode of LIBs, the as-prepared Mo{sub 2}C-RGO integrated electrode exhibits noticeable electrochemical performances with a high reversible capacity of 850 mAh g{sup −1} at 100 mA g{sup −1}, and 456 mAh g{sup −1} at 1000 mA g{sup −1}, respectively. Moreover, the Mo{sub 2}C-RGO integrated electrode shows excellent cycling life with a capacity of ∼98.6 % at 1000 mA g{sup −1} after 400 cycles. Our research may pave the way for construction of high-performance metal carbides anodes of LIBs.

  2. Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B{sub 4}C)

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Ali [Faculty of Materials & Manufacturing Processes, Malek-e-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Abdollahi, Alireza, E-mail: alirezaabdollahi1366@gmail.com [Faculty of Materials & Manufacturing Processes, Malek-e-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Biukani, Hootan [Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-11-25

    In the current research, aluminum based hybrid composite reinforced with boron carbide (B{sub 4}C) and carbon nanotubes (CNTs) was produced by powder metallurgy method. creep behavior, wear resistance, surface roughness, and hardness of the samples were investigated. To prepare the samples, Al 5083 powder was milled with boron carbide particles and carbon nanotubes using planetary ball mill under argon atmosphere with ball-to-powder weight ratio of 10:1 for 5 h. Afterwards, the milled powders were formed by hot press process at 380{sup °}C and then were sintered at 585{sup °}C under argon atmosphere for 2 h. There was shown to be an increase in hardness values of composite with an increase in B{sub 4}C content. The micrograph of worn surfaces indicate a delamination mechanism due to the presence of CNTs and abrasion mechanism in composite containing 10 vol.%B{sub 4}C. Moreover, it was shown that increasing B{sub 4}C content increases the wear resistance by 3 times under a load of 20 N and 10 times under a load of 10 N compared to CNTs-reinforced composite. surface roughness of the composite containing 5 vol.%CNT has shown to be more than other samples. The results of creep test showed that adding carbon nanotubes increases creep rate of Al 5083 alloy; however, adding B{sub 4}C decreases its creep rate. - Highlights: • Al 5083/(CNTs + B{sub 4}C) hybrid composite was produced by powder metallurgy method. • Creep behavior, wear resistance, surface roughness, and Hardness of samples were investigated. • Addition of CNTs to Al 5083 matrix reduces alloy hardness, wear resistance and creep strength. • By addition of B{sub 4}C and composite hybridization, creep strength and wear resistance increased. • Surface roughness of Al-5 vol.%CNT has shown to be more than other samples.

  3. A combination method for simulation of secondary knock-on atoms of boron carbide induced by neutron irradiation in SPRR-300

    International Nuclear Information System (INIS)

    Wu, Jian-Chun; Feng, Qi-Jie; Liu, Xian-Kun; Zhan, Chang-Yong; Zou, Yu; Liu, Yao-Guang

    2016-01-01

    A multiscale sequence of simulation should be used to predict properties of materials under irradiation. Binary collision theory and molecular dynamics (MDs) method are commonly used to characterize the displacement cascades induced by neutrons in a material. In order to reduce the clock time spent for the MD simulation of damages induced by high-energy primary knock-on atoms (PKAs), the damage zones were split into sub-cascade according to the sub-cascade formation criteria. Two well-known codes, Geant4 and TRIM, were used to simulate high-energy PKA-induced cascades in B_4C and then produce the secondary knock-on atom (SKA) energy spectrum. It has been found that both high-energy primary knock-on B and C atoms move a long range in the boron carbide. These atoms produce sub-cascades at the tip of trajectory. The energy received by most of the SKAs is <10 keV, which can be used as input to reduce the clock time spent for MD simulation.

  4. Attenuation of Neutron and Gamma Radiation by a Composite Material Based on Modified Titanium Hydride with a Varied Boron Content

    Science.gov (United States)

    Yastrebinskii, R. N.

    2018-04-01

    The investigations on estimating the attenuation of capture gamma radiation by a composite neutron-shielding material based on modified titanium hydride and Portland cement with a varied amount of boron carbide are performed. The results of calculations demonstrate that an introduction of boron into this material enables significantly decreasing the thermal neutron flux density and hence the levels of capture gamma radiation. In particular, after introducing 1- 5 wt.% boron carbide into the material, the thermal neutron flux density on a 10 cm-thick layer is reduced by 11 to 176 factors, and the capture gamma dose rate - from 4 to 9 times, respectively. The difference in the degree of reduction in these functionals is attributed to the presence of capture gamma radiation in the epithermal region of the neutron spectrum.

  5. Reaction of Oxygen with Chromium and Chromium Carbide at Low O2 Pressures and High Temperatures

    International Nuclear Information System (INIS)

    Hur, Dong O.; Kang, Sung G.; Paik, Young N.

    1984-01-01

    The oxidation rate of chromium carbide has been measured continuously using thermogravimetric analysis at different oxygen pressures ranging from 1.33x10 -2 to 2.67x10 -1 Pa O 2 at 1000-1300 .deg. C. The oxidation of pure chromium has also been studied between 1000-1300 .deg. C under 6.67x10 -2 Pa O 2 and compared with that of chromium carbide. The oxidation of chromium carbide showed a linear behavior which was different from that of chromium. The oxidation rate of chromium carbide increased with increasing temperature and oxygen pressure was lower than of pure chromium. Above 1200 .deg. C, the volatile oxide was formed and evaporated causing a weight loss. The compositions and morphology of the oxide were studied with X-ray diffractometer and scanning electron microscope, respectively. The morphology of oxide changed with varying temperature and pressure. The oxide scale was consisted of mainly two different layers of Cr 2 O 3 and CrO, and the properties of oxide scale were correlated with oxidation behavior. The oxide film formed in the above test condition has been detached from the carbide surface. The crack and pore were thought to be from CO gas evolving at the interface of chromium carbide and its oxide and the major factor of the linear behavior of chromium carbide

  6. Growth and characterization of thick cBN coatings on silicon and tool substrates

    International Nuclear Information System (INIS)

    Bewilogua, K.; Keunecke, M.; Weigel, K.; Wiemann, E.

    2004-01-01

    Recently some research groups have achieved progress in the deposition of cubic boron nitride (cBN) coatings with a thickness of 2 μm and more, which is necessary for cutting tool applications. In our laboratory, thick cBN coatings were sputter deposited on silicon substrates using a boron carbide target. Following a boron carbide interlayer (few 100 nm thick), a gradient layer with continuously increasing nitrogen content was prepared. After the cBN nucleation, the process parameters were modified for the cBN film growth to a thickness of more than 2 μm. However, the transfer of this technology to technically relevant substrates, like cemented carbide cutting inserts, required some further process modifications. At first, a titanium interlayer had to be deposited followed by a more than 1-μm-thick boron carbide layer. The next steps were identical to those on silicon substrates. The total coating thickness was in the range of 3 μm with a 0.5- to nearly 1-μm-thick cBN top layer. In spite of the enormous intrinsic stress, both the coatings on silicon and on cemented carbide exhibited a good adhesion and a prolonged stability in humid air. Oxidation experiments revealed a stability of the coating system on cemented carbide up to 700 deg. C and higher. Coated cutting inserts were tested in turning operations with different metallic workpiece materials. The test results will be compared to those of well-established cutting materials, like polycrystalline cubic boron nitride (PCBN) and oxide ceramics, considering the wear of coated tools

  7. Influence of cerium, zirconium and boron on the oxidation resistance of heat-resistant steels in air

    International Nuclear Information System (INIS)

    Gala, A.; Schendler, W.

    1981-01-01

    Isothermal and cyclic oxidation experiments were carried out in air to investigate the influence of the minor elements such as Cerium, Zirkonium and Boron on the oxidation resistance of heat resistant ferritic and austenitic steels like X10Cr18, X10CrAl18 and X15CrNiSi2012. In the case of cyclicexperiments samples were exposed at constant temperatures for 100 h and then cooled to R.T. This cycle was repeated 10 times. The corrosion was determined as weight change and was continuously measured by a thermo-balance. The distribution of the alloying elements on the phase boundary scale/steel was examined by Scanning-Electron-Microscope. Addition of small amounts of Ce (0.3 wt-% max.) could reduce the oxidation rate in the case of isothermal and cyclic conditions. Zirkonium concentrations below 0.1 wt-% could have a beneficial effect, but at higher concentrations the oxidation rate increases with increasing amounts of Zr. Small Boron concentrations of 0.02 wt-% lead to catastrophic oxidation at temperatures above 1000 0 C. (orig.) [de

  8. Influencing factors and kinetics analysis on the leaching of iron from boron carbide waste-scrap with ultrasound-assisted method.

    Science.gov (United States)

    Li, Xin; Xing, Pengfei; Du, Xinghong; Gao, Shuaibo; Chen, Chen

    2017-09-01

    In this paper, the ultrasound-assisted leaching of iron from boron carbide waste-scrap was investigated and the optimization of different influencing factors had also been performed. The factors investigated were acid concentration, liquid-solid ratio, leaching temperature, ultrasonic power and frequency. The leaching of iron with conventional method at various temperatures was also performed. The results show the maximum iron leaching ratios are 87.4%, 94.5% for 80min-leaching with conventional method and 50min-leaching with ultrasound assistance, respectively. The leaching of waste-scrap with conventional method fits the chemical reaction-controlled model. The leaching with ultrasound assistance fits chemical reaction-controlled model, diffusion-controlled model for the first stage and second stage, respectively. The assistance of ultrasound can greatly improve the iron leaching ratio, accelerate the leaching rate, shorten leaching time and lower the residual iron, comparing with conventional method. The advantages of ultrasound-assisted leaching were also confirmed by the SEM-EDS analysis and elemental analysis of the raw material and leached solid samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Anode performance of boron-doped graphites prepared from shot and sponge cokes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Luo, Ruiying [School of Science, Beihang University, Beijing 100083 (China); Yoon, Seong-Ho; Mochida, Isao [Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2010-03-15

    The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g{sup -1} and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by ''molecular bridging'' between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper. (author)

  10. Polyethylene/boron-containing composites for radiation shielding

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ji Wook [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Jang-Woo; Yu, Seunggun; Baek, Bum Ki; Hong, Jun Pyo [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Seo, Yongsok [School of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kim, Woo Nyon [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Hong, Soon Man, E-mail: smhong@kist.re.kr [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 305-350 (Korea, Republic of); Koo, Chong Min, E-mail: koo@kist.re.kr [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

    2014-06-01

    Graphical abstract: - Highlights: • HDPE/silane-treated boron nitride (mBN) composites were fabricated. • The HDPE/mBN composites revealed a strong adhesion behavior at the interface of matrix/filler. • The HDPE/mBN composites show superior radiation shielding, thermoconductive and mechanical properties to the composites containing pristine BN and B{sub 4}C fillers. - Abstract: High-density polyethylene (HDPE) composites with modified boron nitride (mBN) fillers, functionalized with an organosilane, were fabricated through conventional melt-extrusion processing techniques. The properties and performances of these composites were compared with those of the composites containing pristine BN and boron carbide (B{sub 4}C) fillers. The silane functionalization of the BN fillers strongly improved the interfacial adhesion between the polymer matrix and the filler. As a result, the HDPE/mBN composites showed a better dispersion state of the filler particles, larger tensile modulus, greater effective thermal conductivity, and better neutron shielding property compared with the HDPE/BN and HDPE/B{sub 4}C composites.

  11. Polyethylene/boron-containing composites for radiation shielding

    International Nuclear Information System (INIS)

    Shin, Ji Wook; Lee, Jang-Woo; Yu, Seunggun; Baek, Bum Ki; Hong, Jun Pyo; Seo, Yongsok; Kim, Woo Nyon; Hong, Soon Man; Koo, Chong Min

    2014-01-01

    Graphical abstract: - Highlights: • HDPE/silane-treated boron nitride (mBN) composites were fabricated. • The HDPE/mBN composites revealed a strong adhesion behavior at the interface of matrix/filler. • The HDPE/mBN composites show superior radiation shielding, thermoconductive and mechanical properties to the composites containing pristine BN and B 4 C fillers. - Abstract: High-density polyethylene (HDPE) composites with modified boron nitride (mBN) fillers, functionalized with an organosilane, were fabricated through conventional melt-extrusion processing techniques. The properties and performances of these composites were compared with those of the composites containing pristine BN and boron carbide (B 4 C) fillers. The silane functionalization of the BN fillers strongly improved the interfacial adhesion between the polymer matrix and the filler. As a result, the HDPE/mBN composites showed a better dispersion state of the filler particles, larger tensile modulus, greater effective thermal conductivity, and better neutron shielding property compared with the HDPE/BN and HDPE/B 4 C composites

  12. Structure and photoluminescence of boron and nitrogen co-doped carbon nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Gao, B. [College of Computer Science, Chongqing University, Chongqing 400044 (China); Chongqing Municipal Education Examinations Authority, Chongqing 401147 (China); Zhong, X.X., E-mail: xxzhong@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Shao, R.W.; Zheng, K. [Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2016-07-15

    Graphical abstract: Boron- and nitrogen- doped carbon nanorods. - Highlights: • The co-doping of nitrogen and boron in carbon nanorods. • The doping mechanism of nitrogen and boron in carbon nanorods by plasma. • Photoluminescence properties of nitrogen- and boron-doped carbon nanorods. - Abstract: Boron and nitrogen doped carbon nanorods (BNCNRs) were synthesized by plasma-enhanced hot filament chemical vapor deposition, where methane, nitrogen and hydrogen were used as the reaction gases and boron carbide was the boron source. The results of scanning electron microscopy, micro-Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy indicate that boron and nitrogen can be used as co-dopants in amorphous carbon nanorods. Combined with the characterization results, the doping mechanism was studied. The mechanism is used to explain the formation of different carbon materials by different methods. The photoluminescence (PL) properties of BNCNRs were studied. The PL results show that the BNCNRs generate strong green PL bands and weak blue PL bands, and the PL intensity lowered due to the doping of boron. The outcomes advance our knowledge on the synthesis and optical properties of carbon-based nanomaterials and contribute to the development of optoelectronic nanodevices based on nano-carbon mateirals.

  13. Stability of boron-doped graphene/copper interface: DFT, XPS and OSEE studies

    Science.gov (United States)

    Boukhvalov, D. W.; Zhidkov, I. S.; Kukharenko, A. I.; Slesarev, A. I.; Zatsepin, A. F.; Cholakh, S. O.; Kurmaev, E. Z.

    2018-05-01

    Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission (OSEE) measurements have demonstrated that boron-doped graphene coating provides a high corrosion resistivity of Cu-substrate with the light traces of the oxidation of carbon cover. The density functional theory calculations suggest that for the case of substitutional (graphitic) boron-defect only the oxidation near boron impurity is energetically favorable and creation of the vacancies that can induce the oxidation of copper substrate is energetically unfavorable. In the case of non-graphitic boron defects oxidation of the area, a nearby impurity is metastable that not only prevent oxidation but makes boron-doped graphene. Modeling of oxygen reduction reaction demonstrates high catalytic performance of these materials.

  14. Method of fabricating porous silicon carbide (SiC)

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1995-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  15. Inhibition of oxidation in nuclear graphite

    International Nuclear Information System (INIS)

    Winston, Philip L.; Sterbentz, James W.; Windes, William E.

    2015-01-01

    Graphite is a fundamental material of high-temperature gas-cooled nuclear reactors, providing both structure and neutron moderation. Its high thermal conductivity, chemical inertness, thermal heat capacity, and high thermal structural stability under normal and off-normal conditions contribute to the inherent safety of these reactor designs. One of the primary safety issues for a high-temperature graphite reactor core is the possibility of rapid oxidation of the carbon structure during an off-normal design basis event where an oxidising atmosphere (air ingress) can be introduced to the hot core. Although the current Generation IV high-temperature reactor designs attempt to mitigate any damage caused by a postulated air ingress event, the use of graphite components that inhibit oxidation is a logical step to increase the safety of these reactors. Recent experimental studies of graphite containing between 5.5 and 7 wt% boron carbide (B 4 C) indicate that oxidation is dramatically reduced even at prolonged exposures at temperatures up to 900 deg. C. The proposed addition of B 4 C to graphite components in the nuclear core would necessarily be enriched in B-11 isotope in order to minimise B-10 neutron absorption and graphite swelling. The enriched boron can be added to the graphite during billet fabrication. Experimental oxidation rate results and potential applications for borated graphite in nuclear reactor components will be discussed. (authors)

  16. Determination of boron in graphite by a wet oxidation decomposition/curcumin photometric method

    International Nuclear Information System (INIS)

    Watanabe, Kazuo; Toida, Yukio

    1995-01-01

    The wet oxidation decomposition of graphite materials has been studied for the accurate determination of boron using a curcumin photometric method. A graphite sample of 0.5 g was completely decomposed with a mixture of 5 ml of sulfuric acid, 3 ml of perchloric acid, 0.5 ml of nitric acid and 5 ml of phosphoric acid in a silica 100 ml Erlenmeyer flask fitted with an air condenser at 200degC. Any excess of perchloric and nitric acids in the solution was removed by heating on a hot plate at 150degC. Boron was distilled with methanol, and then recovered in 10 ml of 0.2 M sodium hydroxide. The solution was evaporated to dryness. To the residue were added curcumin-acetic acid and sulfuric-acetic acid. The mixture was diluted with ethanol, and the absorbance at 555 nm was measured. The addition of 5 ml of phosphoric acid proved to be effective to prevent any volatilization loss of boron during decomposition of the graphite sample and evaporation of the resulting solution. The relative standard deviation was 4-8% for samples with 2 μg g -1 levels of boron. The results on CRMs JAERI-G5 and G6 were in good agreement with the certified values. (author)

  17. Interfacial-Bonding-Regulated CO Oxidation over Pt Atoms Immobilized on Gas-Exfoliated Hexagonal Boron Nitride

    KAUST Repository

    Liu, Xin; Zhu, Hongdan; Linguerri, Roberto; Han, Yu; Chambaud, Gilberte; Meng, Changgong

    2017-01-01

    We compared the electronic structure and CO oxidation mechanisms over Pt atoms immobilized by both B-vacancies and N-vacancies on gas-exfoliated hexagonal boron nitride. We showed that chemical bonds are formed between the B atoms associated

  18. Crack propagation and fracture in silicon carbide

    International Nuclear Information System (INIS)

    Evans, A.G.; Lange, F.F.

    1975-01-01

    Fracture mechanics and strength studies performed on two silicon carbides - a hot-pressed material (with alumina) and a sintered material (with boron) - have shown that both materials exhibit slow crack growth at room temperature in water, but only the hot-pressed material exhibits significant high temperature slow crack growth (1000 to 1400 0 C). A good correlation of the observed fracture behaviour with the crack growth predicted from the fracture mechanics parameters shows that effective failure predictions for this material can be achieved using macro-fracture mechanics data. (author)

  19. Degradation in steam of 60 cm-long B{sub 4}C control rods

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, C., E-mail: christina.dominguez@irsn.fr; Drouan, D.

    2014-08-01

    In the framework of nuclear reactor core meltdown accident studies, the degradation of boron carbide control rod segments exposed to argon/steam atmospheres was investigated up to about 2000 °C in IRSN laboratories. The sequence of the phenomena involved in the degradation has been found to take place as expected. Nevertheless, the ZrO{sub 2} oxide layer formed on the outer surface of the guide tube was very protective, significantly delaying and limiting the guide tube failure and therefore the boron carbide pellet oxidation. Contrary to what was expected, the presence of the control rod decreases the hydrogen release instead of increasing it by additional oxidation of boron compounds. Boron contents up to 20 wt.% were measured in metallic mixtures formed during degradation. It was observed that these metallic melts are able to attack the surrounding fuel rods, which could have consequences on fuel degradation and fission product release kinetics during severe accidents.

  20. Boron-based nanostructures: Synthesis, functionalization, and characterization

    Science.gov (United States)

    Bedasso, Eyrusalam Kifyalew

    Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any

  1. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Bo, E-mail: 357436235@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yu, Zhiming, E-mail: zhiming@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Wei, Qiuping, E-mail: qiupwei@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Long, HangYu, E-mail: 55686385@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Xie, Youneng, E-mail: 1187272844@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Wang, Yijia, E-mail: 503630433@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-07-30

    Highlights: • High quality boron-doped diamond film electrodes were synthesized on Nb substrates. • Electrochemical oxidation on boron-doped diamond anode is an effective method for treating landfill leachate concentrates. • Optimal operating conditions for electrochemical oxidation of landfill leachate concentrates is determined. • 87.5% COD removal and 74.06% NH{sub 3}−N removal were achieved after 6 h treatment. - Abstract: In the present study, the high quality boron-doped diamond (BDD) electrodes with excellent electrochemical properties were deposited on niobium (Nb) substrates by hot filament chemical vapor deposition (HFCVD) method. The electrochemical oxidation of landfill leachate concentrates from disc tube reverse osmosis (DTRO) process over a BDD anode was investigated. The effects of varying operating parameters, such as current density, initial pH, flow velocity and cathode material on degradation efficiency were also evaluated following changes in chemical oxygen demand (COD) and ammonium nitrogen (NH{sub 3}−N). The instantaneous current efficiency (ICE) was used to appraise different operating conditions. As a result, the best conditions obtained were as follows, current density 50 mA cm{sup −2}, pH 5.16, flow velocity 6 L h{sup −1}. Under these conditions, 87.5% COD and 74.06% NH{sub 3}−N removal were achieved after 6 h treatment, with specific energy consumption of 223.2 kWh m{sup −3}. In short, these results indicated that the electrochemical oxidation with BDD/Nb anode is an effective method for the treatment of landfill leachate concentrates.

  2. Standard specification for boron-Based neutron absorbing material systems for use in nuclear spent fuel storage racks

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This specification defines criteria for boron-based neutron absorbing material systems used in racks in a pool environment for storage of nuclear light water reactor (LWR) spent-fuel assemblies or disassembled components to maintain sub-criticality in the storage rack system. 1.2 Boron-based neutron absorbing material systems normally consist of metallic boron or a chemical compound containing boron (for example, boron carbide, B4C) supported by a matrix of aluminum, steel, or other materials. 1.3 In a boron-based absorber, neutron absorption occurs primarily by the boron-10 isotope that is present in natural boron to the extent of 18.3 ± 0.2 % by weight (depending upon the geological origin of the boron). Boron, enriched in boron-10 could also be used. 1.4 The materials systems described herein shall be functional – that is always be capable to maintain a B10 areal density such that subcriticality Keff <0.95 or Keff <0.98 or Keff < 1.0 depending on the design specification for the service...

  3. Effect of boron nitride coating on fiber-matrix interactions

    International Nuclear Information System (INIS)

    Singh, R.N.; Brun, M.K.

    1987-01-01

    Coatings can modify fiber-matrix reactions and consequently interfacial bond strengths. Commercially available mullite, silicon carbide, and carbon fibers were coated with boron nitride via low pressure chemical vapor deposition and incorporated into a mullite matrix by hot-pressing. The influence of fiber-matrix interactions for uncoated fibers on fracture morphologies was studied. These observations are related to the measured values of interfacial shear strengths

  4. Study by vibration spectrometry of addition compounds of boron fluoride with some alkyl oxides, sulphides and selenides

    International Nuclear Information System (INIS)

    Le Calve, Jacques

    1966-01-01

    This research thesis reports the study of the vibration spectrum of some addition compounds of boron fluoride with alkyl oxides, sulphides and selenides. The objective was first the assignment of spectra, and then the study of the influence of the formation of a coordination bound on boron fluoride vibrations and on that of its donor. The author also tried to define correlations between spectrum and structures, and studied the effects of physical status and solvents [fr

  5. A review of the breeding potentials of carbide, nitride and oxide fueled LMFBRs and GCFRs

    International Nuclear Information System (INIS)

    Handa, Muneo

    1977-11-01

    The effects of design parameters in large variation on compound system doubling time of large advanced-fueled LMFBR are described on the base of recent U.S. results. The fuel element design by Combustion Engineering Inc. in step-by-step substitution of the initial oxide fuel subassemblies with carbide ones is explained. Breeding characteristics of the oxide-fueled LMFBR and its potential design modifications are expounded. The gas cooled fast breeder program in West Germany and in the United States are briefed. Definitions of the breeding ratio and doubling time in overall fuel cycle are given. (auth.)

  6. Microstructural stability and mechanical properties of a boron modified Ni–Fe based superalloy for steam boiler applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Changshuai, E-mail: cswang@imr.ac.cn; Guo, YongAn; Guo, Jianting; Zhou, Lanzhang, E-mail: lzz@imr.ac.cn

    2015-07-15

    Ni–Fe based superalloys are being considered as boiler materials in 700 °C advanced ultra-supercritical (A-USC) coal fired power plants due to their excellent oxidation and hot corrosion resistance, outstanding workability and low cost. In this paper, the microstructural stability and mechanical properties of a boron (B) modified Ni–Fe based superalloy designed for 700 °C A-USC during thermal exposure at 650–750 °C for up to 5000 h were investigated. The results show that adding boron has no apparent influence on the major precipitates, including spherical γ′ and blocky MC. However, the amount of M{sub 23}C{sub 6} decreases markedly after standard heat treatment. During long-term thermal exposure, the addition of boron has no influence on γ′ coarsening, η phase precipitation and primary MC degeneration, but decreases the growth rate of M{sub 23}C{sub 6} along grain boundary. The stress rupture life and ductility are obviously improved after the addition of B. Meanwhile, the yield strength of B-doped alloy almost keeps the same level as that without boron addition. The fracture surface characterization exhibits that the dimples increase significantly after adding boron. During long-term thermal exposure, the elongation of the alloy with B addition increases slightly, but, for the alloy without B addition, the elongation obviously increases. The improvement of the stress rupture life and ductility can be attributed to the increase of grain boundary strength and the optimization of M{sub 23}C{sub 6} carbide distribution at grain boundary.

  7. Microstructural stability and mechanical properties of a boron modified Ni–Fe based superalloy for steam boiler applications

    International Nuclear Information System (INIS)

    Wang, Changshuai; Guo, YongAn; Guo, Jianting; Zhou, Lanzhang

    2015-01-01

    Ni–Fe based superalloys are being considered as boiler materials in 700 °C advanced ultra-supercritical (A-USC) coal fired power plants due to their excellent oxidation and hot corrosion resistance, outstanding workability and low cost. In this paper, the microstructural stability and mechanical properties of a boron (B) modified Ni–Fe based superalloy designed for 700 °C A-USC during thermal exposure at 650–750 °C for up to 5000 h were investigated. The results show that adding boron has no apparent influence on the major precipitates, including spherical γ′ and blocky MC. However, the amount of M 23 C 6 decreases markedly after standard heat treatment. During long-term thermal exposure, the addition of boron has no influence on γ′ coarsening, η phase precipitation and primary MC degeneration, but decreases the growth rate of M 23 C 6 along grain boundary. The stress rupture life and ductility are obviously improved after the addition of B. Meanwhile, the yield strength of B-doped alloy almost keeps the same level as that without boron addition. The fracture surface characterization exhibits that the dimples increase significantly after adding boron. During long-term thermal exposure, the elongation of the alloy with B addition increases slightly, but, for the alloy without B addition, the elongation obviously increases. The improvement of the stress rupture life and ductility can be attributed to the increase of grain boundary strength and the optimization of M 23 C 6 carbide distribution at grain boundary

  8. Silicon carbide layer structure recovery after ion implantation

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Demakov, K.D.; Kal'nin, A.A.; Nojbert, F.; Potapov, E.N.; Tairov, Yu.M.

    1984-01-01

    The process of recovery of polytype structure of SiC surface layers in the course of thermal annealing (TA) and laser annealing (LA) upon boron and aluminium implantation is studied. The 6H polytype silicon carbide C face (0001) has been exposed to ion radiation. The ion energies ranged from 80 to 100 keV, doses varied from 5x10 14 to 5x10 16 cm -2 . TA was performed in the 800-2000 K temperature range. It is shown that the recovery of the structure of silicon carbide layers after ion implantation takes place in several stages. Considerable effect on the structure of the annealed layers is exerted by the implantation dose and the type of implanted impurity. The recovery of polytype structure is possible only under the effect of laser pulses with duration not less than the time for the ordering of the polytype in question

  9. Segregation of boron implanted into silicon on angular configurations of silicon/silicon dioxide oxidation interface

    CERN Document Server

    Tarnavskij, G A; Obrekht, M S

    2001-01-01

    One studies segregation of boron implanted into silicon when a wave (interface) of oxidation moves within it. There are four types of angular configurations of SiO sub 2 /Si oxidation interface, that is: direct and reverse shoulders, trench type cavities and a square. By means of computer-aided simulation one obtained and analyzed complex patterns of B concentration distribution within Si, SiO sub 2 domains and at SiO sub 2 /Si interface for all types of angular configurations of the oxidation interface

  10. Communication: Towards catalytic nitric oxide reduction via oligomerization on boron doped graphene

    Energy Technology Data Exchange (ETDEWEB)

    Cantatore, Valentina, E-mail: valcan@chalmers.se; Panas, Itai [Department of Chemistry and Chemical Engineering, Energy & Materials, Chalmers University of Technology, Gothenburg (Sweden)

    2016-04-21

    We use density functional theory to describe a novel way for metal free catalytic reduction of nitric oxide NO utilizing boron doped graphene. The present study is based on the observation that boron doped graphene and O—N=N—O{sup −} act as Lewis acid-base pair allowing the graphene surface to act as a catalyst. The process implies electron assisted N=N bond formation prior to N—O dissociation. Two N{sub 2} + O{sub 2} product channels, one of which favoring N{sub 2}O formation, are envisaged as outcome of the catalytic process. Besides, we show also that the N{sub 2} + O{sub 2} formation pathways are contrasted by a side reaction that brings to N{sub 3}O{sub 3}{sup −} formation and decomposition into N{sub 2}O + NO{sub 2}{sup −}.

  11. Application of in situ current normalized PIGE method for determination of total boron and its isotopic composition

    International Nuclear Information System (INIS)

    Chhillar, Sumit; Acharya, R.; Sodaye, S.; Pujari, P.K.

    2014-01-01

    A particle induced gamma-ray emission (PIGE) method using proton beam has been standardized for determination of isotopic composition of natural boron and enriched boron samples. Target pellets of boron standard and samples were prepared in cellulose matrix. The prompt gamma rays of 429 keV, 718 keV and 2125 keV were measured from 10 B(p,αγ) 7 Be, 10 B(p, p'γ) 10 B and 11 B(p, p'γ) 11 B nuclear reactions, respectively. For normalizing the beam current variations in situ current normalization method was used. Validation of method was carried out using synthetic samples of boron carbide, borax, borazine and lithium metaborate in cellulose matrix. (author)

  12. Fraction of boroxol rings in vitreous boron oxide from a first-principles analysis of Raman and NMR spectra.

    Science.gov (United States)

    Umari, P; Pasquarello, Alfredo

    2005-09-23

    We determine the fraction f of B atoms belonging to boroxol rings in vitreous boron oxide through a first-principles analysis. After generating a model structure of vitreous B2O3 by first-principles molecular dynamics, we address a large set of properties, including the neutron structure factor, the neutron density of vibrational states, the infrared spectra, the Raman spectra, and the 11B NMR spectra, and find overall good agreement with corresponding experimental data. From the analysis of Raman and 11B NMR spectra, we yield consistently for both probes a fraction f of approximately 0.75. This result indicates that the structure of vitreous boron oxide is largely dominated by boroxol rings.

  13. The Effect of Boron and Zirconium on the Structure and Tensile Properties of the Cast Nickel-Based Superalloy ATI 718Plus

    Science.gov (United States)

    Hosseini, Seyed Ali; Abbasi, Seyed Mehdi; Madar, Karim Zangeneh

    2018-04-01

    The effects of boron and zirconium on cast structure, hardness, and tensile properties of the nickel-based superalloy 718Plus were investigated. For this purpose, five alloys with different contents of boron and zirconium were cast via vacuum induction melting and then purified via vacuum arc remelting. Microstructural analysis by light-optical microscope and scanning electron microscope equipped with energy-dispersive x-ray spectroscopy and phase studies by x-ray diffraction analysis were performed. The results showed that boron and zirconium tend to significantly reduce dendritic arm spacing and increase the amount of Laves, Laves/gamma eutectic, and carbide phases. It was also found that boron led to the formation of B4C and (Cr, Fe, Mo, Ni, Ti)3B2 phases and zirconium led to the formation of intermetallic phases and ZrC carbide. In the presence of boron and zirconium, the hardness and its difference between dendritic branches and inter-dendritic spaces increased by concentrating such phases as Laves in the inter-dendritic spaces. These elements had a negative effect on tensile properties of the alloy, including ductility and strength, mainly because of the increase in the Laves phase. It should be noted that the largest degradation of the tensile properties occurred in the alloys containing the maximum amount of zirconium.

  14. Rare earth-iron-boron premanent magnets

    International Nuclear Information System (INIS)

    Ghendehari, M.H.

    1988-01-01

    This patent describes a method for producing rare earth-iron-boron permanent magnets containing added rare earth oxide, comprising the steps of: (a) mixing a particulate alloy containing at least one rare earth metal, iron, and boron with at least one particulate rare earth oxide; (b) aligning magnetic domains of the mixture in a magnetic field; (c) compacting the aligned mixture to form a shape; and (d) sintering the compacted shape

  15. Boron-doped cadmium oxide composite structures and their electrochemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lokhande, B.J., E-mail: bjlokhande@yahoo.com [Lab of Smart Mtrls Supercapacitive and Energy Studies, School of Physical Sciences, Solapur University, Solapur 413255, Maharashtra (India); Ambare, R.C. [Lab of Smart Mtrls Supercapacitive and Energy Studies, School of Physical Sciences, Solapur University, Solapur 413255, Maharashtra (India); Mane, R.S. [School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606 (India); Bharadwaj, S.R. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2013-08-01

    Graphical abstract: Conducting nano-fibrous 3% boron doped cadmium oxide thin films were prepared by SILAR and its super capacitive properties were studied. - Highlights: • Samples are of nanofibrous nature. • All samples shows pseudocapacitive behavior. • 3% B doped CdO shows good specific capacitance. • 3% B doped CdO shows maximum 74.93% efficiency at 14 mA/cm{sup 2}. • 3% B doped CdO shows 0.8 Ω internal resistance. - Abstract: Boron-doped and undoped cadmium oxide composite nanostructures in thin film form were prepared onto stainless steel substrates by a successive ionic layer adsorption and reaction method using aqueous solutions of cadmium nitrate, boric acid and 1% H{sub 2}O{sub 2}. As-deposited films were annealed at 623 K for 1 h. The X-ray diffraction study shows crystalline behavior for both doped and undoped films with a porous topography and nano-wires type architecture, as observed in SEM image. Wettability test confirms the hydrophilic surface with 58° contact angle value. Estimated band gap energy is around 1.9 eV. Electrochemical behavior of the deposited films is attempted in 1 M KOH electrolyte using cyclic voltammetry (CV), electrochemical impedance spectroscopy and galvanostatic charge–discharge tests. Maximum values of the specific capacitance, specific energy and specific power obtained for 3% B doped CdO film at 2 mV/s scan rate are 20.05 F/g, 1.22 Wh/kg and 3.25 kW/kg, respectively.

  16. The suitability of silicon carbide for photocatalytic water oxidation

    Science.gov (United States)

    Aslam, M.; Qamar, M. T.; Ahmed, Ikram; Rehman, Ateeq Ur; Ali, Shahid; Ismail, I. M. I.; Hameed, Abdul

    2018-04-01

    Silicon carbide (SiC), owing to its extraordinary chemical stability and refractory properties, is widely used in the manufacturing industry. Despite the semiconducting nature and morphology-tuned band gap, its efficacy as photocatalysts has not been thoroughly investigated. The current study reports the synthesis, characterization and the evaluation of the capability of silicon carbide for hydrogen generation from water splitting. The optical characterization of the as-synthesized powder exposed the formation of multi-wavelength absorbing entities in synthetic process. The structural analysis by XRD and the fine microstructure analysis by HRTEM revealed the cubic 3C-SiC (β-SiC) and hexagonal α-polymorphs (2H-SiC and 6H-SiC) as major and minor phases, respectively. The Mott-Schottky analysis verified the n-type nature of the material with the flat band potential of - 0.7 V. In the electrochemical evaluation, the sharp increase in the peak currents in various potential ranges, under illumination, revealed the plausible potential of the material for the oxidation of water and generation of hydrogen. The generation of hydrogen and oxygen, as a consequence of water splitting in the actual photocatalytic experiments, was observed and measured. A significant increase in the yield of hydrogen was noticed in the presence of methanol as h + scavenger, whereas a retarding effect was offered by the Fe3+ entities that served as e - scavengers. The combined effect of both methanol and Fe3+ ions in the photocatalytic process was also investigated. Besides hydrogen gas, the other evolved gasses such as methane and carbon monoxide were also measured to estimate the mechanism of the process.

  17. Pt atoms stabilized on hexagonal boron nitride as efficient single-atom catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin

    2015-01-01

    Taking CO oxidation as a probe, we investigated the electronic structure and reactivity of Pt atoms stabilized by vacancy defects on hexagonal boron nitride (h-BN) by first-principles-based calculations. As a joint effect of the high reactivity of both a single Pt atom and a boron vacancy defect (PtBV), the Pt-N interaction is -4.40 eV and is already strong enough to prohibit the diffusion and aggregation of the stabilized Pt atom. Facilitated by the upshifted Pt-d states originated from the Pt-N interaction, the barriers for CO oxidation through the Langmuir-Hinshelwood mechanism for formation and dissociation of peroxide-like intermediate and the regeneration are as low as 0.38, 0.10 and 0.04 eV, respectively, suggesting the superiority of PtBV as a catalyst for low temperature CO oxidation.

  18. Ammonium-tungstate-promoted growth of boron nitride nanotubes

    Science.gov (United States)

    E, Songfeng; Li, Chaowei; Li, Taotao; Geng, Renjie; Li, Qiulong; Lu, Weibang; Yao, Yagang

    2018-05-01

    Ammonium tungstate ((NH4)10W12O41 · xH2O) is a kind of oxygen-containing ammonium salt. The following study proves that it can be successfully used as a metal oxide alternative to produce boron oxide (B2O2) by oxidizing boron (B) in a traditional boron oxide chemical vapor deposition (BOCVD) process. This special oxidant promotes the simplistic fabrication of boron nitride nanotubes (BNNTs) in a conventional horizontal tube furnace, an outcome which may have resulted from its strong oxidizability. The experimental results demonstrate that the mole ratio of B and (NH4)10W12O41 · xH2O is a key parameter in determining the formation, quality and quantity of BNNTs when stainless steel is employed as a catalyst. We also found that Mg(NO3)2 and MgO nanoparticles (NPs) can be used as catalysts to grow BNNTs with the same precursor. The BNNTs obtained from the Mg(NO3)2 catalyst were straighter than those obtained from the MgO NP catalyst. This could have been due to the different physical forms of the catalysts that were used.

  19. Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys

    Directory of Open Access Journals (Sweden)

    Masafumi Matsushita

    2011-07-01

    Full Text Available Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride.

  20. Gas-exfoliated porous monolayer boron nitride for enhanced aerobic oxidative desulfurization performance

    Science.gov (United States)

    Wu, Yingcheng; Wu, Peiwen; Chao, Yanhong; He, Jing; Li, Hongping; Lu, Linjie; Jiang, Wei; Zhang, Beibei; Li, Huaming; Zhu, Wenshuai

    2018-01-01

    Hexagonal boron nitride has been regarded to be an efficient catalyst in aerobic oxidation fields, but limited by the less-exposed active sites. In this contribution, we proposed a simple green liquid nitrogen gas exfoliation strategy for preparation of porous monolayer nanosheets (BN-1). Owing to the reduced layer numbers, decreased lateral sizes and artificially-constructed pores, increased exposure of active sites was expected, further contributed to an enhanced aerobic oxidative desulfurization (ODS) performance up to ˜98% of sulfur removal, achieving ultra-deep desulfurization. This work not only introduced an excellent catalyst for aerobic ODS, but also provided a strategy for construction of some other highly-efficient monolayer two-dimensional materials for enhanced catalytic performance.

  1. Synthesis of boron nitride nanotubes by an oxide-assisted chemical method

    International Nuclear Information System (INIS)

    Singhal, S. K.; Srivastava, A. K.; Gupta, Anil K.; Chen, Z. G.

    2010-01-01

    We report a new method for the synthesis of boron nitride (BN) nanotubes employing a two-step process in which some oxides have found to catalyze the growth of BN nanotubes. In the first step, a precursor containing B-N-O-Fe/Mg was prepared by ball milling a mixture of B, B 2 O 3 , Fe 2 O 3 and MgO (1:7:2:1 mass ratio) in NH 3 for 3 h. BN nanotubes (diameter: 20-100 nm) were grown in the second step from this precursor by isothermal annealing at 1,350 o C in NH 3 for about 4 h. XRD, SEM and HR-TEM studies elucidated the spindle-like morphology of these nanotubes of hexagonal crystal structure. The Raman spectrum showed the peak broadening and shifts to higher frequency. The present method showed that some oxides assisted the growth of BN nanotubes. A possible reaction mechanism on the formation of BN nanotubes in the presence of these oxides is discussed.

  2. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation

    International Nuclear Information System (INIS)

    Jiang, Liming; Fu, Honggang; Wang, Lei; Mu, Guang; Jiang, Baojiang; Zhou, Wei; Wang, Ruihong

    2014-01-01

    Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g −1 Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superior to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S BET ) of 457.92 m 2 g −1 . After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g −1 Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance

  3. Preparation, Characterization and Adsorption Study of Granular Activated Carbon/Iron oxide composite for the Removal of Boron and Organics from Wastewater

    Directory of Open Access Journals (Sweden)

    Affam Augustine Chioma

    2018-01-01

    Full Text Available Boron and organics maybe in high concentration during production of oil and gas, fertilizers, glass, and detergents. In addition, boron added to these industrial processes may require to be removed by the wastewater treatment plant. The preparation, characterization and application of iron oxide-activated carbon composite for removal of boron and COD was studied. The one variable at a time (OVAT method was implemented to obtain desirable operating conditions (adsorbent dosage 5 g/L, reaction time 2 h, agitation speed 100 rpm, pH 5 for COD removal and pH 9 for boron removal. It was found that boron and organics present in a sample wastewater may require to be treated separately to remove the contaminants. The study achieved 97 and 70% for boron and COD removal, respectively. Adsorption as an alternative cheap source of treatment and its practicability for small communities is recommended as effective in removal of contaminants from river water.

  4. Preparation, Characterization and Adsorption Study of Granular Activated Carbon/Iron oxide composite for the Removal of Boron and Organics from Wastewater

    Science.gov (United States)

    Chioma Affam, Augustine; Chung Wong, Chee; Seyam, Mohammed A. B.; Matt, Chelsea Ann Anak Frederick; Lantan Anak Sumbai, Josephine; Evuti, Abdullahi Mohammed

    2018-03-01

    Boron and organics maybe in high concentration during production of oil and gas, fertilizers, glass, and detergents. In addition, boron added to these industrial processes may require to be removed by the wastewater treatment plant. The preparation, characterization and application of iron oxide-activated carbon composite for removal of boron and COD was studied. The one variable at a time (OVAT) method was implemented to obtain desirable operating conditions (adsorbent dosage 5 g/L, reaction time 2 h, agitation speed 100 rpm, pH 5 for COD removal and pH 9 for boron removal). It was found that boron and organics present in a sample wastewater may require to be treated separately to remove the contaminants. The study achieved 97 and 70% for boron and COD removal, respectively. Adsorption as an alternative cheap source of treatment and its practicability for small communities is recommended as effective in removal of contaminants from river water.

  5. Kinetics and mechanism of the deep electrochemical oxidation of sodium diclofenac on a boron-doped diamond electrode

    Science.gov (United States)

    Vedenyapina, M. D.; Borisova, D. A.; Rosenwinkel, K.-H.; Weichgrebe, D.; Stopp, P.; Vedenyapin, A. A.

    2013-08-01

    The kinetics and mechanism of the deep oxidation of sodium diclofenac on a boron-doped diamond electrode are studied to develop a technique for purifying wastewater from pharmaceutical products. The products of sodium diclofenac electrolysis are analyzed using cyclic voltammetry and nuclear magnetic resonance techniques. It is shown that the toxicity of the drug and products of its electrolysis decreases upon its deep oxidation.

  6. Fabrication and characterization of n-type zinc oxide/p-type boron doped diamond heterojunction

    Czech Academy of Sciences Publication Activity Database

    Marton, M.; Mikolášek, M.; Bruncko, J.; Novotný, I.; Ižák, Tibor; Vojs, M.; Kozak, Halyna; Varga, Marián; Artemenko, Anna; Kromka, Alexander

    2015-01-01

    Roč. 66, č. 5 (2015), s. 277-281 ISSN 1335-3632 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) 7AMB14SK024 Institutional support: RVO:68378271 Keywords : boron doped diamond * zinc oxide * Raman spectroscopy * bipolar heterostructure * wide-bandgap Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.407, year: 2015

  7. Anodic oxidation of wastewater containing the Reactive Orange 16 Dye using heavily boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Migliorini, F.L.; Braga, N.A.; Alves, S.A.; Lanza, M.R.V.; Baldan, M.R.; Ferreira, N.G.

    2011-01-01

    Highlights: → Electrochemical advanced oxidation process was studied using BDD based anodes with different boron concentrations. → The difference between the non-active and active anodes for organics degradation. → The influence of morphologic and structural properties of BDD electrodes on the RO-16 dye degradation. - Abstract: Boron-doped diamond (BDD) films grown on the titanium substrate were used to study the electrochemical degradation of Reactive Orange (RO) 16 Dye. The films were produced by hot filament chemical vapor deposition (HFCVD) technique using two different boron concentrations. The growth parameters were controlled to obtain heavily doped diamond films. They were named as E1 and E2 electrodes, with acceptor concentrations of 4.0 and 8.0 x 10 21 atoms cm -3 , respectively. The boron levels were evaluated from Mott-Schottky plots also corroborated by Raman's spectra, which characterized the film quality as well as its physical property. Scanning Electron Microscopy showed well-defined microcrystalline grain morphologies with crystal orientation mixtures of (1 1 1) and (1 0 0). The electrode efficiencies were studied from the advanced oxidation process (AOP) to degrade electrochemically the Reactive Orange 16 azo-dye (RO16). The results were analyzed by UV/VIS spectroscopy, total organic carbon (TOC) and high-performance liquid chromatography (HPLC) techniques. From UV/VIS spectra the highest doped electrode (E2) showed the best efficiency for both, the aromaticity reduction and the azo group fracture. These tendencies were confirmed by the TOC and chromatographic measurements. Besides, the results showed a direct relationship among the BDD morphology, physical property, and its performance during the degradation process.

  8. Copper atoms embedded in hexagonal boron nitride as potential catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin; Duan, Ting; Sui, Yanhui; Meng, Changgong; Han, Yu

    2014-01-01

    We addressed the electronic structure of Cu atoms embedded in hexagonal boron nitride (h-BN) and their catalytic role in CO oxidation by first-principles-based calculations. We showed that Cu atoms prefer to bind directly with the localized defects

  9. Interfacial-Bonding-Regulated CO Oxidation over Pt Atoms Immobilized on Gas-Exfoliated Hexagonal Boron Nitride

    KAUST Repository

    Liu, Xin

    2017-10-12

    We compared the electronic structure and CO oxidation mechanisms over Pt atoms immobilized by both B-vacancies and N-vacancies on gas-exfoliated hexagonal boron nitride. We showed that chemical bonds are formed between the B atoms associated with dangling bonds around the vacancies and Pt atoms. These bonds not only alter the thermodynamics and kinetics for the aggregation and effectively immobilize Pt atoms, but also significantly change the composition and energetic distribution of the electronic states of the composites to circumvent CO poisoning and to favour coadsorption of CO and O2, which further regulates the reactions to proceed through a Langmuir-Hinshelwood mechanism. The CO oxidation over Pt atoms immobilized at N-vacancies involves formation of an intermediate with –C(O)-O−O- bonded to Pt, the generation of CO2 by peroxo O−O bond scission and the reduction of the remnant oxygen, and the calculated energy barriers are 0.49, 0.23 and 0.18 eV, respectively. Such small energy barriers are comparable to those over Pt atoms trapped at B-vacancies, showing the effectiveness of Pt/hexagonal boron nitride atomic composites as catalysts for CO oxidation. These findings also suggest the feasibility of regulating the reaction pathways over single atom catalysts via interfacial engineering.

  10. Radiation hardening of MOS devices by boron

    International Nuclear Information System (INIS)

    Danchenko, V.

    1975-01-01

    A novel technique is disclosed for radiation hardening of MOS devices and specifically for stabilizing the gate threshold potential at room temperature of a radiation subjected MOS field-effect device of the type having a semiconductor substrate, an insulating layer of oxide on the substrate, and a gate electrode disposed on the insulating layer. In the preferred embodiment, the novel inventive technique contemplates the introduction of boron into the insulating oxide, the boron being introduced within a layer of the oxide of about 100A to 300A thickness immediately adjacent the semiconductor-insulator interface. The concentration of boron in the oxide layer is preferably maintained on the order of 10 atoms/ cm 3 . The novel technique serves to reduce and substantially annihilate radiation induced positive gate charge accumulations, which accumulations, if not eliminated, would cause shifting of the gate threshold potential of a radiation subjected MOS device, and thus render the device unstable and/or inoperative. (auth)

  11. Mechanism of the electrochemical hydrogen reaction on smooth tungsten carbide and tungsten electrodes

    International Nuclear Information System (INIS)

    Wiesener, K.; Winkler, E.; Schneider, W.

    1985-01-01

    The course of the electrochemical hydrogen reaction on smooth tungsten-carbide electrodes in hydrogen saturated 2.25 M H 2 SO 4 follows a electrochemical sorption-desorption mechanism in the potential range of -0.4 to +0.1 V. At potentials greater than +0.1 V the hydrogen oxidation is controlled by a preliminary chemical sorption step. Concluding from the similar behaviour of tungsten-carbide and tungsten electrodes after cathodic pretreatment, different tungsten oxides should be involved in the course of the hydrogen reaction on tungsten carbide electrodes. (author)

  12. Preparation of dual-responsive hybrid fluorescent nano probe based on graphene oxide and boronic acid/BODIPY-conjugated polymer for cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Khoerunnisa [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Kang, Eun Bi [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Mazrad, Zihnil Adha Islamy [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Lee, Gibaek [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); In, Insik [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Park, Sung Young, E-mail: parkchem@ut.ac.kr [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of)

    2017-02-01

    Here, we report a pH- and thermo-responsive fluorescent nanomaterial of functionalized reduced graphene oxide (rGO) with cross-linked polymer produced via catechol-boronate diol binding mechanism. When conjugated with the hydrophobic dye boron dipyrromethane (BODIPY), this material can act as a dual-responsive nanoplatform for cells imaging. 2-Chloro-3′,4′-dihydroxyacetophenone (CCDP)-quaternized-poly(dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) [C-PDN] was cross-linked with BODIPY and 4-chlorophenyl boronic acid (BA)-quaternized-poly(ethylene glycol)-g-poly(dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) [BB-PPDN]. The GO was then reduced by the catechol group in the cross-linked polymer to synthesize rGO nanoparticles, which able to stabilize the quenching mechanism. This nanoplatform exhibits intense fluorescence at acidic pH and low fluorescence at physiological pH. Confocal laser scanning microscopy (CLSM) images shows bright fluorescence at lysosomal pH and total quench at physiological pH. Therefore, we have successfully developed a promising sensitive bio-imaging probe for identifying cancer cells. - Graphical abstract: [BB-PPDN]-[C-PDN]/rGO nanoparticles with boronic acid-catechol cis-diol binding mechanism toward change in pH demonstrated good biocompatibility and effective quenching for cancer cell detection. - Highlights: • Dual responsive (pH- and thermo) fluorescent nano probe was proposed for cells imaging. • The mechanism was based on cis-diol binding mechanism of boronic acid and catechol. • Reduced graphene oxide was used as quencher on nano-platform. • Detection was controlled dependent on pH based on diol compound of boron chemistry.

  13. Polymerisation occurrence in the anodic oxidation of phosphite on a boron-doped diamond electrode

    International Nuclear Information System (INIS)

    Petrucci, Elisabetta; Montanaro, Daniele; Merli, Carlo

    2008-01-01

    The electrogeneration of polymeric phosphorus compounds during the anodic oxidation of aqueous solutions of phosphites on a boron-doped diamond electrode has been studied. Although the main oxidation product is orthophosphate, the results indicate the simultaneous generation of short-chain and cyclic compounds containing two and three phosphorus atoms whose evolution has been followed by ion chromatography. The effect on the reaction yield of several operative parameters such as current density, pH, temperature and initial phosphite concentration has been investigated. Consistently with the data presented, a new process for the generation of polymeric phosphates is obtained

  14. Improved creep and oxidation behavior of a martensitic 9Cr steel by the controlled addition of boron and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Peter [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Materials Science; Graz Univ. of Technology (Austria). Inst. of Material Science and Welding; Holzer, Ivan; Mendez-Martin, Francisca [Graz Univ. of Technology (Austria). Inst. of Material Science and Welding; Albu, Mihaela; Mitsche, Stefan [Graz Univ. of Technology (Austria). Inst. for Electron Microscopy; Gonzalez, Vanessa; Agueero, Alina [Instituto Nacional de Tecnica Aeroespacial, Torrejon de Ardoz (Spain)

    2010-07-01

    This manuscript gives an overview on recent developments of a martensitic steel grade based on 9Cr3W3CoVNb with controlled additions of boron and nitrogen. Alloy design by thermodynamic equilibrium calculations and calculation of boron-nitrogen solubility is discussed. Out of this alloy design process, two melts of a 9Cr3W3CoVNbBN steel were produced. The investigation focused on microstructural evolution during high temperature exposure, creep properties and oxidation resistance in steam at 650 C. Microstructural characterization of ''as-received'' and creep exposed material was carried out using conventional optical as well as advanced electron microscopic methods. Creep data at 650 was obtained at various stress levels. Longest-running specimens have reached more than 20,000 hours of testing time. In parallel, long-term oxidation resistance has been studied at 650 C in steam atmosphere up to 5,000 hours. Preliminary results of the extensive testing program on a 9Cr3W3CoVNbBN steel show significant improvement in respect to creep strength and oxidation resistance compared to the state-of-the-art 9 wt. % Cr martensitic steel grades. Up to current testing times, the creep strength is significantly beyond the +20% scatterband of standard grade P92 material. Despite the chromium content of 9 wt % the material exhibits excellent oxidation resistance. Steam exposed plain base material shows comparable oxidation behavior to coated material, and the corrosion rate of the boron-nitrogen controlled steel is much lower compared to standard 9 wt % Cr steel grades, P91 and P92. (orig.)

  15. Effect of zinc oxide and boron oxide addition on the properties of yttrium-doped barium zirconate

    International Nuclear Information System (INIS)

    Andrade, Tiago Felipe

    2011-01-01

    BaZr 0.8 Y 0.2 O 3- δ protonic conductors, prepared by the ceramic route, were pressed and sintered with ZnO and B 2 O 3 sinter ing aids. The sintered pellets were analyzed by X-ray diffraction and impedance spectroscopy. Polished and thermally etched surfaces of the pellets were observed in a scanning probe microscope. The highest values of apparent density, 95%T.D., were obtained with 2 and 5 wt.% ZnO. The lowest value of electrical resistivity was obtained in BaZr 0.8 Y 0.2 O 3- δ compounds with 5 wt.% ZnO. Boron oxide and zinc oxide sinter ing aids were efficient to improve the apparent density as well as the electrical conductivity of BaZr 0.8 Y 0.2 O 3- δ protonic conductors. (author)

  16. Auger electron spectroscopy studies of boron carbide

    International Nuclear Information System (INIS)

    Madden, H.H.; Nelson, G.C.; Wallace, W.O.

    1986-01-01

    Auger electron spectroscopy has been used to probe the electronic structure of ion bombardment (IB) cleaned surfaces of B 9 C and B 4 C samples. The shapes of the B-KVV and C-KVV Auger lines were found to be relatively insensitive to the bulk stoichiometry of the samples. This indicates that the local chemical environments surrounding B and C atoms, respectively, on the surfaces of the IB cleaned samples do not change appreciably in going from B 9 C to B 4 C. Fracturing the sample in situ is a way of producing a clean representative internal surface to compare with the IB surfaces. Microbeam techniques have been used to study a fracture surface of the B 9 C material with greater spatial resolution than in our studies of IB surfaces. The B 9 C fracture surface was not homogeneous and contained both C-rich and B-rich regions. The C-KVV line for the C-rich regions was graphitic in shape. Much of the C-rich regions was found by IB to be less than 100 nm in thickness. The C-KVV line from the B-rich regions was carbidic and did not differ appreciably in shape from those recorded for the IB cleaned surfaces

  17. Sintering of beryllium oxide with 3-4 per cent elemental boron; Frittage de l'oxyde de beryllium a 3 et 5 pour cent de bore element

    Energy Technology Data Exchange (ETDEWEB)

    Pointud, R; Rispal, Ch; Le Garec, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    In order to manufacture a baffle absorbing neutrons of various energies, there was developed or mixture of a slower and an absorber. It is made by hot pressing impure beryllium containing boron carbide. The dense briquette has 100 x 100 x 50 mm and is machined on all her faces. She is of 2,85 density and about 3 to 4 per cent porosity, according to 5 per cent of boron. Difference of boron amount is lower than ten per cent between any two points of the briquette. (author) [French] Pour fabriquer un ecran absorbeur des neutrons d'energies diverses, on a realise l'association d'un element ralentisseur, Ie beryllium, et d'un element absorbant, le bore, par frittage sous charge d'une poudre mixte contenant de l'oxyde de beryllium technique et du carbure de bore technique. Le comprime obtenu est une brique de 100 x 100 x 50 mm, usinee sur toutes sur toutes surfaces, d'une densite de 2,85, porosite d'environ 3 a 4 pour cent pour une teneur en bore de 5 pour cent. L'heterogeneite en bore entre les differents points de cette brique est inferieure a 10 pour cent. (auteur)

  18. Oxidation protection and behavior of in-situ zirconium diboride–silicon carbide coating for carbon/carbon composites

    International Nuclear Information System (INIS)

    Li, Lu; Li, Hejun; Yin, Xuemin; Chu, Yanhui; Chen, Xi; Fu, Qiangang

    2015-01-01

    Highlights: • ZrB 2 –SiC coating was prepared on C/C composite by in-situ reaction. • A two-layered structure was obtained when the coating was oxidized at 1500 °C. • The formation and collapse of bubbles influenced the coating oxidation greatly. • The morphology evolution of oxide scale during oxidation was illuminated. - Abstract: To protect carbon/carbon (C/C) composites against oxidation, zirconium diboride–silicon carbide (ZrB 2 –SiC) coating was prepared by in-situ reaction using ZrC, B 4 C and Si as raw materials. The in-situ ZrB 2 –SiC coated C/C presented good oxidation resistance, whose weight loss was only 0.15% after isothermal oxidation at 1500 °C for 216 h. Microstructure evolution of coating at 1500 °C was studied, revealing a two-layered structure: (1) ZrO 2 (ZrSiO 4 ) embedded in SiO 2 -rich glass, and (2) unaffected ZrB 2 –SiC. The formation and collapse of bubbles influenced the coating oxidation greatly. A model based on the evolution of oxide scale was proposed to explain the failure mechanism of coating

  19. Thermodynamic analysis of thermal plasma process of composite zirconium carbide and silicon carbide production from zircon concentrates

    International Nuclear Information System (INIS)

    Kostic, Z.G.; Stefanovic, P.Lj.; Pavlovic; Pavlovic, Z.N.; Zivkovic, N.V.

    2000-01-01

    Improved zirconium ceramics and composites have been invented in an effort to obtain better resistance to ablation at high temperature. These ceramics are suitable for use as thermal protection materials on the exterior surfaces of spacecraft, and in laboratory and industrial environments that include flows of hot oxidizing gases. Results of thermodynamic consideration of the process for composite zirconium carbide and silicon carbide ultrafine powder production from ZrSiO 4 in argon thermal plasma and propane-butane gas as reactive quenching reagents are presented in the paper. (author)

  20. Real-time oxide evolution of copper protected by graphene and boron nitride barriers

    DEFF Research Database (Denmark)

    Galbiati, Miriam; Stoot, Adam Carsten; Mackenzie, David

    2017-01-01

    and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real......-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.......Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion...

  1. Real-time oxide evolution of copper protected by graphene and boron nitride barriers.

    Science.gov (United States)

    Galbiati, M; Stoot, A C; Mackenzie, D M A; Bøggild, P; Camilli, L

    2017-01-09

    Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.

  2. B4C control rod behavior during severe accident sequences

    International Nuclear Information System (INIS)

    Steinbrueck, M.

    2003-01-01

    The oxidation kinetics of various types of boron carbides (pellets, powder) as well as the degradation of B 4 C control rod segments were investigated in the temperature range between 800 and 1600 deg C. Mass spectrometric gas analysis was used to determine oxidation rates in transient and isothermal tests. The oxidation kinetics of boron carbide are determined by the formation of a liquid boron oxide layer and its loss due to the reaction with surplus steam to form volatile boric acids and at temperatures above 1500 deg C by direct evaporation. Under these test conditions linear oxidation kinetics are established soon after oxidation has initiated. The oxidation kinetics are strongly influenced by the thermal-hydraulic boundary conditions, in particular by the steam flow rate. Only very low amounts of methane were ever produced in these tests. Enhanced degradation of B 4 C control rods starts with the rapid formation of eutectic melts in the systems B 4 C-stainless steel (SS) and SS-Zircaloy at temperatures above 1250 deg C. Initially, this melt is kept within a ZrO 2 scale externally formed at the Zircaloy guide tube. The absorber melt is rapidly oxidized after failure of the oxide shell and aggressively attacks adjacent fuel claddings. (author)

  3. Formation mechanism of spheroidal carbide in ultra-low carbon ductile cast iron

    Directory of Open Access Journals (Sweden)

    Bin-guo Fu

    2016-09-01

    Full Text Available The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.

  4. Process for the preparation of fine grain metal carbide powders

    International Nuclear Information System (INIS)

    Gortsema, F.P.

    1976-01-01

    Fine grain metal carbide powders are conveniently prepared from the corresponding metal oxide by heating in an atmosphere of methane in hydrogen. Sintered articles having a density approaching the theoretical density of the metal carbide itself can be fabricated from the powders by cold pressing, hot pressing or other techniques. 8 claims, no drawings

  5. High temperature solar energy absorbing surfaces

    Science.gov (United States)

    Schreyer, J.M.; Schmitt, C.R.; Abbatiello, L.A.

    A solar collector having an improved coating is provided. The coating is a plasma-sprayed coating comprising a material having a melting point above 500/sup 0/C at which it is stable and selected from the group of boron carbide, boron nitride, metals and metal oxides, nitrides, carbides, borides, and silicates. The coatings preferably have a porosity of about 15 to 25% and a thickness of less than 200 micrometers. The coatings can be provided by plasma-spraying particles having a mean diameter of about 10 to 200 micrometers.

  6. Successive carbon- and boron saturation of KhVG steel in powder mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Alimov, Yu A; Gordienko, S I

    1975-01-01

    Method of successive saturation of KhVG steel with carbon and boron in powder mixtures is described. After carbonization of steel in a charcoal carburator at 930 deg C during 3 hrs a domain of equiaxial large grains is formed there the latter representing carbides of Fe/sub 3/C and (Fe, M)/sub 3/C. The increase of duration of carbonization up to 5 hrs and above results in formation of a cement grid greatly impairing the mechanical properties of the metal. Carbonization is followed by borating in powdered technical boron carbide at 900 deg C for 4 hrs which ensures formation on the sample surface of a borated layer with depth up to 65 mkm covering the carbonized zone. As followed from metallographic and x-ray structural analysis, the borated layer consists of boride needles with complex composition (Fe, Cr, Mn)B. Oil hardening of carbonized KhVG steel from 850 deg C and low-temperature tempering at 180 deg C for 1 hr results in formation in the main metal of martensite-carbide structure and, respectively, in the decrease of the microhardness gradient between the diffusion layers, as compared with borated KhVG steel. Operation tests of strengthened matrices of preforming machines under the conditions of application of dynamic pressing forces up to 1500 kg Fce/cm/sup 2/ demonstrated that the cyclical strength of carboborated coverings is 2.0-3.0 times higher than that of borated ones. The method of carboborating is recommended for strengthening the details of stamp and press tools.

  7. Preparation of Pt-mesoporous tungsten carbide/carbon composites via a soft-template method for electrochemical methanol oxidation

    International Nuclear Information System (INIS)

    Ma, Chun’an; Kang, Lingzhi; Shi, Meiqin; Lang, Xiaoling; Jiang, Yekun

    2014-01-01

    Highlights: • Mesoporous composite Pt-m(WC/C) is prepared by a soft template method. • The structure of phenolic gives a space limitation effect on the growth of WC. • Analysis of the effect of F127 on controlling the structure of composites. • Pt-m(WC/C) exhibits more than three times higher than Pt/C in catalytic activity. -- Abstract: This paper introduces a simple and reproducible chemical process for synthesis of Pt-mesoporous tungsten carbide/carbon composites composites Pt-m(WC/C) by means of a soft-template method. In this process, low-molecular-weight phenolic resol acted as the precursor both for carbon support and also the carbon resource of tungsten carbide. Tungsten hexachloride was used as a tungsten precursor along with different amount of triblock copolymer Pluronic F127 as pore-forming component. The best performance of Pt-m(WC/C) towards methanol oxidation is found when the mass ratios of WCl 6 :F127 is 1:0.6. The composite presents an improved methanol oxidation performance evidenced by a negative shift in onset potential, and increase of peak current density, compared with commercial Pt/C. The difference is explained by the adding of appropriate amount of F127 which facilitates the construction of mesoporous matrix structure of WC/C

  8. Development of carbon-ceramic composites

    International Nuclear Information System (INIS)

    Raman, V.; Bhatia, G.; Mishra, A.; Sengupta, P.R.; Saha, M.; Rashmi

    2005-01-01

    Carbon-ceramic composites (C-SiC-B 4 C) were developed through in situ formation of silicon carbide by mixing coal-tar based green coke and silicon as silicon carbide (SiC) precursor, boron carbide (B 4 C) and heat-treatment to 2200 deg. C. These composites were characterised for their physical, mechanical and oxidation resistance properties. The formation of protective coatings during oxidation of the composites was confirmed by using X-ray diffraction, energy-dispersive X-ray spectrometry, scanning electron microscopy and porosity measurement. Carbon-ceramic composites, which could withstand oxidation at 800-1200 deg. C for about 10 h in air have been developed

  9. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Liming [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Fu, Honggang, E-mail: fuhg@vip.sina.com [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Functional Inorganic Material Chemistry, Heilongjiang University, Harbin 150080 (China); Wang, Lei; Mu, Guang; Jiang, Baojiang; Zhou, Wei; Wang, Ruihong [Key Laboratory of Functional Inorganic Material Chemistry, Heilongjiang University, Harbin 150080 (China)

    2014-01-01

    Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g{sup −1} Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superior to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S{sub BET}) of 457.92 m{sup 2} g{sup −1}. After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g{sup −1} Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance.

  10. Oxidation of vanadium carbide in air; Oxidacion de carburo de vanadio en aire

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, A.; Troiani, L.; Materan, E. [Universidad Simon Bolivar, Depto. de la Ciencia de los Materiales, Grupo de Ingenieria de Superficies e Interfaces, Caracas, Venezuela, (Venezuela)

    1998-12-31

    It was studied the samples oxidation of vanadium carbide (V{sub 8}C{sub 7}), synterized and in powder, in order to know the temperature influence and the aggregation state in the kinetics and the oxidation products. The assays were realized in static air, at temperature between 600 y 750 Centigrade, between 6 and 24 hours periods. The gaseous products were analyzed through gas chromatography while the condensates ones were analyzed through optical microscopy and scanning electron microscopy, X-ray diffraction and chemical analysis by X-ray fluorescence analysis. It was found that in the V{sub 8}C{sub 7} oxidation occurs two basic processes: the gaseous oxides production which results of the carbon oxidation, fundamentally CO{sub 2}, and the vanadium condensate oxides production, fundamentally V{sub 2}O{sub 5}. In the synterized samples assayed under 650 Centigrade, the kinetics is lineal with loss of mass, suggesting a control by the formation of gaseous products in the sample surface, while in the synterized samples assayed over 650 Centigrade, it occurs a neat gain of mass, which is attributed to vanadium pentoxide fusion. These processes produce stratified layers of V{sub 2}O{sub 5} although at higher temperatures also it was detected V{sub 2}O{sub 4}. The superficial area effect is revealed in what the powder samples always experiment a mass neat increase in all essay temperatures, being the condensate oxidation products, fundamentally V{sub 2}O{sub 5} and V{sub 6}O{sub 13}. (Author)

  11. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  12. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    Science.gov (United States)

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  13. The valve effect of the carbide interlayer of an electric resistance plug

    International Nuclear Information System (INIS)

    Lakomskii, V.

    1998-01-01

    The welded electric resistance plug (ERP) usually contains a carbide interlayer at the plug-carbon material interface. The interlayer forms during welding the contact metallic alloy with the carbon material when the oxide films of the alloy are reduced on the interface surface by carbon to the formation of carbides and the surface layer of the plug material dissolves carbon to saturation. Subsequently, during solidification of the plug material it forms carbides with the alloy components. The structural composition of the carbide interlayer is determined by the chemical composition of the contact alloy. In alloys developed by the author and his colleagues the carbide forming elements are represented in most cases by silicon and titanium and, less frequently, by chromium and manganese. Therefore, the carbide interlayers in the ERP consisted mainly of silicon and titanium carbides

  14. Thermodynamics of Boron Removal from Silicon Using CaO-MgO-Al2O3-SiO2 Slags

    Science.gov (United States)

    Jakobsson, Lars Klemet; Tangstad, Merete

    2018-04-01

    Slag refining is one of few metallurgical methods for removal of boron from silicon. It is important to know the thermodynamic properties of boron in slags to understand the refining process. The relation of the distribution coefficient of boron to the activity of silica, partial pressure of oxygen, and capacity of slags for boron oxide was investigated. The link between these parameters explains why the distribution coefficient of boron does not change much with changing slag composition. In addition, the thermodynamic properties of dilute boron oxide in CaO-MgO-Al2O3-SiO2 slags was determined. The ratio of the activity coefficient of boron oxide and silica was found to be the most important parameter for understanding changes in the distribution coefficient of boron for different slags. Finally, the relation between the activity coefficient of boron oxide and slag structure was investigated. It was found that the structure can explain how the distribution coefficient of boron changes depending on slag composition.

  15. Gravimetric determination of carbon in uranium-plutonium carbide materials

    International Nuclear Information System (INIS)

    Kavanaugh, H.J.; Dahlby, J.W.; Lovell, A.P.

    1979-12-01

    A gravimetric method for determining carbon in uranium-plutonium carbide materials was developed to analyze six samples simultaneously. The samples are burned slowly in an oxygen atmosphere at approximately 900 0 C, and the gases generated are passed through Schuetze's oxidizing reagent (iodine pentoxide on silica gel) to assure quantitative oxidation of the CO to CO 2 . The CO 2 is collected on Ascarite and weighed. This method was tested using a tungsten carbide reference material (NBS-SRM-276) and a (U,Pu)C sample. For 42 analyses of the tungsten carbide, which has a certified carbon content of 6.09%, an average value of 6.09% was obtained with a standard deviation of 0.01 7 % or a relative standard deviation of 0.28%. For 17 analyses of the (U,Pu)C sample, an average carbon content of 4.97% was found with a standard deviation of 0.01 2 % or a relative standard deviation of 0.24%

  16. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization.

    Science.gov (United States)

    Wu, Peiwen; Zhu, Wenshuai; Chao, Yanhong; Zhang, Jinshui; Zhang, Pengfei; Zhu, Huiyuan; Li, Changfeng; Chen, Zhigang; Li, Huaming; Dai, Sheng

    2016-01-04

    Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.

  17. Plasma immersion ion implantation of boron for ribbon silicon solar cells

    Directory of Open Access Journals (Sweden)

    Derbouz K.

    2013-09-01

    Full Text Available In this work, we report for the first time on the solar cell fabrication on n-type silicon RST (for Ribbon on Sacrificial Template using plasma immersion ion implantation. The experiments were also carried out on FZ silicon as a reference. Boron was implanted at energies from 10 to 15 kV and doses from 1015 to 1016 cm-2, then activated by a thermal annealing in a conventional furnace at 900 and 950 °C for 30 min. The n+ region acting as a back surface field was achieved by phosphorus spin-coating. The frontside boron emitter was passivated either by applying a 10 nm deposited SiOX plasma-enhanced chemical vapor deposition (PECVD or with a 10 nm grown thermal oxide. The anti-reflection coating layer formed a 60 nm thick SiNX layer. We show that energies less than 15 kV and doses around 5 × 1015 cm-2 are appropriate to achieve open circuit voltage higher than 590 mV and efficiency around 16.7% on FZ-Si. The photovoltaic performances on ribbon silicon are so far limited by the bulk quality of the material and by the quality of the junction through the presence of silicon carbide precipitates at the surface. Nevertheless, we demonstrate that plasma immersion ion implantation is very promising for solar cell fabrication on ultrathin silicon wafers such as ribbons.

  18. Pt atoms stabilized on hexagonal boron nitride as efficient single-atom catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin; Duan, Ting; Meng, Changgong; Han, Yu

    2015-01-01

    Taking CO oxidation as a probe, we investigated the electronic structure and reactivity of Pt atoms stabilized by vacancy defects on hexagonal boron nitride (h-BN) by first-principles-based calculations. As a joint effect of the high reactivity

  19. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H J; Nesper, R [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  20. Survey of post-irradiation examinations made of mixed carbide fuels

    International Nuclear Information System (INIS)

    Coquerelle, M.

    1997-01-01

    Post-irradiation examinations on mixed carbide, nitride and carbonitride fuels irradiated in fast flux reactors Rapsodie and DFR were carried out during the seventies and early eighties. In this report, emphasis was put on the fission gas release, cladding carburization and head-end gaseous oxidation process of these fuels, in particular, of mixed carbides. (author). 8 refs, 16 figs, 3 tabs

  1. Fission product phases in irradiated carbide fuels

    International Nuclear Information System (INIS)

    Ewart, F.T.; Sharpe, B.M.; Taylor, R.G.

    1975-09-01

    Oxide fuels have been widely adopted as 'first charge' fuels for demonstration fast reactors. However, because of the improved breeding characteristics, carbides are being investigated in a number of laboratories as possible advanced fuels. Irradiation experiments on uranium and mixed uranium-plutonium carbides have been widely reported but the instances where segregate phases have been found and subjected to electron probe analysis are relatively few. Several observations of such segregate phases have now been made over a period of time and these are collected together in this document. Some seven fuel pins have been examined. Two of the irradiations were in thermal materials testing reactors (MTR); the remainder were experimental assemblies of carbide gas bonded oxycarbide and sodium bonded oxycarbide in the Dounreay Fast Reactor (DFR). All fuel pins completed their irradiation without failure. (author)

  2. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    Gimbert, J.

    1999-01-01

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  3. Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production

    Science.gov (United States)

    Czapski, M.; Stora, T.; Tardivat, C.; Deville, S.; Santos Augusto, R.; Leloup, J.; Bouville, F.; Fernandes Luis, R.

    2013-12-01

    New silicon carbide (SiC) and aluminum oxide (Al2O3) of a tailor-made microstructure were produced using the ice-templating technique, which permits controlled pore formation conditions within the material. These prototypes will serve to verify aging of the new advanced target materials under irradiation with proton beams. Before this, the evaluation of their mechanical integrity was made based on the energy deposition spectra produced by FLUKA codes.

  4. Copper atoms embedded in hexagonal boron nitride as potential catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin

    2014-01-01

    We addressed the electronic structure of Cu atoms embedded in hexagonal boron nitride (h-BN) and their catalytic role in CO oxidation by first-principles-based calculations. We showed that Cu atoms prefer to bind directly with the localized defects on h-BN, which act as strong trapping sites for Cu atoms and inhibit their clustering. The strong binding of Cu atoms at boron vacancy also up-shifts the energy level of Cu-d states to the Fermi level and promotes the formation of peroxide-like intermediate. CO oxidation over Cu atoms embedded in h-BN would proceed through the Langmuir-Hinshelwood mechanism with the formation of a peroxide-like complex by reaction of coadsorbed CO and O2, with the dissociation of which the a CO2 molecule and an adsorbed O atom are formed. Then, the embedded Cu atom is regenerated by the reaction of another gaseous CO with the remnant O atom. The calculated energy barriers for the formation and dissociation of peroxide complex and regeneration of embedded Cu atoms are as low as 0.26, 0.11 and 0.03 eV, respectively, indicating the potential high catalytic performance of Cu atoms embedded in h-BN for low temperature CO oxidation. © the Partner Organisations 2014.

  5. New ceramics for nuclear industry. Case of fission and fusion reactors

    International Nuclear Information System (INIS)

    Yvars, M.

    1979-10-01

    The ceramics used in the nuclear field are described as is their behaviour under radiation. 1) Power reactors - nuclear fission. Ceramics enter into the fabrication of nuclear fuels: oxides, carbides, uranium or plutonium nitrides or oxy-nitrides. Silicon carbide SiC is used for preparing the fuels of helium cooled high temperature reactors. Its use is foreseen in the design of gas high temperature gas thermal exchangers, as is silicon nitride (Si 3 N 4 ). In the materials for safety or control rods, the intense neutron flows induce nuclear reactions which increase the temperature of the neutron absorbing material. Boron carbide B 4 C, rare earth oxides Ln 2 O 3 , or B 4 C-Cu or B 4 C-Al cermets are employed. Burnable poison materials are formed of Al 2 O 3 -B 4 C or Al 2 O 3 -Ln 2 O 3 cermets. The moderators of thermal neutron reactors are in high purety polycrystalline graphite. For the thermal insulation of reactor vessels and jackets, honeycomb ceramics are used as well as ceramic fibres on an increasing scale (kaolin, alumina and other fibres). 2) fusion reactors (Tokomak). These require refractory materials with a low atomic number. Carbon fibres, boron carbide, some borons (Al B 12 ), silicon nitrides and oxy-nitrides and high density alumina are the substances considered [fr

  6. The influence of Boron on creep-rupture behaviour of austenitic unstabilized and Nb-stabilized stainless steel X8CrNi 1613 in unirradiated and irradiated condition

    International Nuclear Information System (INIS)

    Sen, Susant Kumar.

    1976-10-01

    The present study deals with influence of boron on creep-rupture behaviour in unirradiated condition at 650 0 C along with precipitation behaviour, heat-treatment and recrystallization of unstabilized and stabilized steel. The results of creep-rupture tests on unirradiated specimens show that boron exerts a beneficial effect on the rupture life and ductility. Boron losses its beneficial effect on creep properties in unstabilized steel by prolong creeping. The magnitude of beneficial effect of Boron on creep properties depends upon the initial boron distribution which influences the number, size and distribution of the precipitates. Boron promotes the precipitation of type M 23 C 6 Carbides in the grain as well as at the grain boundary. Boron segregates in atomic form during slow cooling from austenitizing temperature. The recrystallization will be delayed by the presence of boron. The results of creep tests at 650 0 C shows that boron exerts a beneficial effect on creep life of irradiated steels. (orig./GSC) [de

  7. Some problems connected with boron determination by atomic absorption spectroscopy and the sensitivity improvement

    Directory of Open Access Journals (Sweden)

    JELENA J. SAVOVIC

    2001-08-01

    Full Text Available Two atomizers were compared: an N2O–C2H2 flame and a stabilized U-shaped DC arc with aerosol supply. Both the high plasma temperature and the reducing atmosphere obtained by acetylene addition to the argon stream substantially increase the sensitivity of boron determination by atomic absorption spectroscopy (AAS when the arc atomizer is used. The results were compared with those for silicon as a control element. The experimental characteristic concentrations for both elements were compared with the computed values. The experimentally obtained characteristic concentration for boron when using the arc atomizer was in better agreement with the calculated value. It was estimated that the influence of stable monoxide formation on the sensitivity for both elements was about the same, but reduction of analyte and formation of non-volatile carbide particles was more important for boron, which is the main reason for the low sensitivity of boron determination using a flame atomizer. The use of an arc atomizer suppresses this interference and significantly improves the sensitivity of the determination.

  8. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Sathiskumar, R., E-mail: sathiscit2011@gmail.com [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Murugan, N., E-mail: murugan@cit.edu.in [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering, V V College of Engineering, Tisaiyanvilai, 627 657 Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph@karunya.edu [Centre for Research in Metallurgy (CRM), School of Mechanical Sciences, Karunya University, Coimbatore, 641 114 Tamil Nadu (India)

    2013-10-15

    Friction stir processing has evolved as a novel solid state technique to fabricate surface composites. The objective of this work is to apply the friction stir processing technique to fabricate boron carbide particulate reinforced copper surface composites and investigate the effect of B{sub 4}C particles and its volume fraction on microstructure and sliding wear behavior of the same. A groove was prepared on 6 mm thick copper plates and packed with B{sub 4}C particles. The dimensions of the groove was varied to result in five different volume fractions of B{sub 4}C particles (0, 6, 12, 18 and 24 vol.%). A single pass friction stir processing was done using a tool rotational speed of 1000 rpm, travel speed of 40 mm/min and an axial force of 10 kN. Metallurgical characterization of the Cu/B{sub 4}C surface composites was carried out using optical microscope and scanning electron microscope. The sliding wear behavior was evaluated using a pin-on-disk apparatus. Results indicated that the B{sub 4}C particles significantly influenced the area, dispersion, grain size, microhardness and sliding wear behavior of the Cu/B{sub 4}C surface composites. When the volume fraction of B{sub 4}C was increased, the wear mode changed from microcutting to abrasive wear and wear debris was found to be finer. Highlights: • Fabrication of Cu/B{sub 4}C surface composite by friction stir processing • Analyzing the effect of B{sub 4}C particles on the properties of Cu/B4C surface composite • Increased volume fraction of B{sub 4}C particles reduced the area of surface composite. • Increased volume fraction of B{sub 4}C particles enhanced the microhardness and wear rate. • B{sub 4}C particles altered the wear mode from microcutting to abrasive.

  9. Preparation of Pt-mesoporous tungsten carbide/carbon composites via a soft-template method for electrochemical methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chun’an, E-mail: science@zjut.edu.cn; Kang, Lingzhi; Shi, Meiqin; Lang, Xiaoling; Jiang, Yekun

    2014-03-05

    Highlights: • Mesoporous composite Pt-m(WC/C) is prepared by a soft template method. • The structure of phenolic gives a space limitation effect on the growth of WC. • Analysis of the effect of F127 on controlling the structure of composites. • Pt-m(WC/C) exhibits more than three times higher than Pt/C in catalytic activity. -- Abstract: This paper introduces a simple and reproducible chemical process for synthesis of Pt-mesoporous tungsten carbide/carbon composites composites Pt-m(WC/C) by means of a soft-template method. In this process, low-molecular-weight phenolic resol acted as the precursor both for carbon support and also the carbon resource of tungsten carbide. Tungsten hexachloride was used as a tungsten precursor along with different amount of triblock copolymer Pluronic F127 as pore-forming component. The best performance of Pt-m(WC/C) towards methanol oxidation is found when the mass ratios of WCl{sub 6}:F127 is 1:0.6. The composite presents an improved methanol oxidation performance evidenced by a negative shift in onset potential, and increase of peak current density, compared with commercial Pt/C. The difference is explained by the adding of appropriate amount of F127 which facilitates the construction of mesoporous matrix structure of WC/C.

  10. Gas cooled fast breeder reactors using mixed carbide fuel

    International Nuclear Information System (INIS)

    Kypreos, S.

    1976-09-01

    The fast reactors being developed at the present time use mixed oxide fuel, stainless-steel cladding and liquid sodium as coolant (LMFBR). Theoretical and experimental designing work has also been done in the field of gas-cooled fast breeder reactors. The more advanced carbide fuel offers greater potential for developing fuel systems with doubling times in the range of ten years. The thermohydraulic and physics performance of a GCFR utilising this fuel is assessed. One question to be answered is whether helium is an efficient coolant to be coupled with the carbide fuel while preserving its superior neutronic performance. Also, an assessment of the fuel cycle cost in comparison to oxide fuel is presented. (Auth.)

  11. Study of Electrochemical Oxidation and Quantification of the Pesticide Pirimicarb Using a Boron-Doped Diamond Electrode

    International Nuclear Information System (INIS)

    Selva, Thiago Matheus Guimarães; De Araujo, William Reis; Bacil, Raphael Prata; Paixão, Thiago Regis Longo Cesar

    2017-01-01

    Highlights: •A complete electro-oxidation mechanism of the pesticide Pirimicarb was proposed. •The electrochemical mechanism was supported by voltammetry techniques and mass spectrometry data. •An electroanalytical method using boron-doped diamond electrode was proposed to quantify Pirimicarb in natural waters. •The proposed analytical method is simple, low-cost, accurate and portable. -- Abstract: An electrochemical study of the carbamate pesticide pirimicarb (PMC), which acts on the central nervous system, was performed using a boron-doped diamond working electrode. Cyclic, differential pulse, and square-wave voltammetry experiments across a wide pH range (2.0 to 8.0) showed three irreversible oxidation processes in the voltammetric behavior of PMC. The two first processes were pH-dependent, while the third was not. The three oxidation process were independent of each other, and each involved the transfer of one electron. A reaction proposal for the electrochemical oxidation of PMC is shown, and it is supported by mass spectrometry experiments. After this, an analytical method for PMC quantification in water samples by differential pulse (DP) voltammetry is proposed. The optimal DP voltammetric parameters (step potential, amplitude potential, and scan rate) were optimized using experimental design, and an analytical curve was obtained from 2.0 to 219 μmol L −1 with an estimated detection limit of 1.24 μmol L −1 . The accuracy of the proposed method was evaluated by the addition and recovery method, with recoveries ranging from 88.6 to 96.3%. Some highlights of the proposed analytical method are its simplicity, reliability, and portability.

  12. Dependence of boron cluster dissolution on the annealing ambient

    International Nuclear Information System (INIS)

    Radic, Ljubo; Lilak, Aaron D.; Law, Mark E.

    2002-01-01

    Boron is introduced into silicon via implantation to form p-type layers. This process creates damage in the crystal that upon annealing causes enhanced diffusion and clustering of the boron layer. Reactivation of the boron is not a well-understood process. In this letter we experimentally investigate the effect of the annealing ambient on boron reactivation kinetics. An oxidizing ambient which injects silicon interstitials is compared to an inert ambient. Contrary to published theory, an excess of interstitials does not accelerate the reactivation process

  13. PREPARATION OF TANTALUM CARBIDE FROM AN ORGANOMETALLIC PRECURSOR

    Directory of Open Access Journals (Sweden)

    C. P. SOUZA

    1999-03-01

    Full Text Available In this work we have synthesized an organometallic oxalic precursor from tantalum oxide. This oxide was solubilized by heating with potassium hydrogen sulfate. In order to precipitate Ta2O5.nH2O, the fused mass obtained was dissolved in a sulfuric acid solution and neutralized with ammonia. The hydrated tantalum oxide precipitated was dissolved in an equimolar solution of oxalic acid/ammonium oxalate. The synthesis and the characterization of the tantalum oxalic precursor are described. Pyrolysis of the complex in a mixture of hydrogen and methane at atmospheric pressure was studied. The gas-solid reaction made it possible to obtain tantalum carbide, TaC, in the powder form at 1000oC. The natural sintering of TaC powder in an inert atmosphere at 1400°C during 10 hours, under inert atmosphere made it possible to densify the carbide to 96% of the theoretical value.

  14. Sintering of beryllium oxide with 3-4 per cent elemental boron; Frittage de l'oxyde de beryllium a 3 et 5 pour cent de bore element

    Energy Technology Data Exchange (ETDEWEB)

    Pointud, R.; Rispal, Ch.; Le Garec, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    In order to manufacture a baffle absorbing neutrons of various energies, there was developed or mixture of a slower and an absorber. It is made by hot pressing impure beryllium containing boron carbide. The dense briquette has 100 x 100 x 50 mm and is machined on all her faces. She is of 2,85 density and about 3 to 4 per cent porosity, according to 5 per cent of boron. Difference of boron amount is lower than ten per cent between any two points of the briquette. (author) [French] Pour fabriquer un ecran absorbeur des neutrons d'energies diverses, on a realise l'association d'un element ralentisseur, Ie beryllium, et d'un element absorbant, le bore, par frittage sous charge d'une poudre mixte contenant de l'oxyde de beryllium technique et du carbure de bore technique. Le comprime obtenu est une brique de 100 x 100 x 50 mm, usinee sur toutes sur toutes surfaces, d'une densite de 2,85, porosite d'environ 3 a 4 pour cent pour une teneur en bore de 5 pour cent. L'heterogeneite en bore entre les differents points de cette brique est inferieure a 10 pour cent. (auteur)

  15. Effect of laser pulsed radiation on the properties of implanted layers of silicon carbide

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Voron'ko, O.N.; Nojbert, F.; Potapov, E.N.

    1984-01-01

    Results are presented of investigation into pulsed laser radiation effects on the layers of GH polytype silicon carbide converted to amorphous state by implantation of boron and aluminium ions. The implantation doses were selected to be 5x10 16 for boron and 5x10 15 cm -2 for aluminium, with the ion energies being 60 and 80 keV, respectively. The samples annealed under nanosecond regime are stated to posseys neither photoluminescence (PL) nor cathodoluminescence (CL). At the same time the layers annealed in millisecond regime have a weak PL at 100 K and CL at 300 K. The PL and CL are observed in samples, laser-annealed at radiation energy density above 150-160 J/cm 2 in case of boron ion implantation and 100-120 J/cm 2 in case of aluminium ion implantation. Increasing the radiation energy density under the nanosecond regime of laser annealing results in the surface evaporation due to superheating of amorphous layers. Increasing the energy density above 220-240 J/cm 2 results in destruction of the samples

  16. TEM Studies of Boron-Modified 17Cr-7Ni Precipitation-Hardenable Stainless Steel via Rapid Solidification Route

    Science.gov (United States)

    Gupta, Ankur; Bhargava, A. K.; Tewari, R.; Tiwari, A. N.

    2013-09-01

    Commercial grade 17Cr-7Ni precipitation-hardenable stainless steel has been modified by adding boron in the range 0.45 to 1.8 wt pct and using the chill block melt-spinning technique of rapid solidification (RS). Application of RS has been found to increase the solid solubility of boron and hardness of 17Cr-7Ni precipitation-hardenable stainless steel. The hardness of the boron-modified rapidly solidified alloys has been found to increase up to ~280 pct after isochronal aging to peak hardness. A TEM study has been carried out to understand the aging behavior. The presence of M23(B,C)6 and M2(B,C) borocarbides and epsilon-carbide in the matrix of austenite and ferrite with a change in heat treatment temperature has been observed. A new equation for Creq is also developed which includes the boron factor on ferrite phase stability. The study also emphasizes that aluminum only takes part in ferrite phase stabilization and remains in the solution.

  17. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  18. Density functional theory investigation of oxygen interaction with boron-doped graphite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan; Wang, Chen [State Key Lab of New Ceramic and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-12-30

    Highlights: • Density-functional approach is applied to study the interaction of oxygen with boron-doped graphite. • Adsorption and diffusion of oxygen atoms on boron doped graphite surfaces are studied. • Recombination of oxygen is investigated by ER and LH mechanisms. • Low boron concentration facilitates O{sub 2} formation while high boron loading inhibits the recombination. • The presence of B−B bonds due to boron accumulation makes it impossible for oxygen recombination. - Abstract: Boron inserted as impurity by substitution of carbon atoms in graphite is known to change (improve or deteriorate) oxidation resistance of nuclear graphite, but the reason for both catalytic and inhibiting oxidation is still uncertain. As a first step, this work is more specially devoted to the adsorption and diffusion of oxygen atoms on the surface and related to the problem of oxygen retention on the pure and boron-containing graphite surfaces. Adsorption energies and energy barriers associated to the diffusion for molecular oxygen recombination are calculated in the density functional theory framework. The existence of boron modifies the electronic structure of the surface, which results in an increase of the adsorption energy for O. However, low boron loading makes it easier for the recombination into molecular oxygen. For high boron concentration, it induces a better O retention capability in graphite because the presence of B-B bonds decreases recombination of the adsorbed oxygen atoms. A possible explanation for both catalytic and inhibiting effects of boron in graphite is proposed.

  19. Benefits of Low Boron Core Design Concept for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Daing, Aung Tharn; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2009-10-15

    Nuclear design study was carried out to develop low boron core (LBC) based on one of current PWR concepts, OPR-1000. Most of design parameters were the same with those of Ulchin unit-5 except extensive utilization of burnable poison (BP) pins in order to compensate reactivity increase in LBC. For replacement of reduced soluble boron concentration, four different kinds of integral burnable absorbers (IBAs) such as gadolinia, integral fuel burnable absorber (IFBA), erbia and alumina boron carbide were considered in suppressing more excess reactivity. A parametric study was done to find the optimal core options from many design candidates for fuel assemblies and cores. Among them, the most feasible core design candidate was chosen in accordance with general design requirements. In this paper, the feasibility and design change benefits of the most favorable LBC design were investigated in more detail through the comparison of neutronic and thermal hydraulic design parameters of LBC with the reference plant (REF). As calculation tools, the HELIOS/MASTER code package and the MATRA code were utilized. The main purpose of research herein is to estimate feasibility and capability of LBC which was mainly designed to mitigate boron dilution accident (BDA), and for reduction of corrosion products. The LBC design concept using lower boron concentration with an elevated enrichment in {sup 10}B allows a reduction in the concentration of lithium in the primary coolant required to maintain the optimum coolant pH. All in all, LBC with operation at optimum pH is expected to achieve some benefits from radiation source reduction of reduced corrosion product, the limitation of the Axial Offset Anomaly (AOA) and fuel cladding corrosion. Additionally, several merits of LBC are closely related to fluid systems and system related aspects, reduced boron and lithium costs, equipment size reduction for boric acid systems, elimination of heat tracing, and more aggressive fuel design concepts.

  20. Benefits of Low Boron Core Design Concept for PWR

    International Nuclear Information System (INIS)

    Daing, Aung Tharn; Kim, Myung Hyun

    2009-01-01

    Nuclear design study was carried out to develop low boron core (LBC) based on one of current PWR concepts, OPR-1000. Most of design parameters were the same with those of Ulchin unit-5 except extensive utilization of burnable poison (BP) pins in order to compensate reactivity increase in LBC. For replacement of reduced soluble boron concentration, four different kinds of integral burnable absorbers (IBAs) such as gadolinia, integral fuel burnable absorber (IFBA), erbia and alumina boron carbide were considered in suppressing more excess reactivity. A parametric study was done to find the optimal core options from many design candidates for fuel assemblies and cores. Among them, the most feasible core design candidate was chosen in accordance with general design requirements. In this paper, the feasibility and design change benefits of the most favorable LBC design were investigated in more detail through the comparison of neutronic and thermal hydraulic design parameters of LBC with the reference plant (REF). As calculation tools, the HELIOS/MASTER code package and the MATRA code were utilized. The main purpose of research herein is to estimate feasibility and capability of LBC which was mainly designed to mitigate boron dilution accident (BDA), and for reduction of corrosion products. The LBC design concept using lower boron concentration with an elevated enrichment in 10 B allows a reduction in the concentration of lithium in the primary coolant required to maintain the optimum coolant pH. All in all, LBC with operation at optimum pH is expected to achieve some benefits from radiation source reduction of reduced corrosion product, the limitation of the Axial Offset Anomaly (AOA) and fuel cladding corrosion. Additionally, several merits of LBC are closely related to fluid systems and system related aspects, reduced boron and lithium costs, equipment size reduction for boric acid systems, elimination of heat tracing, and more aggressive fuel design concepts

  1. Silicon carbide: A unique platform for metal-oxide-semiconductor physics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States); Tuttle, Blair R. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Dhar, Sarit [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

    2015-06-15

    A sustainable energy future requires power electronics that can enable significantly higher efficiencies in the generation, distribution, and usage of electrical energy. Silicon carbide (4H-SiC) is one of the most technologically advanced wide bandgap semiconductor that can outperform conventional silicon in terms of power handling, maximum operating temperature, and power conversion efficiency in power modules. While SiC Schottky diode is a mature technology, SiC power Metal Oxide Semiconductor Field Effect Transistors are relatively novel and there is large room for performance improvement. Specifically, major initiatives are under way to improve the inversion channel mobility and gate oxide stability in order to further reduce the on-resistance and enhance the gate reliability. Both problems relate to the defects near the SiO{sub 2}/SiC interface, which have been the focus of intensive studies for more than a decade. Here we review research on the SiC MOS physics and technology, including its brief history, the state-of-art, and the latest progress in this field. We focus on the two main scientific problems, namely, low channel mobility and bias temperature instability. The possible mechanisms behind these issues are discussed at the device physics level as well as the atomic scale, with the support of published physical analysis and theoretical studies results. Some of the most exciting recent progress in interface engineering for improving the channel mobility and fundamental understanding of channel transport is reviewed.

  2. Tribology of carbide derived carbon films synthesized on tungsten carbide

    Science.gov (United States)

    Tlustochowicz, Marcin

    Tribologically advantageous films of carbide derived carbon (CDC) have been successfully synthesized on binderless tungsten carbide manufactured using the plasma pressure compaction (P2CRTM) technology. In order to produce the CDC films, tungsten carbide samples were reacted with chlorine containing gas mixtures at temperatures ranging from 800°C to 1000°C in a sealed tube furnace. Some of the treated samples were later dechlorinated by an 800°C hydrogenation treatment. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and their results were correlated with the friction and wear behavior of the CDC films in various tribosystems, including CDC-steel, CDC-WC, CDC-Si3N4 and CDC-CDC. Optimum synthesis and treatment conditions were determined for use in two specific environments: moderately humid air and dry nitrogen. It was found that CDC films first synthesized at 1000°C and then hydrogen post-treated at 800°C performed best in air with friction coefficient values as low as 0.11. However, for dry nitrogen applications, no dechlorination was necessary and both hydrogenated and as-synthesized CDC films exhibited friction coefficients of approximately 0.03. A model of tribological behavior of CDC has been proposed that takes into consideration the tribo-oxidation of counterface material, the capillary forces from adsorbed water vapor, the carbon-based tribofilm formation, and the lubrication effect of both chlorine and hydrogen.

  3. Fabrication processes of C/Sic composites for high temperature components in energy systems and investigation of their oxidation behavior

    International Nuclear Information System (INIS)

    El-Hakim, E.

    2004-01-01

    Carbon fibre-reinforced ceramic matrix composite are promising candidate materials for high temperature applications such as structural components in energy systems, fusion reactors and advanced gas turbine engines. C/C composites has low oxidation resistance at temperatures above 500degree. To overcome this low oxidation resistance a coating should be applied. Tenax HTA 5131 carbon fibres impregnated with phenolic resin and reinforced silicon carbide were modified by the addition of a coating layer of boron oxide, (suspended in Dyansil-40) for improving anti-oxidation properties of the composites.The oxidation behavior of carbon-silicon carbide composites coated with B 2 O 3 , as an protective layer former, in dry air has been studied in the temperature range 800- 1000 degree for 8 hrs and 16 hrs. The results show that the oxidation rates of the uncoated composites samples are higher than those of the coated composites. The uncoated samples exhibit the highest oxidation rate during the initial stages of oxidation. The composite coated with B 2 O 3 had a significantly improved oxidation resistance due to the formation of a barrier layer for oxygen diffusion. This improvement in the oxidation resistance is attributed to the blocking of the active sites for oxygen diffusion. The oxidation resistance of the coated composite is highly improved; the weight loss percentage of casted samples is 4.5-16% after 16-hrs oxidation in air while the weight loss of uncoated samples is about 60%. The results are supported by scanning electron microscopy

  4. The morphology of ceramic phases in B x C-SiC-Si infiltrated composites

    International Nuclear Information System (INIS)

    Hayun, S.; Frage, N.; Dariel, M.P.

    2006-01-01

    The present communication is concerned with the effect of the carbon source on the morphology of reaction bonded boron carbide (B 4 C). Molten silicon reacts strongly and rapidly with free carbon to form large, faceted, regular polygon-shaped SiC particles, usually embedded in residual silicon pools. In the absence of free carbon, the formation of SiC relies on carbon that originates from within the boron carbide particles. Examination of the reaction bonded boron carbide revealed a core-rim microstructure consisting of boron carbide particles surrounded by secondary boron carbide containing some dissolved silicon. This microstructure is generated as the outcome of a dissolution-precipitation process. In the course of the infiltration process molten Si dissolves some boron carbide until its saturation with B and C. Subsequently, precipitation of secondary boron carbide enriched with boron and silicon takes place. In parallel, elongated, strongly twinned, faceted SiC particles are generated by rapid growth along preferred crystallographic directions. This sequence of events is supported by X-ray diffraction and microcompositional analysis and well accounted for by the thermodynamic analysis of the ternary B-C-Si system. - Graphical abstract: Bright field TEM image of the rim area between two boron carbide grains

  5. Use of thermogravimetry and thermodynamic calculations for specifying chromium diffusion occurring in alloys containing chromium carbides during high temperature oxidation

    International Nuclear Information System (INIS)

    Berthod, Patrice; Conrath, Elodie

    2015-01-01

    The chromium diffusion is of great importance for the high temperature oxidation behaviour of the chromium-rich carbides-strengthened superalloys. These ones contain high chromium quantities for allowing them well resisting hot corrosion by constituting and maintaining a continuous external scale of chromia. Knowing how chromium can diffuse in such alloys is thus very useful for predicting the sustainability of their chromia-forming behaviour. Since Cr diffusion occurs through the external part of the alloy already affected by the previous steps of oxidation (decarburized subsurface) it is more judicious to specify this diffusion during the oxidation process itself. This was successfully carried out in this work in the case of a model chromia-forming nickel-based alloy containing chromium carbides, Ni(bal.)–25Cr–0.5C (in wt.%). This was done by specifying, using real-time thermogravimetry, the mass gain kinetic due to oxidation, and by combining it with the post-mortem determination of the Cr concentration profiles in subsurface. The values of D Cr thus obtained for 1000, 1050 and 1100 °C in the alloy subsurface are consistent with the values obtained in earlier works for similar alloy's chemical compositions. - Highlights: • A Ni25Cr0.50C alloy was oxidized at high temperature in a thermo-balance. • The mass gain files were analysed to specify the Cr 2 O 3 volatilization constant K v . • Concentration profiles were acquired to specify the chromium gradient. • The diffusion coefficient of chromium through the subsurface was deduced. • The obtained diffusion coefficient is consistent with values previously obtained.

  6. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    KAUST Repository

    Huang, Yi-Fu; Wu, Peng-Fei; Zhang, Ming-Qiu; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2014-01-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  7. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    KAUST Repository

    Huang, Yi-Fu

    2014-06-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  8. Effects of silicon carbide on the phase developments in mullite-carbon ceramic composite

    Directory of Open Access Journals (Sweden)

    Fatai Olufemi ARAMIDE

    2017-12-01

    Full Text Available The effects of the addition of silicon carbide and sintering temperatures on the phases developed, in sintered ceramic composite produced from kaolin and graphite was investigated. The kaolin and graphite of known mineralogical composition were thoroughly blended with 4 and 8 vol % silicon carbide. From the homogeneous mixture of kaolin, graphite and silicon carbide, standard samples were prepared via uniaxial compaction. The test samples produced were subjected to firing (sintering at 1300°C, 1400°C and 1500°C. The sintered samples were characterized for the developed phases using x‐ray diffractometry analysis, microstructural morphology using ultra‐high resolution field emission scanning electron microscope (UHRFEGSEM. It was observed that microstructural morphology of the samples revealed the evolution of mullite, cristobalite and microcline. The kaolinite content of the raw kaolin undergoes transformation into mullite and excess silica, the mullite and the silica phases contents increased with increased sintering temperature. It is also generally observed that the graphite content progressively reduced linearly with increased sintering temperature. It is concluded that silicon carbide acts as anti-oxidant for the graphite, this anti-oxidant effect was more effective at 4 vol % silicon carbide.

  9. Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production

    CERN Document Server

    Czapski, M; Tardivat, C; Stora, T; Bouville, F; Leloup, J; Luis, R Fernandes; Augusto, R Santos

    2013-01-01

    New silicon carbide (SiC) and aluminum oxide (Al2O3) of a tailor-made microstructure were produced using the ice-templating technique, which permits controlled pore formation conditions within the material. These prototypes will serve to verify aging of the new advanced target materials under irradiation with proton beams. Before this, the evaluation of their mechanical integrity was made based on the energy deposition spectra produced by FLORA codes. (C) 2013 Elsevier B.V. All rights reserved.

  10. Interaction of boron with graphite: A van der Waals density functional study

    International Nuclear Information System (INIS)

    Liu, Juan; Wang, Chen; Liang, Tongxiang; Lai, Wensheng

    2016-01-01

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  11. Interaction of boron with graphite: A van der Waals density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan; Wang, Chen [Beijing Key Lab of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-08-30

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  12. Boron-doped diamond electrodes for the electrochemical oxidation and cleavage of peptides.

    Science.gov (United States)

    Roeser, Julien; Alting, Niels F A; Permentier, Hjalmar P; Bruins, Andries P; Bischoff, Rainer

    2013-07-16

    Electrochemical oxidation of peptides and proteins is traditionally performed on carbon-based electrodes. Adsorption caused by the affinity of hydrophobic and aromatic amino acids toward these surfaces leads to electrode fouling. We compared the performance of boron-doped diamond (BDD) and glassy carbon (GC) electrodes for the electrochemical oxidation and cleavage of peptides. An optimal working potential of 2000 mV was chosen to ensure oxidation of peptides on BDD by electron transfer processes only. Oxidation by electrogenerated OH radicals took place above 2500 mV on BDD, which is undesirable if cleavage of a peptide is to be achieved. BDD showed improved cleavage yield and reduced adsorption for a set of small peptides, some of which had been previously shown to undergo electrochemical cleavage C-terminal to tyrosine (Tyr) and tryptophan (Trp) on porous carbon electrodes. Repeated oxidation with BDD electrodes resulted in progressively lower conversion yields due to a change in surface termination. Cathodic pretreatment of BDD at a negative potential in an acidic environment successfully regenerated the electrode surface and allowed for repeatable reactions over extended periods of time. BDD electrodes are a promising alternative to GC electrodes in terms of reduced adsorption and fouling and the possibility to regenerate them for consistent high-yield electrochemical cleavage of peptides. The fact that OH-radicals can be produced by anodic oxidation of water at elevated positive potentials is an additional advantage as they allow another set of oxidative reactions in analogy to the Fenton reaction, thus widening the scope of electrochemistry in protein and peptide chemistry and analytics.

  13. Characterization of Interface State in Silicon Carbide Metal Oxide Semiconductor Capacitors

    Science.gov (United States)

    Kao, Wei-Chieh

    Silicon carbide (SiC) has always been considered as an excellent material for high temperature and high power devices. Since SiC is the only compound semiconductor whose native oxide is silicon dioxide (SiO2), it puts SiC in a unique position. Although SiC metal oxide semiconductor (MOS) technology has made significant progress in recent years, there are still a number of issues to be overcome before more commercial SiC devices can enter the market. The prevailing issues surrounding SiC MOSFET devices are the low channel mobility, the low quality of the oxide layer and the high interface state density at the SiC/SiO2 interface. Consequently, there is a need for research to be performed in order to have a better understanding of the factors causing the poor SiC/SiO2 interface properties. In this work, we investigated the generation lifetime in SiC materials by using the pulsed metal oxide semiconductor (MOS) capacitor method and measured the interface state density distribution at the SiC/SiO2 interface by using the conductance measurement and the high-low frequency capacitance technique. These measurement techniques have been performed on n-type and p-type SiC MOS capacitors. In the course of our investigation, we observed fast interface states at semiconductor-dielectric interfaces in SiC MOS capacitors that underwent three different interface passivation processes, such states were detected in the nitrided samples but not observed in PSG-passivated samples. This result indicate that the lack of fast states at PSG-passivated interface is one of the main reasons for higher channel mobility in PSG MOSFETs. In addition, the effect of mobile ions in the oxide on the response time of interface states has been investigated. In the last chapter we propose additional methods of investigation that can help elucidate the origin of the particular interface states, enabling a more complete understanding of the SiC/SiO2 material system.

  14. Study on the preparation of boron-rich film by magnetron sputtering in oxygen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhangmin; Yang, Yiming; Huang, Jian; Ren, Bing; Yu, Hongze; Xu, Run; Ji, Huanhuan; Wang, Lin; Wang, Linjun, E-mail: ljwang@shu.edu.cn

    2016-12-01

    Highlights: • Boron ({sup 10}B) oxide films were successfully grown using RF magnetron sputtering. • Effects of oxygen partial pressure on the property of the films were studied. • Substrates were covered with B-rich film and film surface was covered with B{sub 2}O{sub 3}. • The growth mechanism of films in oxygen atmosphere was analyzed using XPS. - Abstract: In this paper, the growth of boron ({sup 10}B) oxide films on (1 0 0) silicon substrate were achieved by radio frequency (r.f.) magnetron sputtering under the different oxygen partial pressure with a target of boron and boron oxide. The structure and properties of deposited films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), respectively. The results showed that the substrate was covered with boron-rich films tightly and the surface of films was covered with B{sub 2}O{sub 3}. And the growth mechanism of boron-rich film in oxygen atmosphere was also analyzed.

  15. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    International Nuclear Information System (INIS)

    Huang, Yi-Fu; Wu, Peng-Fei; Zhang, Ming-Qiu; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2014-01-01

    Highlights: • Gel electrolyte is prepared and used in electric double layer capacitor. • Insertion of boron crosslinks into GO agglomerates opens channels for ion migration. • Solid supercapacitors show excellent specific capacitance and cycle stability. • Nanocomposite electrolyte shows better thermal stability and mechanical properties. - Abstract: A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs

  16. Depth profiling of hydrogen passivation of boron in Si(100)

    Science.gov (United States)

    Huang, L. J.; Lau, W. M.; Simpson, P. J.; Schultz, P. J.

    1992-08-01

    The properties of SiO2/p-Si were studied using variable-energy positron-annihilation spectroscopy and Raman spectroscopy. The oxide film was formed by ozone oxidation in the presence of ultraviolet radiation at room temperature. Both the positron-annihilation and Raman analyses show that chemical cleaning of boron-doped p-type Si(100) using concentrated hydrofluoric acid prior to the oxide formation leads to hydrogen incorporation in the semiconductor. The incorporated hydrogen passivates the boron dopant by forming a B-H complex, the presence of which increases the broadening of the line shape in the positron-annihilation analysis, and narrows the linewidth of the Raman peak. Annealing of the SiO2/Si sample at a moderate temperature of 220 °C in vacuum was found sufficient to dissociate the complex and reactivate the boron dopant.

  17. Design, Fabrication and Performance of Boron-Carbide Control Elements; Conception, Fabrication et Comportement de Lames de Commande en Carbure de Bore; Raschety, izgotovlenie i kharakteristiki reguliruyushchikh sterzhnej. Iz karbida Bora; Proyecto, Elaboracion y Rendimiento de Elementos de Control de Carburo de Boro

    Energy Technology Data Exchange (ETDEWEB)

    Brammer, H. A.; Jacobson, J. [General Electric Company, San Jose, CA (United States)

    1964-06-15

    A control blade design, incorporating boron-carbide (B{sub 4}C) in stainless-steel tubes, was introduced into service in boiling water reactors in April 1961. Since that time this blade has become the standard reference control element in General Electric boiling-water reactors, replacing the 2% boron-stainless-steel blades previously used. The blades consist of a sheathed, cruciform array of small vertical stainless-steel tubes filled with compacted boron-carbide powder. The boron-carbide powder is confined longitudinally into several independent compartments by swaging over ball bearings located inside the tubes. The development and use of boron-carbide control rods is discussed in five phases: 1. Summary of experience with boron-steel blades and reasons for transition to boron-carbide control; 2. Design of the boron-carbide blade, beginning with developmental experiments, including early measurements performed in the AEC ''Control Rod Material and Development Program'' at the Vallecitos Atomic Laboratory, through a description of the final control blade configuration; 3. Fabrication of the blades and quality control procedures; 4. Results of confirmatory pre-operational mechanical and reactivity testing; and 5. Post-operational experience with the blades, including information on the results of mechanical inspection and reactivity testing after two years of reactor service. (author) [French] Un modele de lame de commande en carbure de bore (B{sub 4}C) a ete mis en place dans des reacteurs a eau bouillante en avril 1961. Depuis lors, cette lame est devenue l 'element de commande temoin classique dans les reacteurs a eau bouillante de la General Electric et a remplace les lames en acier inoxydable a 2% de bore utilisees auparavant. Ces lames consistent en un assemblage gaine cruciforme comprenant de petits tubes d'acier inoxydable verticaux remplis de poudre de carbure de bore agglomeree. Dans le sens de la longueur, cette poudre est enfermee dans plusieurs

  18. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    Science.gov (United States)

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  19. Complete suppression of boron transient-enhanced diffusion and oxidation-enhanced diffusion in silicon using localized substitutional carbon incorporation

    Science.gov (United States)

    Carroll, M. S.; Chang, C.-L.; Sturm, J. C.; Büyüklimanli, T.

    1998-12-01

    In this letter, we show the ability, through introduction of a thin Si1-x-yGexCy layer, to eliminate the enhancement of enhanced boron diffusion in silicon due to an oxidizing surface or ion implant damage. This reduction of diffusion is accomplished through a low-temperature-grown thin epitaxial Si1-x-yGexCy layer which completely filters out excess interstitials introduced by oxidation or ion implant damage. We also quantify the oxidation-enhanced diffusion (OED) and transient-enhanced diffusion (TED) dependence on substitutional carbon level, and further report both the observation of carbon TED and OED, and its dependence on carbon levels.

  20. Resonant soft x-ray reflectivity of Me/B4C multilayers near the boron K edge

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitriy; Schlemper, Christoph; Pietsch, Ullrich

    2010-09-01

    Energy dependence of the optical constants of boron carbide in the short period Ru/B4C and Mo/B4C multilayers (MLs) are evaluated from complete reflectivity scans across the boron K edge using the energy-resolved photon-in-photon-out method. Differences between the refractive indices of the B4Cmaterial inside and close to the surface are obtained from the peak profile of the first order ML Bragg peak and the reflection profile near the critical angle of total external reflection close to the surface. Where a Mo/B4C ML with narrow barrier layers appears as a homogeneous ML at all energies, a Ru/B4C ML exhibits another chemical nature of boron at the surface compared to the bulk. From evaluation of the critical angle of total external reflection in the energy range between 184 and 186 eV, we found an enriched concentration of metallic boron inside the Ru-rich layer at the surface, which is not visible in other energy ranges.

  1. Electrophoretic deposits of boron on duralumin plates used for measuring neutron flux; Depots electrophoretiques de bore sur plaques de duralumin destines a des mesures de flux de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Lang, F M; Magnier, P; Finck, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    Preparation of boron thin film deposits of around 1 mg per cm{sup 2} on duralumin plates with a diameter of 8 cm. The boron coated plates for ionization chambers were originally prepared at the CEA by pulverization of boron carbides on sodium silicates. This method is not controlling precisely enough the quantity of boron deposit. Thus, an electrophoretic method is considered for a better control of the quantity of boron deposit in the scope of using in the future boron 10 which is costly and rare. The method described by O. Flint is not satisfying enough and a similar electrophoretic process has been developed. Full description of the method is given as well as explanation of the use of dried methanol as solvent, tannin as electrolyte and magnesium chloride to avoid alumina formation. (M.P.)

  2. Preparation of silicon carbide-supported vanadium oxide and its application of removing NO by ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zi-Bo; Xu, Xu [Yangzhou University, College of Environmental Science and Engineering, Yangzhou, Jiangsu (China); Bai, Shu-Li [Wuyi University, College of Chemical and Environmental Engineering, Jiangmen, Guangdong (China); Guan, Yu-Jiang; Jiang, Sheng-Tao [Taizhou University, Environmental Engineering, Taizhou, Zhejiang (China)

    2017-03-15

    The aim of this work was to study the preparation of SiC-supported V{sub 2}O{sub 5} catalysts and the kinetics on selective catalytic reduction for NO with NH{sub 3} on the catalysts. Using incipient wetness impregnation methods, vanadium oxide was applied to silicon carbide to prepare a SiC-supported vanadium oxide. X-ray photoelectron spectroscopy analysis confirmed that V{sub 2}O{sub 5} existed in the prepared materials. Using the prepared materials as catalysts, selective catalytic reduction for NO by NH{sub 3} has been analyzed, and reaction kinetics on the catalysts was studied at 150-300 C. The obtained results showed that the reduction reaction on the catalysts is close to zero-order kinetics with respect to NH{sub 3}, first-order with respect to NO, and half-order to O{sub 2}. Apparent activation energy for the reduction reaction was found to be 38 kJ mol{sup -1}. The prepared materials are stable and reusable. (orig.)

  3. Electrochemical treatment of wastewaters containing 4-chlororesorcinol using boron doped diamond anodes

    International Nuclear Information System (INIS)

    Nasr, B.; Abdelatif, G.

    2009-01-01

    The electrochemical oxidation of aqueous wastes polluted with 4-chlororesorcinol has been studied on boron-doped diamond electrodes on acidic medium. The voltammetric results showed that in the potential region where the supporting electrolyte is stable, reactions occur, resulting in the loss of activity due to electrode fouling. Galvanostatic electrolysis study showed that the oxidation of these wastes in single-compartment electrochemical flow cell with boron doped diamond anodes deal to the complete mineralization of the organics but is no indication of electrode fouling. Resorcinol, 1,2,4-trihydroxybenzene, benzoquinone, maleic, fumaric, and oxalic acids have been detected as soluble organics and chlorides (Cl - ) and hypochlorites (ClO - ) as mineral products during the electrolysis of 4-chlororesorcinol. The electrochemical oxidation of 4-chlororesorcinol consists of a sequence of steps: Release of Cl and/or hydroxylation of the aromatic ring; formation of quinonic compounds; oxidative opening of aromatic ring to form carboxylic acids; and oxidation of carboxylic acids to carbon dioxide. Both, direct oxidation at boron doped diamond surface and mediated oxidation by powerful oxidants electrogenerated from electrolyte oxidation at anode surface are involved in these stages. (author)

  4. Spectrographic determination of traces of boron in steels

    International Nuclear Information System (INIS)

    Alduan, F.A.; Roca, M.

    1976-01-01

    A spectrographic method has been developed to determine quantitatively boron in steels in the 0.5 to 250 ppm concentration range. The samples are dissolved in acids and transformed into oxides, avoiding boron losses by the addition of mannitol. For the fluoride evolution of boron in the dc arc the following compounds have been considered: CuF 2 , LiF, NaF, and SrF 2 . CuF 2 , at a concentration of 10%, provides the highest line-to-background intensity ratio. An arc current of 5 amperes eliminates the interference from iron spectrum on the most sensitive boron line - B 2497.7 A. Variations in chromium and nickel contents have no effect on the analytical results. (author)

  5. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting

    KAUST Repository

    Garcia Esparza, Angel T.

    2012-12-17

    Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C3N 4 (mpg-C3N4) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments that vary the precursor compositions and temperatures used in the synthesis selectively generate different compositions and structures for the final nanocarbide (W 2C or WC) products. Electrochemical measurements demonstrate that the WC phase with a high surface area exhibits both high activity and stability in hydrogen evolution over a wide pH range. The WC sample also shows excellent hydrogen oxidation activity, whereas its activity in oxygen reduction is poor. These tungsten carbides are successful cocatalysts for overall water splitting and give H2 and O2 in a stoichiometric ratio from H 2O decomposition when supported on a Na-doped SrTiO3 photocatalyst. Herein, we present tungsten carbide (on a small scale) as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation. Platinum replacement: The phase-controlled synthesis of tungsten carbide nanoparticles from the nanoconfinement of a mesoporous graphite C 3N4 (mpg-C3N4) reactive template is shown. The nanomaterials catalyze hydrogen evolution/oxidation reactions, but are inactive in the oxygen reduction reaction. Tungsten carbide is an effective cocatalyst for photocatalytic overall water splitting (see picture). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting

    KAUST Repository

    Garcia Esparza, Angel T.; Cha, Dong Kyu; Ou, Yiwei; Kubota, Jun; Domen, Kazunari; Takanabe, Kazuhiro

    2012-01-01

    Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C3N 4 (mpg-C3N4) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments that vary the precursor compositions and temperatures used in the synthesis selectively generate different compositions and structures for the final nanocarbide (W 2C or WC) products. Electrochemical measurements demonstrate that the WC phase with a high surface area exhibits both high activity and stability in hydrogen evolution over a wide pH range. The WC sample also shows excellent hydrogen oxidation activity, whereas its activity in oxygen reduction is poor. These tungsten carbides are successful cocatalysts for overall water splitting and give H2 and O2 in a stoichiometric ratio from H 2O decomposition when supported on a Na-doped SrTiO3 photocatalyst. Herein, we present tungsten carbide (on a small scale) as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation. Platinum replacement: The phase-controlled synthesis of tungsten carbide nanoparticles from the nanoconfinement of a mesoporous graphite C 3N4 (mpg-C3N4) reactive template is shown. The nanomaterials catalyze hydrogen evolution/oxidation reactions, but are inactive in the oxygen reduction reaction. Tungsten carbide is an effective cocatalyst for photocatalytic overall water splitting (see picture). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Boron diffusion into nitrogen doped silicon films for P{sup +} polysilicon gate structures

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, Farida; Mahamdi, Ramdane; Jalabert, Laurent; Temple-Boyer, Pierre

    2003-06-23

    This paper deals with the study of the boron diffusion in nitrogen doped silicon (NIDOS) deposited from disilane Si{sub 2}H{sub 6} and ammonia NH{sub 3} for the development of P{sup +} polysilicon gate metal oxide semiconductor (MOS) devices. NIDOS films with varied nitrogen content have been boron implanted, then annealed and finally analysed by secondary ion mass spectroscopy (SIMS). In order to simulate the experimental SIMS of boron concentration profiles in the NIDOS films, a model adapted to the particular conditions of the samples elaboration, i.e. the very high boron concentration and the nitrogen content, has been established. The boron diffusion reduction in NIDOS films with increasing nitrogen rates has been evidenced by the profiles as well as by the obtained diffusion coefficients, which shows that the nitrogen incorporation reduces the boron diffusion. This has been confirmed by capacitance-voltage (C-V) measurements performed on MOS capacitors: the higher the nitrogen content, the lower the flat-band voltage. Finally, these results demonstrate that the improvement of the gate oxide quality occurs with the suppression of the boron penetration.

  8. Growth and structure of carbide nanorods

    International Nuclear Information System (INIS)

    Lieber, C.M.; Wong, E.W.; Dai, H.; Maynor, B.W.; Burns, L.D.

    1996-01-01

    Recent research on the growth and structure of carbide nanorods is reviewed. Carbide nanorods have been prepared by reacting carbon nanotubes with volatile transition metal and main group oxides and halides. Using this approach it has been possible to obtain solid carbide nanorods of TiC, SiC, NbC, Fe 3 C, and BC x having diameters between 2 and 30 nm and lengths up to 20 microm. Structural studies of single crystal TiC nanorods obtained through reactions of TiO with carbon nanotubes show that the nanorods grow along both [110] and [111] directions, and that the rods can exhibit either smooth or saw-tooth morphologies. Crystalline SiC nanorods have been produced from reactions of carbon nanotubes with SiO and Si-iodine reactants. The preferred growth direction of these nanorods is [111], although at low reaction temperatures rods with [100] growth axes are also observed. The growth mechanisms leading to these novel nanomaterials have also been addressed. Temperature dependent growth studies of TiC nanorods produced using a Ti-iodine reactant have provided definitive proof for a template or topotactic growth mechanism, and furthermore, have yielded new TiC nanotube materials. Investigations of the growth of SiC nanorods show that in some cases a catalytic mechanism may also be operable. Future research directions and applications of these new carbide nanorod materials are discussed

  9. Heat release from B4C oxidation in steam and air

    International Nuclear Information System (INIS)

    Belovsky, L.

    1996-01-01

    BWR and some PWR cores contain boron carbide (B 4 C) as neutron absorber. During a severe accident, the B 4 C can potentially react with steam under release of heat and hydrogen. Although models for B 4 C oxidation already exist in MELCOR and SCDAP/RELAP5, a development of a new model for another computer code seems to be difficult due to a missing comprehensive description of the current modelling methodology and scarce experimental data. The aim of this paper is to highlight the key points of the B 4 C oxidation using the existing available experimental data and to perform a simple heat balance analysis of the B 4 C/steam and B 4 C/air chemical reactions. The analysis of literature data shows that the B 4 C oxidation phenomenon is qualitatively well described below 1000 deg. C. However, no reliable data exist for the reaction kinetics especially above this temperature. It was found that the experimental results strongly depend on the experimental arrangement. The reaction heats, calculated in this study, indicate that the B 4 C oxidation is an exothermic reaction, releasing more heat in air than in steam. The formation of boric acids from the boron oxide increases the heat release from B 4 C by ∼ 10%, in the worst case. Although the total heat, released in a PWR core from the B 4 C oxidation, is probably much smaller than the heat released from the Zr/steam reaction, it is not excluded that the B 4 C oxidation can locally contribute to the damage of the control elements due to local overheating. Modelling of these phenomena is, however, very difficult due to the complex geometry of the liquefied control elements and due to absence of suitable data on the reaction kinetics. (author). 25 refs, 2 figs, 3 tabs

  10. Boron-containing catalysts for dry reforming of methane to synthesis gas

    KAUST Repository

    Takanabe, Kazuhiro; Basset, Jean-Marie; Park, Jung-Hyun; Samal, Akshaya Kumar; Alsabban, Bedour

    2018-01-01

    The present invention uses a cobalt catalyst for carbon dioxide reforming of lower alkanes to synthesis gas having a cobalt catalyst on an oxide support where the supported cobalt catalyst has been modified with a boron precursor. The boron

  11. Nitric oxide protects carbon assimilation process of watermelon from boron-induced oxidative injury.

    Science.gov (United States)

    Farag, Mohamed; Najeeb, Ullah; Yang, Jinghua; Hu, Zhongyuan; Fang, Zhang Ming

    2017-02-01

    Nitric oxide (NO) mediates plant response to a variety of abiotic stresses; however, limited information is available on its effect on boron (B)-stressed watermelon plants. The present study investigates the mechanism through which NO protects watermelon seedlings from B deficiency and toxicity stresses. Five days old watermelon seedlings were exposed to B (0, 0.5 and 10 mg L -1 ) alone or with 75 μmole of NO donor sodium nitroprusside (SNP) for 30 days. Both low and high B concentrations in the media altered nutrient accumulation and impaired various physiological processes of watermelon seedlings, leading to a significant reduction in biomass production. The plants exposed to B deficient or toxic concentrations had 66 and 69% lower shoot dry weight, respectively compared with optimum B levels. B toxicity-induced growth inhibition of watermelon seedlings was associated with high B translocation to shoot tissues, which caused lipid membrane peroxidation (12% increase) and chlorophyll destruction (25% reduction). In contrast, B deficiency accelerated generation of reactive oxygen species (ROS), specifically OH -1 and induced cellular oxidative injury. Exogenously applied SNP promoted leaf chlorophyll, photosynthesis and consequently biomass production in B-stressed watermelon seedlings by reducing B accumulation, lipid membrane peroxidation and ROS generation. It also activated antioxidant enzymes such as SOD, POD and APX, and protected the seedlings from ROS-induced cellular burst. Copyright © 2016. Published by Elsevier Masson SAS.

  12. Effect of carbides on the creep properties of a Ni-base superalloy M963

    International Nuclear Information System (INIS)

    He, L.Z.; Zheng, Q.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.; Tieu, A.K.; Lu, C.; Zhu, H.T.

    2005-01-01

    Effect of carbides on the creep properties of a cast Ni-base superalloy M963 tested at 800 and 900 deg. C over a broad stress range has been investigated. Correlation between the carbides and creep properties of the alloy is enabled through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). During high temperature creep tests, the primary MC carbide decomposes sluggishly and a large amount of secondary carbides precipitate. The cubic and acicular M 6 C carbide precipitates at the dendritic core region. Extremely fine chromium-rich M 23 C 6 carbide precipitates preferentially at grain boundaries. The M 6 C and M 23 C 6 carbides are found to be beneficial to the creep properties of the alloy. At lower temperature (800 deg. C), the interface of MC carbide with matrix is one of the principal sites for crack initiation. At higher temperature (900 deg. C), the oxidation and the precipitation of μ phase are the main factors for significant loss in creep strength of the alloy

  13. 2.4. The kinetics of hydrochloric-acid decomposition of calcined concentrate of boron raw material of Ak-Arkhar Deposit

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Kurbonov, A.S.; Mamatov, E.D.

    2015-01-01

    Present article is devoted to kinetics of hydrochloric-acid decomposition of calcined concentrate of boron raw material of Ak-Arkhar Deposit. The experimental data of dependence of hydrochloric-acid decomposition of calcined boron raw material for boron oxide extraction on temperature (20-80 deg C) and process duration (15-60 min) were considered. It was defined that at temperature increasing the boron oxide extraction from borosilicate raw material increases from 24.1 till 86.8%. The constants of decomposition rate of boron raw material were calculated.

  14. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  15. Catalytic activity of tungsten carbide-carbon (WC@C) core-shell structured for ethanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Gourav, E-mail: gsinghla@gmail.com; Singh, K., E-mail: kusingh@thapar.edu; Pandey, O.P., E-mail: oppandey@thapar.edu

    2017-01-15

    In this study, carbon coated WC (WC@C) was synthesized through solvothermal reactions in the presence of reducing agent magnesium (Mg) by employing tungsten oxide (WO{sub 3}) as a precursor, acetone (C{sub 3}H{sub 6}O) as a carbon source. The formation of WC@C nano particles is confirmed by X-ray diffraction and Transmission electron microscopy. The thermal stability of the synthesized powder examined in air shows its stability up to 550 °C. In this method, in-situ produced outer carbon layer increase the surface area of materials which is 52.6 m{sup 2} g{sup −1} with pore volume 0.213 cm{sup 3} g{sup −1}. The Electrocatalytic activity of ethanol oxidation on a synthesized sample with and without Pt nano particles have been investigated using cyclic voltammetry (CV). The CV results show the enhancement in oxidation stability of WC@C in acidic media as well as better CO-tolerance for ethanol oxidation after the deposition of Pt nanoparticles as compared to without Pt nano particles. - Highlights: • Tungsten carbide nano powder was synthesized using acetone as carbon source. • In-situ produced outer carbon layer increase the surface area of materials. • Mesoporous WC with surface areas 52.6 m{sup 2}/g obtained. • Pt modified WC powder showed higher electrochemical stability. • Better CO-tolerance for ethanol oxidation after the deposition of Pt nanoparticles.

  16. Hydrotreatment activities of supported molybdenum nitrides and carbides

    Energy Technology Data Exchange (ETDEWEB)

    Dolce, G.M.; Savage, P.E.; Thompson, L.T. [University of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

    1997-05-01

    The growing need for alternative sources of transportation fuels encourages the development of new hydrotreatment catalysts. These catalysts must be active and more hydrogen efficient than the current commercial hydrotreatment catalysts. Molybdenum nitrides and carbides are attractive candidate materials possessing properties that are comparable or superior to those of commercial sulfide catalysts. This research investigated the catalytic properties of {gamma}-Al{sub 2}O{sub 3}-supported molybdenum nitrides and carbides. These catalysts were synthesized via temperature-programmed reaction of supported molybdenum oxides with ammonia or methane/hydrogen mixtures. Phase constituents and compositions were determined by X-ray diffraction, elemental analysis, and neutral activation analysis. Oxygen chemisorption was used to probe the surface properties of the catalysts. Specific activities of the molybdenum nitrides and carbides were competitive with those of a commercial sulfide catalyst for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). For HDN and HDS, the catalytic activity on a molybdenum basis was a strong inverse function of the molybdenum loading. Product distributions of the HDN, HDO and HDS of a variety of heteroatom compounds indicated that several of the nitrides and carbides were more hydrogen efficient than the sulfide catalyst. 35 refs., 8 figs., 7 tabs.

  17. High Dielectric Performance of Solution-Processed Aluminum Oxide-Boron Nitride Composite Films

    Science.gov (United States)

    Yu, Byoung-Soo; Ha, Tae-Jun

    2018-04-01

    The material compositions of oxide films have been extensively investigated in an effort to improve the electrical characteristics of dielectrics which have been utilized in various electronic devices such as field-effect transistors, and storage capacitors. Significantly, solution-based compositions have attracted considerable attention as a highly effective and practical technique to replace vacuum-based process in large-area. Here, we demonstrate solution-processed composite films consisting of aluminum oxide (Al2O3) and boron nitride (BN), which exhibit remarkable dielectric properties through the optimization process. The leakage current of the optimized Al2O3-BN thin films was decreased by a factor of 100 at 3V, compared to pristine Al2O3 thin film without a loss of the dielectric constant or degradation of the morphological roughness. The characterization by X-ray photoelectron spectroscopy measurements revealed that the incorporation of BN with an optimized concentration into the Al2O3 dielectric film reduced the density of oxygen vacancies which act as defect states, thereby improving the dielectric characteristics.

  18. Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.

    Science.gov (United States)

    Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K

    2015-06-05

    Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.

  19. Influence of boron content on the morphological, spectral, and electroanalytical characteristics of anodically oxidized boron-doped diamond electrodes

    Czech Academy of Sciences Publication Activity Database

    Schwarzová-Pecková, K.; Vosáhlová, J.; Barek, J.; Šloufová, I.; Pavlova, Ewa; Petrák, Václav; Zavázalová, J.

    2017-01-01

    Roč. 243, 20 July (2017), s. 170-182 ISSN 0013-4686 R&D Projects: GA TA ČR(CZ) TE01020118 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : 2-aminobiphenyl * boron content * boron-doped diamond Subject RIV: CD - Macromolecular Chemistry; CG - Electrochemistry (FZU-D) OBOR OECD: Polymer science; Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) (FZU-D) Impact factor: 4.798, year: 2016

  20. Examination of the Combustion Morphology of Ziconium Carbide Using Scanning Electron Microscopy

    OpenAIRE

    Newbold, Brian R.

    1997-01-01

    Calculation of viscous particle damping of acoustic combustion instability in solid propellant motors requires an understanding of the combustion behavior of added particles and oxides. A simple hydrogen/oxygen flame was used to ignite carefully sieved zirconium carbide particles which were impacted on slides at different levels below the burner. Scanning electron microscopy revealed that zirconium carbide has a complex heterogeneous combustion morphology. Initially, particles are partly v...

  1. Synthesis of carbides of refractory metals in salt melts

    International Nuclear Information System (INIS)

    Ilyushchenko, N.G.; Anfinogenov, A.I.; Chebykin, V.V.; Chernov, Ya.B.; Shurov, N.I.; Ryaposov, Yu.A.; Dobrynin, A.I.; Gorshkov, A.V.; Chub, A.V.

    2003-01-01

    The ion-electron melts, obtained through dissolving the alkali and alkali-earth metals in the molten chlorides above the chloride melting temperature, were used for manufacturing the high-melting metal carbides as the transport melt. The lithium, calcium and magnesium chlorides and the mixture of the lithium chloride with the potassium or calcium chloride were used from the alkali or alkali-earth metals. The metallic lithium, calcium, magnesium or the calcium-magnesium mixtures were used as the alkali or alkali-earth metals. The carbon black or sugar was used as carbon. It is shown, that lithium, magnesium or calcium in the molten salts transfer the carbon on the niobium, tantalum, titanium, forming the carbides of the above metals. The high-melting metal carbides are obtained both from the metal pure powders and from the oxides and chlorides [ru

  2. Present status of uranium-plutonium mixed carbide fuel development for LMFBRs

    International Nuclear Information System (INIS)

    Handa, Muneo; Suzuki, Yasufumi

    1984-01-01

    The feature of carbide fuel is that it has the doubling time as short as about 13 years, that is, close to one half as compared with oxide fuel. The development of the carbide fuel in the past 10 years has been started in amazement. Especially in the program of new fuel development in USA started in 1974, He and Na bond fuel attained the burnup of 16 a/o without causing the breaking of cladding tubes. In 1984, the irradiation of the assembly composed of 91 fuel pins in the FFTF is expected. On the other hand in Japan, the fuel research laboratory was constructed in 1974 in the Oarai Laboratory, Japan Atomic Energy Research Institute, to carry out the studies on carbide fuel. In the autumn of 1982, two carbide fuel pins with different chemical composition have been successfully made. Accordingly, the recent status of the development is explained. The uranium-plutonium mixed carbide fuel is suitable to liquid metal-cooled fast breeder reactors because of large heat conductivity and the high density of nuclear fission substances. The thermal and nuclear characteristics of carbide fuel, the features of the reactor core using carbide fuel, the chemical and mechanical interaction of fuel and cladding tubes, the selection of bond materials, the manufacturing techniques for the fuel, the development of the analysis code for fuel behavior, and the research and development of carbide fuel in Japan are described. (Kako, I.)

  3. Methods for separating boron from borated paraffin wax and its determination by ion chromatography

    International Nuclear Information System (INIS)

    Jeyakumar, S.

    2015-01-01

    Boron compounds are found to be useful in shielding against high-energy neutrons. In radiotherapy treatments, in order to protect occupational workers and patients from the undesirable neutron and gamma doses, paraffin wax containing B 4 C/boric acid is used. Low-level borate wastes generated from the nuclear power plants have been immobilized with paraffin wax using a concentrate waste drying system (CWDS). Borated paraffin waxes are prepared by mixing calculated amounts of either boric acid or boron carbide with the molten wax. This necessitates the determination of boron at different locations in order to check the homogeneous distribution of B over the borated wax. The determination of boron in nuclear materials is inevitable due to its high neutron absorption cross section. For the determination of boron in borated waxes, not many methods have been reported. A method based on the pyrohydrolysis extraction of boron and its quantification with ion chromatography was proposed for paraffin waxes borated with H 3 BO 3 and B 4 C. The B 4 C optimum pyrohydrolysis conditions were identified. Wax samples were mixed with U 3 O 8 , which prevents the sample from flare up, and also accelerates the extraction of boron. Pyrohydrolysis was carried out with moist O 2 at 950℃ for 60 and 90 min for wax with H 3 BO 3 and wax with B 4 C, respectively. Two simple methods of separation based on alkali extraction and melting wax in alkali were also developed exclusively for wax with H 3 BO 3 . In all the separations, the recovery of B was above 98%. During IC separation, B was separated as boron-mannitol anion complex. Linear calibration was obtained between 0.1 and 50 ppm of B, and LOD was calculated as 5 ppb (S/N=3). The reproducibility was better than 5% (RSD)

  4. Methods for producing reinforced carbon nanotubes

    Science.gov (United States)

    Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  5. Microstructure and mechanical properties of a new type of austempered boron alloyed high silicon cast steel

    Directory of Open Access Journals (Sweden)

    Chen Xiang

    2013-05-01

    Full Text Available In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (M represents Fe, Cr, Mn or Mo which is much like that of carbide in high chromium white cast iron. Pure ausferrite structure that consists of bainitic ferrite and retained austenite can be obtained in the matrix by austempering treatment to the cast steel. No carbides precipitate in the ausferrite structure and the morphology of borides remains almost unchanged after austempering treatments. Secondary boride particles precipitate during the course of austenitizing. The hardness and tensile strength of the austempered cast steel decrease with the increase of the austempering temperature, from 250 篊 to 400 篊. The impact toughness is 4-11 J昪m-2 at room temperature and the impact fracture fractogragh indicates that the fracture is caused by the brittle fracture of the borides.

  6. Present status of uranium-plutonium mixed carbide fuel development for LMFBR

    International Nuclear Information System (INIS)

    Handa, Muneo; Suzuki, Yasufumi.

    One Oarai characteristic of a carbide fuel is that its doubling time is about 13 years which is only about half as long as that of an oxide fuel. The development of carbide fuels in the past ten years has been truly remarkable. Especially, through the new fuel development program initiated in 1974 in the United States, success has been achieved with respect to He- and Na-bond fuels in obtaining a 16 a/o burning rate without damage to cladding tubes. In 1984 at FFTF, a radiation of a fuel assembly consisting 91 fuel pins is contemplated. On the other hand, in Japan, in 1974, a Fuel Research Wing specializing in the study of carbide fuels was constructed in the Oarai Laboratory of the Atomic Energy Research Institute and in the fall of 1982, was successful in fabricating two carbide fuel pins having different chemical compositions

  7. Corrosion resistant cemented carbide

    International Nuclear Information System (INIS)

    Hong, J.

    1990-01-01

    This paper describes a corrosion resistant cemented carbide composite. It comprises: a granular tungsten carbide phase, a semi-continuous solid solution carbide phase extending closely adjacent at least a portion of the grains of tungsten carbide for enhancing corrosion resistance, and a substantially continuous metal binder phase. The cemented carbide composite consisting essentially of an effective amount of an anti-corrosion additive, from about 4 to about 16 percent by weight metal binder phase, and with the remaining portion being from about 84 to about 96 percent by weight metal carbide wherein the metal carbide consists essentially of from about 4 to about 30 percent by weight of a transition metal carbide or mixtures thereof selected from Group IVB and of the Periodic Table of Elements and from about 70 to about 96 percent tungsten carbide. The metal binder phase consists essentially of nickel and from about 10 to about 25 percent by weight chromium, the effective amount of an anti-corrosion additive being selected from the group consisting essentially of copper, silver, tine and combinations thereof

  8. Enhanced optical performance of electrochemically etched porous silicon carbide

    International Nuclear Information System (INIS)

    Naderi, N; Hashim, M R; Saron, K M A; Rouhi, J

    2013-01-01

    Porous silicon carbide (PSC) was successfully synthesized via electrochemical etching of an n-type hexagonal silicon carbide (6H-SiC) substrate using various current densities. The cyclic voltammograms of SiC dissolution show that illumination is required for the accumulation of carriers at the surface, followed by surface oxidation and dissolution of the solid. The morphological and optical characterizations of PSC were reported. Scanning electron microscopy results demonstrated that the current density can be considered an important etching parameter that controls the porosity and uniformity of PSC; hence, it can be used to optimize the optical properties of the porous samples. (paper)

  9. Problems and possibilities of development of boron nitride ceramics

    International Nuclear Information System (INIS)

    Rusanova, L.N.; Romashin, A.G.; Kulikova, G.I.; Golubeva, O.P.

    1988-01-01

    The modern state of developments in the field of technology of ceramics produced from boron nitride is analyzed. Substantial difficulties in production of pure ceramics from hexagonal and wurtzite-like boron nitride are stated as related to the structure peculiarities and inhomogeneity of chemical bonds in elementary crystal cells of various modifications. Advantages and disadvantages of familiar technological procedures in production of boron nitride ceramics are compared. A new technology is suggested, which is based on the use of electroorganic compounds for hardening and protection of porous high-purity boron-nitride die from oxidation, and as high-efficient sintered elements for treatment of powders of various structures and further pyrolisis. The method is called thermal molecular lacing (TML). Properties of ceramics produced by the TML method are compared with characteristics of well-known brands of boron nitride ceramics

  10. Diffusion mechanism in molten salt baths during the production of carbide coatings via thermal reactive diffusion

    Institute of Scientific and Technical Information of China (English)

    Aliakbar Ghadi; Hassan Saghafian; Mansour Soltanieh; Zhi-gang Yang

    2017-01-01

    The diffusion mechanism of carbide-forming elements from a molten salt bath to a substrate surface was studied in this research, with particular focus on the processes occurring in the molten bath at the time of coating. Metal, oxide, and metal-oxide baths were investi-gated, and the coating process was performed on H13 steel substrates. Scanning electron microscopy and electron-probe microanalysis were used to study the coated samples and the quenched salt bath. The thickness of the carbide coating layer was 6.5 ± 0.5, 5.2 ± 0.5, or 5.7 ± 0.5μm depending on whether it was deposited in a metal, oxide, or metal-oxide bath, respectively. The phase distribution of vanadium-rich regions was 63%, 57%, and 74% of the total coating deposited in metal, oxide, and metal-oxide baths, respectively. The results obtained using the metal bath indicated that undissolved suspended metal particles deposited onto the substrate surface. Then, carbon subsequently diffused to the sub-strate surface and reacted with the metal particles to form the carbides. In the oxide bath, oxide powders dissolved in the bath with or without binding to the oxidative structure (Na2O) of borax; they were then reduced by aluminum and converted into metal particles. We concluded that, in the metal and oxide baths, the deposition of metal particles onto the sample surface is an important step in the formation of the coating.

  11. Boron-containing catalysts for dry reforming of methane to synthesis gas

    KAUST Repository

    Takanabe, Kazuhiro

    2018-01-04

    The present invention uses a cobalt catalyst for carbon dioxide reforming of lower alkanes to synthesis gas having a cobalt catalyst on an oxide support where the supported cobalt catalyst has been modified with a boron precursor. The boron-treated cobalt catalyst systems as described herein show significant increases in the conversion of CH4 and CO2 during the dry reforming of methane (DRM) reaction as compared to traditional catalysts. Described herein are supported catalysts and methods of using the catalysts for the dry reforming of methane to synthesis gas, with the supported catalysts in the present invention include a boron-treated cobalt catalyst disposed on an oxide support. Also described herein are processes for preparing the supported catalysts.

  12. UK irradiation experience relevant to advanced carbide fuel concepts for LMFBR's

    International Nuclear Information System (INIS)

    Bagley, K.Q.; Batey, W.; Paris, R.; Sloss, W.M.; Snape, G.P.

    1977-01-01

    Despite discouraging prognoses of fabrication and reprocessing problems, it is recognized that the quest for a carbide fuel pin design which fully exploits the favourable density and thermal conductivity of (U,Pu) monocarbide must be maintained. Studies in aid of carbide fuel development have, therefore, continued in the UK in parallel with those on oxide, albeit at a substantially lower level of effort, and a sufficient body of irradiation experience has been accumulated to allow discrimination of realistic fuel pin designs

  13. Analytical methods for the determination of boron in reactor materials programme

    International Nuclear Information System (INIS)

    Chitre, R.S.; Joshi, V.R.; Iyer, C.S.P.

    1983-01-01

    Spectrophotometric methods of determination of boron based on the complexation reaction between boric acid and protonated curcumin are briefly reviewed. Direct determination of boron in heavy water, plant leaves, copper and its alloys, and aluminium and its alloys using a modified method of Hayes and Metcalfe is described. A method for determination of boron, when its content is very low as in case of uranium metal, diuranate, uranium oxide and thorium nitrate, is also described. In this method, boron is first separated as methyl borate by distillation of the sample with methanol in acid media. The distilled ester is absorbed by hydroxide solution and boron is analysed after removal of methanol. The precision obtained is indicated. (M.G.B.)

  14. A study on the formation of uranium carbide in an induction furnace

    International Nuclear Information System (INIS)

    Song, In Young; Lee, Yoon Sang; Kim, Eung Soo; Lee, Don Bae; Kim, Chang Kyu

    2005-01-01

    Uranium is a typical carbide-forming element. Three carbides, UC, U 2 C 3 and UC 2 , are formed in the uranium-carbon system. The most important of these as fuel is uranium monocarbide UC. It is well known that Uranium carbides can be obtained by three basic methods: 1) by reaction of uranium metal with carbon; 2) by reaction of uranium metal powder with gaseous hydrocarbons; 3) by reaction of uranium oxides with carbon. The use of uranium monocarbide, or materials based on it, has great prospects as fuel for nuclear reactors. It is quite possible that uranium dicarbide UC 2 may also acquire great importance as a fuel, particularly in dispersion fuel elements with graphite matrix. In the present study, uranium carbides are obtained by direct reaction of uranium metal with graphite in a high frequency induction furnace

  15. Advances in carbide fuel element development for fast reactor application

    International Nuclear Information System (INIS)

    Dienst, W.; Kleykamp, H.; Muehling, G.; Reiser, H.; Steiner, H.; Thuemmler, F.; Wedermeyer, H.; Weimar, P.

    1977-01-01

    The features of the carbide fuel development programme are reviewed and evaluated. Single pin and bundle irradiations are carried out under thermal, epithermal and fast flux conditions, the latter in the DFR and KNK-II reactors. Several fuel concepts in the region of representative SNR clad temperatures are compared by parameter and performance tests. A conservative concept is based on He-bonded 8 mm pins with (U,Pu)C pellets and a smear density of 75% TD, operating at 800 W/cm rod power and burnup to 70 MWd/kg. The preparation of mixed carbide fuels is carried out by carbothermic reduction of the oxides in different methods supported by equivalent carbon content, grain size and phase distribution analysis. The fuel for subassembly performance tests is produced in a pilot plant of 0,5 t/year capacity. Compatibility studies reveal that cladding carburization is the only chemical interaction with carbide fuels. This effect leads to a reduction in ductility of the stainless steel. Fission products apparently play no role in the compatibility behaviour. Comprehensive studies lead to reliable information on the chemical and thermodynamic state of the fuel under irradiation. The swelling of carbide fuels and the fission gas release are examined and analysed. Cladding plastic strain by fuel swelling occurs during steady-state operation because the irradiation creep is rather slow compared to oxide fuels. The cladding strain observed depends on the fuel porosity and the cladding strength. The development of carbide fuel pins is complemented by the application of comprehensive computer models. In addition to the steady-state tests power cycling and safety tests are under performance. Up to 1980 the results are summarized for the final design and specification. The development target of the present program is to fabricate several subassemblies for test operation in the SNR 300 by 1981

  16. Reducing the influence of STI on SONOS memory through optimizing added boron implantation technology

    International Nuclear Information System (INIS)

    Xu Yue; Yan Feng; Li Zhiguo; Yang Fan; Wang Yonggang; Chang Jianguang

    2010-01-01

    The influence of shallow trench isolation (STI) on a 90 nm polysilicon-oxide-nitride-oxide-silicon structure non-volatile memory has been studied based on experiments. It has been found that the performance of edge memory cells adjacent to STI deteriorates remarkably. The compressive stress and boron segregation induced by STI are thought to be the main causes of this problem. In order to mitigate the STI impact, an added boron implantation in the STI region is developed as a new solution. Four kinds of boron implantation experiments have been implemented to evaluate the impact of STI on edge cells, respectively. The experimental results show that the performance of edge cells can be greatly improved through optimizing added boron implantation technology. (semiconductor devices)

  17. Decomposition mechanism of melamine borate in pyrolytic and thermo-oxidative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hoffendahl, Carmen; Duquesne, Sophie; Fontaine, Gaëlle; Bourbigot, Serge, E-mail: serge.bourbigot@ensc-lille.fr

    2014-08-20

    Highlights: • Decomposition of melamine borate in pyrolytic and thermo-oxidative conditions was investigated. • With increasing temperature, orthoboric acid forms boron oxide releasing water. • Melamine decomposes evolving melamine, ammonia and other fragments. • Boron oxide is transformed into boron nitride and boron nitride-oxide structures through presence of ammonia. - Abstract: Decomposition mechanism of melamine borate (MB) in pyrolytic and thermo-oxidative conditions is investigated in the condensed and gas phases using solid state NMR ({sup 13}C and {sup 11}B), X-ray photoelectron spectroscopy (XPS), pyrolysis-gas chromatography–mass spectrometry (py-GCMS) and thermogravimetric analysis coupled with a Fourier transform infrared spectrometer (TGA–FTIR). It is evidenced that orthoboric acid dehydrates to metaboric and then to boron oxide. The melamine is partially sublimated. At the same time, melamine condensates, i.e., melem and melon are formed. Melon is only formed in thermo-oxidative conditions. At higher temperature, melem and melon decompose releasing ammonia which reacts with the boron oxide to form boron nitride (BN) and BNO structures.

  18. White light emission from engineered silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan

    Silicon carbide (SiC) is a wide indirect bandgap semiconductor. The light emission efficiency is low in nature. But this material has very unique physical properties like good thermal conductivity, high break down field etc in addition to its abundance. Therefore it is interesting to engineer its...... light emission property so that to take fully potential applications of this material. In this talk, two methods, i.e. doping SiC heavily by donor-acceptor pairs and making SiC porous are introduced to make light emission from SiC. By co-doping SiC with nitrogen and boron heavily, strong yellow emission...... is demonstrated. After optimizing the passivation conditions, strong blue-green emission from porous SiC is demonstrated as well. When combining the yellow emission from co-doped SiC and blue-green from porous SiC, a high color rendering index white light source is achieved....

  19. The coloring problem in the solid-state metal boride carbide ScB{sub 2}C{sub 2}. A theoretical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lassoued, Souheila [Universite de Rennes, Ecole Nationale Superieure de Chimie, UMR 6226 CNRS (France). Inst. des Sciences Chimiques; Universite Kasdi Merbah-Ouargla (Algeria). Faculte des Mathematiques et des Sciences de la Matiere; Boucher, Benoit [Universite de Rennes, Ecole Nationale Superieure de Chimie, UMR 6226 CNRS (France). Inst. des Sciences Chimiques; Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany); Boutarfaia, Ahmed [Universite Kasdi Merbah-Ouargla (Algeria). Faculte des Mathematiques et des Sciences de la Matiere; Gautier, Regis; Halet, Jean-Francois [Universite de Rennes, Ecole Nationale Superieure de Chimie, UMR 6226 CNRS (France). Inst. des Sciences Chimiques

    2016-08-01

    The electronic properties of the layered ternary metal boride carbide ScB{sub 2}C{sub 2}, the structure of which consists of B/C layers made of fused five- and seven-membered rings alternating with scandium sheets, are analyzed. In particular, the respective positions of the B and C atoms (the so-called coloring problem) are tackled using density functional theory, quantum theory of atoms in molecules, and electron localizability indicator calculations. Results reveal that (i) the most stable coloring minimizes the number of B-B and C-C contacts and maximizes the number of boron atoms in the heptagons, (ii) the compound is metallic in character, and (iii) rather important covalent bonding occurs between the metallic sheets and the boron-carbon network.

  20. METHOD FOR PRODUCING CEMENTED CARBIDE ARTICLES

    Science.gov (United States)

    Onstott, E.I.; Cremer, G.D.

    1959-07-14

    A method is described for making molded materials of intricate shape where the materials consist of mixtures of one or more hard metal carbides or oxides and matrix metals or binder metals thereof. In one embodiment of the invention 90% of finely comminuted tungsten carbide powder together with finely comminuted cobalt bonding agent is incorporated at 60 deg C into a slurry with methyl alcohol containing 1.5% paraffin, 3% camphor, 3.5% naphthalene, and 1.8% toluene. The compact is formed by the steps of placing the slurry in a mold at least one surface of which is porous to the fluid organic system, compacting the slurry, removing a portion of the mold from contact with the formed object and heating the formed object to remove the remaining organic matter and to sinter the compact.

  1. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiuping [Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing100871 (China); Ni, Jinren, E-mail: nijinren@iee.pku.edu.cn [Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing100871 (China); Wei, Junjun; Xing, Xuan; Li, Hongna [Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing100871 (China)

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12 h, the COD was decreased from 532 to 99 mg L{sup -1} (<100 mg L{sup -1}, the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters.

  2. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.

    Science.gov (United States)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12h, the COD was decreased from 532 to 99 mg L(-1) (destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode

    International Nuclear Information System (INIS)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-01-01

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12 h, the COD was decreased from 532 to 99 mg L -1 ( -1 , the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters.

  4. Detection of boron in simulated corrosion products by using a laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Song, K.; Yeon, J-W.; Jung, S-H.; Hwang, J.; Jung, E-C.

    2010-01-01

    In nuclear power plants, many methods for detection of coolant leakage have been developed and employed for the safe operation. However, these methods have many limitations for analyzing and dealing with the corrosion products due to the high radioactivity. LIBS (Laser-induced breakdown spectroscopy) offer a remote and on-site elemental analysis including the boron in the corrosion products with no sample preparation. In this study, we investigated the feasibility of detecting boron and analyzing an elemental composition of boron-containing iron oxides with the LIBS, in order to develop a coolant leakage detection system. First, we prepared five different boron-containing iron oxides and the element ratios were determined by using ICP-AES (inductive coupled plasma-atomic emission spectrometer). After this, the laser induced emission spectra of these iron oxides were obtained by using a 266 nm Nd:YAG laser. The B/Fe ratios of the oxides were determined by comparing the intensities of the B emission peak at 249.844 nm with those of the Fe peak at 250.217 nm as an internal reference. It was confirmed that the B contents in the oxides could be analyzed over 0.1 wt% by the laser induced breakdown spectroscopic technique. (author)

  5. Preliminary Investigation of the Effect of Surface Treatment on the Strength of a Titanium Carbide - 30 Percent Nickel Base Cermet

    Science.gov (United States)

    Robins, Leonard; Grala, Edward M

    1957-01-01

    Specimens of a nickel-bonded titanium carbide cermet were given the following surface treatments: (1) grinding, (2) lapping, (3) blast cleaning, (4) acid roughening, (5) oxidizing, and (6) oxidizing and refinishing. Room-temperature modulus-of-rupture and impact strength varied with the different surface treatments. Considerable strength losses resulted from the following treatments: (1) oxidation at 1600 F for 100 hours, (2) acid roughening, and (3) severe grinding with 60-grit silicon carbide abrasive. The strength loss after oxidation was partially recovered by grit blasting or diamond grinding.

  6. Alkynyl substituted carboranes as precursors to boron carbide thin films, fibers and composites

    International Nuclear Information System (INIS)

    Johnson, S.E.; Yang, X.; Hawthorne, M.F.; Mackenzie, J.D.; Thorne, K.J.; Zheng, H.

    1992-01-01

    In this paper the use of alkynyl substituted derivatives of o-carborane as precursors to boron containing ceramics is described. These compounds undergo a thermally or photochemically induced polymerization to afford cross linked polyakynyl-o-carborane derivatives. The increase in molecular weight should allow for increased Tg's and the retention of modelled polymer preforms. In this report, these modification reactions are described. In addition, the retention of molded polymer preforms were analyzed after UV exposure and inert atmosphere pyrolysis

  7. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiangbin, E-mail: eexbzeng@mail.hust.edu.cn; Wen, Xixing; Sun, Xiaohu; Liao, Wugang; Wen, Yangyang

    2016-04-30

    Boron-doped zinc oxide (BZO) films were grown by metal organic chemical vapor deposition. The influence of B{sub 2}H{sub 6} flow rate and substrate temperature on the microstructure, optical, and electrical properties of BZO films was investigated by X-ray diffraction spectrum, scanning electron microscope, optical transmittance spectrum, and Hall measurements. The BZO films with optical transmittance above 85% in the visible and infrared light range, resistivity of 0.9–1.0 × 10{sup −3} Ω cm, mobility of 16.5–25.5 cm{sup 2}/Vs, and carrier concentration of 2.2–2.7 × 10{sup 20} cm{sup −3} were deposited under optimized conditions. The optimum BZO films were applied on the bifacial BZO/p-type a-Si:H/i-type a-Si:H/n-type c-Si/i-type a-Si:H/n{sup +}-type a-Si:H/BZO heterojunction solar cell as both front and back transparent electrodes. Meanwhile, the bifacial heterojunction solar cell with indium tin oxide (ITO) as both front and back transparent electrodes was fabricated. The efficiencies of 17.788% (open-circuit voltage: 0.628 V, short-circuit current density: 41.756 mA/cm{sup 2} and fill factor: 0.678) and 16.443% (open-circuit voltage: 0.590 V, short-circuit current density: 36.515 mA/cm{sup 2} and fill factor: 0.762) were obtained on the a-Si/c-Si heterojunction solar cell with BZO and ITO transparent electrodes, respectively. - Highlights: • Boron-doped zinc oxide films with low resistivity were fabricated. • The boron-doped zinc oxide films have the high transmittance. • B-doped ZnO film was applied in a-Si:H/c-Si solar cell as transparent electrodes. • The a-Si:H/c-Si solar cell with efficiency of 17.788% was obtained.

  8. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells

    International Nuclear Information System (INIS)

    Zeng, Xiangbin; Wen, Xixing; Sun, Xiaohu; Liao, Wugang; Wen, Yangyang

    2016-01-01

    Boron-doped zinc oxide (BZO) films were grown by metal organic chemical vapor deposition. The influence of B_2H_6 flow rate and substrate temperature on the microstructure, optical, and electrical properties of BZO films was investigated by X-ray diffraction spectrum, scanning electron microscope, optical transmittance spectrum, and Hall measurements. The BZO films with optical transmittance above 85% in the visible and infrared light range, resistivity of 0.9–1.0 × 10"−"3 Ω cm, mobility of 16.5–25.5 cm"2/Vs, and carrier concentration of 2.2–2.7 × 10"2"0 cm"−"3 were deposited under optimized conditions. The optimum BZO films were applied on the bifacial BZO/p-type a-Si:H/i-type a-Si:H/n-type c-Si/i-type a-Si:H/n"+-type a-Si:H/BZO heterojunction solar cell as both front and back transparent electrodes. Meanwhile, the bifacial heterojunction solar cell with indium tin oxide (ITO) as both front and back transparent electrodes was fabricated. The efficiencies of 17.788% (open-circuit voltage: 0.628 V, short-circuit current density: 41.756 mA/cm"2 and fill factor: 0.678) and 16.443% (open-circuit voltage: 0.590 V, short-circuit current density: 36.515 mA/cm"2 and fill factor: 0.762) were obtained on the a-Si/c-Si heterojunction solar cell with BZO and ITO transparent electrodes, respectively. - Highlights: • Boron-doped zinc oxide films with low resistivity were fabricated. • The boron-doped zinc oxide films have the high transmittance. • B-doped ZnO film was applied in a-Si:H/c-Si solar cell as transparent electrodes. • The a-Si:H/c-Si solar cell with efficiency of 17.788% was obtained.

  9. Highly transparent and conducting boron doped zinc oxide films for window of Dye Sensitized Solar Cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod, E-mail: vinod.phy@gmail.com [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Department of Physics, Gurukula Kangri University, Haridwar 249404 (India); Singh, R.G. [Department of Electronic Science, Maharaja Agrasen College University of Delhi, New Delhi 110096 (India); Singh, Fouran [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Purohit, L.P. [Department of Physics, Gurukula Kangri University, Haridwar 249404 (India)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Synthesis of Boron doped ZnO (ZnO:B) films. Black-Right-Pointing-Pointer Minimum of resistivity is observed to be 7.9 Multiplication-Sign 10{sup -4} {Omega} cm. Black-Right-Pointing-Pointer Maximum transmittance {approx}91% for 450 Degree-Sign C annealed films. Black-Right-Pointing-Pointer Applicable for window materials in Dye Sensitized Solar Cell. - Abstract: Highly transparent and conducting boron doped zinc oxide (ZnO:B) films grown by sol-gel method are reported. The annealing temperature is varied from 350 to 550 Degree-Sign C and doping concentration of boron is kept fixed for 0.6 at.% for all the films. At low temperature the stress in the films is compressive, which becomes tensile for the films annealed at higher temperature. A minimum resistivity of 7.9 Multiplication-Sign 10{sup -4} {Omega} cm and maximum transmittance of {approx}91% are observed for the film annealed at 450 Degree-Sign C. This could be attributed to minimum stress of films, which is further evident by the evolution of A{sub 1} and defect related Raman modes without any shifting in its position. Such kind of highly transparent and conducting ZnO:B thin film could be used as window material in Dye Sensitized Solar Cell (DSSC).

  10. Anodic oxidation of slaughterhouse wastewater on boron-doped diamond: process variables effect.

    Science.gov (United States)

    Abdelhay, Arwa; Jum'h, Inshad; Abdulhay, Enas; Al-Kazwini, Akeel; Alzubi, Mashael

    2017-12-01

    A non-sacrificial boron-doped diamond electrode was prepared in the laboratory and used as a novel anode for electrochemical oxidation of poultry slaughterhouse wastewater. This wastewater poses environmental threats as it is characterized by a high content of recalcitrant organics. The influence of several process variables, applied current density, initial pH, supporting electrolyte nature, and concentration of electrocoagulant, on chemical oxygen demand (COD) removal, color removal, and turbidity removal was investigated. Results showed that raising the applied current density to 3.83 mA/cm 2 has a positive effect on COD removal, color removal, and turbidity removal. These parameters increased to 100%, 90%, and 80% respectively. A low pH of 5 favored oxidants generation and consequently increased the COD removal percentage to reach 100%. Complete removal of COD had occurred in the presence of NaCl (1%) as supporting electrolyte. Na 2 SO 4 demonstrated lower efficiency than NaCl in terms of COD removal. The COD decay kinetics follows the pseudo-first-order reaction. The simultaneous use of Na 2 SO 4 and FeCl 3 decreased the turbidity in wastewater by 98% due to electrocoagulation.

  11. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC x (p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiC x (p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiC x (p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm -2 on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a V oc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p + /p-wafer full-side-passivated rear-side scheme shown here.

  12. Fabrication and Characterization of N-Type Zinc Oxide/P-Type Boron Doped Diamond Heterojunction

    Science.gov (United States)

    Marton, Marián; Mikolášek, Miroslav; Bruncko, Jaroslav; Novotný, Ivan; Ižák, Tibor; Vojs, Marian; Kozak, Halyna; Varga, Marián; Artemenko, Anna; Kromka, Alexander

    2015-09-01

    Diamond and ZnO are very promising wide-bandgap materials for electronic, photovoltaic and sensor applications because of their excellent electrical, optical, physical and electrochemical properties and biocompatibility. In this contribution we show that the combination of these two materials opens up the potential for fabrication of bipolar heterojunctions. Semiconducting boron doped diamond (BDD) thin films were grown on Si and UV grade silica glass substrates by HFCVD method with various boron concentration in the gas mixture. Doped zinc oxide (ZnO:Al, ZnO:Ge) thin layers were deposited by diode sputtering and pulsed lased deposition as the second semiconducting layer on the diamond films. The amount of dopants within the films was varied to obtain optimal semiconducting properties to form a bipolar p-n junction. Finally, different ZnO/BDD heterostructures were prepared and analyzed. Raman spectroscopy, SEM, Hall constant and I-V measurements were used to investigate the quality, structural and electrical properties of deposited heterostructures, respectively. I-V measurements of ZnO/BDD diodes show a rectifying ratio of 55 at ±4 V. We found that only very low dopant concentrations for both semiconducting materials enabled us to fabricate a functional p-n junction. Obtained results are promising for fabrication of optically transparent ZnO/BDD bipolar heterojunction.

  13. Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles.

    Science.gov (United States)

    Heyer, Steffen; Janssen, Wiebke; Turner, Stuart; Lu, Ying-Gang; Yeap, Weng Siang; Verbeeck, Jo; Haenen, Ken; Krueger, Anke

    2014-06-24

    The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 10-60 nm with a boron content of approximately 2.3 × 10(21) cm(-3). Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.

  14. Creep behavior in interlaminar shear of a Hi-Nicalon™/SiC–B4C composite at 1200 °C in air and in steam

    International Nuclear Information System (INIS)

    Ruggles-Wrenn, M.B.; Pope, M.T.; Zens, T.W.

    2014-01-01

    Creep behavior in interlaminar shear of a non-oxide ceramic composite with a multilayered matrix was investigated at 1200 °C in laboratory air and in steam environment. The composite was produced via chemical vapor infiltration (CVI). The composite had an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide and was reinforced with laminated Hi-Nicalon™ fibers woven in a five-harness-satin weave. Fiber preforms had pyrolytic carbon fiber coating with boron carbon overlay applied. The interlaminar shear properties were measured. The creep behavior was examined for interlaminar shear stresses in the 16–22 MPa range. Primary and secondary creep regimes were observed in all tests conducted in air and in steam. In air and in steam, creep run-out defined as 100 h at creep stress was achieved at 16 MPa. Similar creep strains were accumulated in air and in steam. Furthermore, creep strain rates and creep lifetimes were only moderately affected by the presence of steam. The retained properties of all specimens that achieved run-out were characterized. Composite microstructure, as well as damage and failure mechanisms were investigated. The tested specimens were also examined using electron probe microanalysis (EPMA) with wavelength dispersive spectroscopy (WDS). Analysis of the fracture surfaces revealed significant surface oxidation, but only trace amounts of boron and carbon. Cross sectional analysis showed increasing boron concentration in the specimen interior

  15. Creep Behavior in Interlaminar Shear of a SiC/SiC Ceramic Composite with a Self-healing Matrix

    Science.gov (United States)

    Ruggles-Wrenn, M. B.; Pope, M. T.

    2014-02-01

    Creep behavior in interlaminar shear of a non-oxide ceramic composite with a multilayered matrix was investigated at 1,200 °C in laboratory air and in steam environment. The composite was produced via chemical vapor infiltration (CVI). The composite had an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide and was reinforced with laminated Hi-Nicalon™ fibers woven in a five-harness-satin weave. Fiber preforms had pyrolytic carbon fiber coating with boron carbide overlay applied. The interlaminar shear properties were measured. The creep behavior was examined for interlaminar shear stresses in the 16-22 MPa range. Primary and secondary creep regimes were observed in all tests conducted in air and in steam. In air and in steam, creep run-out defined as 100 h at creep stress was achieved at 16 MPa. Larger creep strains were accumulated in steam. However, creep strain rates and creep lifetimes were only moderately affected by the presence of steam. The retained properties of all specimens that achieved run-out were characterized. Composite microstructure, as well as damage and failure mechanisms were investigated.

  16. Synthesis of carbide fuels from nano-structured precursors: impact on carbo-reduction and physico-chemical properties

    International Nuclear Information System (INIS)

    Saravia, Alvaro

    2015-01-01

    The classical way classically used for manufacturing carbide fuels consists of carbo-reducing at high temperature (1600 C) and under primary vacuum a mixture of AnO 2 and graphite powders. These conditions are disadvantageous for the synthesis of mixed (U,Pu)C carbides on account of plutonium volatilization. Therefore, one of the main aims of these studies is to decrease the carbo-reduction temperature. The experiments focused mainly on the lowering of the uranium oxide temperature. This result has been obtained with the use of uranium oxide and carbon nano-structured precursors. To achieve this goal colloidal suspensions of uranium oxide have been prepared and stabilized by cellulosic ethers. Cellulosic ethers are both stabiliser for uranium oxide nanoparticles and carbon source for carbo-reduction. It has been shown that these precursors are more efficient for carbo-reduction than the standard precursors: a reduction of 300 C of carbo-reduction temperature has been obtained. The impact of these precursors on carbo-reduction and on physico-chemical properties as well as the structural and microstructural characterizations of the obtained carbides have been carried out. (author) [fr

  17. Safety research needs for carbide and nitride fueled LMFBR's. Final report

    International Nuclear Information System (INIS)

    Kastenberg, W.E.

    1975-01-01

    The results of a study initiated at UCLA during the academic year 1974--1975 to evaluate and review the potential safety related research needs for carbide and nitride fueled LMFBR's are presented. The tasks included the following: (1) Review Core and primary system designs for any significant differences from oxide fueled reactors, (2) Review carbide (and nitride) fuel element irradiation behavior, (3) Review reactor behavior in postulated accidents, (4) Examine analytical methods of accident analysis to identify major gaps in models and data, and (5) Examine post accident heat removal. (TSS)

  18. Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, Miriam; Zhao, Feng; Quaas, Marion; Wulff, Harm; Schroeder, Uwe; Scholz, Fritz [Universitaet Greifswald, Institut fuer Biochemie, Felix-Hausdorff-Strasse 4, 17487 Greifswald (Germany)

    2007-07-31

    In this communication we discuss the properties of tungsten carbide, WC, as anodic electrocatalyst for microbial fuel cell application. The electrocatalytic activity of tungsten carbide is evaluated in the light of its preparation procedure, its structural properties as well as the pH and the composition of the anolyte solution and the catalyst load. The activity of the noble-metal-free electrocatalyst towards the oxidation of several common microbial fermentation products (hydrogen, formate, lactate, ethanol) is studied for microbial fuel cell conditions (e.g., pH 5, room temperature and ambient pressure). Current densities of up to 8.8 mA cm{sup -2} are achieved for hydrogen (hydrogen saturated electrolyte solution), and up to 2 mA cm{sup -2} for formate and lactate, respectively. No activity was observed for ethanol electrooxidation. The electrocatalytic activity and chemical stability of tungsten carbide is excellent in acidic to pH neutral potassium chloride electrolyte solutions, whereas higher phosphate concentrations at neutral pH support an oxidative degradation. (author)

  19. Boron nitride coated uranium dioxide and uranium dioxide-gadolinium oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gunduz, G [Department of Chemical Engineering, Middle East Technical Univ., Ankara (Turkey); Uslu, I; Tore, C; Tanker, E [Turkiye Atom Enerjisi Kurumu, Ankara (Turkey)

    1997-08-01

    Pure Urania and Urania-gadolinia (5 and 10%) fuels were produced by sol-gel technique. The sintered fuel pellets were then coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. The coated samples were sintered at 1600 K. The analyses under scanning electron microscope (SEM) showed a variety of BN structures, mainly platelike and rodlike structures were observed. Burnup calculations by using WIMSD4 showed that BN coated and gadolinia containing fuels have larger burnups than other fuels. The calculations were repeated at different pitch distances. The change of the radius of the fuel pellet or the moderator/fuel ratio showed that BN coated fuel gives the highest burnups at the present design values of a PWR. Key words: burnable absorber, boron nitride, gadolinia, CVT, nuclear fuel. (author). 32 refs, 14 figs.

  20. Boron nitride coated uranium dioxide and uranium dioxide-gadolinium oxide fuels

    International Nuclear Information System (INIS)

    Gunduz, G.; Uslu, I.; Tore, C.; Tanker, E.

    1997-01-01

    Pure Urania and Urania-gadolinia (5 and 10%) fuels were produced by sol-gel technique. The sintered fuel pellets were then coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. The coated samples were sintered at 1600 K. The analyses under scanning electron microscope (SEM) showed a variety of BN structures, mainly platelike and rodlike structures were observed. Burnup calculations by using WIMSD4 showed that BN coated and gadolinia containing fuels have larger burnups than other fuels. The calculations were repeated at different pitch distances. The change of the radius of the fuel pellet or the moderator/fuel ratio showed that BN coated fuel gives the highest burnups at the present design values of a PWR. Key words: burnable absorber, boron nitride, gadolinia, CVT, nuclear fuel. (author). 32 refs, 14 figs

  1. Proceedings of workshop on 'boron chemistry and boron neutron capture therapy'

    International Nuclear Information System (INIS)

    Kitaoka, Yoshinori

    1993-09-01

    This volume contains the proceedings of the 5th Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 22 in 1993. The solubility of the boron carrier play an important role in the BNCT. New water-soluble p-boronophenylalanine derivatives are synthesized and their biological activities are investigated (Chap. 2 and 3). Some chemical problems on the BNCT were discussed, and the complex formation reaction of hydroxylboryl compounds were studied by the paper electrophoresis (Chap. 4). The results of the medical investigation on the BNCT using BSH compounds are shown in Chap. 5. Syntheses of o- and m-boronophenylalanine were done and their optical resolution was tried (Chap. 6). The complex formation reaction of p-boronophenylalanine (BPA) with L-DOPA and the oxidation reaction of the analogs are found in Chap. 7. The pka of BPA were determined by the isotachophoresis (Chap. 8). The chemical nature of dihydroxyboryl compounds were investigated by an infrared spectroscopy and electrophoresis (Chap. 9). New synthetic methods of BPA and p-boronophenylserine using ester of isocyanoacetic acid are described in Chap. 10. The induction of chromosomal aberations by neutron capture reaction are discussed from a point of the biological view. The a of the presented papers are indexed individually. (J.P.N.)

  2. Batch fabrication of mesoporous boron-doped nickel oxide nanoflowers for electrochemical capacitors

    International Nuclear Information System (INIS)

    Yang, Jing-He; Yu, Qingtao; Li, Yamin; Mao, Liqun; Ma, Ding

    2014-01-01

    Highlights: • A new facile liquid-phase method has been employed for synthesis boron-doped NiO nanoflowers. • The specific surface area of NiO is as high as 200 m 2 g −1 . • NiO nanoflowers exhibit a high specific capacitance of ∼1309 F g −1 at a charge and discharge current density of 3 A g −1 . • NiO nanoflowers have excellent cycling ability and even after 2500 cycles there is no significant reduction in specific capacitance. - Abstract: Boron-doped nickel oxide (B-NiO) nanoflowers are prepared by simple thermal decomposition of nickel hydroxide. B-NiO is porous sphere with a diameter of about 400 nm. B-NiO nanoflowers are composed of approximately 30 nm nanoplates and the thickness of the nanosheets is approximately 3 nm. The specific surface area of the material is as high as 200 m 2 g −1 and the pore size distribution curves of B-NiO has three typical peaks in the range of mesoporous (5 nm, 13 nm and 18 nm). As an electrode for supercapacitors, the crystalline B-NiO nanoflowers have favorable characteristics, for instance, a specific capacitance of 1309 F g −1 at a current density of 3 A g −1 and no significant reduction in Coulombic efficiency after 2500 cycles at 37.5 A g −1 . This remarkable electrochemical performance will make B-NiO nanoflowers a promising electrode material for high performance supercapacitors

  3. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jamin M.; Catledge, Shane A., E-mail: catledge@uab.edu

    2016-02-28

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W{sub 2}CoB{sub 2}. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W{sub 2}CoB{sub 2} with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  4. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Johnston, Jamin M.; Catledge, Shane A.

    2016-01-01

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W_2CoB_2. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W_2CoB_2 with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  5. A high-temperature, short-duration method of fabricating surrogate fuel microkernels for carbide-based TRISO nuclear fuels

    International Nuclear Information System (INIS)

    Vasudevamurthy, G.; Radecka, A.; Massey, C.

    2015-01-01

    High-temperature gas-cooled reactor technology is a frontrunner among generation IV nuclear reactor designs. Among the advanced nuclear fuel forms proposed for these reactors, dispersion-type fuel consisting of microencapsulated uranium di-oxide kernels, popularly known as tri-structural isotropic (TRISO) fuel, has emerged as the fuel form of choice. Generation IV gas-cooled fast reactors offer the benefit of recycling nuclear waste with increased burn-ups in addition to producing the required power and hydrogen. Uranium carbide has shown great potential to replace uranium di-oxide for use in these fast spectrum reactors. Uranium carbide microkernels for fast reactor TRISO fuel have traditionally been fabricated by long-duration carbothermic reduction and sintering of precursor uranium dioxide microkernels produced using sol-gel techniques. These long-duration conversion processes are often plagued by issues such as final product purity and process parameters that are detrimental to minor actinide retention. In this context a relatively simple, high-temperature but relatively quick-rotating electrode arc melting method to fabricate microkernels directly from a feedstock electrode was investigated. The process was demonstrated using surrogate tungsten carbide on account of its easy availability, accessibility and the similarity of its melting point relative to uranium carbide and uranium di-oxide.

  6. A high-temperature, short-duration method of fabricating surrogate fuel microkernels for carbide-based TRISO nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevamurthy, G.; Radecka, A.; Massey, C. [Virginia Commonwealth Univ., Richmond, VA (United States). High Temperature Materials Lab.

    2015-07-01

    High-temperature gas-cooled reactor technology is a frontrunner among generation IV nuclear reactor designs. Among the advanced nuclear fuel forms proposed for these reactors, dispersion-type fuel consisting of microencapsulated uranium di-oxide kernels, popularly known as tri-structural isotropic (TRISO) fuel, has emerged as the fuel form of choice. Generation IV gas-cooled fast reactors offer the benefit of recycling nuclear waste with increased burn-ups in addition to producing the required power and hydrogen. Uranium carbide has shown great potential to replace uranium di-oxide for use in these fast spectrum reactors. Uranium carbide microkernels for fast reactor TRISO fuel have traditionally been fabricated by long-duration carbothermic reduction and sintering of precursor uranium dioxide microkernels produced using sol-gel techniques. These long-duration conversion processes are often plagued by issues such as final product purity and process parameters that are detrimental to minor actinide retention. In this context a relatively simple, high-temperature but relatively quick-rotating electrode arc melting method to fabricate microkernels directly from a feedstock electrode was investigated. The process was demonstrated using surrogate tungsten carbide on account of its easy availability, accessibility and the similarity of its melting point relative to uranium carbide and uranium di-oxide.

  7. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    International Nuclear Information System (INIS)

    Mejia, I.; Bedolla-Jacuinde, A.; Maldonado, C.; Cabrera, J.M.

    2011-01-01

    Research highlights: → Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. → Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. → Hot ductility improvement is associated with segregation/precipitation of boron. → Typical hot ductility recovery at lower temperatures does not appear in this steel. → Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s -1 . Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of boron segregation towards

  8. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, I., E-mail: imejia@umich.mx [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico); Bedolla-Jacuinde, A.; Maldonado, C. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico); Cabrera, J.M. [Departament de Ciencia dels Materials i Enginyeria Metal.lurgica, ETSEIB - Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundacio CTM Centre Tecnologic, Av. de las Bases de Manresa 1, 08240 Manresa (Spain)

    2011-05-25

    Research highlights: {yields} Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. {yields} Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. {yields} Hot ductility improvement is associated with segregation/precipitation of boron. {yields} Typical hot ductility recovery at lower temperatures does not appear in this steel. {yields} Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s{sup -1}. Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of

  9. Fatigue behavior of an advanced SiC/SiC ceramic composite with a self-healing matrix at 1300 °C in air and in steam

    Energy Technology Data Exchange (ETDEWEB)

    Ruggles-Wrenn, M.B., E-mail: marina.ruggles-wrenn@afit.edu; Lee, M.D.

    2016-11-20

    The fatigue behavior of a non-oxide ceramic composite with a multilayered matrix was investigated at 1300 °C in laboratory air and in steam environment. The composite was produced via chemical vapor infiltration (CVI). The composite had an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide and was reinforced with laminated woven Hi-Nicalon™ fibers. Fiber preforms had pyrolytic carbon fiber coating with boron carbon overlay applied. Tensile stress-strain behavior and tensile properties were evaluated at 1300 °C. Tension-tension fatigue behavior was studied for fatigue stresses ranging from 70 to 160 MPa in air and in steam. The fatigue limit (based on a run-out condition of 2×10{sup 5} cycles) was between 80 and 100 MPa. Presence of steam had little influence on fatigue performance. The retained properties of all specimens that achieved fatigue run-out were characterized. Composite microstructure, as well as damage and failure mechanisms were investigated.

  10. Improvement in energy release properties of boron-based propellant by oxidant coating

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Daolun; Liu, Jianzhong, E-mail: jzliu@zju.edu.cn; Chen, Binghong; Zhou, Junhu; Cen, Kefa

    2016-08-20

    Highlights: • NH{sub 4}ClO{sub 4}, KNO{sub 3}, KClO{sub 4} and HMX coated B were used to prepare propellant samples. • FTIR, XRD and SEM were used for the microstructure analysis of the prepared B. • Thermal oxidation and combustion characteristics of the propellants were studied. • HMX coating was the most beneficial to the energy release of the samples. - Abstract: The energy release properties of a propellant can be improved by coating boron (B) particles with oxidants. In the study, B was coated with four different oxidants, namely, NH{sub 4}ClO{sub 4}, KNO{sub 3}, LiClO{sub 4}, and cyclotetramethylenetetranitramine (HMX), and the corresponding propellant samples were prepared. First, the structural and morphological analyses of the pretreated B were carried out. Then, the thermal analysis and laser ignition experiments of the propellant samples were carried out. Coating with NH{sub 4}ClO{sub 4} showed a better performance than mechanical mixing with the same component. Coating with KNO{sub 3} efficiently improved the ignition characteristics of the samples. Coating with LiClO{sub 4} was the most beneficial in reducing the degree of difficulty of B oxidation. Coating with HMX was the most beneficial in the heat release of the samples. The KNO{sub 3}-coated sample had a very high combustion intensity in the beginning, but then it rapidly became weak. Large amounts of sparks were ejected during the combustion of the LiClO{sub 4}-coated sample. The HMX-coated sample had the longest self-sustaining combustion time (4332 ms) and the highest average combustion temperature (1163.92 °C).

  11. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices

    Science.gov (United States)

    Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.

    2012-01-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.

  12. Method and apparatus for coating thin foil with a boron coating

    Science.gov (United States)

    Lacy, Jeffrey L.

    2018-01-16

    An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to a thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.

  13. A hybrid monolithic column based on boronate-functionalized graphene oxide nanosheets for online specific enrichment of glycoproteins.

    Science.gov (United States)

    Zhou, Chanyuan; Chen, Xiaoman; Du, Zhuo; Li, Gongke; Xiao, Xiaohua; Cai, Zongwei

    2017-05-19

    A hybrid monolithic column based on aminophenylboronic acid (APBA)-functionalized graphene oxide (GO) has been developed and used for selective enrichment of glycoproteins. The APBA/GO composites were homogeneously incorporated into a polymer monolithic column with the help of oligomer matrix and followed by in situ polymerization. The effect of dispersion of APBA/GO composites in the polymerization mixture on the performance of the monolithic column was explored in detail. The presence of graphene oxide not only enlarged the BET surface area from 6.3m 2 /g to 169.4m 2 /g, but also provided abundant boronic acid moieties for glycoprotein extraction, which improved the enrichment selectivity and efficiency for glycoproteins. The APBA/GO hybrid monolithic column was incorporated into a sequential injection system, which facilitated online extraction of proteins. Combining the superior properties of extraordinary surface area of GO and the affinity interaction of APBA to glycoproteins, the APBA/GO hybrid monolithic column showed higher enrichment factors for glycoproteins than other proteins without cis-diol-containing groups. Also, under comparable or even shorter processing time and without the addition of any organic solvent, it showed higher binding capacity toward glycoproteins compared with the conventional boronate affinity monolithic column. The practical applicability of this system was demonstrated by processing of egg white samples for extraction of ovalbumin and ovotransferrin, and satisfactory results were obtained by assay with SDS-PAGE. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Assessment of Electrodes Prepared from Wafers of Boron-doped Diamond for the Electrochemical Oxidation of Waste Lubricants

    International Nuclear Information System (INIS)

    Taylor, G.T.; Sullivan, I.A.; Newey, A.W.E.

    2006-01-01

    Electrochemical oxidation using boron-doped diamond electrodes is being investigated as a treatment process for radioactively contaminated oily wastes. Previously, it was shown that electrodes coated with a thin film of diamond were able to oxidise a cutting oil but not a mineral oil. These tests were inconclusive, because the electrodes lost their diamond coating during operation. Accordingly, an electrode prepared from a 'solid' wafer of boron-doped diamond is being investigated to determine whether it will oxidise mineral oils. The electrode has been tested with sucrose, a cutting oil and an emulsified mineral oil. Before and after each test, the state of the electrode was assessed by cyclic voltammetry with the ferro/ferricyanide redox couple. Analysis of the cyclic voltammogram suggested that material accumulated on the surface of the electrode during the tests. The magnitude of the effect was in the order: - emulsified mineral oil > cutting oil > sucrose. Despite this, the results indicated that the electrode was capable of oxidising the emulsified mineral oil. Confirmatory tests were undertaken in the presence of alkali to trap the carbon dioxide, but they had to be abandoned when the adhesive holding the diamond in the electrode was attacked by the alkali. Etching of the diamond wafer was also observed at the end of the tests. Surface corrosion is now regarded as an intrinsic part of the electrochemical oxidation on diamond, and it is expected that the rate of attack will determine the service life of the electrodes. (authors)

  15. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooker, G.I.

    1981-01-01

    A neutron-absorbing article suitable for use in spent fuel racks is described. It comprises boron carbide particles, diluent particles, and a phenolic polymer cured to a continuous matrix. The diluent may be silicon carbide, graphite, amorphous carbon, alumina, or silica. The combined boron carbide-diluent phase contains no more than 2 percent B 2 O 3 , and the neutron-absorbing article contains from 20 to 40 percent phenol resin. The ratio of boron carbide to diluent particles is in the range 1:9 to 9:1

  16. The compatibility of stainless steels with particles and powders of uranium carbide and low-sulphur UCS fuels

    International Nuclear Information System (INIS)

    Venter, S.

    1978-05-01

    Slightly hyperstoichiometric (U,Pu)C is a potential nuclear fuel for fast breeder reactors. The excess carbon above the stoichiometric amount results in a higher carbon activity in the fuel, and carbon is transferred to the stainless steel cladding, resulting in embrittlement of the cladding. It is with this problem of carbon transfer from the fuel to the cladding that this thesis is concerned. For practical reasons, UC and not (U,Pu)C was used as the fuel. The theory of decarburisation of carbide fuel and the carburisation of stainless steel, the facilities constructed for the project at the Atomic Energy Board, and the experimental techniques used, including preparation of the fuels, are discussed. The effect of a number of variables of uranium carbide fuel on its compatibility behaviour with stainless steels was investigated, as well as the effect om microstructure and type of stainless steel (304, 304 L and 316) on the rate of carburisation. These studies can be briefly summarised under the following headings: powder-particle size; surface oxidation of uranium carbide; preparation temperature of uranium carbide; low sulfur UCS fuels; uranium sulfide and the microstructure and type of steel. The author concludes that: the effect of surface oxidation and particle size must be taken into account when evaluating out-of-pile tests; the possible effects of surface oxidation must be taken into account when considering vibro-compacted carbide fuels; there is no advantage in replacing a fraction of the carbon atoms by sulphur atoms in slightly hyperstoichiometric carbide fuels, and the type and thermo-mechanical treatment of the stainless steel used as cladding material in a fuel pin is not important as far as the rate of carburisation by the fuel is concerned

  17. Methanol electro-oxidation on platinum modified tungsten carbides in direct methanol fuel cells: a DFT study.

    Science.gov (United States)

    Sheng, Tian; Lin, Xiao; Chen, Zhao-Yang; Hu, P; Sun, Shi-Gang; Chu, You-Qun; Ma, Chun-An; Lin, Wen-Feng

    2015-10-14

    In exploration of low-cost electrocatalysts for direct methanol fuel cells (DMFCs), Pt modified tungsten carbide (WC) materials are found to be great potential candidates for decreasing Pt usage whilst exhibiting satisfactory reactivity. In this work, the mechanisms, onset potentials and activity for electrooxidation of methanol were studied on a series of Pt-modified WC catalysts where the bare W-terminated WC(0001) substrate was employed. In the surface energy calculations of a series of Pt-modified WC models, we found that the feasible structures are mono- and bi-layer Pt-modified WCs. The tri-layer Pt-modified WC model is not thermodynamically stable where the top layer Pt atoms tend to accumulate and form particles or clusters rather than being dispersed as a layer. We further calculated the mechanisms of methanol oxidation on the feasible models via methanol dehydrogenation to CO involving C-H and O-H bonds dissociating subsequently, and further CO oxidation with the C-O bond association. The onset potentials for the oxidation reactions over the Pt-modified WC catalysts were determined thermodynamically by water dissociation to surface OH* species. The activities of these Pt-modified WC catalysts were estimated from the calculated kinetic data. It has been found that the bi-layer Pt-modified WC catalysts may provide a good reactivity and an onset oxidation potential comparable to pure Pt and serve as promising electrocatalysts for DMFCs with a significant decrease in Pt usage.

  18. Boron

    Science.gov (United States)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  19. On the Mechanism of Boron Ignition

    Science.gov (United States)

    Keil, D. G.; Dreizin, E. L.; Felder, W.; Vicenzi, E. P.

    1997-01-01

    Boron filaments were electrically heated in air and argon/oxygen mixtures while their resistance, temperature, and radiation at the wavelengths of BO and BO2 bands were monitored. The filaments 'burned' in two distinct stages. Samples of the filaments were quenched at different times before and during the burning and analyzed using electron microscopy. The beginning of the first stage combustion characterized by a local resistance minimum, a sharp spike in boron oxide radiation emission, and a rapid rise in temperature, occurred at 1500 +/- 70 deg. C, independent of pre-heating history and oxygen content (540%) in the gas environment. The data suggest that a phase transition occurs in the filaments at this temperature that triggers stage one combustion. Significant amounts of oxygen were found inside quenched filaments. Large spherical voids formed in the boron filaments during their second stage combustion which is interpreted to indicate a crucial role for the gas dissolution processes in the combustion scenario.

  20. Ceramic/polymer functionally graded material (FGM) lightweight armor system

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; McClellan, K.J.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Functionally graded material is an enabling technology for lightweight body armor improvements. The objective was to demonstrate the ability to produce functionally graded ceramic-polymer and ceramic-metal lightweight armor materials. This objective involved two aspects. The first and key aspect was the development of graded-porosity boron-carbide ceramic microstructures. The second aspect was the development of techniques for liquid infiltration of lightweight metals and polymers into the graded-porosity ceramic. The authors were successful in synthesizing boron-carbide ceramic microstructures with graded porosity. These graded-porosity boron-carbide hot-pressed pieces were then successfully liquid-infiltrated in vacuum with molten aluminum at 1,300 C, and with liquid polymers at room temperature. Thus, they were able to demonstrate the feasibility of producing boron carbide-aluminum and boron carbide-polymer functionally graded materials.

  1. Fabrication and characterization of poly (bisphenol A borate) with high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shujuan [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Xiao [Department of Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Jia, Beibei [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Jing, Xinli, E-mail: xljing@mail.xjtu.edu.cn [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an, 710049 (China)

    2017-01-15

    Highlights: • PBAB with excellent thermal resistance and high char yield was synthesized. • The chemical reaction of BPA with BA, and chemical structure of PBAB were studied. • PBAB show excellent thermal resistance in N{sub 2} and air atmospheres. • The thermal stability of PBAB is greatly influenced by boron content. • Boron oxide and boron carbide are formed during the pyrolysis of PBAB. - Abstract: In this work, poly (bisphenol A borate) (PBAB), which has excellent thermal resistance and a high char yield, was synthesized via a convenient A{sub 2} + B{sub 3} strategy by using bisphenol A (BPA) and boric acid (BA). The chemical reaction between BPA and BA and the chemical structure of PBAB were investigated. The results demonstrate that PBAB consists of aromatic, Ph–O–B and B–O–B structures, as well as a small number of boron hydroxyl groups and phenolic hydroxyl groups. The thermal properties of PBAB were studied by DMA and TGA. The results indicate that the glass transition temperature and char yield are gradually enhanced by increasing the boron content, where the char yield of PBAB at 800 °C in nitrogen (N{sub 2}) reaches up to 71.3%. It is of particular importance that PBAB show excellent thermal resistance in N{sub 2} and air atmospheres. By analysing the pyrolysis of PBAB, the high char yield of PBAB can be attributed to the formation of boron oxide and boron carbide at high temperatures, which reduced the release of volatile carbon dioxide and improved the thermal stability of the carbonization products. This study provides a new perspective on the design of novel boron-containing polymers and possesses significant potential for the improvement of the comprehensive performance of thermosetting resins to broaden their applicability in the field of advanced composites.

  2. Electrochemical mineralization pathway of quinoline by boron-doped diamond anodes.

    Science.gov (United States)

    Wang, Chunrong; Ma, Keke; Wu, Tingting; Ye, Min; Tan, Peng; Yan, Kecheng

    2016-04-01

    Boron-doped diamond anodes were selected for quinoline mineralization, and the resulting intermediates, phenylpropyl aldehyde, phenylpropionic acid, and nonanal were identified and followed during quinoline oxidation by gas chromatography-mass spectrometry and high-performance liquid chromatography. The evolutions of formic acid, acetic acid, oxalic acid, NO2(-), NO3(-), and NH4(+) were quantified. A new reaction pathway for quinoline mineralization by boron-doped diamond anodes has been proposed, where the pyridine ring in quinoline is cleaved by a hydroxyl radical giving phenylpropyl aldehyde and NH4(+). Phenylpropyl aldehyde is quickly oxidized into phenylpropionic acid, and the benzene ring is cleaved giving nonanal. This is further oxidized to formic acid, acetic acid, and oxalic acid. Finally, these organic intermediates are mineralized to CO2 and H2O. NH4(+) is also oxidized to NO2(-) and on to NO3(-). The results will help to gain basic reference for clearing intermediates and their toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Fabrication of uranium carbide/beryllium carbide/graphite experimental-fuel-element specimens

    International Nuclear Information System (INIS)

    Muenzer, W.A.

    1978-01-01

    A method has been developed for fabricating uranium carbide/beryllium carbide/graphite fuel-element specimens for reactor-core-meltdown studies. The method involves milling and blending the raw materials and densifying the resulting blend by conventional graphite-die hot-pressing techniques. It can be used to fabricate specimens with good physical integrity and material dispersion, with densities of greater than 90% of the theoretical density, and with a uranium carbide particle size of less than 10 μm

  4. High temperature corrosion of silicon carbide and silicon nitride in the presence of chloride compound

    International Nuclear Information System (INIS)

    McNallan, M.

    1993-01-01

    Silicon carbide and silicon nitride are resistant to oxidation because a protective silicon dioxide films on their surfaces in most oxidizing environments. Chloride compounds can attack the surface in two ways: 1) chlorine can attack the silicon directly to form a volatile silicon chloride compound or 2) alkali compounds combined with the chlorine can be transported to the surface where they flux the silica layer by forming stable alkali silicates. Alkali halides have enough vapor pressure that a sufficient quantity of alkali species to cause accelerated corrosion can be transported to the ceramic surface without the formation of a chloride deposit. When silicon carbide is attacked simultaneously by chlorine and oxygen, the corrosion products include both volatile and condensed spices. Silicon nitride is much more resistance to this type of attack than silicon carbide. Silicon based ceramics are exposed to oxidizing gases in the presence of alkali chloride vapors, the rate of corrosion is controlled primarily by the driving force for the formation of alkali silicate, which can be quantified as the activity of the alkali oxide in equilibrium with the corrosive gas mixture. In a gas mixture containing a fixed partial pressure of KCl, the rate of corrosion is accelerated by increasing the concentration of water vapor and inhibited by increasing the concentration of HCl. Similar results have been obtained for mixtures containing other alkalis and halogens. (Orig./A.B.)

  5. Reinforcement against crack propagation of PWR absorbers by development of boron-carbon-hafnium composites

    International Nuclear Information System (INIS)

    Provot, B.; Herter, P.

    2000-01-01

    In order to improve the mechanical behaviour of materials used as neutron absorbers in nuclear reactors, we have developed CERCER or CERMET composites with boron and hafnium. Thus a new composite B 4 C/HfB 2 has been especially studied. We have identified three kinds of degradation under irradiation (thermal gradient, swelling due to fission products and accidental corrosion) that induce imposed deformations cracking phenomena. Mechanical behaviour and crack propagation resistance have been studied by ball-on-three-balls and double torsion tests. A special device was developed to enable crack propagation and associated stress intensity factor measurements. Effects of structure and of a second phase are underline. First results show that these materials present crack initiation and propagation resistance much higher than pure boron carbide or hafnium diboride. We observe R-Curves effects, crack bridging or branching, crack arrests, and toughness increases that we can relate respectively to the composite structures. (author)

  6. The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour

    International Nuclear Information System (INIS)

    Scott, T.B.; Petherbridge, J.R.; Harker, N.J.; Ball, R.J.; Heard, P.J.; Glascott, J.; Allen, G.C.

    2011-01-01

    Highlights: → High resolution imagery (FIB, SEM and SIMS) of carbide inclusions in uranium metal. → Real time images following the reaction of the carbide inclusions with water vapour. → Shown preferential consumption of carbide over that of the bulk metal. → Quantity of impurities in the metal therefore seriously influence reaction rate. → Metal purity must be considered when storing uranium in air or moist conditions. - Abstract: The reaction between uranium and water vapour has been well investigated, however discrepancies exist between the described kinetic laws, pressure dependence of the reaction rate constant and activation energies. Here this problem is looked at by examining the influence of impurities in the form of carbide inclusions on the reaction. Samples of uranium containing 600 ppm carbon were analysed during and after exposure to water vapour at 19 mbar pressure, in an environmental scanning electron microscope (ESEM) system. After water exposure, samples were analysed using secondary ion mass spectrometry (SIMS), focused ion beam (FIB) imaging and sectioning and transmission electron microscopy (TEM) with X-ray diffraction (micro-XRD). The results of the current study indicate that carbide particles on the surface of uranium readily react with water vapour to form voluminous UO 3 .xH 2 O growths at rates significantly faster than that of the metal. The observation may also have implications for previous experimental studies of uranium-water interactions, where the presence of differing levels of undetected carbide may partly account for the discrepancies observed between datasets.

  7. Nondestructive ultrasonic characterization of armor grade silicon carbide

    Science.gov (United States)

    Portune, Andrew Richard

    Ceramic materials have traditionally been chosen for armor applications for their superior mechanical properties and low densities. At high strain rates seen during ballistic events, the behavior of these materials relies upon the total volumetric flaw concentration more so than any single anomalous flaw. In this context flaws can be defined as any microstructural feature which detriments the performance of the material, potentially including secondary phases, pores, or unreacted sintering additives. Predicting the performance of armor grade ceramic materials depends on knowledge of the absolute and relative concentration and size distribution of bulk heterogeneities. Ultrasound was chosen as a nondestructive technique for characterizing the microstructure of dense silicon carbide ceramics. Acoustic waves interact elastically with grains and inclusions in large sample volumes, and were well suited to determine concentration and size distribution variations for solid inclusions. Methodology was developed for rapid acquisition and analysis of attenuation coefficient spectra. Measurements were conducted at individual points and over large sample areas using a novel technique entitled scanning acoustic spectroscopy. Loss spectra were split into absorption and scattering dominant frequency regimes to simplify analysis. The primary absorption mechanism in polycrystalline silicon carbide was identified as thermoelastic in nature. Correlations between microstructural conditions and parameters within the absorption equation were established through study of commercial and custom engineered SiC materials. Nonlinear least squares regression analysis was used to estimate the size distributions of boron carbide and carbon inclusions within commercial SiC materials. This technique was shown to additionally be capable of approximating grain size distributions in engineered SiC materials which did not contain solid inclusions. Comparisons to results from electron microscopy

  8. Alternative Process for Manufacturing of Thin Layers of Boron for Neutron Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Auge, Gregoire; Partyka, Stanislas [Onet Technologies (France); Guerard, Bruno; Buffet, Jean-Claude [Institut Laue Langevin - ILL, Grenoble (France)

    2015-07-01

    Due to the worldwide shortage of helium 3, Boron-lined proportional counters are developed intensively by several groups. Up to now, thin boron containing layers for neutron detectors are essentially produced by sputtering of boron carbide (B{sub 4}C). This technology provides high quality films but it is slow and expensive. Our paper describes a novel and inexpensive technology for producing boron layers. This technology is based on chemical synthesis of boron 10 nanoparticles, and on electrophoretic deposition of these particles on metallic plates, or on metallic pieces with more complex shapes. The chemical synthesis consists in: - Heating boron 10 with lithium up to 700 deg. C under inert atmosphere: an intermetallic compound, LiB, is produced; - Hydrolysing this intermetallic compound: LiB + H{sub 2}O → B + Li{sup +} + OH{sup -} + 1/2H{sub 2}, where B is under the form of nanoparticles; - Purifying the suspension of boron nanoparticles in water, from lithium hydroxide, by successive membrane filtrations; - Evaporating the purified suspension, in order to get a powder of nanoparticles. The obtained nanoparticles have size around 300 nm, with a high porosity, of about 50%. This particle size is equivalent to about 150 nm massive particles. The nanoparticles are then put into suspension in a specific solvent, in order to perform deposition on metallic surfaces, by electrophoretic method. The solvent is chosen so that it is not electrolysed even under voltages of several tens of volts. An acid is dissolved into the solvent, so that the nanoparticles are positively charged. Deposition is performed on the cathode within about 10 min. The cathode could be an aluminium plate, or a nickel coated aluminium plate. Homogeneous deposition may also be performed on complex shapes, like grids in a Multigrid detector. A large volume of pieces, can be coated with a Boron-10 film in a few hours. The thickness of the layer can be adjusted according to the required neutron

  9. Thermoelectric properties of boron and boron phosphide CVD wafers

    Energy Technology Data Exchange (ETDEWEB)

    Kumashiro, Y.; Yokoyama, T.; Sato, A.; Ando, Y. [Yokohama National Univ. (Japan)

    1997-10-01

    Electrical and thermal conductivities and thermoelectric power of p-type boron and n-type boron phosphide wafers with amorphous and polycrystalline structures were measured up to high temperatures. The electrical conductivity of amorphous boron wafers is compatible to that of polycrystals at high temperatures and obeys Mott`s T{sup -{1/4}} rule. The thermoelectric power of polycrystalline boron decreases with increasing temperature, while that of amorphous boron is almost constant in a wide temperature range. The weak temperature dependence of the thermal conductivity of BP polycrystalline wafers reflects phonon scattering by grain boundaries. Thermal conductivity of an amorphous boron wafer is almost constant in a wide temperature range, showing a characteristic of a glass. The figure of merit of polycrystalline BP wafers is 10{sup -7}/K at high temperatures while that of amorphous boron is 10{sup -5}/K.

  10. Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon

    International Nuclear Information System (INIS)

    Ma, Fa-Jun; Duttagupta, Shubham; Shetty, Kishan Devappa; Meng, Lei; Hoex, Bram; Peters, Ian Marius; Samudra, Ganesh S.

    2014-01-01

    Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boron diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed

  11. Electrochemical oxidation and electroanalytical determination of xylitol at a boron-doped diamond electrode.

    Science.gov (United States)

    Lourenço, Anabel S; Sanches, Fátima A C; Magalhães, Renata R; Costa, Daniel J E; Ribeiro, Williame F; Bichinho, Kátia M; Salazar-Banda, Giancarlo R; Araújo, Mário C U

    2014-02-01

    Xylitol is a reduced sugar with anticariogenic properties used by insulin-dependent diabetics, and which has attracted great attention of the pharmaceutical, cosmetics, food and dental industries. The detection of xylitol in different matrices is generally based on separation techniques. Alternatively, in this paper, the application of a boron-doped diamond (BDD) electrode allied to differing voltammetric techniques is presented to study the electrochemical behavior of xylitol, and to develop an analytical methodology for its determination in mouthwash. Xylitol undergoes two oxidation steps in an irreversible diffusion-controlled process (D=5.05 × 10(-5)cm(2)s(-1)). Differential pulse voltammetry studies revealed that the oxidation mechanism for peaks P1 (3.4 ≤ pH ≤ 8.0), and P2 (6.0 ≤ pH ≤ 9.0) involves transfer of 1H(+)/1e(-), and 1e(-) alone, respectively. The oxidation process P1 is mediated by the (•)OH generated at the BDD hydrogen-terminated surface. The maximum peak current was obtained at a pH of 7.0, and the electroanalytical method developed, (employing square wave voltammetry) yielded low detection (1.3 × 10(-6) mol L(-1)), and quantification (4.5 × 10(-6) mol L(-1)) limits, associated with good levels of repeatability (4.7%), and reproducibility (5.3%); thus demonstrating the viability of the methodology for detection of xylitol in biological samples containing low concentrations. © 2013 Elsevier B.V. All rights reserved.

  12. Time-Dependent Stress Rupture Strength Degradation of Hi-Nicalon Fiber-Reinforced Silicon Carbide Composites at Intermediate Temperatures

    Science.gov (United States)

    Sullivan, Roy M.

    2016-01-01

    The stress rupture strength of silicon carbide fiber-reinforced silicon carbide composites with a boron nitride fiber coating decreases with time within the intermediate temperature range of 700 to 950 degree Celsius. Various theories have been proposed to explain the cause of the time-dependent stress rupture strength. The objective of this paper is to investigate the relative significance of the various theories for the time-dependent strength of silicon carbide fiber-reinforced silicon carbide composites. This is achieved through the development of a numerically based progressive failure analysis routine and through the application of the routine to simulate the composite stress rupture tests. The progressive failure routine is a time-marching routine with an iterative loop between a probability of fiber survival equation and a force equilibrium equation within each time step. Failure of the composite is assumed to initiate near a matrix crack and the progression of fiber failures occurs by global load sharing. The probability of survival equation is derived from consideration of the strength of ceramic fibers with randomly occurring and slow growing flaws as well as the mechanical interaction between the fibers and matrix near a matrix crack. The force equilibrium equation follows from the global load sharing presumption. The results of progressive failure analyses of the composite tests suggest that the relationship between time and stress-rupture strength is attributed almost entirely to the slow flaw growth within the fibers. Although other mechanisms may be present, they appear to have only a minor influence on the observed time-dependent behavior.

  13. Nuclear-physical techniques for determination of boron distribution in pure materials

    International Nuclear Information System (INIS)

    Kadirova, M.; Jumaev, N.; Simakhin, Yu.F.; Idrisov, Kh.; Usmanova, M.M.

    2001-01-01

    To study deep boron diffusion in the complex silicon structures, consisting of interchange boron doping layers of mono- and polycrystalline silicon, separated by oxide films a technique of sidelong section by using Solid State Nuclear Track Detector (SSNTD) has been elaborated. The boron distribution determination technique is based on the detection of alpha particles from the 10B(n, )7Li reaction with cellulose nitrate film. The etched track registering cellulose nitrate film show the structure image magnified 1/sin fold. Boron concentration defined by density of the etched pits appearing on the film surface. An optical microscope analysis of the sample track-mapping image is realized by examination with closely spaced ( l < x/sin ) and largely spaced ( l x/sin ) movements. All these elaborated techniques can be used to investigate other solid matrix

  14. Oxidation and creep behavior of Mo*5*Si*3* based materials

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Mitch [Iowa State Univ., Ames, IA (United States)

    1995-06-19

    Mo5Si3 shows promise as a high temperature creep resistant material. The high temperature oxidation resistance of Mo5Si3 has been found to be poor, however, limiting its use in oxidizing atmospheres. Undoped Mo5Si3 exhibits mass loss in the temperature range 800°-1200°C due to volatilization of molybdenum oxide, indicating that the silica scale does not provide a passivating layer. The addition of boron results in protective scale formation and parabolic oxidation kinetics in the temperature range of 1050{degrees}-1300°C. The oxidation rate of Mo5Si3 was decreased by 5 orders of magnitude at 1200°C by doping with less than two weight percent boron. Boron doping eliminates catastrophic "pest" oxidation at 800°C. The mechanism for improved oxidation resistance of boron doped Mo5Si3 is due to scale modification by boron.

  15. Fabrication and oxidation resistance of titanium carbide-coated carbon fibres by reacting titanium hydride with carbon fibres in molten salts

    International Nuclear Information System (INIS)

    Dong, Z.J.; Li, X.K.; Yuan, G.M.; Cong, Y.; Li, N.; Jiang, Z.Y.; Hu, Z.J.

    2009-01-01

    Using carbon fibres and titanium hydride as a reactive carbon source and a metal source, respectively, a protective titanium carbide (TiC) coating was formed on carbon fibres in molten salts, composed of LiCl-KCl-KF, at 750-950 o C. The structure and morphology of the TiC coatings were characterised by X-ray diffraction and scanning electron microscopy, respectively. The oxidation resistance of the TiC-coated carbon fibres was measured by thermogravimetric analysis. The results reveal that control of the coating thickness is very important for improvement of the oxidation resistance of TiC-coated carbon fibres. The oxidative weight loss initiation temperature for the TiC-coated carbon fibres increases significantly when an appropriate coating thickness is used. However, thicker coatings lead to a decrease of the carbon fibres' weight loss initiation temperature due to the formation of cracks in the coating. The TiC coating thickness on carbon fibres can be controlled by adjusting the reaction temperature and time of the molten salt synthesis.

  16. EPR investigation into the structure of boron-containing quartz glasses

    International Nuclear Information System (INIS)

    Amosov, A.V.; Bushmarin, D.B.; Prokhorova, T.I.; Yudin, D.M.

    1975-01-01

    Certain properties of boron-containing quartz glasses and the nature of occurrence of boron in the glass lattice are studied as functions of the method of alloying. The formation of three types of borate structural nodes (BO 4 , BO 3 and BO 4 -BO 3 ) in the lattice of quartz glasses is established. Alloying by boron oxide up to 3% (weight) increases the crystallization stability of quartz glasses, lowers down tsub(g) from 1220 to 950 deg C and does not affect the coefficient of thermal expansion. Low symmetry of borate structural nodes, following from the analysis of EPR spectra, confirms the literature data concerning the low symmetry of glass-forming polyhedrons in a quartz glass

  17. Multi-criteria methodology to design a sodium-cooled carbide-fueled Gen-IV reactor

    International Nuclear Information System (INIS)

    Stauff, N.

    2011-01-01

    Compared with earlier plant designs (Phenix, Super-Phenix, EFR), Gen IV Sodium-cooled Fast Reactor requires improved economics while meeting safety and non-proliferation criteria. Mixed Oxide (U-Pu)O 2 fuels are considered as the reference fuels due to their important and satisfactory feedback experience. However, innovative carbide (U-Pu)C fuels can be considered as serious competitors for a prospective SFR fleet since carbide-fueled SFRs can offer another type of optimization which might overtake on some aspects the oxide fuel technology. The goal of this thesis is to reveal the potentials of carbide by designing an optimum carbide-fueled SFR with competitive features and a naturally safe behavior during transients. For a French nuclear fleet, a 1500 MW(e) break-even core is considered. To do so, a multi-physic approach was developed taking into account neutronics, fuel thermo-mechanics and thermal-hydraulic at a pre-design stage. Simplified modeling with the calculation of global neutronic feedback coefficients and a quasi-static evaluation was developed to estimate the behavior of a core during overpower transients, loss of flow and/or loss of heat removal transients. The breakthrough of this approach is to provide the designer with an overall view of the iterative process, emphasizing the well-suited innovations and the most efficient directions that can improve the SFR design project.This methodology was used to design a core that benefits from the favorable features of carbide fuels. The core developed is a large carbide-fueled SFR with high power density, low fissile inventory, break-even capability and forgiving behaviors during the un-scrammed transients studied that should prevent using expensive mitigate systems. However, the core-peak burnup is unlikely to significantly exceed 100 MWd/kg because of the large swelling of the carbide fuel leading to quick pellet-clad mechanical interaction and the low creep capacity of carbide. Moderate linear power fuel

  18. Synthesis of boron, nitrogen co-doped porous carbon from asphaltene for high-performance supercapacitors

    Science.gov (United States)

    Zhou, Ying; Wang, Dao-Long; Wang, Chun-Lei; Jin, Xin-Xin; Qiu, Jie-Shan

    2014-08-01

    Oxidized asphaltene (OA), a thermosetting material with plenty of functional groups, is synthesized from asphaltene (A) using HNO3/H2SO4 as the oxidizing agent. Boron, nitrogen co-doped porous carbon (BNC—OA) is prepared by carbonization of the mixture of boric acid and OA at 1173 K in an argon atmosphere. X-ray photoelectron spectroscopy (XPS) characterization reveals that the BNC—OA has a nitrogen content of 3.26 at.% and a boron content of 1.31 at.%, while its oxidation-free counterpart (BNC—SA) has a nitrogen content of 1.61 at.% and a boron content of 3.02 at.%. The specific surface area and total pore volume of BNC—OA are 1103 m2·g-1 and 0.921 cm3·g-1, respectively. At a current density of 0.1 A·g-1, the specific capacitance of BNC-OA is 335 F·g-1 and the capacitance retention can still reach 83% at 1 A·g-1. The analysis shows that the superior electrochemical performance of the BNC—OA is attributed to the pseudocapacitance behavior of surface heteroatom functional groups and an abundant pore-structure. Boron, nitrogen co-doped porous carbon is a promising electrode material for supercapacitors.

  19. Metal Immiscibility Route to Synthesis of Ultrathin Carbides, Borides, and Nitrides.

    Science.gov (United States)

    Wang, Zixing; Kochat, Vidya; Pandey, Prafull; Kashyap, Sanjay; Chattopadhyay, Soham; Samanta, Atanu; Sarkar, Suman; Manimunda, Praveena; Zhang, Xiang; Asif, Syed; Singh, Abhisek K; Chattopadhyay, Kamanio; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2017-08-01

    Ultrathin ceramic coatings are of high interest as protective coatings from aviation to biomedical applications. Here, a generic approach of making scalable ultrathin transition metal-carbide/boride/nitride using immiscibility of two metals is demonstrated. Ultrathin tantalum carbide, nitride, and boride are grown using chemical vapor deposition by heating a tantalum-copper bilayer with corresponding precursor (C 2 H 2 , B powder, and NH 3 ). The ultrathin crystals are found on the copper surface (opposite of the metal-metal junction). A detailed microscopy analysis followed by density functional theory based calculation demonstrates the migration mechanism, where Ta atoms prefer to stay in clusters in the Cu matrix. These ultrathin materials have good interface attachment with Cu, improving the scratch resistance and oxidation resistance of Cu. This metal-metal immiscibility system can be extended to other metals to synthesize metal carbide, boride, and nitride coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Plasma spraying of zirconium carbide – hafnium carbide – tungsten cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Cheong, D.-I.; Yang, S.-H.

    2009-01-01

    Roč. 9, č. 1 (2009), s. 49-64 ISSN 1335-8987 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * hafnium carbide * tungsten * water stabilized plasma Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  1. Metal Carbides for Biomass Valorization

    Directory of Open Access Journals (Sweden)

    Carine E. Chan-Thaw

    2018-02-01

    Full Text Available Transition metal carbides have been utilized as an alternative catalyst to expensive noble metals for the conversion of biomass. Tungsten and molybdenum carbides have been shown to be effective catalysts for hydrogenation, hydrodeoxygenation and isomerization reactions. The satisfactory activities of these metal carbides and their low costs, compared with noble metals, make them appealing alternatives and worthy of further investigation. In this review, we succinctly describe common synthesis techniques, including temperature-programmed reaction and carbothermal hydrogen reduction, utilized to prepare metal carbides used for biomass transformation. Attention will be focused, successively, on the application of transition metal carbide catalysts in the transformation of first-generation (oils and second-generation (lignocellulose biomass to biofuels and fine chemicals.

  2. Parabens abatement from surface waters by electrochemical advanced oxidation with boron doped diamond anodes.

    Science.gov (United States)

    Domínguez, Joaquín R; Muñoz-Peña, Maria J; González, Teresa; Palo, Patricia; Cuerda-Correa, Eduardo M

    2016-10-01

    The removal efficiency of four commonly-used parabens by electrochemical advanced oxidation with boron-doped diamond anodes in two different aqueous matrices, namely ultrapure water and surface water from the Guadiana River, has been analyzed. Response surface methodology and a factorial, composite, central, orthogonal, and rotatable (FCCOR) statistical design of experiments have been used to optimize the process. The experimental results clearly show that the initial concentration of pollutants is the factor that influences the removal efficiency in a more remarkable manner in both aqueous matrices. As a rule, as the initial concentration of parabens increases, the removal efficiency decreases. The current density also affects the removal efficiency in a statistically significant manner in both aqueous matrices. In the water river aqueous matrix, a noticeable synergistic effect on the removal efficiency has been observed, probably due to the presence of chloride ions that increase the conductivity of the solution and contribute to the generation of strong secondary oxidant species such as chlorine or HClO/ClO - . The use of a statistical design of experiments made it possible to determine the optimal conditions necessary to achieve total removal of the four parabens in ultrapure and river water aqueous matrices.

  3. PERSPECTIVES OF NANOPOWDERS APPLICATION FOR MANUFACTURING OF MODIFYING ALLOYING COMPOSITIONS

    Directory of Open Access Journals (Sweden)

    A. Kalinichenko

    2015-01-01

    Full Text Available Application of nanomaterials for grain refining of metals and its allac is of great interest as it aimis achieveto higher physicalmechanical properties in finished parts. Analysis shows that to gain high effectiveness of nanoparticles it is important to provide proper input of these particles into alloying alloy. The aim of present research is study of initial nanoparticles structure on the base of titanium, boron, yttrium and carbon nanotubes as well as development of method to manufacture alloying alloys containing nanoparticles.Investigations of nanopowders phase compositions on the base of titanium, boron and yttrium have shown that active elements such as boron carbide, titanium carbide and nitride, yttrium oxide are base compounds of these nanopowders. Powder particles are formed by primary structural elements having mainly plate state (titanium and boron carbides and containing equiaxial inclusions with sizes of 5–200 nm. Chemical composition of specimens synthesized is uniform and contains 98.0 – 99.5% of main compound.Results of metal-protector and nanoparticles mixing have revealed that the increase of mixing duration from 2 to 6 hours assist to more uniform elements distribution through the pellet volume. Applying extrusion method specimens of alloying alloys have been produced and elements distribution in cross-section and longitudinal directions were determined.Analysis of research implemented has shown that distribution of active nanopowders in matrix is more uniform in extruded alloying alloys specimens compared to ones produced by methods of sintering or pressing of powder mixtures.

  4. Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production

    Energy Technology Data Exchange (ETDEWEB)

    Czapski, M., E-mail: michal.czapski@cern.ch [CERN, Genève 23 CH-1211 (Switzerland); Stora, T. [CERN, Genève 23 CH-1211 (Switzerland); Tardivat, C.; Deville, S. [Lab. de Synthèse et Fonctionnalisation des Céramiques, CNRS/Saint-Gobain, Av. Jauffret 84306 Cavaillon (France); Santos Augusto, R. [CERN, Genève 23 CH-1211 (Switzerland); Leloup, J.; Bouville, F. [Lab. de Synthèse et Fonctionnalisation des Céramiques, CNRS/Saint-Gobain, Av. Jauffret 84306 Cavaillon (France); Fernandes Luis, R. [Univ. Técnica de Lisboa Estrada Nacional 10, 2686-953 Sacavem, Loures (Portugal)

    2013-12-15

    Highlights: • SiC and Al{sub 2}O{sub 3} of uniaxial porosity were produced with ice-templating method. • The method allows controlled pore formation within the material. • Calculation of mechanical integrity under irradiation with protons was performed. • Generated thermal stresses should not exceed material’s strength. -- Abstract: New silicon carbide (SiC) and aluminum oxide (Al{sub 2}O{sub 3}) of a tailor-made microstructure were produced using the ice-templating technique, which permits controlled pore formation conditions within the material. These prototypes will serve to verify aging of the new advanced target materials under irradiation with proton beams. Before this, the evaluation of their mechanical integrity was made based on the energy deposition spectra produced by FLUKA codes.

  5. The major facilitator superfamily transporter Knq1p modulates boron homeostasis in Kluyveromyces lactis.

    Science.gov (United States)

    Svrbicka, Alexandra; Toth Hervay, Nora; Gbelska, Yvetta

    2016-03-01

    Boron is an essential micronutrient for living cells, yet its excess causes toxicity. To date, the mechanisms of boron toxicity are poorly understood. Recently, the ScATR1 gene has been identified encoding the main boron efflux pump in Saccharomyces cerevisiae. In this study, we analyzed the ScATR1 ortholog in Kluyveromyces lactis--the KNQ1 gene, to understand whether it participates in boron stress tolerance. We found that the KNQ1 gene, encoding a permease belonging to the major facilitator superfamily, is required for K. lactis boron tolerance. Deletion of the KNQ1 gene led to boron sensitivity and its overexpression increased K. lactis boron tolerance. The KNQ1 expression was induced by boron and the intracellular boron concentration was controlled by Knq1p. The KNQ1 promoter contains two putative binding motifs for the AP-1-like transcription factor KlYap1p playing a central role in oxidative stress defense. Our results indicate that the induction of the KNQ1 expression requires the presence of KlYap1p and that Knq1p like its ortholog ScAtr1p in S. cerevisiae functions as a boron efflux pump providing boron resistance in K. lactis.

  6. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooher, G.I.

    1979-01-01

    A neutron absorbing article, in flat plate form and suitable for use in a storage rack for spent fuel, includes boron carbide particles, diluent particles and a solid, irreversibly cured phenolic polymer cured to a continuous matrix binding the boron carbide and diluent particles. The total conent of boron carbide and diluent particles is a major proportion of the article and the content of cured phenolic polymer present is a minor proportion. By regulation of the ratio of boron carbide particles to diluent particles, normally within the range of 1:9 and 9:1 and preferably within the range of 1:5 to 5:1, the neutron absorbing activity of the product may be controlled, which facilitates the manufacture of articles of particular absorbing activities best suitable for specific applications

  7. Tribo-mechanical and electrical properties of boron-containing coatings

    Science.gov (United States)

    Qian, Jincheng

    The development of new hard protective coatings with advanced performance is very important for progress in a variety of scientific and industrial fields. Application of hard protective coatings can significantly improve the performance of parts and components, extend their service life, and save energy in many industrial applications including aerospace, automotive, manufacturing, and other industries. In addition, the multifunctionality of protective coatings is also required in many other application fields such as optics, microelectronics, biomedical, magnetic storage media, etc. Therefore, protective coatings with enhanced tribo-mechanical and corrosion properties as well as other functions are in demand. The coating characteristics can be adjusted by controlling the microstructure at different scales. For example, films with nanostructures, such as superlattice, nanocolumn, and nanocomposite systems, exhibit distinctive characteristics compared to single-phase materials. They show superior tribo-mechanical properties due to the presence of strong interfaces, and different functions can be achieved due to the multi-phase characteristics. Boron-containing materials with their excellent mechanical properties and interesting electronic characteristics are good candidates for functional hard protective coatings. For instance, cubic boron nitride (c-BN), boron carbide (B1-xCx), and titanium diboride (TiB 2) are well known for their high hardness, high thermal stability, and high chemical inertness. An interesting example is the boron carbon nitride (BCN) compound that possesses many attractive properties because its structure is similar to that of carbon (graphite and diamond) and of boron nitride (BN in hexagonal and cubic phases). The main goal of this work is to further develop the family of Boron-containing films including B1-xCx, Ti-B-C, and BCN films fabricated by magnetron sputtering, and to enhance their performance by controlling their microstructure on

  8. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells

    Science.gov (United States)

    Chhina, H.; Campbell, S.; Kesler, O.

    The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 °C and compared to that of HiSpec 4000™ Pt/Vulcan XC-72R in 0.5 M H 2SO 4. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000™. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization.

  9. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H. [Automotive fuel cell corporation, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Department of Mechanical and Industrial Engineering, 5 King' s College Road, University of Toronto, Toronto, Ontario (Canada); Campbell, S. [Automotive fuel cell corporation, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, 5 King' s College Road, University of Toronto, Toronto, Ontario (Canada)

    2008-04-15

    The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 C and compared to that of HiSpec 4000 trademark Pt/Vulcan XC-72R in 0.5 M H{sub 2}SO{sub 4}. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000 trademark. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization. (author)

  10. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 3 ... Sintering of nano crystalline silicon carbide by doping with boron carbide ... of these powders was achieved by addition of boron carbide of 0.5 wt% together with carbon of 1 wt% at 2050°C at vacuum (3 mbar) for 15 min. ... pp 213-217 Alloys and Steels.

  11. Effect of Boron Toxicity on Oxidative Stress and Genotoxicity in Wheat (Triticum aestivum L.).

    Science.gov (United States)

    Çatav, Şükrü Serter; Genç, Tuncer Okan; Kesik Oktay, Müjgan; Küçükakyüz, Köksal

    2018-04-01

    Boron (B) toxicity, which occurs in semi-arid and arid environments, can adversely affect the growth and yield of many plants. The aim of this study was to determine the effects of different concentrations of boric acid (3, 6, 9 and 12 mM) on growth, oxidative stress and genotoxicity parameters in root and shoot tissues of wheat seedlings. Our results indicate that B stress inhibits root and shoot growth of wheat in a concentration-dependent manner, and leads to increases in TBARS and H 2 O 2 contents in shoot tissue. Moreover, our findings suggest that high concentrations of B may exert a genotoxic effect on wheat. To the best of our knowledge, this is the first report to evaluate the effect of B stress on genotoxicity in both root and shoot tissues of wheat.

  12. Neutron absorbing article and method for manufacture of such article

    International Nuclear Information System (INIS)

    McMurty, C.H.; Naum, R.G.; Owens, D.P.; Hortman, M.T.

    1981-01-01

    A neutron absorbing article is described which comprises boron carbide particles and an irreversibly-cured phenol aldehyde condensation polymer cured to a continuous matrix about the boron carbide particles. Such an article may be used in spent fuel storage racks. It can be manufactured by mixing together a curable phenolic resin with boron carbide particles, compacting the mixture to an article of desired shape, curing the resin at an elevated temperature, impregnating the cured article with curable phenolic resin in liquid state, and curing the article again

  13. Electro-oxidation of diclofenac at boron doped diamond: Kinetics and mechanism

    International Nuclear Information System (INIS)

    Zhao Xu; Hou Yining; Liu Huijuan; Qiang Zhimin; Qu Jiuhui

    2009-01-01

    Diclofenac is a common anti-inflammatory drug. Its electrochemical degradation at boron doped diamond electrode was investigated in aqueous solution. The degradation kinetics and the intermediate products were studied. Results showed that electro-oxidation was effective in inducing the degradation of diclofenac with 30 mg/L initial concentration, ensuring a mineralization degree of 72% after a 4 h treatment with the applied bias potential of 4.0 V. The effects of applied bias potential and addition of NaCl on diclofenac degradation were investigated. Different degradation mechanisms of diclofenac were involved at various applied bias potentials. With the addition of NaCl, some chlorination intermediates including dichlorodiclofenac were identified, which lead to the total organic carbon increase compared with the electrolysis process without NaCl addition at the reaction initial period. The main intermediates including 2,6-dichlorobenzenamine, 2,5-dihydroxybenzyl alcohol, and benzoic acid are identified at the time of 2 h. 1-(2,6-Dichlorocyclohexa-2,4-dienyl)indolin-2-one were also identified. These intermediates disappeared gradually with the extension of reaction time. Small molecular acids were identified finally. Based on these results, a degradation pathway of diclofenac was proposed.

  14. Electro-oxidation of diclofenac at boron doped diamond: Kinetics and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xu; Hou Yining; Liu Huijuan; Qiang Zhimin [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Qu Jiuhui [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China)], E-Mail: jhqu@mail.rcees.ac.cn

    2009-07-01

    Diclofenac is a common anti-inflammatory drug. Its electrochemical degradation at boron doped diamond electrode was investigated in aqueous solution. The degradation kinetics and the intermediate products were studied. Results showed that electro-oxidation was effective in inducing the degradation of diclofenac with 30 mg/L initial concentration, ensuring a mineralization degree of 72% after a 4 h treatment with the applied bias potential of 4.0 V. The effects of applied bias potential and addition of NaCl on diclofenac degradation were investigated. Different degradation mechanisms of diclofenac were involved at various applied bias potentials. With the addition of NaCl, some chlorination intermediates including dichlorodiclofenac were identified, which lead to the total organic carbon increase compared with the electrolysis process without NaCl addition at the reaction initial period. The main intermediates including 2,6-dichlorobenzenamine, 2,5-dihydroxybenzyl alcohol, and benzoic acid are identified at the time of 2 h. 1-(2,6-Dichlorocyclohexa-2,4-dienyl)indolin-2-one were also identified. These intermediates disappeared gradually with the extension of reaction time. Small molecular acids were identified finally. Based on these results, a degradation pathway of diclofenac was proposed.

  15. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could...... be delineated. Close to the interface further microstructural inhomogeneities were obsered, there being a clear dependence of TiC deposition mechanism on the chemical and crystallographic nature of the upper layers of the multiphase substrate....

  16. Exogenous nitric oxide donor protects Artemisia annua from oxidative stress generated by boron and aluminium toxicity.

    Science.gov (United States)

    Aftab, Tariq; Khan, M Masroor A; Naeem, M; Idrees, Mohd; Moinuddin; Teixeira da Silva, Jaime A; Ram, M

    2012-06-01

    Nitric oxide (NO) is an important signal molecule modulating the response of plants to environmental stress. Here we report the effects of boron (B) and aluminium (Al) contamination in soil, carried out with or without application of exogenous SNP (NO donor), on various plant processes in Artemisia annua, including changes in artemisinin content. The addition of B or Al to soil medium significantly reduced the yield and growth of plants and lowered the values of net photosynthetic rate, stomatal conductance, internal CO(2) concentration and total chlorophyll content. The follow-up treatment of NO donor favoured growth and improved the photosynthetic efficiency in stressed as well as non-stressed plants. Artemisinin content was enhanced by 24.6% and 43.8% at 1mmole of soil-applied B or Al. When SNP was applied at 2mmole concentration together with either 1mmole of B and/or Al, it further stimulated artemisinin biosynthesis compared to the control. Application of B+Al+SNP proved to be the best treatment combination for the artemisinin content in Artemisia annua leaves. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Fabrication of mesoporous and high specific surface area lanthanum carbide-carbon nanotube composites

    International Nuclear Information System (INIS)

    Biasetto, L.; Carturan, S.; Maggioni, G.; Zanonato, P.; Bernardo, P. Di; Colombo, P.; Andrighetto, A.; Prete, G.

    2009-01-01

    Mesoporous lanthanum carbide-carbon nanotube composites were produced by means of carbothermal reaction of lanthanum oxide, graphite and multi-walled carbon nanotube mixtures under high vacuum. Residual gas analysis revealed the higher reactivity of lanthanum oxide towards carbon nanotubes compared to graphite. After sintering, the composites revealed a specific surface area increasing with the amount of carbon nanotubes introduced. The meso-porosity of carbon nanotubes was maintained after thermal treatment.

  18. Performance analysis of LMFBR control rods

    International Nuclear Information System (INIS)

    Pitner, A.L.; Birney, K.R.

    1975-01-01

    Control rods in the FFTF and LMFBR's will consist of pin bundles of stainless steel-clad boron carbide pellets. In the FFTF reference design, sixty-one pins of 0.474-inch diameter each containing a 36-inch stack of 0.362-inch diameter boron carbide pellets comprise a control rod. Reactivity control is provided by the 10 B (n,α) 7 Li reaction in the boron carbide. This reaction is accompanied by an energy release of 2.8 MeV, and heating from this reaction typically approaches 100 watts/cm 3 for natural boron carbide pellets in an LMFBR flux. Performance analysis of LMFBR control rods must include an assessment of the thermal performance of control pins. In addition, irradiation performance with regard to helium release, pellet swelling, and reactivity worth depletion as a function of service time must be evaluated

  19. Production of neutron shielding material

    International Nuclear Information System (INIS)

    Roszler, J.J.

    1979-01-01

    A neutron-absorbing material consisting of a layer of boron carbide sandwiched between layers of aluminum is produced by constructing a rectangular box from aluminum plate leaving one end open. The box is filled with a uniform mixture of finely-divided boron carbide and anodized aluminum powders and the open end is sealed by welding an aluminum plate in place. The box is then heated to 800-850 deg F and rolled to reduce its thickness to the desired amount. The hot rolling bonds or sinters the particles of metal powder or boron carbide. (LL)

  20. Boron-enhanced diffusion of boron from ultralow-energy boron implantation

    International Nuclear Information System (INIS)

    Agarwal, A.; Eaglesham, D.J.; Gossmann, H.J.; Pelaz, L.; Herner, S.B.; Jacobson, D.C.

    1998-01-01

    The authors have investigated the diffusion enhancement mechanism of BED (boron enhanced diffusion), wherein the boron diffusivity is enhanced three to four times over the equilibrium diffusivity at 1,050 C in the proximity of a silicon layer containing a high boron concentration. It is shown that BED is associated with the formation of a fine-grain polycrystalline silicon boride phase within an initially amorphous Si layer having a high B concentration. For 0.5 keV B + , the threshold implantation dose which leads to BED lies between 3 x 10 14 and of 1 x 10 15 /cm -2 . Formation of the shallowest possible junctions by 0.5 keV B + requires that the implant dose be kept lower than this threshold

  1. Preparation and study of the nitrides and mixed carbide-nitrides of uranium and of plutonium

    International Nuclear Information System (INIS)

    Anselin, F.

    1966-06-01

    A detailed description is given of a simple method for preparing uranium and plutonium nitrides by the direct action of nitrogen under pressure at moderate temperatures (about 400 C) on the partially hydrogenated bulk metal. It is shown that there is complete miscibility between the UN and PuN phases. The variations in the reticular parameters of the samples as a function of temperature and in the presence of oxide have been used to detect and evaluate the solubility of oxygen in the different phases. A study has been made of the sintering of these nitrides as a function of the preparation conditions with or without sintering additives. A favorable but non-reproducible, effect has been found for traces of oxide. The best results were obtained for pure UN at 1600 C (96 per cent theoretical density) on condition that a well defined powder, was used. The criterion used is the integral width of the X-ray diffraction lines. The compounds UN and PuN are completely miscible with the corresponding carbides. This makes it possible to prepare carbide-nitrides of the general formula (U,Pu) (C,N) by solid-phase diffusion, at around 1400 C. The sintering of these carbide-nitrides is similar to that of the carbides if the nitrogen content is low; in particular, nickel is an efficient sintering agent. For high contents, the sintering is similar to that of pure nitrides. (author) [fr

  2. Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Yilmaz, M. Tolga; Kocakerim, M. Muhtar

    2005-01-01

    In this study, boron removal from boron-containing wastewaters prepared synthetically was investigated. The experiments in which Amberlite IRA 743, boron specific resin was used were carried out in a column reactor. The bed volume of resin, boron concentration, flow rate and temperature were selected as experimental parameters. The experimental results showed that percent of boron removal increased with increasing amount of resin and with decreasing boron concentration in the solution. Boron removal decreased with increasing of flow rate and the effect of temperature on the percent of total boron removal increased the boron removal rate. As a result, it was seen that about 99% of boron in the wastewater could be removed at optimum conditions

  3. Use of Crystalline Boron as a Burn Rate Retardant Toward the Development of Green-Colored Handheld Signal Formulations

    Science.gov (United States)

    2011-01-01

    emitter and formed magnesium oxide (MgO) in a highly exothermic process upon reacting with barium nitrate. Although it served as a low-energy fuel...nitric acid under boiling conditions, it fails to react when treated with boiling hydrofluoric and hydrochloric acids [13]. Table 3 Performance of...fuel. It is believed that amorphous boron, when reacted with oxygen, forms metastable boron oxide (BO2) in the excited state, which is responsible for

  4. A Comparative Analysis of 2-(Thiocyanomethylthio-Benzothiazole Degradation Using Electro-Fenton and Anodic Oxidation on a Boron-Doped Diamond Electrode

    Directory of Open Access Journals (Sweden)

    Armando Vázquez

    2018-01-01

    Full Text Available 2-(Thiocyanomethylthio-benzothiazole (TCMTB is used as fungicide in the paper, tannery, paint, and coatings industries, and its study is important as it is considered toxic to aquatic life. In this study, a comparison of direct anodic oxidation (AO using a boron-doped diamond electrode (BDD and electro-Fenton (EF processes for TCMTB degradation in acidic chloride and sulfate media using a FM01-LC reactor was performed. The results of the electrolysis processes studied in the FM01-LC reactor showed a higher degradation of TCMTB with the anodic oxidation process than with the electro-Fenton process, reaching 81% degradation for the former process versus 47% degradation for the latter process. This difference was attributed to the decrease in H2O2 during the EF process, due to parallel oxidation of chlorides. The degradation rate and current efficiency increased as a function of volumetric flow rate, indicating that convection promotes anodic oxidation and electro-Fenton processes. The results showed that both AO and EF processes could be useful strategies for TCMTB toxicity reduction in wastewaters.

  5. Hypochlorous acid turn-on boron dipyrromethene probe based on oxidation of methyl phenyl sulfide

    International Nuclear Information System (INIS)

    Liu, Shi-Rong; Vedamalai, Mani; Wu, Shu-Pao

    2013-01-01

    Graphical abstract: -- Highlights: •A BODIPY-based green fluorescent probe for sensing HOCl was developed. •The probe utilizes HOCl-promoted oxidation of methyl phenyl sulfide to produce a proportional fluorescence response to the concentration of HOCl. •Confocal fluorescence microscopy imaging of RAW264.7 cells demonstrated that the HCS probe might have application in the investigation of HOCl roles in biological systems. -- Abstract: A boron dipyrromethene (BODIPY)-based fluorometric probe, HCS, has been successfully developed for the highly sensitive and selective detection of hypochlorous acid (HOCl). The probe is based on the specific HOCl-promoted oxidation of methyl phenyl sulfide. The reaction is accompanied by a 160-fold increase in the fluorescent quantum yield (from 0.003 to 0.480). The fluorescent turn-on mechanism is accomplished by suppression of photoinduced electron transfer (PET) from the methyl phenyl sulfide group to BODIPY. The fluorescence intensity of the reaction between HOCl and HCS shows a good linearity in the HOCl concentration range 1–10 μM. The detection limit is 23.7 nM (S/N = 3). In addition, confocal fluorescence microscopy imaging using RAW264.7 macrophages demonstrates that the HCS probe could be an efficient fluorescent detector for HOCl in living cells

  6. Hypochlorous acid turn-on boron dipyrromethene probe based on oxidation of methyl phenyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shi-Rong; Vedamalai, Mani; Wu, Shu-Pao, E-mail: spwu@mail.nctu.edu.tw

    2013-10-24

    Graphical abstract: -- Highlights: •A BODIPY-based green fluorescent probe for sensing HOCl was developed. •The probe utilizes HOCl-promoted oxidation of methyl phenyl sulfide to produce a proportional fluorescence response to the concentration of HOCl. •Confocal fluorescence microscopy imaging of RAW264.7 cells demonstrated that the HCS probe might have application in the investigation of HOCl roles in biological systems. -- Abstract: A boron dipyrromethene (BODIPY)-based fluorometric probe, HCS, has been successfully developed for the highly sensitive and selective detection of hypochlorous acid (HOCl). The probe is based on the specific HOCl-promoted oxidation of methyl phenyl sulfide. The reaction is accompanied by a 160-fold increase in the fluorescent quantum yield (from 0.003 to 0.480). The fluorescent turn-on mechanism is accomplished by suppression of photoinduced electron transfer (PET) from the methyl phenyl sulfide group to BODIPY. The fluorescence intensity of the reaction between HOCl and HCS shows a good linearity in the HOCl concentration range 1–10 μM. The detection limit is 23.7 nM (S/N = 3). In addition, confocal fluorescence microscopy imaging using RAW264.7 macrophages demonstrates that the HCS probe could be an efficient fluorescent detector for HOCl in living cells.

  7. Effective optimization of surface passivation on porous silicon carbide using atomic layer deposited Al2O3

    DEFF Research Database (Denmark)

    Lu, Weifang; Iwasa, Yoshimi; Ou, Yiyu

    2017-01-01

    Porous silicon carbide (B–N co-doped SiC) produced by anodic oxidation showed strong photoluminescence (PL) at around 520 nm excited by a 375 nm laser. The porous SiC samples were passivated by atomic layer deposited (ALD) aluminum oxide (Al2O3) films, resulting in a significant enhancement...

  8. Novel fabrication of silicon carbide based ceramics for nuclear applications

    Science.gov (United States)

    Singh, Abhishek Kumar

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous

  9. Formation of titanium diboride coatings during the anodic polarization of titanium in a chloride melt with a low boron oxide content

    Science.gov (United States)

    Elshina, L. A.; Malkov, V. B.; Molchanova, N. G.

    2015-02-01

    The corrosion-electrochemical behavior of titanium in a molten eutectic mixture of cesium and sodium chlorides containing up to 1 wt % boron oxide is studied in the temperature range 810-870 K in an argon atmosphere. The potential, the current, and the rate of titanium corrosion are determined. The optimum conditions of forming a dense continuous titanium diboride coating on titanium with high adhesion to the metallic base are found for the anodic activation of titanium in the molten electrolyte under study.

  10. Use of B{sub 2}O{sub 3} films grown by plasma-assisted atomic layer deposition for shallow boron doping in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kalkofen, Bodo, E-mail: bodo.kalkofen@ovgu.de; Amusan, Akinwumi A.; Bukhari, Muhammad S. K.; Burte, Edmund P. [Institute of Micro and Sensor Systems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Garke, Bernd [Institute for Experimental Physics, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Lisker, Marco [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Gargouri, Hassan [SENTECH Instruments GmbH, Schwarzschildstraße 2, 12489 Berlin (Germany)

    2015-05-15

    Plasma-assisted atomic layer deposition (PALD) was carried for growing thin boron oxide films onto silicon aiming at the formation of dopant sources for shallow boron doping of silicon by rapid thermal annealing (RTA). A remote capacitively coupled plasma source powered by GaN microwave oscillators was used for generating oxygen plasma in the PALD process with tris(dimethylamido)borane as boron containing precursor. ALD type growth was obtained; growth per cycle was highest with 0.13 nm at room temperature and decreased with higher temperature. The as-deposited films were highly unstable in ambient air and could be protected by capping with in-situ PALD grown antimony oxide films. After 16 weeks of storage in air, degradation of the film stack was observed in an electron microscope. The instability of the boron oxide, caused by moisture uptake, suggests the application of this film for testing moisture barrier properties of capping materials particularly for those grown by ALD. Boron doping of silicon was demonstrated using the uncapped PALD B{sub 2}O{sub 3} films for RTA processes without exposing them to air. The boron concentration in the silicon could be varied depending on the source layer thickness for very thin films, which favors the application of ALD for semiconductor doping processes.

  11. Doping of silicon carbide by ion implantation; Dopage du carbure de silicium par implantation ionique

    Energy Technology Data Exchange (ETDEWEB)

    Gimbert, J

    1999-03-04

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  12. Dosage of boron traces in graphite, uranium and beryllium oxide; Dosage de traces de bore dans le graphite, l'uranium et l'oxyde de beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Coursier, J [Ecole Nationale Superieure de Physique et Chimie Industrielles, 75 - Paris (France); Hure, J; Platzer, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The problem of the dosage of the boron in the materials serving to the construction of nuclear reactors arises of the following way: to determine to about 0,1 ppm close to the quantities of boron of the order of tenth ppm. We have chosen the colorimetric analysis with curcumin as method of dosage. To reach the indicated contents, it is necessary to do a previous separation of the boron and the materials of basis, either by extraction of tetraphenylarsonium fluoborate in the case of the boron dosage in uranium and the beryllium oxide, either by the use of a cations exchanger resin of in the case of graphite. (M.B.) [French] Le probleme du dosage du bore dans les materiaux servant a la construction de reacteurs nucleaires se pose de la facon suivante: determiner a environ 0,1 ppm pres des quantites de bore de l'ordre de quelques dixiemes de ppm. Nous avons choisit la colorimetrie a la curcumine comme methode de dosage. Pour atteindre les teneurs indiquees, il est necessaire d'effectuer une separation prealable du bore et des materiaux de base, soit par extraction du fluoborate de tetraphenylarsonium dans le cas du dosage de bore dans l'uranium et l'oxyde de beryllium, soit par l'utilisation d'une resine echangeuse de cations dans le cas du graphite. (M.B.)

  13. Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode

    International Nuclear Information System (INIS)

    Brillas, Enric; Boye, Birame; Sires, Ignasi; Garrido, Jose Antonio; Rodriguez, Rosa Maria; Arias, Conchita; Cabot, Pere-Lluis; Comninellis, Christos

    2004-01-01

    The degradation of herbicides 4-chlorophenoxyacetic acid (4-CPA), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in aqueous medium of pH 3.0 has been comparatively studied by anodic oxidation and electro-Fenton using a boron-doped diamond (BDD) anode. All solutions are totally mineralized by electro-Fenton, even at low current, being the process more efficient with 1 mM Fe 2+ as catalyst. This is due to the production of large amounts of oxidant hydroxyl radical (OH·) on the BDD surface by water oxidation and from Fenton's reaction between added Fe 2+ and H 2 O 2 electrogenerated at the O 2 -diffusion cathode. The herbicide solutions are also completely depolluted by anodic oxidation. Although a quicker degradation is found at the first stages of electro-Fenton, similar times are required for achieving overall mineralization in both methods. The decay kinetics of all herbicides always follows a pseudo first-order reaction. Reversed-phase chromatography allows detecting 4-chlorophenol, 4-chloro-o-cresol, 2,4-dichlorophenol and 2,4,5-trichlorophenol as primary aromatic intermediates of 4-CPA, MCPA, 2,4-D and 2,4,5-T, respectively. Dechlorination of these products gives Cl - , which is slowly oxidized on BDD. Ion-exclusion chromatography reveals the presence of persistent oxalic acid in electro-Fenton by formation of Fe 3+ -oxalato complexes, which are slowly destroyed by OH· adsorbed on BDD. In anodic oxidation, oxalic acid is mineralized practically at the same rate as generated

  14. 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vigna radiata plants.

    Science.gov (United States)

    Yusuf, Mohammad; Fariduddin, Qazi; Ahmad, Aqil

    2011-11-01

    The objective of this study was to establish relationship between boron induced oxidative stress and antioxidant system in Vigna radiata plants and also to investigate whether brassinosteroids will enhance the level of antioxidant system that could confer tolerance to the plants from the boron induced oxidative stress. The mung bean (V. radiata cv. T-44) plants were administered with 0.50, 1.0 and 2.0 mM boron at 6 d stage for 7 d along with nutrient solution. At 13 d stage, the seedlings were sprayed with deionized water (control) or 10(-8) M of 28-homobrassinolide and plants were harvested at 21 d stage to assess growth, leaf gas-exchange traits and biochemical parameters. The boron treatments diminished growth, water relations and photosynthetic attributes along with nitrate reductase and carbonic anhydrase activity in the concentration dependent manner whereas, it enhanced lipid peroxidation, electrolyte leakage, accumulation of H(2)O(2) as well as proline, and various antioxidant enzymes in the leaves of mung bean which were more pronounced at higher concentrations of boron. However, the follow-up application of 28-homobrassinolide to the boron stressed plants improved growth, water relations and photosynthesis and further enhanced the various antioxidant enzymes viz. catalase, peroxidase and superoxide dismutase and content of proline. The elevated level of antioxidant enzymes as well as proline could have conferred tolerance to the B-stressed plants resulting in improved growth, water relations and photosynthetic attributes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Experimental approach to controllably vary protein oxidation while minimizing electrode adsorption for boron-doped diamond electrochemical surface mapping applications.

    Science.gov (United States)

    McClintock, Carlee S; Hettich, Robert L

    2013-01-02

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent (i.e., hydroxyl radicals) for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate the oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins.

  16. Boron reclamation

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-07-01

    A process to recover high purity 10 B enriched crystalline boron powder from a polymeric matrix was developed on a laboratory basis and ultimately scaled up to production capacity. The process is based on controlled pyrolysis of boron-filled scrap followed by an acid leach and dry sieving operation to return the powder to the required purity and particle size specifications. Typically, the recovery rate of the crystalline powder is in excess of 98.5 percent, and some of the remaining boron is recovered in the form of boric acid. The minimum purity requirement of the recovered product is 98.6 percent total boron

  17. Real-time boronization in PBX-M using erosion of solid boronized targets

    International Nuclear Information System (INIS)

    Kugel, H.W.; Timberlake, J.; Bell, R.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Tighe, W.; Hirooka, Y.

    1994-11-01

    Thirty one real-time boronizations were applied to PBX-M using the plasma erosion of solid target probes. More than 17 g of boron were deposited in PBX-M using this technique. The probes were positioned at the edge plasma to optimize vaporization and minimize spallation. Auger depth profile analysis of poloidal and toroidal deposition sample coupon arrays indicate that boron was transported by the plasma around the torus and deep into the divertors. During discharges with continuous real-time boronization, low-Z and high-Z impurities decreased rapidly as plasma surfaces were covered during the first 20-30 discharges. After boronization, a short-term improvement in plasma conditions persisted prior to significant boron erosion from plasma surfaces, and a longer term, but less significant improvement persisted as boron farther from the edge continued gettering. Real-time solid target boronization has been found to be very effective for accelerating conditioning to new regimes and maintaining high performance plasma conditions

  18. Optimization of uranium carbide fabrication by carbothermic reduction with limited oxygen content

    International Nuclear Information System (INIS)

    Raveu, Gaelle

    2014-01-01

    Mixed carbides (U, Pu)C, are good fuel candidate for generation IV reactors because of their high fissile atoms density and excellent thermal properties for economical (more compact and efficient cores) and safety reasons (high melting margin). UC can be imagine as a surrogate material ror R and D studies on (U,Pu)C fuel behavior, because of their similar structures. The carbothermic reaction was used because it is the most studied and now consider for industrial process. However, it involves powders manipulation: in air, carbide can strongly react at room temperature and under controlled atmosphere it can absorb impurities. An inerted installation under Ar, BaGCARA, was therefore used. Process improvements were carried out, including the sintering atmosphere in order to evaluate the impact on the sample purity (about oxygen content). The original method by ion beam analysis was used to determine the surface composition (oxygen in-depth profiles in the first microns and stoichiometry). This oxygen analysis was set for the first time in carbonaceous materials. XRD analysis showed the formation of an intermediate compound during the carbothermic reaction and a better crystallization of the samples fabricated in BaGCARA. They also have a better microstructure, density, and visual appearance if compared to former samples. Vacuum sintering leads to a denser UC with fewer second phases if compared to Ar, Ar/H 2 or controlled PC atmospheres. However, it was not possible to analyze carbides without air contact which may impact their lattice parameter and lead to their deterioration. When the carbide is initially free of oxygen, it oxidizes faster, more intensely and heterogeneously. The mechanical stress induced between the grains lead to fracturing the material, to corrosion cracking and then a de-bonding of the material. A study of oxidation mechanisms would be interesting to validate and understand the evolution of the material in contact with oxygen. A study of the

  19. Study of boron distribution in silicon structure by side long section technique

    International Nuclear Information System (INIS)

    Kadirova, M.; Zhumaev, N.; Simakhin, Yu.F.; Usmanova, M.M.

    1997-01-01

    To study deep boron diffusion in the complex silicon structures, consisting of interchange boron doping layers of mono- and polycrystalline silicon, separated by oxide films a technique of side long section by using Solid State Nuclear Track Detector (SSNTD) has been elaborated. The boron distribution technique is based on the detection of alpha-particles from the 10 B(n,α) 7 Li reaction with cellulose nitrate film. The etched α-track registering cellulose nitrite film show the structure image magnified 1/sinφ fold. Boron concentration defined by density of the etched pits appearing on the film surface. An optical microscope analysis of the sample track-mapping image is realised by examination with closely spaced (Δl < Δx/sinφ) and largely spaced (Δl ≥ Δx/sinφ) movements. For analysis of both experimental data the computer application programs have been developed. An universal algorithm for determination of the boron profiles has been created to take into account influence of a deeper layers on a total measurement of track density when Δl < Δx/sinφ. (author)

  20. Oxidation kinetics of (B6O) boron oxide

    International Nuclear Information System (INIS)

    Makarov, V.S.; Solov'ev, N.E.; Ugaj, Ya.A.

    1987-01-01

    Reactivity of B 6 O to oxygen is investigated. It is shown that the process of B 6 O oxidation in the air in the temperature range 760-1150 K results in the maximum transformation degree equal to 0.35. At the initial stages oxidation proceeds in kinetic regime, at final stages - in diffusion one, and high viscosity of B 2 O 3 probably affects the oxidation process

  1. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  2. An optimization study on transesterification catalyzed by the activated carbide slag through the response surface methodology

    International Nuclear Information System (INIS)

    Liu, Mengqi; Niu, Shengli; Lu, Chunmei; Cheng, Shiqing

    2015-01-01

    Highlights: • New catalyst material for biodiesel production. • New utilization approach of waste carbide slag. • Detailed characterization of carbide slag used as transesterification catalyst. • Optimal parameters for biodiesel production obtained by response surface methodology. • Effect of impurities on catalytic activity of carbide slag in transesterification. - Abstract: After activated at 850 °C under air condition, calcium hydroxide and calcium carbonate in carbide slag are transformed into calcium oxide. The prepared transesterification catalyst, labeled as CS-850, gains surface area of 8.00 m 2 g −1 , functional groups of vanishing O−C−O and O−H bonds, surface morphology of tenuous branch and porous structure and basic strength of 9.8 < H – < 15.0. From aspects of the molar ratio of methanol to oil (γ), the catalyst added amount (ζ) and the reaction temperature (T r ), transesterification catalyzed by CS-850 is optimized through the Box–Behnken design of the response surface methodology (BBD–RSM). A quadratic polynomial model is preferred for transesterification efficiency prediction with coefficient of determination (R 2 ) of 0.9815. The optimal parameters are predicted to be γ = 13.8, ζ = 6.7% and T r = 60 °C with the efficiency of 94.70% and validated by experimental value of 93.83%. Meanwhile, γ is demonstrated to be the most significant variable for the minimum p-value. Besides, CS-850 performs acceptable reusability and for the fifth time reusage, efficiency of 82.61% could still be supplied. Aluminium oxide is proved to have the greatest effect on the catalytic activity of CS-850 among other small quality oxides. Physicochemical properties of the purified biodiesel meet American Society for Testing and Material (ASTM) standard

  3. Electrochemical evaluation and determination of antiretroviral drug fosamprenavir using boron-doped diamond and glassy carbon electrodes.

    Science.gov (United States)

    Gumustas, Mehmet; Ozkan, Sibel A

    2010-05-01

    Fosamprenavir is a pro-drug of the antiretroviral protease inhibitor amprenavir and is oxidizable at solid electrodes. The anodic oxidation behavior of fosamprenavir was investigated using cyclic and linear sweep voltammetry at boron-doped diamond and glassy carbon electrodes. In cyclic voltammetry, depending on pH values, fosamprenavir showed one sharp irreversible oxidation peak or wave depending on the working electrode. The mechanism of the oxidation process was discussed. The voltammetric study of some model compounds allowed elucidation of the possible oxidation mechanism of fosamprenavir. The aim of this study was to determine fosamprenavir levels in pharmaceutical formulations and biological samples by means of electrochemical methods. Using the sharp oxidation response, two voltammetric methods were described for the determination of fosamprenavir by differential pulse and square-wave voltammetry at the boron-doped diamond and glassy carbon electrodes. These two voltammetric techniques are 0.1 M H(2)SO(4) and phosphate buffer at pH 2.0 which allow quantitation over a 4 x 10(-6) to 8 x 10(-5) M range using boron-doped diamond and a 1 x 10(-5) to 1 x 10(-4) M range using glassy carbon electrodes, respectively, in supporting electrolyte. All necessary validation parameters were investigated and calculated. These methods were successfully applied for the analysis of fosamprenavir pharmaceutical dosage forms, human serum and urine samples. The standard addition method was used in biological media using boron-doped diamond electrode. No electroactive interferences from the tablet excipients or endogenous substances from biological material were found. The results were statistically compared with those obtained through an established HPLC-UV technique; no significant differences were found between the voltammetric and HPLC methods.

  4. boron nitride coating of uranium dioxide and uranium dioxide-gadolinium oxide fuels by chemical precipitation method

    International Nuclear Information System (INIS)

    Uslu, I.; Tanker, E.; Guenduez, G.

    1997-01-01

    In this research pure urania and urania-gadolinia (5 and 10 %) fuels were coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron tricloride BCl 3 ) and ammonia (NH 3 ) at 600 C.Boron tricloride and ammonia are carried to tubular furnace using hydrogen as carrier gas. The coated samples were sintered at 1600 K. The properties of the coated samples were observed using BET surface area analysis, infrared spectra (IR), X-Ray Diffraction and Scanning Electron Microscope (SEM) techniques

  5. Review of some past and present powder metallurgy programs at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Sheinberg, H.

    1977-07-01

    A new process is described for molding and extruding complicated shapes of uranium-loaded graphite to close tolerances for use in nuclear propulsion engines. The process for hot-pressing copper-boron carbide and forming it into sheet for use as neutronic control material for these engines is also described. Fabrication procedure and deformation testing of carbide-graphite composites for fuel element supports are outlined, as is the procedure for fabricating tungsten-thoria heat shields for these reactors. Details are given for production of uranium carbide-zirconium carbide solid-solution powder and fabrication of this powder and molybdenum uranium oxide powder into fuel pins for thermionic reactors. Methods and details are given for spheroidization of lithium deuteride to be used as laser fusion targets and for quality upgrading and characterization of micron-size balloons for that use

  6. Study of boron carbide evolution under neutron irradiation; Contribution a l'etude de l'evolution du carbure de bore sous irradiation neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Simeone, D. [CEA/Saclay, Dept. de Mecanique et de Technologie (DMT), 91 - Gif-sur-Yvette (France)]|[Universite Blaise Pascal, Clermont-Ferrand II, (CNRS), 63 - Aubiere (France)

    1999-07-01

    Owing to its high neutron efficiency, boron carbide (B{sub 4}C) is used as a neutron absorber in control rods of nuclear plants. Its behaviour under irradiation has been extensively studied for many years. It now seems clear that brittleness of the material induced by the {sup 10}B(n,{alpha}){sup 7}Li capture reaction is due to penny shaped helium bubbles associated to a high strain field around them. However, no model explains the behaviour of the material under neutron irradiation. In order to build such a model, this work uses different techniques: nuclear microprobe X-ray diffraction profile analysis and Raman and Nuclear Magnetic Resonance Spectroscopy to present an evolution model of B{sub 4}C under neutron irradiation. The use of nuclear reactions produced by a nuclear microprobe such as the {sup 7}Li(p,p'{gamma}){sup 7}Li reaction, allows to measure lithium profile in B{sub 4}C pellets irradiated either in Pressurised Water Reactors or in Fast Breeder Reactors. Examining such profiles enables us to describe the migration of lithium atoms out of B{sub 4}C materials under neutron irradiation. The analysis of X-ray diffraction profiles of irradiated B{sub 4}C samples allows us to quantify the concentrations of helium bubbles as well as the strain fields around such bubbles.Furthermore Raman spectroscopy studies of different B{sub 4}C samples lead us to propose that under neutron irradiation. the CBC linear chain disappears. Such a vanishing of this CBC chain. validated by NMR analysis, may explain the penny shaped of helium bubbles inside irradiated B{sub 4}C. (author)

  7. Electrochemical oxidation of nitrogen-heterocyclic compounds at boron-doped diamond electrode.

    Science.gov (United States)

    Xing, Xuan; Zhu, Xiuping; Li, Hongna; Jiang, Yi; Ni, Jinren

    2012-01-01

    Nitrogen-heterocyclic compounds (NHCs) are toxic and bio-refractory contaminants widely spread in environment. This study investigated electrochemical degradation of NHCs at boron-doped diamond (BDD) anode with particular attention to the effect of different number and position of nitrogen atoms in molecular structure. Five classical NHCs with similar structures including indole (ID), quinoline (QL), isoquinoline (IQL), benzotriazole (BT) and benzimidazole (BM) were selected as the target compounds. Results of bulk electrolysis showed that degradation of all NHCs was fit to a pseudo first-order equation. The five compounds were degraded with the following sequence: ID>QL>IQL>BT>BM in terms of their rates of oxidation. Quantum chemical calculation was combined with experimental results to describe the degradation character of NHCs at BDD anode. A linear relationship between degradation rate and delocalization energy was observed, which demonstrated that electronic charge was redistributed through the conjugation system and accumulated at the active sites under the attack of hydroxyl radicals produced at BDD anode. Moreover, atom charge was calculated by semi empirical PM3 method and active sites of NHCs were identified respectively. Analysis of intermediates by GC-MS showed agreement with calculation results. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  9. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Wang N

    2017-08-01

    Full Text Available Ning Wang,1 Hui Wang,2 Chengchun Tang,3 Shijun Lei,1 Wanqing Shen,1 Cong Wang,1 Guobin Wang,4 Zheng Wang,1,4 Lin Wang1,5 1Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, 2Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 3Boron Nitride Research Center, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 4Department of Gastrointestinal Surgery, 5Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China Abstract: Boron nitride (BN nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials – BN nanospheres (BNNSs and highly water-soluble BN nanomaterial (named BN-800-2 – we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL-1 and 10 µg·mL-1, respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1, SOD2, SOD3, MEK1, and PMK1, might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL-1, BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material. Keywords: boron nitride nanomaterials, Caenorhabditis elegans, nanotoxicology

  10. Aspects of the chemistry of boron

    International Nuclear Information System (INIS)

    Moellinger, H.

    1976-01-01

    Crystal phases of elementary boron are reviewed as well as boron-sulphur, boron-selenum, boron-tellurium, and boron-nitrogen compounds, carboranes, and boron-carbohydrate complexes. A boron cadastre of rivers and lakes serves to illustrate the role of boron in environmental protection. Technically relevant boron compounds and their uses are mentioned. (orig.) 891 HK/orig. 892 MB [de

  11. An electrochemical process for the recycling of tungsten carbide scrap

    International Nuclear Information System (INIS)

    Johns, M.W.

    1984-01-01

    An account is given of the development of a number of designs for electrochemical cells, and the subsequent construction and operation of a vibrating-plate cell capable of oxidizing 15 kilograms of tungsten carbide a day to a crude tungstic acid precipitate, with similtaneous recovery of cobalt metal on the cathode. The effects on the process of the reagent concentration, temperature, current density, and cathode material are discussed

  12. Effects of superfine refractory carbide additives on microstructure and mechanical properties of TiB2–TiC+Al2O3 composite ceramic cutting tool materials

    International Nuclear Information System (INIS)

    Zou, Bin; Ji, Wenbin; Huang, Chuanzhen; Wang, Jun; Li, Shasha; Xu, Kaitao

    2014-01-01

    Highlights: • The superfine carbides determined the mechanical properties of composites. • Superfine HfC or TaC caused some oxide impurities in composites. • Superfine VC or NbC refined and homogenized the microstructure. • Failure of composites containing HfC or TaC was produced by larger grains. • Composite containing VC exhibited more bridging and transcrystalline failure. -- Abstract: A study to increase the mechanical properties of TiB 2 –TiC+Al 2 O 3 composite ceramic cutting tool material by using superfine refractory carbide additives is presented. Four superfine refractory carbides are considered to investigate their effects on the phase composition, element distribution, grain size, fracture surface, crack propagation of the metal ceramic. The physicochemical properties of superfine carbides, such as chemical activities and atom radius, were found to have the significant effects on the microstructure and mechanical properties of the metal ceramic. Hafnium carbide (HfC) and Tantalum carbide (TaC) reduced the mechanical properties of the metal ceramic because of their poor solubility with the Ni binder phase and the formation of oxides. The mechanical properties of the metal ceramic were increased by the addition of superfine niobium carbide (NbC) and vanadium carbide (VC), and their optimum values were a flexural strength of 1100 ± 62 MPa, fracture toughness of 8.5 ± 0.8 MPa.m1/2 and hardness of 21.53 ± 0.36 GPa, respectively, when 3.2 wt% superfine VC was used

  13. Investigations on photoelectrochemical performance of boron doped ZnO nanorods synthesized by facile hydrothermal technique

    Science.gov (United States)

    Sharma, Akash; Chakraborty, Mohua; Thangavel, R.

    2018-05-01

    Undoped and 10% Boron (B)-doped Zinc Oxide nanorods (ZnO NRs) on Tin doped Indium Oxide (ITO) coated glass substrates were synthesized using facile sol-gel, spin coating and hydrothermal method. The impact of adding Boron on the structural, optical properties, surface morphology and photoelectrochemical (PEC) performances of the ZnO NRs have been investigated. The XRD pattern confirmed the formation of pure hexagonal phase with space group P63mc (186). The same can also be clearly observed form the FESEM images. The UV-Vis study shows the narrowing in band gap from 3.22 eV to 3.19 eV with incorporation of Boron in ZnO matrix. The B-doped ZnO NRs sample shows an enhanced photocurrent density of 1.31 mA/cm2 at 0.5 V (vs. Ag/AgCl), which is more than 171% enhancement compared to bare ZnO NRs (0.483 mA/cm2) in 0.1 M Na2SO4 aqueous solution. The results clearly indicates that the boron doped ZnO NRs can be used as an efficient photoelectrode material for photoelectrochemical cell.

  14. Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature.

    Science.gov (United States)

    Deng, Changjian; Lau, Miu Lun; Barkholtz, Heather M; Xu, Haiping; Parrish, Riley; Xu, Meiyue Olivia; Xu, Tao; Liu, Yuzi; Wang, Hao; Connell, Justin G; Smith, Kassiopeia A; Xiong, Hui

    2017-08-03

    We report an amorphous boron nanorod anode material for lithium-ion batteries prepared through smelting non-toxic boron oxide in liquid lithium. Boron in theory can provide capacity as high as 3099 mA h g -1 by alloying with Li to form B 4 Li 5 . However, experimental studies of the boron anode have been rarely reported for room temperature lithium-ion batteries. Among the reported studies the electrochemical activity and cycling performance of the bulk crystalline boron anode material are poor at room temperature. In this work, we utilized an amorphous nanostructured one-dimensional (1D) boron material aiming at improving the electrochemical reactivity between boron and lithium ions at room temperature. The amorphous boron nanorod anode exhibited, at room temperature, a reversible capacity of 170 mA h g -1 at a current rate of 10 mA g -1 between 0.01 and 2 V. The anode also demonstrated good rate capability and cycling stability. The lithium storage mechanism was investigated by both sweep voltammetry measurements and galvanostatic intermittent titration techniques (GITTs). The sweep voltammetric analysis suggested that the contributions from lithium ion diffusion into boron and the capacitive process to the overall lithium charge storage are 57% and 43%, respectively. The results from GITT indicated that the discharge capacity at higher potentials (>∼0.2 V vs. Li/Li + ) could be ascribed to a capacitive process and at lower potentials (ions and the amorphous boron nanorod. This work provides new insights into designing nanostructured boron materials for lithium-ion batteries.

  15. Role of alloying elements and carbides in the chlorine-induced corrosion of steels and alloys

    Directory of Open Access Journals (Sweden)

    Hans Jürgen Grabke

    2004-03-01

    Full Text Available The high temperature corrosion of steels and Ni-base alloys in oxidizing and chloridizing environments is of practical interest in relation to problems in waste incineration plants and power plants using Cl containing fuels. The behaviour of the most important alloying elements Fe, Cr, Ni, Mo, Mn, Si, Al upon corrosion in an oxidizing and chloridizing atmosphere was elucidated: the reactions and kinetics can be largely understood on the base of thermodynamic data, i.e. free energy of chloride formation, vapor pressure of the chlorides and oxygen pressure pO2 needed for the conversion chlorides -> oxides. The mechanism is described by 'active oxidation', comprising inward penetration of chlorine into the scale, formation of chlorides at the oxide/metal interface, evaporation of the chlorides and conversion of the evaporating chlorides into oxides, which occurs in more or less distance from the surface (depending on pO2. This process leads to loose, fragile, multilayered oxides which are unprotective (therefore: active oxidation. Fe and Cr are rapidly transferred into such scale, Ni and Mo are relatively resistant. In many cases, the grain boundaries of the materials are strongly attacked, this is due to a susceptibility of chromium carbides to chloridation. In contrast the carbides Mo2C, TiC and NbC are less attacked than the matrix. Alloys on the basis Fe-Cr-Si proved to be rather resistant, and the alloying elements Ni and Mo clearly retard the attack in an oxidizing and chloridizing environment.

  16. Synthesis and characterization of boron trifluoride (B F[sub 3]). Sintese e caracterizacao de trifluoreto de boro (BF[sub 3])

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, E T.R.; Umeda, K; Echternacht, M V; Silva, E.F. da.

    1994-08-01

    High purity boron trifluoride (B F[sub 3]) has been prepared from reaction of ammonium fluorborate and boron oxide in concentrated sulfuric acid. Fluorborate was synthesized by reaction of ammonium bi fluoride and boric acid produced from enrichment plant. (author).

  17. The influence of boron dopant on the electrochemical properties of graphene as an electrode material and a support for Pt catalysts

    International Nuclear Information System (INIS)

    Bo, Xiangjie; Li, Mian; Han, Ce; Guo, Liping

    2013-01-01

    Highlights: •More defective sites in graphene after the doping of boron atoms. •Fine dispersion of Pt nanoparticles supported on boron-doped graphene. •Low electron transfer resistance at boron-doped graphene. •High performance of boron-doped graphene as an electrode material or a support for Pt catalysts. -- Abstract: Boron-doped graphene (BGR) is prepared by thermal annealing of graphene oxide (GO) in the presence of boric acid. More defective sites are introduced into GR accompanied by the doping of boron. Low electron transfer resistance towards redox probe is observed at BGR. The BGR modified electrode can effectively distinguish the anodic peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA). The defective sites of BGR can also act as anchoring sites for the deposition of Pt nanoparticles. When used as a support for Pt electrocatalysts, Pt nanoparticles with an average diameter of 3.2 nm are deposited on BGR. The doping of boron into GR facilitates the dispersion of Pt nanoparticles and increases the utilization efficiency of Pt nanoparticles. The Pt/BGR exhibits significant catalytic activity towards the oxidation of methanol. The results demonstrate that BGR is a good support for Pt catalysts or an electrode material compared with the undoped GR

  18. A Computational-Experimental Study of Plasma Processing of Carbides at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, Arturo [Univ. of Texas, El Paso, TX (United States); Kumar, Vinod [Univ. of Texas, El Paso, TX (United States)

    2016-02-01

    The effects of plasma on carbides were computationally investigated for the ultimate development of adherent, dense scales such as Al2O3-TiO2 systems toward oxidation resistance at 1873 K. An alumina scale forms on the carbide because of the significant stability of Al2O3 as the outer scale adjacent to the gas phase compared to rutile, though TiO and Ti2O3 may form as components of an inner layer of a complicated scale. A sequence of surface reactions starting with the adsorption of oxygen on the surface was applied to experimental data from Donnelly’s research group who reported the adsorption of O2 in a plasma atmosphere as a function of power. In addition to the adsorbed oxygen (Oad) as the rate determining step, it controlled the cascading reaction sequence of the adsorbed species of AlO, AlO2 and AlO3, as indicated in the present study. The rate of oxygen adsorption also depends on the ratio of the final to initial adsorbed oxygen as a function the oxygen potential. In a secondary research thrust, Ti3AlC was synthesized and subsequently oxidized. A 39Ti-14Al-47TiC (in wt%) mixture was equilibrated by using a pseudo-isopiestic technique to form ultimately an aggregate of Ti3AlC, Ti2AlC and TiC phases. The aggregate was primarily composed of Ti3AlC with minor amounts of Ti2AlC and TiC, as determined by an X-ray diffraction analysis. The Ti3AlC/Ti2AlC/TiC aggregate was subsequently oxidized at 1873 K to form a scale composed of an outer layer of Al2O3-TiO2-Al2TiO5 with an inner layer consisting of TiO-Al2O3- Al4CO3. The measured scale thickness grew according to Wagner’s parabolic growth rate, which estimates an effective diffusion coefficient of 6 (10)-8 cm2/s. The scale

  19. Synthesis and characterization of group V metal carbide and nitride catalysts

    Science.gov (United States)

    Kwon, Heock-Hoi

    1998-11-01

    Group V transition metal carbides and nitrides were prepared via the temperature programmed reaction (TPR) of corresponding oxides with NHsb3 or a CHsb4/Hsb2 mixture. Except for the tantalum compounds, phase-pure carbides and nitrides were prepared. The vanadium carbides and nitrides were the most active and selective catalysts. Therefore the principal focus of the research was the preparation, characterization, and evaluation of high surface area vanadium nitride catalysts. A series of vanadium nitrides with surface areas up to 60 msp2/g was prepared. Thermal gravimetric analysis coupled with x-ray diffraction and scanning electron microscopy indicated that the solid-state reaction proceeded by the sequential reduction of Vsb2Osb5 to VOsb{0.9} and concluded with the topotactic substitution of nitrogen for oxygen in VOsb{0.9}. The transformation of Vsb2Osb5 to VN was pseudomorphic. An experimental design was executed to determine effects of the heating rates and space velocities on the VN microstructures. The heating rates had minor effects on the surface areas and pore size distributions; however, increasing the space velocity significantly increased the surface area. The materials were mostly mesoporous. Oxygen chemisorption on the vanadium nitrides scaled linearly with the surface area. The corresponding O/Vsbsurface ratio was ≈0.6. The vanadium nitrides were active for butane activation and pyridine hydrodenitrogenation. During butane activation, their selectivities towards dehydrogenation products were as high as 98%. The major product in pyridine hydrodenitrogenation was pentane. The reaction rates increased almost linearly with the surface area suggesting that these reactions were structure insensitive. The vanadium nitrides were not active for crotonaldehyde hydrogenation; however, they catalyzed an interesting ring formation reaction that produced methylbenzaldehyde and xylene from crotonaldehyde. A new method was demonstrated for the production of very

  20. Characterization of Nanometric-Sized Carbides Formed During Tempering of Carbide-Steel Cermets

    Directory of Open Access Journals (Sweden)

    Matus K.

    2016-06-01

    Full Text Available The aim of this article of this paper is to present issues related to characterization of nanometric-sized carbides, nitrides and/or carbonitrides formed during tempering of carbide-steel cermets. Closer examination of those materials is important because of hardness growth of carbide-steel cermet after tempering. The results obtained during research show that the upswing of hardness is significantly higher than for high-speed steels. Another interesting fact is the displacement of secondary hardness effect observed for this material to a higher tempering temperature range. Determined influence of the atmosphere in the sintering process on precipitations formed during tempering of carbide-steel cermets. So far examination of carbidesteel cermet produced by powder injection moulding was carried out mainly in the scanning electron microscope. A proper description of nanosized particles is both important and difficult as achievements of nanoscience and nanotechnology confirm the significant influence of nanocrystalline particles on material properties even if its mass fraction is undetectable by standard methods. The following research studies have been carried out using transmission electron microscopy, mainly selected area electron diffraction and energy dispersive spectroscopy. The obtained results and computer simulations comparison were made.