WorldWideScience

Sample records for oxidative stress reduction

  1. Pathogenesis of Chronic Hyperglycemia: From Reductive Stress to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Liang-Jun Yan

    2014-01-01

    Full Text Available Chronic overnutrition creates chronic hyperglycemia that can gradually induce insulin resistance and insulin secretion impairment. These disorders, if not intervened, will eventually be followed by appearance of frank diabetes. The mechanisms of this chronic pathogenic process are complex but have been suggested to involve production of reactive oxygen species (ROS and oxidative stress. In this review, I highlight evidence that reductive stress imposed by overflux of NADH through the mitochondrial electron transport chain is the source of oxidative stress, which is based on establishments that more NADH recycling by mitochondrial complex I leads to more electron leakage and thus more ROS production. The elevated levels of both NADH and ROS can inhibit and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH, respectively, resulting in blockage of the glycolytic pathway and accumulation of glycerol 3-phospate and its prior metabolites along the pathway. This accumulation then initiates all those alternative glucose metabolic pathways such as the polyol pathway and the advanced glycation pathways that otherwise are minor and insignificant under euglycemic conditions. Importantly, all these alternative pathways lead to ROS production, thus aggravating cellular oxidative stress. Therefore, reductive stress followed by oxidative stress comprises a major mechanism of hyperglycemia-induced metabolic syndrome.

  2. Complete relaxation of residual stresses during reduction of solid oxide fuel cells

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Chatzichristodoulou, Christodoulos; Hendriksen, Peter Vang

    2015-01-01

    reduce significantly over minutes. In this work the stresses are measured in-situ before and after the reduction by use of XRD. The phenomenon of accelerated creep has to be considered both in the production of stacks and in the analysis of the stress field in a stack based on anode supported SOFCs.......To asses the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. This work reports further details on a newly discovered creep phenomenon......, accelerated creep, taking place during the reduction of the anode. This relaxes stresses at a much higher rate (~×104) than creep during operation. The phenomenon has previously been studied by simultaneous loading and reduction. With the recorded high creep rates, the stresses at the time of reduction should...

  3. Evolution of thermal stress and failure probability during reduction and re-oxidation of solid oxide fuel cell

    Science.gov (United States)

    Wang, Yu; Jiang, Wenchun; Luo, Yun; Zhang, Yucai; Tu, Shan-Tung

    2017-12-01

    The reduction and re-oxidation of anode have significant effects on the integrity of the solid oxide fuel cell (SOFC) sealed by the glass-ceramic (GC). The mechanical failure is mainly controlled by the stress distribution. Therefore, a three dimensional model of SOFC is established to investigate the stress evolution during the reduction and re-oxidation by finite element method (FEM) in this paper, and the failure probability is calculated using the Weibull method. The results demonstrate that the reduction of anode can decrease the thermal stresses and reduce the failure probability due to the volumetric contraction and porosity increasing. The re-oxidation can result in a remarkable increase of the thermal stresses, and the failure probabilities of anode, cathode, electrolyte and GC all increase to 1, which is mainly due to the large linear strain rather than the porosity decreasing. The cathode and electrolyte fail as soon as the linear strains are about 0.03% and 0.07%. Therefore, the re-oxidation should be controlled to ensure the integrity, and a lower re-oxidation temperature can decrease the stress and failure probability.

  4. Effects of Muscle-Specific Oxidative Stress on Cytochrome c Release and Oxidation-Reduction Potential Properties.

    Science.gov (United States)

    Ke, Yiling; Mitacek, Rachel M; Abraham, Anupam; Mafi, Gretchen G; VanOverbeke, Deborah L; DeSilva, Udaya; Ramanathan, Ranjith

    2017-09-06

    Mitochondria play a significant role in beef color. However, the role of oxidative stress in cytochrome c release and mitochondrial degradation is not clear. The objective was to determine the effects of display time on cytochrome c content and oxidation-reduction potential (ORP) of beef longissimus lumborum (LL) and psoas major (PM) muscles. PM discolored by day 3 compared with LL. On day 0, mitochondrial content and mitochondrial oxygen consumption were greater in PM than LL. However, mitochondrial content and oxygen consumption were lower (P stress can affect cytochrome c release and ORP changes.

  5. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2012-01-01

    Full Text Available The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others. There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others, a series of disorders is developed that are jointly called „oxidative stress.“ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

  6. Reductive Stress in Inflammation-Associated Diseases and the Pro-Oxidant Effect of Antioxidant Agents

    Directory of Open Access Journals (Sweden)

    Israel Pérez-Torres

    2017-10-01

    Full Text Available Abstract: Reductive stress (RS is the counterpart oxidative stress (OS, and can occur in response to conditions that shift the redox balance of important biological redox couples, such as the NAD+/NADH, NADP+/NADPH, and GSH/GSSG, to a more reducing state. Overexpression of antioxidant enzymatic systems leads to excess reducing equivalents that can deplete reactive oxidative species, driving the cells to RS. A feedback regulation is established in which chronic RS induces OS, which in turn, stimulates again RS. Excess reducing equivalents may regulate cellular signaling pathways, modify transcriptional activity, induce alterations in the formation of disulfide bonds in proteins, reduce mitochondrial function, decrease cellular metabolism, and thus, contribute to the development of some diseases in which NF-κB, a redox-sensitive transcription factor, participates. Here, we described the diseases in which an inflammatory condition is associated to RS, and where delayed folding, disordered transport, failed oxidation, and aggregation are found. Some of these diseases are aggregation protein cardiomyopathy, hypertrophic cardiomyopathy, muscular dystrophy, pulmonary hypertension, rheumatoid arthritis, Alzheimer’s disease, and metabolic syndrome, among others. Moreover, chronic consumption of antioxidant supplements, such as vitamins and/or flavonoids, may have pro-oxidant effects that may alter the redox cellular equilibrium and contribute to RS, even diminishing life expectancy.

  7. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Osredkar Joško

    2012-05-01

    Full Text Available The human organism is exposed to the influence of various forms of stress, either physical, psychological or chemical, which all have in common that they may adversely affect our body. A certain amount of stress is always present and somehow directs, promotes or inhibits the functioning of the human body. Unfortunately, we are now too many and too often exposed to excessive stress, which certainly has adverse consequences. This is especially true for a particular type of stress, called oxidative stress. All aerobic organisms are exposed to this type of stress because they produce energy by using oxygen. For this type of stress you could say that it is rather imperceptibly involved in our lives, as it becomes apparent only at the outbreak of certain diseases. Today we are well aware of the adverse impact of radicals, whose surplus is the main cause of oxidative stress. However, the key problem remains the detection of oxidative stress, which would allow us to undertake timely action and prevent outbreak of many diseases of our time. There are many factors that promote oxidative stress, among them are certainly a fast lifestyle and environmental pollution. The increase in oxidative stress can also trigger intense physical activity that is directly associated with an increased oxygen consumption and the resulting formation of free radicals. Considering generally positive attitude to physical activity, this fact may seem at first glance contradictory, but the finding has been confimed by several studies in active athletes. Training of a top athlete daily demands great physical effort, which is also reflected in the oxidative state of the organism. However, it should be noted that the top athletes in comparison with normal individuals have a different defense system, which can counteract the negative effects of oxidative stress. Quite the opposite is true for irregular or excessive physical activity to which the body is not adapted.

  8. Effects of Adiponectin Including Reduction of Androstenedione Secretion and Ovarian Oxidative Stress Parameters In Vivo.

    Directory of Open Access Journals (Sweden)

    Fabio V Comim

    Full Text Available Adiponectin is the most abundantly produced human adipokine with anti-inflammatory, anti-oxidative, and insulin-sensitizing properties. Evidence from in vitro studies has indicated that adiponectin has a potential role in reproduction because it reduces the production of androstenedione in bovine theca cells in vitro. However, this effect on androgen production has not yet been observed in vivo. The current study evaluated the effect of adiponectin on androstenedione secretion and oxidative stress parameters in a rodent model. Seven-week-old female Balb/c mice (n = 33, previously treated with equine gonadotropin chorionic, were assigned to one of four different treatments: Group 1, control (phosphate-buffered saline; Group 2, adiponectin 0.1 μg/mL; Group 3, adiponectin 1.0 μg/mL; Group 4, adiponectin 5.0 μg/mL. After 24 h, all animals were euthanized and androstenedione levels were measured in the serum while oxidative stress markers were quantified in whole ovary tissue. Female mice treated with adiponectin exhibited a significant reduction (about 60% in serum androstenedione levels in comparison to controls. Androstenedione levels decreased from 0.78 ± 0.4 ng/mL (mean ± SD in controls to 0.28 ± 0.06 ng/mL after adiponectin (5 μg/mL treatment (P = 0.01. This change in androgen secretion after 24 hours of treatment was associated with a significant reduction in the expression of CYP11A1 and STAR (but not CYP17A1. In addition, ovarian AOPP product levels, a direct product of protein oxidation, decreased significantly in adiponectin-treated mice (5 μg/mL; AOPP (mean ± SD decreased to 4.3 ± 2.1 μmol/L in comparison with that of the controls (11.5 ± 1.7 μmol/L; P = 0.0003. Our results demonstrated for the first time that acute treatment with adiponectin reduced the levels of a direct oxidative stress marker in the ovary as well as decreased androstenedione serum levels in vivo after 24 h.

  9. Preconditioning with Azadirachta indica ameliorates cardiorenal dysfunction through reduction in oxidative stress and extracellular signal regulated protein kinase signalling

    Directory of Open Access Journals (Sweden)

    Temidayo Olutayo Omóbòwálé

    2016-10-01

    Conclusions: Together, A. indica and vitamin C prevented IRI-induced cardiorenal dysfunction via reduction in oxidative stress, improvement in antioxidant defence system and increase in the ERK1/2 expressions. Therefore, A. indica can be a useful chemopreventive agent in the prevention and treatment of conditions associated with intestinal ischaemia-reperfusion injury.

  10. Effect of stress on NiO reduction in solid oxide fuel cells: A new application of energy-resolved neutron imaging

    DEFF Research Database (Denmark)

    Makowska, Malgorzata; Strobl, Markus; Lauridsen, Erik Mejdal

    2015-01-01

    Recently, two new phenomena linking stress field and reduction rates in anode-supported solid oxide fuel cells (SOFCs) have been demonstrated, so-called accelerated creep during reduction and reduction rate enhancement and nucleation due to stress (Frandsen et al., 2014). These complex phenomena...

  11. Resveratrol Prevents Cardiovascular Complications in the SHR/STZ Rat by Reductions in Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Rebecca K. Vella

    2015-01-01

    Full Text Available The cardioprotective effects of resveratrol are well established in animal models of metabolic disease but are yet to be investigated in a combined model of hypertension and diabetes. This study investigated the ability of resveratrol’s antioxidant and anti-inflammatory effects to prevent cardiovascular complications in the spontaneously hypertensive streptozotocin-induced diabetic rat. Diabetes was induced in eight-week-old male spontaneously hypertensive rats via a single intravenous injection of streptozotocin. Following this, resveratrol was administered orally for an eight-week period until the animals were sixteen weeks of age. Upon completion of the treatment regime assessments of oxidative stress, lipid peroxidation, inflammation, and cardiovascular function were made. Resveratrol administration to hypertensive-diabetic animals did not impact upon blood glucose or haemodynamics but significantly reduced oxidative stress, lipid peroxidation, and inflammatory cytokines. Reductions in systemic levels of oxidative stress and inflammation conferred improvements in vascular reactivity and left ventricular pump function and electrophysiology. This study demonstrates that resveratrol administration to hypertensive diabetic animals can elicit cardioprotective properties via antioxidant and anti-inflammatory effects. The observed preservation of cardiovascular function was independent of changes in blood glucose concentration and haemodynamics, suggesting that oxidative stress and inflammation are key components within the pathological cascade associated with hypertension and diabetes.

  12. Reduction of the Oxidative Stress Status Using Steviol Glycosides in a Fish Model (Cyprinus carpio

    Directory of Open Access Journals (Sweden)

    Livier Mireya Sánchez-Aceves

    2017-01-01

    Full Text Available Steviol glycosides are sweetening compounds from the Stevia rebaudiana Bertoni plant. This product is considered safe for human consumption and was approved as a food additive by the Food and Drugs Administration (FDA and European Food Safety Authority (EFSA. Its effects on the ecosystem have not been studied in depth; therefore, it is necessary to carry out ecotoxicological studies in organisms such as Cyprinus carpio. The present study aimed to evaluate the antioxidant activity by SGs on diverse tissues in C. carpio using oxidative stress (OS biomarkers. To test the antioxidant activity, carps were exposed to four systems: (1 SGs free control, (2 CCl4 0.5 mL/kg, (3 SGs 1 g/L, and (4 CCl4 0.5 mL/kg + SGs 1 g/L at 96 h. The following biomarkers were analyzed: lipoperoxidation (LPX, hydroperoxide content (HPC, and protein carbonyl content (PCC, as well as antioxidant activity of superoxide dismutase (SOD and catalase (CAT. It was found that both (3 and 4 systems’ exposure decreases LPX, CHP, PCC, SOD, and CAT with respect to the CCl4 system. The results of this study demonstrate that the concentrations of SGs used are not capable of generating oxidative stress and, on the contrary, would appear to induce an antioxidant effect.

  13. Reduction of the Oxidative Stress Status Using Steviol Glycosides in a Fish Model (Cyprinus carpio).

    Science.gov (United States)

    Sánchez-Aceves, Livier Mireya; Dublán-García, Octavio; López-Martínez, Leticia-Xochitl; Novoa-Luna, Karen Adriana; Islas-Flores, Hariz; Galar-Martínez, Marcela; García-Medina, Sandra; Hernández-Navarro, María Dolores; Gómez-Oliván, Leobardo Manuel

    2017-01-01

    Steviol glycosides are sweetening compounds from the Stevia rebaudiana Bertoni plant. This product is considered safe for human consumption and was approved as a food additive by the Food and Drugs Administration (FDA) and European Food Safety Authority (EFSA). Its effects on the ecosystem have not been studied in depth; therefore, it is necessary to carry out ecotoxicological studies in organisms such as Cyprinus carpio . The present study aimed to evaluate the antioxidant activity by SGs on diverse tissues in C. carpio using oxidative stress (OS) biomarkers. To test the antioxidant activity, carps were exposed to four systems: (1) SGs free control, (2) CCl 4 0.5 mL/kg, (3) SGs 1 g/L, and (4) CCl 4 0.5 mL/kg + SGs 1 g/L at 96 h. The following biomarkers were analyzed: lipoperoxidation (LPX), hydroperoxide content (HPC), and protein carbonyl content (PCC), as well as antioxidant activity of superoxide dismutase (SOD) and catalase (CAT). It was found that both (3 and 4) systems' exposure decreases LPX, CHP, PCC, SOD, and CAT with respect to the CCl 4 system. The results of this study demonstrate that the concentrations of SGs used are not capable of generating oxidative stress and, on the contrary, would appear to induce an antioxidant effect.

  14. Inhibition of macrophage oxidative stress prevents the reduction of ABCA-1 transporter induced by advanced glycated albumin.

    Science.gov (United States)

    de Souza Pinto, Raphael; Castilho, Gabriela; Paim, Bruno Alves; Machado-Lima, Adriana; Inada, Natalia M; Nakandakare, Edna Regina; Vercesi, Aníbal Eugênio; Passarelli, Marisa

    2012-05-01

    We investigated the role of aminoguanidine and benfotiamine on the inhibition of reactive oxygen species (ROS) generation in macrophages induced by advanced glycated albumin (AGE-albumin) and its relationship with cell cholesterol homeostasis, emphasizing the expression of the ATP binding cassette transporter A-1 (ABCA-1). AGE-albumin was made by incubating fatty acid-free albumin with 10 mM glycolaldehyde. ROS production and ABCA-1 protein level were determined by flow cytometry in J774 macrophages treated along time with control (C) or AGE-albumin alone or in the presence of aminoguanidine or benfotiamine. Mitochondrial function was evaluated by oxygraphy. Compared to C-albumin, AGE-albumin increased ROS production in macrophages, which was ascribed to the activities of NADPH oxidase and of the mitochondrial system. Mitochondrial respiratory chain activity was reduced in cells incubated with AGE-albumin. ROS generation along time was associated with the reduction in macrophage ABCA-1 protein level. Aminoguanidine prevented ROS elevation and restored the ABCA-1 content in macrophages; on the other hand, benfotiamine that promoted a lesser reduction in ROS generation was not able to restore ABCA-1 levels. Inhibition of oxidative stress induced by AGE-albumin prevents disturbances in reverse cholesterol transport by curbing the reduction of ABCA-1 elicited by advanced glycation in macrophages and therefore may contribute to the prevention of atherosclerosis in diabetes mellitus.

  15. Oxidative Stress in BPH

    Directory of Open Access Journals (Sweden)

    Murat Savas

    2009-01-01

    The present study has shown that there were not relationship between potency of oxidative stress and BPH. Further well designed studies should be planned to find out whether the oxidative stress-related parameters play role in BPH as an interesting pathology in regard of the etiopathogenesis. Keywords: benign prostatic hyperplasia, oxidative stress, prostate

  16. Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Varsha Shukla

    2011-01-01

    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  17. N-acetylcysteine possesses antidepressant-like activity through reduction of oxidative stress: behavioral and biochemical analyses in rats.

    Science.gov (United States)

    Smaga, Irena; Pomierny, Bartosz; Krzyżanowska, Weronika; Pomierny-Chamioło, Lucyna; Miszkiel, Joanna; Niedzielska, Ewa; Ogórka, Agata; Filip, Małgorzata

    2012-12-03

    The growing body of evidence implicates the significance of oxidative stress in the pathophysiology of depression. The aim of this paper was to examine N-acetylcysteine (NAC) - a putative precursor of the most important tissue antioxidant glutathione - in an animal model of depression and in ex vivo assays to detect oxidative stress parameters. Imipramine (IMI), a classical and clinically-approved antidepressant drug was also under investigation. Male Wistar rats which underwent either bulbectomy (BULB; removal of the olfactory bulbs) or sham surgery (SHAM; olfactory bulbs were left undestroyed) were treated acutely or repeatedly with NAC (50-100mg/kg, ip) or IMI (10mg/kg, ip). Following 10-daily injections with NAC or IMI or their solvents, or 9-daily injections with a corresponding solvent plus acute NAC or acute IMI forced swimming test on day 10, and locomotor activity were performed; immediately after behavioral tests animals were decapitated. Biochemical tests (the total antioxidant capacity - TAC and the superoxide dismutase activity - SOD) were performed on homogenates in several brain structures. In behavioral studies, chronic (but not acute) administration of NAC resulted in a dose-dependent reduction in the immobility time seen only in BULB rats while chronic IMI produced a significant decrease in this parameter in both SHAM and BULB animals. On the other hand, chronic administration of NAC and IMI resulted in a significant increase in cellular antioxidant mechanisms (SOD activity) that reversed the effects of BULB in the frontal cortex, hippocampus and striatum. Our study further supports the antidepressant-like activity of NAC and links its effect as well as IMI actions with the enhancement of brain SOD activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Mindfulness-Based Stress Reduction

    Science.gov (United States)

    ... R S T U V W X Y Z Mindfulness-Based Stress Reduction (MBSR) Information 6 Things You ... Disease and Dementia (12/20/13) Research Spotlights Mindfulness-Based Stress Reduction, Cognitive-Behavioral Therapy Shown To ...

  19. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress.

    Science.gov (United States)

    Yang, Ting; Zhang, Xing-Mei; Tarnawski, Laura; Peleli, Maria; Zhuge, Zhengbing; Terrando, Niccolo; Harris, Robert A; Olofsson, Peder S; Larsson, Erik; Persson, A Erik G; Lundberg, Jon O; Weitzberg, Eddie; Carlstrom, Mattias

    2017-10-01

    Ischemia-reperfusion (IR) injury involves complex pathological processes in which reduction of nitric oxide (NO) bioavailability is suggested as a key factor. Inorganic nitrate can form NO in vivo via NO synthase-independent pathways and may thus provide beneficial effects during IR. Herein we evaluated the effects of dietary nitrate supplementation in a renal IR model. Male mice (C57BL/6J) were fed nitrate-supplemented chow (1.0mmol/kg/day) or standard chow for two weeks prior to 30min ischemia and during the reperfusion period. Unilateral renal IR caused profound tubular and glomerular damage in the ischemic kidney. Renal function, assessed by plasma creatinine levels, glomerular filtration rate and renal plasma flow, was also impaired after IR. All these pathologies were significantly improved by nitrate. Mechanistically, nitrate treatment reduced renal superoxide generation, pro-inflammatory cytokines (IL-1β, IL-6 and IL-12 p70) and macrophage infiltration in the kidney. Moreover, nitrate reduced mRNA expression of pro-inflammatory cytokines and chemo attractors, while increasing anti-inflammatory cytokines in the injured kidney. In another cohort of mice, two weeks of nitrate supplementation lowered superoxide generation and IL-6 expression in bone marrow-derived macrophages. Our study demonstrates protective effect of dietary nitrate in renal IR injury that may be mediated via modulation of oxidative stress and inflammatory responses. These novel findings suggest that nitrate supplementation deserve further exploration as a potential treatment in patients at high risk of renal IR injury. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Reproduction is associated with a tissue-dependent reduction of oxidative stress in eusocial female Damaraland mole-rats (Fukomys damarensis.

    Directory of Open Access Journals (Sweden)

    Christina M Schmidt

    Full Text Available Oxidative stress has been implicated as both a physiological cost of reproduction and a driving force on an animal's lifespan. Since increased reproductive effort is generally linked with a reduction in survival, it has been proposed that oxidative stress may influence this relationship. Support for this hypothesis is inconsistent, but this may, in part, be due to the type of tissues that have been analyzed. In Damaraland mole-rats the sole reproducing female in the colony is also the longest lived. Therefore, if oxidative stress does impact the trade-off between reproduction and survival in general, this species may possess some form of enhanced defense. We assessed this relationship by comparing markers of oxidative damage (malondialdehyde, MDA; protein carbonyls, PC and antioxidants (total antioxidant capacity, TAC; superoxide dismutase, SOD in various tissues including plasma, erythrocytes, heart, liver, kidney and skeletal muscle between wild-caught reproductive and non-reproductive female Damaraland mole-rats. Reproductive females exhibited significantly lower levels of PC across all tissues, and lower levels of MDA in heart, kidney and liver relative to non-reproductive females. Levels of TAC and SOD did not differ significantly according to reproductive state. The reduction in oxidative damage in breeding females may be attributable to the unusual social structure of this species, as similar relationships have been observed between reproductive and non-reproductive eusocial insects.

  1. Temporal changes in cardiac oxidative stress, inflammation and remodeling induced by exercise in hypertension: Role for local angiotensin II reduction.

    Directory of Open Access Journals (Sweden)

    Sebastião D Silva

    Full Text Available Exercise training reduces renin-angiotensin system (RAS activation, decreases plasma and tissue oxidative stress and inflammation in hypertension. However, the temporal nature of these phenomena in response to exercise is unknown. We sought to determine in spontaneously hypertensive rats (SHR and age-matched WKY controls the weekly effects of training on blood pressure (BP, plasma and left ventricle (LV Ang II and Ang-(1-7 content (HPLC, LV oxidative stress (DHE staining, gene and protein expression (qPCR and WB of pro-inflammatory cytokines, antioxidant enzymes and their consequence on hypertension-induced cardiac remodeling. SHR and WKY were submitted to aerobic training (T or maintained sedentary (S for 8 weeks; measurements were made at weeks 0, 1, 2, 4 and 8. Hypertension-induced cardiac hypertrophy was accompanied by acute plasma Ang II increase with amplified responses during the late phase of LV hypertrophy. Similar pattern was observed for oxidative stress markers, TNF alpha and interleukin-1β, associated with cardiomyocytes' diameter enlargement and collagen deposition. SHR-T exhibited prompt and marked decrease in LV Ang II content (T1 vs T4 in WKY-T, normalized oxidative stress (T2, augmented antioxidant defense (T4 and reduced both collagen deposition and inflammatory profile (T8, without changing cardiomyocytes' diameter and LV hypertrophy. These changes were accompanied by decreased plasma Ang II content (T2-T4 and reduced BP (T8. SHR-T and WKY-T showed parallel increases in LV and plasma Ang-(1-7 content. Our data indicate that early training-induced downregulation of LV ACE-AngII-AT1 receptor axis is a crucial mechanism to reduce oxidative/pro-inflammatory profile and improve antioxidant defense in SHR-T, showing in addition this effect precedes plasma RAS deactivation.

  2. Reduction of blue tungsten oxide

    International Nuclear Information System (INIS)

    Wilken, T.; Wert, C.; Woodhouse, J.; Morcom, W.

    1975-01-01

    A significant portion of commercial tungsten is produced by hydrogen reduction of oxides. Although several modes of reduction are possible, hydrogen reduction is used where high purity tungsten is required and where the addition of other elements or compounds is desired for modification of the metal, as is done for filaments in the lamp industry. Although several investigations of the reduction of oxides have been reported (1 to 5), few principles have been developed which can aid in assessment of current commercial practice. The reduction process was examined under conditions approximating commercial practice. The specific objectives were to determine the effects of dopants, of water vapor in the reducing atmosphere, and of reduction temperature upon: (1) the rate of the reaction by which blue tungsten oxide is reduced to tungsten metal, (2) the intermediate oxides associated with reduction, and (3) the morphology of the resulting tungsten powder

  3. Influence of reductant and germanium concentration on the growth and stress development of germanium nanocrystals in silicon oxide matrix

    International Nuclear Information System (INIS)

    Chew, H G; Zheng, F; Choi, W K; Chim, W K; Foo, Y L; Fitzgerald, E A

    2007-01-01

    Germanium (Ge) nanocrystals have been synthesized by annealing co-sputtered SiO 2 -Ge samples in N 2 or forming gas (90% N 2 +10% H 2 ) at temperatures ranging from 700 to 1000 deg. C. We concluded that the annealing ambient, temperature and Ge concentration have a significant influence on the formation and evolution of the nanocrystals. We showed that a careful selective etching of the annealed samples in hydrofluoric acid solution enabled the embedded Ge nanocrystals to be liberated from the SiO 2 matrix. From the Raman results of the as-grown and the liberated nanocrystals, we established that the nanocrystals generally experienced compressive stress in the oxide matrix and the evolution of these stress states was intimately linked to the distribution, density, size and quality of the Ge nanocrystals

  4. Does oxidative stress shorten telomeres?

    NARCIS (Netherlands)

    Boonekamp, Jelle J.; Bauch, Christina; Mulder, Ellis; Verhulst, Simon

    Oxidative stress shortens telomeres in cell culture, but whether oxidative stress explains variation in telomere shortening in vivo at physiological oxidative stress levels is not well known. We therefore tested for correlations between six oxidative stress markers and telomere attrition in nestling

  5. Staphylococcal response to oxidative stress

    Directory of Open Access Journals (Sweden)

    Rosmarie eGaupp

    2012-03-01

    Full Text Available Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria’s interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.

  6. Schwann Cell-Mediated Preservation of Vision in Retinal Degenerative Diseases via the Reduction of Oxidative Stress: A Possible Mechanism.

    Science.gov (United States)

    Mahmoudzadeh, Raziyeh; Heidari-Keshel, Saeed; Lashay, Alireza

    2016-01-01

    After injury to the central nervous system (CNS), regeneration is often inadequate, except in the case of remyelination. This remyelination capacity of the CNS is a good example of a stem/precursor cell-mediated renewal process. Schwann cells have been found to act as remyelinating agents in the peripheral nervous system (PNS), but several studies have highlighted their potential role in remyelination in the CNS too. Schwann cells are able to protect and support retinal cells by secreting growth factors such as brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, and basic fibroblast growth factor. Retinal degenerative diseases can be highly debilitating, and they are a major concern in countries with an ageing populations. One of the leading causes of permanent loss of vision in the West is a retinal degenerative disease known as age-related macular degeneration (AMD). In the United States, nearly 1.75 million people over the age of 40 have advanced AMD, and it is estimated that this number will increase to approximately 3 million people by 2020. One of the most common pathways involved in the initiation and development of retinal diseases is the oxidative stress pathway. In patients with diabetes, Schwann cells have been shown to be able to secrete large amounts of antioxidant enzymes that protect the PNS from the oxidative stress that results from fluctuations in blood glucose levels. This antioxidant ability may be involved in the mechanism by which Schwann cells are able to promote reconstruction in the CNS, especially in individuals with retinal injuries and degenerative diseases.

  7. Activation of α-7 nicotinic acetylcholine receptor reduces ischemic stroke injury through reduction of pro-inflammatory macrophages and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Zhenying Han

    Full Text Available Activation of α-7 nicotinic acetylcholine receptor (α-7 nAchR has a neuro-protective effect on ischemic and hemorrhagic stroke. However, the underlying mechanism is not completely understood. We hypothesized that α-7 nAchR agonist protects brain injury after ischemic stroke through reduction of pro-inflammatory macrophages (M1 and oxidative stress. C57BL/6 mice were treated with PHA568487 (PHA, α-7 nAchR agonist, methyllycaconitine (MLA, nAchR antagonist, or saline immediately and 24 hours after permanent occlusion of the distal middle cerebral artery (pMCAO. Behavior test, lesion volume, CD68(+, M1 (CD11b(+/Iba1(+ and M2 (CD206/Iba1+ microglia/macrophages, and phosphorylated p65 component of NF-kB in microglia/macrophages were quantified using histological stained sections. The expression of M1 and M2 marker genes, anti-oxidant genes and nicotinamide adenine dinucleotide phosphate (NADPH oxidase were quantified using real-time RT-PCR. Compared to the saline-treated mice, PHA mice had fewer behavior deficits 3 and 7 days after pMCAO, and smaller lesion volume, fewer CD68(+ and M1 macrophages, and more M2 macrophages 3 and 14 days after pMCAO, whereas MLA's effects were mostly the opposite in several analyses. PHA increased anti-oxidant genes and NADPH oxidase expression associated with decreased phosphorylation of NF-kB p65 in microglia/macrophages. Thus, reduction of inflammatory response and oxidative stress play roles in α-7 nAchR neuro-protective effect.

  8. Reduction of oxidative stress by an ethanolic extract of leaves of Piper betle (Paan) Linn. decreased methotrexate-induced toxicity.

    Science.gov (United States)

    De, Soumita; Sen, Tuhinadri; Chatterjee, Mitali

    2015-11-01

    Methotrexate (MTX), a folate antagonist, is currently used as first line therapy for autoimmune diseases like rheumatoid arthritis and psoriasis, but its use is limited by the associated hepatotoxicity. As leaves of Piper betle, belonging to family Piperaceae, have antioxidant and anti-inflammatory properties, the present study was undertaken to investigate the potential of Piper betle leaf extract (PB) in attenuating MTX-induced hepatotoxicity. Rats pre-treated with PB (50 or 100 mg kg(-1) b.w., p.o.) were administered with a single dose of MTX (20 mg kg(-1), b.w., i.p.) and its hepatoprotective efficacy was compared with folic acid (1 mg kg(-1) b.w., i.p.), conventionally used to minimize MTX-induced toxicity. MTX-induced hepatotoxicity was confirmed by increased activities of marker enzymes, alanine transaminase, aspartate transaminase, and alkaline phosphatase which were remitted by pre-treatment with PB and corroborated with histopathology. Additionally, MTX-induced hepatic oxidative stress which included increased generation of reactive oxygen species, enhanced lipid peroxidation, depleted levels of glutathione and decreased activities of antioxidant enzymes was effectively mitigated by PB, indicative that its promising antioxidant-mediated hepatoprotective activity was worthy of future pharmacological consideration.

  9. Oxidative Stress in BPH.

    Science.gov (United States)

    Savas, M; Verit, A; Ciftci, H; Yeni, E; Aktan, E; Topal, U; Erel, O

    2009-01-01

    In the present study, we investigated the relationship between potency of oxidative stress and BPH and this may assist to contribute to the realistic explanation of the ethiopathogenesis of BPH. Seventy four newly diagnosed men with BPH (mean age: 54+/-11.2), who had not undergone any previous treatment for BPH, and 62 healthy volunteers (mean age: 55+/-14) were enrolled in the present study. To determine the antioxidative status of plasma, total antioxidant capacity (TAC) was calculated, and to determine the oxidative status of plasma (TOS) total peroxide levels were measured. The ratio of TAC to total peroxide was accepted as an indicator of oxidative stress (OSI). Data are presented as mean SD +/- unless specified. Student t-test and correlation analyses were used to evaluate the statistical significance differences in the median values recorded for all parameters between BPH and control group. Plasma TAC TOS were found in patients and controls (1.70 +/- 0.32, 1.68 +/- 0.19 micromol Trolox Equiv./L), (12.48 +/- 1.98, 12.40 +/- 1.14 micromol / L) respectively. OSI was calculated as 7.57 +/- 1.91, 7.48 +/- 1.33, respectively. Plasma TAC, TOS and OSI levels were not found to be significantly difference between patients and control subjects (p>0.05, p>0.05, p>0.05). The present study has shown that there were not relationship between potency of oxidative stress and BPH. Further well designed studies should be planned to find out whether the oxidative stress-related parameters play role in BPH as an interesting pathology in regard of the etiopathogenesis.

  10. A blueberry-enriched diet attenuates nephropathy in a rat model of hypertension via reduction in oxidative stress.

    Directory of Open Access Journals (Sweden)

    Carrie M Elks

    Full Text Available To assess renoprotective effects of a blueberry-enriched diet in a rat model of hypertension. Oxidative stress (OS appears to be involved in the development of hypertension and related renal injury. Pharmacological antioxidants can attenuate hypertension and hypertension-induced renal injury; however, attention has shifted recently to the therapeutic potential of natural products as antioxidants. Blueberries (BB have among the highest antioxidant capacities of fruits and vegetables.Male spontaneously hypertensive rats received a BB-enriched diet (2% w/w or an isocaloric control diet for 6 or 12 weeks or 2 days. Compared to controls, rats fed BB-enriched diet for 6 or 12 weeks exhibited lower blood pressure, improved glomerular filtration rate, and decreased renovascular resistance. As measured by electron paramagnetic resonance spectroscopy, significant decreases in total reactive oxygen species (ROS, peroxynitrite, and superoxide production rates were observed in kidney tissues in rats on long-term dietary treatment, consistent with reduced pathology and improved function. Additionally, measures of antioxidant status improved; specifically, renal glutathione and catalase activities increased markedly. Contrasted to these observations indicating reduced OS in the BB group after long-term feeding, similar measurements made in rats fed the same diet for only 2 days yielded evidence of increased OS; specifically, significant increases in total ROS, peroxynitrite, and superoxide production rates in all tissues (kidney, brain, and liver assayed in BB-fed rats. These results were evidence of "hormesis" during brief exposure, which dissipated with time as indicated by enhanced levels of catalase in heart and liver of BB group.Long-term feeding of BB-enriched diet lowered blood pressure, preserved renal hemodynamics, and improved redox status in kidneys of hypertensive rats and concomitantly demonstrated the potential to delay or attenuate development

  11. Oxidative Stress in Myopia

    Directory of Open Access Journals (Sweden)

    Bosch-Morell Francisco

    2015-01-01

    Full Text Available Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem.

  12. Oxidative stress adaptation with acute, chronic, and repeated stress.

    Science.gov (United States)

    Pickering, Andrew M; Vojtovich, Lesya; Tower, John; A Davies, Kelvin J

    2013-02-01

    Oxidative stress adaptation, or hormesis, is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells and the fruit fly Drosophila melanogaster are capable of adapting to chronic or repeated stress by upregulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12-h or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the levels of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila nevertheless also caused significant reductions in life span for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Periodontitis and increase in circulating oxidative stress

    Directory of Open Access Journals (Sweden)

    Takaaki Tomofuji

    2009-05-01

    Full Text Available Reactive oxygen species (ROS are products of normal cellular metabolism. However, excessive production of ROS oxidizes DNA, lipids and proteins, inducing tissue damage. Studies have shown that periodontitis induces excessive ROS production in periodontal tissue. When periodontitis develops, ROS produced in the periodontal lesion diffuse into the blood stream, resulting in the oxidation of blood molecules (circulating oxidative stress. Such oxidation may be detrimental to systemic health. For instance, previous animal studies suggested that experimental periodontitis induces oxidative damage of the liver and descending aorta by increasing circulating oxidative stress. In addition, it has been revealed that clinical parameters in chronic periodontitis patients showed a significant improvement 2 months after periodontal treatment, which was accompanied by a significant reduction of reactive oxygen metabolites in plasma. Improvement of periodontitis by periodontal treatment could reduce the occurrence of circulating oxidative stress. Furthermore, recent studies indicate that the increase in circulating oxidative stress following diabetes mellitus and inappropriate nutrition damages periodontal tissues. In such cases, therapeutic approaches to systemic oxidative stress might be necessary to improve periodontal health.

  14. Relaxation of stresses during reduction of anode supported SOFCs

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Chatzichristodoulou, Christodoulos; Jørgensen, Peter Stanley

    2016-01-01

    To assess the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. This work reports further details on a newly discovered creep phenomenon......, accelerated creep, taking place during the reduction of a Ni-YSZ anode. This relaxes stresses at a much higher rate (~×104) than creep during operation. Thus, the phenomenon of accelerated creep during reduction has to be considered both in the production of stacks and in the analysis of the stress field...... of reduction should decrease significantly over minutes. In this work these internal stresses are measured in-situ before and after the reduction by use of X-ray diffraction. This is done by determining the elastic micro-strains (correlating to the stresses), which are assessed from the widening of the Bragg...

  15. BRCA1 and Oxidative Stress

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Yong Weon; Kang, Hyo Jin [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Bae, Insoo, E-mail: ib42@georgetown.edu [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States)

    2014-04-03

    The breast cancer susceptibility gene 1 (BRCA1) has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS) is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1’s many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers.

  16. Antidepressant-like effect of a new selenium-containing compound is accompanied by a reduction of neuroinflammation and oxidative stress in lipopolysaccharide-challenged mice.

    Science.gov (United States)

    Casaril, Angela M; Domingues, Micaela; Fronza, Mariana; Vieira, Beatriz; Begnini, Karine; Lenardão, Eder J; Seixas, Fabiana K; Collares, Tiago; Nogueira, Cristina W; Savegnago, Lucielli

    2017-09-01

    Organoselenium compounds and indoles have gained attention due to their wide range of pharmacological properties. Depression is a recurrent and disabling psychiatric illness and current evidences support that oxidative stress and neuroinflammation are mechanisms underlying the pathophysiology of this psychiatric condition. Here, we evaluated the effect of 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole (CMI) in lipopolysaccharide (LPS)-induced depressive-like behaviour, neuroinflammation and oxidative stress in male mice. CMI pre-treatment (20 and 50 mg/kg, intragastrically) significantly attenuated LPS (0.83 mg/kg, intraperitoneally)-induced depressive-like behaviour in mice by reducing the immobility time in the tail suspension test (TST) and forced swimming test (FST). CMI pre-treatment ameliorated LPS-induced neuroinflammation by reducing the levels of interleukin (IL)-1β, IL-4 and IL-6 in the hippocampus and prefrontal cortex, as well as markers of oxidative damage. Additionally, we investigated the toxicological effects of CMI (200 mg/kg, i.g.) in the liver, kidney and brain through determination of the activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT), δ-aminolevulinate dehydratase (δ-ALA-D) and creatinine levels. These biomarkers were not modified, indicating the possible absence of neuro-, hepato- and nephrotoxic effects. Our results suggest that CMI could be a therapeutic approach for the treatment of depression and other neuropsychiatric disorders associated with inflammation and oxidative stress.

  17. Obesity, reproduction and oxidative stress

    Directory of Open Access Journals (Sweden)

    Tamara V. Zhuk

    2017-12-01

    Full Text Available The prevalence of obesity and overweight is one of the most pressing problems nowadays. Obesity as a comorbid condition affects all body systems. Obesity has been reported to be a risk factor not only for cardiovascular diseases and oncopathology, but also for fertility problems, many obstetric and perinatal complications worsening the maternal and infant health. The balance between the oxidative and antioxidant system is one of the indicators of the state of human homeostasis. Today it is proved that obesity is associated with an increase in oxidative stress and a decrease in antioxidant protection. This review reveals a close relationship between obesity, oxidative stress and reproductive problems.

  18. Reduction in hypercholesterolemia and risk of cardiovascular diseases by mixtures of plant food extract: a study on plasma lipid profile, oxidative stress and testosterone in rats

    Directory of Open Access Journals (Sweden)

    Mohamed, Doha A.

    2010-12-01

    Full Text Available The present study was postulated to prepare and evaluate the influence of two plant food extract mixtures on plasma lipid profile, oxidative stress and testosterone levels in rats fed a hypercholesterolemic diet. The safety of the studied extract mixtures was evaluated through the determination of liver and kidney functions. The total phenolic contents, tocopherols, fatty acids and unsaponifiable matter (UNSAP in the extract mixtures were determined. Rats fed a hypercholesterolemic diet were given a daily oral dose (300 mg/kg rat body weight of either mixture I or II for a month and compared with a control hypercholesterolemic group and a normal control group. Results showed that α-tocopherol was 0.750 and 4.017 mg, γ-tocopherol was 0.564 mg and 0 and δ-tocopherol was 15.23mg and 0.634mg/100g for mixtures I and II, respectively. The phenolic contents in mixtures I and II were 36.74 and 23.72 g gallic acid equivalent/100g mixture, respectively. The GLC investigation of UNSAP revealed that stigmasterol and b-sitosterol were the major phytosterols in mixtures I and II, respectively followed by campesterol in both. The GLC analysis of the fatty acids showed that oleic acid was the major fatty acid in both extract mixtures. Results from the animal experiment showed that feeding a hypercholesterolemic diet produced a significant increase in total lipids, total cholesterol (T-Ch, triglycerides (TGs, low density lipoprotein cholesterol (LDLCh, T-Ch/HDL-Ch, TGs/HDL-Ch and malondialdehyde (MDA and a significant reduction in high density lipoprotein cholesterol (HDL-Ch, vitamin E, b-carotene and testosterone. Rats fed a hypercholesterolemic diet and given mixture I or II showed significant improvements in plasma lipid profile compared to the hypercholesterolemic control group. This improvement was associated with a significant reduction in oxidative stress reflected by an elevation in plasma levels of antioxidants (vitamin E and b-carotene and a

  19. Oxidative stress parameters in localized scleroderma patients.

    Science.gov (United States)

    Kilinc, F; Sener, S; Akbaş, A; Metin, A; Kirbaş, S; Neselioglu, S; Erel, O

    2016-11-01

    Localized scleroderma (LS) (morphea) is a chronic, inflammatory skin disease with unknown cause that progresses with sclerosis in the skin and/or subcutaneous tissues. Its pathogenesis is not completely understood. Oxidative stress is suggested to have a role in the pathogenesis of localized scleroderma. We have aimed to determine the relationship of morphea lesions with oxidative stress. The total oxidant capacity (TOC), total antioxidant capacity (TAC), paroxonase (PON) and arylesterase (ARES) activity parameters of PON 1 enzyme levels in the serum were investigated in 13 LS patients (generalized and plaque type) and 13 healthy controls. TOC values of the patient group were found higher than the TOC values of the control group (p < 0.01). ARES values of the patient group was found to be higher than the control group (p < 0.0001). OSI was significantly higher in the patient group when compared to the control (p < 0.005). Oxidative stress seems to be effective in the pathogenesis. ARES levels have increased in morphea patients regarding to the oxidative stress and its reduction. Further controlled studies are required in wider series.

  20. Impact of weight loss on oxidative stress and inflammatory cytokines ...

    African Journals Online (AJOL)

    diet regimen, where as the control group received medical treatment only for 12 weeks. Results: The mean values of ... Keywords: Type 2 diabetes, weight reduction, oxidative stress, cytokines, obesity. ..... muscle in severely obese subjects.

  1. [Vitamins and oxidative stress].

    Science.gov (United States)

    Kodentsova, V M; Vrzhesinskaia, O A; Mazo, V K

    2013-01-01

    The central and local stress limiting systems, including the antioxidant defense system involved in defending the organism at the cellular and systemic levels from excess activation response to stress influence, leading to damaging effects. The development of stress, regardless of its nature [cold, increased physical activity, aging, the development of many pathologies (cardiovascular, neurodegenerative diseases, diseases of the gastrointestinal tract, ischemia, the effects of burns), immobilization, hypobaric hypoxia, hyperoxia, radiation effects etc.] leads to a deterioration of the vitamin status (vitamins E, A, C). Damaging effect on the antioxidant defense system is more pronounced compared to the stress response in animals with an isolated deficiency of vitamins C, A, E, B1 or B6 and the combined vitamins deficiency in the diet. Addition missing vitamin or vitamins restores the performance of antioxidant system. Thus, the role of vitamins in adaptation to stressors is evident. However, vitamins C, E and beta-carotene in high doses, significantly higher than the physiological needs of the organism, may be not only antioxidants, but may have also prooxidant properties. Perhaps this explains the lack of positive effects of antioxidant vitamins used in extreme doses for a long time described in some publications. There is no doubt that to justify the current optimal doses of antioxidant vitamins and other dietary antioxidants specially-designed studies, including biochemical testing of initial vitamin and antioxidant status of the organism, as well as monitoring their change over time are required.

  2. Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in Bermuda grass (Cynodon dactylon (L). Pers.).

    Science.gov (United States)

    Shi, Haitao; Wang, Xin; Tan, Dun-Xian; Reiter, Russel J; Chan, Zhulong

    2015-08-01

    The fact of melatonin as an important antioxidant in animals led plant researchers to speculate that melatonin also acts in the similar manner in plants. Although melatonin has significant effects on alleviating stress-triggered reactive oxygen species (ROS), the involvement of melatonin in direct oxidative stress and the underlying physiological and molecular mechanisms remain unclear in plants. In this study, we found that exogenous melatonin significantly alleviated hydrogen peroxide (H2O2)-modulated plant growth, cell damage, and ROS accumulation in Bermuda grass. Additionally, 76 proteins significantly influenced by melatonin during mock or H2O2 treatment were identified by gel-free proteomics using iTRAQ (isobaric tags for relative and absolute quantitation). Metabolic pathway analysis showed that several pathways were markedly enhanced by melatonin and H2O2 treatments, including polyamine metabolism, ribosome pathway, major carbohydrate metabolism, photosynthesis, redox, and amino acid metabolism. Taken together, this study provides more comprehensive insights into the physiological and molecular mechanisms of melatonin in Bermuda grass responses to direct oxidative stress. This may relate to the activation of antioxidants, modulation of metabolic pathways, and extensive proteome reprograming. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. [Small scale direct oxide reduction (DOR) experiments

    International Nuclear Information System (INIS)

    1987-01-01

    Objectives were to provide process design information to the Plutonium Recovery Project and to produce DOR (direct oxide reduction) product which meets Foundry purity specifications and Oh-0 Foundry specifications

  4. Large Scale Reduction of Graphite Oxide

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction...

  5. Enhancement of Antioxidant Mechanisms and Reduction of Oxidative Stress in Chickens after the Administration of Drinking Water Enriched with Polyphenolic Powder from Olive Mill Waste Waters

    Directory of Open Access Journals (Sweden)

    Aliki Papadopoulou

    2017-01-01

    Full Text Available The aim of the study was to examine the effects of a polyphenolic powder from olive mill wastewater (OMWW administered through drinking water, on chickens’ redox status. Thus, 75 chickens were divided into three groups. Group A was given just drinking water, while groups B and C were given drinking water containing 20 and 50 μg/ml of polyphenols, respectively, for 45 days. The antioxidant effects of the polyphenolic powder were assessed by measuring oxidative stress biomarkers in blood after 25 and 45 days of treatment. These markers were total antioxidant capacity (TAC, protein carbonyls (CARB, thiobarbituric acid reactive species (TBARS and superoxide dismutase activity (SOD in plasma, and glutathione (GSH and catalase activity in erythrocytes. The results showed that CARB and TBARS were decreased significantly in groups B and C, and SOD decreased in group B compared to that in group A. TAC was increased significantly in group C and GSH was increased in group B, while catalase activity was increased in groups B and C compared to that in group A. In conclusion, this is the first study showing that supplementation of chickens with polyphenols from OMWW through drinking water enhanced their antioxidant mechanisms and reduced oxidative stress-induced damage.

  6. Enhancement of Antioxidant Mechanisms and Reduction of Oxidative Stress in Chickens after the Administration of Drinking Water Enriched with Polyphenolic Powder from Olive Mill Waste Waters.

    Science.gov (United States)

    Papadopoulou, Aliki; Petrotos, Konstantinos; Stagos, Dimitrios; Gerasopoulos, Konstantinos; Maimaris, Antonios; Makris, Haralampos; Kafantaris, Ioannis; Makri, Sotiria; Kerasioti, Efthalia; Halabalaki, Maria; Brieudes, Vincent; Ntasi, Georgia; Kokkas, Stylianos; Tzimas, Pavlos; Goulas, Panagiotis; Zakharenko, Alexander M; Golokhvast, Kirill S; Tsatsakis, Aristidis; Kouretas, Demetrios

    2017-01-01

    The aim of the study was to examine the effects of a polyphenolic powder from olive mill wastewater (OMWW) administered through drinking water, on chickens' redox status. Thus, 75 chickens were divided into three groups. Group A was given just drinking water, while groups B and C were given drinking water containing 20 and 50  μ g/ml of polyphenols, respectively, for 45 days. The antioxidant effects of the polyphenolic powder were assessed by measuring oxidative stress biomarkers in blood after 25 and 45 days of treatment. These markers were total antioxidant capacity (TAC), protein carbonyls (CARB), thiobarbituric acid reactive species (TBARS) and superoxide dismutase activity (SOD) in plasma, and glutathione (GSH) and catalase activity in erythrocytes. The results showed that CARB and TBARS were decreased significantly in groups B and C, and SOD decreased in group B compared to that in group A. TAC was increased significantly in group C and GSH was increased in group B, while catalase activity was increased in groups B and C compared to that in group A. In conclusion, this is the first study showing that supplementation of chickens with polyphenols from OMWW through drinking water enhanced their antioxidant mechanisms and reduced oxidative stress-induced damage.

  7. Reduction of the DNA damages, Hepatoprotective Effect and Antioxidant Potential of the Coconut Water, ascorbic and Caffeic Acids in Oxidative Stress Mediated by Ethanol

    Directory of Open Access Journals (Sweden)

    VANDERSON S. BISPO

    Full Text Available ABSTRACT Hepatic disorders such as steatosis and alcoholic steatohepatitis are common diseases that affect thousands of people around the globe. This study aims to identify the main phenol compounds using a new HPLC-ESI+-MS/MS method, to evaluate some oxidative stress parameters and the hepatoprotective action of green dwarf coconut water, caffeic and ascorbic acids on the liver and serum of rats treated with ethanol. The results showed five polyphenols in the lyophilized coconut water spiked with standards: chlorogenic acid (0.18 µM, caffeic acid (1.1 µM, methyl caffeate (0.03 µM, quercetin (0.08 µM and ferulic acid (0.02 µM isomers. In the animals, the activity of the serum γ-glutamyltranspeptidase (γ-GT was reduced to 1.8 I.U/L in the coconut water group, 3.6 I.U/L in the ascorbic acid group and 2.9 I.U/L in the caffeic acid groups, when compared with the ethanol group (5.1 I.U/L, p<0.05. Still in liver, the DNA analysis demonstrated a decrease of oxidized bases compared to ethanol group of 36.2% and 48.0% for pretreated and post treated coconut water group respectively, 42.5% for the caffeic acid group, and 34.5% for the ascorbic acid group. The ascorbic acid was efficient in inhibiting the thiobarbituric acid reactive substances (TBARS in the liver by 16.5% in comparison with the ethanol group. These data indicate that the green dwarf coconut water, caffeic and ascorbic acids have antioxidant, hepatoprotective and reduced DNA damage properties, thus decreasing the oxidative stress induced by ethanol metabolism.

  8. Green reduction of graphene oxide using alanine

    International Nuclear Information System (INIS)

    Wang, Jiabin; Salihi, Elif Caliskan; Šiller, Lidija

    2017-01-01

    There remains a real need for the easy, eco-friendly and scalable preparation method of graphene due to various potential applications. Chemical reduction is the most versatile method for the large scale production of graphene. Here we report the operating conditions for a one-step, economical and green synthesis method for the reduction of graphene oxide using a biomolecule (alanine). Graphene oxide was produced by the oxidation and exfoliation of natural graphite flake with strong oxidants using Hummers method (Hummers and Offeman, 1958), but the method was revised in our laboratory to set up a safe and environmentally friendly route. The reduction of graphene oxide was investigated using alanine at various operating conditions in order to set up optimum conditions (treatment time, temperature and concentration of the reagent). Samples have been characterized by using UV–Visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction analysis. - Highlights: • An environmentally friendly route was reported for the chemical reduction of graphene oxide (GO). • Alanine could reduce GO to rGO (reduced graphene oxide) without using any stabilizer or alcaline medium. • Characterization studies confirmed the successful deoxygenation of GO.

  9. Green reduction of graphene oxide using alanine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiabin [Newcastle University, School of Chemical Engineering and Advanced Materials, Newcastle upon Tyne NE1 7RU (United Kingdom); Salihi, Elif Caliskan, E-mail: caliskanelif@gmail.com [Newcastle University, School of Chemical Engineering and Advanced Materials, Newcastle upon Tyne NE1 7RU (United Kingdom); Marmara University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 34668 Istanbul (Turkey); Šiller, Lidija [Newcastle University, School of Chemical Engineering and Advanced Materials, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2017-03-01

    There remains a real need for the easy, eco-friendly and scalable preparation method of graphene due to various potential applications. Chemical reduction is the most versatile method for the large scale production of graphene. Here we report the operating conditions for a one-step, economical and green synthesis method for the reduction of graphene oxide using a biomolecule (alanine). Graphene oxide was produced by the oxidation and exfoliation of natural graphite flake with strong oxidants using Hummers method (Hummers and Offeman, 1958), but the method was revised in our laboratory to set up a safe and environmentally friendly route. The reduction of graphene oxide was investigated using alanine at various operating conditions in order to set up optimum conditions (treatment time, temperature and concentration of the reagent). Samples have been characterized by using UV–Visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction analysis. - Highlights: • An environmentally friendly route was reported for the chemical reduction of graphene oxide (GO). • Alanine could reduce GO to rGO (reduced graphene oxide) without using any stabilizer or alcaline medium. • Characterization studies confirmed the successful deoxygenation of GO.

  10. Personal Approaches to Stress Reduction: A Workshop.

    Science.gov (United States)

    Remer, Rory

    1984-01-01

    Seven topic areas which may be variously combined to comprise a workshop in personal stress reduction are outlined. They include definitions and types of stress, life style planning, nutrition, exercise, networking/social support system, relaxation and other trophotropic interventions, and communication skills. Suggestions are included for…

  11. Mechanisms of electrochemical reduction and oxidation of nitric oxide

    NARCIS (Netherlands)

    Vooys, de A.C.A.; Beltramo, G.L.; Riet, van B.; Veen, van J.A.R.; Koper, M.T.M.

    2004-01-01

    A summary is given of recent work on the reactivity of nitric oxide on various metal electrodes. The significant differences between the reactivity of adsorbed NO and NO in solution are pointed out, both for the reduction and the oxidation reaction(s). Whereas adsorbed NO can be reduced only to

  12. Hypoxia, Oxidative Stress and Fat

    Directory of Open Access Journals (Sweden)

    Nikolaus Netzer

    2015-06-01

    Full Text Available Metabolic disturbances in white adipose tissue in obese individuals contribute to the pathogenesis of insulin resistance and the development of type 2 diabetes mellitus. Impaired insulin action in adipocytes is associated with elevated lipolysis and increased free fatty acids leading to ectopic fat deposition in liver and skeletal muscle. Chronic adipose tissue hypoxia has been suggested to be part of pathomechanisms causing dysfunction of adipocytes. Hypoxia can provoke oxidative stress in human and animal adipocytes and reduce the production of beneficial adipokines, such as adiponectin. However, time-dose responses to hypoxia relativize the effects of hypoxic stress. Long-term exposure of fat cells to hypoxia can lead to the production of beneficial substances such as leptin. Knowledge of time-dose responses of hypoxia on white adipose tissue and the time course of generation of oxidative stress in adipocytes is still scarce. This paper reviews the potential links between adipose tissue hypoxia, oxidative stress, mitochondrial dysfunction, and low-grade inflammation caused by adipocyte hypertrophy, macrophage infiltration and production of inflammatory mediators.

  13. Graphene oxide reduction by microwave heating

    International Nuclear Information System (INIS)

    Longo, Angela; Carotenuto, Gianfranco

    2016-01-01

    The possibility to prepare thermal reduced graphene oxide (Tr-GO) colloidal suspensions by microwave heating of graphene oxide (GO) suspensions in N-methyl-2-pyrrolidone (NMP) has been investigated. According to transmission electron microscopy (TEM) and absorption and emission spectroscopy characterization, such a type of thermal reduction does not lead to graphene quantum dots formation because only mono-functional oxygen-containing groups are removed.

  14. Graphene oxide reduction by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Angela; Carotenuto, Gianfranco [Institute for Polymers, Composites, and Biomaterials, National Research Council, Piazzale Enrico Fermi 1, 80055 Portici (Italy)

    2016-05-18

    The possibility to prepare thermal reduced graphene oxide (Tr-GO) colloidal suspensions by microwave heating of graphene oxide (GO) suspensions in N-methyl-2-pyrrolidone (NMP) has been investigated. According to transmission electron microscopy (TEM) and absorption and emission spectroscopy characterization, such a type of thermal reduction does not lead to graphene quantum dots formation because only mono-functional oxygen-containing groups are removed.

  15. Large Scale Reduction of Graphite Oxide Project

    Science.gov (United States)

    Calle, Carlos; Mackey, Paul; Falker, John; Zeitlin, Nancy

    2015-01-01

    This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction methods are expensive, time-consuming or restricted to small, limited formats. Graphene has potential uses in ultracapacitors, energy storage, solar cells, flexible and light-weight circuits, touch screens, and chemical sensors. In addition, graphite oxide is a sustainable material that can be produced from any form of carbon, making this method environmentally friendly and adaptable for in-situ reduction.

  16. Oxidative stress, aging, and diseases

    Directory of Open Access Journals (Sweden)

    Liguori I

    2018-04-01

    Full Text Available Ilaria Liguori,1 Gennaro Russo,1 Francesco Curcio,1 Giulia Bulli,1 Luisa Aran,1 David Della-Morte,2,3 Gaetano Gargiulo,4 Gianluca Testa,1,5 Francesco Cacciatore,1,6 Domenico Bonaduce,1 Pasquale Abete1 1Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy; 2Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; 3San Raffaele Roma Open University, Rome, Italy; 4Division of Internal Medicine, AOU San Giovanni di Dio e Ruggi di Aragona, Salerno, Italy; 5Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy; 6Azienda Ospedaliera dei Colli, Monaldi Hospital, Heart Transplantation Unit, Naples, Italy Abstract: Reactive oxygen and nitrogen species (RONS are produced by several endogenous and exogenous processes, and their negative effects are neutralized by antioxidant defenses. Oxidative stress occurs from the imbalance between RONS production and these antioxidant defenses. Aging is a process characterized by the progressive loss of tissue and organ function. The oxidative stress theory of aging is based on the hypothesis that age-associated functional losses are due to the accumulation of RONS-induced damages. At the same time, oxidative stress is involved in several age-related conditions (ie, cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases, and cancer, including sarcopenia and frailty. Different types of oxidative stress biomarkers have been identified and may provide important information about the efficacy of the treatment, guiding the selection of the most effective drugs/dose regimens for patients and, if particularly relevant from a pathophysiological point of view, acting on a specific therapeutic target. Given the important role of oxidative stress in the pathogenesis of many clinical conditions and aging, antioxidant therapy could positively affect the natural history of

  17. Clinical Relevance of Biomarkers of Oxidative Stress

    DEFF Research Database (Denmark)

    Frijhoff, Jeroen; Winyard, Paul G; Zarkovic, Neven

    2015-01-01

    SIGNIFICANCE: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino ac....... The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker.......SIGNIFICANCE: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino...... acids. RECENT ADVANCES: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. CRITICAL ISSUES: The literature is very heterogeneous...

  18. Chapter 13. Phonology: Stress and Vowel Reduction

    OpenAIRE

    Nesset, Tore

    2015-01-01

    Where do the complex stress patterns in Modern Russian come from? And why is Москва ‘Moscow’ pronounced with an unstressed [a] in the first syllable? In this chapter, you learn about the history of two related phenomena that cause problems for learners of Russian: stress patterns and vowel reduction in unstressed syllables. Click on the links below to learn more!13.2 Akanje

  19. Supplementation with antioxidant-rich extra virgin olive oil prevents hepatic oxidative stress and reduction of desaturation capacity in mice fed a high-fat diet: Effects on fatty acid composition in liver and extrahepatic tissues.

    Science.gov (United States)

    Rincón-Cervera, Miguel Angel; Valenzuela, Rodrigo; Hernandez-Rodas, María Catalina; Marambio, Macarena; Espinosa, Alejandra; Mayer, Susana; Romero, Nalda; Barrera M Sc, Cynthia; Valenzuela, Alfonso; Videla, Luis A

    2016-01-01

    The aim of this study was to assess the effect of dietary supplementation with extra virgin olive oil (EVOO) in mice on the reduction of desaturase and antioxidant enzymatic activities in liver, concomitantly with long-chain polyunsaturated fatty acids (LCPUFA) profiles in liver and extrahepatic tissues induced by a high-fat diet (HFD). Male mice C57 BL/6 J were fed with a control diet (CD; 10% fat, 20% protein, 70% carbohydrates) or an HFD (60% fat, 20% protein, 20% carbohydrates) for 12 wk. Animals were supplemented with 100 mg/d EVOO with different antioxidant contents (EVOO I, II, and III). After the intervention, blood and several tissues were analyzed. Dietary supplementation with EVOO with the highest antioxidant content and antioxidant capacity (EVOO III) significantly reduced fat accumulation in liver and the plasmatic metabolic alterations caused by HFD and produced a normalization of oxidative stress-related parameters, desaturase activities, and LCPUFA content in tissues. Data suggest that dietary supplementation with EVOO III may prevent oxidative stress and reduction of biosynthesis and accretion of ω-3 LCPUFA in the liver of HFD-fed mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Moderate Dose of Trolox Preventing the Deleterious Effects of Wi-Fi Radiation on Spermatozoa In vitro through Reduction of Oxidative Stress Damage

    Science.gov (United States)

    Ding, Shang-Shu; Sun, Ping; Zhang, Zhou; Liu, Xiang; Tian, Hong; Huo, Yong-Wei; Wang, Li-Rong; Han, Yan; Xing, Jun-Ping

    2018-01-01

    Background: The worsening of semen quality, due to the application of Wi-Fi, can be ameliorated by Vitamin E. This study aimed to demonstrate whether a moderate dose of trolox, a new Vitamin E, inhibits oxidative damage on sperms in vitro after exposure to Wi-Fi radiation. Methods: Each of the twenty qualified semen, gathered from June to October 2014 in eugenics clinic, was separated into four aliquots, including sham, Wi-Fi-exposed, Wi-Fi plus 5 mmol/L trolox, and Wi-Fi plus 10 mmol/L trolox groups. At 0 min, all baseline parameters of the 20 samples were measured in sequence. Reactive oxygen species, glutathione, and superoxide dismutase were evaluated in the four aliquots at 45 and 90 min, as were sperm DNA fragments, sperm mitochondrial potential, relative amplification of sperm mitochondrial DNA, sperm vitality, and progressive and immotility sperm. The parameters were analyzed by one-way analysis of variance and Tukey's posttest. Results: Among Wi-Fi plus 5 mmol/L trolox, Wi-Fi-exposed and Wi-Fi plus 10 mmol/L trolox groups, reactive oxygen species levels (45 min: 3.80 ± 0.41 RLU·10−6·ml−1 vs. 7.50 ± 0.35 RLU·10−6·ml−1 vs. 6.70 ± 0.47 RLU·10−6·ml−1, P Fi plus 5 mmol/L trolox group at 45 and 90 min, respectively. Other parameters were not affected, while the sham group maintained the baseline. Conclusion: This study found that 5 mmol/L trolox protected the Wi-Fi-exposed semen in vitro from the damage of electromagnetic radiation-induced oxidative stress. PMID:29451144

  1. Impact of weight loss on oxidative stress and inflammatory cytokines ...

    African Journals Online (AJOL)

    Background: Type 2 diabetes mellitus is associated with abnormal markers of inflammatory cytokines and oxidative stress markers. Although, these abnormalities could be modulated with weight reduction; there is limitation in clinical studies that have addressed the beneficial effects of weight reduction in modulating ...

  2. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    Energy Technology Data Exchange (ETDEWEB)

    H.Y. Sohn

    2008-03-31

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  3. Laboratory assessment of oxidative stress in semen

    Directory of Open Access Journals (Sweden)

    Ashok Agarwal

    2018-03-01

    Full Text Available Objectives: To evaluate different laboratory assessments of oxidative stress (OS in semen and identify a cost-efficient and highly sensitive instrument capable of providing a comprehensive measure of OS in a clinical setting, as early intervention and an accurate diagnostic test are important because they help maintain a balance of free radicals and antioxidants; otherwise, excessive OS could lead to sperm damage and result in male infertility. Materials and methods: A systematic literature search was performed through a MedLine database search using the keywords ‘semen’ AND ‘oxygen reduction potential’. We also reviewed the references of retrieved articles to search for other potentially relevant research articles and additional book chapters discussing laboratory assessments for OS, ranging from 1994 to 2017. A total of 29 articles and book chapters involving OS-related laboratory assays were included. We excluded animal studies and articles written in languages other than English. Results: Direct laboratory techniques include: chemiluminescence, nitro blue tetrazolium, cytochrome C reduction test, fluorescein probe, electron spin resonance and oxidation–reduction potential (ORP. Indirect laboratory techniques include: measurement of Endtz test, lipid peroxidation, chemokines, antioxidants/micronutrients/vitamins, ascorbate, total antioxidant capacity, or DNA damage. Each of these laboratory techniques has its advantages and disadvantages. Conclusion: Traditional OS laboratory assessments have their limitations. Amongst the prevalent laboratory techniques, ORP is novel and better option as it can be easily used in a clinical setting to provide a comprehensive review of OS. However, more studies are needed to evaluate its reproducibility across various laboratory centres. Keywords: Semen, male infertility, Oxidative stress, Chemiluminescence, Total antioxidant capacity, Oxidation-reduction potential

  4. Green reduction of graphene oxide using alanine.

    Science.gov (United States)

    Wang, Jiabin; Salihi, Elif Caliskan; Šiller, Lidija

    2017-03-01

    There remains a real need for the easy, eco-friendly and scalable preparation method of graphene due to various potential applications. Chemical reduction is the most versatile method for the large scale production of graphene. Here we report the operating conditions for a one-step, economical and green synthesis method for the reduction of graphene oxide using a biomolecule (alanine). Graphene oxide was produced by the oxidation and exfoliation of natural graphite flake with strong oxidants using Hummers method (Hummers and Offeman, 1958), but the method was revised in our laboratory to set up a safe and environmentally friendly route. The reduction of graphene oxide was investigated using alanine at various operating conditions in order to set up optimum conditions (treatment time, temperature and concentration of the reagent). Samples have been characterized by using UV-Visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction analysis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. The antidepressant effect of melatonin and fluoxetine in diabetic rats is associated with a reduction of the oxidative stress in the prefrontal and hippocampal cortices.

    Science.gov (United States)

    Rebai, Redouane; Jasmin, Luc; Boudah, Abdennacer

    2017-09-01

    In the past few years possible mechanisms that link diabetes and depression have been found. One of these mechanisms is the increase in lipid peroxidation and decrease in antioxidant activity in the hippocampal and prefrontal cortices, which are brain areas involved in mood. The goal of the present study was to evaluate the effect of an antidepressant and of an antioxidant on behavior and oxidative activity in brains of diabetic rats. Rats rendered diabetic after a treatment with streptozotocin (STZ) (60mg/kg) were treated with fluoxetine (15mg/kg), melatonin (10mg/kg), or vehicle for 4 weeks. All animals were tested for signs of depression and anxiety using the elevated plus maze (EPM), open field test (OFT) and the forced swim test (FST). Four groups were compared: (1) normoglycemic, (2) hyperglycemic vehicle treated, and hyperglycemic (3) fluoxetine or (4) melatonin treated rats. On the last day of the study, blood samples were obtained to determine the levels of hemoglobin A1c (HbA1c). Also, brain samples were collected to measure the oxidative stress in the hippocampal and prefrontal cortices using the thiobarbituric acid reactive substances (TBARS) assay. The activity of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), and glutathione S-transferase (GST) were also measured on the brain samples. The results show that both fluoxetine and melatonin decrease the signs of depression and anxiety in all tests. Concomitantly, the levels of HbA1c were reduced in drug treated rats, and to a greater degree in the fluoxetine group. In the cerebral cortex of diabetic rats, TBARS was increased, while the activity of CAT, GPx and GST were decreased. Fluoxetine and melatonin treatments decreased TBARS in both cortices. In the prefrontal cortex, fluoxetine and melatonin restored the activity of CAT, while only melatonin improved the activity of GPx and GST. In the hippocampus, the activity of GPx alone was restored by melatonin, while fluoxetine had no

  6. Reduction in oxidative stress levels in the colonic mucosa without fecal stream after the application of enemas containing aqueous Ilex paraguariensis extract.

    Science.gov (United States)

    Cunha, Fernando Lorenzetti da; Silva, Camila Morais Gonçalves da; Almeida, Marcos Gonçalves de; Lameiro, Thais Miguel do Monte; Marques, Letícia Helena Souza; Margarido, Nelson Fontana; Martinez, Carlos Augusto Real

    2011-08-01

    To evaluate the antioxidant effects of enemas containing aqueous extract of Ilex paraguariensis, comparing segments with and without fecal stream and correlating the segments with the duration of intervention. Twenty-six Wistar rats were subjected to a diversion of the fecal stream in the left colon by a proximal colostomy and distal mucosal fistula. The rats were distributed randomly into two experimental groups of 13 animals each based on the time of sacrifice after surgical procedure (two or four weeks). Each group was then divided into two experimental subgroups that received either second daily enemas containing 0.9% saline solution or aqueous extract of Ilex paraguariensis at 0.2g/100g. Colitis was diagnosed by histopathological analysis and the detection of oxidative tissue damage by measuring the levels of malondialdehyde. The Mann-Whitney test was used to compare the tissue levels of malondialdehyde between colon segments with and without fecal stream in each experimental group, and the Kruskal-Wallis test was used to verify the variance between the levels of oxidative stress according the duration of the irrigation; both tests determined significance at 5% (pirrigation were 0.05±0.006 and 0.06±0.006, and 0.05± 0.03 and 0.08 ±0.02, respectively. The malondialdehyde levels in the animals irrigated with Ilex paraguariensis with and without fecal stream after two and four weeks of irrigation were 0.010±0.002 and 0.02±0.004, and 0.03±0.007 and 0.04±0.01, respectively. After two and four weeks of intervention, the levels of malondialdehyde were lower in the animals irrigated with Ilex paraguariensis regardless of the time of irrigation (p=0.0001 and p=0.002, respectively). The daily rectal application of enemas containing aqueous extract of Ilex paraguariensis decreases oxidative tissue damage in the colon without fecal stream regardless of the time of irrigation.

  7. Responses to reductive stress in the cardiovascular system.

    Science.gov (United States)

    Handy, Diane E; Loscalzo, Joseph

    2017-08-01

    There is a growing appreciation that reductive stress represents a disturbance in the redox state that is harmful to biological systems. On a cellular level, the presence of increased reducing equivalents and the lack of beneficial fluxes of reactive oxygen species can prevent growth factor-mediated signaling, promote mitochondrial dysfunction, increase apoptosis, and decrease cell survival. In this review, we highlight the importance of redox balance in maintaining cardiovascular homeostasis and consider the tenuous balance between oxidative and reductive stress. We explain the role of reductive stress in models of protein aggregation-induced cardiomyopathies, such as those caused by mutations in αB-crystallin. In addition, we discuss the role of NADPH oxidases in models of heart failure and ischemia-reperfusion to illustrate how oxidants may mediate the adaptive responses to injury. NADPH oxidase 4, a hydrogen peroxide generator, also has a major role in promoting vascular homeostasis through its regulation of vascular tone, angiogenic responses, and effects on atherogenesis. In contrast, the lack of antioxidant enzymes that reduce hydrogen peroxide, such as glutathione peroxidase 1, promotes vascular remodeling and is deleterious to endothelial function. Thus, we consider the role of oxidants as necessary signals to promote adaptive responses, such as the activation of Nrf2 and eNOS, and the stabilization of Hif1. In addition, we discuss the adaptive metabolic reprogramming in hypoxia that lead to a reductive state, and the subsequent cellular redistribution of reducing equivalents from NADH to other metabolites. Finally, we discuss the paradoxical ability of excess reducing equivalents to stimulate oxidative stress and promote injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Association of Oxidative Stress with Psychiatric Disorders.

    Science.gov (United States)

    Hassan, Waseem; Noreen, Hamsa; Castro-Gomes, Vitor; Mohammadzai, Imdadullah; da Rocha, Joao Batista Teixeira; Landeira-Fernandez, J

    2016-01-01

    When concentrations of both reactive oxygen species and reactive nitrogen species exceed the antioxidative capability of an organism, the cells undergo oxidative impairment. Impairments in membrane integrity and lipid and protein oxidation, protein mutilation, DNA damage, and neuronal dysfunction are some of the fundamental consequences of oxidative stress. The purpose of this work was to review the associations between oxidative stress and psychological disorders. The search terms were the following: "oxidative stress and affective disorders," "free radicals and neurodegenerative disorders," "oxidative stress and psychological disorders," "oxidative stress, free radicals, and psychiatric disorders," and "association of oxidative stress." These search terms were used in conjunction with each of the diagnostic categories of the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders and World Health Organization's International Statistical Classification of Diseases and Related Health Problems. Genetic, pharmacological, biochemical, and preclinical therapeutic studies, case reports, and clinical trials were selected to explore the molecular aspects of psychological disorders that are associated with oxidative stress. We identified a broad spectrum of 83 degenerative syndromes and psychiatric disorders that were associated with oxidative stress. The multi-dimensional information identified herein supports the role of oxidative stress in various psychiatric disorders. We discuss the results from the perspective of developing novel therapeutic interventions.

  9. [Oxidative stress in station service workers].

    Science.gov (United States)

    Basso, A; Elia, G; Petrozzi, M T; Zefferino, R

    2004-01-01

    The aim of this study is to identify an oxidative stress in service station workers. Previous studies verified an increased incidence of leukemia and myeloma, however other authors haven't verified it. There are reports of nasal, pharyngeal, laryngeal, and lung cancer in service station workers. Our study wants to evaluate the oxidative balance in the fuel workers. We studied 44 subjects with gasoline exposure and 29 control subjects. We determined the blood concentrations of Glutathione reduced and oxidized, Protein sulfhydrylic (PSH) Vitamine E, Vitamine C, Malondialdehyde, Protein oxidized (OX-PROT) and beta carotene. The t test was performed to analyze the differences between the means, the Chi square was used to evaluate the statistical significance of associations between variable categorical (redox index). The Anova test excluded the confusing effect of age, smoke and alcohol habit. The mean age of the workers was 36.6 years, instead the control group was 38. In the workers Glutathione reduced, Vit. E and Beta carotene were lower than in the control subjects, this difference was statistically significant (p < 0.01). The Malondialdehyde concentration was higher in the workers higher than in the control group, but this difference wasn't statistically significant. Our data demonstrated Glutathione, Vit. E, and Beta carotene are useful to verify a reduction of the antioxidant activity. The only marker of the presence of oxidative injury that correlated to work exposure was the malondialdehyde. The redox index was surest marker. The limit of our study is the number of control group, it was little and lower than workers. Conclusively we believe it's useful to continue our studies and, if our results are going to be confirmed, we retain that stress oxidative determination would be verified in occupational medicine using these markers, especially to study exposure of the fuel workers who were investigated less and, in our opinion, would receive more attention.

  10. Hypertension and physical exercise: The role of oxidative stress.

    Science.gov (United States)

    Korsager Larsen, Monica; Matchkov, Vladimir V

    2016-01-01

    Oxidative stress is associated with the pathogenesis of hypertension. Decreased bioavailability of nitric oxide (NO) is one of the mechanisms involved in the pathogenesis. It has been suggested that physical exercise could be a potential non-pharmacological strategy in treatment of hypertension because of its beneficial effects on oxidative stress and endothelial function. The aim of this review is to investigate the effect of oxidative stress in relation to hypertension and physical exercise, including the role of NO in the pathogenesis of hypertension. Endothelial dysfunction and decreased NO levels have been found to have the adverse effects in the correlation between oxidative stress and hypertension. Most of the previous studies found that aerobic exercise significantly decreased blood pressure and oxidative stress in hypertensive subjects, but the intense aerobic exercise can also injure endothelial cells. Isometric exercise decreases normally only systolic blood pressure. An alternative exercise, Tai chi significantly decreases blood pressure and oxidative stress in normotensive elderly, but the effect in hypertensive subjects has not yet been studied. Physical exercise and especially aerobic training can be suggested as an effective intervention in the prevention and treatment of hypertension and cardiovascular disease via reduction in oxidative stress. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Electrochemical reduction of cerium oxide into metal

    Energy Technology Data Exchange (ETDEWEB)

    Claux, Benoit [CEA, Valduc, F-21120 Is-sur-Tille (France); Universite de Grenoble, LEPMI-ENSEEG, 1130 rue de la Piscine, BP75, F-38402 St Martin d' Heres Cedex (France); Serp, Jerome, E-mail: jerome.serp@cea.f [CEA, Valduc, F-21120 Is-sur-Tille (France); Fouletier, Jacques [Universite de Grenoble, LEPMI-ENSEEG, 1130 rue de la Piscine, BP75, F-38402 St Martin d' Heres Cedex (France)

    2011-02-28

    The Fray Farthing and Chen (FFC) and Ono and Suzuki (OS) processes were developed for the reduction of titanium oxide to titanium metal by electrolysis in high temperature molten alkali chloride salts. The possible transposition to CeO{sub 2} reduction is considered in this study. Present work clarifies, by electro-analytical techniques, the reduction pathway leading to the metal. The reduction of CeO{sub 2} into metal was feasible via an indirect mechanism. Electrolyses on 10 g of CeO{sub 2} were carried out to evaluate the electrochemical process efficiency. Ca metal is electrodeposited at the cathode from CaCl{sub 2}-KCl solvent and reacts chemically with ceria to form not only metallic cerium, but also cerium oxychloride.

  12. Oxidative stress in cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Shyamal K Goswami

    2015-01-01

    Full Text Available Oxidative stress caused by various oxygen containing free radicals and reactive species (collectively called "Reactive Oxygen Species" or ROS has long been attributed to cardiovascular diseases. In human body, major oxidizing species are super oxide, hydrogen peroxide, hydroxyl radical, peroxy nitrite etc. ROS are produced from distinct cellular sources, enzymatic and non-enzymatic; have specific physicochemical properties and often have specific cellular targets. Although early studies in nineteen sixties and seventies highlighted the deleterious effects of these species, later it was established that they also act as physiological modulators of cellular functions and diseases occur only when ROS production is deregulated. One of the major sources of cellular ROS is Nicotinamide adenine dinucleotide phosphate oxidases (Noxes that are expressed in almost all cell types. Superoxide and hydrogen peroxide generated from them under various conditions act as signal transducers. Due to their immense importance in cellular physiology, various Nox inhibitors are now being developed as therapeutics. Another free radical of importance in cardiovascular system is nitric oxide (a reactive nitrogen species generated from nitric oxide synthase(s. It plays a critical role in cardiac function and its dysregulated generation along with superoxide leads to the formation of peroxynitrite a highly deleterious agent. Despite overwhelming evidences of association between increased level of ROS and cardiovascular diseases, antioxidant therapies using vitamins and omega 3 fatty acids have largely been unsuccessful till date. Also, there are major discrepancies between studies with laboratory animals and human trials. It thus appears that the biology of ROS is far complex than anticipated before. A comprehensive understanding of the redox biology of diseases is thus needed for developing targeted therapeutics.

  13. Etiologies of sperm oxidative stress

    Directory of Open Access Journals (Sweden)

    Parvin Sabeti

    2016-04-01

    Full Text Available Sperm is particularly susceptible to reactive oxygen species (ROS during critical phases of spermiogenesis. However, the level of seminal ROS is restricted by seminal antioxidants which have beneficial effects on sperm parameters and developmental potentials. Mitochondria and sperm plasma membrane are two major sites of ROS generation in sperm cells. Besides, leukocytes including polymer phonuclear (PMN leukocytes and macrophages produce broad category of molecules including oxygen free radicals, non-radical species and reactive nitrogen species. Physiological role of ROS increase the intracellular cAMP which then activate protein kinase in male reproductive system. This indicates that spermatozoa need small amounts of ROS to acquire the ability of nuclear maturation regulation and condensation to fertilize the oocyte. There is a long list of intrinsic and extrinsic factors which can induce oxidative stress to interact with lipids, proteins and DNA molecules. As a result, we have lipid peroxidation, DNA fragmentation, axonemal damage, denaturation of the enzymes, over generation of superoxide in the mitochondria, lower antioxidant activity and finally abnormal spermatogenesis. If oxidative stress is considered as one of the main cause of DNA damage in the germ cells, then there should be good reason for antioxidant therapy in these conditions

  14. Oxidative Stress in Cystinosis Patients

    Directory of Open Access Journals (Sweden)

    Maria Helena Vaisbich

    2011-09-01

    Full Text Available Background/Aims: Nephropathic cystinosis (NC is a severe systemic disease and cysteamine improves its prognosis. Lysosomal cystine accumulation is the hallmark of cystinosis and is regarded as the primary defect due to mutations in the CTNS gene. However, there is great evidence that cystine accumulation itself is not responsible for all abnormalities observed in NC. Studies have demonstrated altered ATP metabolism, increased apoptosis, and cell oxidation. An increased number of autophagosomes and autophagic vacuoles have been observed in cystinotic fibroblasts and renal epithelial cells, suggesting that altered autophagy plays a role in NC, leading to increased production of reactive oxygen species. Therefore, cystinosis patients can be more susceptible to oxidative stress (OS and it can contribute to the progression of the renal disease. Our goal was to evaluate a marker of OS (serum TBARS in NC children, and to compare the results with those observed in healthy controls and correlated with renal function parameters. Methods: The study included patients aged under 18 years, with good adherence to the treatment and out of renal replacement therapy. The following parameters were evaluated: serum creatinine, BUN, creatinine clearance estimated by stature and serum TBARS levels. Results: We selected 20 patients aged 8.0 ±3.6 years and observed serum TBARS levels of 4.03 ±1.02 nmol/ml. Serum TBARS levels in the 43 healthy controls, aged 7.4 ±1.1 years, were 1.60 ±0.04 nmol/ml. There was a significant difference between the plasma TBARS levels among the 2 groups (p Conclusion: An increased level of serum TBARS in patients with NC was observed and this abnormality was not correlated with the renal function status degree. This is the first report that shows increased oxidative stress in serum of NC patients.

  15. Impact of Oxidative Stress in Fetal Programming

    OpenAIRE

    Thompson, Loren P.; Al-Hasan, Yazan

    2012-01-01

    Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that pr...

  16. Impact of Oxidative Stress in Fetal Programming

    Directory of Open Access Journals (Sweden)

    Loren P. Thompson

    2012-01-01

    Full Text Available Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that protect against organ dysfunction in the programmed offspring.

  17. Oxidative stress negatively affects human sperm mitochondrial respiration.

    Science.gov (United States)

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    Science.gov (United States)

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches. PMID:27190572

  19. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    Directory of Open Access Journals (Sweden)

    Xiaochun Duan

    2016-01-01

    Full Text Available Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH. Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches.

  20. Less Stress : Oxidative stress and glutathione kinetics in preterm infants

    NARCIS (Netherlands)

    D. Rook (Denise)

    2013-01-01

    textabstractDue to immature antioxidant defenses, preterm infants are at susceptible to oxidative stress, which is associated with bronchopulmonary dysplasia, retinopathy of prematurity and periventricular leukomalacia. The general aim of this thesis was to study oxidative stress in preterm infants

  1. Nutrients and Oxidative Stress: Friend or Foe?

    Science.gov (United States)

    Tan, Bee Ling; Norhaizan, Mohd Esa; Liew, Winnie-Pui-Pui

    2018-01-01

    There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF- κ B-) mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD), and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs). Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders.

  2. Oxidative stress in primary glomerular diseases

    DEFF Research Database (Denmark)

    Markan, Suchita; Kohli, Harbir Singh; Sud, Kamal

    2008-01-01

    To evaluate the status of oxidative stress in patients with different primary glomerular diseases (PGD) which have differential predisposition to renal failure.......To evaluate the status of oxidative stress in patients with different primary glomerular diseases (PGD) which have differential predisposition to renal failure....

  3. Primary and secondary oxidative stress in Bacillus

    NARCIS (Netherlands)

    Mols, Maarten; Abee, Tjakko

    Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This

  4. Primary and secondary oxidative stress in Bacillus

    NARCIS (Netherlands)

    Mols, J.M.; Abee, T.

    2011-01-01

    Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This

  5. Nutrients and Oxidative Stress: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Bee Ling Tan

    2018-01-01

    Full Text Available There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF-κB- mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD, and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs. Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders.

  6. A STUDY OF OXIDATIVE STRESS IN DIABETES

    Directory of Open Access Journals (Sweden)

    Babu Rao

    2015-06-01

    Full Text Available Non - enzymatic free radical mediated oxidation of biological molecules, membranes and tissues is associated with a variety of pathological events such as cancer, aging and diabetes mellitus . [1] Increased oxidative stress is seen in both types of diabetes me llitus namely type 1 and type 2, irrespective of duration, complications and treatment. In diabetes mellitus, oxidative stress seems primarily due to both an increased plasma free radical concentration and a sharp decline in antioxidant defences . [1] Among the causes of enhanced free radical production, hyperglycemia and hyper insulinemia seem to play a major role , [2,3] Hyperglycemia is the more easily modifiable factor among the two and good glycemic control can reduce the oxidative stress. Controversy pers ists regarding the other possible mechanisms of increased oxidative stress in diabetes and whether oxidative stress normalizes with adequate metabolic control alone. The role of oxidative stress and diabetic complications has been extensively investigated. Oxidative stress has been suggested to be involved in the genesis of both macro and micro angiopathy [4,5] Prospective trials are now underway addressing the controversial issues of possible role of pharmacological antioxidants in preventing or at least de laying the onset of diabetic complications.

  7. Is the Oxidative Stress Really a Disease?

    Directory of Open Access Journals (Sweden)

    Fogarasi Erzsébet

    2016-03-01

    Full Text Available Oxidative stress is an imbalance between free radicals or other reactive species and the antioxidant activity of the organism. Oxidative stress can induce several illnesses such as cardiovascular disease, neurodegenerative disorders, diabetes, cancer, Alzheimer and Parkinson. The biomarkers of oxidative stress are used to test oxidative injury of biomolecules. The indicators of lipid peroxidation (malondialdehyde, 4-hydroxy- 2-nonenal, 2-propenal, isoprostanes, of protein oxidation (carbonylated proteins, tyrosine derivatives, of oxidative damage of DNA, and other biomarkers (glutathione level, metallothioneins, myeloperoxidase activity are the most used oxidative stress markers. Diseases caused by oxidative stress can be prevented with antioxidants. In human body are several enzymes with antioxidant capacity (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and spin traps. Antioxidants are synthetized in the organism (glutathione or arrive in the body by nutrition (ascorbic acid, vitamin E, carotenoids, flavonoids, resveratrol, xanthones. Different therapeutic strategies to reduce oxidative stress with the use of synthetic molecules such as nitrone-based antioxidants (phenyl-α-tert-butyl-nitrone (PBN, 2,4-disulphophenyl- N-tert-butylnitrone (NXY-059, stilbazulenyl nitrone (STAZN, which scavenge a wide variety of free radical species, increase endogenous antioxidant levels and inhibits free radical generation are also tested in animal models.

  8. Periodontitis and increase in circulating oxidative stress

    OpenAIRE

    Takaaki Tomofuji; Koichiro Irie; Toshihiro Sanbe; Tetsuji Azuma; Daisuke Ekuni; Naofumi Tamaki; Tatsuo Yamamoto; Manabu Morita

    2009-01-01

    Reactive oxygen species (ROS) are products of normal cellular metabolism. However, excessive production of ROS oxidizes DNA, lipids and proteins, inducing tissue damage. Studies have shown that periodontitis induces excessive ROS production in periodontal tissue. When periodontitis develops, ROS produced in the periodontal lesion diffuse into the blood stream, resulting in the oxidation of blood molecules (circulating oxidative stress). Such oxidation may be detrimental to systemic health. Fo...

  9. Nutrigenetics and modulation of oxidative stress.

    Science.gov (United States)

    Da Costa, Laura A; Badawi, Alaa; El-Sohemy, Ahmed

    2012-01-01

    Oxidative stress develops as a result of an imbalance between the production and accumulation of reactive species and the body's ability to manage them using exogenous and endogenous antioxidants. Exogenous antioxidants obtained from the diet, including vitamin C, vitamin E, and carotenoids, have important roles in preventing and reducing oxidative stress. Individual genetic variation affecting proteins involved in the uptake, utilization and metabolism of these antioxidants may alter their serum levels, exposure to target cells and subsequent contribution to the extent of oxidative stress. Endogenous antioxidants include the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, paraoxanase, and glutathione S-transferase. These enzymes metabolize reactive species and their by-products, reducing oxidative stress. Variation in the genes coding these enzymes may impact their enzymatic antioxidant activity and, thus, the levels of reactive species, oxidative stress, and risk of disease development. Oxidative stress may contribute to the development of chronic disease, including osteoporosis, type 2 diabetes, neurodegenerative diseases, cardiovascular disease, and cancer. Indeed, polymorphisms in most of the genes that code for antioxidant enzymes have been associated with several types of cancer, although inconsistent findings between studies have been reported. These inconsistencies may, in part, be explained by interactions with the environment, such as modification by diet. In this review, we highlight some of the recent studies in the field of nutrigenetics, which have examined interactions between diet, genetic variation in antioxidant enzymes, and oxidative stress. Copyright © 2012 S. Karger AG, Basel.

  10. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress

    Directory of Open Access Journals (Sweden)

    Jereme G. Spiers

    2015-01-01

    Full Text Available Glucocorticoids released from the adrenal gland in response to stress-induced activation of the hypothalamic-pituitary-adrenal (HPA axis induce activity in the cellular reduction-oxidation (redox system. The redox system is a ubiquitous chemical mechanism allowing the transfer of electrons between donor/acceptors and target molecules during oxidative phosphorylation while simultaneously maintaining the overall cellular environment in a reduced state. The objective of this review is to present an overview of the current literature discussing the link between HPA axis-derived glucocorticoids and increased oxidative stress, particularly focussing on the redox changes observed in the hippocampus following glucocorticoid exposure.

  11. Interferon-¿ regulates oxidative stress during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C.; Penkowa, Milena; Saez-Torres, I.

    2002-01-01

    Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress......Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress...

  12. Oxidative stress and the ageing endocrine system.

    Science.gov (United States)

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  13. Oxidative Stress and Antioxidant System in Periodontitis

    Science.gov (United States)

    Wang, Yue; Andrukhov, Oleh; Rausch-Fan, Xiaohui

    2017-01-01

    Periodontitis is a common inflammatory disease, which is initiated by bacterial infection and subsequently progressed by aberrant host response. It can result in the destruction of teeth supporting tissues and have an influence on systemic health. When periodontitis occurs, reactive oxygen species, which are overproduced mostly by hyperactive neutrophils, could not be balanced by antioxidant defense system and cause tissues damage. This is characterized by increased metabolites of lipid peroxidation, DNA damage and protein damage. Local and systemic activities of antioxidants can also be influenced by periodontitis. Total antioxidant capacity, total oxidant status and oxidative stress index have been used to evaluate the oxidative stress associated with periodontitis. Studies have confirmed that inflammatory response in periodontitis is associated with an increased local and systemic oxidative stress and compromised antioxidant capacity. Our review focuses on increased oxidative stress in periodontal disease, specifically, on the relationship between the local and systemic biomarkers of oxidative stress and periodontitis and their association with the pathogenesis of periodontitis. Also, the relationship between periodontitis and systemic inflammation, and the effects of periodontal therapy on oxidative stress parameters will be discussed. PMID:29180965

  14. Catalyst for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C.

    2010-04-06

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  15. Oxidative stress and histopathological changes induced by ...

    African Journals Online (AJOL)

    These authors contributed equally to this work. Abstract: ... Oxidative stress has been proposed as a pos- sible mechanism involved .... to the Natural Health Institute of Health Guidelines for. Animal Care and ..... Journal of American College of.

  16. Accelerated creep in solid oxide fuel cell anode supports during reduction

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Makowska, Malgorzata Grazyna; Greco, Fabio

    2016-01-01

    To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. The creep of reduced Ni-YSZ anode support at operating conditions has been...... studied previously. In this work a newly discovered creep phenomenon taking place during the reduction is reported. This relaxes stresses at a much higher rate (∼ x104) than creep during operation. The phenomenon was studied both in three-point bending and uniaxial tension. Differences between the two...... measurements could be explained by newly observed stress promoted reduction. Finally, samples exposed to a small tensile stress (∼ 0.004 MPa) were observed to expand during reduction, which is in contradiction to previous literature. These observations suggest that release of internal residual stresses between...

  17. REPEATED REDUCTIVE AND OXIDATIVE TREATMENTS ON GRANULAR ACTIVATED CARBON

    Science.gov (United States)

    Fenton oxidation and Fenton oxidation preceded by reduction solutions were applied to granular activated carbon (GAC) to chemically regenerate the adsorbent. No adsorbate was present on the GAC so physicochemical effects from chemically aggressive regeneration of the carbon coul...

  18. Oxidative Stress and Anesthesia in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Peivandi Yazdi A

    2014-04-01

    Full Text Available Free radical and peroxide production lead to intracellular damage. On the other hand, free radicals are used by the human immune system to defend against pathogens. The aging process could be limited by oxidative stress in the short term. Chronic diseases like diabetes mellitus (DM are full-stress conditions in which remarkable metabolic functional destructions might happen. There is strong evidence regarding antioxidant impairment in diabetes. Performing a particular method for anesthesia in diabetic patients might prevent or modify excessive free radical formation and oxidative stress. It seems that prescribing antioxidant drugs could promote wound healing in diabetics.  

  19. Influence of oxidative stress on disease development

    Directory of Open Access Journals (Sweden)

    Božić Tatjana

    2013-01-01

    Full Text Available There is ever increasing data indicating the vmast contribution of oxidative stress to the pathogenesis of numerous diseases (atherosclerosis, hypertension, heart failure, diabetes mellitus, stroke, rheumatoid arthritis, and others. Thus, in the pathogenesis of atherosclerosis the primary role is held by reactive oxygen species that are synthetized by endothelial cells of arterial blood vessels, leukocytes and macrophages. Furthermore, native particles of lipoproteins of small density become atherogenic through oxidation caused by reactive oxygen species. The oxidation of small-density lipoproteins stimulates the inflammatory process, and it in turn steps up adhesion and the inflow of monocytes and affects the synthesis and release of numerous proinflammatory cytokines involved in the further course of the process. One of the reasons for the development of arterial hypertension is the simultaneous activation of NAD(PH oxidase and 12/15-lipoxygenase, since it results in the stepped up production of reactive oxygen species. These stimulate the production of matrix metalloproteinase 2, which lead to vascular remodelling and to increased apoptosis of heart muscle cells. Stepped up apoptosis is linked with myocardial infarction, cardiomyopathies and the development of heart failure. The sensitivity of β-cells of the endocrine part of the pancreas to reactive oxygen species favor the naturally low concentrations of the collectors of free radicals in them, as well as an increase in the concentration of proinflammatory cytokines, glucosis and lipids that induce a reduction in the mass and function of β-cells. Hyperglycemia in diabetes mellitus causes tissue damage through non-enzyme glycosylation of intracellular and extracellular proteins, which results in: reduced enzyme activity, damaged nucleic acid, disrupted natural decomposition of proteins, and activation of cytotoxic pathways. These processes are the basis of the pathogenesis of numerous

  20. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay

    Directory of Open Access Journals (Sweden)

    Anu Rahal

    2014-01-01

    Full Text Available Oxidative stress is a normal phenomenon in the body. Under normal conditions, the physiologically important intracellular levels of reactive oxygen species (ROS are maintained at low levels by various enzyme systems participating in the in vivo redox homeostasis. Therefore, oxidative stress can also be viewed as an imbalance between the prooxidants and antioxidants in the body. For the last two decades, oxidative stress has been one of the most burning topics among the biological researchers all over the world. Several reasons can be assigned to justify its importance: knowledge about reactive oxygen and nitrogen species production and metabolism; identification of biomarkers for oxidative damage; evidence relating manifestation of chronic and some acute health problems to oxidative stress; identification of various dietary antioxidants present in plant foods as bioactive molecules; and so on. This review discusses the importance of oxidative stress in the body growth and development as well as proteomic and genomic evidences of its relationship with disease development, incidence of malignancies and autoimmune disorders, increased susceptibility to bacterial, viral, and parasitic diseases, and an interplay with prooxidants and antioxidants for maintaining a sound health, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue.

  1. Simvastatin and oxidative stress in humans

    DEFF Research Database (Denmark)

    Rasmussen, Sanne Tofte; Andersen, Jon Thor Trærup; Nielsen, Torben Kjær

    2016-01-01

    in mitochondrial respiratory complexes I and II and might thereby reduce the formation of reactive oxygen species, which have been implicated in the pathogenesis of arteriosclerosis. Therefore, we hypothesized that simvastatin may reduce oxidative stress in humans in vivo. We conducted a randomized, double......-blinded, placebo-controlled study in which subjects were treated with either 40 mg of simvastatin or placebo for 14 days. The endpoints were six biomarkers for oxidative stress, which represent intracellular oxidative stress to nucleic acids, lipid peroxidation and plasma antioxidants, that were measured in urine.......1% in the placebo group for DNA oxidation and 7.3% in the simvastatin group compared to 3.4% in the placebo group. The differences in biomarkers related to plasma were not statistically significant between the treatments groups, with the exception of total vitamin E levels, which, as expected, were reduced...

  2. Antioxidant and enzymatic responses to oxidative stress induced by pre-harvest water supply reduction and ripening on mango (Mangifera indica L. cv. 'Cogshall') in relation to carotenoid content

    OpenAIRE

    Rosalie , Rémy; Joas , Jacques; Deytieux-Belleau , Christelle; Vulcain , Emmanuelle; Payet , Bertrand; Dufossé , Laurent; Léchaudel , Mathieu

    2015-01-01

    International audience; The effects of a reduction in water supply during fruit development and postharvest fruit ripening on the oxidative status and the antioxidant defense system were studied in the mango fruit (Mangifera indica L.) cv. Cogshall. Changes in non-enzymatic (ascorbate) and enzymatic (SOD, CAT, APX, MDHAR, DHAR and GR) antioxidants, as well as oxidative parameters (H 2 O 2 and MDA) and major carotenoids, were measured in unripe and ripe fruits from well-irrigated and non-irrig...

  3. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Namrata eChaudhari

    2014-07-01

    Full Text Available Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded protein response (UPR through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS. Toxic accumulation of ROS within ER and mitochondria disturb fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways has been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease and others. In this review we have discussed the UPR signaling pathways, and networking between ER stress induced inflammatory pathways, oxidative stress and mitochondrial signaling events which further induce or exacerbate ER stress.

  4. Oxidative Stress in Patients With Nongenital Warts

    Directory of Open Access Journals (Sweden)

    Sezai Sasmaz

    2005-01-01

    Full Text Available Comparison of oxidative stress status between subjects with or without warts is absent in the literature. In this study, we evaluated 31 consecutive patients with warts (15 female, 16 male and 36 control cases with no evidence of disease to determine the effects of oxidative stress in patients with warts. The patients were classified according to the wart type, duration, number, and location of lesions. We measured the indicators of oxidative stress such as catalase (CAT, glucose-6-phosphate dehydrogenase (G6PD, superoxide dismutase (SOD, and malondialdehyde (MDA in the venous blood by spectrophotometry. There was a statistically significant increase in levels of CAT, G6PD, SOD activities and MDA in the patients with warts compared to the control group (P<.05. However, we could not define a statistically significant correlation between these increased enzyme activities and MDA levels and the type, the duration, the number, and the location of lesions. We determined possible suppression of T cells during oxidative stress that might have a negative effect on the prognosis of the disease. Therefore, we propose an argument for the appropriateness to give priority to immunomodulatory treatment alternatives instead of destructive methods in patients with demonstrated oxidative stress.

  5. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yosuke Kayama

    2015-10-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM. DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD, cardiac hypertrophy, and heart failure (HF. HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS. ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.

  6. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Asieh Hosseini

    2013-01-01

    Full Text Available Diabetic neuropathy (DN is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin, aldose reductase inhibitors (fidarestat, epalrestat, ranirestat, advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine, the hexosamine pathway inhibitor (benfotiamine, inhibitor of poly ADP-ribose polymerase (nicotinamide, and angiotensin-converting enzyme inhibitor (trandolapril. The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials.

  7. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    Science.gov (United States)

    Hosseini, Asieh; Abdollahi, Mohammad

    2013-01-01

    Diabetic neuropathy (DN) is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine pathway inhibitor (benfotiamine), inhibitor of poly ADP-ribose polymerase (nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril). The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials. PMID:23738033

  8. Association between prenatal psychological stress and oxidative stress during pregnancy.

    Science.gov (United States)

    Eick, Stephanie M; Barrett, Emily S; van 't Erve, Thomas J; Nguyen, Ruby H N; Bush, Nicole R; Milne, Ginger; Swan, Shanna H; Ferguson, Kelly K

    2018-03-30

    Prenatal psychological stress during pregnancy has been associated with adverse reproductive outcomes. A growing animal literature supports an association between psychological stress and oxidative stress. We assessed this relationship in pregnant women, hypothesising that psychological stress is associated with higher concentrations of oxidative stress biomarkers during pregnancy. Psychosocial status and stressful life events (SLE) were self-reported. 8-iso-prostaglandin F 2α (8-iso-PGF 2α ) was measured as a biomarker of oxidative stress in urine samples at median 32 weeks' gestation. We examined SLEs individually (ever vs never) and in summary (any vs none) and psychosocial status as measured by individual subscales and in summary (poor vs good). Linear models estimated associations between these parameters and urinary 8-iso-PGF 2α concentrations after adjusting for covariates. The geometric mean of 8-iso-PGF 2α was significantly higher among pregnant women who were non-White, smokers, had less than a college education, higher pre-pregnancy BMI and were unmarried. Having ever had a death in the family (n = 39) during pregnancy was associated with a 22.9% increase in 8-iso-PGF 2α in unadjusted models (95% confidence interval [CI] 1.50, 48.8). Poor psychosocial status was associated with a 13.1% (95% CI 2.43, 25.0) greater mean 8-iso-PGF 2α in unadjusted analyses. Associations were attenuated, but remained suggestive, after covariate adjustment. These data suggest that 8-iso-PGF 2α is elevated in pregnant women with who are at a sociodemographic disadvantage and who have higher psychological stress in pregnancy. Previous studies have observed that 8-iso-PGF 2α levels are associated with adverse birth outcomes, oxidative stress could be a mediator in these relationships. © 2018 John Wiley & Sons Ltd.

  9. Graphene oxide reduction recipes, spectroscopy, and applications

    CERN Document Server

    Gao, Wei

    2015-01-01

    This book focuses on a group of new materials labeled ""graphene oxides."" It provides a comprehensive overview of graphene oxide-based nanomaterials in terms of their synthesis, structures, properties, and extensive applications in catalysis, separation, filtration, energy storage and conversion. The book also covers emerging research on graphite oxides and the impact of the research on fundamental and applied sciences.

  10. [Role of green tea in oxidative stress prevention].

    Science.gov (United States)

    Metro, D; Muraca, U; Manasseri, L

    2006-01-01

    Oxidative stress is a condition caused by an increase of Reactive Oxygen Species (ROS) or by a shortage of the mechanisms of cellular protection and antioxidant defence. ROS have a potential oxidative effect towards various cellular macromolecules: proteins, nucleic acids, proteoglycans, lipids, with consequent damages in several cellular districts and promotion of the ageing process of the organism. However, some substances are able to prevent and/or reduce the damages caused by ROS; therefore, they are defined antioxidant. The present research studied, in a group of subjects, the antioxidant effects of the green tea, that was administered with fruit and vegetables in a strictly controlled diet. 50 subjects were selected and requested to daily consume 2-3 fruit portions (especially pineapple), 3-5 portions of vegetables (especially tomato) and 2-3 glasses of green tea for about 2 months to integrate the controlled basic diet. Some indicators of the oxidative stress were measured in the plasma before and after the integration period. The integration of a basic diet with supplements of fruit, vegetables and green tea turned out to be able in increasing both plasmatic total antioxidant capacity and endogenous antioxidant levels and to reduce the lipid peroxidation of the membranes, suggesting a reduction of the oxidative stress. These data suggest that an adequate supplement of antioxidants can prevent oxidative stress and correlated pathologies.

  11. Chaperones, but not oxidized proteins, are ubiquitinated after oxidative stress

    DEFF Research Database (Denmark)

    Kästle, Marc; Reeg, Sandra; Rogowska-Wrzesinska, Adelina

    2012-01-01

    of these proteins by MALDI tandem mass spectrometry (MALDI MS/MS). As a result we obtained 24 different proteins which can be categorized into the following groups: chaperones, energy metabolism, cytoskeleton/intermediate filaments, and protein translation/ribosome biogenesis. The special set of identified......, ubiquitinated proteins confirm the thesis that ubiquitination upon oxidative stress is no random process to degrade the mass of oxidized proteins, but concerns a special group of functional proteins....

  12. Aldose reductase, oxidative stress and diabetic mellitus

    Directory of Open Access Journals (Sweden)

    Waiho eTang

    2012-05-01

    Full Text Available Diabetes mellitus (DM is a complex metabolic disorder arising from lack of insulin production or insulin resistance 1. DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR [ALR2; EC 1.1.1.21], a key enzyme in the polyol pathway, catalyzes NADPH-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS in various tissues of DM including the heart, vasculature, neurons, eyes and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis and myocardium (heart failure leading to severe morbidity and mortality (reviewed in 2. In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications.

  13. Oxidative stress resistance in Porphyromonas gingivalis

    Science.gov (United States)

    Henry, Leroy G; McKenzie, Rachelle ME; Robles, Antonette; Fletcher, Hansel M

    2012-01-01

    Porphyromonas gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiologic agent of periodontal disease. The harsh inflammatory condition of the periodontal pocket implies that this organism has properties that will facilitate its ability to respond and adapt to oxidative stress. Because the stress response in the pathogen is a major determinant of its virulence, a comprehensive understanding of its oxidative stress resistance strategy is vital. We discuss multiple mechanisms and systems that clearly work in synergy to defend and protect P. gingivalis against oxidative damage caused by reactive oxygen species. The involvement of multiple hypothetical proteins and/or proteins of unknown function in this process may imply other unique mechanisms and potential therapeutic targets. PMID:22439726

  14. Crocin reduced acrylamide-induced neurotoxicity in Wistar rat through inhibition of oxidative stress

    Directory of Open Access Journals (Sweden)

    Soghra Mehri

    2015-09-01

    Conclusion: The administration of crocin markedly improved behavioral and histopathological damages in Wistar rats exposed to ACR. Reduction of oxidative stress can be considered as an important mechanism of neuroprotective effects of crocin against ACR-induced toxicity.

  15. Reduction of Graphene Oxide to Graphene by Using Gamma Irradiation

    International Nuclear Information System (INIS)

    Shamellia Sharin; Irman Abdul Rahman; Ainee Fatimah Ahmad

    2015-01-01

    This research aims to gauge the ability of gamma radiation to induce the reduction of graphene oxide to graphene. Graphene oxide powders were dispersed into a mixture of alcohol and deionized water, and the mixture was then irradiated with a "6"0Co source using a GammaCell 220 Excel irradiator at absorbed doses of 0, 5, 15, 20 and 35 kGy. According to characterization using Fourier Transformed Infrared Spectroscopy (FTIR), it can be seen that almost every oxygen-containing functional group has been removed after irradiation of the graphene oxide mixture. Reduction of graphene oxide was also proven from the characterization using UV-Vis Spectroscopy, in which the wavelength of graphene oxide at 237 nm was red-shifted to 277 nm after being irradiated and the peak at 292 nm, (indicating the carboxyl group) disappears in the UV-Vis spectrum of reduced graphene oxide. Morphology of graphene oxide also changed from a smooth and flat surface to crumpled. The ratio of carbon/ oxygen in the graphene oxide was lower than the carbon/ oxygen of reduced graphene oxide. At the end of the experiment, it can be deduced that graphene oxide underwent reduction, characterized before and after irradiation using Emission Scanned Electron Microscopy and Energy Dispersive X-ray, Fourier Transformed Infrared Spectroscopy and UV-Vis Spectroscopy. Therefore, we postulate that the irradiation technique that induces reduction, can be used to obtain reduced graphene oxide from graphene oxide. (author)

  16. Metallothermic reduction of rare earth oxides

    International Nuclear Information System (INIS)

    Sharma, R.A.

    1986-01-01

    Rare earth oxides can be reduced to rare earth metals by a novel, high yield, metallothermic process. The oxides are dispersed in a suitable, molten, calcium chloride bath along with sodium metal. The sodium reacts with the calcium chloride to produce calcium metal which reduces the rare earth oxides to rare earth metals. The metals are collected in a discrete layer in the reaction vessel

  17. Artistic Tasks Outperform Nonartistic Tasks for Stress Reduction

    Science.gov (United States)

    Abbott, Kayleigh A.; Shanahan, Matthew J.; Neufeld, Richard W. J.

    2013-01-01

    Art making has been documented as an effective stress reduction technique. In this between-subjects experimental study, possible mechanisms of stress reduction were examined in a sample of 52 university students randomly assigned to one of four conditions generated by factorially crossing Activity Type (artistic or nonartistic) with Coping…

  18. Effect of the Lithium Oxide Concentration on a Reduction of Lanthanide Oxides

    International Nuclear Information System (INIS)

    Choi, In-Kyu; Jeong, Myeong-Soo; Do, Jae-Bum; Seo, Chung-Seok

    2007-01-01

    The pyrochemical reduction process of spent oxide fuel is one of the options to handle spent PWR fuels in Korea. After spent oxide fuel is converted to a metallic form, fission products will be removed from the resultant uranium and higher actinide metals by an electrorefining process. The chemical behaviors of lanthanide oxides during the pyrochemical process has been extensively studied. It was also reported that about 30 to 50% of several lanthanide oxides were reduced to corresponding metals by an electrolytic reduction process having 1 wt% of a lithium oxide concentration. Korea Atomic Energy Research Institute (KAERI), however, has been used 3 wt% of lithium oxide to increase the applied current of the electrolytic reduction process. Though it was reported that U 3 O 8 was reduced to uranium metal having a high reduction yield at 3 wt% of the Li 2 O concentration, the effect of the lithium oxide concentration on the reduction of lanthanide oxides has not been clarified

  19. The shape of change in perceived stress, negative affect, and stress sensitivity during mindfulness based stress reduction

    NARCIS (Netherlands)

    Snippe, E.; Dziak, J.J.; Lanza, S.T.; Nyklicek, I.; Wichers, M.

    2017-01-01

    Both daily stress and the tendency to react to stress with heightened levels of negative affect (i.e., stress sensitivity) are important vulnerability factors for adverse mental health outcomes. Mindfulness-based stress reduction (MBSR) may help to reduce perceived daily stress and stress

  20. The Shape of Change in Perceived Stress, Negative Affect, and Stress Sensitivity During Mindfulness-Based Stress Reduction

    NARCIS (Netherlands)

    Snippe, Evelien; Dziak, John J.; Lanza, Stephanie T.; Nykliek, Ivan; Wichers, Marieke

    Both daily stress and the tendency to react to stress with heightened levels of negative affect (i.e., stress sensitivity) are important vulnerability factors for adverse mental health outcomes. Mindfulness-based stress reduction (MBSR) may help to reduce perceived daily stress and stress

  1. Oxidative Stress, Redox Signaling, and Autophagy: Cell Death Versus Survival

    Science.gov (United States)

    Navarro-Yepes, Juliana; Burns, Michaela; Anandhan, Annadurai; Khalimonchuk, Oleh; del Razo, Luz Maria; Quintanilla-Vega, Betzabet; Pappa, Aglaia; Panayiotidis, Mihalis I.

    2014-01-01

    Abstract Significance: The molecular machinery regulating autophagy has started becoming elucidated, and a number of studies have undertaken the task to determine the role of autophagy in cell fate determination within the context of human disease progression. Oxidative stress and redox signaling are also largely involved in the etiology of human diseases, where both survival and cell death signaling cascades have been reported to be modulated by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Recent Advances: To date, there is a good understanding of the signaling events regulating autophagy, as well as the signaling processes by which alterations in redox homeostasis are transduced to the activation/regulation of signaling cascades. However, very little is known about the molecular events linking them to the regulation of autophagy. This lack of information has hampered the understanding of the role of oxidative stress and autophagy in human disease progression. Critical Issues: In this review, we will focus on (i) the molecular mechanism by which ROS/RNS generation, redox signaling, and/or oxidative stress/damage alter autophagic flux rates; (ii) the role of autophagy as a cell death process or survival mechanism in response to oxidative stress; and (iii) alternative mechanisms by which autophagy-related signaling regulate mitochondrial function and antioxidant response. Future Directions: Our research efforts should now focus on understanding the molecular basis of events by which autophagy is fine tuned by oxidation/reduction events. This knowledge will enable us to understand the mechanisms by which oxidative stress and autophagy regulate human diseases such as cancer and neurodegenerative disorders. Antioxid. Redox Signal. 21, 66–85. PMID:24483238

  2. Cocoa Phenolic Extract Protects Pancreatic Beta Cells against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Laura Bravo

    2013-07-01

    Full Text Available Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5–20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult.

  3. Genetics of Oxidative Stress in Obesity

    Directory of Open Access Journals (Sweden)

    Azahara I. Rupérez

    2014-02-01

    Full Text Available Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.

  4. Neuro-oxidative-nitrosative stress in sepsis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Møller, Kirsten; Bailey, Damian M

    2011-01-01

    Neuro-oxidative-nitrosative stress may prove the molecular basis underlying brain dysfunction in sepsis. In the current review, we describe how sepsis-induced reactive oxygen and nitrogen species (ROS/RNS) trigger lipid peroxidation chain reactions throughout the cerebrovasculature and surrounding...

  5. Oxidative Stress Control by Apicomplexan Parasites

    Directory of Open Access Journals (Sweden)

    Soraya S. Bosch

    2015-01-01

    Full Text Available Apicomplexan parasites cause infectious diseases that are either a severe public health problem or an economic burden. In this paper we will shed light on how oxidative stress can influence the host-pathogen relationship by focusing on three major diseases: babesiosis, coccidiosis, and toxoplasmosis.

  6. Oxidative stress and histopathological changes induced by ...

    African Journals Online (AJOL)

    Background: Methyl-thiophanate (MT), a fungicide largely used in agriculture throughout the world including Tunisia, protects many vegetables, fruits and field crops against a wide spectrum of fungal diseases. Oxidative stress has been proposed as a possible mechanism involved in MT toxicity on non-target organism.

  7. Tobacco smoking and oxidative stress to DNA

    DEFF Research Database (Denmark)

    Ellegaard, Pernille Kempel; Poulsen, Henrik Enghusen

    2016-01-01

    Oxidative stress to DNA from smoking was investigated in one randomized smoking cessation study and in 36 cohort studies from excretion of urinary 8-oxo-7-hydrodeoxyguanosine (8-oxodG). Meta-analysis of the 36 cohort studies showed smoking associated with a 15.7% (95% CL 11.0:20.3, p < 0.0001) in...

  8. Genetics of oxidative stress in obesity.

    Science.gov (United States)

    Rupérez, Azahara I; Gil, Angel; Aguilera, Concepción M

    2014-02-20

    Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs) in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.

  9. Mitochondrial oxidative stress causes hyperphosphorylation of tau.

    Directory of Open Access Journals (Sweden)

    Simon Melov

    2007-06-01

    Full Text Available Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD: tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2 die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576 with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.

  10. Hepatic Antioxidant, Oxidative Stress And Histopathological ...

    African Journals Online (AJOL)

    Hepatic Antioxidant, Oxidative Stress And Histopathological Changes Induced By Nicotine In A Gender Based Study In Adult Rats. ... Antioxidant status was assessed in liver by measuring the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and ...

  11. Oxidative stress in chemical toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, H.

    1986-05-01

    The toxic effect of compounds which undergo redox cycling enzymatic one-electron reduction are reviewed. First of all, the enzymatic reduction of these compounds leads to reactive intermediates, mainly radicals which react with oxygen, whereby superoxide anion radicals are formed. Further oxygen metabolites are hydrogen peroxide, singlet oxygen and hydroxyl radicals. The role of these oxygen metabolites in toxicity is discussed. The occurrence of lipid peroxidation during redox cycling of quinonoide compounds, e.g., adriamycin, and the possible relationship to their toxicity is critically evaluated. It is shown that iron ions play a crucial role in lipid peroxidation induced by redox cycling compounds. DNA damage by metal chelates, e.g., bleomycin, is discussed on the basis of findings that enzymatic redox cycling of a bleomycin-iron complex has been observed. The involvement of hydroxyl radicals in bleomycin-induced DNA damage occurring during redox cycling in cell nuclei is claimed. Redox cycling of other substances, e.g., aromatic amines, is discussed in relation to carcinogenesis. Other chemical groups, e.g., nitroaromatic compounds, hydroxylamines and azo compounds are included. Other targets for oxygen radical attack, e.g., proteins, are also dealt with. It is concluded that oxygen radical formation by redox cycling may be a critical event in toxic effects of several compounds if the protective mechanisms of cells are overwhelmed.

  12. IGF-1, oxidative stress, and atheroprotection

    Science.gov (United States)

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung; Delafontaine, Patrice

    2009-01-01

    Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a critical role not only in initial lesion formation but also in lesion progression and destabilization. While growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that IGF-1 exerts pleiotropic anti-oxidant effects along with anti-inflammatory effects that together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in vascular injury and atherosclerosis models, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1. PMID:20071192

  13. Piracetam improves mitochondrial dysfunction following oxidative stress

    Science.gov (United States)

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. Piracetam treatment at concentrations between 100 and 1000 μM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 μM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. Piracetam treatment (100–500 mg kg−1 daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients. PMID:16284628

  14. Reduction of chromium oxide from slags

    Directory of Open Access Journals (Sweden)

    Gutiérrez-Paredes, J.

    2005-12-01

    Full Text Available Experimental and theoretical work were performed to estimate the effect of slag basicity and amount of reducing agents on the reduction of chromium oxide from the slag which interacted with molten steel at 1,600 °C. The slag system contained CaO, MgO, SiO2, CaF2 and Cr2O3 together with Fe-alloys (Fe-Si and Fe-Si-Mg. The CaF2 and MgO contents in the slags were 10 mass % each; Cr2O3 was 25%. The amount of the ferroalloys ranged from 12.5 to 50 g per 100 g of slag. The (CaO+MgO/SiO2 ratio was held at 1 and 2. The Cr yield was determined using both Fe-alloys as reducing agents. Some estimations were made to determine the theoretical effect of temperature, slag basicity, (CaO+MgO/SiO2, and amount of reducing agents in the slag on the chromium recovery. The FACT (Facility for the Analysis of Chemical Thermodynamics computational package is used to determine the equilibrium between the slag and molten steel.

    En el presente trabajo se realiza un estudio teórico y experimental para determinar el efecto de la basicidad de la escoria y la cantidad de agentes reductores sobre la reducción de óxidos de cromo contenidos en la escoria, la cual está en contacto con acero líquido a 1.600 °C. La escoria se prepara con los reactivos CaO, MgO, SiO2, CaF2 y ferroaleaciones (Fe-Si y Fe-Si-Mg. Los contenidos de CaF2 y MgO en la escoria son de 10 %, cada uno, y el de Cr2O3 es 25 %. La cantidad de la ferroaleación varía de 12,5 a 50 g por cada 100 g de escoria. La relación (CaO+MgO/SiO2 tiene los valores de 1 y 2. Se determina la eficiencia de recuperación de cromo empleando los dos tipos de ferroaleaciones. Se realizaron cálculos para determinar el efecto teórico de la temperatura, la basicidad de la escoria, (CaO+MgO/SiO2, y la cantidad de agentes reductores sobre la reducci

  15. Reductive stress in young healthy individuals at risk of Alzheimer disease.

    Science.gov (United States)

    Badía, Mari-Carmen; Giraldo, Esther; Dasí, Francisco; Alonso, Dolores; Lainez, Jose M; Lloret, Ana; Viña, Jose

    2013-10-01

    Oxidative stress is a hallmark of Alzheimer disease (AD) but this has not been studied in young healthy persons at risk of the disease. Carrying an Apo ε4 allele is the major genetic risk factor for AD. We have observed that lymphocytes from young, healthy persons carrying at least one Apo ε4 allele suffer from reductive rather than oxidative stress, i.e., lower oxidized glutathione and P-p38 levels and higher expression of enzymes involved in antioxidant defense, such as glutamylcysteinyl ligase and glutathione peroxidase. In contrast, in the full-blown disease, the situation is reversed and oxidative stress occurs, probably because of the exhaustion of the antioxidant mechanisms just mentioned. These results provide insights into the early events of the progression of the disease that may allow us to find biomarkers of AD at its very early stages. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah; Fischle, Wolfgang

    2016-01-01

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences

  17. Study on the serum oxidative stress status in silicosis patients

    African Journals Online (AJOL)

    Administrator

    2011-09-07

    Sep 7, 2011 ... oxidative stress parameters were investigated in silicosis patients and controls group. 128 silicosis ... to help clinicians to further delineate the role of oxidative- stress .... in age, working duration smoking, total cholesterol, ALT,.

  18. Protective effects of flavonoids from corn silk on oxidative stress ...

    African Journals Online (AJOL)

    Protective effects of flavonoids from corn silk on oxidative stress induced by ... The present study aims at exploring the effects of flavonoids from corn silk (FCS) on oxidative stress induced by exhaustive exercise in mice. ... from 32 Countries:.

  19. Biochemical basis of the high resistance to oxidative stress in ...

    Indian Academy of Sciences (India)

    Unknown

    581. Keywords. Apoptosis; D. discoideum; oxidative stress; antioxidant enzymes; lipid peroxidation ..... multiple toxic effects of oxidative stress that is related to several pathological conditions ... culture. This work was supported by a grant to RB.

  20. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity.

    Science.gov (United States)

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M; Dhabhar, Firdaus S; Su, Yali; Epel, Elissa

    2013-09-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F(2α) (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-oxoG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as "peak" cortisol reactivity, while the increase from 0 to 15 min was defined as "anticipatory" cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (pstress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-oxoG and IsoP (but not 8-OHdG) via anticipatory cortisol reactivity, showing the expected relations among chronically stressed participants (p≤.01) Intriguingly, among those with low chronic stress

  1. Plant Polyphenol Antioxidants and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    INES URQUIAGA

    2000-01-01

    Full Text Available In recent years there has been a remarkable increment in scientific articles dealing with oxidative stress. Several reasons justify this trend: knowledge about reactive oxygen and nitrogen species metabolism; definition of markers for oxidative damage; evidence linking chronic diseases and oxidative stress; identification of flavonoids and other dietary polyphenol antioxidants present in plant foods as bioactive molecules; and data supporting the idea that health benefits associated with fruits, vegetables and red wine in the diet are probably linked to the polyphenol antioxidants they contain.In this review we examine some of the evidence linking chronic diseases and oxidative stress, the distribution and basic structure of plant polyphenol antioxidants, some biological effects of polyphenols, and data related to their bioavailability and the metabolic changes they undergo in the intestinal lumen and after absorption into the organism.Finally, we consider some of the challenges that research in this area currently faces, with particular emphasis on the contributions made at the International Symposium "Biology and Pathology of Free Radicals: Plant and Wine Polyphenol Antioxidants" held July 29-30, 1999, at the Catholic University, Santiago, Chile and collected in this special issue of Biological Research

  2. Comparative study of synthesis and reduction methods for graphene oxide

    KAUST Repository

    Alazmi, Amira; Rasul, Shahid; Patole, Shashikant P.; Da Costa, Pedro M. F. J.

    2016-01-01

    Graphene oxide (GO) and reduced graphene oxide (rGO) have congregated much interest as promising active materials for a variety of applications such as electrodes for supercapacitors. Yet, partially given the absence of comparative studies in synthesis methodologies, a lack of understanding persists on how to best tailor these materials. In this work, the effect of using different graphene oxidation-reduction strategies in the structure and chemistry of rGOs is systematically discussed. Two of the most popular oxidation routes in the literature were used to obtain GO. Subsequently, two sets of rGO powders were synthesised employing three different reduction routes, totalling six separate products. It is shown that the extension of the structural rearrangement in rGOs is not just dependent on the reduction step but also on the approach followed for the initial graphite oxidation.

  3. Comparative study of synthesis and reduction methods for graphene oxide

    KAUST Repository

    Alazmi, Amira

    2016-05-14

    Graphene oxide (GO) and reduced graphene oxide (rGO) have congregated much interest as promising active materials for a variety of applications such as electrodes for supercapacitors. Yet, partially given the absence of comparative studies in synthesis methodologies, a lack of understanding persists on how to best tailor these materials. In this work, the effect of using different graphene oxidation-reduction strategies in the structure and chemistry of rGOs is systematically discussed. Two of the most popular oxidation routes in the literature were used to obtain GO. Subsequently, two sets of rGO powders were synthesised employing three different reduction routes, totalling six separate products. It is shown that the extension of the structural rearrangement in rGOs is not just dependent on the reduction step but also on the approach followed for the initial graphite oxidation.

  4. Reduced coupling of oxidative phosphorylation in vivo precedes electron transport chain defects due to mild oxidative stress in mice.

    Directory of Open Access Journals (Sweden)

    Michael P Siegel

    Full Text Available Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ treatment of wild type mice and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1(-/- models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain.

  5. Reduction of graphene oxide and its effect on square resistance of reduced graphene oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhaoxia; Zhou, Yin; Li, Guang Bin; Wang, Shaohong; Wang, Mei Han; Hu, Xiaodan; Li, Siming [Liaoning Province Key Laboratory of New Functional Materials and Chemical Technology, School ofMechanical Engineering, Shenyang University, Shenyang (China)

    2015-06-15

    Graphite oxide was prepared via the modified Hummers’ method and graphene via chemical reduction. Deoxygenation efficiency of graphene oxide was compared among single reductants including sodium borohydride, hydrohalic acids, hydrazine hydrate, and vitamin C. Two-step reduction of graphene oxide was primarily studied. The reduced graphene oxide was characterized by XRD, TG, SEM, XPS, and Raman spectroscopy. Square resistance was measured as well. Results showed that films with single-step N2H4 reduction have the best transmittance and electrical conductivity with square resistance of ~5746 Ω/sq at 70% transmittance. This provided an experimental basis of using graphene for electronic device applications.

  6. Oxidative stress and the high altitude environment

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2013-03-01

    Full Text Available In the recent years there has been considerable interest in mountain sports, including mountaineering, owing to the general availability of climbing clothing and equipment as well trainings and professional literature. This raised a new question for the environmental and mountain medicine: Is mountaineering harmful to health? Potential hazards include the conditions existing in the alpine environment, i.e. lower atmospheric pressure leading to the development of hypobaric hypoxia, extreme physical effort, increased UV radiation, lack of access to fresh food, and mental stress. A reasonable measure of harmfulness of these factors is to determine the increase in the level of oxidative stress. Alpine environment can stimulate the antioxidant enzyme system but under specific circumstances it may exceed its capabilities with simultaneous consumption of low-molecular antioxidants resulting in increased generation of reactive oxygen species (ROS. This situation is referred to as oxidative stress. Rapid and uncontrolled proliferation of reactive oxygen species leads to a number of adverse changes, resulting in the above-average damage to the lipid structures of cell membranes (peroxidation, proteins (denaturation, and nucleic acids. Such situation within the human body cannot take place without resultant systemic consequences. This explains the malaise of people returning from high altitude and a marked decrease in their physical fitness. In addition, a theory is put forward that the increase in the level of oxidative stress is one of the factors responsible for the onset of acute mountain sickness (AMS. However, such statement requires further investigation because the currently available literature is inconclusive. This article presents the causes and effects of development of oxidative stress in the high mountains.

  7. Oxidative costs of reproduction: Oxidative stress in mice fed standard and low antioxidant diets.

    Science.gov (United States)

    Vaanholt, L M; Milne, A; Zheng, Y; Hambly, C; Mitchell, S E; Valencak, T G; Allison, D B; Speakman, J R

    2016-02-01

    Lactation is one of the most energetically expensive behaviours, and trade-offs may exist between the energy devoted to it and somatic maintenance, including protection against oxidative damage. However, conflicting data exist for the effects of reproduction on oxidative stress. In the wild, a positive relationship is often observed, but in laboratory studies oxidative damage is often lower in lactating than in non-breeding animals. We hypothesised that this discrepancy may exist because during lactation food intake increases many-fold resulting in a large increase in the intake of dietary antioxidants which are typically high in laboratory rodent chow where they are added as a preservative. We supplied lactating and non-breeding control mice with either a standard or low antioxidant diet and studied how this affected the activity of endogenous antioxidants (catalase, superoxide dismutase; SOD, and glutathione peroxidise; GPx) and oxidative damage to proteins (protein carbonyls, PC) in liver and brain tissue. The low antioxidant diet did not significantly affect activities of antioxidant enzymes in brain or liver, and generally did not result in increased protein damage, except in livers of control mice on low antioxidant diet. Catalase activity, but not GPx or SOD, was decreased in both control and lactating mice on the low antioxidant diet. Lactating mice had significantly reduced oxidative damage to both liver and brain compared to control mice, independent of the diet they were given. In conclusion, antioxidant content of the diet did not affect oxidative stress in control or reproductive mice, and cannot explain the previously observed reduction in oxidative stress in lactating mammals studied in the laboratory. The reduced oxidative stress in the livers of lactating mice even under low antioxidant diet treatment was consistent with the 'shielding' hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Hybrid process for nitrogen oxides reduction

    Energy Technology Data Exchange (ETDEWEB)

    Epperly, W.R.; Sprague, B.N.

    1991-09-10

    This patent describes a process for reducing the nitrogen oxide concentration in the effluent from the combustion of a carbonaceous fuel. It comprises introducing into the effluent a first treatment agent comprising a nitrogenous composition selected from the group consisting of urea, ammonia, hexamethylenetetramine, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, NH{sub 4}-lignosulfonate, fur-furylamine, tetrahydrofurylamine, hexamethylenediamine, barbituric acid, guanidine, guanidine carbonate, biguanidine, guanylurea sulfate, melamine, dicyandiamide, biuret, 1.1{prime}-azobisformamide, methylol urea, methylol urea-urea condensation product, dimethylol urea, methyl urea, dimethyl urea, calcium cyanamide, and mixtures thereof under conditions effective to reduce the nitrogen oxides concentration and ensure the presence of ammonia in the effluent; introducing into the effluent a second treatment agent comprising an oxygenated hydrocarbon at an effluent temperature of about 500{degrees} F. to about 1600{degrees} F. under conditions effective to oxidize nitric oxide in the effluent to nitrogen dioxide and ensure the presence of ammonia at a weight ratio of ammonia to nitrogen dioxide of about 1:5 to about 5:1; and contacting the effluent with an aqueous scrubbing solution having a pH of 12 or lower under conditions effective to cause nitrogen dioxide to be absorbed therein.

  9. Oxidative Stress and Periodontal Disease in Obesity.

    Science.gov (United States)

    Dursun, Erhan; Akalin, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-03-01

    Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women.Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated.Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status markers

  10. Nitric oxide in the stress axis.

    Science.gov (United States)

    López-Figueroa, M O; Day, H E; Akil, H; Watson, S J

    1998-10-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbic-hypothalamic-pituitary-adrenal (LHPA) or stress axis, activation of which is one of the defining features of a stress response. Evidence suggests that NO may modulate the release of the stress hormones ACTH and corticosterone, and NOS activity and transcription is increased in the LHPA axis following various stressful stimuli. Furthermore, following activation of the stress axis, glucocorticoids are thought to down-regulate the transcription and activity of NOS via a feedback mechanism. Taken together, current data indicate a role for NO in the regulation of the LHPA axis, although at present this role is not well defined. It has been suggested that NO may act as a cellular communicator in plasticity and development, to facilitate the activation or the release of other neurotransmitters, to mediate immune responses, and/or as a vasodilator in the regulation of blood flow. In the following review we summarize some of the latest insights into the function of NO, with special attention to its relationship with the LHPA axis.

  11. C3 Epimerization of Glucose, via Regioselective Oxidation and Reduction

    NARCIS (Netherlands)

    Jumde, Varsha R.; Eisink, Niek N. H. M.; Witte, Martin D.; Minnaard, Adriaan J.

    2016-01-01

    Palladium-catalyzed oxidation can single out the secondary hydroxyl group at C3 in glucose, circumventing the more readily accessible hydroxyl at C6 and the more reactive anomeric hydroxyl. Oxidation followed by reduction results in either allose or allitol, each a rare sugar that is important in

  12. Biochemical basis of the high resistance to oxidative stress

    Indian Academy of Sciences (India)

    Aerobic organisms experience oxidative stress due to generation of reactive oxygen species during normal aerobic metabolism. In addition, several chemicals also generate reactive oxygen species which induce oxidative stress. Thus oxidative stress constitutes a major threat to organisms living in aerobic environments.

  13. Wet-cupping removes oxidants and decreases oxidative stress.

    Science.gov (United States)

    Tagil, Suleyman Murat; Celik, Huseyin Tugrul; Ciftci, Sefa; Kazanci, Fatmanur Hacievliyagil; Arslan, Muzeyyen; Erdamar, Nazan; Kesik, Yunus; Erdamar, Husamettin; Dane, Senol

    2014-12-01

    Wet-cupping therapy is one of the oldest known medical techniques. Although it is widely used in various conditions such as acute\\chronic inflammation, infectious diseases, and immune system disorders, its mechanism of action is not fully known. In this study, we investigated the oxidative status as the first step to elucidate possible mechanisms of action of wet cupping. Wet cupping therapy is implemented to 31 healthy volunteers. Venous blood samples and Wet cupping blood samples were taken concurrently. Serum nitricoxide, malondialdehyde levels and activity of superoxide dismutase and myeloperoxidase were measured spectrophotometrically. Wet cupping blood had higher activity of myeloperoxidase, lower activity of superoxide dismutase, higher levels of malondialdehyde and nitricoxide compared to the venous blood. Wet cupping removes oxidants and decreases oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Accelerated creep in solid oxide fuel cell anode supports during reduction

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Makowska, Malgorzata Grazyna; Greco, Fabio

    2016-01-01

    To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. The creep of reduced Ni-YSZ anode support at operating conditions has been...... studied previously. In this work a newly discovered creep phenomenon taking place during the reduction is reported. This relaxes stresses at a much higher rate (∼ x104) than creep during operation. The phenomenon was studied both in three-point bending and uniaxial tension. Differences between the two...... the NiO and the YSZ phases occurs during reduction. The accelerated creep should practically eliminate any residual stress in the anode support in an SOFC stack, as has previously been indirectly observed. This phenomenon has to be taken into account both in the production of stacks and in the simulation...

  15. Electrochemical reduction of actinides oxides in molten salts

    International Nuclear Information System (INIS)

    Claux, B.

    2011-01-01

    Reactive metals are currently produced from their oxide by multiple steps reduction techniques. A one step route from the oxide to the metal has been suggested for metallic titanium production by electrolysis in high temperature molten chloride salts. In the so-called FFC process, titanium oxide is electrochemically reduced at the cathode, generating O 2- ions, which are converted on a graphite anode into carbon oxide or dioxide. After this process, the spent salt can in principle be reused for several batches which is particularly attractive for a nuclear application in terms of waste minimization. In this work, the electrochemical reduction process of cerium oxide (IV) is studied in CaCl 2 and CaCl 2 -KCl melts to understand the oxide reduction mechanism. Cerium is used as a chemical analogue of actinides. Electrolysis on 10 grams of cerium oxide are made to find optimal conditions for the conversion of actinides oxides into metals. The scale-up to hundred grams of oxide is also discussed. (author) [fr

  16. Nickel oxide reduction studied by environmental TEM

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2012-01-01

    In situ reduction of an industrial NiO powder is performed under 1.3 mbar of H2 (2 mlN/min) in a differentially pumped FEI Titan 80-300 environmental transmission electron microscope (ETEM). Images, diffraction patterns and electron energy loss spectra (EELS) are acquired to monitor the structura...

  17. Oxidative stress and Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Javier eBlesa

    2015-07-01

    Full Text Available Parkinson disease is a chronic, progressive neurological disease that is associated with a loss of dopaminergic neurons in the substantia nigra of the brain. The molecular mechanisms underlying the loss of these neurons still remain elusive. Oxidative stress is thought to play an important role in dopaminergic neurotoxicity. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neuronal degeneration in Parkinson’s Disease. Environmental factors, such as neurotoxins, insecticides like rotenone, pesticides like Paraquat, dopamine itself and genetic mutations in Parkinson’s Disease related proteins contribute to mitochondrial dysfunction which precedes reactive oxygen species formation. In this mini review, we give an update of the classical pathways involving these mechanisms of neurodegeneration, the biochemical and molecular events that mediate or regulate DA neuronal vulnerability, and the role of PD-related gene products in modulating cellular responses to oxidative stress in the course of the neurodegenerative process.

  18. Kinetics of the reduction of uranium oxide catalysts

    International Nuclear Information System (INIS)

    Heynen, H.W.G.; Camp-van Berkel, M.M.; Bann, H.S. van der

    1977-01-01

    The reduction of uranium oxide and uranium oxide on alumina catalysts by ethylbenzene and by hydrogen has been studied in a thermobalance. Ethylbenzene mole fractions between 0.0026 and 0.052 and hydrogen mole fractions between 0.1 and 0.6 were applied at temperatures of 425--530 0 C. During the reduction the uranium oxides are converted into UO 2 . The rate of reduction of pure uranium oxide appears to be constant in the composition region UO/sub 2.6/-UO/sub 2.25/. The extent of this region is independent of the concentration of the reducing agents and of the reaction temperature. The constant rate is explained in terms of a constant oxygen pressure which is in equilibrium with the two solid phases, U 3 O/sub 8-x/ and U 4 O 9 . The reduction rate is first order in hydrogen and zero order in ethylbenzene with activation energies of 120 and 190 kJ mol -1 , respectively. Oxygen diffusion through the lattice is probably not rate limiting. The reduction behavior of uranium oxide on alumina is different from that of pure uranium oxide; the rate of reduction continuously decreases with increasing degree of reduction. An explanation for this behavior has been given by visualizing this catalyst as a set of isolated uranium oxide crystallites with a relative wide variation of diameters, in an alumina matrix. At the beginning of the reduction, carbon dioxide and water are the only reaction products. Thereafter, benzene is found as well and, finally, at U/O ratios below 2.25, styrene also appears in the reactor outlet

  19. Thermodynamic analysis of reduction reactions of niobium oxides

    International Nuclear Information System (INIS)

    Takano, C.

    1981-01-01

    Reduction processes of niobium oxides by hydrogen, carbon and aluminium are analysed thermodinamically. It is shown that reduction by hydrogen is not technically feasible. High purity of raw materials is required. In the carbothermic process impurities which react to form high stability carbides should be avoided. (Author) [pt

  20. Influence of Oxidative Stress on Stored Platelets

    OpenAIRE

    K. Manasa; R. Vani

    2016-01-01

    Platelet storage and its availability for transfusion are limited to 5-6 days. Oxidative stress (OS) is one of the causes for reduced efficacy and shelf-life of platelets. The studies on platelet storage have focused on improving the storage conditions by altering platelet storage solutions, temperature, and materials. Nevertheless, the role of OS on platelet survival during storage is still unclear. Hence, this study was conducted to investigate the influence of storage on platelets. Platele...

  1. Oxidative stress and Parkinson’s Disease

    OpenAIRE

    Javier eBlesa; Javier eBlesa; Javier eBlesa; Ines eTrigo-Damas; Ines eTrigo-Damas; Anna eQuiroga-Varela; Vernice Ruffin Jackson-Lewis

    2015-01-01

    Parkinson disease is a chronic, progressive neurological disease that is associated with a loss of dopaminergic neurons in the substantia nigra of the brain. The molecular mechanisms underlying the loss of these neurons still remain elusive. Oxidative stress is thought to play an important role in dopaminergic neurotoxicity. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neuronal degeneration in Parkinson’s Disease. Environmental factors, such as neuro...

  2. Piracetam improves mitochondrial dysfunction following oxidative stress

    OpenAIRE

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging.Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction fol...

  3. 2-22 Study of Oxidation/reduction Volatilization Technology

    Institute of Scientific and Technical Information of China (English)

    Tan; Cunmin[1; Cao; Shiwei[1; Tian; Yuan[1; Qin; Zhi[1

    2015-01-01

    As an advanced dry head-end processing of spent fuel reprocessing, the oxidation-reduction volatilization technology will use for pulverizing uranium oxide ceramic pellets, decladding, and removal of most of volatile and semi-volatile fission elements, 3H, 14C, Kr, Xe, I, Cs, Ru and Tc, from fuel prior to main treatment process. The AIROX and ORIOX process, including circulation of oxidation in oxygen atmosphere and reduction in hydrogen atmosphere, researched on international at present, is considered to be the first choice for head-end processing.

  4. Catalytic activity of lanthanum oxide for the reduction of cyclohexanone

    International Nuclear Information System (INIS)

    Sugunan, S.; Sherly, K.B.

    1994-01-01

    Lanthanum oxides, La 2 O 3 has been found to be an effective catalyst for the liquid phase reduction of cyclohexanone. The catalytic activities of La 2 O 3 activated at 300, 500 and 800 degC and its mixed oxides with alumina for the reduction of cylcohexanone with 2-propanol have been determined and the data parallel that of the electron donating properties of the catalysts. The electron donating properties of the catalysts have been determined from the adsorption of electron acceptors of different electron affinities on the surface of these oxides. (author). 15 refs., 2 figs., 1 tab

  5. Oxidative stress and male reproductive health

    Directory of Open Access Journals (Sweden)

    Robert J Aitken

    2014-02-01

    Full Text Available One of the major causes of defective sperm function is oxidative stress, which not only disrupts the integrity of sperm DNA but also limits the fertilizing potential of these cells as a result of collateral damage to proteins and lipids in the sperm plasma membrane. The origins of such oxidative stress appear to involve the sperm mitochondria, which have a tendency to generate high levels of superoxide anion as a prelude to entering the intrinsic apoptotic cascade. Unfortunately, these cells have very little capacity to respond to such an attack because they only possess the first enzyme in the base excision repair (BER pathway, 8-oxoguanine glycosylase 1 (OGG1. The latter successfully creates an abasic site, but the spermatozoa cannot process the oxidative lesion further because they lack the downstream proteins (APE1, XRCC1 needed to complete the repair process. It is the responsibility of the oocyte to continue the BER pathway prior to initiation of S-phase of the first mitotic division. If a mistake is made by the oocyte at this stage of development, a mutation will be created that will be represented in every cell in the body. Such mechanisms may explain the increase in childhood cancers and other diseases observed in the offspring of males who have suffered oxidative stress in their germ line as a consequence of age, environmental or lifestyle factors. The high prevalence of oxidative DNA damage in the spermatozoa of male infertility patients may have implications for the health of children conceivedin vitro and serves as a driver for current research into the origins of free radical generation in the germ line.

  6. Chrononutrition against Oxidative Stress in Aging

    Directory of Open Access Journals (Sweden)

    M. Garrido

    2013-01-01

    Full Text Available Free radicals and oxidative stress have been recognized as important factors in the biology of aging and in many age-associated degenerative diseases. Antioxidant systems deteriorate during aging. It is, thus, considered that one way to reduce the rate of aging and the risk of chronic disease is to avoid the formation of free radicals and reduce oxidative stress by strengthening antioxidant defences. Phytochemicals present in fruits, vegetables, grains, and other foodstuffs have been linked to reducing the risk of major oxidative stress-induced diseases. Some dietary components of foods possess biological activities which influence circadian rhythms in humans. Chrononutrition studies have shown that not only the content of food, but also the time of ingestion contributes to the natural functioning of the circadian system. Dietary interventions with antioxidant-enriched foods taking into account the principles of chrononutrition are of particular interest for the elderly since they may help amplify the already powerful benefits of phytochemicals as natural instruments with which to prevent or delay the onset of common age-related diseases.

  7. Oxidative stress in ageing of hair.

    Science.gov (United States)

    Trüeb, Ralph M

    2009-01-01

    Experimental evidence supports the hypothesis that oxidative stress plays a major role in the ageing process. Reactive oxygen species are generated by a multitude of endogenous and environmental challenges. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage cellular structural membranes, lipids, proteins, and DNA. The body possesses endogenous defence mechanisms, such as antioxidative enzymes and non-enzymatic antioxidative molecules, protecting it from free radicals by reducing and neutralizing them. With age, the production of free radicals increases, while the endogenous defence mechanisms decrease. This imbalance leads to the progressive damage of cellular structures, presumably resulting in the ageing phenotype. Ageing of hair manifests as decrease of melanocyte function or graying, and decrease in hair production or alopecia. There is circumstantial evidence that oxidative stress may be a pivotal mechanism contributing to hair graying and hair loss. New insights into the role and prevention of oxidative stress could open new strategies for intervention and reversal of the hair graying process and age-dependent alopecia.

  8. Symbiosis-induced adaptation to oxidative stress.

    Science.gov (United States)

    Richier, Sophie; Furla, Paola; Plantivaux, Amandine; Merle, Pierre-Laurent; Allemand, Denis

    2005-01-01

    Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.

  9. Iron, Oxidative Stress and Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Taifeng Zhuang

    2014-09-01

    Full Text Available Both iron deficiency and hyperglycemia are highly prevalent globally for pregnant women. Iron supplementation is recommended during pregnancy to control iron deficiency. The purposes of the review are to assess the oxidative effects of iron supplementation and the potential relationship between iron nutrition and gestational diabetes. High doses of iron (~relative to 60 mg or more daily for adult humans can induce lipid peroxidation in vitro and in animal studies. Pharmaceutical doses of iron supplements (e.g., 10× RDA or more for oral supplements or direct iron supplementation via injection or addition to the cell culture medium for a short or long duration will induce DNA damage. Higher heme-iron intake or iron status measured by various biomarkers, especially serum ferritin, might contribute to greater risk of gestational diabetes, which may be mediated by iron oxidative stress though lipid oxidation and/or DNA damage. However, information is lacking about the effect of low dose iron supplementation (≤60 mg daily on lipid peroxidation, DNA damage and gestational diabetes. Randomized trials of low-dose iron supplementation (≤60 mg daily for pregnant women are warranted to test the relationship between iron oxidative stress and insulin resistance/gestational diabetes, especially for iron-replete women.

  10. External caps: An approach to stress reduction in balloons

    Science.gov (United States)

    Hazlewood, K. H.

    Recent findings of the catastrophic balloon failures investigation in the U.S.A. indicate that very large gross inflations, in balloons using present design philosophy, over-stress currently available materials. External caps are proposed as an economic approach to reducting those stresses to an acceptable level.

  11. Hydroxytyrosol prevents reduction in liver activity of Δ-5 and Δ-6 desaturases, oxidative stress, and depletion in long chain polyunsaturated fatty acid content in different tissues of high-fat diet fed mice.

    Science.gov (United States)

    Valenzuela, Rodrigo; Echeverria, Francisca; Ortiz, Macarena; Rincón-Cervera, Miguel Ángel; Espinosa, Alejandra; Hernandez-Rodas, María Catalina; Illesca, Paola; Valenzuela, Alfonso; Videla, Luis A

    2017-04-11

    Eicosapentaenoic acid (EPA, C20:5n-3), docosahexaenoic acid (DHA, C22:6n-3) and arachidonic acid (AA, C20:4n-6) are long-chain polyunsaturated fatty acids (LCPUFAs) with relevant roles in the organism. EPA and DHA are synthesized from the precursor alpha-linolenic acid (ALA, C18:3n-3), whereas AA is produced from linoleic acid (LA, C18:2n-6) through the action of Δ5 and Δ6-desaturases. High-fat diet (HFD) decreases the activity of both desaturases and LCPUFA accretion in liver and other tissues. Hydroxytyrosol (HT), a natural antioxidant, has an important cytoprotective effects in different cells and tissues. Male mice C57BL/6 J were fed a control diet (CD) (10% fat, 20% protein, 70% carbohydrates) or a HFD (60% fat, 20% protein, 20% carbohydrates) for 12 weeks. Animals were daily supplemented with saline (CD) or 5 mg HT (HFD), and blood and the studied tissues were analyzed after the HT intervention. Parameters studied included liver histology (optical microscopy), activity of hepatic desaturases 5 and 6 (gas-liquid chromatography of methyl esters derivatives) and antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase by spectrophotometry), oxidative stress indicators (glutathione, thiobarbituric acid reactants, and the antioxidant capacity of plasma), gene expression assays for sterol regulatory element-binding protein 1c (SREBP-1c) (qPCR and ELISA), and LCPUFA profiles in liver, erythrocyte, brain, heart, and testicle (gas-liquid chromatography). HFD led to insulin resistance and liver steatosis associated with SREBP-1c upregulation, with enhancement in plasma and liver oxidative stress status and diminution in the synthesis and storage of n-6 and n-3 LCPUFAs in the studied tissues, compared to animals given control diet. HT supplementation significantly reduced fat accumulation in liver and plasma as well as tissue metabolic alterations induced by HFD. Furthermore, a normalization of desaturase activities

  12. Investigation of the Reduction of Graphene Oxide by Lithium Triethylborohydride

    Directory of Open Access Journals (Sweden)

    Guangyuan Xu

    2016-01-01

    Full Text Available The chemical reduction of a wet colloidal suspension of graphene oxide is a cost-effective and adaptable method for large scale production of “quasi” graphene for a wide variety of optoelectronic applications. In this study, modified Hummers’ procedure was used to synthesize high quality graphene oxide at 50°C. This modified protocol thus eliminates the potentially hazardous second high-temperature step in Hummers’ method for the production of GO. Furthermore, the reduction of graphene oxide by lithium triethylborohydride is demonstrated for the first time. According to FT-IR, UV-Vis, TGA, Raman, SEM/EDS, and AFM results, the reduced graphene oxide (LiEt3BH-RGO has properties comparable to other reduced graphene oxide products reported in the literature.

  13. Antioxidant and enzymatic responses to oxidative stress induced by pre-harvest water supply reduction and ripening on mango (Mangifera indica L. cv. 'Cogshall') in relation to carotenoid content.

    Science.gov (United States)

    Rosalie, Rémy; Joas, Jacques; Deytieux-Belleau, Christelle; Vulcain, Emmanuelle; Payet, Bertrand; Dufossé, Laurent; Léchaudel, Mathieu

    2015-07-20

    The effects of a reduction in water supply during fruit development and postharvest fruit ripening on the oxidative status and the antioxidant defense system were studied in the mango fruit (Mangifera indica L.) cv. Cogshall. Changes in non-enzymatic (ascorbate) and enzymatic (SOD, CAT, APX, MDHAR, DHAR and GR) antioxidants, as well as oxidative parameters (H2O2 and MDA) and major carotenoids, were measured in unripe and ripe fruits from well-irrigated and non-irrigated trees. Under non-limiting water supply conditions, ripening induced oxidation as a result of the production of ROS and decreased ascorbate content. Antioxidant enzymatic systems were activated to protect fruit tissues and to regenerate the ascorbate pool. The carotenoid pool, mainly represented by β-carotene and esterified violaxanthine isomers, accumulated naturally during mango ripening. The suppression of irrigation decreased fruit size and induced accumulation of ABA and of its storage form, ABA-GE, in fruit pulp from the earliest harvest. It also increased oxidation, which was observable by the high levels of ascorbate measured at the early stages at harvest, and by the delay in the time it took to reach the pseudo constant carotene-to-xanthophyll ratio in ripe fruits. Nevertheless, differences between the irrigation treatments on the antioxidant system in ripe fruits were not significant, mainly because of the drastic changes in this system during ripening. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Smartphone Applications Utilizing Biofeedback Can Aid Stress Reduction

    Science.gov (United States)

    Dillon, Alison; Kelly, Mark; Robertson, Ian H.; Robertson, Deirdre A.

    2016-01-01

    Introduction: Stress is one of the leading global causes of disease and premature mortality. Despite this, interventions aimed at reducing stress have low adherence rates. The proliferation of mobile phone devices along with gaming-style applications allows for a unique opportunity to broaden the reach and appeal of stress-reduction interventions in modern society. We assessed the effectiveness of two smartphone applications games combined with biofeedback in reducing stress. Methods: We compared a control game to gaming-style smartphone applications combined with a skin conductance biofeedback device (the Pip). Fifty participants aged between 18 and 35 completed the Trier Social Stress Test. They were then randomly assigned to the intervention (biofeedback game) or control group (a non-biofeedback game) for thirty minutes. Perceived stress, heart rate and mood were measured before and after participants had played the games. Results: A mixed factorial ANOVA showed a significant interaction between time and game type in predicting perceived stress [F(1,48) = 14.19, p biofeedback intervention had significantly reduced stress compared to the control group. There was also a significant interaction between time and game in predicting heart rate [F(1,48) = 6.41, p biofeedback intervention showed significant reductions in heart rate compared to the control group. Discussion: This illustrates the potential for gaming-style smartphone applications combined with biofeedback as stress reduction interventions. PMID:27378963

  15. Role of oxidative stress in female reproduction

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh K

    2005-07-01

    Full Text Available Abstract In a healthy body, ROS (reactive oxygen species and antioxidants remain in balance. When the balance is disrupted towards an overabundance of ROS, oxidative stress (OS occurs. OS influences the entire reproductive lifespan of a woman and even thereafter (i.e. menopause. OS results from an imbalance between prooxidants (free radical species and the body's scavenging ability (antioxidants. ROS are a double-edged sword – they serve as key signal molecules in physiological processes but also have a role in pathological processes involving the female reproductive tract. ROS affect multiple physiological processes from oocyte maturation to fertilization, embryo development and pregnancy. It has been suggested that OS modulates the age-related decline in fertility. It plays a role during pregnancy and normal parturition and in initiation of preterm labor. Most ovarian cancers appear in the surface epithelium, and repetitive ovulation has been thought to be a causative factor. Ovulation-induced oxidative base damage and damage to DNA of the ovarian epithelium can be prevented by antioxidants. There is growing literature on the effects of OS in female reproduction with involvement in the pathophsiology of preeclampsia, hydatidiform mole, free radical-induced birth defects and other situations such as abortions. Numerous studies have shown that OS plays a role in the pathoysiology of infertility and assisted fertility. There is some evidence of its role in endometriosis, tubal and peritoneal factor infertility and unexplained infertility. This article reviews the role OS plays in normal cycling ovaries, follicular development and cyclical endometrial changes. It also discusses OS-related female infertility and how it influences the outcomes of assisted reproductive techniques. The review comprehensively explores the literature for evidence of the role of oxidative stress in conditions such as abortions, preeclampsia, hydatidiform mole, fetal

  16. Reduction in perceived stress as a migraine trigger

    Science.gov (United States)

    Lipton, Richard B.; Hall, Charles B.; Tennen, Howard; DeFreitas, Tiffani A.; Borkowski, Thomas M.; Grosberg, Brian M.; Haut, Sheryl R.

    2014-01-01

    Objective: To test whether level of perceived stress and reductions in levels of perceived stress (i.e., “let-down”) are associated with the onset of migraine attacks in persons with migraine. Methods: Patients with migraine from a tertiary headache center were invited to participate in a 3-month electronic diary study. Participants entered data daily regarding migraine attack experience, subjective stress ratings, and other data. Stress was assessed using 2 measures: the Perceived Stress Scale and the Self-Reported Stress Scale. Logit-normal, random-effects models were used to estimate the odds ratio for migraine occurrence as a function of level of stress over several time frames. Results: Of 22 enrolled participants, 17 (median age 43.8 years) completed >30 days of diaries, yielding 2,011 diary entries including 110 eligible migraine attacks (median 5 attacks per person). Level of stress was not generally associated with migraine occurrence. However, decline in stress from one evening diary to the next was associated with increased migraine onset over the subsequent 6, 12, and 18 hours, with odds ratios ranging from 1.5 to 1.9 (all p values < 0.05) for the Perceived Stress Scale. Decline in stress was associated with migraine onset after controlling for level of stress for all time points. Findings were similar using the Self-Reported Stress Scale. Conclusions: Reduction in stress from one day to the next is associated with migraine onset the next day. Decline in stress may be a marker for an impending migraine attack and may create opportunities for preemptive pharmacologic or behavioral interventions. PMID:24670889

  17. Cuprous oxide nanoparticles dispersed on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction.

    Science.gov (United States)

    Yan, Xiao-Yan; Tong, Xi-Li; Zhang, Yue-Fei; Han, Xiao-Dong; Wang, Ying-Yong; Jin, Guo-Qiang; Qin, Yong; Guo, Xiang-Yun

    2012-02-11

    Cuprous oxide (Cu(2)O) nanoparticles dispersed on reduced graphene oxide (RGO) were prepared by reducing copper acetate supported on graphite oxide using diethylene glycol as both solvent and reducing agent. The Cu(2)O/RGO composite exhibits excellent catalytic activity and remarkable tolerance to methanol and CO in the oxygen reduction reaction. This journal is © The Royal Society of Chemistry 2012

  18. VR Mobile Solutions For Chronic Stress Reduction in Young Adults.

    Science.gov (United States)

    Gao, Kenneth; Boyd, Chelsie; Wiederhold, Mark D; Wiederhold, Brenda K

    2014-01-01

    Chronic stress in young adults has become a growing problem within recent decades and many are unable to find cost-effective and accessible treatment for psychological stress in their daily lives. We analyze the market of using a mobile application, Positive Technology, as a solution. Eleven participants, aged between 18 and 24, participated in the exercise. Self-reported stress reduction was measured via an online marketing survey, while physiological measurements were monitored via peripheral devices. Secondary goals assessed the app's ease-of-use, accessibility, and cost. Results indicate that participants enjoyed the availability of the mobile solution and found the app to be fun and easy to learn. Stress levels were reduced in 73% of the participants, with higher effects in females and in participants aged 18-24. We conclude that the mobile platform is an effective means of delivering psychological stress reduction, and could provide an accessible, cost-effective solution.

  19. Smog induces oxidative stress and microbiota disruption.

    Science.gov (United States)

    Wong, Tit-Yee

    2017-04-01

    Smog is created through the interactions between pollutants in the air, fog, and sunlight. Air pollutants, such as carbon monoxide, heavy metals, nitrogen oxides, ozone, sulfur dioxide, volatile organic vapors, and particulate matters, can induce oxidative stress in human directly or indirectly through the formation of reactive oxygen species. The outermost boundary of human skin and mucous layers are covered by a complex network of human-associated microbes. The relation between these microbial communities and their human host are mostly mutualistic. These microbes not only provide nutrients, vitamins, and protection against other pathogens, they also influence human's physical, immunological, nutritional, and mental developments. Elements in smog can induce oxidative stress to these microbes, leading to community collapse. Disruption of these mutualistic microbiota may introduce unexpected health risks, especially among the newborns and young children. Besides reducing the burning of fossil fuels as the ultimate solution of smog formation, advanced methods by using various physical, chemical, and biological means to reduce sulfur and nitrogen contains in fossil fuels could lower smog formation. Additionally, information on microbiota disruption, based on functional genomics, culturomics, and general ecological principles, should be included in the risk assessment of prolonged smog exposure to the health of human populations. Copyright © 2017. Published by Elsevier B.V.

  20. Endothelial cell oxidative stress and signal transduction

    Directory of Open Access Journals (Sweden)

    ROCIO FONCEA

    2000-01-01

    Full Text Available Endothelial dysfunction (ED is an early event in atherosclerotic disease, preceding clinical manifestations and complications. Increased reactive oxygen species (ROS have been implicated as important mechanisms that contribute to ED, and ROS’s may function as intracellular messengers that modulate signaling pathways. Several intracellular signal events stimulated by ROS have been defined, including the identification of two members of the mitogen activated protein kinase family (ERK1/2 and big MAP kinase, BMK1, tyrosine kinases (Src and Syk and different isoenzymes of PKC as redox-sensitive kinases. ROS regulation of signal transduction components include the modification in the activity of transcriptional factors such as NFkB and others that result in changes in gene expression and modifications in cellular responses. In order to understand the intracellular mechanisms induced by ROS in endothelial cells (EC, we are studying the response of human umbilical cord vein endothelial cells to increased ROS generation by different pro-atherogenic stimuli. Our results show that Homocysteine (Hcy and oxidized LDL (oxLDL enhance the activity and expression of oxidative stress markers, such as NFkB and heme oxygenase 1. These results suggest that these pro-atherogenic stimuli increase oxidative stress in EC, and thus explain the loss of endothelial function associated with the atherogenic process

  1. Oxidative stress, thyroid dysfunction & Down syndrome

    Directory of Open Access Journals (Sweden)

    Carlos Campos

    2015-01-01

    Full Text Available Down syndrome (DS is one of the most common chromosomal disorders, occurring in one out of 700-1000 live births, and the most common cause of mental retardation. Thyroid dysfunction is the most typical endocrine abnormality in patients with DS. It is well known that thyroid dysfunction is highly prevalent in children and adults with DS and that both hypothyroidism and hyperthyroidism are more common in patients with DS than in the general population. Increasing evidence has shown that DS individuals are under unusual increased oxidative stress, which may be involved in the higher prevalence and severity of a number of pathologies associated with the syndrome, as well as the accelerated ageing observed in these individuals. The gene for Cu/Zn superoxide dismutase (SOD1 is coded on chromosome 21 and it is overexpressed (~50% resulting in an increase of reactive oxygen species (ROS due to overproduction of hydrogen peroxide (H 2 O 2 . ROS leads to oxidative damage of DNA, proteins and lipids, therefore, oxidative stress may play an important role in the pathogenesis of DS.

  2. Development of reduction technology for oxide fuel. Behaviour of rare-earth in lithium reduction process

    International Nuclear Information System (INIS)

    Kato, Tetsuya; Usami, Tsuyoshi; Yuda, Ryoichi; Kurata, Masateru; Moriyama, Hirotake

    2000-01-01

    Solubility measurements of rare-earth oxides in molten LiCl-Li 2 O salt and reduction tests of UO 2 doped with rare-earth oxides were carried out to determine the behavior of rare-earths in lithium reduction process. The solubility of rare-earth oxides increases in the order of Gd 2 O concentration. In multi-element systems including 6 rare-earth oxides, the solubility of each element is smaller than that in the individual systems. In the reduction tests, more than 90% of UO 2 was reduced within 1 hour after starting reduction and about 7% of rare-earths eluded into the LiCl molten salt bath containing Li 2 O which is formed by the reduction of UO 2 . The rare-earth concentrations in the bath were evaluated using the solubility data, assuming that rare-earth oxides in multi-element systems form solid solution as the equilibrium solid phase and that the activity coefficients in the solid phase are independent of the compositions. The calculated concentrations are consistent with the experimental ones obtained in the reduction tests. (author)

  3. Nitrous oxide reduction in nodules: denitrification or N2 fixation?

    International Nuclear Information System (INIS)

    Coyne, M.S.; Focht, D.D.

    1987-01-01

    Detached cowpea nodules that contained a nitrous oxide reductase-positive (Nor + ) rhizobium strain (8A55) and a nitrous oxide reductase-negative (Nor - ) rhizobium strain (32H1) were incubated with 1% 15 N 2 O (95 atom% 15 N) in the following three atmospheres: aerobic with C 2 H 2 (10%), aerobic without C 2 H 2 , and anaerobic (argon atmosphere) without C 2 H 2 . The greatest production of 15 N 2 occurred anaerobically with 8A55, yet very little was formed with 32H1. Although acetylene reduction activity was slightly higher with 32H1, about 10 times more 15 N 2 was produced aerobically by 8A55 than by 32H1 in the absence of acetylene. The major reductive pathway of N 2 O reduction by denitrifying rhizobium strain 8A55 is by nitrous oxide reductase rather than nitrogenase

  4. Reduction of nitric oxide by arc vaporized carbons (AVC)

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, S C; Chen, Y K; Green, M L.H. [The Catalysis Centre, Inorganic Chemistry Laboratory, University of Oxford, Oxford (United Kingdom)

    1996-07-04

    The reduction of nitric oxide by arc vaporized carbons (AVC) including the compound C{sub 6}0, fullerene soot and carbon nanotubes, giving dinitrogen and carbon oxides has been studied. It is found that the AVC carbons are more active towards oxidation by NO than by oxygen gas at low temperatures (300-400C). In contrast, conventional carbons such as graphite and microporous carbons are more readily oxidised by oxygen than by NO. The addition of copper salts and to a lesser extent, cobalt salts, to fullerene soot substantially promote NO reduction. The high intrinsic activity for NO reduction by AVC carbons compared to graphitic carbons is attributed to the presence of five membered carbon rings in the AVC carbons

  5. Oxidative stress associated with exercise, psychological stress and life-style factors

    DEFF Research Database (Denmark)

    Møller, P; Wallin, H; Knudsen, Lisbeth E.

    1996-01-01

    generation. Here, we review the effect of alcohol, air pollution, cigarette smoke, diet, exercise, non-ionizing radiation (UV and microwaves) and psychological stress on the development of oxidative stress. Regular exercise and carbohydrate-rich diets seem to increase the resistance against oxidative stress....... Air pollution, alcohol, cigarette smoke, non-ionizing radiation and psychological stress seem to increase oxidative stress. Alcohol in lower doses may act as an antioxidant on low density lipoproteins and thereby have an anti-atherosclerotic property....

  6. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H [comp.

    1997-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  7. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H. [comp.

    1996-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  8. Oxidative stress tolerance of early stage diabetic endothelial progenitor cell

    Directory of Open Access Journals (Sweden)

    Dewi Sukmawati

    2015-06-01

    Conclusions: Primitive BM-EPCs showed vasculogenic dysfunction in early diabetes. However the oxidative stress is not denoted as the major initiating factor of its cause. Our results suggest that primitive BM-KSL cell has the ability to compensate oxidative stress levels in early diabetes by increasing the expression of anti-oxidative enzymes.

  9. Free radicals, reactive oxygen species, oxidative stress and its classification.

    Science.gov (United States)

    Lushchak, Volodymyr I

    2014-12-05

    Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Oxidative stress in normal and diabetic rats.

    Science.gov (United States)

    Torres, M D; Canal, J R; Pérez, C

    1999-01-01

    Parameters related to oxidative stress were studied in a group of 10 Wistar diabetic rats and 10 control rats. The levels of total erythrocyte catalase activity in the diabetic animals were significantly (pC18:2) ratios. Greater vitaminE/triglyceride (TG) ratio, however, appeared in the control group. The corresponding vitamin A ratios (vitaminA/TG, vitaminA/PUFA, vitaminA/C 18:2) were higher in the control group. Our work corroborates the findings that fatty acid metabolism presents alterations in the diabetes syndrome and that the antioxidant status is affected.

  11. Oxidative stress in ischemia and reperfusion

    DEFF Research Database (Denmark)

    Sinning, Christoph; Westermann, Dirk; Clemmensen, Peter

    2017-01-01

    Oxidative stress remains a major contributor to myocardial injury after ischemia followed by reperfusion (I/R) as the reperfusion of the myocardial infarction (MI) area inevitably leads to a cascade of I/R injury. This review focused on concepts of the antioxidative defense system and elucidates......, the different mechanisms through which myocardial protection can be addressed, like ischemic postconditioning in myocardial infarction or adjunctive measures like targeted temperature management as well as new theories, including the role of iron in I/R injury, will be discussed....

  12. Menopause as risk factor for oxidative stress.

    Science.gov (United States)

    Sánchez-Rodríguez, Martha A; Zacarías-Flores, Mariano; Arronte-Rosales, Alicia; Correa-Muñoz, Elsa; Mendoza-Núñez, Víctor Manuel

    2012-03-01

    The aim of this study was to determine the influence of menopause (hypoestrogenism) as a risk factor for oxidative stress. We carried out a cross-sectional study with 187 perimenopausal women from Mexico City, including 94 premenopausal (mean ± SD age, 44.9 ± 4.0 y; estrogen, 95.8 ± 65.7 pg/mL; follicle-stimulating hormone, 13.6 ± 16.9 mIU/mL) and 93 postmenopausal (mean ± SD age, 52.5 ± 3.3 y; estrogen, 12.8 ± 6.8 pg/mL; follicle-stimulating hormone, 51.4 ± 26.9 mIU/mL) women. We measured lipoperoxides using a thiobarbituric acid-reacting substance assay, erythrocyte superoxide dismutase and glutathione peroxidase activities, and the total antioxidant status with the Randox kit. An alternative cutoff value for lipoperoxide level of 0.320 μmol/L or higher was defined on the basis of the 90th percentile of young healthy participants. All women answered the Menopause Rating Scale, the Athens Insomnia Scale, and a structured questionnaire about pro-oxidant factors, that is, smoking, consumption of caffeinated and alcoholic beverages, and physical activity. Finally, we measured weight and height and calculated body mass index. The lipoperoxide levels were significantly higher in the postmenopausal group than in the premenopausal group (0.357 ± 0.05 vs 0.331 ± 0.05 μmol/L, P = 0.001). Using logistic regression to control pro-oxidant variables, we found that menopause was the main risk factor for oxidative stress (odds ratio, 2.62; 95% CI, 1.35-5.11; P menopause rating score, insomnia score, and lipoperoxides, and this relationship was most evident in the postmenopausal group (menopause scale, r = 0.327 [P = 0.001]; insomnia scale, r = 0.209 [P < 0.05]). Our findings suggest that the depletion of estrogen in postmenopause could cause oxidative stress in addition to the known symptoms.

  13. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Travis Shane [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mincher, Bruce Jay [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schmitt, Nicholas C [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show that the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.

  14. Lack of effect of sleep apnea on oxidative stress in obstructive sleep apnea syndrome (OSAS patients.

    Directory of Open Access Journals (Sweden)

    M Simiakakis

    Full Text Available PURPOSE: The aim of this study was to evaluate markers of systemic oxidative stress and antioxidant capacity in subjects with and without OSAS in order to investigate the most important factors that determine the oxidant-antioxidant status. METHODS: A total of 66 subjects referred to our Sleep laboratory were examined by full polysomnography. Oxidative stress and antioxidant activity were assessed by measurement of the derivatives of reactive oxygen metabolites (d-ROMs and the biological antioxidant capacity (BAP in blood samples taken in the morning after the sleep study. Known risk factors for oxidative stress, such as age, sex, obesity, smoking, hypelipidemia, and hypertension, were investigated as possible confounding factors. RESULTS: 42 patients with OSAS (Apnea-Hypopnea index >15 events/hour were compared with 24 controls (AHI<5. The levels of d-ROMS were significantly higher (p = 0.005 in the control group but the levels of antioxidant capacity were significantly lower (p = 0.004 in OSAS patients. The most important factors predicting the variance of oxidative stress were obesity, smoking habit, and sex. Parameters of sleep apnea severity were not associated with oxidative stress. Minimal oxygen desaturation and smoking habit were the most important predicting factors of BAP levels. CONCLUSION: Obesity, smoking, and sex are the most important determinants of oxidative stress in OSAS subjects. Sleep apnea might enhance oxidative stress by the reduction of antioxidant capacity of blood due to nocturnal hypoxia.

  15. Cadmium induced oxidative stress in Dunaliella salina | Moradshahi ...

    African Journals Online (AJOL)

    The unicellular green algae Dunaliella salina contains various antioxidants which protect the cell from oxidative damage due to environmental stresses such as heavy metal stress. In the present study, the response of D. salina at the stationary growth phase to oxidative stress generated by cadmium chloride was ...

  16. Green reduction of graphene oxide by ascorbic acid

    Science.gov (United States)

    Khosroshahi, Zahra; Kharaziha, Mahshid; Karimzadeh, Fathallah; Allafchian, Alireza

    2018-01-01

    Graphene, a single layer of sp2-hybridized carbon atoms in a hexagonal (two-dimensional honey-comb) lattice, has attracted strong scientific and technological interest due to its novel and excellent optical, chemical, electrical, mechanical and thermal properties. The solution-processable chemical reduction of Graphene oxide (GO is considered as the most favorable method regarding mass production of graphene. Generally, the reduction of GO is carried out by chemical approaches using different reductants such as hydrazine and sodium borohydride. These components are corrosive, combustible and highly toxic which may be dangerous for personnel health and the environment. Hence, these reducing agents are not promising choice for reducing of graphene oxide (GO). As a consequence, it is necessary for further development and optimization of eco-friendly, natural reducing agent for clean and effective reduction of GO. Ascorbic acid, an eco-friendly and natural reducing agents, having a mild reductive ability and nontoxic property. So, the aim of this research was to green synthesis of GO with ascorbic acid. For this purpose, the required amount of NaOH and ascorbic acid were added to GO solution (0.5 mg/ml) and were heated at 95 °C for 1 hour. According to the X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and electrochemical results, GO were reduced with ascorbic acid like hydrazine with better electrochemical properties and ascorbic acid is an ideal substitute for hydrazine in the reduction of graphene oxide process.

  17. Electrochemical reduction of cerium oxides in molten salts

    International Nuclear Information System (INIS)

    Claux, B.; Serp, J.; Fouletier, J.

    2011-01-01

    This brief article describes a pyrochemical process that is used by CEA to turn actinide oxides into metal actinides. This process is applied to Cerium oxides (CeO 2 ) that simulate actinide oxides well chemically as cerium belongs to the lanthanide family. The process is in fact an electrolysis of cerium oxide in a bath of molten calcium chloride salt whose temperature is between 800 and 900 Celsius degrees. At those temperatures calcium chloride becomes a ionic liquid (Ca 2+ and Cl - ) that is a good electrical conductor and is particularly well-adapted as solvent to an electrolytic process. The electrolysis current allows the transformation of solvent Ca 2+ ions into metal calcium which, in turn, can reduce cerium oxide into metal cerium through chromatically. Experimental data shows the reduction of up to 90% of 10 g samples of CeO 2 in a 6 hour long electrolysis while the best reduction rate ever known was 80% so far. This result is all the more promising that cerium oxides are more difficult to reduce than actinide oxides from the thermodynamical perspective

  18. Oxidative stress and nitrosative stress are involved in different stages of proteolytic pulmonary emphysema.

    Science.gov (United States)

    Lanzetti, Manuella; da Costa, Cristiane Aguiar; Nesi, Renata Tiscoski; Barroso, Marina Valente; Martins, Vanessa; Victoni, Tatiana; Lagente, Vincent; Pires, Karla Maria Pereira; e Silva, Patrícia Machado Rodrigues; Resende, Angela Castro; Porto, Luis Cristóvão; Benjamim, Cláudia Farias; Valença, Samuel Santos

    2012-12-01

    Our aim was to investigate the role of oxidative stress in elastase-induced pulmonary emphysema. C57BL/6 mice were subjected to pancreatic porcine elastase (PPE) instillation (0.05 or 0.5 U per mouse, i.t.) to induce pulmonary emphysema. Lungs were collected on days 7, 14, and 21 after PPE instillation. The control group was sham injected. Also, mice treated with 1% aminoguanidine (AMG) and inducible NO synthase (iNOS) knockout mice received 0.5 U PPE (i.t.), and lungs were analyzed 21 days after. We performed bronchoalveolar lavage, biochemical analyses of oxidative stress, and lung stereology and morphometry assays. Emphysema was observed histologically at 21 days after 0.5 U PPE treatment; tissues from these mice exhibited increased alveolar linear intercept and air-space volume density in comparison with the control group. TNF-α was elevated at 7 and 14 days after 0.5 U PPE treatment, concomitant with a reduction in the IL-10 levels at the same time points. Myeloperoxidase was elevated in all groups treated with 0.5 U PPE. Oxidative stress was observed during early stages of emphysema, with increased nitrite levels and malondialdehyde and superoxide dismutase activity at 7 days after 0.5 U PPE treatment. Glutathione peroxidase activity was increased in all groups treated with 0.5 U PPE. The emphysema was attenuated when iNOS was inhibited using 1% AMG and in iNOS knockout mice. Furthermore, proteolytic stimulation by PPE enhanced the expression of nitrotyrosine and iNOS, whereas the PPE+AMG group showed low expression of iNOS and nitrotyrosine. PPE stimulus also induced endothelial (e) NOS expression, whereas AMG reduced eNOS. Our results suggest that the oxidative and nitrosative stress pathways are triggered by nitric oxide production via iNOS expression in pulmonary emphysema. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Effect of mindfulness-based stress reduction on sleep quality

    DEFF Research Database (Denmark)

    Andersen, Signe; Würtzen, Hanne; Steding-Jessen, Marianne

    2013-01-01

    The prevalence of sleep disturbance is high among cancer patients, and the sleep problems tend to last for years after the end of treatment. As part of a large randomized controlled clinical trial (the MICA trial, NCT00990977) of the effect of mindfulness-based stress reduction (MBSR) on psycholo......The prevalence of sleep disturbance is high among cancer patients, and the sleep problems tend to last for years after the end of treatment. As part of a large randomized controlled clinical trial (the MICA trial, NCT00990977) of the effect of mindfulness-based stress reduction (MBSR...

  20. Involvement of inositol biosynthesis and nitric oxide in the mediation of UV-B induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Dmytro I Lytvyn

    2016-04-01

    Full Text Available The involvement of NO-signaling in ultraviolet B (UV-B induced oxidative stress in plants is an open question. Inositol biosynthesis contributes to numerous cellular functions, including the regulation of plants tolerance to stress. This work reveals the involvement of inositol-3-phosphate synthase 1 (IPS1, a key enzyme for biosynthesis of myo-inositol and its derivatives, in the response to NO-dependent oxidative stress in Arabidopsis. Homozygous mutants deficient for IPS1 (atips1 and wild-type plants were transformed with a reduction-oxidation-sensitive green fluorescent protein 2 (grx1-rogfp2 and used for the dynamic measurement of UV-B-induced and SNP (sodium nitroprusside-mediated oxidative stresses by confocal microscopy. atips1 mutants displayed greater tissue-specific resistance to the action of UV-B than the wild type. SNP can act both as an oxidant or repairer depending on the applied concentration, but mutant plants were more tolerant than the wild type to nitrosative effects of high concentration of SNP. Additionally, pretreatment with low concentrations of SNP (10, 100 μM before UV-B irradiation resulted in a tissue-specific protective effect that was enhanced in atips1. We conclude that the interplay between nitric oxide and inositol signaling can be involved in the mediation of UV-B-initiated oxidative stress in the plant cell.

  1. Nutritionally Mediated Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Alexandra Muñoz

    2013-01-01

    Full Text Available There are many sources of nutritionally mediated oxidative stress that trigger inflammatory cascades along short and long time frames. These events are primarily mediated via NFκB. On the short-term scale postprandial inflammation is characterized by an increase in circulating levels of IL-6 and TNF-α and is mirrored on the long-term by proinflammatory gene expression changes in the adipocytes and peripheral blood mononuclear cells (PBMCs of obese individuals. Specifically the upregulation of CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CXCL2/MIP-2α, and CXCL3/MIP-2β is noted because these changes have been observed in both adipocytes and PBMC of obese humans. In comparing numerous human intervention studies it is clear that pro-inflammatory and anti-inflammatory consumption choices mediate gene expression in humans adipocytes and peripheral blood mononuclear cells. Arachidonic acid and saturated fatty acids (SFAs both demonstrate an ability to increase pro-inflammatory IL-8 along with numerous other inflammatory factors including IL-6, TNFα, IL-1β, and CXCL1 for arachidonic acid and IGB2 and CTSS for SFA. Antioxidant rich foods including olive oil, fruits, and vegetables all demonstrate an ability to lower levels of IL-6 in PBMCs. Thus, dietary choices play a complex role in the mediation of unavoidable oxidative stress and can serve to exacerbate or dampen the level of inflammation.

  2. Melamine Induces Oxidative Stress in Mouse Ovary.

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Dai

    Full Text Available Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD and glutathione peroxidase (GPX were analyzed, and the concentration of malondialdehyde (MDA were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway.

  3. A Nucleocytoplasmic Shuttling Protein in Oxidative Stress Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Ow, David W.; Song, Wen

    2003-03-26

    Plants for effective extraction of toxic metals and radionuclides must tolerate oxidative stress. To identify genes that enhance oxidative stress tolerance, an S. pombe cDNA expression plasmid library was screened for the ability to yield hypertolerant colonies. Here, we report on the properties of one gene that confers hypertolerance to cadmium and oxidizing chemicals. This gene appears to be conserved in other organisms as homologous genes are found in human, mouse, fruitfly and Arabidopsis. The fruitfly and Arabidopsis genes likewise enhance oxidative stress tolerance in fission yeast. During oxidative stress, the amount of mRNA does not change, but protein fusions to GFP relocate from the cytoplasm to the nucleus. The same pattern is observed with the Arabidopsis homologue-GFP fusion protein. This behavior suggests a signaling role in oxidative stress tolerance and these conserved proteins may be targets for engineering stress tolerant plants for phytoremediation.

  4. Oxidative stress in bone remodeling: role of antioxidants.

    Science.gov (United States)

    Domazetovic, Vladana; Marcucci, Gemma; Iantomasi, Teresa; Brandi, Maria Luisa; Vincenzini, Maria Teresa

    2017-01-01

    ROS are highly reactive molecules which consist of a number of diverse chemical species, including radical and non-radical oxygen species. Oxidative stress occurs as a result of an overproduction of ROS not balanced by an adequate level of antioxidants. The natural antioxidants are: thiol compounds among which GSH is the most representative, and non-thiol compounds such as polyphenols, vitamins and also various enzymes. Many diseases have been linked to oxidative stress including bone diseases among which one of the most important is the osteoporosis. The redox state changes are also related to the bone remodeling process which allows the continuous bone regeneration through the coordinated action of bone cells: osteoclasts, osteoblasts and osteocytes. Changes in ROS and/or antioxidant systems seem to be involved in the pathogenesis of bone loss. ROS induce the apoptosis of osteoblasts and osteocytes, and this favours osteoclastogenesis and inhibits the mineralization and osteogenesis. Excessive osteocyte apoptosis correlates with oxidative stress causing an imbalance in favor of osteoclastogenesis which leads to increased turnover of bone remodeling and bone loss. Antioxidants either directly or by counteracting the action of oxidants contribute to activate the differentiation of osteoblasts, mineralization process and the reduction of osteoclast activity. In fact, a marked decrease in plasma antioxidants was found in aged or osteoporotic women. Some evidence shows a link among nutrients, antioxidant intake and bone health. Recent data demonstrate the antioxidant properties of various nutrients and their influence on bone metabolism. Polyphenols and anthocyanins are the most abundant antioxidants in the diet, and nutritional approaches to antioxidant strategies, in animals or selected groups of patients with osteoporosis or inflammatory bone diseases, suggest the antioxidant use in anti-resorptive therapies for the treatment and prevention of bone loss.

  5. A new green approach for the reduction of graphene oxide ...

    Indian Academy of Sciences (India)

    2.2 Preparation of GO. GO was prepared by oxidizing the graphite powder in a mix- ... measured using a Diamond TG/DTA analyzer (Perkin Elmer. Instruments). ... domains during the reduction of GO.23 This change of ID/IG value is in good ...

  6. Simultaneous iridium catalysed oxidation and enzymatic reduction employing orthogonal reagents

    NARCIS (Netherlands)

    Mutti, Francesco G.; Orthaber, Andreas; Schrittwieser, Joerg H.; Vries, Johannes G. de; Pietschnig, Rudolf; Kroutil, Wolfgang

    2010-01-01

    An iridium catalysed oxidation was coupled concurrently to an asymmetric biocatalytic reduction in one-pot; thus it was shown for the first time that iridium- and alcohol dehydrogenase-catalysed redox reactions are compatible. As a model system racemic chlorohydrins were transformed to

  7. Effects of l-carnitine on oxidative stress parameters in ...

    African Journals Online (AJOL)

    Emel Peri Canbolat

    2016-08-10

    Aug 10, 2016 ... Nitric oxide (NO), malondialdehyde (MDA), total antioxidant status (TAS), total oxidative stress .... Erel's method was used for measuring TOS.19 TOS was ..... antioxidant capacity using a new generation, more stable ABTS.

  8. Effect of moxifloxacin on oxidative stress, paraoxonase-1 (PON1 ...

    African Journals Online (AJOL)

    oxidative stress in patients with multiple drug-resistant tuberculosis (MDR-TB). Methods: A total ofof ... seriously affects the quality of life and prognosis. [6]. ... balance between pro-oxidants and antioxidant ..... original work is properly credited.

  9. Fatty acids and oxidative stress in psychiatric disorders

    OpenAIRE

    Tonello Lucio; Cocchi Massimo; Tsaluchidu Sofia; Puri Basant K

    2008-01-01

    Abstract Background The aim of this study was to determine whether there is published evidence for increased oxidative stress in neuropsychiatric disorders. Methods A PubMed search was carried out using the MeSH search term 'oxidative stress' in conjunction with each of the DSM-IV-TR diagnostic categories of the American Psychiatric Association in order to identify potential studies. Results There was published evidence of increased oxidative stress in the following DSM-IV-TR diagnostic categ...

  10. Endogenous reward mechanisms and their importance in stress reduction, exercise and the brain.

    Science.gov (United States)

    Esch, Tobias; Stefano, George B

    2010-06-30

    Stress can facilitate disease processes and causes strain on the health care budgets. It is responsible or involved in many human ailments of our time, such as cardiovascular illnesses, particularly related to the psychosocial stressors of daily life, including work. Besides pharmacological or clinical medical treatment options, behavioral stress reduction is much-needed. These latter approaches rely on an endogenous healing potential via life-style modification. Hence, research has suggested different ways and approaches to self-treat stress or buffer against stressors and their impacts. These self-care-centred approaches are sometimes referred to as mind-body medicine or multi-factorial stress management strategies. They consist of various cognitive behavioral techniques, as well as relaxation exercises and nutritional counselling. However, a critical and consistent element of modern effective stress reduction strategies are exercise practices. With regard to underlying neurobiological mechanisms of stress relief, reward and motivation circuitries that are imbedded in the limbic regions of the brain are responsible for the autoregulatory and endogenous processing of stress. Exercise techniques clearly have an impact upon these systems. Thereby, physical activities have a potential to increase mood, i.e., decrease psychological distress by pleasure induction. For doing so, neurobiological signalling molecules such as endogenous morphine and coupled nitric oxide pathways get activated and finely tuned. Evolutionarily, the various activities and autoregulatory pathways are linked together, which can also be demonstrated by the fact that dopamine is endogenously converted into morphine which itself leads to enhanced nitric oxide release by activation of constitutive nitric oxide synthase enzymes. These molecules and mechanisms are clearly stress-reducing.

  11. Catalytic/non-catalytic combination process for nitrogen oxides reduction

    International Nuclear Information System (INIS)

    Luftglass, B.K.; Sun, W.H.; Hofmann, J.E.

    1992-01-01

    This patent describes a process for the reduction of nitrogen oxides in the effluent from the combustion of a carbonaceous fuel. It comprises introducing a nitrogenous treatment agent comprising urea, one or more of the hydrolysis products of urea, ammonia, compounds which produce ammonia as a by-product, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, or mixtures thereof into the effluent at an effluent temperature between about 1200 degrees F and about 2100 degrees F; and contacting the treated effluent under conditions effective to reduce the nitrogen oxides in the effluent with a catalyst effective for the reduction of nitrogen oxides in the presence of ammonia

  12. Stress reduction in tungsten films using nanostructured compliant layers

    International Nuclear Information System (INIS)

    Karabacak, Tansel; Picu, Catalin R.; Senkevich, Jay J.; Wang, G.-C.; Lu, T.-M.

    2004-01-01

    The residual stress in thin films is a major limiting factor for obtaining high quality films. We present a strategy for stress reduction in sputter deposited films by using a nanostructured compliant layer obtained by the oblique angle deposition technique, sandwiched between the film and the substrate. The technique is all in situ, does not require any lithography steps, and the nanostructured layer is made from the same material as the deposited thin film. By using this approach we were able to reduce stress values by approximately one order of magnitude in sputter deposited tungsten films. These lower stress thin films also exhibit stronger adhesion to the substrate, which retards delamination buckling. This technique allows the growth of much thicker films and has enhanced structural stability. A model is developed to explain the stress relief mechanism and the stronger adhesion associated with the presence of the nanostructured compliant layer

  13. Oxidative stress in organophosphate poisoning: role of standard antidotal therapy.

    Science.gov (United States)

    Vanova, Nela; Pejchal, Jaroslav; Herman, David; Dlabkova, Alzbeta; Jun, Daniel

    2018-08-01

    Despite the main mechanism of organophosphate (OP) toxicity through inhibition of acetylcholinesterase (AChE) being well known over the years, some chronic adverse health effects indicate the involvement of additional pathways. Oxidative stress is among the most intensively studied. Overstimulation of cholinergic and glutamatergic nervous system is followed by intensified generation of reactive species and oxidative damage in many tissues. In this review, the role of oxidative stress in pathophysiology of OP poisoning and the influence of commonly used medical interventions on its levels are discussed. Current standardized therapy of OP intoxications comprises live-saving administration of the anticholinergic drug atropine accompanied by oxime AChE reactivator and diazepam. The capability of these antidotes to ameliorate OP-induced oxidative stress varies between both therapeutic groups and individual medications within the drug class. Regarding oxidative stress, atropine does not seem to have a significant effect on oxidative stress parameters in OP poisoning. In a case of AChE reactivators, pro-oxidative and antioxidative properties could be found. It is assumed that the ability of oximes to trigger oxidative stress is rather associated with their chemical structure than reactivation efficacy. The data indicating the potency of diazepam in preventing OP-induced oxidative stress are not available. Based on current knowledge on the mechanism of OP-mediated oxidative stress, alternative approaches (including antioxidants or multifunctional drugs) in therapy of OP poisoning are under consideration. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Prebiotics, Prosynbiotics and Synbiotics: Can They Reduce Plasma Oxidative Stress Parameters? A Systematic Review.

    Science.gov (United States)

    Salehi-Abargouei, Amin; Ghiasvand, Reza; Hariri, Mitra

    2017-03-01

    This study assessed the effectiveness of presybiotics, prosybiotics and synbiotics on reducing serum oxidative stress parameters. PubMed/Medline, Ovid, Google Scholar, ISI Web of Science and SCOPUS were searched up to September 2016. English language randomized clinical trials reporting the effect of presybiotics, prosybiotics or synbiotic interventions on serum oxidative stress parameters in human adults were included. Twenty-one randomized clinical trials met the inclusion criteria for systematic review. Two studies investigated prebiotics, four studies synbiotics and fifteen studies probiotics. According to our systematic review, prebiotic could decrease malondialdehyde and increase superoxidative dismutase, but evidence is not enough. In comparison with fructo-oligosaccharide, inulin is much more useful for oxidative stress reduction. Using probiotics with dairy products could reduce oxidative stress significantly, but probiotic in form of supplementation did not have any effect on oxidative stress. There is limited but supportive evidence that presybiotics, prosybiotics and synbiotics are effective for reducing oxidative stress parameters. Further randomized clinical trials with longer duration of intervention especially on population with increased oxidative stress are needed to provide more definitive results before any recommendation for clinical use of these interventions.

  15. Evaluation of Oxidative Stress Response Related Genetic Variants, Pro-oxidants, Antioxidants and Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Nicole Lavender

    2015-09-01

    Full Text Available Background: Oxidative stress and detoxification mechanisms have been commonly studied in Prostate Cancer (PCa due to their function in the detoxification of potentially damaging reactive oxygen species (ROS and carcinogens. However, findings have been either inconsistent or inconclusive. These mixed findings may, in part, relate to failure to consider interactions among oxidative stress response related genetic variants along with pro- and antioxidant factors. Methods: We examined the effects of 33 genetic and 26 environmental oxidative stress and defense factors on PCa risk and disease aggressiveness among 2,286 men from the Cancer Genetic Markers of Susceptibility project (1,175 cases, 1,111 controls. Single and joint effects were analyzed using a comprehensive statistical approach involving logistic regression, multi-dimensionality reduction, and entropy graphs. Results: Inheritance of one CYP2C8 rs7909236 T or two SOD2 rs2758331 A alleles was linked to a 1.3- and 1.4-fold increase in risk of developing PCa, respectively (p-value = 0.006-0.013. Carriers of CYP1B1 rs1800440GG, CYP2C8 rs1058932TC and, NAT2 (rs1208GG, rs1390358CC, rs7832071TT genotypes were associated with a 1.3 to 2.2-fold increase in aggressive PCa [p-value = 0.04-0.001, FDR 0.088-0.939]. We observed a 23% reduction in aggressive disease linked to inheritance of one or more NAT2 rs4646247 A alleles (p = 0.04, FDR = 0.405. Only three NAT2 sequence variants remained significant after adjusting for multiple hypotheses testing, namely NAT2 rs1208, rs1390358, and rs7832071. Lastly, there were no significant gene-environment or gene-gene interactions associated with PCa outcomes. Conclusions: Variations in genes involved in oxidative stress and defense pathways may modify PCa. Our findings do not firmly support the role of oxidative stress genetic variants combined with lifestyle/environmental factors as modifiers of PCa and disease progression. However, additional multi

  16. Oxidative stress in patients with endodontic pathologies

    Directory of Open Access Journals (Sweden)

    Vengerfeldt V

    2017-08-01

    Full Text Available Veiko Vengerfeldt,1 Reet Mändar,2,3 Mare Saag,1 Anneli Piir,2 Tiiu Kullisaar2 1Institute of Dental Sciences, Faculty of Medicine, University of Tartu, 2Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, 3Competence Centre on Health Technologies, Tartu, Estonia Background: Apical periodontitis (AP is an inflammatory disease affecting periradicular tissues. It is a widespread condition but its etiopathogenetic mechanisms have not been completely elucidated and the current treatment options are not always successful.Purpose: To compare oxidative stress (OxS levels in the saliva and the endodontium (root canal [RC] contents in patients with different endodontic pathologies and in endodontically healthy subjects.Patients and methods: The study group of this comparison study included 22 subjects with primary chronic apical periodontitis (pCAP, 26 with posttreatment or secondary chronic apical periodontitis (sCAP, eight with acute periapical abscess, 13 with irreversible pulpitis, and 17 healthy controls. Resting saliva samples were collected before clinical treatment. Pulp samples (remnants of the pulp, tooth tissue, and/or previous root filling material were collected under strict aseptic conditions using the Hedström file. The samples were frozen to −80°C until analysis. OxS markers (myeloperoxidase [MPO], oxidative stress index [OSI], 8-isoprostanes [8-EPI] were detected in the saliva and the endodontium. Results: The highest MPO and 8-EPI levels were seen in pCAP and pulpitis, while the highest levels of OSI were seen in pCAP and abscess patients, as well as the saliva of sCAP patients. Controls showed the lowest OxS levels in both RC contents and saliva. Significant positive correlations between OxS markers, periapical index, and pain were revealed. Patients with pain had significantly higher OxS levels in both the endodontium (MPO median 27.9 vs 72.6 ng/mg protein, p=0.004; OSI 6.0 vs 10.4, p<0

  17. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection

    Science.gov (United States)

    Hall, Alex; Troupin, Andrea; Londono-Renteria, Berlin; Colpitts, Tonya M.

    2017-01-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development. PMID:28644404

  18. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection.

    Science.gov (United States)

    Hall, Alex; Troupin, Andrea; Londono-Renteria, Berlin; Colpitts, Tonya M

    2017-06-23

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development.

  19. Mindfulness-based stress reduction as a stress management intervention for healthy individuals: a systematic review.

    Science.gov (United States)

    Sharma, Manoj; Rush, Sarah E

    2014-10-01

    Stress is a global public health problem with several negative health consequences, including anxiety, depression, cardiovascular disease, and suicide. Mindfulness-based stress reduction offers an effective way of reducing stress by combining mindfulness meditation and yoga in an 8-week training program. The purpose of this study was to look at studies from January 2009 to January 2014 and examine whether mindfulness-based stress reduction is a potentially viable method for managing stress. A systematic search from Medline, CINAHL, and Alt HealthWatch databases was conducted for all types of quantitative articles involving mindfulness-based stress reduction. A total of 17 articles met the inclusion criteria. Of the 17 studies, 16 demonstrated positive changes in psychological or physiological outcomes related to anxiety and/or stress. Despite the limitations of not all studies using randomized controlled design, having smaller sample sizes, and having different outcomes, mindfulness-based stress reduction appears to be a promising modality for stress management. © The Author(s) 2014.

  20. Measurement of exercise-induced oxidative stress in lymphocytes.

    Science.gov (United States)

    Turner, James E; Bosch, Jos A; Aldred, Sarah

    2011-10-01

    Vigorous exercise is associated with oxidative stress, a state that involves modifications to bodily molecules due to release of pro-oxidant species. Assessment of such modifications provides non-specific measures of oxidative stress in human tissues and blood, including circulating lymphocytes. Lymphocytes are a very heterogeneous group of white blood cells, consisting of subtypes that have different functions in immunity. Importantly, exercise drastically changes the lymphocyte composition in blood by increasing the numbers of some subsets, while leaving other cells unaffected. This fact may imply that observed changes in oxidative stress markers are confounded by changes in lymphocyte composition. For example, lymphocyte subsets may differ in exposure to oxidative stress because of subset differences in cell division and the acquisition of cytotoxic effector functions. The aim of the present review is to raise awareness of interpretational issues related to the assessment of oxidative stress in lymphocytes with exercise and to address the relevance of lymphocyte subset phenotyping in these contexts.

  1. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased......Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...

  2. Oxidative stress and inflammation in liver carcinogenesis

    Directory of Open Access Journals (Sweden)

    Natalia Olaya

    2007-02-01

    Full Text Available

    Inflammation is a common response in the human liver. It is involved in chronic hepatitis, cirrhosis, steatosis, ischemiareperfusion damage, hepatocarcinomas and in the development of metastasis. Reactive oxygen species (ROS production is part of the inflammatory processes. It is implicated in many physiological and pathological situations and can induce mutations in key cancer genes. Normally, this process is prevented by DNA repair enzymatic systems that maintain sequence fidelity during DNA replication. However, overproduction of free radicals in chronic inflammatory diseases is thought to saturate the ability of the cell to repair DNA damage prior to replications. Inflammation-induced genetic damage is not unique to the liver, and it might contribute to the development of mutations in several organs. An example is the chronic inflammatory response in ulcerative colitis that ultimately could lead to neoplasia.

    There is compelling evidence to suggest that most known environmental risk factors for HCC development lead to generation of reactive oxygen species (ROS. Indeed, hepatitis C virus (HCV, alcohol and hepatitis B virus (HBV have all been associated with oxidative stress. Direct production of oxidative stress by HCV core protein has been shown. A link between oxidative stress and liver pathogenesis is also supported by the successful use of antioxidant therapy to treat liver injury caused by chronic HCV infection, although it is not currently used for effective therapy. Ethanol metabolism via the alcohol dehydrogenase pathway and microsomal ethanol oxidizing system contribute substantially to the production of acetaldehyde and generation of ROS. HBx via its association with mitochondria has been shown to induce oxidative stress which in turn leads to activation of a

  3. Green reduction of graphene oxide via Lycium barbarum extract

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Dandan, E-mail: houdandan114@163.com; Liu, Qinfu, E-mail: lqf@cumtb.edu.cn; Cheng, Hongfei, E-mail: h.cheng@cumtb.edu.cn; Zhang, Hao, E-mail: 1073261516@qq.com; Wang, Sen, E-mail: wscumtb@163.com

    2017-02-15

    The synthesis of graphene from graphene oxide (GO) usually involves toxic reducing agents that are harmful to human health and the environment. Here, we report a facile approach for effective reduction of GO, for the first time, using Lycium barbarum extract as a green and natural reducing agent. The morphology and de-oxidation efficiency of the reduced graphene were characterized and results showed that Lycium barbarum extract can effectively reduce GO into few layered graphene with a high carbon to oxygen ratio (6.5), comparable to that of GO reduced by hydrazine hydrate (6.6). The possible reduction mechanism of GO may be due to the active components existing in Lycium barbarum fruits, which have high binding affinity to the oxygen containing groups to form their corresponding oxides and other by-products. This method avoided the use of any nocuous chemicals, thus facilitating the mass production of graphene and graphene-based bio-materials. - Graphical abstract: Schematic illustration of the preparation of reduced graphene by Lycium barbarum extract. - Highlights: • The Lycium barbarum extract was used for the reduction of graphene oxide. • The obtained few layered graphene exhibited high carbon to oxygen ratio. • This approach can be applied in the preparation of graphene-based bio-materials.

  4. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    Directory of Open Access Journals (Sweden)

    Sha Li

    2015-11-01

    Full Text Available A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed.

  5. Evaluation of Stress and a Stress-Reduction Program Among Radiologic Technologists.

    Science.gov (United States)

    Reingold, Lynn

    2015-01-01

    To investigate stress levels and causes of stress among radiologic technologists and determine whether an intervention could reduce stress in a selected radiologic technologist population. Demographic characteristics and data on preintervention stress sources and levels were collected through Internet-based questionnaires. A 6-week, self-administered, mindfulness-based stress-reduction program was conducted as a pilot intervention with 42 radiologic technologists from the Veterans Administration Medical Center. Data also were collected postintervention. Identified sources of stress were compared with findings from previous studies. Some radiologic technologists experienced improvement in their perceptions of stress after the intervention. Sources of stress for radiologic technologists were similar to those shown in earlier research, including inconsistent management, poor management communication, conflicting demands, long work hours, excessive workloads, lack of work breaks, and time pressures. The mindfulness-based stress-reduction program is an example of an inexpensive method that could improve personal well-being, reduce work errors, improve relationships in the workplace, and increase job satisfaction. More research is needed to determine the best type of intervention for stress reduction in a larger radiologic technologist population.

  6. Mitochondrial oxidative stress and cardiac ageing.

    Science.gov (United States)

    Martín-Fernández, Beatriz; Gredilla, Ricardo

    According with different international organizations, cardiovascular diseases are becoming the first cause of death in western countries. Although exposure to different risk factors, particularly those related to lifestyle, contribute to the etiopathogenesis of cardiac disorders, the increase in average lifespan and aging are considered major determinants of cardiac diseases events. Mitochondria and oxidative stress have been pointed out as relevant factors both in heart aging and in the development of cardiac diseases such as heart failure, cardiac hypertrophy and diabetic cardiomyopathy. During aging, cellular processes related with mitochondrial function, such as bioenergetics, apoptosis and inflammation are altered leading to cardiac dysfunction. Increasing our knowledge about the mitochondrial mechanisms related with the aging process, will provide new strategies in order to improve this process, particularly the cardiovascular ones. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Calligraphy and meditation for stress reduction: an experimental comparison

    Directory of Open Access Journals (Sweden)

    Kao H SR

    2014-02-01

    Full Text Available Henry SR Kao,1 Lin Zhu,2 An An Chao,3 Hao Yi Chen,4 Ivy CY Liu,5 Manlin Zhang6 1Department of Social Work and Social Administration, University of Hong Kong, Hong Kong; 2Department of Psychology, Renmin University of China, Beijing, 3International Society of Calligraphy Therapy, Hong Kong; 4Department of Business Administration, National Chengchi University, Taipei, Taiwan, 5Department of Psychology, Fu Jen Catholic University, Taipei, Taiwan; 6Department of Psychology, Sun Yat-Sen University, Guangzhou, People's Republic of China Background: Chinese calligraphic handwriting (CCH has demonstrated a new role in health and therapy. Meanwhile, meditation is an traditional and effective method for coping with stress and staying healthy. This study compared the effectiveness of CCH and meditation as distinctive and parallel stress reduction interventions. Methods: Thirty graduate students and academic staff members in Taiwan who suffered from stress were selected by the General Health Questionnaire and randomly assigned to one of three treatment groups, ie, a CCH group, a meditation group, or a control group, for 8 consecutive weeks. Changes in physiological parameters were measured before, during, and after treatment. Results: CCH and meditation showed their strength in the respective indices of stress. There was a significant difference in respiratory rate, heart rate, and electromyographic scores between the groups. Comparing pre- and post-effects, a decrease in heart rate and an increase in skin temperature was seen in subjects who practiced CCH. Increased skin temperature and decreased respiratory rate were also seen in subjects who practiced meditation, along with reduced muscle tension and heart rate. Conclusion: CCH and meditation have good effects in stress reduction. CCH is a particularly promising new approach to reducing stress.Keywords: calligraphic handwriting, meditation, stress reduction, intervention

  8. Sport and oxidative stress in oncological patients.

    Science.gov (United States)

    Knop, K; Schwan, R; Bongartz, M; Bloch, W; Brixius, K; Baumann, F

    2011-12-01

    Oxidative stress is thought to be an important factor in the onset, progression and recurrence of cancer. In order to investigate how it is influenced by physical activity, we measured oxidative stress and antioxidative capacity (aoC) in 12 women with breast cancer and 6 men with prostate cancer, before and after long hiking trips. Before the hike, the men had a ROS-concentration of 1.8±0.6 mM H2O2 and an aoC of 0.7±0.6 mM Trolox-equivalent (Tro), while the women had a ROS-concentration of 3.1±0.7 mM H2O2 and an aoC of 1.2±0.2 mM Tro. After the hike, women showed no significant change in ROS and a significant increase in aoC (1.3±0.2 mM Tro), while the ROS concentration in men increased significantly (2.1±0.3 mM H2O2) and their aoC decreased (0.25±0.1 mM Tro). After a regenerative phase, the ROS concentration of the men decreased to 1.7±0.4 mM H2O2 and their aoC recovered significantly (1.2±0.4 mM Tro), while the women presented no significant change in the concentration of H2O2 but showed an ulterior increase in antioxidant capacity (2.05±0.43 mM Tro). From this data we conclude that physical training programs as for example long distance hiking trips can improve the aoC in the blood of oncological patients. © Georg Thieme Verlag KG Stuttgart · New York.

  9. [Serum markers of oxidative stress in infertile women with endometriosis].

    Science.gov (United States)

    Andrade, Aline Zyman de; Rodrigues, Jhenifer Kliemchen; Dib, Luciana Azôr; Romão, Gustavo Salata; Ferriani, Rui Alberto; Jordão Junior, Alceu Afonso; Navarro, Paula Andrea de Albuquerque Salles

    2010-06-01

    to compare serum markers of oxidative stress between infertile patients with and without endometriosis and to assess the association of these markers with disease staging. this was a prospective study conducted on 112 consecutive infertile, non-obese patients younger than 39 years, divided into two groups: Endometriosis (n=48, 26 with minimal and mild endometriosis - Stage I/II, and 22 with moderate and severe endometriosis - Stage III/IV) and Control (n=64, with tubal and/or male factor infertility). Blood samples were collected during the early follicular phase of the menstrual cycle for the analysis of serum malondialdehyde, glutathione and total hydroxyperoxide levels by spectrophotometry and of vitamin E by high performance liquid chromatography. The results were compared between the endometriosis and control groups, stage I/II endometriosis and control, stage III/IV endometriosis and control, and between the two endometriosis subgroups. The level of significance was set at 5% (p Control Group (8.0 ± 2 µMol/g protein) and among patients with stage III/IV disease (9.7 ± 2.3 µMol/g protein) compared to patients with stage I/II disease (8.2 ± 1.0 µMol/g protein). No significant differences in serum malondialdehyde levels were observed between groups. we demonstrated a positive association between infertility related to endometriosis, advanced disease stage and increased serum hydroxyperoxide levels, suggesting an increased production of reactive species in women with endometriosis. These data, taken together with the reduction of serum vitamin E and glutathione levels, suggest the occurrence of systemic oxidative stress in women with infertility associated with endometriosis. The reproductive and metabolic implications of oxidative stress should be assessed in future studies.

  10. Oxidative stress and food supplementation with antioxidants in therapy dogs.

    Science.gov (United States)

    Sechi, Sara; Fiore, Filippo; Chiavolelli, Francesca; Dimauro, Corrado; Nudda, Anna; Cocco, Raffaella

    2017-07-01

    The objective of this study was to evaluate the ability of a long-term antioxidant-supplemented diet to regulate the oxidative stress and general health status of dogs involved in animal-assisted intervention (AAI) programs. Oxidative stress is a consequence of the accumulation of reactive oxygen species (ROS). Exercise-induced oxidative stress can increase muscle fatigue and fiber damage and eventually leads to impairment of the immune system. A randomized, placebo-controlled, crossover clinical evaluation was conducted with 11 healthy therapy dogs: 6 females and 5 males of different breeds and with a mean age of 2.7 ± 0.8 y (mean ± SEM). The dogs were divided into 2 groups, 1 fed a high quality commercial diet without antioxidants (CD) and the other a high quality commercial diet supplemented with antioxidants (SD) for 18 wk. After the first 18 wk, metabolic parameters, reactive oxygen metabolite-derivatives (d-ROMs), and biological antioxidant potential (BAP) levels were monitored and showed a significant reduction of d-ROMs, triglycerides, and creatinine values in the SD group ( P < 0.05) and a significant increase in amylase values in the CD group ( P < 0.01). At the end of this period, groups were crossed over and fed for another 18 wk. A significant decrease in amylase and glutamate pyruvate transaminase (GPT) values was observed in the CD and SD group, respectively ( P < 0.05). In conclusion, a controlled, balanced antioxidant diet may be a valid approach to restoring good cell metabolism and neutralizing excess free radicals in therapy dogs.

  11. Influence of Oxidative Stress on Stored Platelets

    Directory of Open Access Journals (Sweden)

    K. Manasa

    2016-01-01

    Full Text Available Platelet storage and its availability for transfusion are limited to 5-6 days. Oxidative stress (OS is one of the causes for reduced efficacy and shelf-life of platelets. The studies on platelet storage have focused on improving the storage conditions by altering platelet storage solutions, temperature, and materials. Nevertheless, the role of OS on platelet survival during storage is still unclear. Hence, this study was conducted to investigate the influence of storage on platelets. Platelets were stored for 12 days at 22°C. OS markers such as aggregation, superoxides, reactive oxygen species, glucose, pH, lipid peroxidation, protein oxidation, and antioxidant enzymes were assessed. OS increased during storage as indicated by increments in aggregation, superoxides, pH, conjugate dienes, and superoxide dismutase and decrements in glucose and catalase. Thus, platelets could endure OS till 6 days during storage, due to the antioxidant defense system. An evident increase in OS was observed from day 8 of storage, which can diminish the platelet efficacy. The present study provides an insight into the gradual changes occurring during platelet storage. This lays the foundation towards new possibilities of employing various antioxidants as additives in storage solutions.

  12. Reduction Behaviors of Carbon Composite Iron Oxide Briquette Under Oxidation Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Woo; Kim, Kang-Min; Kwon, Jae-Hong; Han, Jeong-Whan [Inha University, Incheon (Korea, Republic of); Son, Sang-Han [POSCO, Pohang (Korea, Republic of)

    2017-01-15

    The carbon composite iron oxide briquette (CCB) is considered a potential solution to the upcoming use of low grade iron resources in the ironmaking process. CCB is able to reduce raw material cost by enabling the use of low grade powdered iron ores and coal. Additionally, the fast reduction of iron oxides by direct contact with coal can be utilized. In this study, the reduction behaviors of CCB were investigated in the temperature range of 200-1200 ℃ under oxidizing atmosphere. Briquettes were prepared by mixing iron ore and coal in a weight ratio of 8:2. Then reduction experiments were carried out in a mixed gas atmosphere of N{sub 2}, O{sub 2}, and CO{sub 2}. Compressive strength tests and quantitative analysis were performed by taking samples at each target temperature. In addition, the reduction degree depending on the reaction time was evaluated by off-gas analysis during the reduction test. It was found that the compressive strength and the metallization degree of the reduced briquettes increased with increases in the reaction temperature and holding time. However, it tended to decrease when the re-oxidation phenomenon was caused by injected oxygen. The degree of reduction reached a maximum value in 26 minutes. Therefore, the re-oxidation phenomenon becomes dominant after 26 minutes.

  13. Technologies for the Reduction of Nitrogen Oxides Emissions

    Directory of Open Access Journals (Sweden)

    Paulica Arsenie

    2015-06-01

    Full Text Available When it comes to gas turbines, their main problem concerning pollutant emissions is represented by nitric oxides. Among other emissions, sulphur oxides being much reduced due to the use of liquid distilled and gas fuels with a low content of sulphur. Using water or steam injection became the favourite method during the '80s and especially the '90s since "dry" methods and catalytic reduction were both at the beginning of the development phase. Catalytic convertors have been used since the '80s and they are still used although the costs of renewing the catalyst are very high. In the last twenty years a gradual decrease has been registered on the limits of nitric oxides from 75 ppm to 25 ppm, and now the target is oriented towards the 9 ppm level. The evolution of burning technologies of combustion makes it possible to control the level of production of nitric oxides even from the source without being necessary to use "humid" methods. This, of course, opened the market for gas turbines because they can function even in areas with limited quality water reserves, such as maritime platforms and in the desert. In this paper, we are going to show that, although water injection is still used, "dry" control technologies of burning became favourite methods for the majority of users on the industrial power generators market. The great dependency between the creation of nitric oxides and the temperature reveals the effect of direct water or steam injection on reducing nitric oxides. Recent research showed that a reduction up to 85% of nitric oxides may be obtained by using the water or steam injection all together with the improvement of aerodynamic character of the burning room.

  14. Oxidative stress and the effect of parasites on a carotenoid-based ornament.

    Science.gov (United States)

    Mougeot, F; Martínez-Padilla, J; Blount, J D; Pérez-Rodríguez, L; Webster, L M I; Piertney, S B

    2010-02-01

    Oxidative stress, the physiological condition whereby the production of reactive oxygen and nitrogen species overwhelms the capacity of antioxidant defences, causes damage to key bio-molecules. It has been implicated in many diseases, and is proposed as a reliable currency in the trade-off between individual health and ornamentation. Whether oxidative stress mediates the expression of carotenoid-based signals, which are among the commonest signals of many birds, fish and reptiles, remains controversial. In the present study, we explored interactions between parasites, oxidative stress and the carotenoid-based ornamentation of red grouse Lagopus lagopus scoticus. We tested whether removing nematode parasites influenced both oxidative balance (levels of oxidative damage and circulating antioxidant defences) and carotenoid-based ornamentation. At the treatment group level, parasite purging enhanced the size and colouration of ornaments but did not significantly affect circulating carotenoids, antioxidant defences or oxidative damage. However, relative changes in these traits among individuals indicated that males with a greater number of parasites prior to treatment (parasite purging) showed a greater increase in the levels of circulating carotenoids and antioxidants, and a greater decrease in oxidative damage, than those with initially fewer parasites. At the individual level, a greater increase in carotenoid pigmentation was associated with a greater reduction in oxidative damage. Therefore, an individual's ability to express a carotenoid-based ornament appeared to be linked to its current oxidative balance and susceptibility to oxidative stress. Our experimental results suggest that oxidative stress can mediate the impact of parasites on carotenoid-based signals, and we discuss possible mechanisms linking carotenoid-based ornaments to oxidative stress.

  15. Study of film graphene/graphene oxide obtained by partial reduction chemical of oxide graphite

    International Nuclear Information System (INIS)

    Gascho, J.L.S.; Costa, S.F.; Hoepfner, J.C.; Pezzin, S.H.

    2014-01-01

    This study investigated the morphology of graphene/graphene oxide film obtained by partial chemical reduction of graphite oxide (OG) as well as its resistance to solvents. Films of graphene/graphene oxide are great candidates for replacement of indium oxide doped with tin (ITO) in photoelectric devices. The OG was obtained from natural graphite, by Hummer's method modified, and its reduction is made by using sodium borohydride. Infrared spectroscopy analysis of Fourier transform (FTIR), Xray diffraction (XRD) and scanning electron microscopy, high-resolution (SEM/FEG) for the characterization of graphene/graphene oxide film obtained were performed. This film proved to be resilient, not dispersing in any of the various tested solvents (such as ethanol, acetone and THF), even under tip sonication, this resistance being an important property for the applications. Furthermore, the film had a morphology similar to that obtained by other preparation methods.(author)

  16. Implantation of Neural Probes in the Brain Elicits Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Evon S. Ereifej

    2018-02-01

    Full Text Available Clinical implantation of intracortical microelectrodes has been hindered, at least in part, by the perpetual inflammatory response occurring after device implantation. The neuroinflammatory response observed after device implantation has been correlated to oxidative stress that occurs due to neurological injury and disease. However, there has yet to be a definitive link of oxidative stress to intracortical microelectrode implantation. Thus, the objective of this study is to give direct evidence of oxidative stress following intracortical microelectrode implantation. This study also aims to identify potential molecular targets to attenuate oxidative stress observed postimplantation. Here, we implanted adult rats with silicon non-functional microelectrode probes for 4 weeks and compared the oxidative stress response to no surgery controls through postmortem gene expression analysis and qualitative histological observation of oxidative stress markers. Gene expression analysis results at 4 weeks postimplantation indicated that EH domain-containing 2, prion protein gene (Prnp, and Stearoyl-Coenzyme A desaturase 1 (Scd1 were all significantly higher for animals implanted with intracortical microelectrode probes compared to no surgery control animals. To the contrary, NADPH oxidase activator 1 (Noxa1 relative gene expression was significantly lower for implanted animals compared to no surgery control animals. Histological observation of oxidative stress showed an increased expression of oxidized proteins, lipids, and nucleic acids concentrated around the implant site. Collectively, our results reveal there is a presence of oxidative stress following intracortical microelectrode implantation compared to no surgery controls. Further investigation targeting these specific oxidative stress linked genes could be beneficial to understanding potential mechanisms and downstream therapeutics that can be utilized to reduce oxidative stress-mediated damage

  17. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  18. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    Science.gov (United States)

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ)induce oxidative stress by redox cycling, which generates hydrogen peroxide (H202). Cysteinylthio...

  19. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    The present study was envisaged to investigate the possible role of oxidative stress in permethrin neurotoxicity and to evaluate the protective effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as thiobarbituric acid reacting substances (TBARS) was found to ...

  20. Oxidative stress in diabetic patients with retinopathy | Kundu ...

    African Journals Online (AJOL)

    Background: Diabetes mellitus (DM) is known to induce oxidative stress along with deranging various metabolisms; one of the late complications of diabetes mellitus is diabetic retinopathy, which is a leading cause of acquired blindness. Poor glycemic control and oxidative stress have been attributed to the development of ...

  1. Adiponectin, leptin and oxidative stress in preeclampsia in Egyptian ...

    African Journals Online (AJOL)

    Adiponectin and Leptin are closely related adipokines that are associated with the oxidative stresses and endothelial dysfunction and proposed to participate in preeclampsia (PE) pathogenesis. This study is to determine changes in serum levels of adiponectin, leptin and oxidative stress in PE women in order to speculate a ...

  2. Decreased total antioxidant levels and increased oxidative stress in ...

    African Journals Online (AJOL)

    Background: Chronic hyperglycaemia in diabetes mellitus leads to increased lipid peroxidation in the body, followed by the development of chronic complications due to oxidative stress. Objective: The aim of this study was to compare total antioxidant (TAO) levels and oxidative stress in type 2 diabetes mellitus (T2DM) ...

  3. The calm mouse: an animal model of stress reduction.

    Science.gov (United States)

    Gurfein, Blake T; Stamm, Andrew W; Bacchetti, Peter; Dallman, Mary F; Nadkarni, Nachiket A; Milush, Jeffrey M; Touma, Chadi; Palme, Rupert; Di Borgo, Charles Pozzo; Fromentin, Gilles; Lown-Hecht, Rachel; Konsman, Jan Pieter; Acree, Michael; Premenko-Lanier, Mary; Darcel, Nicolas; Hecht, Frederick M; Nixon, Douglas F

    2012-05-09

    Chronic stress is associated with negative health outcomes and is linked with neuroendocrine changes, deleterious effects on innate and adaptive immunity, and central nervous system neuropathology. Although stress management is commonly advocated clinically, there is insufficient mechanistic understanding of how decreasing stress affects disease pathogenesis. Therefore, we have developed a "calm mouse model" with caging enhancements designed to reduce murine stress. Male BALB/c mice were divided into four groups: control (Cntl), standard caging; calm (Calm), large caging to reduce animal density, a cardboard nest box for shelter, paper nesting material to promote innate nesting behavior, and a polycarbonate tube to mimic tunneling; control exercise (Cntl Ex), standard caging with a running wheel, known to reduce stress; and calm exercise (Calm Ex), calm caging with a running wheel. Calm, Cntl Ex and Calm Ex animals exhibited significantly less corticosterone production than Cntl animals. We also observed changes in spleen mass, and in vitro splenocyte studies demonstrated that Calm Ex animals had innate and adaptive immune responses that were more sensitive to acute handling stress than those in Cntl. Calm animals gained greater body mass than Cntl, although they had similar food intake, and we also observed changes in body composition, using magnetic resonance imaging. Together, our results suggest that the Calm mouse model represents a promising approach to studying the biological effects of stress reduction in the context of health and in conjunction with existing disease models.

  4. Reductions in labour capacity from heat stress under climate warming

    Science.gov (United States)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  5. Oxidative stress treatment for clinical trials in neurodegenerative diseases.

    Science.gov (United States)

    Ienco, Elena Caldarazzo; LoGerfo, Annalisa; Carlesi, Cecilia; Orsucci, Daniele; Ricci, Giulia; Mancuso, Michelangelo; Siciliano, Gabriele

    2011-01-01

    Oxidative stress is a metabolic condition arising from imbalance between the production of potentially reactive oxygen species and the scavenging activities. Mitochondria are the main providers but also the main scavengers of cell oxidative stress. The role of mitochondrial dysfunction and oxidative stress in the pathogenesis of neurodegenerative diseases is well documented. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. Despite this evidence, human experience with antioxidant neuroprotectants has generally been negative with regards to the clinical progress of disease, with unclear results in biochemical assays. Here we review the antioxidant approaches performed so far in neurodegenerative diseases and the future challenges in modern medicine.

  6. Nitric oxide reduces oxidative damage induced by water stress in sunflower plants

    Directory of Open Access Journals (Sweden)

    Inês Cechin

    2015-06-01

    Full Text Available Drought is one of the main environmental constraints that can reduce plant yield. Nitric oxide (NO is a signal molecule involved in plant responses to several environmental stresses. The objective of this study was to investigate the cytoprotective effect of a single foliar application of 0, 1, 10 or 100 µM of the NO donor sodium nitroprusside (SNP in sunflower plants under water stress. Water stressed plants treated with 1μM SNP showed an increase in the relative water content compared with 0 μM SNP. Drought reduced the shoot dry weight but SNP applications did not result in alleviation of drought effects. Neither drought nor water stress plus SNP applications altered the content of photosynthetic pigments. Stomatal conductance was reduced by drought and this reduction was accompanied by a significant reduction in intercellular CO2 concentration and photosynthesis. Treatment with SNP did not reverse the effect of drought on the gas exchange characteristics. Drought increased the level of malondialdehyde (MDA and proline and reduced pirogalol peroxidase (PG-POD activity, but did not affect the activity of superoxide dismutase (SOD. When the water stressed plants were treated with 10 μM SNP, the activity of PG-POD and the content of proline were increased and the level of MDA was decreased. The results show that the adverse effects of water stress on sunflower plants are dependent on the external NO concentration. The action of NO may be explained by its ability to increase the levels of antioxidant compounds and the activity of ROS-scavenging enzymes.

  7. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah

    2016-06-20

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.

  8. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    International Nuclear Information System (INIS)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic

  9. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  10. Oxidative stress response after laparoscopic versus conventional sigmoid resection

    DEFF Research Database (Denmark)

    Madsen, Michael Tvilling; Kücükakin, Bülent; Lykkesfeldt, Jens

    2012-01-01

    Surgery is accompanied by a surgical stress response, which results in increased morbidity and mortality. Oxidative stress is a part of the surgical stress response. Minimally invasive laparoscopic surgery may result in reduced oxidative stress compared with open surgery. Nineteen patients...... scheduled for sigmoid resection were randomly allocated to open or laparoscopic sigmoid resection in a double-blind, prospective clinical trial. Three biochemical markers of oxidative stress (malondialdehyde, ascorbic acid, and dehydroascorbic acid) were measured at 6 different time points (preoperatively......, 1 h, 6 h, 24 h, 48 h, and 72 h postoperatively). There were no statistical significant differences between laparoscopic and open surgery for any of the 3 oxidative stress parameters. Malondialdehyde was reduced 1 hour postoperatively (P...

  11. Use of ion conductors in the pyrochemical reduction of oxides

    International Nuclear Information System (INIS)

    Miller, W.E.; Tomczuk, Z.

    1994-01-01

    An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO 2 oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a β-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca o used for reducing UO 2 and PuO 2 to U and Pu. 2 figures

  12. Oxidative stress and regulation of Pink1 in zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Madhusmita Priyadarshini

    Full Text Available Oxidative stress-mediated neuronal dysfunction is characteristic of several neurodegenerative disorders, including Parkinson's disease (PD. The enzyme tyrosine hydroxylase (TH catalyzes the formation of L-DOPA, the rate-limiting step in the biosynthesis of dopamine. A lack of dopamine in the striatum is the most characteristic feature of PD, and the cause of the most dominant symptoms. Loss of function mutations in the PTEN-induced putative kinase (PINK1 gene cause autosomal recessive PD. This study explored the basic mechanisms underlying the involvement of pink1 in oxidative stress-mediated PD pathology using zebrafish as a tool. We generated a transgenic line, Tg(pink1:EGFP, and used it to study the effect of oxidative stress (exposure to H2O2 on pink1 expression. GFP expression was enhanced throughout the brain of zebrafish larvae subjected to oxidative stress. In addition to a widespread increase in pink1 mRNA expression, mild oxidative stress induced a clear decline in tyrosine hydroxylase 2 (th2, but not tyrosine hydroxylase 1 (th1 expression, in the brain of wild-type larvae. The drug L-Glutathione Reduced (LGR has been associated with anti-oxidative and possible neuroprotective properties. Administration of LGR normalized the increased fluorescence intensity indicating pink1 transgene expression and endogenous pink1 mRNA expression in larvae subjected to oxidative stress by H2O2. In the pink1 morpholino oliogonucleotide-injected larvae, the reduction in the expression of th1 and th2 was partially rescued by LGR. The pink1 gene is a sensitive marker of oxidative stress in zebrafish, and LGR effectively normalizes the consequences of mild oxidative stress, suggesting that the neuroprotective effects of pink1 and LGR may be significant and useful in drug development.

  13. Clinical Perspective of Oxidative Stress in Sporadic ALS

    Science.gov (United States)

    D’Amico, Emanuele; Factor-Litvak, Pam; Santella, Regina M.; Mitsumoto, Hiroshi

    2013-01-01

    Sporadic amyotrophic lateral sclerosis (sALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/anti-oxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine, are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly support the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis. PMID:23797033

  14. Direct printing and reduction of graphite oxide for flexible supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hanyung [Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Ve Cheah, Chang [Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Jeong, Namjo [Energy Materials and Convergence Research Department, Korea Institute of Energy Research, Daejeon (Korea, Republic of); Lee, Junghoon, E-mail: jleenano@snu.ac.kr [Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of)

    2014-08-04

    We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm{sup 3} in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications.

  15. Direct printing and reduction of graphite oxide for flexible supercapacitors

    Science.gov (United States)

    Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo; Lee, Junghoon

    2014-08-01

    We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm3 in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications.

  16. Direct printing and reduction of graphite oxide for flexible supercapacitors

    International Nuclear Information System (INIS)

    Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo; Lee, Junghoon

    2014-01-01

    We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm 3 in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications

  17. Neuroprotection against oxidative stress by serum from heat acclimated rats.

    Science.gov (United States)

    Beit-Yannai, E; Trembovler, V; Horowitz, M; Lazarovici, P; Kohen, R; Shohami, E

    1998-09-25

    Exposure of PC12 cells, to 1% serum derived from normothermic (CON) rats resulted in 79% cell death. Sister cultures treated with 1% serum derived from heat acclimated (ACC) rats, were neuroprotected and expressed a significant reduction in cell death. In PC12 cells exposed to a free radical generator causing an oxidative stress, 90% cell death was measured in CON serum treated cultures, while ACC serum treated cultures were neuroprotected. Xanthine oxidase activity and uric acid (UA) levels were lower in ACC serum compared to CON. Addition of UA to both sera abolished the difference in cell viability, and toxicity of ACC serum reached that of CON. These findings suggest a causal relationship between the lower levels of UA in ACC and the neuroprotective effect observed. The present study proposes heat acclimation as an experimental and/or clinical tool for the achievement of neuroprotection.

  18. Oxidative stress in patients with endodontic pathologies.

    Science.gov (United States)

    Vengerfeldt, Veiko; Mändar, Reet; Saag, Mare; Piir, Anneli; Kullisaar, Tiiu

    2017-01-01

    Apical periodontitis (AP) is an inflammatory disease affecting periradicular tissues. It is a widespread condition but its etiopathogenetic mechanisms have not been completely elucidated and the current treatment options are not always successful. To compare oxidative stress (OxS) levels in the saliva and the endodontium (root canal [RC] contents) in patients with different endodontic pathologies and in endodontically healthy subjects. The study group of this comparison study included 22 subjects with primary chronic apical periodontitis (pCAP), 26 with posttreatment or secondary chronic apical periodontitis (sCAP), eight with acute periapical abscess, 13 with irreversible pulpitis, and 17 healthy controls. Resting saliva samples were collected before clinical treatment. Pulp samples (remnants of the pulp, tooth tissue, and/or previous root filling material) were collected under strict aseptic conditions using the Hedström file. The samples were frozen to -80°C until analysis. OxS markers (myeloperoxidase [MPO], oxidative stress index [OSI], 8-isoprostanes [8-EPI]) were detected in the saliva and the endodontium. The highest MPO and 8-EPI levels were seen in pCAP and pulpitis, while the highest levels of OSI were seen in pCAP and abscess patients, as well as the saliva of sCAP patients. Controls showed the lowest OxS levels in both RC contents and saliva. Significant positive correlations between OxS markers, periapical index, and pain were revealed. Patients with pain had significantly higher OxS levels in both the endodontium (MPO median 27.9 vs 72.6 ng/mg protein, p =0.004; OSI 6.0 vs 10.4, p <0.001; 8-EPI 50.0 vs 75.0 pg/mL, p <0.001) and saliva (MPO 34.2 vs 117.5 ng/mg protein, p <0.001; 8-EPI 50.0 vs 112.8 pg/mL, p <0.001) compared to pain-free subjects. OxS is an important pathomechanism in endodontic pathologies that is evident at both the local (RC contents) and systemic (saliva) level. OxS is significantly associated with dental pain and bone

  19. Effect of atorvastatin on hyperglycemia-induced brain oxidative stress and neuropathy induced by diabetes

    Directory of Open Access Journals (Sweden)

    Nastaran Faghihi

    2015-04-01

    Conclusion: The findings of the present study reveal that atorvastatin is able to prevent hyperglycemia-induced diabetic neuropathy and inhibit brain oxidative stress during diabetes. It is probable that reduction of urea is one of the reasons for atorvastatin prevention of hyperglycemia-induced neuropathy.

  20. Nitrous oxide production kinetics during nitrate reduction in river sediments.

    Science.gov (United States)

    Laverman, Anniet M; Garnier, Josette A; Mounier, Emmanuelle M; Roose-Amsaleg, Céline L

    2010-03-01

    A significant amount of nitrogen entering river basins is denitrified in riparian zones. The aim of this study was to evaluate the influence of nitrate and carbon concentrations on the kinetic parameters of nitrate reduction as well as nitrous oxide emissions in river sediments in a tributary of the Marne (the Seine basin, France). In order to determine these rates, we used flow-through reactors (FTRs) and slurry incubations; flow-through reactors allow determination of rates on intact sediment slices under controlled conditions compared to sediment homogenization in the often used slurry technique. Maximum nitrate reduction rates (R(m)) ranged between 3.0 and 7.1microg Ng(-1)h(-1), and affinity constant (K(m)) ranged from 7.4 to 30.7mg N-NO(3)(-)L(-1). These values were higher in slurry incubations with an R(m) of 37.9microg Ng(-1)h(-1) and a K(m) of 104mg N-NO(3)(-)L(-1). Nitrous oxide production rates did not follow Michaelis-Menten kinetics, and we deduced a rate constant with an average of 0.7 and 5.4ng Ng(-1)h(-1) for FTR and slurry experiments respectively. The addition of carbon (as acetate) showed that carbon was not limiting nitrate reduction rates in these sediments. Similar rates were obtained for FTR and slurries with carbon addition, confirming the hypothesis that homogenization increases rates due to release of and increasing access to carbon in slurries. Nitrous oxide production rates in FTR with carbon additions were low and represented less than 0.01% of the nitrate reduction rates and were even negligible in slurries. Maximum nitrate reduction rates revealed seasonality with high potential rates in fall and winter and low rates in late spring and summer. Under optimal conditions (anoxia, non-limiting nitrate and carbon), nitrous oxide emission rates were low, but significant (0.01% of the nitrate reduction rates). Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Nanoscale reduction of graphene oxide thin films and its characterization.

    Science.gov (United States)

    Lorenzoni, M; Giugni, A; Di Fabrizio, E; Pérez-Murano, Francesc; Mescola, A; Torre, B

    2015-07-17

    In this paper, we report on a method to reduce thin films of graphene oxide (GO) to a spatial resolution better than 100 nm over several tens of micrometers by means of an electrochemical scanning probe based lithography. In situ tip-current measurements show that an edged drop in electrical resistance characterizes the reduced areas, and that the reduction process is, to a good approximation, proportional to the applied bias between the onset voltage and the saturation thresholds. An atomic force microscope (AFM) quantifies the drop of the surface height for the reduced profile due to the loss of oxygen. Complementarily, lateral force microscopy reveals a homogeneous friction coefficient of the reduced regions that is remarkably lower than that of native graphene oxide, confirming a chemical change in the patterned region. Micro Raman spectroscopy, which provides access to insights into the chemical process, allows one to quantify the restoration and de-oxidation of the graphitic network driven by the electrochemical reduction and to determine characteristic length scales. It also confirms the homogeneity of the process over wide areas. The results shown were obtained from accurate analysis of the shift, intensity and width of Raman peaks for the main vibrational bands of GO and reduced graphene oxide (rGO) mapped over large areas. Concerning multilayered GO thin films obtained by drop-casting we have demonstrated an unprecedented lateral resolution in ambient conditions as well as an improved control, characterization and understanding of the reduction process occurring in GO randomly folded multilayers, useful for large-scale processing of graphene-based material.

  2. Nanoscale reduction of graphene oxide thin films and its characterization

    KAUST Repository

    Lorenzoni, M.

    2015-06-29

    In this paper, we report on a method to reduce thin films of graphene oxide (GO) to a spatial resolution better than 100 nm over several tens of micrometers by means of an electrochemical scanning probe based lithography. In situ tip-current measurements show that an edged drop in electrical resistance characterizes the reduced areas, and that the reduction process is, to a good approximation, proportional to the applied bias between the onset voltage and the saturation thresholds. An atomic force microscope (AFM) quantifies the drop of the surface height for the reduced profile due to the loss of oxygen. Complementarily, lateral force microscopy reveals a homogeneous friction coefficient of the reduced regions that is remarkably lower than that of native graphene oxide, confirming a chemical change in the patterned region. Micro Raman spectroscopy, which provides access to insights into the chemical process, allows one to quantify the restoration and de-oxidation of the graphitic network driven by the electrochemical reduction and to determine characteristic length scales. It also confirms the homogeneity of the process over wide areas. The results shown were obtained from accurate analysis of the shift, intensity and width of Raman peaks for the main vibrational bands of GO and reduced graphene oxide (rGO) mapped over large areas. Concerning multilayered GO thin films obtained by drop-casting we have demonstrated an unprecedented lateral resolution in ambient conditions as well as an improved control, characterization and understanding of the reduction process occurring in GO randomly folded multilayers, useful for large-scale processing of graphene-based material. © 2015 IOP Publishing Ltd.

  3. Processing of effluent salt from the direct oxide reduction process

    International Nuclear Information System (INIS)

    Mishra, B.; Olson, D.L.

    1992-01-01

    The production of reactive metals by Direct Oxide Reduction (DOR) process using calcium in a molten calcium salt system generates significant amount of contaminated waste as calcium oxide saturated calcium chloride salt mix with calcium oxide content of up to 15 wt. pct. Fused salt electrolysis of a simulated salt mix has been carried out to electrowin calcium, which can be recycled to the DOR reactor along with the calcium chloride salt or may be used in-situ in a combined DOR and electrowinning process. Many reactive metal oxides could thus be reduced in a one-step process without generating a significant amount of waste. The process has been optimized in terms of the calcium solubility, cell temperature, current density and the cell design to maximize the current efficiency. Based on the information available regarding the solubility of calcium in calcium chloride salt in the presence of calcium oxide, and the back reactions occurring in-situ between the electrowon calcium and other components present in the cell, e.g. carbon, oxygen, carbon dioxide and calcium oxide, it is difficult to recover elemental calcium within the system. However, a liquid cathode or a rising cathode has been used in the past to recover calcium. The solubility has also been found to depend on the use of graphite as the anode material as evidenced by the presence of calcium carbonate in the final salt. The rate of recovery for metallic calcium has to be enhanced to levels that overcome the back reactions in a system where quick removal of anodic gases is achieved. Calcium has been detected by the hydrogen evolution technique and the amount of calcia has been determined by titration. A porous ceramic sheath has been used in the cell to prevent the chemical reaction of electrowon calcium to produce oxide or carbonate and to prevent the contamination of salt by the anodic carbon

  4. Exercise coupled with dietary restriction reduces oxidative stress in male adolescents with obesity.

    Science.gov (United States)

    Li, Chunyan; Feng, Feihu; Xiong, Xiaoling; Li, Rui; Chen, Ning

    2017-04-01

    The increased oxidative stress is usually observed in obese population, but the control of body weight by calorie restriction and/or exercise training can ameliorate oxidative stress. In order to evaluate oxidative stress in response to exercise and dietary restriction in obese adolescents, a total of 20 obese volunteers were enrolled in a 4-week intervention program including exercise training and dietary restriction. Body compositions and blood samples were analysed before and after 4-week intervention, and biomarkers associated with oxidative stress were examined. After 4-week exercise training coupled with dietary restriction, physical composition parameters including body mass, body mass index (BMI), lean body mass, body fat mass and fat mass ratio had obvious reduction by 12.43%, 13.51%, 5.83%, 25.05% and 14.52%, respectively. In addition, the activities of antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) revealed a remarkable enhancement. On the other hand, protein carbonyls (PC) exhibited an obvious reduction. Moreover, total thiols and nitrites with respect to baseline revealed a reducing trend although no significant difference was observed. Therefore, the 4-week exercise intervention coupled with dietary restriction is benefit for the loss of body weight and the mitigation of oxidative stress in obese population so that it can be a recommendable intervention prescription for the loss of body weight.

  5. Brain imaging for oxidative stress and mitochondrial dysfunction in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Okazawa, H.; Tsujikawa, T.; Kiyono, Y.; Ikawa, M.; Yoneda, M.

    2014-01-01

    Oxidative stress, one of the most probable molecular mechanisms for neuronal impairment, is reported to occur in the affected brain regions of various neurodegenerative diseases. Recently, many studies showed evidence of a link between oxidative stress or mitochondrial damage and neuronal degeneration. Basic in vitro experiments and postmortem studies demonstrated that biomarkers for oxidative damage can be observed in the pathogenic regions of the brain and the affected neurons. Model animal studies also showed oxidative damage associated with neuronal degeneration. The molecular imaging method with positron emission tomography (PET) is expected to delineate oxidatively stressed microenvironments to elucidate pathophysiological changes of the in vivo brain; however, only a few studies have successfully demonstrated enhanced stress in patients. Radioisotope copper labeled diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) may be the most promising candidate for this oxidative stress imaging. The tracer is usually known as a hypoxic tissue imaging PET probe, but the accumulation mechanism is based on the electron rich environment induced by mitochondrial impairment and/or microsomal over-reduction, and thus it is considered to represent the oxidative stress state correlated with the degree of disease severity. In this review, Cu-ATSM PET is introduced in detail from the basics to practical methods in clinical studies, as well as recent clinical studies on cerebrovascular diseases and neurodegenerative diseases. Several other PET probes are also introduced from the point of view of neuronal oxidative stress imaging. These molecular imaging methods should be promising tools to reveal oxidative injuries in various brain diseases

  6. Evaluation of oxidative stress in hunting dogs during exercise.

    Science.gov (United States)

    Pasquini, A; Luchetti, E; Cardini, G

    2010-08-01

    Exercise has been shown to increase the production of reactive oxygen species (ROS) to a point that can exceed antioxidant defenses, to cause oxidative stress. The aim of our trials was to evaluate oxidative stress and recovery times in trained dogs during two different hunting exercises, with reactive oxygen metabolites-derivatives (d-ROMs) and biological antioxidant potential (BAP) tests. A group of nine privately owned Italian hounds were included. A 20-min aerobic exercise and a 4-h aerobic exercise, after 30 days of rest, were performed by the dogs. Our results show an oxidative stress after exercise due to both the high concentration of oxidants (d-ROMs) and the low level of antioxidant power (BAP). Besides, the recovery time is faster after the 4-h aerobic exercise than the 20-min aerobic exercise. Oxidative stress monitoring during dogs exercise could become an interesting aid to establish ideal adaptation to training. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Relationship between hyposalivation and oxidative stress in aging mice.

    Science.gov (United States)

    Yamauchi, Yoshitaka; Matsuno, Tomonori; Omata, Kazuhiko; Satoh, Tazuko

    2017-07-01

    The increase in oxidative stress that accompanies aging has been implicated in the abnormal advance of aging and in the onset of various systemic diseases. However, the details of what effects the increase in oxidative stress that accompanies aging has on saliva secretion are not known. In this study, naturally aging mice were used to examine the stimulated whole saliva flow rate, saliva and serum oxidative stress, antioxidant level, submandibular gland H-E staining, and immunofluorescence staining to investigate the effect of aging on the volume of saliva secretion and the relationship with oxidative stress, as well as the effect of aging on the structure of salivary gland tissue. The stimulated whole saliva flow rate decreased significantly with age. Also, oxidative stress increased significantly with age. Antioxidant levels, however, decreased significantly with age. Structural changes of the submandibular gland accompanying aging included atrophy of parenchyma cells and fatty degeneration and fibrosis of stroma, and the submandibular gland weight ratio decreased. These results suggest that oxidative stress increases with age, not just systemically but also locally in the submandibular gland, and that oxidative stress causes changes in the structure of the salivary gland and is involved in hyposalivation.

  8. Mitochondrial isocitrate dehydrogenase is inactivated upon oxidation and reactivated by thioredoxin-dependent reduction in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Keisuke eYoshida

    2014-09-01

    Full Text Available Regulation of mitochondrial metabolism is essential for ensuring cellular growth and maintenance in plants. Based on redox-proteomics analysis, several proteins involved in diverse mitochondrial reactions have been identified as potential redox-regulated proteins. NAD+-dependent isocitrate dehydrogenase (IDH, a key enzyme in the tricarboxylic acid cycle, is one such candidate. In this study, we investigated the redox regulation mechanisms of IDH by biochemical procedures. In contrast to mammalian and yeast counterparts reported to date, recombinant IDH in Arabidopsis mitochondria did not show adenylate-dependent changes in enzymatic activity. Instead, IDH was inactivated by oxidation treatment and partially reactivated by subsequent reduction. Functional IDH forms a heterodimer comprising regulatory (IDH-r and catalytic (IDH-c subunits. IDH-r was determined to be the target of oxidative modifications forming an oligomer via intermolecular disulfide bonds. Mass spectrometric analysis combined with tryptic digestion of IDH-r indicated that Cys128 and Cys216 are involved in intermolecular disulfide bond formation. Furthermore, we showed that mitochondria-localized o-type thioredoxin (Trx-o promotes the reduction of oxidized IDH-r. These results suggest that IDH-r is susceptible to oxidative stress, and Trx-o serves to convert oxidized IDH-r to the reduced form that is necessary for active IDH complex.

  9. Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea.

    Science.gov (United States)

    Kletzin, Arnulf; Urich, Tim; Müller, Fabian; Bandeiras, Tiago M; Gomes, Cláudio M

    2004-02-01

    The oxidation and reduction of elemental sulfur and reduced inorganic sulfur species are some of the most important energy-yielding reactions for microorganisms living in volcanic hot springs, solfataras, and submarine hydrothermal vents, including both heterotrophic, mixotrophic, and chemolithoautotrophic, carbon dioxide-fixing species. Elemental sulfur is the electron donor in aerobic archaea like Acidianus and Sulfolobus. It is oxidized via sulfite and thiosulfate in a pathway involving both soluble and membrane-bound enzymes. This pathway was recently found to be coupled to the aerobic respiratory chain, eliciting a link between sulfur oxidation and oxygen reduction at the level of the respiratory heme copper oxidase. In contrast, elemental sulfur is the electron acceptor in a short electron transport chain consisting of a membrane-bound hydrogenase and a sulfur reductase in (facultatively) anaerobic chemolithotrophic archaea Acidianus and Pyrodictium species. It is also the electron acceptor in organoheterotrophic anaerobic species like Pyrococcus and Thermococcus, however, an electron transport chain has not been described as yet. The current knowledge on the composition and properties of the aerobic and anaerobic pathways of dissimilatory elemental sulfur metabolism in thermophilic archaea is summarized in this contribution.

  10. Cell oxidation-reduction imbalance after modulated radiofrequency radiation.

    Science.gov (United States)

    Marjanovic, Ana Marija; Pavicic, Ivan; Trosic, Ivancica

    2015-01-01

    Aim of this study was to evaluate an influence of modulated radiofrequency field (RF) of 1800 MHz, strength of 30 V/m on oxidation-reduction processes within the cell. The assigned RF field was generated within Gigahertz Transversal Electromagnetic Mode cell equipped by signal generator, modulator, and amplifier. Cell line V79, was irradiated for 10, 30, and 60 min, specific absorption rate was calculated to be 1.6 W/kg. Cell metabolic activity and viability was determined by MTT assay. In order to define total protein content, colorimetric method was used. Concentration of oxidised proteins was evaluated by enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) marked with fluorescent probe 2',7'-dichlorofluorescin diacetate were measured by means of plate reader device. In comparison with control cell samples, metabolic activity and total protein content in exposed cells did not differ significantly. Concentrations of carbonyl derivates, a product of protein oxidation, insignificantly but continuously increase with duration of exposure. In exposed samples, ROS level significantly (p < 0.05) increased after 10 min of exposure. Decrease in ROS level was observed after 30-min treatment indicating antioxidant defence mechanism activation. In conclusion, under the given laboratory conditions, modulated RF radiation might cause impairment in cell oxidation-reduction equilibrium within the growing cells.

  11. 13 reasons why the brain is susceptible to oxidative stress

    Directory of Open Access Journals (Sweden)

    James Nathan Cobley

    2018-05-01

    Full Text Available The human brain consumes 20% of the total basal oxygen (O2 budget to support ATP intensive neuronal activity. Without sufficient O2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood as the deleterious result of adventitious O2 derived free radical and non-radical species generation. To understand how many reasons underpin oxidative stress, one must first re-cast free radical and non-radical species in a positive light because their deliberate generation enables the brain to achieve critical functions (e.g. synaptic plasticity through redox signalling (i.e. positive functionality. Using free radicals and non-radical derivatives to signal sensitises the brain to oxidative stress when redox signalling goes awry (i.e. negative functionality. To advance mechanistic understanding, we rationalise 13 reasons why the brain is susceptible to oxidative stress. Key reasons include inter alia unsaturated lipid enrichment, mitochondria, calcium, glutamate, modest antioxidant defence, redox active transition metals and neurotransmitter auto-oxidation. We review RNA oxidation as an underappreciated cause of oxidative stress. The complex interplay between each reason dictates neuronal susceptibility to oxidative stress in a dynamic context and neural identity dependent manner. Our discourse sets the stage for investigators to interrogate the biochemical basis of oxidative stress in the brain in health and disease.

  12. It has been suggested that oxidative stress, especially oxidative ...

    African Journals Online (AJOL)

    nabipour

    2012-02-14

    Feb 14, 2012 ... 1Department of Clinical Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran. 2Department of Cardiology ... oxidative modification of low-density lipoproteins (LDL), may play a causative role in ... the oxidation of lipids in the cell membrane especially the oxidation of LDL.

  13. Oxidative stress and psychological functioning among medical students

    Directory of Open Access Journals (Sweden)

    Rani Srivastava

    2014-01-01

    Full Text Available Background: Oxidative stress has gained attention recently in behavioral medicine and has been reported to be associated with various psychological disturbances and their prognoses. Objectives: Study aims to evaluate the oxidative stress (malonylaldehyde (MDA levels and its relation with psychological factors (dimensions of personality, levels of anxiety, stress, and depression among medical/paramedical students of 1 st and 3 rd year. Materials and Methods: A total of 150 students; 75 from 1 st year (2010-2011 and75 from 3 rd year (2009-2010; of medical and paramedical background were assessed on level of MDA (oxidative stress and personality variables, that is, level of anxiety, stress, and depression. These psychological variables were correlated with the level of their oxidative stress. Results: Findings revealed that both groups are influenced by oxidative stress and their psychological variables are also compatible in order to confirm their vulnerabilities to stress. Conclusions: Stress in 3 rd year students was significantly higher and it was noted that it adversely affects the psychological parameters. Hence, special attention on mental health aspect in these students may be given.

  14. The glutathione mimic ebselen inhibits oxidative stress but not endoplasmic reticulum stress in endothelial cells.

    Science.gov (United States)

    Ahwach, Salma Makhoul; Thomas, Melanie; Onstead-Haas, Luisa; Mooradian, Arshag D; Haas, Michael J

    2015-08-01

    Reactive oxygen species are associated with cardiovascular disease, diabetes, and atherosclerosis, yet the use of antioxidants in clinical trials has been ineffective at improving outcomes. In endothelial cells, high-dextrose-induced oxidative stress and endoplasmic reticulum stress promote endothelial dysfunction leading to the recruitment and activation of peripheral blood lymphocytes and the breakdown of barrier function. Ebselen, a glutathione peroxidase 1 (GPX1) mimic, has been shown to improve β-cell function in diabetes and prevent atherosclerosis. To determine if ebselen inhibits both oxidative stress and endoplasmic reticulum (ER) stress in endothelial cells, we examined its effects in human umbilical vein endothelial cells (HUVEC) and human coronary artery endothelial cells (HCAEC) with and without high-dextrose. Oxidative stress and ER stress were measured by 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence and ER stress alkaline phosphatase assays, respectively. GPX1 over-expression and knockdown were performed by transfecting cells with a GPX1 expression construct or a GPX1-specific siRNA, respectively. Ebselen inhibited dextrose-induced oxidative stress but not ER stress in both HUVEC and HCAEC. Ebselen also had no effect on tunicamycin-induced ER stress in HCAEC. Furthermore, augmentation of GPX1 activity directly by sodium selenite supplementation or transfection of a GPX1 expression plasmid decreased dextrose-induced oxidative stress but not ER stress, while GPX1 knockout enhanced oxidative stress but had no effect on ER stress. These results suggest that ebselen targets only oxidative stress but not ER stress. Copyright © 2015. Published by Elsevier Inc.

  15. Oxidation-reduction enzymes of myocardium under ionizing radiation effect

    International Nuclear Information System (INIS)

    Uteshev, A.B.

    1988-01-01

    Tissue respiration proceses under radiation effect were investigated which allowed one to reveal slight biochemical disturbances in a cell which make up the base of functional changes of different organs and tissues and to get to know the essence of tissue respiration processes. An attempt to explain significant value of oxidation enzyme system radiosensitivity in the course of cell respiration process altogether is made when studying the state of separate links of oxidation-reduction chain. It is shown that at early periods of radiation injury activity of catalase, dehydrogenases (isocitric, α-ketoglutaric, malic, succinic acids) is suppressed, concentration of a number of cytochromes is reduced and general ferrum content is increased which is connected with conformation changes of ultrastructure of mitochondrial membranes

  16. Discrete Event System Based Pyroprocessing Modeling and Simulation: Oxide Reduction

    International Nuclear Information System (INIS)

    Lee, H. J.; Ko, W. I.; Choi, S. Y.; Kim, S. K.; Hur, J. M.; Choi, E. Y.; Im, H. S.; Park, K. I.; Kim, I. T.

    2014-01-01

    Dynamic changes according to the batch operation cannot be predicted in an equilibrium material flow. This study began to build a dynamic material balance model based on the previously developed pyroprocessing flowsheet. As a mid- and long-term research, an integrated pyroprocessing simulator is being developed at the Korea Atomic Energy Research Institute (KAERI) to cope with a review on the technical feasibility, safeguards assessment, conceptual design of facility, and economic feasibility evaluation. The most fundamental thing in such a simulator development is to establish the dynamic material flow framework. This study focused on the operation modeling of pyroprocessing to implement a dynamic material flow. As a case study, oxide reduction was investigated in terms of a dynamic material flow. DES based modeling was applied to build a pyroprocessing operation model. A dynamic material flow as the basic framework for an integrated pyroprocessing was successfully implemented through ExtendSim's internal database and item blocks. Complex operation logic behavior was verified, for example, an oxide reduction process in terms of dynamic material flow. Compared to the equilibrium material flow, a model-based dynamic material flow provides such detailed information that a careful analysis of every batch is necessary to confirm the dynamic material balance results. With the default scenario of oxide reduction, the batch mass balance was verified in comparison with a one-year equilibrium mass balance. This study is still under progress with a mid-and long-term goal, the development of a multi-purpose pyroprocessing simulator that is able to cope with safeguards assessment, economic feasibility, technical evaluation, conceptual design, and support of licensing for a future pyroprocessing facility

  17. Process for the reduction of nitrogen oxides in an effluent

    Energy Technology Data Exchange (ETDEWEB)

    Epperly, W.R.; Sullivan, J.C.; Sprague, B.N.

    1989-07-04

    This patent describes a process for the reduction of the concentration of nitrogen oxides in the effluent from the combustion of a carbonaceous fuel. The process comprises introducing a treatment agent which comprises a composition selected from the group consisting of NH/sub 4/-lignosulfonate, calcium lignosulfonate, 2-furoic acid, 1,3 dioxolane, tetrahydrofuran, furfurylamine, furfurylalcohol, gluconic acid, citric acid, n-butyl acetate, 1,3 butylene glycol, methylal, tetrahydrofuryl alcohol, furan, fish oil, coumalic acid, furfuryl acetate, tetrahydrofuran 2,3,4,5-tetracarboxylic acid, tetrahydrofurylamine, furylacrylic acid, tetrahydropyran, 2,5-furandimethanol, mannitol, hexamethylenediamine, barbituric acid, acetic anhydride, oxalic acid, mucic acid and d-galactose.

  18. Kinetics of transuranium element oxidation-reduction reactions in solution

    International Nuclear Information System (INIS)

    Gourisse, D.

    1966-09-01

    A review of the kinetics of U, Np, Pu, Am oxidation-reduction reactions is proposed. The relations between the different activation thermodynamic functions (compensatory effect, formal entropy of the activated complex, magnitude of reactions velocities) are considered. The effects of acidity, ionic strength deuterium and mixed solvents polarity on reactions rates are described. The effect of different anions on reactions rates are explained by variations of the reaction standard free energy and variations of the activation free energy (coulombic interactions) resulting from the complexation of dissolved species by these anions. (author) [fr

  19. Oxidation-reduction induced roughening of platinum (111) surface

    International Nuclear Information System (INIS)

    You, H.; Nagy, Z.

    1993-06-01

    Platinum (111) single crystal surface was roughened by repeated cycles of oxidation and reduction to study dynamic evolution of surface roughening. The interface roughens progressively upon repeated cycles. The measured width of the interface was fit to an assumed pow law, W ∼t β , with β = 0.38(1). The results are compared with a simulation based on a random growth model. The fraction of the singly stepped surface apparently saturates to 0. 25 monolayer, which explains the apparent saturation to a steady roughness observed in previous studies

  20. Particle-particle interactions in aluminum reduction of boron oxide

    International Nuclear Information System (INIS)

    Logan, K.V.; McLemore, W.J.S.; Sparrow, J.T.

    1988-01-01

    The Georgia Tech Research Institute has been studying the use of thermite reactions for the production of specialized compounds since the mid-1950's. One of the goals of the research at GTRI is to define the reaction mechanism in order to be ble to predict the resultant reaction behaviour and thus prevent hazardous conditions. Thermite processing advantages are discussed in this paper. A typical thermite type of reaction to produce a composite titanium diboride/alumina is shown. The reactions typically use three starting materials for the production of a specific compound. A preliminary experimental mechanistic model of the extremely exothermic oxidation-reduction reaction is being developed

  1. Metallization of uranium oxide powders by lithium reduction

    International Nuclear Information System (INIS)

    Kim, I. S.; Seo, J. S.; Oh, S. C.; Hong, S. S.; Lee, W. K.

    2002-01-01

    Laboratory scale experiments on the reduction of uranium oxide powders into metal by lithium were performed in order to determine the equipment setup and optimum operation conditions. The method of filtration using the porous magnesia filter was introduced to recover uranium metal powders produced. Based on the laboratory scale experimental results, mock-up scale (20 kg U/batch) metallizer was designed and made. The applicability to the metallization process was estimated with respect to the thermal stability of the porous magnesia filter in the high temperature molten salt, the filtration of the fine uranium metal powders, and the operability of the equipment

  2. Oxidative stress induces senescence in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Anita [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Meyer, Matthias; Bechmann, Volker [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Nerlich, Michael [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Angele, Peter, E-mail: Peter.Angele@klinik.uni-regensburg.de [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany)

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  3. Bursopentin (BP5 protects dendritic cells from lipopolysaccharide-induced oxidative stress for immunosuppression.

    Directory of Open Access Journals (Sweden)

    Tao Qin

    Full Text Available Dendritic cells (DCs play a vital role in the regulation of immune-mediated inflammatory diseases. Thus, DCs have been regarded as a major target for the development of immunomodulators. However, oxidative stress could disturb inflammatory regulation in DCs. Here, we examined the effect of bursopentine (BP5, a novel pentapeptide isolated from chicken bursa of fabricius, on the protection of DCs against oxidative stress for immunosuppression. BP5 showed potent protective effects against the lipopolysaccharide (LPS-induced oxidative stress in DCs, including nitric oxide, reactive oxygen species and lipid peroxidation. Furthermore, BP5 elevated the level of cellular reductive status through increasing the reduced glutathione (GSH and the GSH/GSSG ratio. Concomitant with these, the activities of several antioxidative redox enzymes, including glutathione peroxidase (GPx, catalase (CAT and superoxide dismutase (SOD, were obviously enhanced. BP5 also suppressed submucosal DC maturation in the LPS-stimulated intestinal epithelial cells (ECs/DCs coculture system. Finally, we found that heme oxygenase 1 (HO-1 was remarkably upregulated by BP5 in the LPS-induced DCs, and played an important role in the suppression of oxidative stress and DC maturation. These results suggested that BP5 could protect the LPS-activated DCs against oxidative stress and have potential applications in DC-related inflammatory responses.

  4. Global transcriptome profile of Cryptococcus neoformans during exposure to hydrogen peroxide induced oxidative stress.

    Directory of Open Access Journals (Sweden)

    Rajendra Upadhya

    Full Text Available The ability of the opportunistic fungal pathogen Cryptococcus neoformans to resist oxidative stress is one of its most important virulence related traits. To cope with the deleterious effect of cellular damage caused by the oxidative burst inside the macrophages, C. neoformans has developed multilayered redundant molecular responses to neutralize the stress, to repair the damage and to eventually grow inside the hostile environment of the phagosome. We used microarray analysis of cells treated with hydrogen peroxide (H(2O(2 at multiple time points in a nutrient defined medium to identify a transcriptional signature associated with oxidative stress. We discovered that the composition of the medium in which fungal cells were grown and treated had a profound effect on their capacity to degrade exogenous H(2O(2. We determined the kinetics of H(2O(2 breakdown by growing yeast cells under different conditions and accordingly selected an appropriate media composition and range of time points for isolating RNA for hybridization. Microarray analysis revealed a robust transient transcriptional response and the intensity of the global response was consistent with the kinetics of H(2O(2 breakdown by treated cells. Gene ontology analysis of differentially expressed genes related to oxidation-reduction, metabolic process and protein catabolic processes identified potential roles of mitochondrial function and protein ubiquitination in oxidative stress resistance. Interestingly, the metabolic pathway adaptation of C. neoformans to H(2O(2 treatment was remarkably distinct from the response of other fungal organisms to oxidative stress. We also identified the induction of an antifungal drug resistance response upon the treatment of C. neoformans with H(2O(2. These results highlight the complexity of the oxidative stress response and offer possible new avenues for improving our understanding of mechanisms of oxidative stress resistance in C. neoformans.

  5. Oxidative stress and antioxidant status response of handball athletes: implications for sport training monitoring.

    Science.gov (United States)

    Marin, Douglas Popp; Bolin, Anaysa Paola; Campoio, Thais Regina; Guerra, Beatriz Alves; Otton, Rosemari

    2013-10-01

    The chronic exposure to regular exercise training seems to improve antioxidant defense systems. However, the intense physical training imposed on elite athletes may lead to overtraining associated with oxidative stress. The purpose of the present study was to investigate the effect of different training loads and competition on oxidative stress, biochemical parameters and antioxidant enzymatic defense in handball athletes during 6-months of monitoring. Ten male elite handball athletes were recruited to the study. Blood samples were collected four times every six weeks throughout the season. During most intense periods of training and competitions there were significant changes in plasma indices of oxidative stress (increased TBARS and decreased thiols). Conversely, chronic adaptations to exercise training demonstrated a significant protective effect against oxidative stress in erythrocyte (decrease in TBARs and carbonyl group levels). Erythrocyte antioxidant enzyme activities were significantly increased, suggesting a training-induced antioxidant adaptation. Biomarkers of skeletal muscle damage were significantly increased during high-intensity training period (creatine kinase, lactate dehydrogenase and aspartate aminotransferase). No significant changes were observed in plasma IL-6, TNF-α and uric acid, whereas a significant reduction was found in the IL-1β concentration and gamma-glutamyl transferase activity. Oxidative stress and antioxidant biomarkers can change throughout the season in competitive athletes, reflecting the physical stress and muscle damage that occurs as the result of competitive handball training. In addition, these biochemical measurements can be applied in the physiological follow-up of athletes. © 2013.

  6. Nitric oxide reduction and oxidation on stepped Pt[n(111)x(111)] electrodes

    NARCIS (Netherlands)

    Beltramo, G.L.; Koper, M.T.M.

    2003-01-01

    The structure sensitivity of the reduction and oxidation of saturated and subsaturated NO adlayers has been studied on a series of stepped Pt[n(111)×(111)] electrodes by cyclic and stripping voltammetry experiments in sulfuric and perchloric acid solution. In agreement with earlier experimental

  7. The relationship between oxidative stress and exercise.

    Science.gov (United States)

    Finkler, Maya; Lichtenberg, Dov; Pinchuk, Ilya

    2014-02-01

    Physical exercise has many benefits, but it might also have a negative impact on the body, depending on the training level, length of workout, gender, age and fitness. The negative effects of physical exercise are commonly attributed to an imbalance between the levels of antioxidants (both low molecular weight antioxidants and antioxidant enzymes) and reactive oxygen and nitrogen species due to excessive production of free radicals during physical exercise. In this critical review, we look for answers for three specific questions regarding the interrelationship between physical exercise and oxidative stress (OS), namely, (i) the dependence of the steady-state level of OS on fitness, (ii) the effect of intensive exercise on the OS and (iii) the dependence of the effect of the intense exercise on the individual fitness. All these questions have been raised, investigated and answered, but the answers given on the basis of different studies are different. In the present review, we try to explain the reason(s) for the inconsistencies between the conclusions of different investigations, commonly based on the concentrations of specific biomarkers in body fluids. We think that most of the inconsistencies can be attributed to the difference between the criteria of the ill-defined term denoted OS, the methods used to test them and in some cases, between the qualities of the applied assays. On the basis of our interpretation of the differences between different criteria of OS, we consider possible answers to three well-defined questions. Possible partial answers are given, all of which lend strong support to the conclusion that the network responsible for homeostasis of the redox status is very effective. However, much more data are required to address the association between exercise and OS and its dependence on various relevant factors.

  8. In situ Reduction and Oxidation of Nickel from Solid Oxide Fuel Cells in a Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Faes, Antonin; Jeangros, Quentin; Wagner, Jakob Birkedal

    2009-01-01

    Environmental transmission electron microscopy was used to characterize in situ the reduction and oxidation of nickel from a Ni/YSZ solid oxide fuel cell anode support between 300-500{degree sign}C. The reduction is done under low hydrogen pressure. The reduction initiates at the NiO/YSZ interface...

  9. Increased oxidative stress in patients with familial Mediterranean ...

    African Journals Online (AJOL)

    0.05) comparing to HC group. However, there were no statistically significant differences between the groups in terms of antioxidant vitamin levels. Conclusions: Our study demonstrated increased oxidative stress in patients with FMF during AP.

  10. ( Artemisia absinthium ) Extract On Oxidative Stress In Ameliorating ...

    African Journals Online (AJOL)

    exposure related disease. The aim of the study was to investigate the effect of aqueous extract of wormwood (Artemisia absinthium) on oxidative stress in rats protractedly exposed to lead. Aqueous extract of wormwood plant was administered ...

  11. Oxidative stress and the effect of riboflavin supplementation in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-06

    Mar 6, 2009 ... erythrocytes. The results show that there is oxidative stress in malaria infection and that chloroquine ... virulent causing malaria to be life threatening (Kirk, 2001;. Mahajan et al. ..... lifecycle (Muller et al., 2004). However, the ...

  12. Role of sulfiredoxin in systemic diseases influenced by oxidative stress

    Directory of Open Access Journals (Sweden)

    Asha Ramesh

    2014-01-01

    Full Text Available Sulfiredoxin is a recently discovered member of the oxidoreductases family which plays a crucial role in thiol homoeostasis when under oxidative stress. A myriad of systemic disorders have oxidative stress and reactive oxygen species as the key components in their etiopathogenesis. Recent studies have evaluated the role of this enzyme in oxidative stress mediated diseases such as atherosclerosis, chronic obstructive pulmonary disease and a wide array of carcinomas. Its action is responsible for the normal functioning of cells under oxidative stress and the promotion of cell survival in cancerous cells. This review will highlight the cumulative effects of sulfiredoxin in various systemic disorders with a strong emphasis on its target activity and the factors influencing its expression in such conditions.

  13. extract attenuates MPTP-induced oxidative stress and behavioral

    African Journals Online (AJOL)

    on oxidative stress levels were assessed by estimating enzyme status, including superoxide dismutase. (SOD), catalase ... in both non-human primates and mice models. [12,13]. ..... Polyphenol composition and antioxidant activity of cumin.

  14. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    JTEkanem

    effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as ..... on the brain and nervous system of humans as handlers and ... environment may be at higher health risk in that their internal ...

  15. Alzheimer's disease: Cerebrovascular dysfunction, oxidative stress, and advanced clinical therapies

    NARCIS (Netherlands)

    Marlatt, M.W.; Lucassen, P.J.; Perry, G.; Smith, M.A.; Zhu, X.

    2008-01-01

    Many lines of independent research have provided convergent evidence regarding oxidative stress, cerebrovascular disease, dementia, and Alzheimer's disease (AD). Clinical studies spurred by these findings engage basic and clinical communities with tangible results regarding molecular targets and

  16. HCV-Induced Oxidative Stress: Battlefield-Winning Strategy

    Directory of Open Access Journals (Sweden)

    Khadija Rebbani

    2016-01-01

    Full Text Available About 150 million people worldwide are chronically infected with hepatitis C virus (HCV. The persistence of the infection is controlled by several mechanisms including the induction of oxidative stress. HCV relies on this strategy to redirect lipid metabolism machinery and escape immune response. The 3β-hydroxysterol Δ24-reductase (DHCR24 is one of the newly discovered host markers of oxidative stress. This protein, as HCV-induced oxidative stress responsive protein, may play a critical role in the pathogenesis of HCV chronic infection and associated liver diseases, when aberrantly expressed. The sustained expression of DHCR24 in response to HCV-induced oxidative stress results in suppression of nuclear p53 activity by blocking its acetylation and increasing its interaction with MDM2 in the cytoplasm leading to its degradation, which may induce hepatocarcinogenesis.

  17. Bone turnover and oxidative stress markers in estrogen- deficient ...

    African Journals Online (AJOL)

    Bone turnover and oxidative stress markers in estrogen- ... reproduction in any medium, provided the original work is properly credited. ..... Institute for Laboratory Animal Research: Guide for the ... American Veterinary Medical Association.

  18. Protection of swimming-induced oxidative stress in some vital ...

    African Journals Online (AJOL)

    Protection of swimming-induced oxidative stress in some vital organs by the treatment of composite extract of Withania somnifera, Ocimum sanctum and Zingiber officinalis in male rat. D Misra, B Maiti, D Ghosh ...

  19. Decreased total antioxidant levels and increased oxidative stress in ...

    African Journals Online (AJOL)

    21–25 ... Decreased total antioxidant levels and increased oxidative stress in South ... antioxidant-rich diet and lifestyle changes in T2DM patients would help to avert the .... glycation of proteins and the formation of advanced glycosylation.

  20. Salvianolic acid B Relieves Oxidative Stress in Glucose Absorption ...

    African Journals Online (AJOL)

    Absorption and Utilization of Mice Fed High-Sugar Diet ... Salvianolic acid B, Blood glucose, Reactive oxygen species, Oxidative stress, Sugar diet. ... protein expression in human aortic smooth ... induced by glucose uptake and metabolism [8].

  1. Mini-review: Biofilm responses to oxidative stress.

    Science.gov (United States)

    Gambino, Michela; Cappitelli, Francesca

    2016-01-01

    Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.

  2. Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yongxin Zhao; Michael D. Mann; Edwin S. Olson; John H. Pavlish; Grant E. Dunham [University of North Dakota, Grand Forks, ND (United States). Department of Chemical Engineering

    2006-05-15

    This paper is particularly related to elemental mercury (Hg{sup 0}) oxidation and divalent mercury (Hg{sup 2+} reduction under simulated flue gas conditions in the presence of nitric oxide (NO) and sulfur dioxide (SO{sub 2}). As a powerful oxidant and chlorinating reagent, Cl{sub 2} has the potential for Hg oxidation. However, the detailed mechanism for the interactions, especially among chlorine (Cl)-containing species, SO{sub 2}, NO, as well as H{sub 2}O, remains ambiguous. Research described in this paper therefore focused on the impacts of SO{sub 2} and NO on Hg{sup 0} oxidation and Hg{sup 2+} reduction with the intent of unraveling unrecognized interactions among Cl species, SO{sub 2}, and NO most importantly in the presence of H{sub 2}O. The experimental results demonstrated that SO{sub 2} and NO had pronounced inhibitory effects on Hg{sup 0} oxidation at high temperatures when H{sub 2}O was also present in the gas blend. Such a demonstration was further confirmed by the reduction of Hg{sup 2+} back into its elemental form. Data revealed that SO{sub 2} and NO were capable of promoting homogeneous reduction of Hg{sup 2+} to Hg{sup 0} with H{sub 2}O being present. However, the above inhibition or promotion disappeared under homogeneous conditions when H{sub 2}O was removed from the gas blend. 23 refs., 8 figs.

  3. Etyopathogenesis and Oxidative Stress Relationship in Mild Severe Alopecia Areata

    OpenAIRE

    Fadime Kilinç; Ayse Akbas; Ahu Yorulmaz; Sertaç Sener; Salim Neselioglu; Özcan Erel; Ahmet Metin

    2017-01-01

    Objective:Alopecia areata (AA) is a recurrent, autoimmune, inflammatory disease characterized by loss of scarless hair. The etiopathogenesis is not exactly known, however genetic, emotional, environmental factors and autoimmunity are accused. The aim of the study is to investigate the role of oxidative stress in the etiopathogenesis of AA. Methods:Thirty seven AA patients and thirty five healthy volunteers as control group were included in the study. Oxidative stress index (OSI) was calcu...

  4. Effects of Uric Acid on Exercise-induced Oxidative Stress

    OpenAIRE

    平井, 富弘

    2001-01-01

    We studied effects of uric acid on exercise― induced oxidative stress in humans based on a hypothesis that uric acid acts as an antioxidant to prevent from exercise―induced oxidative stress. Relation between uric acid level in plasma and increase of thiobarbituric acid reactive substance (TBARS)after the cycle ergometer exercise was examined. Thiobarbituricacid reactive substance in plasma increased after the ergometer exercise. High uric acid in plasma did not result in low increase of TBARS...

  5. 13 reasons why the brain is susceptible to oxidative stress

    OpenAIRE

    James Nathan Cobley; Maria Luisa Fiorello; Damian Miles Bailey

    2018-01-01

    The human brain consumes 20% of the total basal oxygen (O2) budget to support ATP intensive neuronal activity. Without sufficient O2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood...

  6. Oxidative stress, activity behaviour and body mass in captive parrots

    OpenAIRE

    Larcombe, S. D.; Tregaskes, C. A.; Coffey, J.; Stevenson, A. E.; Alexander, L. G.; Arnold, K. E.

    2015-01-01

    Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melo...

  7. Hyperglycemia-induced diaphragm weakness is mediated by oxidative stress

    Science.gov (United States)

    2014-01-01

    Introduction A major consequence of ICU-acquired weakness (ICUAW) is diaphragm weakness, which prolongs the duration of mechanical ventilation. Hyperglycemia (HG) is a risk factor for ICUAW. However, the mechanisms underlying HG-induced respiratory muscle weakness are not known. Excessive reactive oxygen species (ROS) injure multiple tissues during HG, but only one study suggests that excessive ROS generation may be linked to HG-induced diaphragm weakness. We hypothesized that HG-induced diaphragm dysfunction is mediated by excessive superoxide generation and that administration of a specific superoxide scavenger, polyethylene glycol superoxide dismutase (PEG-SOD), would ameliorate these effects. Methods HG was induced in rats using streptozotocin (60 mg/kg intravenously) and the following groups assessed at two weeks: controls, HG, HG + PEG-SOD (2,000U/kg/d intraperitoneally for seven days), and HG + denatured (dn)PEG-SOD (2000U/kg/d intraperitoneally for seven days). PEG-SOD and dnPEG-SOD were administered on day 8, we measured diaphragm specific force generation in muscle strips, force-pCa relationships in single permeabilized fibers, contractile protein content and indices of oxidative stress. Results HG reduced diaphragm specific force generation, altered single fiber force-pCa relationships, depleted troponin T, and increased oxidative stress. PEG-SOD prevented HG-induced reductions in diaphragm specific force generation (for example 80 Hz force was 26.4 ± 0.9, 15.4 ± 0.9, 24.0 ± 1.5 and 14.9 ± 0.9 N/cm2 for control, HG, HG + PEG-SOD, and HG + dnPEG-SOD groups, respectively, P hyperglycemia-induced diaphragm dysfunction. This new mechanistic information could explain how HG alters diaphragm function during critical illness. PMID:24886999

  8. Arterial stiffness and sedentary lifestyle: Role of oxidative stress.

    Science.gov (United States)

    Lessiani, Gianfranco; Santilli, Francesca; Boccatonda, Andrea; Iodice, Pierpaolo; Liani, Rossella; Tripaldi, Romina; Saggini, Raoul; Davì, Giovanni

    2016-04-01

    Sedentary lifestyle is a risk factor for the development of cardiovascular disease, and leads to a quantifiable impairment in vascular function and arterial wall stiffening. We tested the hypothesis of oxidative stress as a determinant of arterial stiffness (AS) in physically inactive subjects, and challenged the reversibility of these processes after the completion of an eight-week, high-intensity exercise training (ET). AS was assessed before and after ET, measuring carotid to femoral pulse wave velocity (PWV) with a Vicorder device. At baseline and after ET, participants performed urine collection and underwent fasting blood sampling. Urinary 8-iso-PGF2α, an in vivo marker of lipid peroxidation, total, HDL and LDL cholesterol, and triglyceride concentrations were measured. ET was associated with significantly reduced urinary 8-iso-PGF2α(p<0.0001) levels. PWV was significantly reduced after ET completion (p<0.0001), and was directly related to urinary 8-iso-PGF2α(Rho=0.383, p=0.021). After ET, cardiovascular fitness improved [peak oxygen consumption (p<0.0001), peak heart rate (p<0.0001)]. However, no improvement in lipid profile was observed, apart from a significant reduction of triglycerides (p=0.022). PWV and triglycerides were significantly related (Rho=0.466, p=0.005) throughout the study period. PWV levels were also related to urinary 8-iso-PGF2α in our previously sedentary subjects. We conclude that regular physical exercise may be a natural antioxidant strategy, lowering oxidant stress and thereby the AS degree. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Early induction of oxidative stress in mouse model of Alzheimer disease with reduced mitochondrial superoxide dismutase activity.

    Directory of Open Access Journals (Sweden)

    Hyun-Pil Lee

    Full Text Available While oxidative stress has been linked to Alzheimer's disease, the underlying pathophysiological relationship is unclear. To examine this relationship, we induced oxidative stress through the genetic ablation of one copy of mitochondrial antioxidant superoxide dismutase 2 (Sod2 allele in mutant human amyloid precursor protein (hAPP transgenic mice. The brains of young (5-7 months of age and old (25-30 months of age mice with the four genotypes, wild-type (Sod2(+/+, hemizygous Sod2 (Sod2(+/-, hAPP/wild-type (Sod2(+/+, and hAPP/hemizygous (Sod2(+/- were examined to assess levels of oxidative stress markers 4-hydroxy-2-nonenal and heme oxygenase-1. Sod2 reduction in young hAPP mice resulted in significantly increased oxidative stress in the pyramidal neurons of the hippocampus. Interestingly, while differences resulting from hAPP expression or Sod2 reduction were not apparent in the neurons in old mice, oxidative stress was increased in astrocytes in old, but not young hAPP mice with either Sod2(+/+ or Sod2(+/-. Our study shows the specific changes in oxidative stress and the causal relationship with the pathological progression of these mice. These results suggest that the early neuronal susceptibility to oxidative stress in the hAPP/Sod2(+/- mice may contribute to the pathological and behavioral changes seen in this animal model.

  10. Effect of Free Radicals & Antioxidants on Oxidative Stress: A Review

    Directory of Open Access Journals (Sweden)

    Ashok Shinde

    2012-01-01

    Full Text Available Recently free radicals have attracted tremendous importance in the field of medicine including dentistry and molecular biology. Free radicals can be either harmful or helpful to the body. When there is an imbalance between formation and removal of free radicals then a condition called as oxidative stress is developed in body. To counteract these free radicals body has protective antioxidant mechanisms which have abilities to lower incidence of various human morbidities and mortalities. Many research groups in the past have tried to study and confirm oxidative stress. Many authors also have studied role of antioxidants in reducing oxidative stress. They have come across with controversial results and furthermore it is not yet fully confirmed whether oxidative stress increases the need for dietary antioxidants. Recently, an association between periodontitis and cardiovascular disease has received considerable attention. Various forms of antioxidants have been introduced as an approach to fight dental diseases and improve general gingival health. The implication of oxidative stress in the etiology of many chronic and degenerative diseases suggests that antioxidant therapy represents a promising avenue for treatment. This study was conducted with the objective of reviewing articles relating to this subject. A Pub Med search of all articles containing key words free radicals, oxidative stress, and antioxidants was done. A review of these articles was undertaken.

  11. Oxidative stress in tumor microenvironment——Its role in angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Armando ROJAS; Raúl SILVA; Héctor FIGUEROA; Miguel A MORALES

    2008-01-01

    The tumor angiogenesis process is believed to be dependent on an "angiogenic switch" formed by a cascade of biologic events as a consequence of the "cross-talk" between tumor cells and several components of local microenvironment including endothelial cells, macrophages, mast cells and stromal components. Oxidative stress represents an important stimulus that widely contributes to this angiogenic switch, which is particularly relevant in lungs,where oxidative stress is originated from different sources including the incomplete reduction of oxygen during respiration,exposure to hypoxia/reoxygenation, stimulated resident or chemoattracted immune ceils to lung tissues, as well as by a variety of chemicals compounds. In the present review we highlight the role of oxidative stress in tumor angiogenesis as a key signal linked to other relevant actors in this complex process.

  12. Exercise Training Attenuates the Dysregulated Expression of Adipokines and Oxidative Stress in White Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Takuya Sakurai

    2017-01-01

    Full Text Available Obesity-induced inflammatory changes in white adipose tissue (WAT, which caused dysregulated expression of inflammation-related adipokines involving tumor necrosis factor-α and monocyte chemoattractant protein-1, contribute to the development of insulin resistance. Moreover, current literature reports state that WAT generates reactive oxygen species (ROS, and the enhanced production of ROS in obese WAT has been closely associated with the dysregulated expression of adipokines in WAT. Therefore, the reduction in excess WAT and oxidative stress that results from obesity is thought to be one of the important strategies in preventing and improving lifestyle-related diseases. Exercise training (TR not only brings about a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the adipokines in WAT. Furthermore, some reports indicate that TR affects the generation of oxidative stress in WAT. This review outlines the impact of TR on the expression of inflammation-related adipokines and oxidative stress in WAT.

  13. Sodium nitroprusside (SNP) alleviates the oxidative stress induced ...

    African Journals Online (AJOL)

    Oxidative damage is often induced by abiotic stress, nitric oxide (NO) is considered as a functional molecule in modulating antioxidant metabolism of plants. In the present study, effects of sodium nitroprusside (SNP), a NO donor, on the phenotype, antioxidant capacity and chloroplast ultrastructure of cucumber leaves were ...

  14. Evaluation of oxidative stress using exhaled breath 8-isoprostane ...

    African Journals Online (AJOL)

    Background: There have been limited numbers of studies on patients with chronic kidney disease (CKD) to determine oxidative stress in exhaled breath condensate (EBC). Those two studies have been carried out on hemodialysis patients, and hydrogen peroxide and nitric oxide have been studied in order to show ...

  15. Evaluation Of Oxidative Stress And Apoptosis In Breast Cancer ...

    African Journals Online (AJOL)

    were positively correlated with positive progesterone receptor. In Conclusion; oxidative stress, NO and apoptosis are highly detected in breast cancer tissues especially with advanced grade and stage. Key words: Breast cancer, Reactive Oxygen Species (ROS), malondialdehyde (MDA), Nitric Oxide (NO), Total Antioxidants

  16. Oxidative stress can alter the antigenicity of immunodominant peptides

    DEFF Research Database (Denmark)

    Weiskopf, Daniela; Schwanninger, Angelika; Weinberger, Birgit

    2010-01-01

    APCs operate frequently under oxidative stress induced by aging, tissue damage, pathogens, or inflammatory responses. Phagocytic cells produce peroxides and free-radical species that facilitate pathogen clearance and can in the case of APCs, also lead to oxidative modifications of antigenic prote...

  17. Compensatory responses induced by oxidative stress in Alzheimer disease

    Directory of Open Access Journals (Sweden)

    PAULA I MOREIRA

    2006-01-01

    Full Text Available Oxidative stress occurs early in the progression of Alzheimer disease, significantly before the development of the pathologic hallmarks, neurofibrillary tangles and senile plaques. In the first stage of development of the disease, amyloid-β deposition and hyperphosphorylated tau function as compensatory responses and downstream adaptations to ensure that neuronal cells do not succumb to oxidative damage. These findings suggest that Alzheimer disease is associated with a novel balance in oxidant homeostasis.

  18. Chronic Oxidative Stress, Mitochondrial Dysfunction, Nrf2 Activation and Inflammation in the Hippocampus Accompany Heightened Systemic Inflammation and Oxidative Stress in an Animal Model of Gulf War Illness

    Science.gov (United States)

    Shetty, Geetha A.; Hattiangady, Bharathi; Upadhya, Dinesh; Bates, Adrian; Attaluri, Sahithi; Shuai, Bing; Kodali, Maheedhar; Shetty, Ashok K.

    2017-01-01

    Memory and mood dysfunction are the key symptoms of Gulf war illness (GWI), a lingering multi-symptom ailment afflicting >200,000 veterans who served in the Persian Gulf War-1. Research probing the source of the disease has demonstrated that concomitant exposures to anti-nerve gas agent pyridostigmine bromide (PB), pesticides, and war-related stress are among the chief causes of GWI. Indeed, exposures to GWI-related chemicals (GWIR-Cs) and mild stress in animal models cause memory and mood impairments alongside reduced neurogenesis and chronic low-level inflammation in the hippocampus. In the current study, we examined whether exposure to GWIR-Cs and stress causes chronic changes in the expression of genes related to increased oxidative stress, mitochondrial dysfunction, and inflammation in the hippocampus. We also investigated whether GWI is linked with chronically increased activation of Nrf2 (a master regulator of antioxidant response) in the hippocampus, and inflammation and enhanced oxidative stress at the systemic level. Adult male rats were exposed daily to low-doses of PB and pesticides (DEET and permethrin), in combination with 5 min of restraint stress for 4 weeks. Analysis of the hippocampus performed 6 months after the exposure revealed increased expression of many genes related to oxidative stress response and/or antioxidant activity (Hmox1, Sepp1, and Srxn1), reactive oxygen species metabolism (Fmo2, Sod2, and Ucp2) and oxygen transport (Ift172 and Slc38a1). Furthermore, multiple genes relevant to mitochondrial respiration (Atp6a1, Cox6a1, Cox7a2L, Ndufs7, Ndufv1, Lhpp, Slc25a10, and Ucp1) and neuroinflammation (Nfkb1, Bcl6, Csf2, IL6, Mapk1, Mapk3, Ngf, N-pac, and Prkaca) were up-regulated, alongside 73–88% reduction in the expression of anti-inflammatory genes IL4 and IL10, and nuclear translocation and increased expression of Nrf2 protein. These hippocampal changes were associated with elevated levels of pro-inflammatory cytokines and chemokines

  19. Chronic Oxidative Stress, Mitochondrial Dysfunction, Nrf2 Activation and Inflammation in the Hippocampus Accompany Heightened Systemic Inflammation and Oxidative Stress in an Animal Model of Gulf War Illness.

    Science.gov (United States)

    Shetty, Geetha A; Hattiangady, Bharathi; Upadhya, Dinesh; Bates, Adrian; Attaluri, Sahithi; Shuai, Bing; Kodali, Maheedhar; Shetty, Ashok K

    2017-01-01

    Memory and mood dysfunction are the key symptoms of Gulf war illness (GWI), a lingering multi-symptom ailment afflicting >200,000 veterans who served in the Persian Gulf War-1. Research probing the source of the disease has demonstrated that concomitant exposures to anti-nerve gas agent pyridostigmine bromide (PB), pesticides, and war-related stress are among the chief causes of GWI. Indeed, exposures to GWI-related chemicals (GWIR-Cs) and mild stress in animal models cause memory and mood impairments alongside reduced neurogenesis and chronic low-level inflammation in the hippocampus. In the current study, we examined whether exposure to GWIR-Cs and stress causes chronic changes in the expression of genes related to increased oxidative stress, mitochondrial dysfunction, and inflammation in the hippocampus. We also investigated whether GWI is linked with chronically increased activation of Nrf2 (a master regulator of antioxidant response) in the hippocampus, and inflammation and enhanced oxidative stress at the systemic level. Adult male rats were exposed daily to low-doses of PB and pesticides (DEET and permethrin), in combination with 5 min of restraint stress for 4 weeks. Analysis of the hippocampus performed 6 months after the exposure revealed increased expression of many genes related to oxidative stress response and/or antioxidant activity ( Hmox1, Sepp1 , and Srxn1 ), reactive oxygen species metabolism ( Fmo2, Sod2 , and Ucp2 ) and oxygen transport ( Ift172 and Slc38a1 ). Furthermore, multiple genes relevant to mitochondrial respiration ( Atp6a1, Cox6a1, Cox7a2L, Ndufs7, Ndufv1, Lhpp, Slc25a10 , and Ucp1 ) and neuroinflammation ( Nfkb1, Bcl6, Csf2, IL6, Mapk1, Mapk3, Ngf, N-pac , and Prkaca ) were up-regulated, alongside 73-88% reduction in the expression of anti-inflammatory genes IL4 and IL10 , and nuclear translocation and increased expression of Nrf2 protein. These hippocampal changes were associated with elevated levels of pro-inflammatory cytokines

  20. Heterogeneous reduction of nitric oxide on synthetic coal chars

    Energy Technology Data Exchange (ETDEWEB)

    C. Pevida; A. Arenillas; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon (CSIC), Oviedo (Spain)

    2005-12-01

    Model compounds, with a controlled heteroatoms content and well-defined functionalities, were used to study the release of nitrogen compounds from char combustion. In the present work, the mechanisms involved in NO-char heterogeneous reduction were studied with a synthetic coal (SC) char as carbon source. Another synthetic char (SN) without any nitrogen in its composition was also employed in these studies. Temperature programmed reduction (TPR) tests with a gas mixture of 400 ppm NO in argon and with isotopically labelled nitric oxide, {sup 15}NO (500 ppm {sup 15}NO in argon), were carried out. The gases produced were quantitatively determined by means of MS and FTIR analysers. Under the conditions of this work the main products of the NO-C reaction were found to be N{sub 2} and CO{sub 2}. The main path of reaction involves the formation of surface nitrogen compounds that afterwards react with nitrogen from the reactive gas to form N{sub 2}. It was observed that fuel-N also participates in the overall heterogeneous reduction reaction, although to a lesser extent.

  1. Nitrous oxide emission reduction in temperate biochar-amended soils

    Science.gov (United States)

    Felber, R.; Hüppi, R.; Leifeld, J.; Neftel, A.

    2012-01-01

    Biochar, a pyrolysis product of organic residues, is an amendment for agricultural soils to improve soil fertility, sequester CO2 and reduce greenhouse gas (GHG) emissions. In highly weathered tropical soils laboratory incubations of soil-biochar mixtures revealed substantial reductions for nitrous oxide (N2O) and carbon dioxide (CO2). In contrast, evidence is scarce for temperate soils. In a three-factorial laboratory incubation experiment two different temperate agricultural soils were amended with green waste and coffee grounds biochar. N2O and CO2 emissions were measured at the beginning and end of a three month incubation. The experiments were conducted under three different conditions (no additional nutrients, glucose addition, and nitrate and glucose addition) representing different field conditions. We found mean N2O emission reductions of 60 % compared to soils without addition of biochar. The reduction depended on biochar type and soil type as well as on the age of the samples. CO2 emissions were slightly reduced, too. NO3- but not NH4+ concentrations were significantly reduced shortly after biochar incorporation. Despite the highly significant suppression of N2O emissions biochar effects should not be transferred one-to-one to field conditions but need to be tested accordingly.

  2. A review: oxidative stress in fish induced by pesticides.

    Science.gov (United States)

    Slaninova, Andrea; Smutna, Miriam; Modra, Helena; Svobodova, Zdenka

    2009-01-01

    The knowledge in oxidative stress in fish has a great importance for environmental and aquatic toxicology. Because oxidative stress is evoked by many chemicals including some pesticides, pro-oxidant factors' action in fish organism can be used to assess specific area pollution or world sea pollution. Hepatotoxic effect of DDT may be related with lipid peroxidation. Releasing of reactive oxygen species (ROS) after HCB exposure can be realized via two ways: via the uncoupling of the electron transport chain from monooxygenase activity and via metabolism of HCB major metabolite pentachlorophenol. Chlorothalonil disrupts mitochondrial metabolism due to the impairment of NADPH oxidase function. Activation of spleen macrophages and a decrease of catalase (CAT) activity have been observed after endosulfan exposure. Excessive release of superoxide radicals after etoxazole exposure can cause a decrease of CAT activity and increase phagocytic activity of splenocytes. Anticholinergic activity of organophosphates leads to the accumulation of ROS and resulting lipid peroxidation. Carbaryl induces changes in the content of glutathione and antioxidant enzymes activities. The antioxidant enzymes changes have been observed after actuation of pesticides deltamethrin and cypermethrin. Bipyridyl herbicides are able to form redox cycles and thereby cause oxidative stress. Low concentrations of simazine do not cause oxidative stress in carps during sub-chronic tests while sublethal concentrations of atrazin can induce oxidative stress in bluegill sunfish. Butachlor causes increased activity of superoxide dismutase -catalase system in the kidney. Rotenon can inhibit the electron transport in mitochondria and thereby increase ROS production. Dichloroaniline, the metabolite of diuron, has oxidative effects. Oxidative damage from fenpyroximate actuation is related to the disruption of mitochondrial redox respiratory chain. Low concentration of glyphosate can cause mild oxidative stress.

  3. Mechanisms for Fe(III) oxide reduction in sedimentary environments

    Science.gov (United States)

    Nevin, Kelly P.; Lovely, Derek R.

    2002-01-01

    Although it was previously considered that Fe(III)-reducing microorganisms must come into direct contact with Fe(III) oxides in order to reduce them, recent studies have suggested that electron-shuttling compounds and/or Fe(III) chelators, either naturally present or produced by the Fe(III)-reducing microorganisms themselves, may alleviate the need for the Fe(III) reducers to establish direct contact with Fe(III) oxides. Studies with Shewanella alga strain BrY and Fe(III) oxides sequestered within microporous beads demonstrated for the first time that this organism releases a compound(s) that permits electron transfer to Fe(III) oxides which the organism cannot directly contact. Furthermore, as much as 450 w M dissolved Fe(III) was detected in cultures of S. alga growing in Fe(III) oxide medium, suggesting that this organism releases compounds that can solublize Fe(III) from Fe(III) oxide. These results contrast with previous studies, which demonstrated that Geobacter metallireducens does not produce electron-shuttles or Fe(III) chelators. Some freshwater aquatic sediments and groundwaters contained compounds, which could act as electron shuttles by accepting electrons from G. metallireducens and then transferring the electrons to Fe(III). However, other samples lacked significant electron-shuttling capacity. Spectroscopic studies indicated that the electron-shuttling capacity of the waters was not only associated with the presence of humic substances, but water extracts of walnut, oak, and maple leaves contained electron-shuttling compounds did not appear to be humic substances. Porewater from a freshwater aquatic sediment and groundwater from a petroleum-contaminated aquifer contained dissolved Fe(III) (4-16 w M), suggesting that soluble Fe(III) may be available as an electron acceptor in some sedimentary environments. These results demonstrate that in order to accurately model the mechanisms for Fe(III) reduction in sedimentary environments it will be necessary

  4. Enhanced transfection by antioxidative polymeric gene carrier that reduces polyplex-mediated cellular oxidative stress.

    Science.gov (United States)

    Lee, Min Sang; Kim, Nak Won; Lee, Kyuri; Kim, Hongtae; Jeong, Ji Hoon

    2013-06-01

    To test the hypothesis in which polyplex-induced oxidative stress may affect overall transfection efficiency, an antioxidative transfection system minimizing cellular oxidative stress was designed for enhanced transfection. An amphiphilic copolymer (PEI-PLGA) was synthesized and used as a micelle-type gene carrier containing hydrophobic antioxidant, α-tocopherol. Cellular oxidative stress and the change of mitochondrial membrane potential after transfection was measured by using a fluorescent probe (H₂DCFDA) and lipophilic cationic probe (JC-1), respectively. Transfection efficiency was determined by measuring a reporter gene (luciferase) expression level. The initial transfection study with conventional PEI/plasmid DNA polyplex showed significant generation of reactive oxygen species (ROS). The PEI-PLGA copolymer successfully carried out the simultaneous delivery of α-tocopherol and plasmid DNA (PEI-PLGA/Toco/pDNA polyplex) into cells, resulting in a significant reduction in cellular ROS generation after transfection and helped to maintain the mitochondrial membrane potential (ΔΨ). In addition, the transfection efficiency was dramatically increased using the antioxidative transfection system. This work showed that oxidative stress would be one of the important factors that should be considered in designing non-viral gene carriers and suggested a possible way to reduce the carrier-mediated oxidative stress, which consequently leads to enhanced transfection.

  5. A pilot study on mindfulness based stress reduction for smokers

    Directory of Open Access Journals (Sweden)

    Baker Timothy B

    2007-01-01

    Full Text Available Abstract Background Mindfulness means paying attention in the present moment, non-judgmentally, without commentary or decision-making. We report results of a pilot study designed to test the feasibility of using Mindfulness Based Stress Reduction (MBSR (with minor modifications as a smoking intervention. Methods MBSR instructors provided instructions in mindfulness in eight weekly group sessions. Subjects attempted smoking cessation during week seven without pharmacotherapy. Smoking abstinence was tested six weeks after the smoking quit day with carbon monoxide breath test and 7-day smoking calendars. Questionnaires were administered to evaluate changes in stress and affective distress. Results 18 subjects enrolled in the intervention with an average smoking history of 19.9 cigarettes per day for 26.4 years. At the 6-week post-quit visit, 10 of 18 subjects (56% achieved biologically confirmed 7-day point-prevalent smoking abstinence. Compliance with meditation was positively associated with smoking abstinence and decreases in stress and affective distress. Discussions and conclusion The results of this study suggest that mindfulness training may show promise for smoking cessation and warrants additional study in a larger comparative trial.

  6. Oxidative stress and partial migration in brown trout (Salmo trutta)

    DEFF Research Database (Denmark)

    Birnie-Gauvin, Kim; Peiman, K. S.; Larsen, Martin Hage

    2017-01-01

    of oxidative status in migration biology, particularly in fish. Semi-anadromous brown trout (Salmo trutta, Linnaeus 1758) exhibit partial migration, where some individuals smoltify and migrate to sea, and others become stream residents, providing us with an excellent model to investigate the link between...... oxidative stress and migration. Using the brown trout, we obtained blood samples from juveniles from a coastal stream in Denmark in the fall prior to peak seaward migration which occurs in the spring, and assayed for antioxidant capacity (oxygen radical absorbance capacity) and oxidative stress levels...

  7. Oxidative stress in Alzheimer disease: a possibility for prevention.

    Science.gov (United States)

    Bonda, David J; Wang, Xinglong; Perry, George; Nunomura, Akihiko; Tabaton, Massimo; Zhu, Xiongwei; Smith, Mark A

    2010-01-01

    Oxidative stress is at the forefront of Alzheimer disease (AD) research. While its implications in the characteristic neurodegeneration of AD are vast, the most important aspect is that it seems increasingly apparent that oxidative stress is in fact a primary progenitor of the disease, and not merely an epiphenomenon. Moreover, evidence indicates that a long "dormant period" of gradual oxidative damage accumulation precedes and actually leads to the seemingly sudden appearance of clinical and pathological AD symptoms, including amyloid-beta deposition, neurofibrillary tangle formation, metabolic dysfunction, and cognitive decline. These findings provide important insights into the development of potential treatment regimens and even allude to the possibility of a preventative cure. In this review, we elaborate on the dynamic role of oxidative stress in AD and present corresponding treatment strategies that are currently under investigation. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Thermogravimetric study of reduction of oxides present in oxidized nickel-base alloy powders

    Science.gov (United States)

    Herbell, T. P.

    1976-01-01

    Carbon, hydrogen, and hydrogen plus carbon reduction of three oxidized nickel-base alloy powders (a solid solution strengthened alloy both with and without the gamma prime formers aluminum and titanium and the solid solution strengthened alloy NiCrAlY) were evaluated by thermogravimetry. Hydrogen and hydrogen plus carbon were completely effective in reducing an alloy containing chromium, columbium, tantalum, molybdenum, and tungsten. However, with aluminum and titanium present the reduction was limited to a weight loss of about 81 percent. Carbon alone was not effective in reducing any of the alloys, and none of the reducing conditions were effective for use with NiCrAlY.

  9. Oxidative Stress in Human Atherothrombosis: Sources, Markers and Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Jose Luis Martin-Ventura

    2017-11-01

    Full Text Available Atherothrombosis remains one of the main causes of morbidity and mortality worldwide. The underlying pathology is a chronic pathological vascular remodeling of the arterial wall involving several pathways, including oxidative stress. Cellular and animal studies have provided compelling evidence of the direct role of oxidative stress in atherothrombosis, but such a relationship is not clearly established in humans and, to date, clinical trials on the possible beneficial effects of antioxidant therapy have provided equivocal results. Nicotinamide adenine dinucleotide phosphate (NADPH oxidase is one of the main sources of reactive oxygen species (ROS in human atherothrombosis. Moreover, leukocyte-derived myeloperoxidase (MPO and red blood cell-derived iron could be involved in the oxidative modification of lipids/lipoproteins (LDL/HDL in the arterial wall. Interestingly, oxidized lipoproteins, and antioxidants, have been analyzed as potential markers of oxidative stress in the plasma of patients with atherothrombosis. In this review, we will revise sources of ROS, focusing on NADPH oxidase, but also on MPO and iron. We will also discuss the impact of these oxidative systems on LDL and HDL, as well as the value of these modified lipoproteins as circulating markers of oxidative stress in atherothrombosis. We will finish by reviewing some antioxidant systems and compounds as therapeutic strategies to prevent pathological vascular remodeling.

  10. Mode of action of nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: is oxidative stress involved?

    Science.gov (United States)

    Boiani, Mariana; Piacenza, Lucia; Hernández, Paola; Boiani, Lucia; Cerecetto, Hugo; González, Mercedes; Denicola, Ana

    2010-06-15

    Chagas disease is caused by the trypanosomatid parasite Trypanosoma cruzi and threatens millions of lives in South America. As other neglected diseases there is almost no research and development effort by the pharmaceutical industry and the treatment relies on two drugs, Nifurtimox and Benznidazole, discovered empirically more than three decades ago. Nifurtimox, a nitrofurane derivative, is believed to exert its biological activity through the bioreduction of the nitro-group to a nitro-anion radical which undergoes redox-cycling with molecular oxygen. This hypothesis is generally accepted, although arguments against it have been presented. In the present work we studied the ability of Nifurtimox and five N-oxide-containing heterocycles to induce oxidative stress in T. cruzi. N-Oxide-containing heterocycles represent a promising group of new trypanosomicidal agents and their mode of action is not completely elucidated. The results here obtained argue against the oxidative stress hypothesis almost for all the studied compounds, including Nifurtimox. A significant reduction in the level of parasitic low-molecular-weight thiols was observed after Nifurtimox treatment; however, it was not linked to the production of reactive oxidant species. Besides, redox-cycling is only observed at high Nifurtimox concentrations (>400microM), two orders of magnitude higher than the concentration required for anti-proliferative activity (5microM). Our results indicate that an increase in oxidative stress is not the main mechanism of action of Nifurtimox. Among the studied N-oxide-containing heterocycles, benzofuroxan derivatives strongly inhibited parasite dehydrogenase activity and affected mitochondrial membrane potential. The indazole derivative raised intracellular oxidants production, but it was the least effective as anti-T. cruzi. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Oxygen and oxidative stress in the perinatal period

    Directory of Open Access Journals (Sweden)

    Isabel Torres-Cuevas

    2017-08-01

    Full Text Available Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes.In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality.Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100% has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30–60%. A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties

  12. Biologic Stress, Oxidative Stress, and Resistance to Drugs: What Is Hidden Behind

    Directory of Open Access Journals (Sweden)

    Maria Pantelidou

    2017-02-01

    Full Text Available Stress can be defined as the homeostatic, nonspecific defensive response of the organism to challenges. It is expressed by morphological, biochemical, and functional changes. In this review, we present biological and oxidative stress, as well as their interrelation. In addition to the mediation in biologic stress (central nervous, immune, and hormonal systems and oxidative stress, the effect of these phenomena on xenobiotic metabolism and drug response is also examined. It is concluded that stress decreases drug response, a result which seems to be mainly attributed to the induction of hepatic drug metabolizing enzymes. A number of mechanisms are presented. Structure-activity studies are also discussed. Vitamin E, as well as two synthetic novel compounds, seem to reduce both oxidative and biological stress and, consequently, influence drug response and metabolism.

  13. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Alexandra Avloniti

    2017-01-01

    Full Text Available Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  14. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    Science.gov (United States)

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonçalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine

  15. Production of reduction gases: partial oxidation of hydrocarbons and coal

    Energy Technology Data Exchange (ETDEWEB)

    Tippmer, K

    1976-04-01

    After some general remarks on reduction gas and quality demands, the Texaco process of partial oxidation with scrubbing is dealt with. A comparison of current iron-sponge techniques shows that a heat demand below 3 M kcal/t Fe should be envisaged, which means that heavy fuel oil or coal should be used. The special features of oxygen generation, coal processing, demands made on fuel oil, gasoline, and natural gas, gas generation, soot recovery, hydrogen sulphide-carbon dioxide scrubbing, system Benfield HP process, recycle-carbon dioxide scrubbing, auxiliary steam system, gas preheating, recycle gas cooling and compression, process data and heat balances for natural gas (one-heat system) and heating fuel oil or naphtha (two-heat system) are given.

  16. Catalyst and method for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C [Los Alamos, NM

    2008-05-27

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  17. White tea (Camellia sinensis extract reduces oxidative stress and triacylglycerols in obese mice

    Directory of Open Access Journals (Sweden)

    Lílian Gonçalves Teixeira

    2012-12-01

    Full Text Available White tea is an unfermented tea made from young shoots of Camellia sinensis protected from sunlight to avoid polyphenol degradation. Although its levels of catechins are higher than those of green tea (derived from the same plant, there are no studies addressing the relationship between this tea and obesity associated with oxidative stress.The objective of this study was to evaluate the effect of white tea on obesity and its complications using a diet induced obesity model. Forty male C57BL/6 mice were fed a high-fat diet to induce obesity (Obese group or the same diet supplemented with 0.5% white tea extract (Obese + WTE for 8 weeks. Adipose tissue, serum lipid profile, and oxidative stress were studied. White tea supplementation was not able to reduce food intake, body weight, or visceral adiposity. Similarly, there were no changes in cholesterol rich lipoprotein profile between the groups. A reduction in blood triacylglycerols associated with increased cecal lipids was observed in the group fed the diet supplemented with white tea. White tea supplementation also reduced oxidative stress in liver and adipose tissue. In conclusion, white tea extract supplementation (0.5% does not influence body weight or adiposity in obese mice. Its benefits are restricted to the reduction in oxidative stress associated with obesity and improvement of hypertriacylglycerolemia.

  18. The Impact of Rapid Weight Loss on Oxidative Stress Markers and the Expression of the Metabolic Syndrome in Obese Individuals

    Directory of Open Access Journals (Sweden)

    Eva Tumova

    2013-01-01

    Full Text Available Objective. Obesity is linked with a state of increased oxidative stress, which plays an important role in the etiology of atherosclerosis and type 2 diabetes mellitus. The aim of our study was to evaluate the effect of rapid weight loss on oxidative stress markers in obese individuals with metabolic syndrome (MetS. Design and Methods. We measured oxidative stress markers in 40 obese subjects with metabolic syndrome (MetS+, 40 obese subjects without metabolic syndrome (MetS−, and 20 lean controls (LC at baseline and after three months of very low caloric diet. Results. Oxidized low density lipoprotein (ox-LDL levels decreased by 12% in MetS+ subjects, associated with a reduction in total cholesterol (TC, even after adjustment for age and sex. Lipoprotein associated phospholipase A2 (Lp-PLA2 activity decreased by 4.7% in MetS+ subjects, associated with a drop in LDL-cholesterol (LDL-C, TC, and insulin levels. Multivariate logistic regression analysis showed that a model including ox-LDL, LpPLA2 activity, and myeloperoxidase (MPO improved prediction of MetS status among obese individuals compared to each oxidative stress marker alone. Conclusions. Oxidative stress markers were predictive of MetS in obese subjects, suggesting a higher oxidative stress. Rapid weight loss resulted in a decline in oxidative stress markers, especially in MetS+ patients.

  19. Nitric oxide in the stress axis

    OpenAIRE

    Lopez-Figueroa, M.O.; Day, H.E.W.; Akil, H.; Watson, S.J.

    1998-01-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbichypothalamic- ...

  20. Surface oxidization-reduction reactions in Columbia Plateau basalts

    International Nuclear Information System (INIS)

    White, A.F.; Yee, A.

    1984-01-01

    Results are presented which define principal oxidation-reduction reactions expected between ground water and iron in the Umtanum and Cohassett basalt flows of south central Washington. Data include kinetics of aqueous iron speciation, rates of O 2 uptake and nature of oxyhydroxide precipitates. Such data are important in predicting behavior of radionuclides in basalt aquifers including determination of valence states, speciation, solubility, sorption, and coprecipitation on iron oxyhydroxide substrates and colloids. Analyses of the basalt by XPS indicates that ferrous iron is oxidized to ferric iron on the surface and that the total iron decreases as a function of pH during experimental weathering. Iron oxyhydroxide phases did not form surface coating on basalt surfaces but rather nucleated as separate plases in solution. No significant increases in Cs or Sr sorption were observed with increased weathering of the basalt. Concurrent increases in Fe(II) and decreases in Fe(III) in slightly to moderately acid solutions indicated continued oxidization of ferrous iron in the basalt. At neutral to basic pH, Fe(II) was strongly sorbed onto the basalt surface (Kd = 6.5 x 10 -3 1 x m 2 ) resulting in low dissolved concentrations even under anoxic conditions. The rate of O 2 uptake increased with decreasing pH. Diffusion rates (-- 10 -14 cm 2 x s -1 ), calculated using a one-dimensional analytical model, indicate grain boundary diffusion. Comparisons of Eh values calculated by Pt electrode, dissolved O 2 and Fe(II)/Fe(III) measurements showed considerable divergence, with the ferric-ferrous couple being the preferred method of estimating Eh

  1. Modeling of oxide reduction in repeated-batch pyroprocessing

    International Nuclear Information System (INIS)

    Lee, Hyo Jik; Im, Hun Suk; Park, Geun Il

    2016-01-01

    Highlights: • Pyroprocessing is a complicated batch-type operation. • Discrete event system modeling was used to create an integrated operation model. • Simulation showed that could be accomplished. • The dynamic material flow helps us understand the process operation. • We showed that complex material flow could be simulated in terms of mass balance. - Abstract: Pyroprocessing is a complicated batch-type operation, involving a highly complex material flow logic with a huge number of unit processes. Discrete event system modeling was used to create an integrated operation model for which simulation showed that dynamic material flow could be accomplished to provide considerable insight into the process operation. In the model simulation, the amount of material transported upstream and downstream in the process satisfies a mass balance equation while considering the hold-up incurred by every batch operation. This study also simulated, in detail, an oxide reduction group process embracing electrolytic reduction, cathode processing, and salt purification. Based on the default operation scenario, it showed that complex material flows could be precisely simulated in terms of the mass balance. Specifically, the amount of high-heat elements remaining in the molten salt bath is analyzed to evaluate the operation scenario.

  2. Direct chemical reduction of neptunium oxide to neptunium metal using calcium and calcium chloride

    International Nuclear Information System (INIS)

    Squires, Leah N.; Lessing, Paul

    2016-01-01

    A process of direct reduction of neptunium oxide to neptunium metal using calcium metal as the reducing agent is discussed. After reduction of the oxide to metal, the metal is separated by density from the other components of the reaction mixture and can be easily removed upon cooling. The direct reduction technique consistently produces high purity (98%–99% pure) neptunium metal.

  3. Oxidative reduction of glove box wipers with a downdraft thermal oxidation system

    International Nuclear Information System (INIS)

    Phelps, M.R.; Wilcox, W.A.

    1996-04-01

    Wipers (rags) used for decontamination and glove box cleanup in the Plutonium Finishing Plant often become soaked with acid and plutonium-rich solutions. After use, these wipers are rinsed in a dilute NaOH solution and dried, but the formation of unstable nitrates and the hydrogen gas caused by hydrolysis are concerns that still must be addressed. This report gives the results of testing with a small downdraft thermal oxidation system that was constructed by Pacific Northwest National Laboratory to stabilize glove wiper waste, reduce the waste volume, and reclaim plutonium. Proof-of-principle testing was conducted with eight runs using various combinations of rag moisture and chemical pretreatment. All runs went to planned completion. Results of these tests indicate that the thermal oxidation system has the potential for providing significant reductions in waste volume. Weight reductions of 150:1 were easily obtainable during this project. Modifications could result in weight reductions of over 200:1, with possible volume reductions of 500:1

  4. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  5. Protective Effect against Oxidative Stress in Medicinal Plant Extracts

    International Nuclear Information System (INIS)

    Kim, Jeong Hee; Lee, Eun Ju; Shin, Dong O; Hong, Sung Eun; Kim, Jin Kyu

    2000-01-01

    Protective effect of medicinal plant extracts against oxidative stress were screened in this study. Methanol extracts from 48 medicinal plants, which were reported to have antioxidative or anti-inflammatory effect were prepared and screened for their protective activity against chemically-induced and radiation-induced oxidative stress by using MTT assay. Thirty three samples showed protective activity against chemically-induced oxidative stress in various extent. Among those samples, extract of Glycyrrhiza uralensis revealed the strongest activity (25.9% at 100 μg/ml) with relatively lower cytotoxicity. Seven other samples showed higher than 20% protection at 100 μg/ml. These samples were tested for protection activity against radiation-induced oxidative stress. Methanol extract of Alpina officinarum showed the highest activity (17.8% at 20 μg/ml). Five fractions were prepared from the each 10 methanol extracts which showed high protective activity against oxidative stress. Among those fraction samples butanol fractions of Areca catechu var. dulcissima and Spirodela polyrrhiza showed the highest protective activities (78.8% and 77.2%, respectively, at 20 μg/ml)

  6. Yeast signaling pathways in the oxidative stress response

    Energy Technology Data Exchange (ETDEWEB)

    Ikner, Aminah [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States); Shiozaki, Kazuhiro [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States)]. E-mail: kshiozaki@ucdavis.edu

    2005-01-06

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.

  7. Yeast signaling pathways in the oxidative stress response

    International Nuclear Information System (INIS)

    Ikner, Aminah; Shiozaki, Kazuhiro

    2005-01-01

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed

  8. Role of Magnesium in Oxidative Stress in Individuals with Obesity.

    Science.gov (United States)

    Morais, Jennifer Beatriz Silva; Severo, Juliana Soares; Santos, Loanne Rocha Dos; de Sousa Melo, Stéfany Rodrigues; de Oliveira Santos, Raisa; de Oliveira, Ana Raquel Soares; Cruz, Kyria Jayanne Clímaco; do Nascimento Marreiro, Dilina

    2017-03-01

    Adipose tissue is considered an endocrine organ that promotes excessive production of reactive oxygen species when in excess, thus contributing to lipid peroxidation. Magnesium deficiency contributes to the development of oxidative stress in obese individuals, as this mineral plays a role as an antioxidant, participates as a cofactor of several enzymes, maintains cell membrane stability and mitigates the effects of oxidative stress. The objective of this review is to bring together updated information on the participation of magnesium in the oxidative stress present in obesity. We conducted a search of articles published in the PubMed, SciELO and LILACS databases, using the keywords 'magnesium', 'oxidative stress', 'malondialdehyde', 'superoxide dismutase', 'glutathione peroxidase', 'reactive oxygen species', 'inflammation' and 'obesity'. The studies show that obese subjects have low serum concentrations of magnesium, as well as high concentrations of oxidative stress marker in these individuals. Furthermore, it is evident that the adequate intake of magnesium contributes to its appropriate homeostasis in the body. Thus, this review of current research can help define the need for intervention with supplementation of this mineral for the prevention and treatment of disorders associated with this chronic disease.

  9. Role of Oxidative Stress in Epigenetic Modification in Endometriosis.

    Science.gov (United States)

    Ito, Fuminori; Yamada, Yuki; Shigemitsu, Aiko; Akinishi, Mika; Kaniwa, Hiroko; Miyake, Ryuta; Yamanaka, Shoichiro; Kobayashi, Hiroshi

    2017-11-01

    Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.

  10. A study of oxidative stress in paucibacillary and multibacillary leprosy

    Directory of Open Access Journals (Sweden)

    Jyothi P

    2008-01-01

    Full Text Available Background: The study and assessment of oxidative stress plays a significant role in the arena of leprosy treatment. Once the presence of oxidative stress is proved, antioxidant supplements can be provided to reduce tissue injury and deformity. Aim: To study oxidative stress in paucibacillary (PB and multibacillary (MB leprosy and to compare it with that in a control group. Methods: Fifty-eight untreated leprosy patients (23 PB and 35 MB cases were studied and compared with 58 healthy controls. Superoxide dismutase (SOD level as a measure of antioxidant status; malondialdehyde (MDA level, an indicator of lipid peroxidation; and MDA/SOD ratio, an index of oxidative stress were estimated in the serum. Results: The SOD level was decreased in leprosy patients, especially in MB leprosy. The MDA level was increased in PB and MB leprosy. The MDA/SOD ratio was significantly elevated in MB patients. There was a steady increase in this ratio along the spectrum from tuberculoid to lepromatous leprosy (LL. Conclusion: There is increased oxidative stress in MB leprosy, especially in LL. This warrants antioxidant supplements to prevent tissue injury.

  11. Oxidative stress markers imbalance in late-life depression.

    Science.gov (United States)

    Diniz, Breno S; Mendes-Silva, Ana Paula; Silva, Lucelia Barroso; Bertola, Laiss; Vieira, Monica Costa; Ferreira, Jessica Diniz; Nicolau, Mariana; Bristot, Giovana; da Rosa, Eduarda Dias; Teixeira, Antonio L; Kapczinski, Flavio

    2018-03-20

    Oxidative stress has been implicated in the pathophysiology of mood disorders in young adults. However, there is few data to support its role in the elderly. The primary aim of this study was to evaluate whether subjects with late-life depression (LLD) presented with changes in oxidative stress response in comparison with the non-depressed control group. We then explored how oxidative stress markers associated with specific features of LLD, in particular cognitive performance and age of onset of major depressive disorder in these individuals. We included a convenience sample of 124 individuals, 77 with LLD and 47 non-depressed subjects (Controls). We measure the plasma levels of 6 oxidative stress markers: thiobarbituric acid reactive substances (TBARS), protein carbonil content (PCC), free 8-isoprostane, glutathione peroxidase (GPx) activity, glutathione reductase (GR) activity, and glutathione S-transferase (GST) activity. We found that participants with LLD had significantly higher free 8-isoprostane levels (p = 0.003) and lower glutathione peroxidase activity (p = 0.006) compared to controls. Free 8-isoprostane levels were also significantly correlated with worse scores in the initiation/perseverance (r = -0.24, p = 0.01), conceptualization (r = -0.22, p = 0.02) sub-scores, and the total scores (r = -0.21, p = 0.04) on the DRS. Our study provides robust evidence of the imbalance between oxidative stress damage, in particular lipid peroxidation, and anti-oxidative defenses as a mechanism related to LLD, and cognitive impairment in this population. Interventions aiming to reduce oxidative stress damage can have a potential neuroprotective effect for LLD subjects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Oxidative stress and maternal obesity: feto-placental unit interaction.

    Science.gov (United States)

    Malti, N; Merzouk, H; Merzouk, S A; Loukidi, B; Karaouzene, N; Malti, A; Narce, M

    2014-06-01

    To determine oxidative stress markers in maternal obesity during pregnancy and to evaluate feto-placental unit interaction, especially predictors of fetal metabolic alterations. 40 obese pregnant women (prepregnancy BMI > 30 kg/m²) were compared to 50 control pregnant women. Maternal, cord blood and placenta samples were collected at delivery. Biochemical parameters (total cholesterol and triglycerides) and oxidative stress markers (malondialdehyde, carbonyl proteins, superoxide anion expressed as reduced Nitroblue Tetrazolium, nitric oxide expressed as nitrite, reduced glutathione, catalase, superoxide dismutase) were assayed by biochemical methods. Maternal, fetal and placental triglyceride levels were increased in obese group compared to control. Maternal malondialdehyde, carbonyl proteins, nitric oxide and superoxide anion levels were high while reduced glutathione concentrations and superoxide dismutase activity were low in obesity. In the placenta and in newborns of these obese mothers, variations of redox balance were also observed indicating high oxidative stress. Maternal and placental interaction constituted a strong predictor of fetal redox variations in obese pregnancies. Maternal obesity compromised placental metabolism and antioxidant status which strongly impacted fetal redox balance. Oxidative stress may be one of the key downstream mediators that initiate programming of the offspring. Maternal obesity is associated with metabolic alterations and dysregulation of redox balance in the mother-placenta - fetus unit. These perturbations could lead to maternal and fetal complications and should be carefully considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Markers of oxidative stress in exhaled breath of workers exposed to iron oxide nanoparticles are elevated

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Fenclová, Z.; Navrátil, Tomáš; Vlčková, Š.; Syslová, K.; Kuzma, Marek; Ždímal, Vladimír; Schwarz, Jaroslav; Pušman, Jan; Zíková, Naděžda; Zakharov, S.; Machajová, M.; Kačer, P.

    2014-01-01

    Roč. 7, Suppl. 1 (2014), s. 69-70 ISSN 1337-6853 Institutional support: RVO:61388971 ; RVO:61388955 ; RVO:67985858 Keywords : oxidative stress * exhaled breath * nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry

  14. Oxidative Stress, Inflammation, and DNA Damage Responses Elicited by Silver, Titanium Dioxide, and Cerium Oxide Nanomaterials

    Science.gov (United States)

    Previous literature on the biological effects of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. Here we examine time-sensitive biological response pathways affected by engineered nanoma...

  15. Glutathione--linking cell proliferation to oxidative stress.

    Science.gov (United States)

    Diaz-Vivancos, Pedro; de Simone, Ambra; Kiddle, Guy; Foyer, Christine H

    2015-12-01

    The multifaceted functions of reduced glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) continue to fascinate plants and animal scientists, not least because of the dynamic relationships between GSH and reactive oxygen species (ROS) that underpin reduction/oxidation (redox) regulation and signalling. Here we consider the respective roles of ROS and GSH in the regulation of plant growth, with a particular focus on regulation of the plant cell cycle. Glutathione is discussed not only as a crucial low molecular weight redox buffer that shields nuclear processes against oxidative challenge but also a flexible regulator of genetic and epigenetic functions. The intracellular compartmentalization of GSH during the cell cycle is remarkably consistent in plants and animals. Moreover, measurements of in vivo glutathione redox potentials reveal that the cellular environment is much more reducing than predicted from GSH/GSSG ratios measured in tissue extracts. The redox potential of the cytosol and nuclei of non-dividing plant cells is about -300 mV. This relatively low redox potential maintained even in cells experiencing oxidative stress by a number of mechanisms including vacuolar sequestration of GSSG. We propose that regulated ROS production linked to glutathione-mediated signalling events are the hallmark of viable cells within a changing and challenging environment. The concept that the cell cycle in animals is subject to redox controls is well established but little is known about how ROS and GSH regulate this process in plants. However, it is increasingly likely that redox controls exist in plants, although possibly through different pathways. Moreover, redox-regulated proteins that function in cell cycle checkpoints remain to be identified in plants. While GSH-responsive genes have now been identified, the mechanisms that mediate and regulate protein glutathionylation in plants remain poorly defined. The nuclear GSH pool provides an appropriate redox environment

  16. Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo.

    Science.gov (United States)

    Vaccaro, Alexandra; Patten, Shunmoogum A; Aggad, Dina; Julien, Carl; Maios, Claudia; Kabashi, Edor; Drapeau, Pierre; Parker, J Alex

    2013-07-01

    C. elegans and D. rerio expressing mutant TAR DNA Binding Protein 43 (TDP-43) are powerful in vivo animal models for the genetics and pharmacology of amyotrophic lateral sclerosis (ALS). Using these small-animal models of ALS, we previously identified methylene blue (MB) as a potent suppressor of TDP-43 toxicity. Consequently here we investigated how MB might exert its neuroprotective properties and found that it acts through reduction of the endoplasmic reticulum (ER) stress response. We tested other compounds known to be active in the ER unfolded protein response in worms and zebrafish expressing mutant human TDP-43 (mTDP-43). We identified three compounds: salubrinal, guanabenz and a new structurally related compound phenazine, which also reduced paralysis, neurodegeneration and oxidative stress in our mTDP-43 models. Using C. elegans genetics, we showed that all four compounds act as potent suppressors of mTDP-43 toxicity through reduction of the ER stress response. Interestingly, these compounds operate through different branches of the ER unfolded protein pathway to achieve a common neuroprotective action. Our results indicate that protein-folding homeostasis in the ER is an important target for therapeutic development in ALS and other TDP-43-related neurodegenerative diseases. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  17. Effect of Myricetin, Pyrogallol, and Phloroglucinol on Yeast Resistance to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Vanda Mendes

    2015-01-01

    Full Text Available The health beneficial effects of dietary polyphenols have been attributed to their intrinsic antioxidant activity, which depends on the structure of the compound and number of hydroxyl groups. In this study, the protective effects of pyrogallol, phloroglucinol, and myricetin on the yeast Saccharomyces cerevisiae were investigated. Pyrogallol and myricetin, which have a pyrogallol structure in the B ring, increased H2O2 resistance associated with a reduction in intracellular oxidation and protein carbonylation, whereas phloroglucinol did not exert protective effects. The acquisition of oxidative stress resistance in cells pretreated with pyrogallol and myricetin was not associated with an induction of endogenous antioxidant defences as assessed by the analysis of superoxide dismutase and catalase activities. However, myricetin, which provided greater stress resistance, prevented H2O2-induced glutathione oxidation. Moreover, myricetin increased the chronological lifespan of yeast lacking the mitochondrial superoxide dismutase (Sod2p, which exhibited a premature aging phenotype and oxidative stress sensitivity. These findings show that the presence of hydroxyl groups in the ortho position of the B ring in pyrogallol and myricetin contributes to the antioxidant protection afforded by these compounds. In addition, myricetin may alleviate aging-induced oxidative stress, particularly when redox homeostasis is compromised due to downregulation of endogenous defences present in mitochondria.

  18. The Drosophila carbonyl reductase sniffer prevents oxidative stress-induced neurodegeneration.

    Science.gov (United States)

    Botella, Jose A; Ulschmid, Julia K; Gruenewald, Christoph; Moehle, Christoph; Kretzschmar, Doris; Becker, Katja; Schneuwly, Stephan

    2004-05-04

    A growing body of evidence suggests that oxidative stress is a common underlying mechanism in the pathogenesis of neurodegenerative disorders such as Alzheimer's, Huntington's, Creutzfeld-Jakob and Parkinson's diseases. Despite the increasing number of reports finding a causal relation between oxidative stress and neurodegeneration, little is known about the genetic elements that confer protection against the deleterious effects of oxidation in neurons. We have isolated and characterized the Drosophila melanogaster gene sniffer, whose function is essential for preventing age-related neurodegeneration. In addition, we demonstrate that oxidative stress is a direct cause of neurodegeneration in the Drosophila central nervous system and that reduction of sniffer activity leads to neuronal cell death. The overexpression of the gene confers neuronal protection against oxygen-induced apoptosis, increases resistance of flies to experimental normobaric hyperoxia, and improves general locomotor fitness. Sniffer belongs to the family of short-chain dehydrogenase/reductase (SDR) enzymes and exhibits carbonyl reductase activity. This is the first in vivo evidence of the direct and important implication of this enzyme as a neuroprotective agent in the cellular defense mechanisms against oxidative stress.

  19. Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells.

    Science.gov (United States)

    He, Ruijun; Cui, Min; Lin, Hui; Zhao, Lei; Wang, Jiayu; Chen, Songfeng; Shao, Zengwu

    2018-04-15

    Intervertebral disc degeneration (IVDD) is thought to be the major cause of low back pain (LBP), which is still in lack of effective etiological treatment. Oxidative stress has been demonstrated to participate in the impairment of nucleus pulposus cells (NPCs). As the most important neuroendocrine hormone in biological clock regulation, melatonin (MLT) is also featured by good antioxidant effect. In this study, we investigated the effect and mechanisms of melatonin on oxidative stress-induced damage in rat NPCs. Cytotoxicity of H 2 O 2 and protecting effect of melatonin were analyzed with Cell Counting kit-8 (CCK-8). Cell apoptosis rate was detected by Annexin V-FITC/PI staining. DCFH-DA probe was used for the reactive oxygen species (ROS) detection. The mitochondrial membrane potential (MMP) changes were analyzed with JC-1 probe. Intracellular oxidation product and reductants were measured through enzymatic reactions. Extracellular matrix (ECM) and apoptosis associated proteins were analyzed with Western blot assays. Melatonin preserved cell viability of NPCs under oxidative stress. The apoptosis rate, ROS level and malonaldehyde (MDA) declined with melatonin. MLT/H 2 O 2 group showed higher activities of GSH and SOD. The fall of MMP receded and the expression of ECM protein increased with treatment of melatonin. The mitochondrial pathway of apoptosis was inhibited by melatonin. Melatonin alleviated the oxidative stress-induced apoptosis of NPCs. Melatonin could be a promising alternative in treatment of IVDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Effect of aerobic exercise intervention on DDT degradation and oxidative stress in rats.

    Science.gov (United States)

    Li, Kefeng; Zhu, Xiaohua; Wang, Yuzhan; Zheng, Shuqian; Dong, Guijun

    2017-03-01

    Dichlorodiphenyltrichloroethane (DDT) reportedly causes extensively acute or chronic effects to human health. Exercise can generate positive stress. We evaluated the effect of aerobic exercise on DDT degradation and oxidative stress. Male Wistar rats were randomly assigned into control (C), DDT without exercise training (D), and DDT plus exercise training (DE) groups. The rats were treated as follows: DDT exposure to D and DE groups at the first 2 weeks; aerobic exercise treatment only to the DE group from the 1st day until the rats are killed. DDT levels in excrements, muscle, liver, serum, and hearts were analyzed. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels were determined. Aerobic exercise accelerated the degradation of DDT primarily to DDE due to better oxygen availability and aerobic condition and promoted the degradation of DDT. Cumulative oxidative damage of DDT and exercise led to significant decrease of SOD level. Exercise resulted in consistent increase in SOD activity. Aerobic exercise enhanced activities of CAT and GSH-Px and promoted MDA scavenging. Results suggested that exercise can accelerate adaptive responses to oxidative stress and activate antioxidant enzymes activities. Exercise can also facilitate the reduction of DDT-induced oxidative damage and promoted DDT degradation. This study strongly implicated the positive effect of exercise training on DDT-induced liver oxidative stress.

  1. Oxidative stress and life histories: unresolved issues and current needs.

    Science.gov (United States)

    Speakman, John R; Blount, Jonathan D; Bronikowski, Anne M; Buffenstein, Rochelle; Isaksson, Caroline; Kirkwood, Tom B L; Monaghan, Pat; Ozanne, Susan E; Beaulieu, Michaël; Briga, Michael; Carr, Sarah K; Christensen, Louise L; Cochemé, Helena M; Cram, Dominic L; Dantzer, Ben; Harper, Jim M; Jurk, Diana; King, Annette; Noguera, Jose C; Salin, Karine; Sild, Elin; Simons, Mirre J P; Smith, Shona; Stier, Antoine; Tobler, Michael; Vitikainen, Emma; Peaker, Malcolm; Selman, Colin

    2015-12-01

    Life-history theory concerns the trade-offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life-history trade-offs, but the details remain obscure. As life-history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life-history trade-offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life-history information is available, cannot generally be performed without compromising the aims of the studies that generated the life-history data. There is a need therefore for novel non-invasive measurements of multi-tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life-history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life-history trade-offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting

  2. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage

    Science.gov (United States)

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked: considerable variation in oxidative stress resistance exists among and within species and ...

  3. Impact of oxidative stress on exercising skeletal muscle.

    Science.gov (United States)

    Steinbacher, Peter; Eckl, Peter

    2015-04-10

    It is well established that muscle contractions during exercise lead to elevated levels of reactive oxygen species (ROS) in skeletal muscle. These highly reactive molecules have many deleterious effects, such as a reduction of force generation and increased muscle atrophy. Since the discovery of exercise-induced oxidative stress several decades ago, evidence has accumulated that ROS produced during exercise also have positive effects by influencing cellular processes that lead to increased expression of antioxidants. These molecules are particularly elevated in regularly exercising muscle to prevent the negative effects of ROS by neutralizing the free radicals. In addition, ROS also seem to be involved in the exercise-induced adaptation of the muscle phenotype. This review provides an overview of the evidences to date on the effects of ROS in exercising muscle. These aspects include the sources of ROS, their positive and negative cellular effects, the role of antioxidants, and the present evidence on ROS-dependent adaptations of muscle cells in response to physical exercise.

  4. Glial activation in nitrous oxide toxicity is related to oxidative stress and glutamate excitotoxicity

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar Singh

    2017-12-01

    Full Text Available Myelin disorders can be due to diverse mechanisms such as autoimmune, parainfectious, metabolic or toxic. The prototype of immune mediated demyelination is multiple sclerosis. To understand the underlying mechanism of cell damage in vitamin b12 deficiency, a number of animal models have been used which include total gastrectomy (TGX, cobalamine deficient diet and N2O exposure (Tredici G, et al., 1998;Scalabrino G, 2001. Six adult wistar male rats were exposed to N2O oxygen mixture in 1:1 ratio at a rate of 2 L/min for 120 min for 60 days. The control rats received only oxygen and room air. At the end of exposure, spontaneous locomotor activity (total distance travelled, time resting, time moving, number of rearing, stereotypic count and grip strength. Plasma glutathione (GSH, total antioxidant capacity (TAC and serum malonodialdehyde (MDA and serum homocysteine (Hcy were measured by spectrophotometer. Glutamate in the cerebral cortex and cerebellum was measured by colorimetry. Immunohistochemistry for GFAP expression in brain and spinal cord was done and quantified using image J software. The N2O exposed rats had significant reduction in total distance travelled, time moving, number of rearing and increased time resting compared to the controls. Hcy, glutamate and MDA levels were increased, and GSH and TAC decreased in N2O exposed group compared to the controls. GFAP was more expressed in N2O exposed group, and its expression was higher in spinal cord compared to brain. The GFAP expression correlated with neurobehavioral changes, oxidative stress and glutamate level.N2O toxicity results in GFAP expression suggesting astrocytic reaction, which is mediated by oxidative stress and excitotoxicity.

  5. Effects of Borax on the Reduction of Pre-oxidized Panzhihua Ilmenite

    Science.gov (United States)

    Guo, Yufeng; Zheng, Fuqiang; Jiang, Tao; Chen, Feng; Wang, Shuai; Qiu, Guanzhou

    2018-01-01

    The effects of borax (sodium borate) on the enhancement reduction of pre-oxidized Panzhihua ilmenite were investigated. The effects of borax on the mineral phase transformation, microstructures, crystal cell parameter, melting point and Mg distribution were studied to reveal the mechanism of enhancement reduction. Under the constant reduction conditions, the borax could reduce the reduction activation energy of pre-oxidized ilmenite. The reduction kinetics analysis indicated that the reduction rate was controlled by interfacial chemical reaction. The reduction activation energy of the pre-oxidized ilmenite with 4% borax was 80.263 kJ/mol, which was 28.585 kJ/mol less than that of the pre-oxidized ilmenite without borax. Borax could eliminate the migration of Mg into the reduced particle center. The crystal cell parameter of the reduced product was increased by adding borax. Borax could improve the growth of dendritic crystals in the pre-oxidized ilmenite.

  6. Colorectal Carcinogenesis: Role of Oxidative Stress and Antioxidants.

    Science.gov (United States)

    Carini, Francesco; Mazzola, Margherita; Rappa, Francesca; Jurjus, Abdo; Geagea, Alice Gerges; Al Kattar, Sahar; Bou-Assi, Tarek; Jurjus, Rosalyn; Damiani, Provvidenza; Leone, Angelo; Tomasello, Giovanni

    2017-09-01

    One of the contributory causes of colon cancer is the negative effect of reactive oxygen species on DNA repair mechanisms. Currently, there is a growing support for the concept that oxidative stress may be an important etiological factor for carcinogenesis. The purpose of this review is to elucidate the role of oxidative stress in promoting colorectal carcinogenesis and to highlight the potential protective role of antioxidants. Several studies have documented the importance of antioxidants in countering oxidative stress and preventing colorectal carcinogenesis. However, there are conflicting data in the literature concerning its proper use in humans, since these studies did not yield definitive results and were performed mostly in vitro on cell populations, or in vivo in experimental animal models. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. In-Situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes

    Science.gov (United States)

    2010-12-28

    DATES COVERED (From - To) 1/29/10-9/30/10 4. TITLE AND SUBTITLE In situ optical studies of oxidation/reduction kinetics on SOFC cermet anodes 5a...0572 In-situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes Department of Chemistry and Biochemistry Montana State University...of Research In-situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes Principal Investigator Robert Walker Organization

  8. Chronic unpredictable stress deteriorates the chemopreventive efficacy of pomegranate through oxidative stress pathway.

    Science.gov (United States)

    Hasan, Shirin; Suhail, Nida; Bilal, Nayeem; Ashraf, Ghulam Md; Zaidi, Syed Kashif; AlNohair, Sultan; Banu, Naheed

    2016-05-01

    Chronic unpredictable stress (CUS) can influence the risk and progression of cancer through increased oxidative stress. Pomegranate is known to protect carcinogenesis through its anti-oxidative properties. This study is carried out to examine whether CUS affects the chemopreventive potential of pomegranate through oxidative stress pathway. Role of CUS on early stages of 7, 12 dimethyl benz(a) anthracene (DMBA) induced carcinogenesis, and its pre-exposure effect on chemopreventive efficacy of pomegranate juice (PJ) was examined in terms of in vivo antioxidant and biochemical parameters in Swiss albino rats. Rats were divided in various groups and were subjected to CUS paradigm, DMBA administration (65 mg/kg body weight, single dose), and PJ treatment. Exposure to stress (alone) and DMBA (alone) led to increased oxidative stress by significantly decreasing the antioxidant enzymes activities and altering the glutathione (GSH), malondialdehyde (MDA), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) levels. A significant increase in DNA damage demonstrated by comet assay was seen in the liver cells. Stress exposure to DMBA-treated rats further increased the oxidative stress and disturbed the biochemical parameters as compared to DMBA (alone)-treated rats. Chemoprevention with PJ in DMBA (alone)-treated rats restored the altered parameters. However, in the pre-stress DMBA-treated rats, the overall antioxidant potential of PJ was significantly diminished. Our results indicate that chronic stress not only increases the severity of carcinogenesis but also diminishes the anti-oxidative efficacy of PJ. In a broader perspective, special emphasis should be given to stress management and healthy diet during cancer chemoprevention.

  9. Effectiveness of stress management training on stress reduction in pregnant women

    Directory of Open Access Journals (Sweden)

    Mahboobeh Shirazi

    2016-10-01

    Full Text Available Background: There are evidences that suggest the impact of stress on pregnancy outcome. Prolong antenatal depression and anxiety may cause lots of adverse pregnancy outcomes such as abortion, still birth, low birth weight and preterm labor. The aim of this pre-posttest randomized control trial study was to determine the role of stress management training in the first trimester on stress reduction in pregnant women referring to General Yas Women Hospital related to Tehran University of Medical Sciences in Tehran, Iran, from May 2014 to January 2016. Methods: Anxiety status of 75 pregnant women in the first trimester was assessed by standard anxiety questioner using Hamilton anxiety rating score. Scores 18-25, 25-35 and >35 were considered for mild, moderate and severe anxiety, respectively. According to the level of anxiety, women with moderate and severe anxiety as the interventional group were arranged for participation in stress management workshops, applying mindfulness technique including: body scan, setting meditation and passing thought technique in 5 an hour sessions. For this experimental group were made available CD training for practicing lessons during the week. All groups didn’t need to medical treatment according to the psychiatrist interview. In the ending of therapy, clinical groups were assessed by anxiety scale again. Women with mild anxiety as the control group received only regular prenatal care without any psychological interventions. The validity and reliability of questioner were approved by experts in this field. This research was supported by Tehran University of Medical Sciences and Health Services grant and also the study approved by ethics committee of Tehran University of Medical Sciences. Data were analyzed using the statistical software SPSS version 18, and Student’s t-test analyses were performed. Results: The level of anxiety and stress was decreased significantly between women in clinical groups, 27.5 to 14

  10. Proteome oxidative carbonylation during oxidative stress-induced premature senescence of WI-38 human fibroblasts

    DEFF Research Database (Denmark)

    Le Boulch, Marine; Ahmed, Emad K; Rogowska-Wrzesinska, Adelina

    2018-01-01

    Accumulation of oxidatively damaged proteins is a hallmark of cellular and organismal ageing, and is also a phenotypic feature shared by both replicative senescence and stress-induced premature senescence of human fibroblasts. Moreover, proteins that are building up as oxidized (i.e. the "Oxi-pro...

  11. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Pongrac, I. M.; Pavičić, I.; Milić, M.; Brkić Ahmed, L.; Babič, Michal; Horák, Daniel; Vinković Vrček, I.; Gajović, S.

    2016-01-01

    Roč. 11, 26 April (2016), s. 1701-1715 ISSN 1176-9114 R&D Projects: GA ČR(CZ) GC16-01128J EU Projects: European Commission(XE) 316120 - GLOWBRAIN Institutional support: RVO:61389013 Keywords : superparamagnetic iron oxide nanoparticles * biocompatibility * oxidative stress Subject RIV: CD - Macromolecular Chemistry

  12. Oxygen and oxidative stress in the perinatal period.

    Science.gov (United States)

    Torres-Cuevas, Isabel; Parra-Llorca, Anna; Sánchez-Illana, Angel; Nuñez-Ramiro, Antonio; Kuligowski, Julia; Cháfer-Pericás, Consuelo; Cernada, María; Escobar, Justo; Vento, Máximo

    2017-08-01

    Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes. In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality. Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100%) has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30-60%). A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties constitutes a

  13. Effect of oxidative stress on homer scaffolding proteins.

    Directory of Open Access Journals (Sweden)

    Igor Nepliouev

    Full Text Available Homer proteins are a family of multifaceted scaffolding proteins that participate in the organization of signaling complexes at the post-synaptic density and in a variety of tissues including striated muscle. Homer isoforms form multimers via their C-terminal coiled coil domains, which allows for the formation of a polymeric network in combination with other scaffolding proteins. We hypothesized that the ability of Homer isoforms to serve as scaffolds would be influenced by oxidative stress. We have found by standard SDS-PAGE of lysates from adult mouse skeletal muscle exposed to air oxidation that Homer migrates as both a dimer and monomer in the absence of reducing agents and solely as a monomer in the presence of a reducing agent, suggesting that Homer dimers exposed to oxidation could be modified by the presence of an inter-molecular disulfide bond. Analysis of the peptide sequence of Homer 1b revealed the presence of only two cysteine residues located adjacent to the C-terminal coiled-coil domain. HEK 293 cells were transfected with wild-type and cysteine mutant forms of Homer 1b and exposed to oxidative stress by addition of menadione, which resulted in the formation of disulfide bonds except in the double mutant (C246G, C365G. Exposure of myofibers from adult mice to oxidative stress resulted in decreased solubility of endogenous Homer isoforms. This change in solubility was dependent on disulfide bond formation. In vitro binding assays revealed that cross-linking of Homer dimers enhanced the ability of Homer 1b to bind Drebrin, a known interacting partner. Our results show that oxidative stress results in disulfide cross-linking of Homer isoforms and loss of solubility of Homer scaffolds. This suggests that disulfide cross-linking of a Homer polymeric network may contribute to the pathophysiology seen in neurodegenerative diseases and myopathies characterized by oxidative stress.

  14. The Semireduced Mechanism for Nitric Oxide Reduction by Non-Heme Diiron Complexes: Modeling Flavodiiron Nitric Oxide Reductases.

    Science.gov (United States)

    White, Corey J; Speelman, Amy L; Kupper, Claudia; Demeshko, Serhiy; Meyer, Franc; Shanahan, James P; Alp, E Ercan; Hu, Michael; Zhao, Jiyong; Lehnert, Nicolai

    2018-02-21

    Flavodiiron nitric oxide reductases (FNORs) are a subclass of flavodiiron proteins (FDPs) capable of preferential binding and subsequent reduction of NO to N 2 O. FNORs are found in certain pathogenic bacteria, equipping them with resistance to nitrosative stress, generated as a part of the immune defense in humans, and allowing them to proliferate. Here, we report the spectroscopic characterization and detailed reactivity studies of the diiron dinitrosyl model complex [Fe 2 (BPMP)(OPr)(NO) 2 ](OTf) 2 for the FNOR active site that is capable of reducing NO to N 2 O [Zheng et al., J. Am. Chem. Soc. 2013, 135, 4902-4905]. Using UV-vis spectroscopy, cyclic voltammetry, and spectro-electrochemistry, we show that one reductive equivalent is in fact sufficient for the quantitative generation of N 2 O, following a semireduced reaction mechanism. This reaction is very efficient and produces N 2 O with a first-order rate constant k > 10 2 s -1 . Further isotope labeling studies confirm an intramolecular N-N coupling mechanism, consistent with the rapid time scale of the reduction and a very low barrier for N-N bond formation. Accordingly, the reaction proceeds at -80 °C, allowing for the direct observation of the mixed-valent product of the reaction. At higher temperatures, the initial reaction product is unstable and decays, ultimately generating the diferrous complex [Fe 2 (BPMP)(OPr) 2 ](OTf) and an unidentified ferric product. These results combined offer deep insight into the mechanism of NO reduction by the relevant model complex [Fe 2 (BPMP)(OPr)(NO) 2 ] 2+ and provide direct evidence that the semireduced mechanism would constitute a highly efficient pathway to accomplish NO reduction to N 2 O in FNORs and in synthetic catalysts.

  15. Hydrogen-peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, A.; He, Z.; Redding-Johanson, A.M.; Mukhopadhyay, A.; Hemme, C.L.; Joachimiak, M.P.; Bender, K.S.; Keasling, J.D.; Stahl, D.A.; Fields, M.W.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Zhou, J.; Luo, F.; Deng, Y.; He, Q.

    2010-07-01

    To understand how sulphate-reducing bacteria respond to oxidative stresses, the responses of Desulfovibrio vulgaris Hildenborough to H{sub 2}O{sub 2}-induced stresses were investigated with transcriptomic, proteomic and genetic approaches. H{sub 2}O{sub 2} and induced chemical species (e.g. polysulfide, ROS) and redox potential shift increased the expressions of the genes involved in detoxification, thioredoxin-dependent reduction system, protein and DNA repair, and decreased those involved in sulfate reduction, lactate oxidation and protein synthesis. A gene coexpression network analysis revealed complicated network interactions among differentially expressed genes, and suggested possible importance of several hypothetical genes in H{sub 2}O{sub 2} stress. Also, most of the genes in PerR and Fur regulons were highly induced, and the abundance of a Fur regulon protein increased. Mutant analysis suggested that PerR and Fur are functionally overlapped in response to stresses induced by H{sub 2}O{sub 2} and reaction products, and the upregulation of thioredoxin-dependent reduction genes was independent of PerR or Fur. It appears that induction of those stress response genes could contribute to the increased resistance of deletion mutants to H{sub 2}O{sub 2}-induced stresses. In addition, a conceptual cellular model of D. vulgaris responses to H{sub 2}O{sub 2} stress was constructed to illustrate that this bacterium may employ a complicated molecular mechanism to defend against the H{sub 2}O{sub 2}-induced stresses.

  16. Oxidation-reduction reactions. Overview and implications for repository studies

    International Nuclear Information System (INIS)

    Apted, Michael J.; Arthur, Randolph C.; Sasamoto, Hiroshi; Yui, Mikazu; Iwatsuki, Teruki

    2001-02-01

    The purpose of this report is to provide a survey and review on oxidation-reduction ('redox') reactions, with particular emphasis on implications for disposal of high-level waste (HLW) in deep geological formations. As an overview, the focus is on basic principles, problems, and proposed research related specifically to the assessment of redox for a HLW repository in Japan. For a more comprehensive treatment of redox and the myriad associated issues, the reader is directed to the cited textbooks used as primary references in this report. Low redox conditions in deep geological formations is a key assumption in the 'Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan' (hereafter called H12'). The release behavior of multi-valent radioelements (e.g., Tc, Se, U, Pu, Np), as well as daughter radioelements of these radioelements, from a deep geological repository are sensitively related to redox conditions. Furthermore, the performance of certain barrier materials, such as overpack and buffer, may be impacted by redox conditions. Given this importance, this report summarizes some key topics for future technical studies supporting site characterization and repository performance as follows: To fully test the conceptual models for system Eh, it will be necessary to measure and evaluate trace element and isotopic information of both coexisting groundwater and reactive minerals of candidate rocks. Because of importance of volatile species (e.g., O 2 , H 2 etc.) in redox reactions, and given the high total pressure of a repository located 500 to 1000 meter deep, laboratory investigations of redox will necessarily require use of pressurized test devices that can fully simulate repository conditions. The stability (redox capacity) of the repository system with respect to potential changes in redox boundary condition induced by oxidizing waters intrusion should be established experimentally. An overall conceptual model that unifies

  17. Oxidative stress induces caveolin 1 degradation and impairs caveolae functions in skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Alexis Mougeolle

    Full Text Available Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2 at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle.

  18. Oxidative stress in MeHg-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br [Departamento de Bioquimica, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Aschner, Michael [Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (United States); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN (United States); Rocha, Joao B.T., E-mail: jbtrocha@yahoo.com.br [Departamento de Quimica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  19. Muscle Aging and Oxidative Stress in Wild-Caught Shrews

    Science.gov (United States)

    Hindle, Allyson G.; Lawler, John M.; Campbell, Kevin L.; Horning, Markus

    2010-01-01

    Red-toothed shrews (Soricidae, subfamily Soricinae) are an intriguing model system to examine the free radical theory of aging in wild mammals, given their short (<18 month) lifespan and high mass-specific metabolic rates. As muscle performance underlies both foraging ability and predator avoidance, any age-related decline should be detrimental to fitness and survival. Muscle samples of water shrews (Sorex palustris) and sympatrically distributed short-tailed shrews (Blarina brevicauda) were therefore assessed for oxidative stress markers, protective antioxidant enzymes and apoptosis. Activity levels of catalase and glutathione peroxidase increased with age in both species. Similarly, Cu,Zn-superoxide dismutase isoform content was elevated significantly in older animals of both species (increases of 60% in the water shrew, 25% in the short-tailed shrew). Only one oxidative stress marker (lipid peroxidation) was age-elevated; the others were stable or declined (4-hydroxynonenal adducts and dihydroethidium oxidation). Glutathione peroxidase activity was significantly higher in the short-tailed shrew, while catalase activity was 2× higher in water shrews. Oxidative stress indicators were on average higher in short-tailed shrews. Apoptosis occurred in <1% of myocytes examined, and did not increase with age. Within the constraints of the sample size we found evidence of protection against elevated oxidative stress in wild-caught shrews. PMID:20109576

  20. Periodontal Disease-Induced Atherosclerosis and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Tomoko Kurita-Ochiai

    2015-09-01

    Full Text Available Periodontal disease is a highly prevalent disorder affecting up to 80% of the global population. Recent epidemiological studies have shown an association between periodontal disease and cardiovascular disease, as oxidative stress plays an important role in chronic inflammatory diseases such as periodontal disease and cardiovascular disease. In this review, we focus on the mechanisms by which periodontopathic bacteria cause chronic inflammation through the enhancement of oxidative stress and accelerate cardiovascular disease. Furthermore, we comment on the antioxidative activity of catechin in atherosclerosis accelerated by periodontitis.

  1. Food-derived bioactive peptides on inflammation and oxidative stress.

    Science.gov (United States)

    Chakrabarti, Subhadeep; Jahandideh, Forough; Wu, Jianping

    2014-01-01

    Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases.

  2. Haptoglobin is required to prevent oxidative stress and muscle atrophy.

    Directory of Open Access Journals (Sweden)

    Enrico Bertaggia

    Full Text Available BACKGROUND: Oxidative stress (OS plays a major role on tissue function. Several catabolic or stress conditions exacerbate OS, inducing organ deterioration. Haptoglobin (Hp is a circulating acute phase protein, produced by liver and adipose tissue, and has an important anti-oxidant function. Hp is induced in pro-oxidative conditions such as systemic inflammation or obesity. The role of systemic factors that modulate oxidative stress inside muscle cells is still poorly investigated. RESULTS: We used Hp knockout mice (Hp-/- to determine the role of this protein and therefore, of systemic OS in maintenance of muscle mass and function. Absence of Hp caused muscle atrophy and weakness due to activation of an atrophy program. When animals were stressed by acute exercise or by high fat diet (HFD, OS, muscle atrophy and force drop were exacerbated in Hp-/-. Depending from the stress condition, autophagy-lysosome and ubiquitin-proteasome systems were differently induced. CONCLUSIONS: Hp is required to prevent OS and the activation of pathways leading to muscle atrophy and weakness in normal condition and upon metabolic challenges.

  3. [Biological consequences of oxidative stress induced by pesticides].

    Science.gov (United States)

    Grosicka-Maciąg, Emilia

    2011-06-17

    Pesticides are used to protect plants and numerous plant products. They are also utilized in several industrial branches. These compounds are highly toxic to living organisms. In spite of close supervision in the use of pesticides there is a serious risk that these agents are able to spread into the environment and contaminate water, soil, food, and feedstuffs. Recently, more and more studies have been focused on understanding the toxic mechanisms of pesticide actions. The data indicate that the toxic action of pesticides may include the induction of oxidative stress and accumulation of free radicals in the cell. Long-lasting or acute oxidative stress disturbs cell metabolism and is able to produce permanent changes in the structure of proteins, lipids, and DNA. The proteins that are oxidized may lose or enhance their activity. Moreover, the proteins oxidized are able to form aggregates that inhibit the systems responsible for protein degradation and lead to alterations of proteins in the cell. Once oxidized, lipids have the capacity to damage and depolarize cytoplasmic membranes. Free oxygen radicals are harmful to DNA including damage to single nitric bases, DNA strand breaks and adduct production. Many studies indicate that oxidative stress may accelerate development of numerous diseases including cancer and neurodegenerative ones such as Alzheimer’s and Parkinson’s disease and may also be responsible for infertility.

  4. Statins Decrease Oxidative Stress and ICD Therapies

    Directory of Open Access Journals (Sweden)

    Heather L. Bloom

    2010-01-01

    Full Text Available Recent studies demonstrate that statins decrease ventricular arrhythmias in internal cardioverter defibrillator (ICD patients. The mechanism is unknown, but evidence links increased inflammatory and oxidative states with increased arrhythmias. We hypothesized that statin use decreases oxidation. Methods. 304 subjects with ICDs were surveyed for ventricular arrhythmia. Blood was analyzed for derivatives of reactive oxygen species (DROMs and interleukin-6 (IL-6. Results. Subjects included 252 (83% men, 58% on statins, 20% had ventricular arrhythmias. Average age was 63 years and ejection fraction (EF 20%. ICD implant duration was 29 ± 27 months. Use of statins correlated with lower ICD events (r=0.12, P=.02. Subjects on statins had lower hsCRP (5.2 versus 6.3; P=.05 and DROM levels (373 versus 397; P=.03. Other factors, including IL-6 and EF did not differ between statin and nonstatin use, nor did beta-blocker or antiarrhythmic use. Multivariate cross-correlation analysis demonstrated that DROMs, statins, IL-6 and EF were strongly associated with ICD events. Multivariate regression shows DROMs to be the dominant predictor. Conclusion. ICD event rate correlates with DROMs, a measure of lipid peroxides. Use of statins is associated with reduced DROMs and fewer ICD events, suggesting that statins exert their effect through reducing oxidation.

  5. A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian; Ma, Ruonan; Tian, Ying [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Liang, Yongdong; Feng, Hongqing [College of Engineering, Peking University, Beijing 100871 (China); Zhang, Jue; Fang, Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China)

    2013-05-20

    Ar/O{sub 2} (2%) cold plasma microjet was used to create plasma-activated water (PAW). The disinfection efficacy of PAW against Staphylococcus aureus showed that PAW can effectively disinfect bacteria. Optical emission spectra and oxidation reduction potential results demonstrated the inactivation is attributed to oxidative stress induced by reactive oxygen species in PAW. Moreover, the results of X-ray photoelectron spectroscopy, atomic absorption spectrometry, and transmission electron microscopy suggested that the chemical state of cell surface, the integrity of cell membrane, as well as the cell internal components and structure were damaged by the oxidative stress.

  6. A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage

    International Nuclear Information System (INIS)

    Zhang, Qian; Ma, Ruonan; Tian, Ying; Liang, Yongdong; Feng, Hongqing; Zhang, Jue; Fang, Jing

    2013-01-01

    Ar/O 2 (2%) cold plasma microjet was used to create plasma-activated water (PAW). The disinfection efficacy of PAW against Staphylococcus aureus showed that PAW can effectively disinfect bacteria. Optical emission spectra and oxidation reduction potential results demonstrated the inactivation is attributed to oxidative stress induced by reactive oxygen species in PAW. Moreover, the results of X-ray photoelectron spectroscopy, atomic absorption spectrometry, and transmission electron microscopy suggested that the chemical state of cell surface, the integrity of cell membrane, as well as the cell internal components and structure were damaged by the oxidative stress.

  7. A Different Approach to Assess Oxidative Stress in Dengue Hemorrhagic Fever Patients Through The Calculation of Oxidative Stress Index

    Directory of Open Access Journals (Sweden)

    Edi Hartoyo

    2017-09-01

    Full Text Available The objectives of this study were to determine the involvement of Oxidative Stress (OS in the pathogenesis of dengue hemorrhagic fever (DHF through the analysis of oxidative stress Index (OSI. The levels of malondialdehyde (MDA, superoxide dismutase (SOD and catalase (CAT activity, and OSI were measured in 61 child dengue patients and (aged 6 months–18 years with three different stages of DHF, i.e stage I, II, and III. The results show that the levels of MDA, SOD and CAT activity, and OSI significantly different between the group. The all parameters that investigated in this present study seems higher MDA level and OSI in the higher grade of DHF, except for SOD and CAT activity. From this result, it can be concluded that oxidative stress pathways might be involved in the pathomechanism of DHF and OSI might be used as a biomarker for OS and the severity in DHF patients.

  8. Dehydrins Impart Protection against Oxidative Stress in Transgenic Tobacco Plants.

    Science.gov (United States)

    Halder, Tanmoy; Upadhyaya, Gouranga; Basak, Chandra; Das, Arup; Chakraborty, Chandrima; Ray, Sudipta

    2018-01-01

    Environmental stresses generate reactive oxygen species (ROS) which might be detrimental to the plants when produced in an uncontrolled way. However, the plants ameliorate such stresses by synthesizing antioxidants and enzymes responsible for the dismutation of ROS. Additionally, the dehydrins were also able to protect the inactivation of the enzyme lactate dehydrogenase against hydroxyl radicals (OH ⋅ ) generated during Fenton's reaction. SbDhn1 and SbDhn2 overexpressing transgenic tobacco plants were able to protect against oxidative damage. Transgenic tobacco lines showed better photosynthetic efficiency along with high chlorophyll content, soluble sugar and proline. However, the malonyl dialdehyde (MDA) content was significantly lower in transgenic lines. Experimental evidence demonstrates the protective effect of dehydrins on electron transport chain in isolated chloroplast upon methyl viologen (MV) treatment. The transgenic tobacco plants showed significantly lower superoxide radical generation () upon MV treatment. The accumulation of the H 2 O 2 was also lower in the transgenic plants. Furthermore, in the transgenic plants the expression of ROS scavenging enzymes was higher compared to non-transformed (NT) or vector transformed (VT) plants. Taken together these data, during oxidative stress dehydrins function by scavenging the () directly and also by rendering protection to the enzymes responsible for the dismutation of () thereby significantly reducing the amount of hydrogen peroxides formed. Increase in proline content along with other antioxidants might also play a significant role in stress amelioration. Dehydrins thus function co-operatively with other protective mechanisms under oxidative stress conditions rendering protection in stress environment.

  9. Role of oxidative metabolites of cocaine in toxicity and addiction: oxidative stress and electron transfer.

    Science.gov (United States)

    Kovacic, Peter

    2005-01-01

    Cocaine is one of the principal drugs of abuse. Although impressive advances have been made, unanswered questions remain concerning mechanism of toxicity and addiction. Discussion of action mode usually centers on receptor binding and enzyme inhibition, with limited attention to events at the molecular level. This review provides extensive evidence in support of the hypothesis that oxidative metabolites play important roles comprising oxidative stress (OS), reactive oxygen species (ROS), and electron transfer (ET). The metabolites include norcocaine and norcocaine derivatives: nitroxide radical, N-hydroxy, nitrosonium, plus cocaine iminium and formaldehyde. Observed formation of ROS is rationalized by redox cycling involving several possible ET agents. Three potential ones are present in the form of oxidative metabolites, namely, nitroxide, nitrosonium, and iminium. Most attention has been devoted to the nitroxide-hydroxylamine couple which has been designated by various investigators as the principal source of ROS. The proximate ester substituent is deemed important for intramolecular stabilization of reactive intermediates. Reduction potential of nitroxide is in accord with plausibility of ET in the biological milieu. Toxicity by cocaine, with evidence for participation of OS, is demonstrated for many body components, including liver, central nervous system, cardiovascular system, reproductive system, kidney, mitochondria, urine, and immune system. Other adverse effects associated with ROS comprise teratogenesis and apoptosis. Examples of ROS generated are lipid peroxides and hydroxyl radical. Often observed were depletion of antioxidant defenses, and protection by added antioxidants, such as, thiol, salicylate, and deferoxamine. Considerable evidence supports the contention that oxidative ET metabolites of cocaine are responsible for much of the observed OS. Quite significantly, the pro-oxidant, toxic effects, including generation of superoxide and lipid peroxyl

  10. Changes in physical properties of graphene oxide with thermal reduction

    Science.gov (United States)

    Pandit, Bhishma; Jo, Chang Hee; Joo, Kwan Seon; Cho, Jaehee

    2017-08-01

    Reduced graphene oxide (rGO) has attracted significant attention as an easily fabricable twodimensional material. Depending on the oxygen-containing functional groups (OFGs) in an rGO specimen, the optical and electrical properties can vary significantly, directly affecting the performance of devices in which rGO is implemented. Here, we investigated the optical and electrical properties of GO treated with various annealing (reduction) temperatures from 350 to 950 °C in H2 ambient. Using diverse characteristic tools, we found that the transmittance, nanoscale domain size, OFGs in GO and rGO, and Schottky barrier height (SBH) measured on n-type GaN are significantly influenced by the annealing temperature. The relative intensity of the defect-induced band in Raman spectroscopy showed a minimum at the annealing temperature of approximately 350 °C, before the OFGs in rGO showed vigorous changes in relative content. When the domain size of rGO reached a minimum at the annealing temperature of 650 °C, the SBH of rGO/GaN showed the maximum value of 1.07 eV.

  11. Direct plutonium oxide reduction/electrorefining interface program

    International Nuclear Information System (INIS)

    Baldwin, C.E.; Berry, J.W.; Giebel, R.E.; Long, J.L.; Moser, W.S.; Navratil, J.D.; Tibbitts, S.F.

    1986-01-01

    Research test work and production data evaluation were performed by the Direct Oxide Reduction (DOR)/Electrorefining (ER) Interface Task Team to determine the cause for poor efficiency and yields during ER of DOR metal product. Production data and preliminary test results provided a working hypothesis. Extremely high loadings of impurities (whatever their exact source and identity) in the DOR product metal may lead to failure of the metal to become a molten anode at ER operating temperatures. Moderate impurity levels permit attainment of a molten anode, but lead to low yields because of premature anode solidification. The test results did not conclusively prove the hypothesis or identify specific mechanisms, but were qualitatively supportive. By stirring the molten anode metal pool, as well as the molten salt phase, generally good ER runs were obtained with both DOR and non-DOR feeds. These limited preliminary results suggest that anode stirring decreases the sensitivity of the ER process to DOR-related impurities. Suggested corrective measures included: (1) minimizing impurities in DOR feed to ER and (2) continued evaluation of anode stirring along with run termination by back-EMF measurements. 1 ref., 3 figs., 13 tabs

  12. Oxidation/reduction effects on sapphire thermoluminescent detectors

    International Nuclear Information System (INIS)

    Molnar, G.; Borossay, J.; Suevegh, K.; Vertes, A.

    1998-01-01

    Complete text of publication follows. The thermoluminescence (TL) and thermally stimulated exoemission (TSEE) properties of Al 2 O 3 has been extensively studied during the past 40 years. It has been suggested as a dosemeter for both ultraviolet light and ionising radiation. Nevertheless the connection between the structure (point defects) of alumina and thermally stimulated relaxation processes has not yet been clearly explained. In this work α-Al 2 O 3 single crystal samples were studied in order to determine the mechanism of electron-hole processes of thermoluminescence and thermally stimulated exoelectron emission peaks. Single crystals prepared in highly reducing conditions were treated in different atmospheres (reducing/oxidising) and their optical absorption (after isochronous annealing), fluorescence, positron-annihilation and TL properties were investigated. Changes of optical absorption and positron annihilation spectra of oxidised samples suggest that Schottky-type defect formation occurred - the concentration of Al-vacancies increased while that of O-vacancies decreased. Also we observed the oxidation of Ti 3+ to Ti 4+ . The reduction of an oxidised sample led to the diminution of Al-vacancy concentration while that of O-vacancies has not been changed. This suggest a Frenkel-type cationic defect. We also tried to correlate these changes to changes of TL glow curves and to explain the origin of some TL peaks

  13. Changes in Physical Properties of Graphene Oxide with Thermal Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Bhishma; Jo, Chang Hee; Joo, Kwan Seon; Cho, Jaehee [Chonbuk National University, Jeonju (Korea, Republic of)

    2017-08-15

    Reduced graphene oxide (rGO) has attracted significant attention as an easily fabricable two dimensional material. Depending on the oxygen-containing functional groups (OFGs) in an rGO specimen, the optical and electrical properties can vary significantly, directly affecting the performance of devices in which rGO is implemented. Here, we investigated the optical and electrical properties of GO treated with various annealing (reduction) temperatures from 350 to 950 ℃ in H2 ambient. Using diverse characteristic tools, we found that the transmittance, nanoscale domain size, OFGs in GO and rGO, and Schottky barrier height (SBH) measured on n-type GaN are significantly influenced by the annealing temperature. The relative intensity of the defect-induced band in Raman spectroscopy showed a minimum at the annealing temperature of approximately 350 ℃, before the OFGs in rGO showed vigorous changes in relative content. When the domain size of rGO reached a minimum at the annealing temperature of 650 ℃, the SBH of rGO/GaN showed the maximum value of 1.07 eV.

  14. Effects of Caloric Restriction on Cardiac Oxidative Stress and Mitochondrial Bioenergetics: Potential Role of Cardiac Sirtuins

    Directory of Open Access Journals (Sweden)

    Ken Shinmura

    2013-01-01

    Full Text Available The biology of aging has not been fully clarified, but the free radical theory of aging is one of the strongest aging theories proposed to date. The free radical theory has been expanded to the oxidative stress theory, in which mitochondria play a central role in the development of the aging process because of their critical roles in bioenergetics, oxidant production, and regulation of cell death. A decline in cardiac mitochondrial function associated with the accumulation of oxidative damage might be responsible, at least in part, for the decline in cardiac performance with age. In contrast, lifelong caloric restriction can attenuate functional decline with age, delay the onset of morbidity, and extend lifespan in various species. The effect of caloric restriction appears to be related to a reduction in cellular damage induced by reactive oxygen species. There is increasing evidence that sirtuins play an essential role in the reduction of mitochondrial oxidative stress during caloric restriction. We speculate that cardiac sirtuins attenuate the accumulation of oxidative damage associated with age by modifying specific mitochondrial proteins posttranscriptionally. Therefore, the distinct role of each sirtuin in the heart subjected to caloric restriction should be clarified to translate sirtuin biology into clinical practice.

  15. Oxidative stress and antioxidant defenses in pregnant women.

    Science.gov (United States)

    Leal, Claudio A M; Schetinger, Maria R C; Leal, Daniela B R; Morsch, Vera M; da Silva, Aleksandro Schafer; Rezer, João F P; de Bairros, André Valle; Jaques, Jeandre Augusto Dos Santos

    2011-01-01

    Oxidative stress (OS) is defined as an imbalance in the production of reactive oxygen species and the capacity of antioxidant defenses. The objective of this work was to investigate OS and antioxidant capacity in pregnant women. Parameters of the oxidative status and antioxidant capacity in serum and whole blood were evaluated in thirty-nine women with normal pregnancy. The assessment of antioxidants indicated an increase in superoxide dismutase and catalase activities (P0.05) in protein carbonylation. This study demonstrates that there is a change in the pro-oxidant and antioxidant defenses associated with body and circulation changes that are inherent to the pregnancy process.

  16. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    2009-11-01

    Full Text Available Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity.H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  17. OXIDATIVE STRESS AND VASCULAR DAMAGE IN HYPOXIA PROCESSES. MALONDIALDEHYDE (MDA AS BIOMARKER FOR OXIDATIVE DAMAGE

    Directory of Open Access Journals (Sweden)

    Muñiz P

    2014-05-01

    Full Text Available Changes in the levels oxidative stress biomarkers are related with different diseases such as ischemia/reperfusion, cardiovascular, renal, aging, etc. One of these biomarkers is the malondialdehyde (MDA generated as resulted of the process of lipid peroxidation. This biomarker is increased under conditions of the oxidative stress. Their levels, have been frequently used to measure plasma oxidative damage to lipids by their atherogenic potential. Its half-life high and their reactivity allows it to act both inside and outside of cells and interaction with proteins and DNA involve their role in different pathophysiological processes. This paper presents an analysis of the use of MDA as a biomarker of oxidative stress and its implications associated pathologies such as cardiovascular diseases ago.

  18. Biomarkers of oxidative stress and cataract. Novel drug delivery therapeutic strategies targeting telomere reduction and the expression of telomerase activity in the lens epithelial cells with N-acetylcarnosine lubricant eye drops: anti-cataract which helps to prevent and treat cataracts in the eyes of dogs and other animals.

    Science.gov (United States)

    Babizhayev, Mark A; Yegorov, Yegor E

    2014-01-01

    Cataracts in small animals are shown to be at least partially caused by oxidative damage to lens epithelial cells (LECs) and the internal lens; biomarkers of oxidative stress in the lens are considered as general biomarkers for life expectancy in the canine and other animals. Telomeres lengths and expressed telomerase activity in canine LECs may serve as important monitors of oxidative damage in normal LECs with documented higher levels of telomerase activity in cataractous LECs during cells' lifespan. Loss of functional telomere length below a critical threshold in LECs of canines during the effect of UV and chronic oxidative stress or metabolic failure, can activate programs leading to LEC senescence or death. Telomerase is induced in LECs of canines at critical stages of cataractogenesis initiation and exposure to oxidative stress through the involvement of catalytically active prooxidant transition metal (iron) ions. This work documents that transition metal ions (such as, ferrous ions- catalytic oxidants) might induce premature senescence in LECs of canines, telomere shortening with increased telomerase activity as adaptive response to UV light, oxidative and metabolic stresses. The therapeutic treatment with 1% N-acetylcarnosine (NAC) prodrug delivery is beneficial for prevention and dissolution of ripe cataracts in canines. This biological activity is based on the findings of ferroxidase activity pertinent to the dipeptide carnosine released ophthalmically from NAC prodrug of L-carnosine, stabilizing properties of carnosine on biological membranes based on the ability of the imidazole-containing dipeptides to interact with lipid peroxidation products and reactive oxygen species (ROS), to prevent membrane damage and delute the associated with membrane fragements protein aggregates. The advent of therapeutic treatment of cataracts in canines with N-acetylcarnosine lubricant eye drops through targeting the prevention of loss of functional telomere length below

  19. Microbiological Diversity Demonstrates the Potential which Collaboratively Metabolize Nitrogen Oxides ( NOx) under Smog Environmental Stress

    Science.gov (United States)

    Chen, X. Z.; Zhao, X. H.; Chen, X. P.

    2018-03-01

    Recently, smoggy weather has become a daily in large part of China because of rapidly economic growth and accelerative urbanization. Stressed on the smoggy situation and economic growth, the green and environment-friendly technology is necessary to reduce or eliminate the smog and promote the sustainable development of economy. Previous studies had confirmed that nitrogen oxides ( NOx ) is one of crucial factors which forms smog. Microorganisms have the advantages of quickly growth and reproduction and metabolic diversity which can collaboratively Metabolize various NOx. This study will design a kind of bacteria & algae cultivation system which can metabolize collaboratively nitrogen oxides in air and intervene in the local nitrogen cycle. Furthermore, the nitrogen oxides can be transformed into nitrogen gas or assembled in protein in microorganism cell by regulating the microorganism types and quantities and metabolic pathways in the system. Finally, the smog will be alleviated or eliminated because of reduction of nitrogen oxides emission. This study will produce the green developmental methodology.

  20. Omega-3 Polyunsaturated Fatty Acids Attenuate Radiation-induced Oxidative Stress and Organ Dysfunctions in Rats

    International Nuclear Information System (INIS)

    Abdel Aziz, N.; Yacoub, S.F.

    2013-01-01

    The Aim of the present study was to determine the possible protective effect of omega-3 polyunsaturated fatty acids (omega-3 PUFA) against radiation-induced oxidative stress associated with organ dysfunctions. Omega-3 PUFA was administered by oral gavages to male albino rats at a dose of 0.4 g/ kg body wt daily for 4 weeks before whole body γ-irradiation with 4Gy. Significant increase of serum lipid peroxidation end product as malondialdehyde (MDA) along with the reduction in blood glutathione (GSH) content, superoxide dismutase (SOD) and glutathione peroxidase (GPX) enzyme activities were recorded on 3rd and 8th days post-irradiation. Oxidative stress was associated with a significant increase in lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) enzyme activities, markers of heart damage, significant increases in uric acid, urea and creatinine levels, markers of kidney damage, significant increases of alkaline phosphatase (ALP) and transaminases (ALT and AST) activities, markers of liver damage. Moreover significant increases in total cholesterol and triglycerides levels were recorded. Omega-3 PUFA administration pre-irradiation significantly attenuated the radiation-induced oxidative stress and organ dysfunctions tested in this study. It could be concluded that oral supplementation of omega-3 PUFA before irradiation may afford protection against radiation-induced oxidative stress and might preserve the integrity of tissue functions of the organs under investigations.

  1. Effect of modest caloric restriction on oxidative stress in women, a randomized trial.

    Science.gov (United States)

    Buchowski, Maciej S; Hongu, Nobuko; Acra, Sari; Wang, Li; Warolin, Joshua; Roberts, L Jackson

    2012-01-01

    It is not established to what extent caloric intake must be reduced to lower oxidative stress in humans. The aim of this study was to determine the effect of short-term, moderate caloric restriction on markers of oxidative stress and inflammation in overweight and obese premenopausal women. Randomized trial comparison of 25% caloric restriction (CR) or control diet in 40 overweight or obese women (body mass index 32±5.8 kg/m(2)) observed for 28 days and followed for the next 90 days. Weight, anthropometry, validated markers of oxidative stress (F(2)-isoprostane) and inflammation (C-reactive protein), adipokines, hormones, lipids, interleukins, and blood pressure were assessed at baseline, during the intervention, and at follow-up. Baseline median F(2)-isoprostane concentration (57.0, IQR = 40.5-79.5) in the CR group was 1.75-fold above average range for normal weight women (32.5 pg/ml). After starting of the caloric restriction diet, F(2)-isoprostane levels fell rapidly in the CR group, reaching statistical difference from the control group by day 5 (median 33.5, IQR = 26.0-48.0, Prestriction diet. Three months after resuming a habitual diet, concentrations of F(2)-isoprostane returned to baseline elevated levels in ∼80% of the women. Oxidative stress can be rapidly reduced and sustained through a modest reduction in caloric intake suggesting potential health benefits in overweight and obese women. Clinicaltrials.gov NCT00808275.

  2. Potential role of green tea catechins in the management of oxidative stress-associated infertility.

    Science.gov (United States)

    Roychoudhury, Shubhadeep; Agarwal, Ashok; Virk, Gurpriya; Cho, Chak-Lam

    2017-05-01

    Reactive oxygen species (ROS) are present in low concentrations in the genital tracts of males and females. Excessive ROS lead to oxidative stress, which damages DNA, lipids and proteins. Such molecular changes result in compromised vitality, increased morphological defects and decreased sperm motility in the male. In the female, oxidative stress interferes with oocyte maturation, and may inhibit in-vitro maturation of the oocyte. Recently, green tea supplementation has been reported to possess properties that may improve the quality of male and female gametes largely due to the ability of catechin polyphenols to quench ROS. Epigallocatechin-3-gallate (EGCG) is considered the most promising bioactive compound in green tea due to its strong antioxidant activity. The unique property of green tea catechins may potentially improve reproductive health and pose an important research area. We present a comprehensive overview on the effects and potential roles of green tea catechins on oxidative stress in male and female reproduction and fertility. In this review, possible mechanisms of action are highlighted to better understand the potential use of green tea catechins in the reduction of oxidative stress and its associated beneficial effects in the clinical setting. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  4. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    Science.gov (United States)

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  5. Effects of naringin on apoptosis and oxidative stress in type 2 diabetic rats

    Science.gov (United States)

    Adelani, Isaacson; Bankole, Esther; Rotimi, Oluwakemi; Rotimi, Solomon

    2018-04-01

    Oxidative stress and apoptosis have been reported to play major roles in the pathogenesis of Type 2 Diabetes Mellitus (T2DM) through insulin resistance and β-cell dysfunction. Naringin is a citrus derived flavonoid that has been reported for its antioxidant properties. Even though effects of naringin in T2DM related oxidative stress has been reported, varying dose concentration in oxidative stress and mechanism of action involving T2DM related apoptosis is far-fetched. This research studied the effects of naringin at varying dose concentration on apoptosis, biomarkers of organ function and oxidative stress in high fat diet/low-streptozotocin-induced T2DM in albino Wistar rats. Diabetic rats were treated with naringin at 50mg/kg, 100mg/kg and 200mg/kg body weight for 21 days. Some biomarkers of organ function and oxidative stress in the animals were assayed using spectrophotometric techniques. The levels of expression of caspases and apoptotic regulators were quantified using semi-quantitative reverse transcriptase polymerase chain reaction (RT PCR). Enzyme - linked immunosorbent assay was used to determine inducible nitric oxide synthase (iNOS) level. Naringin treatment shows a dose dependent significant (plipid peroxidation, glutathione- s-transferase, glutathione peroxidase and glutathione reductase activities in the liver. Naringin treatment also showed a significant (p<0.05) increase in the expression of caspase 3 and reduction in BCL-2 as against the diabetic control. In addition, there was dose dependent decrease in plasma CO2 concentration and increase in the plasma iNOS concentration as compared to the diabetic control. This result highlights positive effect of naringin as an antioxidant, its role in apoptosis and also reverting the effects of organ damage in type 2 diabetes.

  6. Thymosin beta 4 protects cardiomyocytes from oxidative stress by targeting anti-oxidative enzymes and anti-apoptotic genes.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available Thymosin beta-4 (Tβ4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. The mechanism by which Tβ4 modulates cardiac protection under oxidative stress is not known. The purpose of this study is to dissect the cardioprotective mechanism of Tβ4 on H(2O(2 induced cardiac damage.Rat neonatal cardiomyocytes with or without Tβ4 pretreatment were exposed to H(2O(2 and expression of antioxidant, apoptotic, and anti-inflammatory genes was evaluated by quantitative real-time PCR and western blotting. ROS levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant, anti-inflammatory and antiapoptotic genes were silenced by siRNA transfections in neonatal cardiomyocytes and effect of Tβ4 on H(2O(2-induced cardiac damage was evaluated.Pre-treatment of Tβ4 resulted in reduction of the intracellular ROS levels induced by H(2O(2 in cardiomyocytes. Tβ4 pretreatment also resulted in an increase in the expression of antiapoptotic proteins and reduction of Bax/BCl(2 ratio in the cardiomyocytes. Pretreatment with Tβ4 resulted in stimulating the expression of antioxidant enzymes copper/zinc SOD and catalase in cardiomyocytes at both transcription and translation levels. Tβ4 treatment resulted in the increased expression of anti-apoptotic and anti-inflammatory genes. Silencing of Cu/Zn SOD and catalase gene resulted in apoptotic cell death in the cardiomyocytes which was prevented by treatment with Tβ4.This is the first report that demonstrates the effect of Tβ4 on cardiomyocytes and its capability to selectively upregulate anti-oxidative enzymes, anti-inflammatory genes, and antiapoptotic enzymes in the neonatal cardiomyocytes thus preventing cell death thereby protecting the myocardium. Tβ4 treatment resulted in decreased oxidative stress and inflammation in the myocardium under oxidative stress.

  7. Glutamine prevents gastric oxidative stress in an animal model of portal hypertension gastropathy.

    Science.gov (United States)

    Marques, Camila; Mauriz, José L; Simonetto, Douglas; Marroni, Claudio A; Tuñon, María J; González-Gallego, Javier; Marrón, Norma P

    2011-01-01

    Portal hypertension (PHI) is a clinical syndrome characterized by increases of the blood flow and/or of the vascular resistance in the portal system. A direct consequence of PHI can appearance different lesions on the gastric mucosa and submucosa, cumulatively termed portal hypertensive gastropathy (PHG). To investigate the effects of glutamine on oxidative stress in an experimental model of PHG induced by partial portal vein ligation (PPVL). Portal pressure, transaminase and alkaline phosphatase activity were quantified. Gastric tissue damage was assessed by histological analysis. Oxidative stress was measured by quantification of cytosolic concentration of thiobarbituric acid reactive substances (TBARS), hydroperoxide-initiated chemiluminescence (QL), and nitric oxide (NO) production. Moreover, activities of the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were analyzed. Transaminase and alkaline phosphatase activities were not significantly modified by PPVL, indicating absence of liver injury. Histological analysis of gastric sections showed a lost of normal architecture, with edema and vasodilatation. TBARS, QL, and NO production were significantly increased in PPVL animals. A reduction of SOD activity was found. Glutamine administration markedly alleviated histological abnormalities and oxidative stress, normalized SOD activity, and blocked NO overproduction. Our results confirm that the use of molecules with antioxidant capacity can provide protection of the gastric tissue in portal hypertension. Glutamine treatment can be useful to reduce the oxidative damage induced by PHI on gastric tissue.

  8. Oxidative Metabolism Genes Are Not Responsive to Oxidative Stress in Rodent Beta Cell Lines

    Directory of Open Access Journals (Sweden)

    Faer Morrison

    2012-01-01

    Full Text Available Altered expression of oxidative metabolism genes has been described in the skeletal muscle of individuals with type 2 diabetes. Pancreatic beta cells contain low levels of antioxidant enzymes and are particularly susceptible to oxidative stress. In this study, we explored the effect of hyperglycemia-induced oxidative stress on a panel of oxidative metabolism genes in a rodent beta cell line. We exposed INS-1 rodent beta cells to low (5.6 mmol/L, ambient (11 mmol/L, and high (28 mmol/L glucose conditions for 48 hours. Increases in oxidative stress were measured using the fluorescent probe dihydrorhodamine 123. We then measured the expression levels of a panel of 90 oxidative metabolism genes by real-time PCR. Elevated reactive oxygen species (ROS production was evident in INS-1 cells after 48 hours (P<0.05. TLDA analysis revealed a significant (P<0.05 upregulation of 16 of the 90 genes under hyperglycemic conditions, although these expression differences did not reflect differences in ROS. We conclude that although altered glycemia may influence the expression of some oxidative metabolism genes, this effect is probably not mediated by increased ROS production. The alterations to the expression of oxidative metabolism genes previously observed in human diabetic skeletal muscle do not appear to be mirrored in rodent pancreatic beta cells.

  9. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies.

    Science.gov (United States)

    Terrill, Jessica R; Radley-Crabb, Hannah G; Iwasaki, Tomohito; Lemckert, Frances A; Arthur, Peter G; Grounds, Miranda D

    2013-09-01

    The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin-deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin-deficient mdx mice. © 2013 The Authors Journal compilation © 2013 FEBS.

  10. Phase Transition Mapping by Means of Neutron Imaging in SOFC Anode Supports During Reduction Under Applied Stress

    DEFF Research Database (Denmark)

    Makowska, Malgorzata; Strobl, M.; Lauridsen, E. M.

    2015-01-01

    Mechanical and electrochemical performance of layers composed of Ni-YSZ cermet in solid oxide fuel and electrolysis cells (SOC) depends on their microstructure and initial internal stresses. After sintering, the manufacturing conditions, i.e. temperature, atmosphere and loads, can influence...... the microstructure and in particular the internal stresses in the Ni-YSZ layer and thereby the cell performance. Spatially resolved observation of the phase transition during reduction can provide information on how parameters like temperature and external load influence the reaction progress. This information...... is crucial for optimization of the SOC performance. In this work the measurements with energy resolved neutron imaging of the phase transition during the NiOYSZ reduction performed at different temperatures with and without applied load, are presented. The results indicate a link between reduction rate...

  11. Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries

    Directory of Open Access Journals (Sweden)

    Cestmir Cejka

    2015-01-01

    Full Text Available Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown.

  12. Oxidative stress and antioxidant status in primary bone and soft tissue sarcoma

    International Nuclear Information System (INIS)

    Nathan, Fatima M; Singh, Vivek A; Dhanoa, Amreeta; Palanisamy, Uma D

    2011-01-01

    Oxidative stress is characterised by an increased level of reactive oxygen species (ROS) that disrupts the intracellular reduction-oxidation (redox) balance and has been implicated in various diseases including cancer. Malignant tumors of connective tissue or sarcomas account for approximately 1% of all cancer diagnoses in adults and around 15% of paediatric malignancies per annum. There exists no information on the alterations of oxidant/antioxidant status of sarcoma patients in literature. This study was aimed to determine the levels of oxidative stress and antioxidant defence in patients with primary bone and soft tissue sarcoma and to investigate if there exists any significant differences in these levels between both the sarcomas. The study cohort consisted of 94 subjects; 20 soft tissue sarcoma, 27 primary bone sarcoma and 47 healthy controls. Malondialdehyde (MDA) and protein carbonyls were determined to assess their oxidative stress levels while antioxidant status was evaluated using catalase (CAT), superoxide dismutase (SOD), thiols and trolox equivalent antioxidant capacity (TEAC). Sarcoma patients showed significant increase in plasma and urinary MDA and serum protein carbonyl levels (p < 0.05) while significant decreases were noted in TEAC, thiols, CAT and SOD levels (p < 0.05). No significant difference in oxidative damage was noted between both the sarcomas (p > 0.05). In conclusion, an increase in oxidative stress and decrease in antioxidant status is observed in both primary bone and soft tissue sarcomas with a similar extent of damage. This study offers the basis for further work on whether the manipulation of redox balance in patients with sarcoma represents a useful approach in the design of future therapies for bone disease

  13. The role of oxidative stress in nervous system aging.

    Science.gov (United States)

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M; Dauch, Jacqueline R; Keller, Peter J; Brooks, Susan V; Feldman, Eva L

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice, a mouse model of increased oxidative stress. Sod1(-/-) mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+) mice at 30 months and the Sod1(-/-) mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  14. Oxidative stress in malaria and artemisinin combination therapy

    DEFF Research Database (Denmark)

    Kavishe, Reginald A.; Koenderink, Jan B.; Alifrangis, Michael

    2017-01-01

    in their mechanisms of action. This review gives a brief account of the oxidative stress and redox systems in malaria and discusses the context of antimalarial effectiveness of different ACTs compared with monotherapies of the partner drugs. A final account on the Pros and Cons of ACT as a strategy is discussed....

  15. Mastitis and oxidative stress in vitamin E supplemented dairy cows

    NARCIS (Netherlands)

    Bouwstra, R.J.

    2010-01-01

    The research described in this thesis evaluated the effect of vitamin E supplementation under field conditions on the udder health of Dutch dairy cows. Additionally, it investigated the mechanism by which vitamin E influenced oxidative stress, especially during the dry period. Moreover, it

  16. The role of oxidative stress in corneal diseases and injuries

    Czech Academy of Sciences Publication Activity Database

    Čejková, Jitka; Čejka, Čestmír

    2015-01-01

    Roč. 30, č. 8 (2015), s. 893-900 ISSN 0213-3911 R&D Projects: GA ČR(CZ) GA14-12580S Keywords : Diseased corneas * Immunohistochemistry * Oxidative stress Subject RIV: FF - HEENT, Dentistry Impact factor: 1.875, year: 2015

  17. Cigarette smoke-induced mitochondrial dysfunction and oxidative stress in

    NARCIS (Netherlands)

    Toorn, Marco van der

    2009-01-01

    In this thesis we studied the effects of cigarette smoke (CS) on mitochondrial function and oxidative stress in epithelial cells and discussed the potential of these phenomena in the pathogenesis of chronic obstructive pulmonary diseases (COPD). In the first three chapters we demonstrated that CS

  18. Thoracic radiography and oxidative stress indices in heartworm affected dogs

    Directory of Open Access Journals (Sweden)

    P. K. Rath

    2014-09-01

    Full Text Available Aim: The aim was to study the pathomorphological changes through thoracic radiography and status of oxidative stress parameters in heartworm affected dogs in Odisha. Materials and Methods: A total of 16 dogs with clinically established diagnosis of dirofilariasis by wet blood smear and modified Knott’s test and equal numbers of dogs as control were included in this study. The present study was conducted in heartworm affected dogs to see the pathomorphological changes through thoracic radiography. Similarly, the evaluation was undertaken for observing any alterations in oxidative stress status in affected as well as non-affected, but healthy control dogs by adopting standard procedure. Results: Thoracic radiography revealed cardiac enlargement, round heart appearance suggestive of right ventricular hypertrophy, tortuous pulmonary artery and darkening of lungs. Alterations in oxidative stress indices showed a significant rise of lipid peroxidase activity, non-significant rise of superoxide dismutase and a significant although reverse trend for catalase levels in affected dogs in comparison to Dirofilaria negative control but apparently healthy dogs. Conclusions: Radiographic changes, as well as alterations in oxidative stress parameters, may not be diagnostic for heartworm infection, but useful for detecting heartworm disease, assessing severity and evaluating cardiopulmonary parenchyma changes and gives a fair idea about the degree of severity of the disease. It aids as contributing factors in disease pathogenesis.

  19. Maternal Parity and Blood Oxidative Stress in Mother and Neonate

    OpenAIRE

    Golalizadeh; Shobeiri; Ranjbar; Nazari

    2016-01-01

    Background Parturition has been associated with free radicals, itself linked with poor pregnancy outcome. Objectives This study aimed to investigate the relationship between oxidative stress biomarkers levels of maternal and cord blood samples at the second stage of labor with the maternal parity number. Materials and Methods In this analytical cross-sectional study, subjects were ...

  20. Mixed chemical-induced oxidative stress in occupational exposure ...

    African Journals Online (AJOL)

    Mixed chemical-induced oxidative stress in occupational exposure in Nigerians. JI Anetor, SA Yaqub, GO Anetor, AC Nsonwu, FAA Adeniyi, S Fukushima. Abstract. Exposure to single chemicals and associated disorders in occupational environments has received significant attention. Understanding these events holds ...

  1. Effect of moxifloxacin on oxidative stress, paraoxonase-1 (PON1 ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of moxifloxacin on paraoxonase-1 (PON1) activity, and serum oxidative stress in patients with multiple drug-resistant tuberculosis (MDR-TB). Methods: A total ofof 130 MDR-TB patients who were treated with moxifloxacin from October 2014 to October 2010 in Eastern Medical District of Linyi ...

  2. Oxidative stress induced pulmonary endothelial cell proliferation is ...

    African Journals Online (AJOL)

    Cellular hyper-proliferation, endothelial dysfunction and oxidative stress are hallmarks of the pathobiology of pulmonary hypertension. Indeed, pulmonary endothelial cells proliferation is susceptible to redox state modulation. Some studies suggest that superoxide stimulates endothelial cell proliferation while others have ...

  3. Effects of micronutrients on oxidative stress in HIV positive patients ...

    African Journals Online (AJOL)

    Micronutrient supplementation was therefore shown to reduce oxidative stress in HIV positive patients on HAART and could possibly be very helpful as an adjunct in the treatment of this disease. Key Words: Antiretroviral, micronutrients, malondialdehyde, ART naïve, reactive oxygen species, supplementation.

  4. Oxidative Stress and Endometriosis: A Systematic Review of the Literature

    Directory of Open Access Journals (Sweden)

    Gennaro Scutiero

    2017-01-01

    Full Text Available Endometriosis is one of the most common gynaecologic diseases in women of reproductive age. It is characterized by the presence of endometrial tissue outside the uterine cavity. The women affected suffer from pelvic pain and infertility. The complex etiology is still unclear and it is based on three main theories: retrograde menstruation, coelomic metaplasia, and induction theory. Genetics and epigenetics also play a role in the development of endometriosis. Recent studies have put the attention on the role of oxidative stress, defined as an imbalance between reactive oxygen species (ROS and antioxidants, which may be implicated in the pathophysiology of endometriosis causing a general inflammatory response in the peritoneal cavity. Reactive oxygen species are intermediaries produced by normal oxygen metabolism and are inflammatory mediators known to modulate cell proliferation and to have deleterious effects. A systematic review was performed in order to clarify the different roles of oxidative stress and its role in the development of endometriosis. Several issues have been investigated: iron metabolism, oxidative stress markers (in the serum, peritoneal fluid, follicular fluid, peritoneal environment, ovarian cortex, and eutopic and ectopic endometrial tissue, genes involved in oxidative stress, endometriosis-associated infertility, and cancer development.

  5. The Role of Oxidative Stress in Nervous System Aging

    Science.gov (United States)

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M.; Dauch, Jacqueline R.; Keller, Peter J.; Brooks, Susan V.; Feldman, Eva L.

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1−/−) mice, a mouse model of increased oxidative stress. Sod1−/− mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1+/+ mice at 30 months and the Sod1−/− mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging. PMID:23844146

  6. The role of oxidative stress in nervous system aging.

    Directory of Open Access Journals (Sweden)

    Catrina Sims-Robinson

    Full Text Available While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/- mice, a mouse model of increased oxidative stress. Sod1(-/- mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+ mice at 30 months and the Sod1(-/- mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  7. Resveratrol Ameliorates Experimental Alcoholic Liver Disease by Modulating Oxidative Stress

    Directory of Open Access Journals (Sweden)

    He Peiyuan

    2017-01-01

    Full Text Available The aim of this study was to investigate the hepatoprotective effects of resveratrol in alcoholic liver disease (ALD. Alcohol was administered to healthy female rats starting from 6% (v/v and gradually increased to 20% (v/v by the fifth week. After 16 weeks of intervention, liver enzymes (aspartate aminotransferase [AST] and alanine aminotransferase [ALT] were analyzed using a chemistry analyzer, while hepatic antioxidant enzymes, oxidative stress markers, and caspase 3 activity were assessed using ELISA kits. Furthermore, hepatic CYP2E1 protein levels and mRNA levels of antioxidant and inflammation-related genes were determined using western blotting and RT-PCR, respectively. The results showed that resveratrol significantly attenuated alcohol-induced elevation of liver enzymes and improved hepatic antioxidant enzymes. Resveratrol also attenuated alcohol-induced CYP2E1 increase, oxidative stress, and apoptosis (caspase 3 activity. Moreover, genes associated with oxidative stress and inflammation were regulated by resveratrol supplementation. Taken together, the results suggested that resveratrol alleviated ALD through regulation of oxidative stress, apoptosis, and inflammation, which was mediated at the transcriptional level. The data suggests that resveratrol is a promising natural therapeutic agent against chronic ALD.

  8. Screening of drought oxidative stress tolerance in Serbian ...

    African Journals Online (AJOL)

    This study was designed to examine and compare antioxidant and free-radical scavenging activities of leaves of six different melliferous plant species (Populus alba, Robinia pseudoacacia, Sophora japonica, Euodia hupehensis, Tilia sp., Fraxinus sp.) from Serbia in order to evaluate their drought oxidative stress tolerance.

  9. Oxidative Stress in Dilated Cardiomyopathy Caused by MYBPC3 Mutation

    Directory of Open Access Journals (Sweden)

    Thomas L. Lynch

    2015-01-01

    Full Text Available Cardiomyopathies can result from mutations in genes encoding sarcomere proteins including MYBPC3, which encodes cardiac myosin binding protein-C (cMyBP-C. However, whether oxidative stress is augmented due to contractile dysfunction and cardiomyocyte damage in MYBPC3-mutated cardiomyopathies has not been elucidated. To determine whether oxidative stress markers were elevated in MYBPC3-mutated cardiomyopathies, a previously characterized 3-month-old mouse model of dilated cardiomyopathy (DCM expressing a homozygous MYBPC3 mutation (cMyBP-C(t/t was used, compared to wild-type (WT mice. Echocardiography confirmed decreased percentage of fractional shortening in DCM versus WT hearts. Histopathological analysis indicated a significant increase in myocardial disarray and fibrosis while the second harmonic generation imaging revealed disorganized sarcomeric structure and myocyte damage in DCM hearts when compared to WT hearts. Intriguingly, DCM mouse heart homogenates had decreased glutathione (GSH/GSSG ratio and increased protein carbonyl and lipid malondialdehyde content compared to WT heart homogenates, consistent with elevated oxidative stress. Importantly, a similar result was observed in human cardiomyopathy heart homogenate samples. These results were further supported by reduced signals for mitochondrial semiquinone radicals and Fe-S clusters in DCM mouse hearts measured using electron paramagnetic resonance spectroscopy. In conclusion, we demonstrate elevated oxidative stress in MYPBC3-mutated DCM mice, which may exacerbate the development of heart failure.

  10. No effect of melatonin on oxidative stress after laparoscopic cholecystectomy

    DEFF Research Database (Denmark)

    Kücükakin, B.; Klein, M.; Lykkesfeldt, Jens

    2010-01-01

    melatonin and 21 patients received placebo during surgery. No significant differences were observed between the groups in the oxidative stress variables MDA, TAA, AA and DHA or in the inflammatory variable CRP (repeated-measures ANOVA, P > 0.05 for all variables). Conclusions Administration of 10 mg...

  11. Oxidative stress among subjects with metabolic syndrome in Sokoto ...

    African Journals Online (AJOL)

    2015-08-20

    Aug 20, 2015 ... Background: Oxidative stress is known to play a role in the ... others to remix, tweak, and build upon the work non-commercially, as long as the ..... Report of the National Heart, Lung, and Blood Institute/American Heart.

  12. Power of Proteomics in Linking Oxidative Stress and Female Infertility

    Science.gov (United States)

    Gupta, Sajal; Sharma, Rakesh; Agarwal, Ashok

    2014-01-01

    Endometriosis, PCOS, and unexplained infertility are currently the most common diseases rendering large numbers of women infertile worldwide. Oxidative stress, due to its deleterious effects on proteins and nucleic acids, is postulated to be the one of the important mechanistic pathways in differential expression of proteins and in these diseases. The emerging field of proteomics has allowed identification of proteins involved in cell cycle, as antioxidants, extracellular matrix (ECM), cytoskeleton, and their linkage to oxidative stress in female infertility related diseases. The aim of this paper is to assess the association of oxidative stress and protein expression in the reproductive microenvironments such as endometrial fluid, peritoneal fluid, and follicular fluid, as well as reproductive tissues and serum. The review also highlights the literature that proposes the use of the fertility related proteins as potential biomarkers for noninvasive and early diagnosis of the aforementioned diseases rather than utilizing the more invasive methods used currently. The review will highlight the power of proteomic profiles identified in infertility related disease conditions and their linkage with underlying oxidative stress. The power of proteomics will be reviewed with regard to eliciting molecular mechanisms for early detection and management of these infertility related conditions. PMID:24900998

  13. Oxidative stress biomarkers in Oreochromis niloticus as early ...

    African Journals Online (AJOL)

    2018-04-10

    Apr 10, 2018 ... stress biomarkers and sub-cellular components are the most commonly used ..... metal ions usually occur in low concentrations in the aquatic environment and ..... injured cells from a reduced to an oxidized state (Gul et al.,. 2004). ... ions through their gills, impaired respiration may result from chronic and ...

  14. Oxidative Stress -a Phenotypic Hallmark of Fanconi Anemia and ...

    African Journals Online (AJOL)

    ... major role in the pathogenesis of leukemia.prone diseases such as Fanconi anemia (FA) and ... Aim: To explore the oxidative stress state in children with DS and FA by ... and to evaluate of the effect of antioxidant treatment on these patients.

  15. Oxidative stress biomarkers in West African Dwarf goats reared ...

    African Journals Online (AJOL)

    Oxidative stress biomarkers in West African Dwarf goats reared under intensive and semi-intensive production systems. ... Animals raised intensively were fed Megathyrsus maximus hay ad libitum, while those reared semi-intensively were allowed to graze freely in a fenced ... Keywords: bucks, immune response, season ...

  16. Oxidative stress status in congenital hypogonadism: an appraisal.

    Science.gov (United States)

    Haymana, C; Aydoğdu, A; Soykut, B; Erdem, O; Ibrahimov, T; Dinc, M; Meric, C; Basaran, Y; Sonmez, A; Azal, O

    2017-07-01

    Patients with hypogonadism are at increased risk of cardiac and metabolic diseases. However, the pathogenesis of increased cardiometabolic risk in patients with hypogonadism is not clear. Oxidative stress plays an important role in the pathogenesis of cardiometabolic diseases. This study aimed to investigate possible differences in oxidative stress conditions between patients with hypogonadism and healthy controls. In this study, 38 male patients with congenital hypogonadotropic hypogonadism (CHH) (mean age: 21.7 ± 1.6 years) and 44 healthy male controls (mean age: 22.3 ± 1.4 years) with almost equal body mass index were enrolled. The demographic parameters, follicle-stimulating hormone (FSH), luteinizing hormone (LH), total and free testosterone, homeostatic model assessment of insulin resistance (HOMA-IR) and oxidative stress parameters, such as superoxide dismutase, catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (MDA), were compared between both groups. Compared to the healthy controls, triglycerides (p = .02), insulin levels, HOMA-IR values, CAT activities and MDA levels (p treatment-naïve patients with congenital hypogonadism had an increased status of oxidative stress.

  17. Power of Proteomics in Linking Oxidative Stress and Female Infertility

    Directory of Open Access Journals (Sweden)

    Sajal Gupta

    2014-01-01

    Full Text Available Endometriosis, PCOS, and unexplained infertility are currently the most common diseases rendering large numbers of women infertile worldwide. Oxidative stress, due to its deleterious effects on proteins and nucleic acids, is postulated to be the one of the important mechanistic pathways in differential expression of proteins and in these diseases. The emerging field of proteomics has allowed identification of proteins involved in cell cycle, as antioxidants, extracellular matrix (ECM, cytoskeleton, and their linkage to oxidative stress in female infertility related diseases. The aim of this paper is to assess the association of oxidative stress and protein expression in the reproductive microenvironments such as endometrial fluid, peritoneal fluid, and follicular fluid, as well as reproductive tissues and serum. The review also highlights the literature that proposes the use of the fertility related proteins as potential biomarkers for noninvasive and early diagnosis of the aforementioned diseases rather than utilizing the more invasive methods used currently. The review will highlight the power of proteomic profiles identified in infertility related disease conditions and their linkage with underlying oxidative stress. The power of proteomics will be reviewed with regard to eliciting molecular mechanisms for early detection and management of these infertility related conditions.

  18. Oxidative stress and chromosomal aberrations in an environmentally exposed population

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Rössnerová, Andrea; Šrám, Radim

    2011-01-01

    Roč. 707, 1-2 (2011), s. 34-41 ISSN 0027-5107 R&D Projects: GA MŽP(CZ) SP/1B3/8/08 Institutional research plan: CEZ:AV0Z50390512 Keywords : air pollution * oxidative stress * chromosomal aberrations Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.850, year: 2011

  19. Morin mitigates oxidative stress, apoptosis and inflammation in ...

    African Journals Online (AJOL)

    Background: Morin is a flavanoid which exhibits potent antioxidant activity in various oxidative stress related diseases. The current study was attempted to scrutinize the preclinical bio-efficacy of morin on focal ischemia. Methods: The animal model of focal cerebral ischemic injury was done by midbrain carotid artery ...

  20. Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis

    NARCIS (Netherlands)

    Boots, Agnes W.; Drent, Marjolein; de Boer, Vincent C. J.; Bast, Aalt; Haenen, Guido R. M. M.

    2011-01-01

    Oxidative stress and low antioxidant levels are implicated in the aetiology of sarcoidosis, an inflammatory disease. Quercetin is a potent dietary antioxidant that also displays anti-inflammatory activities. Consequently, the aim is to examine the effect of quercetin supplementation on markers of

  1. Altered DNA repair, oxidative stress and antioxidant status

    Indian Academy of Sciences (India)

    Coronary artery disease (CAD) is a multifactorial disease caused by the interplay of environmental risk factors with multiple predisposing genes. The present study was undertaken to evaluate the role of DNA repair efficiency and oxidative stress and antioxidant status in CAD patients. Malonaldehyde (MDA), which is an ...

  2. Palladium induced oxidative stress and cell death in normal ...

    African Journals Online (AJOL)

    Our findings clearly indicate that Pd induces reactive oxygen species (ROS) formation and oxidative stress, mitochondrial and lysosomal injury and finally cell death. These effects are reversed by antioxidants and ROS scavengers, mitochondrial permeability transmission [1] pore sealing agent, ATP progenitor, and ...

  3. Protection by 6-aminonicotinamide against oxidative stress in cardiac cells

    DEFF Research Database (Denmark)

    Hofgaard, Johannes P; Sigurdardottir, Kristin Sigridur; Treiman, Marek

    2006-01-01

    necrosis following global ischemia in an isolated rat heart, apparently by limiting the oxidative injury component. We therefore explored the antioxidative potential of 6AN in a model using H9C2(2-1) rat cardiac myoblasts exposed to H2O2 stress. Dependent on the specific protocol, 6AN pretreatment for 6...

  4. Oxidative Stress Markers and Genetic Polymorphisms of Glutathione ...

    African Journals Online (AJOL)

    Hence, we evaluated the serum levels of oxidative stress markers and investigated genetic polymorphisms of glutathione S-transferase associated with autism. Materials and Methods: Forty-two children clinically diagnosed with ASD using the Diagnostic and Statistical Manual for Mental Disorders (DSM-5) criteria and a ...

  5. Mercury chloride-induced oxidative stress in human erythrocytes ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... Mercury can exist in the environment as metal, as monovalent and divalent salts and as organomercurials, one of the most important of which is mercuric chloride (HgCl2). It has been shown to induce oxidative stress in erythrocytes through the generation of free radicals and alteration of the.

  6. Oxidative stress and antioxidant status in sportsmen two hours after ...

    African Journals Online (AJOL)

    This study was designed to investigate the serum lipid profile and non-enzymatic antioxidants markers (serum uric acid and albumin) as well as lipid hydroperoxide (a marker of oxidative stress) in 39 sportsmen after 2 h of strenuous training exercise and also in 24 sedentary age-matched males who served as controls ...

  7. Oxidative-stress-mediated teratogenesis and the role of folate

    NARCIS (Netherlands)

    Tran, Y.H.; Bergman, J.; Bakker, M.; Groen, H.; Wilffert, B.

    2016-01-01

    Background: Oxidative stress (OS) is one of the underlying teratogenic mechanisms of medical drugs. Folate is indirectly involved in OS because of its role in the methylation steps in the detoxification of xenobiotics and in the repair of OS-induced DNA damage. Our study was to explore the

  8. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa.

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Dayem, Ahmed Abdal; Eppakayala, Vasuki; Kim, Jin-Hoi

    2012-01-01

    Graphene holds great promise for potential use in next-generation electronic and photonic devices due to its unique high carrier mobility, good optical transparency, large surface area, and biocompatibility. The aim of this study was to investigate the antibacterial effects of graphene oxide (GO) and reduced graphene oxide (rGO) in Pseudomonas aeruginosa. In this work, we used a novel reducing agent, betamercaptoethanol (BME), for synthesis of graphene to avoid the use of toxic materials. To uncover the impacts of GO and rGO on human health, the antibacterial activity of two types of graphene-based material toward a bacterial model P. aeruginosa was studied and compared. The synthesized GO and rGO was characterized by ultraviolet-visible absorption spectroscopy, particle-size analyzer, X-ray diffraction, scanning electron microscopy and Raman spectroscopy. Further, to explain the antimicrobial activity of graphene oxide and reduced graphene oxide, we employed various assays, such as cell growth, cell viability, reactive oxygen species generation, and DNA fragmentation. Ultraviolet-visible spectra of the samples confirmed the transition of GO into graphene. Dynamic light-scattering analyses showed the average size among the two types of graphene materials. X-ray diffraction data validated the structure of graphene sheets, and high-resolution scanning electron microscopy was employed to investigate the morphologies of prepared graphene. Raman spectroscopy data indicated the removal of oxygen-containing functional groups from the surface of GO and the formation of graphene. The exposure of cells to GO and rGO induced the production of superoxide radical anion and loss of cell viability. Results suggest that the antibacterial activities are contributed to by loss of cell viability, induced oxidative stress, and DNA fragmentation. The antibacterial activities of GO and rGO against P. aeruginosa were compared. The loss of P. aeruginosa viability increased in a dose- and

  9. Cytoprotective Effects of Pumpkin (Cucurbita Moschata) Fruit Extract against Oxidative Stress and Carbonyl Stress.

    Science.gov (United States)

    Shayesteh, Reyhaneh; Kamalinejad, Mohammad; Adiban, Hasan; Kardan, Azin; Keyhanfar, Fariborz; Eskandari, Mohammad Reza

    2017-10-01

    Background Diabetes mellitus is a chronic endocrine disorder that is associated with significant mortality and morbidity due to microvascular and macrovascular complications. Diabetes complications accompanied with oxidative stress and carbonyl stress in different organs of human body because of the increased generation of free radicals and impaired antioxidant defense systems. In the meantime, reactive oxygen species (ROS) and reactive carbonyl species (RCS) have key mediatory roles in the development and progression of diabetes complications. Therapeutic strategies have recently focused on preventing such diabetes-related abnormalities using different natural and chemical compounds. Pumpkin ( Cucurbita moschata ) is one of the most important vegetables in the world with a broad-range of pharmacological activities such as antihyperglycemic effect. Methods In the present study, the cytoprotective effects of aqueous extract of C. moschata fruit on hepatocyte cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonylation model) were investigated using freshly isolated rat hepatocytes. Results The extract of C. moschata (50 μg/ml) excellently prevented oxidative and carbonyl stress markers, including hepatocyte lysis, ROS production, lipid peroxidation, glutathione depletion, mitochondrial membrane potential collapse, lysosomal damage, and cellular proteolysis. In addition, protein carbonylation was prevented by C. moschata in glyoxal-induced carbonyl stress. Conclusion It can be concluded that C. moschata has cytoprotective effects in oxidative stress and carbonyl stress models and this valuable vegetable can be considered as a suitable herbal product for the prevention of toxic subsequent of oxidative stress and carbonyl stress seen in chronic hyperglycemia. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Oxidative stress induced inflammation initiates functional decline of tear production.

    Directory of Open Access Journals (Sweden)

    Yuichi Uchino

    Full Text Available Oxidative damage and inflammation are proposed to be involved in an age-related functional decline of exocrine glands. However, the molecular mechanism of how oxidative stress affects the secretory function of exocrine glands is unclear. We developed a novel mev-1 conditional transgenic mouse model (Tet-mev-1 using a modified tetracycline system (Tet-On/Off system. This mouse model demonstrated decreased tear production with morphological changes including leukocytic infiltration and fibrosis. We found that the mev-1 gene encodes Cyt-1, which is the cytochrome b(560 large subunit of succinate-ubiquinone oxidoreductase in complex II of mitochondria (homologous to succinate dehydrogenase C subunit (SDHC in humans. The mev-1 gene induced excessive oxidative stress associated with ocular surface epithelial damage and a decrease in protein and aqueous secretory function. This new model provides evidence that mitochondrial oxidative damage in the lacrimal gland induces lacrimal dysfunction resulting in dry eye disease. Tear volume in Tet-mev-1 mice was lower than in wild type mice and histopathological analyses showed the hallmarks of lacrimal gland inflammation by intense mononuclear leukocytic infiltration and fibrosis in the lacrimal gland of Tet-mev-1 mice. These findings strongly suggest that oxidative stress can be a causative factor for the development of dry eye disease.

  11. Oxidation and reduction of copper and iron species in steam generator deposits - Effects of hydrazine, carbohydrazide and catalyzed hydrazine

    International Nuclear Information System (INIS)

    Marks, C.R.; Varrin, R.D.; Gorman, J.A.; McIlree, A.R.; Stanley, R.

    2002-01-01

    It has long been suspected that oxidation and reduction of secondary side deposits in PWR steam generators have a significant influence on the onset of intergranular attack and stress corrosion cracking (IGA/SCC) of mill annealed Alloy 600 steam generator tubes. It is believed that these same processes could affect the possible future occurrence of IGA/SCC of thermally treated Alloy 600 and Alloy 690 tubes that are in newer steam generators. The working hypothesis for describing the influence of oxides on accelerated tube degradation is that deposits formed during normal operation are oxidized during lay-up. During subsequent operation, these oxidized species accelerate tube degradation by raising the electrochemical potential. (authors)

  12. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa).

    Science.gov (United States)

    Shabala, Lana; Mackay, Alex; Tian, Yu; Jacobsen, Sven-Erik; Zhou, Daowei; Shabala, Sergey

    2012-09-01

    Two components of salinity stress are a reduction in water availability to plants and the formation of reactive oxygen species. In this work, we have used quinoa (Chenopodium quinoa), a dicotyledonous C3 halophyte species displaying optimal growth at approximately 150 mM NaCl, to study mechanisms by which halophytes cope with the afore-mentioned components of salt stress. The relative contribution of organic and inorganic osmolytes in leaves of different physiological ages (e.g. positions on the stem) was quantified and linked with the osmoprotective function of organic osmolytes. We show that the extent of the oxidative stress (UV-B irradiation) damage to photosynthetic machinery in young leaves is much less when compared with old leaves, and attribute this difference to the difference in the size of the organic osmolyte pool (1.5-fold difference under control conditions; sixfold difference in plants grown at 400 mM NaCl). Consistent with this, salt-grown plants showed higher Fv/Fm values compared with control plants after UV-B exposure. Exogenous application of physiologically relevant concentrations of glycine betaine substantially mitigated oxidative stress damage to PSII, in a dose-dependent manner. We also show that salt-grown plants showed a significant (approximately 30%) reduction in stomatal density observed in all leaves. It is concluded that accumulation of organic osmolytes plays a dual role providing, in addition to osmotic adjustment, protection of photosynthetic machinery against oxidative stress in developing leaves. It is also suggested that salinity-induced reduction in stomatal density represents a fundamental mechanism by which plants optimize water use efficiency under saline conditions. Copyright © Physiologia Plantarum 2012.

  13. Non-thermal Plasma and Oxidative Stress

    Science.gov (United States)

    Toyokuni, Shinya

    2015-09-01

    Thermal plasmas and lasers have been used in medicine to cut and ablate tissues and for coagulation. Non-equilibrium atmospheric pressure plasma (NEAPP; non-thermal plasma) is a recently developed, non-thermal technique with possible biomedical applications. Although NEAPP reportedly generates reactive oxygen/nitrogen species, electrons, positive ions, and ultraviolet radiation, few research projects have been conducted to merge this technique with conventional free radical biology. Recently, Prof. Masaru Hori's group (Plasma Nanotechnology Research Center, Nagoya University) developed a NEAPP device with high electron density. Here electron spin resonance revealed hydroxyl radicals as a major product. To merge non-thermal plasma biology with the preexisting free radical biology, we evaluated lipid peroxidation and DNA modifications in various in vitro and ex vivo experiments. Conjugated dienes increased after exposure to linoleic and alfa-linolenic acids. An increase in 2-thiobarbituric acid-reactive substances was also increased after exposure to phosphatidylcholine, liposomes or liver homogenate. Direct exposure to rat liver in medium produced immunohistochemical evidence of 4-hydroxy-2-nonenal- and acrolein-modified proteins. Exposure to plasmid DNA induced dose-dependent single/double strand breaks and increased the amounts of 8-hydroxy-2'-deoxyguanosine and cyclobutane pyrimidine dimers. These results indicate that oxidative biomolecular damage by NEAPP is dose-dependent and thus can be controlled in a site-specific manner. Simultaneous oxidative and UV-specific DNA damage may be useful in cancer treatment. Other recent advancements in the related studies of non-thermal plasma in Nagoya University Graduate School of Medicine will also be discussed.

  14. Interferon-gamma regulates oxidative stress during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, Carmen; Penkowa, Milena; Sáez-Torres, Irene

    2002-01-01

    disease eliciting secretion of proinflammatory cytokines like IFN-gamma or TNF-alpha, and it has been suggested that cytokine-induced oxidative stress could have a role in EAE neuropathology. However, the individual roles of these and other cytokines in the pathogenesis of the disease are still uncertain....... Here we analyze the role of IFN-gamma during EAE by using both IFN-gamma receptor-knockout (IFN-gamma R(-/-)) and wild-type mice, both strains immunized with peptide 40-55 from rat myelin oligodendrocyte glycoprotein. The levels of oxidative stress were determined through the analysis...... of immunoreactivity for inducible NO synthase, nitrotyrosine, and malondialdehyde, as well as through the expression of the tissue-protective antioxidant factors metallothionein I+II (MT-I+II). We also examined the number of cells undergoing apoptosis as judged by using the TUNEL technique. The levels of oxidative...

  15. Etyopathogenesis and Oxidative Stress Relationship in Mild Severe Alopecia Areata

    Directory of Open Access Journals (Sweden)

    Fadime Kilinç

    2017-09-01

    Full Text Available Objective:Alopecia areata (AA is a recurrent, autoimmune, inflammatory disease characterized by loss of scarless hair. The etiopathogenesis is not exactly known, however genetic, emotional, environmental factors and autoimmunity are accused. The aim of the study is to investigate the role of oxidative stress in the etiopathogenesis of AA. Methods:Thirty seven AA patients and thirty five healthy volunteers as control group were included in the study. Oxidative stress index (OSI was calculated by measuring total antioxidant capacity (TAC and total oxidant capacity (TOC in patient and control group serum samples. Results:The TAC values of the patient group were found to be higher than the control group (p=0.036. A nonsignificant difference was found between the two groups statistically bordered by TOC (p=0.058. There was no significant difference between the two groups in terms of OSI (p=0.270.

  16. Oxidative/nitrosative stress and antidepressants: targets for novel antidepressants.

    Science.gov (United States)

    Lee, Seung-Yup; Lee, Soo-Jung; Han, Changsu; Patkar, Ashwin A; Masand, Prakash S; Pae, Chi-Un

    2013-10-01

    The brain is an organ predisposed to oxidative/nitrosative stress. This is especially true in the case of aging as well as several neurodegenerative diseases. Under such circumstances, a decline in the normal antioxidant defense mechanisms leads to an increase in the vulnerability of the brain to the deleterious effects of oxidative damage. Highly reactive oxygen/nitrogen species damage lipids, proteins, and mitochondrial and neuronal genes. Unless antioxidant defenses react appropriately to damage inflicted by radicals, neurons may experience microalteration, microdysfunction, and degeneration. We reviewed how oxidative and nitrosative stresses contribute to the pathogenesis of depressive disorders and reviewed the clinical implications of various antioxidants as future targets for antidepressant treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Experimental Hepatic Carcinogenesis: Oxidative Stress and Natural Antioxidants

    Directory of Open Access Journals (Sweden)

    Velid Unsal

    2017-08-01

    Full Text Available Hepatocellular carcinoma is one of the most common cancers in the world, and it is influenced by agents such as DEN, 2-AAF, phenobarbital, alcohol, aflatoxin B1 metabolite or hepatitis viruses (B and C. Oxidative stress is becoming recognized as a key factor in the progression of hepatocarcinogenesis. Reactive oxygen species can play a leading role in initiation and promotion of hepatic carcinogenesis. The metabolites of DEN Diethylnitrosamine (DEN mediate the binding of tumour promoters by covalently binding to the DNA with one or two oxidation-providing electrons. 2-AAF is the inducer of DEN, and it is involved in tumour formation in the bladder and liver. Reactive Oxygen species (ROS; carbohydrates, lipids, DNA and enzymes, such as affect all important structures. Additionally, an excessive amount of ROS is highly toxic to cells. Antioxidants are protects against ROS, toxic substances, carcinogens. This review focuses on the literature on studies of Hepatic Carcinogenesis, oxidative stress and antioxidant therapy.

  18. Marine Carotenoids against Oxidative Stress: Effects on Human Health.

    Science.gov (United States)

    Gammone, Maria Alessandra; Riccioni, Graziano; D'Orazio, Nicolantonio

    2015-09-30

    Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases.

  19. The Role of Oxidative Stress in Aging and Dementia

    Directory of Open Access Journals (Sweden)

    Joana Teixeira

    2014-12-01

    Full Text Available Introduction: Biologic aging is a process, and oxidative stress theory, which is one of the most accepted biological theories for aging, states that oxidative stress causes cumulative damage to mitochondrial DNA resulting in cellular senescence. Dementia is a neurodegenerative disorder whose major risk factor is aging. Although the exact neuronal lesion mechanisms underlying neurodegenerative disorders, including dementia, are not yet known, most recent studies suggest oxidative stress and mitochondrial dynamics’ role in the process.Objective: Literature review on the role of oxidative stress’ role in aging and dementia.Methods: Literature review of selected arti-cles and books deemed relevant by the authors, supplemented by Medline/Pubmed database search using combinations of the following key-words: “oxidative stress”, “de-mentia”, “aging” and “pathogenesis”, published between 1950 and 2013. References of the selected articles and books were also considered.Results: In the last five years new research has been undertaken that enlightens the relation between oxidative stress and aging. One of the considered hypotheses states that during aging, the homeostatic regulation of biogenesis, dynamics and autophagic turnover of mitochondria disturbs their functioning, resulting in cellular senescence. Consequently, the oxidative burden may reach a critical threshold above which apoptosis is triggered, leading to irreversible mitochondrial derangement and cellular death. Although the exact neuronal lesion mechanisms underlying dementias are not known, multiple studies have consistently found increased oxidative damage in brain of patients with Alzheimer disease and recent data suggests involvement of mitochondrial dynamics in dementia processes, such as in aging.Conclusions: Most recent studies suggest the role of oxidative stress and mitochondrial dynamics’ in aging and dementia, either directly or

  20. The effect of ammonia upon the electrocatalysis of hydrogen oxidation and oxygen reduction on polycrystalline platinum

    DEFF Research Database (Denmark)

    Verdaguer Casadevall, Arnau; Hernandez-Fernandez, Patricia; Stephens, Ifan E.L.

    2012-01-01

    The influence of ammonium ions on the catalysis of hydrogen oxidation and oxygen reduction is studied by means of rotating ring-disk electrode experiments on polycrystalline platinum in perchloric acid. While ammonium does not affect the hydrogen oxidation reaction, the oxygen reduction reaction...

  1. Asymmetrical cross-talk between the endoplasmic reticulum stress and oxidative stress caused by dextrose.

    Science.gov (United States)

    Mooradian, Arshag D; Onstead-Haas, Luisa; Haas, Michael J

    2016-01-01

    Oxidative and endoplasmic reticulum (ER) stresses are implicated in premature cardiovascular disease in people with diabetes. The aim of the present study was to characterize the nature of the interplay between the oxidative and ER stresses to facilitate the development of therapeutic agents that can ameliorate these stresses. Human coronary artery endothelial cells were treated with varying concentrations of dextrose in the presence or absence of three antioxidants (alpha tocopherol, ascorbate and ebselen) and two ER stress modifiers (ERSMs) (4-phenylbutyrate and taurodeoxycholic acid). ER stress was measured using the placental alkaline phosphatase assay and superoxide (SO) generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence. The SO generation was increased with increasing concentrations of dextrose. The ER stress was increased with both low (0 and 2.75 mM) and high (13.75 and 27.5 mM) concentrations of dextrose. The antioxidants inhibited the dextrose induced SO production while in high concentrations they aggravated ER stress. The ERSM reduced ER stress and potentiated the efficacy of the three antioxidants. Tunicamycin-induced ER stress was not associated with increased SO generation. Time course experiments with a high concentration of dextrose or by overexpressing glucose transporter one in endothelial cells revealed that dextrose induced SO generation undergoes adaptive down regulation within 2 h while the ER stress is sustained throughout 72 h of observation. The nature of the cross talk between oxidative stress and ER stress induced by dextrose may explain the failure of antioxidant therapy in reducing diabetes complications. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The effects of anesthetic agents on oxidative stress

    Science.gov (United States)

    Yakan, Selvinaz; Düzgüner, Vesile

    2016-04-01

    Oxidative stress can be defined as the instability between antioxidant defense of the body and the production of free radical that causes peroxydation on the lipid layer. Free radicals are reactive oxygen species that are produced in the course of normal metabolisms of aerobe organisms and they may cause disorders in cell structure and organelles by interacting macromolecules, like lipid, protein, nucleic acids. Therefore, they may cause cardiovascular, immune system, liver, kidney illnesses and many other illnesses like cancer, aging, cataract, diabetes. It is known that many drugs used for the purpose of anesthetizing may cause lipid peroxidation in organism. For these reasons, determining the Oxidative stress index of anaesthetic stress chosen in the ones that are exposed to long term anaesthetic agents and anaesthesia appliccations, is so substantial.

  3. Oxidative stress in normal hematopoietic stem cells and leukemia.

    Science.gov (United States)

    Samimi, Azin; Kalantari, Heybatullah; Lorestani, Marzieh Zeinvand; Shirzad, Reza; Saki, Najmaldin

    2018-04-01

    Leukemia is developed following the abnormal proliferation of immature hematopoietic cells in the blood when hematopoietic stem cells lose the ability to turn into mature cells at different stages of maturation and differentiation. Leukemia initiating cells are specifically dependent upon the suppression of oxidative stress in the hypoglycemic bone marrow (BM) environment to be able to start their activities. Relevant literature was identified by a PubMed search (2000-2017) of English-language literature using the terms 'oxidative stress,' 'reactive oxygen species,' 'hematopoietic stem cell,' and 'leukemia.' The generation and degradation of free radicals is a main component of the metabolism in aerobic organisms. A certain level of ROS is required for proper cellular function, but values outside this range will result in oxidative stress (OS). Long-term overactivity of reactive oxygen species (ROS) has harmful effects on the function of cells and their vital macromolecules, including the transformation of proteins into autoantigens and increased degradation of protein/DNA, which eventually leads to the change in pathways involved in the development of cancer and several other disorders. According to the metabolic disorders of cancer, the relationship between OS changes, the viability of cancer cells, and their response to chemotherapeutic agents affecting this pathway are undeniable. Recently, studies have been conducted to determine the effect of herbal agents and cancer chemotherapy drugs on oxidative stress pathways. By emphasizing the role of oxidative stress on stem cells in the incidence of leukemia, this paper attempts to state and summarize this subject. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  4. Mitochondrial oxidative stress in human hepatoma cells exposed to stavudine

    International Nuclear Information System (INIS)

    Velsor, Leonard W.; Kovacevic, Miro; Goldstein, Mark; Leitner, Heather M.; Lewis, William; Day, Brian J.

    2004-01-01

    The toxicity of nucleoside reverse transcriptase inhibitors (NRTIs) is linked to altered mitochondrial DNA (mtDNA) replication and subsequent disruption of cellular energetics. This manifests clinically as elevated concentrations of lactate in plasma. The mechanism(s) underlying how the changes in mtDNA replication lead to lactic acidosis remains unclear. It is hypothesized that mitochondrial oxidative stress links the changes in mtDNA replication to mitochondrial dysfunction and ensuing NRTIs toxicity. To test this hypothesis, changes in mitochondrial function, mtDNA amplification efficiency, and oxidative stress were assessed in HepG2-cultured human hepatoblasts treated with the NRTI stavudine (2',3'-didehydro-2',3'-deoxythymidine or d4T) for 48 h. d4T produced significant mitochondrial dysfunction with a 1.5-fold increase in cellular lactate to pyruvate ratios. In addition, d4T caused a dose-dependent decrease in mtDNA amplification and a correlative increase in abundance of markers of mitochondrial oxidative stress. Manganese (III) meso-tetrakis (4-benzoic acid) porphyrin, MnTBAP, a catalytic antioxidant, ameliorated or reversed d4T-induced changes in cell injury, energetics, mtDNA amplification, and mitochondrial oxidative stress. In conclusion, d4T treatment elevates mitochondrial reactive oxygen species (ROS), enhances mitochondrial oxidative stress, and contributes mechanistically to NRTI-induced toxicity. These deleterious events may be potentiated in acquired immunodeficiency syndrome (AIDS) by human immunodeficiency virus (HIV) infection itself, coinfection (e.g., viral hepatitis), aging, substance, and alcohol use

  5. RAGE polymorphisms and oxidative stress levels in Hashimoto's thyroiditis.

    Science.gov (United States)

    Giannakou, Maria; Saltiki, Katerina; Mantzou, Emily; Loukari, Eleni; Philippou, Georgios; Terzidis, Konstantinos; Lili, Kiriaki; Stavrianos, Charalampos; Kyprianou, Miltiades; Alevizaki, Maria

    2017-05-01

    Polymorphisms of the receptor for advanced glycation end products (RAGE) gene have been studied in various autoimmune disorders, but not in Hashimoto's thyroiditis. Also, increased oxidative stress has been described in patients with Hashimoto's thyroiditis. The aim of this study was to investigate the possible role of two common RAGE polymorphisms (-429T>C, -374T>A) in Hashimoto's thyroiditis; in parallel, we studied oxidative stress levels. A total of 300 consecutive euthyroid women were examined and classified into three groups: Hashimoto's thyroiditis with treatment (n = 96), Hashimoto's thyroiditis without treatment (n = 109) and controls (n = 95). For a rough evaluation of oxidative stress, total lipid peroxide levels in serum were measured. The -429T>C AluI and -374T>A MfeI polymorphisms of RAGE were studied in genomic DNA. Significant association of the RAGE system with Hashimoto's thyroiditis was found only with regard to the prevalence of the -429T>C, but not with -374T>A polymorphism. The levels of oxidative stress were significantly elevated in Hashimoto's thyroiditis patients under treatment. Further analysis demonstrated that an oxidative stress cut-off value of 590 μmol/L is associated with an increased risk of progression of Hashimoto's thyroiditis from euthyroidism to hypothyroidism; this risk is further increased in carriers of the RAGE -429T>C polymorphism. Our findings indicate that both examined risk factors may be implicated in the occurrence of Hashimoto's thyroiditis, but this covers only a fraction of the pathophysiology of the disease. © 2017 Stichting European Society for Clinical Investigation Journal Foundation.

  6. Yield Stress Reduction of DWPF Melter Feed Slurries

    International Nuclear Information System (INIS)

    Stone, M.E.; Smith, M.E.

    2007-01-01

    , then quenched with a water spray. Approximately 90% of the frit was converted to beads by this process. Yield stress reduction was measured by preparing melter feed slurries (using nonradioactive HLW simulants) that contain beads and comparing the yield stress with melter feed containing frit. A second set of tests was performed with beads of various diameters to determine if a decrease in diameter affected the results. Smaller particle size was shown to increase yield stress when frit is utilized. The settling rate of the beads was required to match the settling rate of the frit, therefore a decrease in particle size was anticipated. Settling tests were conducted in water, xanthan gum solutions, and in non-radioactive simulants of the HLW. The tests used time-lapse video-graphy as well as solids sampling to evaluate the settling characteristics of beads compared to frit of the same particle size. A preliminary melt rate evaluation was performed using a dry-fed Melt Rate Furnace (MRF) developed by SRNL. Preliminary evaluation of the impact of beading the frit on the frit addition system were completed by conducting flow loop testing. A recirculation loop was built with a total length of about 30 feet. Pump power, flow rate, outlet pressure, and observations of the flow in the horizontal upper section of the loop were noted. The recirculation flow was then gradually reduced and the above items recorded until settling was noted in the recirculation line. Overall, the data shows that the line pressure increased as the solids were increased for the same flow rate. In addition, the line pressure was higher for Frit 320 than the beads at the same solids level and flow. With the observations, a determination of minimum velocity to prevent settling could be done, but a graph of the line pressures versus velocity for the various tests was deemed to more objective. The graph shows that the inflection point in pressure drop is about the same for the beads and Frit 320. This

  7. CuO reduction induced formation of CuO/Cu2O hybrid oxides

    Science.gov (United States)

    Yuan, Lu; Yin, Qiyue; Wang, Yiqian; Zhou, Guangwen

    2013-12-01

    Reduction of CuO nanowires results in the formation of a unique hierarchical hybrid nanostructure, in which the parent oxide phase (CuO) works as the skeleton while the lower oxide (Cu2O) resulting from the reduction reaction forms as partially embedded nanoparticles that decorate the skeleton of the parent oxide. Using in situ transmission electron microscopy observations of the reduction process of CuO nanowires, we demonstrate that the formation of such a hierarchical hybrid oxide structure is induced by topotactic nucleation and growth of Cu2O islands on the parent CuO nanowires.

  8. Thiamine Deficiency and Neurodegeneration: the Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy.

    Science.gov (United States)

    Liu, Dexiang; Ke, Zunji; Luo, Jia

    2017-09-01

    Thiamine (vitamin B1) is an essential nutrient and indispensable for normal growth and development of the organism due to its multilateral participation in key biochemical and physiological processes. Humans must obtain thiamine from their diet since it is synthesized only in bacteria, fungi, and plants. Thiamine deficiency (TD) can result from inadequate intake, increased requirement, excessive deletion, and chronic alcohol consumption. TD affects multiple organ systems, including the cardiovascular, muscular, gastrointestinal, and central and peripheral nervous systems. In the brain, TD causes a cascade of events including mild impairment of oxidative metabolism, neuroinflammation, and neurodegeneration, which are commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Thiamine metabolites may serve as promising biomarkers for neurodegenerative diseases, and thiamine supplementations exhibit therapeutic potential for patients of some neurodegenerative diseases. Experimental TD has been used to model aging-related neurodegenerative diseases. However, to date, the cellular and molecular mechanisms underlying TD-induced neurodegeneration are not clear. Recent research evidence indicates that TD causes oxidative stress, endoplasmic reticulum (ER) stress, and autophagy in the brain, which are known to contribute to the pathogenesis of various neurodegenerative diseases. In this review, we discuss the role of oxidative stress, ER stress, and autophagy in TD-mediated neurodegeneration. We propose that it is the interplay of oxidative stress, ER stress, and autophagy that contributes to TD-mediated neurodegeneration.

  9. Lithium-Vanadium bronzes as model catalysts for the selective reduction of nitric oxide

    NARCIS (Netherlands)

    Bosch, H.; Bongers, Annemie; Enoch, Gert; Snel, Ruud; Ross, Julian R.H.

    1989-01-01

    The effect of alkali metals on the selective reduction of nitric oxide with ammonia has been studied on bulk iron oxide and bulk vanadium oxide. The influence of additions of LiOH, NaOH and KOH on the activity was screened by pulse experiments carried out in the absence of gaseous oxygen; FTIR

  10. Biotechnological aspects of anaerobic oxidation of methane coupled to sulfate reduction

    NARCIS (Netherlands)

    Meulepas, R.J.W.

    2009-01-01

    Sulfate reduction (SR) can be used for the removal and recovery of metals and oxidized sulfur compounds from waste streams. Sulfate-reducing bacteria reduce oxidized sulfur compounds to sulfide. Subsequently, sulfide can precipitate dissolved metals or can be oxidized to elemental sulfur. Both metal

  11. Iron oxide reduction in methane-rich deep Baltic Sea sediments

    DEFF Research Database (Denmark)

    Egger, Matthias; Hagens, Mathilde; Sapart, Celia J.

    2017-01-01

    /L transition. Our results reveal a complex interplay between production, oxidation and transport of methane showing that besides organoclastic Fe reduction, oxidation of downward migrating methane with Fe oxides may also explain the elevated concentrations of dissolved ferrous Fe in deep Baltic Sea sediments...... profiles and numerical modeling, we propose that a potential coupling between Fe oxide reduction and methane oxidation likely affects deep Fe cycling and related biogeochemical processes, such as burial of phosphorus, in systems subject to changes in organic matter loading or bottom water salinity....

  12. Oxidative stress homeostasis in grapevine (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Luisa C Carvalho

    2015-03-01

    Full Text Available Plants can maintain growth and reproductive success by sensing changes in the environment and reacting through mechanisms at molecular, cellular, physiological and developmental levels. Each stress condition prompts a unique response although some overlap between the reactions to abiotic stress (drought, heat, cold, salt or high light and to biotic stress (pathogens does occur. A common feature in the response to all stresses is the onset of oxidative stress, through the production of reactive oxygen species (ROS. As hydrogen peroxide and superoxide are involved in stress signaling, a tight control in ROS homeostasis requires a delicate balance of systems involved in their generation and degradation. If the plant lacks the capacity to generate scavenging potential, this can ultimately lead to death. In grapevine, antioxidant homeostasis can be considered at whole plant levels and during the development cycle. The most striking example lies in berries and their derivatives, such as wine, with nutraceutical properties associated with their antioxidant capacity. Antioxidant homeostasis is tightly regulated in leaves, assuring a positive balance between photosynthesis and respiration, explaining the tolerance of many grapevine varieties to extreme environments.In this review we will focus on antioxidant metabolites, antioxidant enzymes, transcriptional regulation and cross-talk with hormones prompted by abiotic stress conditions. We will also discuss three situations that require specific homeostasis balance: biotic stress, the oxidative burst in berries at veraison and in vitro systems. The genetic plasticity of the antioxidant homeostasis response put in evidence by the different levels of tolerance to stress presented by grapevine varieties will be addressed. The gathered information is relevant to foster varietal adaptation to impending climate changes, to assist breeders in choosing the more adapted varieties and to suitable viticulture

  13. Psychological stress during exercise: immunoendocrine and oxidative responses.

    Science.gov (United States)

    Huang, Chun-Jung; Webb, Heather E; Evans, Ronald K; McCleod, Kelly A; Tangsilsat, Supatchara E; Kamimori, Gary H; Acevedo, Edmund O

    2010-12-01

    The purpose of this study was to examine the changes in catecholamines (epinephrine [EPI] and norepinephrine [NE]), interleukin-2 (IL-2) and a biomarker of oxidative stress (8-isoprostane) in healthy individuals who were exposed to a dual challenge (physical and psychological stress). Furthermore, this study also examined the possible relationships between catecholamines (NE and EPI) and 8-isoprostane and between IL-2 and 8-isoprostane following a combined physical and psychological challenge. Seven healthy male subjects completed two experimental conditions. The exercise-alone condition (EAC) consisted of cycling at 60% VO(2max) for 37 min, while the dual-stress condition (DSC) included 20 min of a mental challenge while cycling. DSC showed greater EPI and 8-isoprostane levels (significant condition by time interaction). NE and IL-2 revealed significant change across time in both conditions. In addition, following dual stress, EPI area-under-the-curve (AUC) demonstrated a positive correlation with NE AUC and IL-2 AUC. NE AUC was positively correlated with IL-2 AUC and peak 8-isoprostane, and peak IL-2 was positively correlated with peak 8-isoprostane in response to a dual stress. The potential explanation for elevated oxidative stress during dual stress may be through the effects of the release of catecholamines and IL-2. These findings may further provide the potential explanation that dual stress alters physiological homeostasis in many occupations including firefighting, military operations and law enforcement. A greater understanding of these responses to stress can assist in finding strategies (e.g. exercise training) to overcome the inherent psychobiological challenges associated with physically and mentally demanding professions.

  14. [Effects of drinking spa therapy on oxidative stress].

    Science.gov (United States)

    Costantino, M; Giampaolo, C; Filippelli, A

    2012-01-01

    Data of literature have shown the correlation between oxidative stress and some diseases of gastrointestinal and metabolic relevance such as diabetes mellitus, gastric cancer, gastritis, etc.. Studies have also shown that sulfurous mineral water may be useful in the treatment of gastrointestinal diseases. The aim of our research was to evaluate the antioxidant effect of sulphurous mineral water, administered by drinking method, in type 2 diabetes mellitus, a chronic disease with a high social and economic impact. The study has been performed on 57 subjects (25% women and 75% males; mean age: 60 ± 1.1 years; BMI: 27 ± 0.4) affected by type 2 Diabetes Mellitus. The subjects were divided in four groups: A (subjected to glucose-lowering diet therapy), B (subjected to antihyperglycaemic therapy), C (exposed to glucose-lowering diet therapy + drinking SPA therapy) and D (exposed to antihyperglycaemic therapy + drinking SPA therapy). Drinking SPA treatment was effected with sulphurous mineral water from Terme of Telese SpA (Benevento - Italy) and the pharmacological treatment provided the use of hypoglycemic drugs normally used in diabetic disease. After two weeks of therapy with treatments considered were evaluated fasting blood glycaemia and plasma concentration of ROMs (reactive oxygen metabolites) (d-ROMs test-Diacron International srl®-Grosseto - Italy). The results of our study have shown a significant (pfasting blood glycaemia when to hypoglycemic drugs or diet therapy was associated the sulphurous drinking SPA therapy. It was also observed a reduction of plasma ROMs levels, significant (p water, especially in combination with antidiabetic drug treatment, may be useful in type 2 diabetes mellitus for the improvement redox state of the organism.

  15. Oxidative stress in hypothyroid patients and the role of antioxidant supplementation

    Directory of Open Access Journals (Sweden)

    Sumit Kumar Chakrabarti

    2016-01-01

    : Normality of data was determined using Anderson-Darling test, Shapiro-Wilk test, and QQ plot. P values were calculated using ANOVA and post hoc Bonferroni tests for normally distributed data. Correlation analysis was carried out using Pearson correlation test. P < 0.05 considered to be statistically significant. Results: After treatment in Group A patients, FT4 showed a significant increment while TSH value decreased. MDA level reduced after treatment, (P < 0.001. After treatment in Group B patients, FT4 showed increment while TSH value decreased (P < 0.05. After treatment, there was a drop in estimated MDA level (P < 0.001. MDA level shows a significant drop in both groups after treatment. In Group B, there is more decline in the MDA percentage but did not reach statistical significance. By performing repeated measure MANOVA, no significant difference was found in the MDA levels between the two groups. MDA reduction when expressed as percentage showed reduction of 39.5% in patients of Group A. Similarly, Group B patients showed a percentage reduction of 45.4%. Conclusions: Oxidative stress compounds hypothyroidism. Hypothyroidism is a state of increased oxidative stress. In this study, biomarker, MDA level is high in treatment-naive primary hypothyroid patients. After treatment with L-thyroxine, the stress marker is reduced to a significant extent. MDA can be used as a useful biomarker to measure and monitor oxidative stress. The role of the addition of antioxidant in the form of selenium remained inconclusive.

  16. NADPH-Thioredoxin Reductase C Mediates the Response to Oxidative Stress and Thermotolerance in the Cyanobacterium Anabaena sp PCC7120

    NARCIS (Netherlands)

    Sanchez-Riego, Ana M.; Mata-Cabana, Alejandro; Galmozzi, CarlaV.; Florencio, Francisco J.

    2016-01-01

    NADPH-thioredoxin reductase C (NTRC) is a bimodular enzyme composed of an NADPH-thioredoxin reductase and a thiioredoxin domain extension in the same protein. In plants, NTRC has been described to be involved in the protection of the chloroplast against oxidative stress damage through reduction of

  17. Probiotics enhance pancreatic glutathione biosynthesis and reduce oxidative stress in experimental acute pancreatitis

    NARCIS (Netherlands)

    Lutgendorff, Femke; Trulsson, Lena M.; van Minnen, L. Paul; Rijkers, Ger T.; Timmerman, Harro M.; Franzen, Lennart E.; Gooszen, Hein G.; Akkermans, Louis M. A.; Soderholm, Johan D.; Sandstrom, Per A.

    2008-01-01

    Factors determining severity of acute pancreatitis (AP) are poorly understood. Oxidative stress causes acinar cell injury and contributes to the severity, whereas prophylactic probiotics ameliorate experimental pancreatitis. Our objective was to study how probiotics affect oxidative stress,

  18. Live-cell Imaging Approaches for the Investigation of Xenobiotic-Induced Oxidant Stress

    Science.gov (United States)

    BACKGROUND: Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular t...

  19. Mitochondrial oxidative stress in aortic stiffening with age: the role of smooth muscle cell function.

    Science.gov (United States)

    OBJECTIVE: Age-related aortic stiffness is an independent risk factor for cardiovascular diseases. Although oxidative stress is implicated in aortic stiffness, the underlying molecular mechanisms remain unelucidated. Here, we examined the source of oxidative stress in aging and i...

  20. Metabolomics of Oxidative Stress in Recent Studies of Endogenous and Exogenously Administered Intermediate Metabolites

    Directory of Open Access Journals (Sweden)

    Jeffrey G. Pelton

    2011-09-01

    Full Text Available Aerobic metabolism occurs in a background of oxygen radicals and reactive oxygen species (ROS that originate from the incomplete reduction of molecular oxygen in electron transfer reactions. The essential role of aerobic metabolism, the generation and consumption of ATP and other high energy phosphates, sustains a balance of approximately 3000 essential human metabolites that serve not only as nutrients, but also as antioxidants, neurotransmitters, osmolytes, and participants in ligand-based and other cellular signaling. In hypoxia, ischemia, and oxidative stress, where pathological circumstances cause oxygen radicals to form at a rate greater than is possible for their consumption, changes in the composition of metabolite ensembles, or metabolomes, can be associated with physiological changes. Metabolomics and metabonomics are a scientific disciplines that focuse on quantifying dynamic metabolome responses, using multivariate analytical approaches derived from methods within genomics, a discipline that consolidated innovative analysis techniques for situations where the number of biomarkers (metabolites in our case greatly exceeds the number of subjects. This review focuses on the behavior of cytosolic, mitochondrial, and redox metabolites in ameliorating or exacerbating oxidative stress. After reviewing work regarding a small number of metabolites—pyruvate, ethyl pyruvate, and fructose-1,6-bisphosphate—whose exogenous administration was found to ameliorate oxidative stress, a subsequent section reviews basic multivariate statistical methods common in metabolomics research, and their application in human and preclinical studies emphasizing oxidative stress. Particular attention is paid to new NMR spectroscopy methods in metabolomics and metabonomics. Because complex relationships connect oxidative stress to so many physiological processes, studies from different disciplines were reviewed. All, however, shared the common goal of ultimately

  1. Metabolomics of Oxidative Stress in Recent Studies of Endogenous and Exogenously Administered Intermediate Metabolites

    Science.gov (United States)

    Liu, Jia; Litt, Lawrence; Segal, Mark R.; Kelly, Mark J. S.; Pelton, Jeffrey G.; Kim, Myungwon

    2011-01-01

    Aerobic metabolism occurs in a background of oxygen radicals and reactive oxygen species (ROS) that originate from the incomplete reduction of molecular oxygen in electron transfer reactions. The essential role of aerobic metabolism, the generation and consumption of ATP and other high energy phosphates, sustains a balance of approximately 3000 essential human metabolites that serve not only as nutrients, but also as antioxidants, neurotransmitters, osmolytes, and participants in ligand-based and other cellular signaling. In hypoxia, ischemia, and oxidative stress, where pathological circumstances cause oxygen radicals to form at a rate greater than is possible for their consumption, changes in the composition of metabolite ensembles, or metabolomes, can be associated with physiological changes. Metabolomics and metabonomics are a scientific disciplines that focuse on quantifying dynamic metabolome responses, using multivariate analytical approaches derived from methods within genomics, a discipline that consolidated innovative analysis techniques for situations where the number of biomarkers (metabolites in our case) greatly exceeds the number of subjects. This review focuses on the behavior of cytosolic, mitochondrial, and redox metabolites in ameliorating or exacerbating oxidative stress. After reviewing work regarding a small number of metabolites—pyruvate, ethyl pyruvate, and fructose-1,6-bisphosphate—whose exogenous administration was found to ameliorate oxidative stress, a subsequent section reviews basic multivariate statistical methods common in metabolomics research, and their application in human and preclinical studies emphasizing oxidative stress. Particular attention is paid to new NMR spectroscopy methods in metabolomics and metabonomics. Because complex relationships connect oxidative stress to so many physiological processes, studies from different disciplines were reviewed. All, however, shared the common goal of ultimately developing

  2. IMPACT OF GLYCEMIC CONTROL ON OXIDATIVE STRESS AND ANTIOXIDANT STATUS IN DIABETIC NEUROPATHY

    Directory of Open Access Journals (Sweden)

    Shilpashree

    2015-01-01

    Full Text Available INTRODUCTION: Oxidative stress due to enhanced free - radical generation and/or a decrease in antioxidant defense mechanisms has been implicated in the pathogenesis of diabetic neuropathy. This study was conducted to study the impact of glycemic control on oxidative stress and antioxidant balance in diab etic neuropathy. METHOD S : fifty patients with diabetic neuropathy and fifty age matched healthy controls were included in the study. Glycosylated hemoglobin (HbA1c was estimated to assess the severity of diabetes and the glycemic control. Serum malondiaal dehyde (MDA levels were assessed as a marker of lipid peroxidation and hence oxidative stress. Superoxide Dismutase (SOD levels were assessed for antioxidant status. RESULTS: Significant positive correlation was found between serum MDA levels and hba1c ( r = 0.276, p < 0.0001 in patients with diabetic neuropathy. There was statistically significant reduction in the Glutathione peroxidase levels. Further, SOD levels were inversely correlated with HbA1c (r= - 0.603, p<0.0001 levels. CONCLUSION AND SUMMARY: oxidative stress is greatly increased in patients suffering from diabetic neuropathy and is inversely related to glycemic control. This may be due to depressed antioxidant enzyme levels and may also be responsible for further depletion of antioxidant enzym e GPx. This worsens the oxidative stress and creates a vicious cycle of imbalance of free radical generation and deficit of antioxidant status in these patients which may lead to nervous system damage causing diabetic neuropathy. A good glycemic control is essential for prevention of diabetic neuropathy.

  3. E-cigarette aerosols induce lower oxidative stress in vitro when compared to tobacco smoke.

    Science.gov (United States)

    Taylor, Mark; Carr, Tony; Oke, Oluwatobiloba; Jaunky, Tomasz; Breheny, Damien; Lowe, Frazer; Gaça, Marianna

    2016-07-01

    Tobacco smoking is a risk factor for various diseases. The underlying cellular mechanisms are not fully characterized, but include oxidative stress, apoptosis, and necrosis. Electronic-cigarettes (e-cigarettes) have emerged as an alternative to and a possible means to reduce harm from tobacco smoking. E-cigarette vapor contains significantly lower levels of toxicants than cigarette smoke, but standardized methods to assess cellular responses to exposure are not well established. We investigated whether an in vitro model of the airway epithelium (human bronchial epithelial cells) and commercially available assays could differentiate cellular stress responses to aqueous aerosol extracts (AqE) generated from cigarette smoke and e-cigarette aerosols. After exposure to AqE concentrations of 0.063-0.500 puffs/mL, we measured the intracellular glutathione ratio (GSH:GSSG), intracellular generation of oxidant species, and activation of the nuclear factor erythroid-related factor 2 (Nrf2)-controlled antioxidant response elements (ARE) to characterize oxidative stress. Apoptotic and necrotic responses were characterized by increases in caspase 3/7 activity and reductions in viable cell protease activities. Concentration-dependent responses indicative of oxidative stress were obtained for all endpoints following exposure to cigarette smoke AqE: intracellular generation of oxidant species increased by up to 83%, GSH:GSSG reduced by 98.6% and transcriptional activation of ARE increased by up to 335%. Caspase 3/7 activity was increased by up to 37% and the viable cell population declined by up to 76%. No cellular stress responses were detected following exposure to e-cigarette AqE. The methods used were suitably sensitive to be employed for comparative studies of tobacco and nicotine products.

  4. Effects of stress on the oxide layer thickness and post-oxidation creep strain of zircaloy-4

    International Nuclear Information System (INIS)

    Lim, Sang Ho; Yoon, Young Ku

    1986-01-01

    Effects of compressive stress generated in the oxide layer and its subsequent relief on oxidation rate and post-oxidation creep characteristics of zircaloy-4 were investigated by oxidation studies in steam with and without applied tensile stress and by creep testing at 700 deg C in high purity argon. The thickness of oxide layer increased with the magnitude of tensile stress applied during oxidation at 650 deg C in steam whereas similar phenomenon was not observed during oxidation at 800 deg C. Zircaloy-4 specimens oxidized at 600 deg C in steam without applied stress exhibited higher creep strain than that shown by unoxidized specimens when creep-tested in argon. Zircaloy-4 specimens oxidized at 600 deg C steam under the applied stress of 8.53MPa and oxidized at 800 deg C under the applied stress of 0 and 8.53MPa exhibited lower strain than that shown by unoxidized specimen. The above experimental results were accounted for on the basis of interactions among applied stress during oxidation, compressive stress generated in the oxide layer and elasticity of zircaloy-4 matrix. (Author)

  5. Reduction of a thin chromium oxide film on Inconel surface upon treatment with hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vesel, Alenka, E-mail: alenka.vesel@guest.arnes.si [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Mozetic, Miran [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Balat-Pichelin, Marianne [PROMES-CNRS Laboratory, 7 Rue du four solaire, 66120 Font Romeu Odeillo (France)

    2016-11-30

    Highlights: • Oxidized Inconel alloy was exposed to hydrogen at temperatures up to 1500 K. • Oxide reduction in hydrogen plasma started at approximately 1300 K. • AES depth profiling revealed complete reduction of oxides in plasma. • Oxides were not reduced, if the sample was heated just in hydrogen atmosphere. • Surface of reduced Inconel preserved the same composition as the bulk material. - Abstract: Inconel samples with a surface oxide film composed of solely chromium oxide with a thickness of approximately 700 nm were exposed to low-pressure hydrogen plasma at elevated temperatures to determine the suitable parameters for reduction of the oxide film. The hydrogen pressure during treatment was set to 60 Pa. Plasma was created by a surfaguide microwave discharge in a quartz glass tube to allow for a high dissociation fraction of hydrogen molecules. Auger electron depth profiling (AES) was used to determine the decay of the oxygen in the surface film and X-ray diffraction (XRD) to measure structural modifications. During hydrogen plasma treatment, the oxidized Inconel samples were heated to elevated temperatures. The reduction of the oxide film started at temperatures of approximately 1300 K (considering the emissivity of 0.85) and the oxide was reduced in about 10 s of treatment as revealed by AES. The XRD showed sharper substrate peaks after the reduction. Samples treated in hydrogen atmosphere under the same conditions have not been reduced up to approximately 1500 K indicating usefulness of plasma treatment.

  6. Toxicological and pharmacological concerns on oxidative stress and related diseases

    Energy Technology Data Exchange (ETDEWEB)

    Saeidnia, Soodabeh [Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411 (Iran, Islamic Republic of); College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon (Canada); Abdollahi, Mohammad, E-mail: Mohammad@TUMS.Ac.Ir [Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 1417614411 (Iran, Islamic Republic of)

    2013-12-15

    Although reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are generated as the natural byproduct of normal oxygen metabolism, they can create oxidative damage via interaction with bio-molecules. The role of oxidative stress as a remarkable upstream part is frequently reported in the signaling cascade of inflammation as well as chemo attractant production. Even though hydrogen peroxide can control cell signaling and stimulate cell proliferation at low levels, in higher concentrations it can initiate apoptosis and in very high levels may create necrosis. So far, the role of ROS in cellular damage and death is well documented with implicating in a broad range of degenerative alterations e.g. carcinogenesis, aging and other oxidative stress related diseases (OSRDs). Reversely, it is cleared that antioxidants are potentially able to suppress (at least in part) the immune system and to enhance the normal cellular protective responses to tissue damage. In this review, we aimed to provide insights on diverse OSRDs, which are correlated with the concept of oxidative stress as well as its cellular effects that can be inhibited by antioxidants. Resveratrol, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statins, nebivolol and carvedilol, pentaerythritol tetranitrate, mitochondria-targeted antioxidants, and plant-derived drugs (alone or combined) are the potential medicines that can be used to control OSRD.

  7. In vitro potential cytogenetic and oxidative stress effects of roxithromycin.

    Science.gov (United States)

    Arslan, Mehmet; Timocin, Taygun; Ila, Hasan B

    2017-10-01

    Macrolide antibiotic roxithromycin was evaluated in terms of its genotoxic, cytotoxic and oxidative stress effects. For this purpose; 25, 50, 100 and 200 μg/mL concentrations of roxithromycin were dissolved in dimethyl sulfoxide and treated to human peripheral blood lymphocytes for two different treatment periods (24 and 48 h). In chromosome aberration (CA) and micronucleus (MN) tests, roxithromycin did not show genotoxic effect. But it induced sister chromatid exchange (SCE) at the highest concentration (200 μg/mL) for the 24-h treatment period and at all concentrations (except 25 μg/mL) for the 48-h treatment period. Looking at cytotoxic effect of roxithromycin, statistically insignificant decreases on mitotic index and proliferation index were observed. Roxithromycin decreased nuclear division index (NDI) at highest two concentrations (100 and 200 μg/mL) for the 24-h treatment period and at all concentrations (expect 25 μg/mL) for the 48-h treatment period. Total oxidant values, total antioxidant values and oxidative stress index did not change with roxithromycin treatment. Eventually, roxithromycin did not have genotoxic and oxidative stress effects in human-cultured lymphocytes.

  8. Oxidative stress in resuscitation and in ventilation of newborns.

    Science.gov (United States)

    Gitto, E; Pellegrino, S; D'Arrigo, S; Barberi, I; Reiter, R J

    2009-12-01

    The lungs of newborns are especially prone to oxidative damage induced by both reactive oxygen and reactive nitrogen species. Yet, these infants are often 1) exposed to high oxygen concentrations, 2) have infections or inflammation, 3) have reduced antioxidant defense, and 4) have high free iron levels which enhance toxic radical generation. Oxidative stress has been postulated to be implicated in several newborn conditions with the phrase "oxygen radical diseases of neonatology" having been coined. There is, however, reason to believe that oxidative stress is increased more when resuscitation is performed with pure oxygen compared with ambient air and that the most effective ventilatory strategy is the avoidance of mechanical ventilation with the use of nasopharyngeal continuous positive airway pressure whenever possible. Multiple ventilation strategies have been attempted to reduce injury and improve outcomes in newborn infants. In this review, the authors summarise the scientific evidence concerning oxidative stress as it relates to resuscitation in the delivery room and to the various modalities of ventilation.

  9. Toxicological and pharmacological concerns on oxidative stress and related diseases

    International Nuclear Information System (INIS)

    Saeidnia, Soodabeh; Abdollahi, Mohammad

    2013-01-01

    Although reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are generated as the natural byproduct of normal oxygen metabolism, they can create oxidative damage via interaction with bio-molecules. The role of oxidative stress as a remarkable upstream part is frequently reported in the signaling cascade of inflammation as well as chemo attractant production. Even though hydrogen peroxide can control cell signaling and stimulate cell proliferation at low levels, in higher concentrations it can initiate apoptosis and in very high levels may create necrosis. So far, the role of ROS in cellular damage and death is well documented with implicating in a broad range of degenerative alterations e.g. carcinogenesis, aging and other oxidative stress related diseases (OSRDs). Reversely, it is cleared that antioxidants are potentially able to suppress (at least in part) the immune system and to enhance the normal cellular protective responses to tissue damage. In this review, we aimed to provide insights on diverse OSRDs, which are correlated with the concept of oxidative stress as well as its cellular effects that can be inhibited by antioxidants. Resveratrol, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statins, nebivolol and carvedilol, pentaerythritol tetranitrate, mitochondria-targeted antioxidants, and plant-derived drugs (alone or combined) are the potential medicines that can be used to control OSRD

  10. Study on emission characteristics and reduction strategy of nitrous oxide during wastewater treatment by different processes.

    Science.gov (United States)

    Sun, Shichang; Bao, Zhiyuan; Sun, Dezhi

    2015-03-01

    Given the inexorable increase in global wastewater treatment, increasing amounts of nitrous oxide are expected to be emitted from wastewater treatment plants and released to the atmosphere. It has become imperative to study the emission and control of nitrous oxide in the various wastewater treatment processes currently in use. In the present investigation, the emission characteristics and the factors affecting the release of nitrous oxide were studied via full- and pilot-scale experiments in anoxic-oxic, sequencing batch reactor and oxidation ditch processes. We propose an optimal treatment process and relative strategy for nitrous oxide reduction. Our results show that both the bio-nitrifying and bio-denitrifying treatment units in wastewater treatment plants are the predominant sites for nitrous oxide production in each process, while the aerated treatment units are the critical sources for nitrous oxide emission. Compared with the emission of nitrous oxide from the anoxic-oxic (1.37% of N-influent) and sequencing batch reactor (2.69% of N-influent) processes, much less nitrous oxide (0.25% of N-influent) is emitted from the oxidation ditch process, which we determined as the optimal wastewater treatment process for nitrous oxide reduction, given the current technologies. Nitrous oxide emissions differed with various operating parameters. Controlling the dissolved oxygen concentration at a proper level during nitrification and denitrification and enhancing the utilization rate of organic carbon in the influent for denitrification are the two critical methods for nitrous oxide reduction in the various processes considered.

  11. Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease

    Science.gov (United States)

    Rodríguez-Rodríguez, Pilar; Ramiro-Cortijo, David; Reyes-Hernández, Cynthia G.; López de Pablo, Angel L.; González, M. Carmen; Arribas, Silvia M.

    2018-01-01

    Lifestyle and genetic background are well known risk factors of cardiovascular disease (CVD). A third contributing factor is suboptimal fetal development, due to nutrient or oxygen deprivation, placental insufficiency, or exposure to toxic substances. The fetus adapts to adverse intrauterine conditions to ensure survival; the immediate consequence is low birth weight (LBW) and the long-term effect is an increased susceptibility to develop CVD in adult life. This process is known as Developmental Origins of Health and Disease (DOHaD) or fetal programming of CVD. The influence of fetal life for the future cardiovascular health of the individual has been evidenced by numerous epidemiologic studies in populations suffering from starvation during intrauterine life. Furthermore, experimental animal models have provided support and enabled exploring the underlying mechanisms. Oxidative stress seems to play a central role in fetal programming of CVD, both in the response of the feto-placental unit to the suboptimal intrauterine environment and in the alterations of physiologic systems of cardiovascular control, ultimately leading to disease. This review aims to summarize current knowledge on the alterations in oxidative balance in response to fetal stress factors covering two aspects. Firstly, the evidence from human studies of the implication of oxidative stress in LBW induced by suboptimal conditions during intrauterine life, emphasizing the role of the placenta. In the second part we summarize data on specific redox alterations in key cardiovascular control organs induced by exposure to known stress factors in experimental animals and discuss the emerging role of the mitochondria. PMID:29875698

  12. An update on oxidative stress-mediated organ pathophysiology.

    Science.gov (United States)

    Rashid, Kahkashan; Sinha, Krishnendu; Sil, Parames C

    2013-12-01

    Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    Science.gov (United States)

    da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  14. Systemic oxidative stress markers in animal model for depression

    DEFF Research Database (Denmark)

    Bouzinova, Elena; Kravtsova, Violetta; Aalkjær, Christian

    Involvement of oxidative stress (OxS) in development of major depressive disorder has recently become evident, though mechanisms behind this remain elusive. We analyzed therefore OxS pathways in rat Chronic Mild Stress (CMS) model of depression. Rats are exposed to chronic unpredictable mild...... mg/kg/day). Saline injections were done to control the vehicle effect. Escitalopram treated rats were sub-divided into 2 groups: responders and non-responders, according to their hedonic state and compared to non-stressed rats, treated with either saline or Escitalopram. Measurement of total...... glutathione and malondialdehyde (MDA) in lungs, heart, skeletal muscles, liver, saphenous, mesenteric, and tail arteries were used as estimates for OxS. In heart, glutathione was increased in CMS rats in comparison with non-stressed vehicle group. Accordingly, an estimate for free radical activity, MDA...

  15. Molecular Mechanisms behind Free Radical Scavengers Function against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Fereshteh Ahmadinejad

    2017-07-01

    Full Text Available Accumulating evidence shows that oxidative stress is involved in a wide variety of human diseases: rheumatoid arthritis, Alzheimer’s disease, Parkinson’s disease, cancers, etc. Here, we discuss the significance of oxidative conditions in different disease, with the focus on neurodegenerative disease including Parkinson’s disease, which is mainly caused by oxidative stress. Reactive oxygen and nitrogen species (ROS and RNS, respectively, collectively known as RONS, are produced by cellular enzymes such as myeloperoxidase, NADPH-oxidase (nicotinamide adenine dinucleotide phosphate-oxidase and nitric oxide synthase (NOS. Natural antioxidant systems are categorized into enzymatic and non-enzymatic antioxidant groups. The former includes a number of enzymes such as catalase and glutathione peroxidase, while the latter contains a number of antioxidants acquired from dietary sources including vitamin C, carotenoids, flavonoids and polyphenols. There are also scavengers used for therapeutic purposes, such as 3,4-dihydroxyphenylalanine (L-DOPA used routinely in the treatment of Parkinson’s disease (not as a free radical scavenger, and 3-methyl-1-phenyl-2-pyrazolin-5-one (Edaravone that acts as a free radical detoxifier frequently used in acute ischemic stroke. The cell surviving properties of L-DOPA and Edaravone against oxidative stress conditions rely on the alteration of a number of stress proteins such as Annexin A1, Peroxiredoxin-6 and PARK7/DJ-1 (Parkinson disease protein 7, also known as Protein deglycase DJ-1. Although they share the targets in reversing the cytotoxic effects of H2O2, they seem to have distinct mechanism of function. Exposure to L-DOPA may result in hypoxia condition and further induction of ORP150 (150-kDa oxygen-regulated protein with its concomitant cytoprotective effects but Edaravone seems to protect cells via direct induction of Peroxiredoxin-2 and inhibition of apoptosis.

  16. Oxidative stress markers at birth: Analyses of a neonatal population.

    Science.gov (United States)

    Giuffrè, Mario; Rizzo, Manfredi; Scaturro, Giusy; Pitruzzella, Alessandro; Marino Gammazza, Antonella; Cappello, Francesco; Corsello, Giovanni; Li Volti, Giovanni

    2015-01-01

    In order to further understand neonatal stress and, thus, control it efficaciously, there is a need for more information on the manifestations of stress at the molecular level in the newborn, with particular regard to oxidants, and anti-oxidant and anti-stress mechanisms, including mitochondrial heat shock protein-chaperones such as Hsp60. We investigated patterns of anti-oxidants, biomarkers of oxidative stress, and Hsp60 levels in sera from newborns and found significant associations between glutathione (GSH) levels and gestational age, delivery modality, and lipid hydroperoxydes (LOOH) level. LOOH levels and spontaneous (vaginal) delivery were independently associated with increased GSH levels when these were above the median. Hsp60 and LOOH levels were positively correlated whereas Hsp60 and GSH levels were inversely correlated in spontaneously delivered newborns; in contrast, Hsp60 and GSH levels were positively correlated in newborns delivered by cesarea. Our results point to new directions in the search for definite patterns of GSH, LOOH, and Hsp60 in the newborn's serum that might have functional and diagnostic significance and that could help in the monitoring of newborn health during and after delivery. In addition, the data provide a starting basis for investigating the precise roles and interplay of GSH and Hsp60 in the maintenance of an optimal redox balance at birth to cope with the stress inherent to delivery, and also for investigating the predictive value of any given pattern of GSH, LOOH, and Hsp60 at birth with regard to health status and risk of disease in adult life. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Circadian Rhythm Connections to Oxidative Stress: Implications for Human Health

    Science.gov (United States)

    Wilking, Melissa; Ndiaye, Mary; Mukhtar, Hasan

    2013-01-01

    Abstract Significance: Oxygen and circadian rhythmicity are essential in a myriad of physiological processes to maintain homeostasis, from blood pressure and sleep/wake cycles, down to cellular signaling pathways that play critical roles in health and disease. If the human body or cells e