WorldWideScience

Sample records for oxidative pdii catalyzed

  1. Kinetic Investigations on Pd(II) Catalyzed Oxidation of Some Amino ...

    African Journals Online (AJOL)

    Kinetic investigations on Pd(II) catalyzed oxidation of dl-serine and dl-threonine by acidic solution of potassium bromate in the presence of mercuric acetate, as a scavenger have been made in the temperature range of 30–45°C. The rate shows zero order kinetics in bromate [BrO3‾] and order of reaction is one with respect ...

  2. catalyzed oxidation of some amino acids by acid bromate

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: Kinetic investigations on Pd(II) catalyzed oxidation of dl-serine and dl- ... A suitable mechanism in agreement with observed kinetics has been ..... In acidic solution of potassium bromate quick .... Annual Review of Biochemistry.

  3. Heterogeneously Catalyzed Oxidation Reactions Using Molecular Oxygen

    DEFF Research Database (Denmark)

    Beier, Matthias Josef

    Heterogeneously catalyzed selective oxidation reactions have attracted a lot of attention in recent time. The first part of the present thesis provides an overview over heterogeneous copper and silver catalysts for selective oxidations in the liquid phase and compared the performance and catalytic...... that both copper and silver can function as complementary catalyst materials to gold showing different catalytic properties and being more suitable for hydrocarbon oxidation reactions. Potential opportunities for future research were outlined. In an experimental study, the potential of silver as a catalyst...... revealed that all catalysts were more active in combination with ceria nanoparticles and that under the tested reaction conditions silver was equally or even more efficient than the gold catalysts. Calcination at 900 °C of silver on silica prepared by impregnation afforded a catalyst which was used...

  4. Graphene oxide catalyzed cis-trans isomerization of azobenzene

    Directory of Open Access Journals (Sweden)

    Dongha Shin

    2014-09-01

    Full Text Available We report the fast cis-trans isomerization of an amine-substituted azobenzene catalyzed by graphene oxide (GO, where the amine functionality facilitates the charge transfer from azobenzene to graphene oxide in contrast to non-substituted azobenzene. This catalytic effect was not observed in stilbene analogues, which strongly supports the existence of different isomerization pathways between azobenzene and stilbene. The graphene oxide catalyzed isomerization is expected to be useful as a new photoisomerization based sensing platform complementary to GO-based fluorescence quenching methods.

  5. Effect of HCl Concentration on the Oxidation of LIX 63 and the Subsequent Separation of Pd(II), Pt(IV), Ir(IV) and Rh(III) by Solvent Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thi Hong; Lee, Man Seung [Mokpo National University, Jeollanamdo (Korea, Republic of)

    2016-10-15

    During the selective extraction of Pd(II) by LIX 63 from 6 M HCl solutions containing platinum group metals, an oxidation-reduction reaction occurs between the LIX 63 and Ir(IV). Since the reduced Ir(III) cannot be extracted by solvating and amine extractants, the oxidation-reduction reaction has a significant effect on the separation of Pt(IV), Ir(IV) and Rh(III). Therefore, the effect of HCl concentration on the reduction of Ir(IV) during the extraction with LIX 63 was investigated at 3 and 6 M HCl solutions. The extraction behavior of Iridium by Aliquat 336 from the Pd(II) free raffinate showed that the percentage of iridium extraction rapidly decreased when HCl concentration was increased from 3 to 6 M, indicating that more Ir(IV) was reduced to Ir(III). Extraction schemes for the separation of Pt(IV), iridium and Rh(III) by Aliquat 336 from 3 and 6 M HCl solutions were investigated.

  6. Ruthenium-Catalyzed Aerobic Oxidation of Amines.

    Science.gov (United States)

    Ray, Ritwika; Hazari, Arijit Singha; Lahiri, Goutam Kumar; Maiti, Debabrata

    2018-01-18

    Amine oxidation is one of the fundamental reactions in organic synthesis as it leads to a variety of value-added products such as oximes, nitriles, imines, and amides among many others. These products comprise the key N-containing building blocks in the modern chemical industry, and such transformations, when achieved in the presence of molecular oxygen without using stoichiometric oxidants, are much preferred as they circumvent the production of unwanted wastes. In parallel, the versatility of ruthenium catalysts in various oxidative transformations is well-documented. Herein, this review focuses on aerobic oxidation of amines specifically by using ruthenium catalysts and highlights the major achievements in this direction and challenges that still need to be addressed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Acid-catalyzed kinetics of indium tin oxide etching

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Hyeok; Kim, Seong-Oh; Hilton, Diana L. [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Cho, Nam-Joon, E-mail: njcho@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2014-08-28

    We report the kinetic characterization of indium tin oxide (ITO) film etching by chemical treatment in acidic and basic electrolytes. It was observed that film etching increased under more acidic conditions, whereas basic conditions led to minimal etching on the time scale of the experiments. Quartz crystal microbalance was employed in order to track the reaction kinetics as a function of the concentration of hydrochloric acid and accordingly solution pH. Contact angle measurements and atomic force microscopy experiments determined that acid treatment increases surface hydrophilicity and porosity. X-ray photoelectron spectroscopy experiments identified that film etching is primarily caused by dissolution of indium species. A kinetic model was developed to explain the acid-catalyzed dissolution of ITO surfaces, and showed a logarithmic relationship between the rate of dissolution and the concentration of undisassociated hydrochloric acid molecules. Taken together, the findings presented in this work verify the acid-catalyzed kinetics of ITO film dissolution by chemical treatment, and support that the corresponding chemical reactions should be accounted for in ITO film processing applications. - Highlights: • Acidic conditions promoted indium tin oxide (ITO) film etching via dissolution. • Logarithm of the dissolution rate depended linearly on the solution pH. • Acid treatment increased ITO surface hydrophilicity and porosity. • ITO film etching led to preferential dissolution of indium species over tin species.

  8. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-01-01

    Full Text Available To comply with the stringent emission regulations on soot, diesel vehicles manufacturers more and more commonly use diesel particulate filters (DPF. These systems need to be regenerated periodically by burning soot that has been accumulated during the loading of the DPF. Design of the DPF requires rate of soot oxidation. This paper describes the kinetics of catalytic oxidation of diesel soot with air under isothermal conditions. Kinetics data were collected in a specially designed mini-semi-batch reactor. Under the high air flow rate assuming pseudo first order reaction the activation energy of soot oxidation was found to be, Ea = 160 kJ/ mol. ©2010 BCREC UNDIP. All rights reserved(Received: 14th June 2010, Revised: 18th July 2010, Accepted: 9th August 2010[How to Cite: R. Prasad, V.R. Bella. (2010. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 95-101. doi:10.9767/bcrec.5.2.796.95-101][DOI:http://dx.doi.org/10.9767/bcrec.5.2.796.95-101 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/796]Cited by in: ACS 1 |

  9. Silica metal-oxide vesicles catalyze comprehensive prebiotic chemistry.

    Science.gov (United States)

    Bizzarri, Bruno Mattia; Botta, Lorenzo; Pérez-Valverde, Maritza Iveth; Saladino, Raffaele; Di Mauro, Ernesto; Garcia Ruiz, Juan Manuel

    2018-03-30

    It has recently been demonstrated that mineral self-assembled structures catalyzing prebiotic chemical reactions may form in natural waters derived from serpentinization, a geological process widespread in the early stages of Earth-like planets. We have synthesized self-assembled membranes by mixing microdrops of metal solutions with alkaline silicate solutions in the presence of formamide (NH2CHO), a single carbon molecule, at 80ºC. We found that these bilayer membranes, made of amorphous silica and metal oxide-hydroxide nanocrystals, catalyze the condensation of formamide, yielding the four nucleobases of RNA, three aminoacids and several carboxylic acids in a single pot experiment. Besides manganese, iron and magnesium, two abundant elements in the earliest Earth crust that are key in serpentinization reactions, are enough to produce all these biochemical compounds. These results suggest that the transition from inorganic geochemistry to prebiotic organic chemistry is common on a universal scale and, most probably, earlier than ever thought for our planet. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Quinone-Catalyzed Selective Oxidation of Organic Molecules

    Science.gov (United States)

    Wendlandt, Alison E.

    2016-01-01

    Lead In Quinones are common stoichiometric reagents in organic chemistry. High potential para-quinones, such as DDQ and chloranil, are widely used and typically promote hydride abstraction. In recent years, many catalytic applications of these methods have been achieved by using transition metals, electrochemistry or O2 to regenerate the oxidized quinone in situ. Complementary studies have led to the development of a different class of quinones that resemble the ortho-quinone cofactors in Copper Amine Oxidases and mediate efficient and selective aerobic and/or electrochemical dehydrogenation of amines. The latter reactions typically proceed via electrophilic transamination and/or addition-elimination reaction mechanisms, rather than hydride abstraction pathways. The collective observations show that the quinone structure has a significant influence on the reaction mechanism and have important implications for the development of new quinone reagents and quinone-catalyzed transformations. PMID:26530485

  11. Kinetics of catalyzed tritium oxidation in air at ambient temperature

    International Nuclear Information System (INIS)

    Sherwood, A.E.

    1980-01-01

    Tritium/air oxidation kinetic data are derived from measurements carried out with three catalysts. All experiments were carried out at room temperature - a regime that provides a severe test for catalyst effectiveness. Each catalyst consists of a high-surface-area substrate in pelletized form, onto which precious metal has been dispersed. The metal/substrate combinations investigated are: platinum/alumina, palladium/kaolin, and paladium/zeolite. Each of the dispersed-metal catalysts is extremely effective in promoting tritium oxidation in comparison with self-catalyzed atmospheric conversion; equivalent first-order rate constants are higher by roughly nine orders of magnitude. Electron-microprobe scans reveal that the dispersed metal is deposited near the outer surface of the catalyst, with metal concentration decreasing exponentially from the pellet surface. The platinum-based catalyst is more effective than the palladium catalysts on a surface-area basis by about a factor of three. Rate coefficients are determined from concentration decay following a spike injection of tritium into an air-filled enclosure processed by recirculation through an oxidation/adsorption system. The catalytic reaction is first-order in tritium concentration in the range 10 to 10 5 μCi/m 3 (4 ppt-40 ppB). Addition of hydrogen carrier gas is unnecessary. Catalytic activity for all three catalysts declines with time of exposure to air after activation, following a power-law decay with an exponent of -1/2. Reactivation with hot hydrogen gas effectively restores initial catalytic activity

  12. catalyzed oxidation of formamidine derivative by hexacyanoferrate(III

    Indian Academy of Sciences (India)

    triazol-3-yl) formamidine (ATF) by hexacyanoferrate(III) (HCF) was studied spectrophotometrically in aqueous alkalinemedium. Both uncatalyzed and catalyzed reactions showed first order kinetics with respect to [HCF],whereas the reaction ...

  13. catalyzed oxidation of formamidine derivative by hexacyanoferrate(III)

    Indian Academy of Sciences (India)

    Both uncatalyzed and catalyzed reactions showed first order kinetics with respect to [HCF], whereas ... The rate laws associated with the reaction mechanisms ... activation and thermodynamic parameters have been computed and discussed.

  14. Stabilization of oil-in-water emulsions by enzyme catalyzed oxidative gelation of sugar beet pectin

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2013-01-01

    Enzyme catalyzed oxidative cross-linking of feruloyl groups can promote gelation of sugar beet pectin (SBP). It is uncertain how the enzyme kinetics of this cross-linking reaction are affected in emulsion systems and whether the gelation affects emulsion stability. In this study, SBP (2.5% w...... larger average particle sizes than the emulsions in which the SBP was homogenized into the emulsion system during emulsion preparation (referred as Mix B). Mix B type emulsions were stable. Enzyme catalyzed oxidative gelation of SBP helped stabilize the emulsions in Mix A. The kinetics of the enzyme...... catalyzed oxidative gelation of SBP was evaluated by small angle oscillatory measurements for horseradish peroxidase (HRP) (EC 1.11.1.7) and laccase (EC 1.10.3.2) catalysis, respectively. HRP catalyzed gelation rates, determined from the slopes of the increase of elastic modulus (G0) with time, were higher...

  15. Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation.

    Science.gov (United States)

    Zhang, Jing; Sun, Bo; Xiong, Xinmei; Gao, Naiyun; Song, Weihua; Du, Erdeng; Guan, Xiaohong; Zhou, Gongming

    2014-10-15

    TiO2 supported ruthenium nanoparticles, Ru/TiO2 (0.94‰ as Ru), was synthesized to catalyze permanganate oxidation for degrading emerging pollutants (EPs) with diverse organic moieties. The presence of 1.0 g L(-1) Ru/TiO2 increased the second order reaction rate constants of bisphenol A, diclofenac, acetaminophen, sulfamethoxazole, benzotriazole, carbamazepine, butylparaben, diclofenac, ciprofloxacin and aniline at mg L(-1) level (5.0 μM) by permanganate oxidation at pH 7.0 by 0.3-119 times. The second order reaction rate constants of EPs with permanganate or Ru/TiO2-catalyzed permanganate oxidation obtained at EPs concentration of mg L(-1) level (5.0 μM) underestimated those obtained at EPs concentration of μg L(-1) level (0.050 μM). Ru/TiO2-catalyzed permanganate could decompose a mixture of nine EPs at μg L(-1) level efficiently and the second order rate constant for each EP was not decreased due to the competition of other EPs. The toxicity tests revealed that Ru/TiO2-catalyzed permanganate oxidation was effective not only for elimination of EPs but also for detoxification. The removal rates of sulfamethoxazole by Ru/TiO2-catalyzed permanganate oxidation in ten successive cycles remained almost constant in ultrapure water and slightly decreased in Songhua river water since the sixth run, indicating the satisfactory stability of Ru/TiO2. Ru/TiO2-catalyzed permanganate oxidation was selective and could remove selected EPs spiked in real waters more efficiently than chlorination. Therefore, Ru/TiO2-catalyzed permanganate oxidation is promising for removing EPs with electron-rich moieties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Palladium-catalyzed aerobic oxidative cross-coupling of arylhydrazines with terminal alkynes.

    Science.gov (United States)

    Zhao, Yingwei; Song, Qiuling

    2015-09-04

    The palladium-catalyzed Sonogashira-type aerobic oxidative coupling of arylhydrazines with terminal alkynes via C-N bond cleavage has been developed; internal alkynes were afforded with a broad substrate scope. This reaction proceeds under copper- and base-free conditions with molecular oxygen as the sole oxidant and nitrogen and water as the only by-products.

  17. Palladium(II)-catalyzed oxidation of L-tryptophan by ...

    Indian Academy of Sciences (India)

    dium(II)] were obtained. The reaction exhibits fractional-second order kinetics with respect to [H ... compounds. Its use- fulness may be due to its unequivocal stability, water. ∗ ... metals are known to catalyze many oxidation–reduction reactions because they ... prepared by dissolving potassium hexacyanoferrate(II). (SD Fine ...

  18. Oxidative desulfurization of dibenzothiophene with hydrogen peroxide catalyzed by selenium(IV)-containing peroxotungstate.

    Science.gov (United States)

    Hu, Yiwen; He, Qihui; Zhang, Zheng; Ding, Naidong; Hu, Baixing

    2011-11-28

    With stoichiometric H(2)O(2) as oxidant, dibenzothiophene (DBT) is oxidized to its corresponding sulfone with high efficiency, catalyzed by a sub-valence heteronuclear peroxotungstate, [C(18)H(37)N(CH(3))(3)](4)[H(2)Se(IV)(3)W(6)O(34)], under mild biphase conditions and the catalyst shows remarkable selectivity of catalytic oxidation towards DBT, cinnamyl alcohol and quinoline.

  19. Mechanism of iron catalyzed oxidation of SO/sub 2/ in oxygenated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Freiberg, J

    1975-01-01

    Previous experimental work concerning the iron catalyzed oxidation of SO/sub 2/ in oxygenated acid solutions failed to provide a consistent reaction mechanism and rate expression. As iron is one of the main constituents of urban atmospheric aerosols, the rate studies of heterogeneous sulphate formation in polluted city air were hampered. The present study develops a new theory for the iron catalyzed oxidation of SO/sub 2/. The resulting new rate expression is general enough to account for the results of previous experimental investigations that were performed in different ranges of SO/sub 2/ and catalyst concentrations.

  20. Nitrous oxide-forming codenitrification catalyzed by cytochrome P450nor.

    Science.gov (United States)

    Su, Fei; Takaya, Naoki; Shoun, Hirofumi

    2004-02-01

    Intact cells of the denitrifying fungus Fusarium oxysporum were previously shown to catalyze codenitrification to form a hybrid nitrous oxide (N2O) species from nitrite and other nitrogen compounds such as azide and ammonia. Here we show that cytochrome P450nor can catalyze the codenitrification reaction to form N2O from nitric oxide (NO) but not nitrite, and azide or ammonia. The results show that the direct substrate of the codenitrification by intact cells should not be nitrite but NO, which is formed from nitrite by the reaction of a dissimilatory nitrite reductase.

  1. Nitroxide-catalyzed selective oxidation of alcohols and polysaccharides

    International Nuclear Information System (INIS)

    Ponedel'kina, I Yu; Khaibrakhmanova, E A; Odinokov, Viktor N

    2010-01-01

    The use of nitroxide radicals in the selective oxidation of alcohols is considered. Attention is focused on the oxidation of polysaccharides as a method of preparation of polyuronic acids, aldehydes and hemiacetals.

  2. Alloying Au surface with Pd reduces the intrinsic activity in catalyzing CO oxidation

    KAUST Repository

    Qian, Kun

    2016-03-30

    © 2016. Various Au-Pd/SiO2 catalysts with a fixed Au loading but different Au:Pd molar ratios were prepared via deposition-precipitation method followed by H2 reduction. The structures were characterized and the catalytic activities in CO oxidation were evaluated. The formation of Au-Pd alloy particles was identified. The Au-Pd alloy particles exhibit enhanced dispersions on SiO2 than Au particles. Charge transfer from Pd to Au within Au-Pd alloy particles. Isolated Pd atoms dominate the surface of Au-Pd alloy particles with large Au:Pd molar ratios while contiguous Pd atoms dominate the surface of Au-Pd alloy particles with small Au:Pd molar ratios. Few synergetic effect of Au-Pd alloy occurs on catalyzing CO oxidation under employed reaction conditions. Alloying Au with Pd reduces the intrinsic activity in catalyzing CO oxidation, and contiguous Pd atoms on the Au-Pd alloy particles are capable of catalyzing CO oxidation while isolated Pd atoms are not. These results advance the fundamental understandings of Au-Pd alloy surfaces in catalyzing CO oxidation.

  3. Human myeloperoxidase (MPO) and horseradish peroxidase (HRP) catalyzed oxidation of phenol

    International Nuclear Information System (INIS)

    Ross, D.; Eastmond, D.A.; Ruzo, L.O.; Smith, M.T.

    1986-01-01

    MPO-catalyzed conversion of phenolic metabolites of benzene may be involved in benzene-induced myelotoxicity. The authors have studied the metabolism and protein binding of phenol - the major metabolite of benzene - during peroxidatic oxidation. The major metabolite observed during MPO- and HRP- catalyzed oxidation was characterized as 4,4 biphenol using HPLC and combined GC-MS. When glutathione (GSH) was added to the incubation mixtures, two additional compounds were observed during HPLC analysis which were characterized as GSH-conjugates of 4,4-diphenoquinone by fast atom bombardment MS and by NMR. ESR spectroscopy showed that both MPO-and HRP-catalyzed oxidation of phenol proceeded via the generation of free radical intermediates. Using 14 C-phenol, both MPO- and HRP-catalyzed oxidations resulted in the production of species which bound covalently to boiled liver microsomal protein. The increase in binding correlated well with removal of substrate. Thus, peroxidatic oxidation of phenolic metabolites of benzene in the bone marrow may be involved in benzene-induced myelotoxicity

  4. Nb effect in the nickel oxide-catalyzed low-temperature oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo

    2012-01-01

    A method for the preparation of NiO and Nb-NiO nanocomposites is developed, based on the slow oxidation of a nickel-rich Nb-Ni gel obtained in citric acid. The resulting materials have higher surface areas than those obtained by the classical evaporation method from nickel nitrate and ammonium niobium oxalate. These consist in NiO nanocrystallites (7-13 nm) associated, at Nb contents >3 at.%., with an amorphous thin layer (1-2 nm) of a niobium-rich mixed oxide with a structure similar to that of NiNb 2O 6. Unlike bulk nickel oxides, the activity of these nanooxides for low-temperature ethane oxidative dehydrogenation (ODH) has been related to their redox properties. In addition to limiting the size of NiO crystallites, the presence of the Nb-rich phase also inhibits NiO reducibility. At Nb content >5 at.%, Nb-NiO composites are thus less active for ethane ODH but more selective, indicating that the Nb-rich phase probably covers part of the unselective, non-stoichiometric, active oxygen species of NiO. This geometric effect is supported by high-resolution transmission electron microscopy observations. The close interaction between NiO and the thin Nb-rich mixed oxide layer, combined with possible restructuration of the nanocomposite under ODH conditions, leads to significant catalyst deactivation at high Nb loadings. Hence, the most efficient ODH catalysts obtained by this method are those containing 3-4 at.% Nb, which combine high activity, selectivity, and stability. The impact of the preparation method on the structural and catalytic properties of Nb-NiO nanocomposites suggests that further improvement in NiO-catalyzed ethane ODH can be expected upon optimization of the catalyst. © 2011 Elsevier Inc. All rights reserved.

  5. Mechanistic investigation of the gold-catalyzed aerobic oxidation of alcohols

    DEFF Research Database (Denmark)

    Fristrup, Peter; Johansen, Louise Bahn; Christensen, Claus Hviid

    2008-01-01

    The mechanism for the gold-catalyzed aerobic oxidation of alcohols was studied using a series of para-substituted benzyl alcohols (Hammett methodology). The competition experiments clearly show that the rate-determining step of the reaction involves the generation of a partial positive charge in ...

  6. Copper(II)-catalyzed electrophilic amination of quinoline N-oxides with O-benzoyl hydroxylamines.

    Science.gov (United States)

    Li, Gang; Jia, Chunqi; Sun, Kai; Lv, Yunhe; Zhao, Feng; Zhou, Kexiao; Wu, Hankui

    2015-03-21

    Copper acetate-catalyzed C-H bond functionalization amination of quinoline N-oxides was achieved using O-benzoyl hydroxylamine as an electrophilic amination reagent, thereby affording the desired products in moderate to excellent yields. Electrophilic amination can also be performed in good yield on a gram scale.

  7. Cu-catalyzed aerobic oxidative esterification of acetophenones with alcohols to α-ketoesters.

    Science.gov (United States)

    Xu, Xuezhao; Ding, Wen; Lin, Yuanguang; Song, Qiuling

    2015-02-06

    Copper-catalyzed aerobic oxidative esterification of acetophenones with alcohols using molecular oxygen has been developed to form a broad range of α-ketoesters in good yields. In addition to reporting scope and limitations of our new method, mechanism studies are reported that reveal that the carbonyl oxygen in the ester mainly originated from dioxygen.

  8. Cu-Catalyzed Asymmetric Allylic Alkylation of Phosphonates and Phosphine Oxides with Grignard Reagents

    NARCIS (Netherlands)

    Hornillos, Valentin; Perez, Manuel; Fananas-Mastral, Martin; Feringa, Ben L.

    An efficient and highly enantioselective copper-catalyzed allylic alkylation of phosphonates and phosphine oxides with Grignard reagents and Taniaphos or phosphoramidites as chiral ligands is reported. Transformation of these products leads to a variety of new phosphorus-containing chiral

  9. Enzyme catalyzed oxidative gelation of sugar beet pectin: Kinetics and rheology

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2012-01-01

    Sugar beet pectin (SBP) is a marginally utilized co-processing product from sugar production from sugar beets. In this study, the kinetics of oxidative gelation of SBP, taking place via enzyme catalyzed cross-linking of ferulic acid moieties (FA), was studied using small angle oscillatory...

  10. Palladium-Catalyzed Anti-Markovnikov Oxidation of Allylic Amides to Protected beta-Amino Aldehydes

    NARCIS (Netherlands)

    Dong, Jiajia; Harvey, Emma C.; Fananas-Mastral, Martin; Browne, Wesley R.; Feringa, Bernard

    2014-01-01

    A general method for the preparation of N-protected beta-amino aldehydes from allylic amines or linear allylic alcohols is described. Here the Pd(II)-catalyzed oxidation of N-protected allylic amines with benzoquinone is achieved in tBuOH under ambient conditions with excellent selectivity toward

  11. Oxidation of lignin-carbohydrate complex from bamboo with hydrogen peroxide catalyzed by Co(salen

    Directory of Open Access Journals (Sweden)

    Zhou Xue-Fei

    2014-01-01

    Full Text Available The reactivity of salen complexes toward hydrogen peroxide has been long recognized. Co(salen was tested as catalyst for the aqueous oxidation of a refractory lignin-carbohydrate complex (LCC isolated from sweet bamboo (Dendrocalamushamiltonii in the presence of hydrogen peroxide as oxidant. Co(salen catalyzed the reaction of hydrogen peroxide with LCC. From the spectra analyses, lignin units in LCC were undergoing ring-opening, side chain oxidation, demethoxylation, β-O-4 cleavage with Co(salen catalytic oxidation. The degradation was also observed in the carbohydrate of LCC. The investigation on the refractory LCC degradation catalyzed by Co(salen may be an important aspect for environmentally-oriented biomimetic bleaching in pulp and paper industry.

  12. Copper-catalyzed oxidative Heck reactions between alkyltrifluoroborates and vinyl arenes.

    Science.gov (United States)

    Liwosz, Timothy W; Chemler, Sherry R

    2013-06-21

    We report herein that potassium alkyltrifluoroborates can be utilized in oxidative Heck-type reactions with vinyl arenes. The reaction is catalyzed by a Cu(OTf)2/1,10-phenanthroline with MnO2 as the stoichiometric oxidant. In addition to the alkyl Heck, amination, esterification, and dimerization reactions of alkyltrifluoroborates are demonstrated under analogous reaction conditions. Evidence for an alkyl radical intermediate is presented.

  13. Zeolites as catalyzer to environmental control. Nitric oxide removal

    International Nuclear Information System (INIS)

    Montes, C.; Zapata N, M; Villa H, A.L.

    1995-01-01

    Zeolites and the microporous materials related to them are a class of environmental catalysts, it which are used to remove the produced gases in combustion process (as mobile sources). In this work the importance that has catalysis for environment improvement is emphasized. A review of recent progress in the use of certain zeolitic material as catalysts for nitric oxide elimination of combustion systems is presented. More used nitric oxide removal methods are presented, as well as its advantages and disadvantages. Furthermore, it is emphasized on the need of accomplishing more investigation projects on the development of an active catalyst for the decomposition of the nitric oxide in its elements (N and O)

  14. Ru(III) catalyzed permanganate oxidation of aniline at environmentally relevant pH.

    Science.gov (United States)

    Zhang, Jing; Zhang, Ying; Wang, Hui; Guan, Xiaohong

    2014-07-01

    Ru(III) was employed as catalyst for aniline oxidation by permanganate at environmentally relevant pH for the first time. Ru(III) could significantly improve the oxidation rate of aniline by 5-24 times with its concentration increasing from 2.5 to 15 μmol/L. The reaction of Ru(III) catalyzed permanganate oxidation of aniline was first-order with respect to aniline, permanganate and Ru(III), respectively. Thus the oxidation kinetics can be described by a third-order rate law. Aniline degradation by Ru(III) catalyzed permanganate oxidation was markedly influenced by pH, and the second-order rate constant (ktapp) decreased from 643.20 to 2.67 (mol/L)⁻¹sec⁻¹ with increasing pH from 4.0 to 9.0, which was possibly due to the decrease of permanganate oxidation potential with increasing pH. In both the uncatalytic and catalytic permanganate oxidation, six byproducts of aniline were identified in UPLC-MS/MS analysis. Ru(III), as an electron shuttle, was oxidized by permanganate to Ru(VI) and Ru(VII), which acted the co-oxidants for decomposition of aniline. Although Ru(III) could catalyze permanganate oxidation of aniline effectively, dosing homogeneous Ru(III) into water would lead to a second pollution. Therefore, efforts would be made to investigate the catalytic performance of supported Ru(III) toward permanganate oxidation in our future study. Copyright © 2014. Published by Elsevier B.V.

  15. Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide

    KAUST Repository

    Cheneviere, Yohan; Caps, Valerie; Tuel, Alain

    2010-01-01

    Gold nanoparticles deposited on inorganic supports are efficient catalysts for the oxidation of various substituted phenols (2,6-di-tert-butyl phenol and 2,3,6-trimethyl phenol) with aqueous hydrogen peroxide. By contrast to more conventional

  16. Aerobic Oxidation of Alcohols to Carbonyl Compounds Catalyzed by ...

    Indian Academy of Sciences (India)

    Hydrotalcite-like compounds; cobalt porphyrin; alcohol oxidation; ... cient catalytic method for the low temperature oxy- ... nitrate,8 acetaldehyde,9 ammonium salts10 and NO2,11 ..... N, Sakurai H and Tsukuda T 2009 Effect of electronic.

  17. Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode

    International Nuclear Information System (INIS)

    Yu Lin; Duan Jizhou; Zhao Wei; Huang Yanliang; Hou Baorong

    2011-01-01

    Highlights: → The sulphate-reducing bacteria (SRB) have the ability to catalyze the hydrogen evolution and oxidation on pyrolytic graphite electrode. → The SRB biofilm decreases the overpotential and electron transfer resistance by the CV and EIS detection. → The SRB biofilm can transfer electrons to the 0.24 V polarized pyrolytic graphite electrode and the maximum current is 0.035 mA, which is attributed to SRB catalyzed hydrogen oxidation. → The SRB biofilm also can obtain electron from the -0.61 V polarized PGE to catalyze the hydrogen evolution. - Abstract: Hydrogenase, an important electroactive enzyme of sulphate-reducing bacteria (SRB), has been discovered having the capacity to connect its activity to solid electrodes by catalyzing hydrogen evolution and oxidation. However, little attention has been paid to similar electroactive characteristics of SRB. In this study, the electroactivities of pyrolytic graphite electrode (PGE) coated with SRB biofilm were investigated. Two corresponding redox peaks were observed by cyclic voltammetry detection, which were related to the hydrogen evolution and oxidation. Moreover, the overpotential for the reactions decreased by about 0.2 V in the presence of the SRB biofilm. When the PGE coated with the SRB biofilm was polarized at 0.24 V (vs. SHE), an oxidation current related to the hydrogen oxidation was found. The SRB biofilm was able to obtain electrons from the -0.61 V (vs. SHE) polarized PGE to form hydrogen, and the electron transfer resistance also decreased with the formation of SRB biofilm, as measured by the non-destructive electrochemical impendence spectroscopy detection. It was concluded that the hydrogen evolution and oxidation was an important way for the electron transfer between SRB biofilm and solid electrode in anaerobic environment.

  18. Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective

    DEFF Research Database (Denmark)

    Møller, Ian Max; Rogowska-Wrzesinska, Adelina; Rao, R S P

    2011-01-01

    Proteins can become oxidatively modified in many different ways, either by direct oxidation of amino acid side chains and protein backbone or indirectly by conjugation with oxidation products of polyunsaturated fatty acids and carbohydrates. While reversible oxidative modifications are thought...... to be relevant in physiological processes, irreversible oxidative modifications are known to contribute to cellular damage and disease. The most well-studied irreversible protein oxidation is carbonylation. In this work we first examine how protein carbonylation occurs via metal-catalyzed oxidation (MCO) in vivo...... and in vitro with an emphasis on cellular metal ion homeostasis and metal binding. We then review proteomic methods currently used for identifying carbonylated proteins and their sites of modification. Finally, we discuss the identified carbonylated proteins and the pattern of carbonylation sites in relation...

  19. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    NARCIS (Netherlands)

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid

  20. Palladium(II)-catalyzed oxidation of L-tryptophan by ...

    Indian Academy of Sciences (India)

    Initial addition of the reaction product, hexacyanoferrate(II), does not affect the rate significantly. A plausible mechanistic scheme explaining all the observed kinetic results has been proposed. The final oxidation products are identified as indole-3-acetaldehyde, ammonium ion and carbon dioxide. The rate law associated ...

  1. TUGAS DAN FUNGSI PDII-LIPI DARI MASA KE MASA

    Directory of Open Access Journals (Sweden)

    Zultanawar Zultanawar

    2011-12-01

    Full Text Available PDII-LIPI telah berusia 25 tahun pada tanggal 1 Juni 1990 ini.Sudah saatnya perlu ditinjau kembali misi atau tugas dan fungsiPDII-LIPI dalam menunjang keqiatan pembangunan, khususnya kegiatan Iptek, pendidikan dan pengembangan industri. Perlu ditinjau kembali tujuan semula mendirilcan Pusat Dokumentasi Ilmiah Nasional yang sejak tanggal 13 Januari 1986 bernama Pusat Dokumentasi dan Informasi Ilmiah. Perlu dilihat apakah tujuan semula mendirikan PDII-LIPI itu telah tercnpai, apakah telah terjadi penyesuaian- penyesuaian dan apakah tujuan semula itu perlu diubah sesuai dengan perkembangan zaman.

  2. Base-catalyzed efficient tandem [3 + 3] and [3 + 2 + 1] annulation-aerobic oxidative benzannulations.

    Science.gov (United States)

    Diallo, Aboubacar; Zhao, Yu-Long; Wang, He; Li, Sha-Sha; Ren, Chuan-Qing; Liu, Qun

    2012-11-16

    An efficient synthesis of substituted benzenes via a base-catalyzed [3 + 3] aerobic oxidative aromatization of α,β-unsaturated carbonyl compounds with dimethyl glutaconate was reported. All the reactions were carried out under mild, metal-free conditions to afford the products in high to excellent yields with molecular oxygen as the sole oxidant and water as the sole byproduct. Furthermore, a more convenient tandem [3 + 2 + 1] aerobic oxidative aromatization reaction was developed through the in situ generation of the α,β-unsaturated carbonyl compounds from aldehydes and ketones.

  3. Biomimetic oxidation of carbamazepine with hydrogen peroxide catalyzed by a manganese porphyrin

    Directory of Open Access Journals (Sweden)

    Cláudia M. B. Neves

    2012-01-01

    Full Text Available This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H2O2, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy.

  4. Biomimetic oxidation of carbamazepine with hydrogen peroxide catalyzed by a manganese porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Claudia M.B.; Simoes, Mario M.Q.; Domingues, Fernando M.J.; Neves, M. Graca P.M.S.; Cavaleiro, Jose A.S., E-mail: msimoes@ua.pt [Dept. de Quimica, QOPNA, Universidade de Aveiro (Portugal)

    2012-07-01

    This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H{sub 2}O{sub 2}, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy. (author)

  5. Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide

    KAUST Repository

    Cheneviere, Yohan

    2010-10-20

    Gold nanoparticles deposited on inorganic supports are efficient catalysts for the oxidation of various substituted phenols (2,6-di-tert-butyl phenol and 2,3,6-trimethyl phenol) with aqueous hydrogen peroxide. By contrast to more conventional catalysts such as Ti-containing mesoporous silicas, which convert phenols to the corresponding benzoquinones, gold nanoparticles are very selective to biaryl compounds (3,3′,5,5′-tetra-tert-butyl diphenoquinone and 2,2′,3,3′,5,5′-hexamethyl-4,4′- biphenol, respectively). Products yields and selectivities depend on the solvent used, the best results being obtained in methanol with yields >98%. Au offers the possibility to completely change the selectivity in the oxidation of substituted phenols and opens interesting perspectives in the clean synthesis of biaryl compounds for pharmaceutical applications. © 2010 Elsevier B.V. All rights reserved.

  6. Process requirements of galactose oxidase catalyzed oxidation of alcohols

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard; R. Birmingham, William; Rehn, Gustav

    2015-01-01

    -electron oxidants to reactivate the enzyme upon loss of the amino acid radical in its active site. In this work, the addition of catalase, single-electron oxidants, and copper ions was investigated systematically in order to find the minimum concentrations required to obtain a fully active GOase. Furthermore....... GOase was shown to be completely stable for 120 h in buffer with stirring at 25 °C, and the activity even increased 30% if the enzyme solution was also aerated in a similar experiment. The high Km for oxygen of GOase (>5 mM) relative to the solubility of oxygen in water reveals a trade-off between...... supplying oxygen at a sufficiently high rate and ensuring a high degree of enzyme utilization (i.e., ensuring the highest possible specific rate of reaction). Nevertheless, the good stability and high activity of GOase bode well for its future application as an industrial biocatalyst....

  7. Transglutaminase catalyzed cross-linking of sodium caseinate improves oxidative stability of flaxseed oil emulsion.

    Science.gov (United States)

    Ma, Hairan; Forssell, Pirkko; Kylli, Petri; Lampi, Anna-Maija; Buchert, Johanna; Boer, Harry; Partanen, Riitta

    2012-06-20

    Sodium caseinate was modified by transglutaminase catalyzed cross-linking reaction prior to the emulsification process in order to study the effect of cross-linking on the oxidative stability of protein stabilized emulsions. The extent of the cross-linking catalyzed by different dosages of transglutaminase was investigated by following the ammonia production during the reaction and using SDS-PAGE gel. O/W emulsions prepared with the cross-linked and non-cross-linked sodium caseinates were stored for 30 days under the same conditions. Peroxide value measurement, oxygen consumption measurement, and headspace gas chromatography analysis were used to study the oxidative stability of the emulsions. The emulsion made of the cross-linked sodium caseinate showed an improved oxidative stability with reduced formation of fatty acid hydroperoxides and volatiles and a longer period of low rate oxygen consumption. The improving effect of transglutaminase catalyzed cross-linking could be most likely attributed to the enhanced physical stability of the interfacial protein layer against competitive adsorption by oil oxidation products.

  8. [Effects of metal-catalyzed oxidation on the formation of advanced oxidation protein products].

    Science.gov (United States)

    Li, Li; Peng, Ai; Zhu, Kai-Yuan; Yu, Hong; Ll, Xin-Hua; Li, Chang-Bin

    2008-03-11

    To explore the relationship between metal-catalyzed oxidation (MCO) and the formation of advanced oxidation protein products (AOPPs). Specimens of human serum albumin (HSA) and pooled plasma were collected from 3 healthy volunteers and 4 uremia patients were divided into 3 groups: Group A incubated with copper sulfate solution of the concentrations of 0, 0.2, or 0.5 mmol/L, Group B, incubated with hydrogen peroxide 2 mmol/L, and Group C, incubated with copper sulfate 0.2 or 0.5 mmol/L plus hydrogen peroxide 2 mmol/L. 30 min and 24 h later the AOPP level was determined by ultraviolet visible spectrophotometry. High-performance liquid chromatography (HPLC) was used to observe the fragmentation effect on plasma proteins. Ninhydrin method was used to examine the protein fragments. The scavenging capacity of hydroxyl radical by macromolecules was measured so as to estimate the extent of damage for proteins induced by MCO. (1) The AOPP level of the HSA and plasma specimens of the uremia patients increased along with the increase of cupric ion concentration in a dose-dependent manner, especially in the presence of hydrogen peroxide (P < 0.05). (2) Aggregation of proteins was almost negligible in all groups, however, HPLC showed that cupric ion with or without hydrogen peroxide increased the fragments in the HAS specimens (with a relative molecular mass of 5000) and uremia patients' plasma proteins (with the molecular mass 7000). (3) The plasma AOPP level of the healthy volunteers was 68.2 micromol/L +/- 2.4 micromol/L, significantly lower than that of the uremia patients (158.5 micromol/L +/- 8.2 micromol/L). (4) The scavenging ability to clear hydroxyl radical by plasma proteins of the healthy volunteers was 1.38 -9.03 times as higher than that of the uremia patients. MCO contributes to the formation of AOPPs mainly through its fragmentation effect to proteins.

  9. Influence of the fuel in the nanostructure catalyzer oxides synthesis

    International Nuclear Information System (INIS)

    Zampiva, R.Y.S.; Panta, P.C.; Carlos, R.B.; Alves, A.K.; Bergmann, C.P.

    2012-01-01

    Among the techniques used in catalysts production, the solution combustion synthesis (SCS) has been increasingly applied due the possibility of producing, at low cost, highly pure and homogeneous nanostructured powders. The smaller the particle diameter, the greater the activity of the catalyst. In SCS, the size of the particles produced depends on the process variables. In order to formulate the optimal methodology for the preparation of nanostructured oxides for catalysis, it was studied the fuel-oxidant concentration ratio, and the use of glycine and polyethylene glycol with molecular weight 200 (PEG 200) as fuel in the SCS of Iron, Magnesium and Molybdenum based catalysts. The phase identification of the products was performed by x-ray diffraction (XRD). Particle size and surface area analysis were done to characterize the particles size and the samples morphology was obtained by scanning electron microscopy. Results indicated the formation of high purity nanomaterials obtained for low concentrations of fuel, and a wide variation in the nanostructure sizes depending on the concentration and type of fuel used. (author)

  10. Enzyme catalyzed oxidative cross-linking of feruloylated pectic polysaccharides from sugar beet

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz

    beet pulp as a potential starting material for production of pectin derived products which could help maintain the competitiveness of the sugar beet based industry. The overall objective of this study has been focusing on understanding the kinetics of enzyme catalyzed oxidative crosslinking......-linked by HRP catalysis in the presence of hydrogen peroxide (H2O2) to form ferulic acid dehydrodimers (diFAs). The composition of the substrate was analyzed by HPAEC, HPLC and MALDI-TOF, confirming the structural make up of the arabinan-oligosaccharide (Arabinose: 2.9- 3.4 mmol?g-1 DM; FA: 2.5-7.0 mg?g-1 DM......, identically composed, oil-in-water emulsion systems to study the effect of different methods of emulsion preparation on the emulsion stability in the presence of SBP and the kinetics of enzyme catalyzed oxidative gelation of SBP. The result shows that the different methods of emulsion preparation affect...

  11. Synthesis of Arylthiopyrimidines by Copper-catalyzed Aerobic Oxidative C-S Cross-coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ok Suk; Kim, Hyeji; Sohn, Jeong-Hun [Chungnam National University, Daejeon (Korea, Republic of); Lee, Hee-Seung [KAIST, Daejeon (Korea, Republic of); Shin, Hyunik [Yonsung Fine Chemicals R and D Center, Suwon (Korea, Republic of)

    2016-02-15

    Copper-catalyzed C–S cross-coupling reactions have been considered as powerful tools in synthetic chemistry and utilized for diverse heterocycle syntheses. In the reactions, the aspects of no need of ligands has been particular advantage over other metal catalysis. We have developed a Cu-catalyzed cascade reaction for the synthesis of fully substituted 2-arylthiopyrimidines from 3,4-dihydropyrimidine-2(1H)-thiones (DHPMs) under aerobic conditions. This cascade reaction of DHPM with aryl iodide proceeds presumably via sequential tautomerization, C–S cross-coupling, and oxidative dehydrogenation (oxidation followed by elimination). Considering that DHPM substrates were easily synthesized by Biginelli three component coupling reaction of aryl aldehyde, β-ketoester, and thiourea, the present method provides a direct access toward diverse 2-arylthiopyrimidines which have been used as a prominent substructure of drug molecules.

  12. Palladium-catalyzed, asymmetric Baeyer–Villiger oxidation of prochiral cyclobutanones with PHOX ligands

    KAUST Repository

    Petersen, Kimberly S.

    2011-06-01

    Described in this report is a general method for the conversion of prochiral 3-substituted cyclobutanones to enantioenriched γ-lactones through a palladium-catalyzed Baeyer-Villiger oxidation using phosphinooxazoline ligands in up to 99% yield and 81% ee. Lactones of enantiopurity ≥93% could be obtained through a single recrystallization step. Importantly, 3,3-disubtituted cyclobutanones produced enantioenriched lactones containing a β-quaternary center. © 2011 Elsevier Ltd. All rights reserved.

  13. Phenol oxidation of petrol refinery wastewater catalyzed by Laccase

    International Nuclear Information System (INIS)

    Vargas, Maria Carolina; Ramirez, Nubia E.

    2002-01-01

    Laccase has been obtained through two different production systems, the first using Pleurotus ostreatus in solid-state fermentation, the second one using Trametes versicolor in submerged culture. Different substrates (by products from yeast, flour and beverage industries) have been evaluated in both systems. Maximum laccase yield with Pleurotus ostreatus (25 u/ml) was obtained in a wheat bran medium. The maximum enzyme concentration level using Trametes versicolor (25 u/ml) was achieved in a submerged system, containing 10% vinasse, 4,5% wheat bran and 0,2% molasses per liter of waste. Culture filtrate extracted from Pleurotus ostreatus was used to remove phenol from wastewater. The enzymatic treatment is effective over a wide pH and temperature range. The Laccase treatment has been successfully used to dephenolize industrial petrol refinery wastewater. The advantage of Laccase dephenolization is that this enzyme uses molecular oxygen as an oxidant

  14. A TEMPO-free copper-catalyzed aerobic oxidation of alcohols.

    Science.gov (United States)

    Xu, Boran; Lumb, Jean-Philip; Arndtsen, Bruce A

    2015-03-27

    The copper-catalyzed aerobic oxidation of primary and secondary alcohols without an external N-oxide co-oxidant is described. The catalyst system is composed of a Cu/diamine complex inspired by the enzyme tyrosinase, along with dimethylaminopyridine (DMAP) or N-methylimidazole (NMI). The Cu catalyst system works without 2,2,6,6-tetramethyl-l-piperidinoxyl (TEMPO) at ambient pressure and temperature, and displays activity for un-activated secondary alcohols, which remain a challenging substrate for catalytic aerobic systems. Our work underscores the importance of finding alternative mechanistic pathways for alcohol oxidation, which complement Cu/TEMPO systems, and demonstrate, in this case, a preference for the oxidation of activated secondary over primary alcohols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Isotopic mixing in carbon monoxide catalyzed by zinc oxide

    International Nuclear Information System (INIS)

    Carnisio, G.; Garbassi, F.; Petrini, G.; Parravano, G.

    1978-01-01

    The rate of the isotopic mixing in CO has been studied at 300 0 C, for CO partial pressures from 6 to 100 Torr and a total pressure of 250 Torr on ZnO catalysts. Significant deviations from a first-order rate in p/sub co/ were found. The rate of oxygen exchange between ZnO and gas-phase CO was also measured and the results were employed to calculate the fraction of surface sites active for the CO isotopic mixing. Values on the order of 0.001 were found. The turnover rate and surface collision efficiency varied between 0.7 and 107 min -1 and 0.13 and 2.24 x 10 -8 , respectively. H 2 additions to CO increased the rate of isotopic mixing, whereas the rate of H 2 + D 2 was decreased by the presence of CO. The H 2 + D 2 rate was faster than that of isotopic mixing in CO, but as the ratio p/sub H 2 //p/sub co/ decreased the rates became about equal. It is argued that on ZnO samples, in which the rate of CO isotopic mixing and the rate of ZnO--CO oxygen exchange were influenced in a similar manner by the CO pressure, the isotopic mixing in CO took place via the ZnO oxygen, while oxide oxygen participation was not kinetically significant for ZnO samples in which the two reactions had different kinetics. The crucial factor controlling the path followed by the isotopic mixing in CO seems to be the surface Zn/O ratio, since a close correlation was found between the former and the reaction kinetics of the CO isotopic mixing reaction. Solid-state conditions which may vary the Zn/O surface ratio (foreign additions) are indicated. The implications of these findings to the problem of product selectivity from CO-H 2 mixtures reacting on metal oxide surfaces are discussed

  16. Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites.

    Science.gov (United States)

    Sökmen, Ilkay; Sevin, Fatma

    2003-08-01

    The ion-exchange rates and capacities of the zeolite NaY for the Cu(II), Co(II), and Pb(II) metal ions were investigated. Ion-exchange equilibria were achieved in approximately 72 h for all the metal ions. The maximum ion exchange of metal ions into the zeolite was found to be 120 mg Pb(II), 110 mg Cu(II), and 100 mg Co(II) per gram of zeolite NaY. It is observed that the exchange capacity of a zeolite varies with the exchanged metal ion and the amount of metal ions exchanged into zeolite decreases in the sequence Pb(II) > Cu(II) > Co(II). Application of the metal-ion-exchanged zeolites in oxidation of cyclohexane in liquid phase with visible light was examined and it is observed that the order of reactivity of the zeolites for the conversion of cyclohexane to cyclohexanone and cyclohexanol is CuY > CoY > PbY. It is found that conversion increases by increase of the empty active sites of a zeolite and the formation of cyclohexanol is favored initially, but the cyclohexanol is subsequently converted to cyclohexanone.

  17. Effect of L-cysteine on the oxidation of cyclohexane catalyzed by manganeseporphyrin.

    Science.gov (United States)

    Zhou, Wei-You; Tian, Peng; Chen, Yong; He, Ming-Yang; Chen, Qun; Chen, Zai Xin

    2015-06-01

    Effect of L-cysteine as the cocatalyst on the oxidation of cyclohexane by tert-butylhydroperoxide (TBHP) catalyzed by manganese tetraphenylporphyrin (MnTPP) has been investigated. The results showed that L-cysteine could moderately improve the catalytic activity of MnTPP and significantly increase the selectivity of cyclohexanol. Different from imidazole and pyridine, the L-cysteine may perform dual roles in the catalytic oxidation of cyclohexane. Besides as the axial ligand for MnTPP, the L-cysteine could also react with cyclohexyl peroxide formed as the intermediate to produce alcohol as the main product. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Palladium-Catalyzed Tandem Oxidative Arylation/Olefination of Aromatic Tethered Alkenes/Alkynes.

    Science.gov (United States)

    Gao, Yang; Gao, Yinglan; Wu, Wanqing; Jiang, Huanfeng; Yang, Xiaobo; Liu, Wenbo; Li, Chao-Jun

    2017-01-18

    We describe herein a palladium-catalyzed tandem oxidative arylation/olefination reaction of aromatic tethered alkenes/alkynes for the synthesis of dihydrobenzofurans and 2 H-chromene derivatives. This reaction features a 1,2-difunctionalization of C-C π-bond with two C-H bonds using O 2 as terminal oxidant at room temperature. The products obtained are valuable synthons and important scaffolds in biological agents and natural products. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Transesterification of used vegetable oil catalyzed by barium oxide under simultaneous microwave and ultrasound irradiations

    International Nuclear Information System (INIS)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-01-01

    Graphical abstract: Transesterification reaction mediated by simultaneous microwave and ultrasound irradiations with barium oxide (BaO) heterogeneous catalyst. - Highlights: • Synergistic effect of simultaneous microwave/ultrasound irradiations was evaluated. • Yields were higher for the MW/US reactions compared to MW or US individually. • BaO catalyzed MW/US transesterification reaction is more environmental-friendly. • BaO catalyzed MW/US transesterification reaction provides better biodiesel yields. • Optimum power density must be identified for energy-efficient biodiesel production. - Abstract: This study presents a novel application of simultaneous microwave and ultrasound (MW/US) irradiations on transesterification of used vegetable oil catalyzed by barium oxide, heterogeneous catalyst. Experiments were conducted to study the optimum process conditions, synergistic effect of microwave and ultrasound irradiations and the effect of power density. From the process parametric optimization study, the following conditions were determined as optimum: 6:1 methanol to oil ratio, 0.75% barium oxide catalyst by wt.%, and 2 min of reaction time at a combined power output rate of 200 W (100/100 MW/US). The biodiesel yields were higher for the simultaneous MW/US mediated reactions (∼93.5%) when compared to MW (91%) and US (83.5%) irradiations individually. Additionally, the effect of power density and a discussion on the synergistic effect of the microwave and ultrasound mediated reactions were presented. A power density of 7.6 W/mL appears to be effective for MW, and MW/US irradiated reactions (94.4% and 94.7% biodiesel yields respectively), while a power density of 5.1 W/mL was appropriate for ultrasound irradiation (93.5%). This study concludes that the combined microwave and ultrasound irradiations result in a synergistic effect that reduces the heterogeneity of the transesterification reaction catalyzed by heterogeneous catalysts to enhance the biodiesel

  20. Rh(iii)-catalyzed C-H olefination of N-pentafluoroaryl benzamides using air as the sole oxidant.

    Science.gov (United States)

    Lu, Yi; Wang, Huai-Wei; Spangler, Jillian E; Chen, Kai; Cui, Pei-Pei; Zhao, Yue; Sun, Wei-Yin; Yu, Jin-Quan

    2015-03-01

    The oxidative olefination of a broad array of arenes and heteroarenes with a variety of activated and unactivated olefins has be achieved via a rhodium(iii)-catalyzed C-H activation reaction. The use of an N -pentafluorophenyl benzamide directing group is crucial for achieving catalytic turnovers in the presence of air as the sole oxidant without using a co-oxidant.

  1. Reduction of nitric oxide catalyzed by hydroxylamine oxidoreductase from an anammox bacterium.

    Science.gov (United States)

    Irisa, Tatsuya; Hira, Daisuke; Furukawa, Kenji; Fujii, Takao

    2014-12-01

    The hydroxylamine oxidoreductase (HAO) from the anammox bacterium, Candidatus Kuenenia stuttgartiensis has been reported to catalyze the oxidation of hydroxylamine (NH2OH) to nitric oxide (NO) by using bovine cytochrome c as an oxidant. In contrast, we investigated whether the HAO from anammox bacterium strain KSU-1 could catalyze the reduction of NO with reduced benzyl viologen (BVred) and the NO-releasing reagent, NOC 7. The reduction proceeded, resulting in the formation of NH2OH as a product. The oxidation rate of BVred was proportional to the concentration of BVred itself for a short period in each experiment, a situation that was termed quasi-steady state. The analyses of the states at various concentrations of HAO allowed us to determine the rate constant for the catalytic reaction, (2.85 ± 0.19) × 10(5) M(-1) s(-1), governing NO reduction by BVred and HAO, which was comparable to that reported for the HAO from the ammonium oxidizer, Nitrosomonas with reduced methyl viologen. These results suggest that the anammox HAO functions to adjust anammox by inter-conversion of NO and NH2OH depending on the redox potential of the physiological electron transfer protein in anammox bacteria. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Oligomerization of glycine and alanine catalyzed by iron oxides: implications for prebiotic chemistry.

    Science.gov (United States)

    Shanker, Uma; Bhushan, Brij; Bhattacharjee, G; Kamaluddin

    2012-02-01

    Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.

  3. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiying, E-mail: ysy@ouc.edu.cn [Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100 (China); College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100 (China); Li, Lei [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Xiao, Tuo [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); China City Environment Protection Engineering Limited Company, Wuhan 430071 (China); Zheng, Di; Zhang, Yitao [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2016-10-15

    Highlights: • ACF can efficiently activate peroxymonosulfate to degrade organic pollutants. • Basic functional groups may mainly increase the adsorption capacity of ACF. • C1, N1, N2 have promoting effect on the ACF catalyzed PMS oxidation. • Modification by heat after nitric acid is also a way of ACF regeneration. - Abstract: A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N{sub 2} adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the −NO{sub 2} has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  4. Copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines: synthesis of imidazopyridine derivatives.

    Science.gov (United States)

    Yu, Jipan; Jin, Yunhe; Zhang, Hao; Yang, Xiaobo; Fu, Hua

    2013-12-02

    A novel, efficient, and practical method for the synthesis of imidazopyridine derivatives has been developed through the copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines with N-(alkylidene)-4H-1,2,4-triazol-4-amines. The procedure occurs by cleavage of the N-N bond in the N-(alkylidene)-4H-1,2,4-triazol-4-amines and activation of an aryl C-H bond in the substituted pyridines. This is the first example of the preparation of imidazopyridine derivatives by using pyridines as the substrates by transition-metal-catalyzed C-H functionalization. This method should provide a novel and efficient strategy for the synthesis of other nitrogen heterocycles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Support Effects in the Gold-Catalyzed Preferential Oxidation of CO

    KAUST Repository

    Ivanova, S.

    2010-04-08

    The study of support effects on the gold-catalyzed preferential oxidation of carbon monoxide in the presence of hydrogen (PROX reaction) is possible only with careful control of the gold particle size, which is facilitated by the application of the direct anionic exchange method. Catalytic evaluation of thermally stable gold nanoparticles, with an average size of around 3 nm on a variety of supports (alumina, titania, zirconia, or ceria), clearly shows that the influence of the support on the CO oxidation rate is of primary importance under CO+O 2 conditions and that this influence becomes secondary in the presence of hydrogen. The impact of the support surface structure on the oxidation rates, catalyst selectivity, and catalyst activation/deactivation is investigated in terms of oxygen vacancies, oxygen mobility, OH groups, and surface area on the oxidation rates, catalyst selectivity and catalyst activation/deactivation. It allows the identification of key morphological and structural features of the support to ensure high activity and selectivity in the gold-catalyzed PROX reaction. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Platinum-Catalyzed, Terminal-Selective C(sp(3))-H Oxidation of Aliphatic Amines.

    Science.gov (United States)

    Lee, Melissa; Sanford, Melanie S

    2015-10-14

    This Communication describes the terminal-selective, Pt-catalyzed C(sp(3))-H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol%. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (iii) it electronically deactivates the C-H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp(3))-H oxidation of a variety of primary, secondary, and tertiary amines.

  7. Reuse performance of granular-activated carbon and activated carbon fiber in catalyzed peroxymonosulfate oxidation.

    Science.gov (United States)

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zhang, Jun; Shao, Xueting

    2017-03-01

    Recently, activated carbon was investigated as an efficient heterogeneous metal-free catalyst to directly activate peroxymonosulfate (PMS) for degradation of organic compounds. In this paper, the reuse performance and the possible deactivation reasons of granular-activated carbon (GAC) and activated carbon fiber (ACF) in PMS activation were investigated. As results indicated, the reusability of GAC, especially in the presence of high PMS dosage, was relatively superior to ACF in catalyzed PMS oxidation of Acid Orange 7 (AO7), which is much more easily adsorbed by ACF than by GAC. Pre-oxidation experiments were studied and it was demonstrated that PMS oxidation on ACF would retard ACF's deactivation to a big extent. After pre-adsorption with AO7, the catalytic ability of both GAC and ACF evidently diminished. However, when methanol was employed to extract the AO7-spent ACF, the catalytic ability could recover quite a bit. GAC and ACF could also effectively catalyze PMS to degrade Reactive Black 5 (RB5), which is very difficult to be adsorbed even by ACF, but both GAC and ACF have poor reuse performance for RB5 degradation. The original organic compounds or intermediate products adsorbed by GAC or ACF would be possibly responsible for the deactivation.

  8. Bench scale demonstration and conceptual engineering for DETOXSM catalyzed wet oxidation

    International Nuclear Information System (INIS)

    Moslander, J.; Bell, R.; Robertson, D.; Dhooge, P.; Goldblatt, S.

    1994-01-01

    Laboratory and bench scale studies of the DETOX SM catalyzed wet oxidation process have been performed with the object of developing the process for treatment of hazardous and mixed wastes. Reaction orders, apparent rates, and activation energies have been determined for a range of organic waste surrogates. Reaction intermediates and products have been analyzed. Metals' fates have been determined. Bench scale units have been designed, fabricated, and tested with solid and liquid organic waste surrogates. Results from the laboratory and bench scale studies have been used to develop conceptual designs for application of the process to hazardous and mixed wastes

  9. Photoassisted Oxidation of Sulfides Catalyzed by Artificial Metalloenzymes Using Water as an Oxygen Source †

    Directory of Open Access Journals (Sweden)

    Christian Herrero

    2016-12-01

    Full Text Available The Mn(TpCPP-Xln10A artificial metalloenzyme, obtained by non-covalent insertion of Mn(III-meso-tetrakis(p-carboxyphenylporphyrin [Mn(TpCPP, 1-Mn] into xylanase 10A from Streptomyces lividans (Xln10A as a host protein, was found able to catalyze the selective photo-induced oxidation of organic substrates in the presence of [RuII(bpy3]2+ as a photosensitizer and [CoIII(NH35Cl]2+ as a sacrificial electron acceptor, using water as oxygen atom source.

  10. Palladium-catalyzed C-H olefination of uracils and caffeines using molecular oxygen as the sole oxidant.

    Science.gov (United States)

    Zhang, Xinyu; Su, Lv; Qiu, Lin; Fan, Zhenwei; Zhang, Xiaofeng; Lin, Shen; Huang, Qiufeng

    2017-04-18

    The palladium-catalyzed oxidative C-H olefination of uracils or caffeines with alkenes using an atmospheric pressure of molecular oxygen as the sole oxidant has been disclosed. This novel strategy offers an efficient and environmentally friendly method to biologically important C5-alkene uracil derivatives or C8-alkene caffeine derivatives.

  11. Formation of hydroxylated polybrominated diphenyl ethers from laccase-catalyzed oxidation of bromophenols.

    Science.gov (United States)

    Lin, Kunde; Zhou, Shiyang; Chen, Xi; Ding, Jiafeng; Kong, Xiaoyan; Gan, Jay

    2015-11-01

    Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been frequently found in the marine biosphere as emerging organic contaminants. Studies to date have suggested that OH-PBDEs in marine biota are natural products. However, the mechanisms leading to the biogenesis of OH-PBDEs are still far from clear. In this study, using a laccase isolated from Trametes versicolor as the model enzyme, we explored the formation of OH-PBDEs from the laccase-catalyzed oxidation of simple bromophenols (e.g., 2,4-DBP and 2,4,6-TBP). Experiments under ambient conditions clearly showed that OH-PBDEs were produced from 2,4-DBP and 2,4,6-TBP in presence of laccase. Polybrominated compounds 2'-OH-BDE68, 2,2'-diOH-BB80, and 1,3,8-TrBDD were identified as the products from 2,4-DBP, and 2'-OH-BDE121 and 4'-OH-BDE121 from 2,4,6-TBP. The production of OH-PBDEs was likely a result of the coupling of bromophenoxy radicals, generated from the laccase-catalyzed oxidation of 2,4-DBP or 2,4,6-TBP. The transformation of bromophenols by laccase was pH-dependant, and was also influenced by enzymatic activity. In view of the abundance of 2,4-DBP and 2,4,6-TBP and the phylogenetic distribution of laccases in the environment, laccase-catalyzed conversion of bromophenols may be potentially an important route for the natural biosynthesis of OH-PBDEs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Induction of lipid peroxidation in erythrocytes during cholesterol oxidation catalyzed by cholesterol oxidase

    International Nuclear Information System (INIS)

    Kagan, V.E.; Monovich, O.; Ribarov, S.R.

    1986-01-01

    The authors study the ability of cholesterol oxidase (ChO), which catalyzes oxidation of cholesterol (Ch) to cholest-4-en-3-one and, at the same time, reduction of O 2 to H 2 O 2 , to induce the lipid peroxidation (LPO) in plasma membranes. Erythrocyte ghosts were obtained from guinea pig blood; the reaction of oxidation of Ch in the erythrocyte ghosts or in micelles with Triton X-100 was carried out in the following medium: Tris-HCl 0.2 M, pH 7.0 (at 37 C), Triton X-100 0.25%, and ChO 0.05 U/ml. At the present time ChO is often used to study the asymmetry of distribution of Ch in biomembranes and the velocity of its transbilayer migration. It is suggested that changes in membrane permeability do not take place during the reaction catalyzed by the enzyme, and no products capable of affecting flip-flop in biological are formed. Accumulation of LPO products in erythrocyte membranes discovered in this investigation under the influence of ChO compels critical re-examination of the resutls

  13. Controlling site selectivity in Pd-catalyzed oxidative cross-coupling reactions.

    Science.gov (United States)

    Lyons, Thomas W; Hull, Kami L; Sanford, Melanie S

    2011-03-30

    This paper presents a detailed investigation of the factors controlling site selectivity in the Pd-mediated oxidative coupling of 1,3-disubstituted and 1,2,3-trisubstituted arenes (aryl-H) with cyclometalating substrates (L~C-H). The influence of both the concentration and the steric/electronic properties of the quinone promoter are studied in detail. In addition, the effect of steric/electronic modulation of the carboxylate ligand is discussed. Finally, we demonstrate that substitution of the carboxylate for a carbonate X-type ligand leads to a complete reversal in site selectivity for many arene substrates. The origins of these trends in site selectivity are discussed in the context of the mechanism of Pd-catalyzed oxidative cross-coupling.

  14. Cobalt/N-Hydroxyphthalimide(NHPI)-Catalyzed Aerobic Oxidation of Hydrocarbons with Ionic Liquid Additive

    DEFF Research Database (Denmark)

    Mahmood, Sajid; Xu, Bao Hua; Ren, Tian Lu

    2018-01-01

    A highly efficient and solvent-free system of cobalt/NHPI-catalyzed aerobic oxidation of hydrocarbons was developed using imidazolium-based ionic liquid (IL) as an additive. These amphipathic ILs were found self-assemble at the interface between the organic hydrocarbons and the aqueous phase...... the optimum reactivity. Besides, the interfacial boundary between aqueous and organic phase composed by C2-alkylated imidazolium ILs, such as [bdmim]SbF6 and [C12dmim]SbF6, not only has ternary aggregates (hydrocarbons/IL/H2O) of higher stability but renders O2 a faster diffusion rate and higher concentration......, thereby offering a high reactivity of the protocol towards hydrocarbon oxidation....

  15. Inhibition of the Fe(III)-catalyzed dopamine oxidation by ATP and its relevance to oxidative stress in Parkinson's disease.

    Science.gov (United States)

    Jiang, Dianlu; Shi, Shuyun; Zhang, Lin; Liu, Lin; Ding, Bingrong; Zhao, Bingqing; Yagnik, Gargey; Zhou, Feimeng

    2013-09-18

    Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic cells, which implicates a role of dopamine (DA) in the etiology of PD. A possible DA degradation pathway is the Fe(III)-catalyzed oxidation of DA by oxygen, which produces neuronal toxins as side products. We investigated how ATP, an abundant and ubiquitous molecule in cellular milieu, affects the catalytic oxidation reaction of dopamine. For the first time, a unique, highly stable DA-Fe(III)-ATP ternary complex was formed and characterized in vitro. ATP as a ligand shifts the catecholate-Fe(III) ligand metal charge transfer (LMCT) band to a longer wavelength and the redox potentials of both DA and the Fe(III) center in the ternary complex. Remarkably, the additional ligation by ATP was found to significantly reverse the catalytic effect of the Fe(III) center on the DA oxidation. The reversal is attributed to the full occupation of the Fe(III) coordination sites by ATP and DA, which blocks O2 from accessing the Fe(III) center and its further reaction with DA. The biological relevance of this complex is strongly implicated by the identification of the ternary complex in the substantia nigra of rat brain and its attenuation of cytotoxicity of the Fe(III)-DA complex. Since ATP deficiency accompanies PD and neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) induced PD, deficiency of ATP and the resultant impairment toward the inhibition of the Fe(III)-catalyzed DA oxidation may contribute to the pathogenesis of PD. Our finding provides new insight into the pathways of DA oxidation and its relationship with synaptic activity.

  16. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone.

    Science.gov (United States)

    Yuan, Xiu; Miller, Christopher J; Pham, A Ninh; Waite, T David

    2014-06-01

    Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5-7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ(2-), has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ(·-)). The oxidation of NSQ(·-) by O2 is shown to be the most important pathway for superoxide (O2(·-)) generation with a high intrinsic rate constant of 1.0×10(8)M(-1)s(-1). Both NSQ(·-) and O2(·-) served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q(0)) and the mono-anionic (NHQ(-)) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×10(4) and 1.2×10(7)M(-1)s(-1), respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ(·-) resulting in the generation of O2(·-). The half-cell reduction potentials of various redox couples at neutral p

  17. Rh(III)-catalyzed oxidative olefination of N-(1-naphthyl)sulfonamides using activated and unactivated alkenes.

    Science.gov (United States)

    Li, Xuting; Gong, Xue; Zhao, Miao; Song, Guoyong; Deng, Jian; Li, Xingwei

    2011-11-04

    Rhodium(III)-catalyzed oxidative olefination of N-(1-naphthyl)sulfonamides has been achieved at the peri position. Three categories of olefins have been successfully applied. Activated olefins reacted to afford five-membered azacycles as a result of oxidative olefination-hydroamination. Unactivated olefins reacted to give the olefination product. 2-fold oxidative C-C and C-N coupling was achieved for allylbenzenes. © 2011 American Chemical Society

  18. Mechanistic investigation of the gold-catalyzed aerobic oxidation of aldehydes: added insight from Hammett studies and isotopic labelling experiments

    DEFF Research Database (Denmark)

    Fristrup, Peter; Johansen, Louise Bahn; Christensen, Claus Hviid

    2008-01-01

    The gold-catalyzed aerobic oxidation of aldehydes proceeds through development of a partial negative charge and has a significant kinetic isotope effect (k(H)/k(D) = 2.8-2.9), which illustrates that activation of the C-H bond takes place in the rate-determining step.......The gold-catalyzed aerobic oxidation of aldehydes proceeds through development of a partial negative charge and has a significant kinetic isotope effect (k(H)/k(D) = 2.8-2.9), which illustrates that activation of the C-H bond takes place in the rate-determining step....

  19. Microbially catalyzed nitrate-dependent metal/radionuclide oxidation in shallow subsurface sediments

    Science.gov (United States)

    Weber, K.; Healy, O.; Spanbauer, T. L.; Snow, D. D.

    2011-12-01

    Anaerobic, microbially catalyzed nitrate-dependent metal/radionuclide oxidation has been demonstrated in a variety of sediments, soils, and groundwater. To date, studies evaluating U bio-oxidation and mobilization have primarily focused on anthropogenically U contaminated sites. In the Platte River Basin U originating from weathering of uranium-rich igneous rocks in the Rocky Mountains was deposited in shallow alluvial sediments as insoluble reduced uranium minerals. These reduced U minerals are subject to reoxidation by available oxidants, such nitrate, in situ. Soluble uranium (U) from natural sources is a recognized contaminant in public water supplies throughout the state of Nebraska and Colorado. Here we evaluate the potential of anaerobic, nitrate-dependent microbially catalyzed metal/radionuclide oxidation in subsurface sediments near Alda, NE. Subsurface sediments and groundwater (20-64ft.) were collected from a shallow aquifer containing nitrate (from fertilizer) and natural iron and uranium. The reduction potential revealed a reduced environment and was confirmed by the presence of Fe(II) and U(IV) in sediments. Although sediments were reduced, nitrate persisted in the groundwater. Nitrate concentrations decreased, 38 mg/L to 30 mg/L, with increasing concentrations of Fe(II) and U(IV). Dissolved U, primarily as U(VI), increased with depth, 30.3 μg/L to 302 μg/L. Analysis of sequentially extracted U(VI) and U(IV) revealed that virtually all U in sediments existed as U(IV). The presence of U(IV) is consistent with reduced Fe (Fe(II)) and low reduction potential. The increase in aqueous U concentrations with depth suggests active U cycling may occur at this site. Tetravalent U (U(IV)) phases are stable in reduced environments, however the input of an oxidant such as oxygen or nitrate into these systems would result in oxidation. Thus co-occurrence of nitrate suggests that nitrate could be used by bacteria as a U(IV) oxidant. Most probable number

  20. Visible-light photoredox catalyzed synthesis of pyrroloisoquinolines via organocatalytic oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade with Rose Bengal

    Directory of Open Access Journals (Sweden)

    Carlos Vila

    2014-05-01

    Full Text Available Pyrrolo[2,1-a]isoquinoline alkaloids have been prepared via a visible light photoredox catalyzed oxidation/[3 + 2] cycloaddition/oxidative aromatization cascade using Rose Bengal as an organo-photocatalyst. A variety of pyrroloisoquinolines have been obtained in good yields under mild and metal-free reaction conditions.

  1. The catalytic cycle of nitrous oxide reductase - The enzyme that catalyzes the last step of denitrification.

    Science.gov (United States)

    Carreira, Cíntia; Pauleta, Sofia R; Moura, Isabel

    2017-12-01

    The reduction of the potent greenhouse gas nitrous oxide requires a catalyst to overcome the large activation energy barrier of this reaction. Its biological decomposition to the inert dinitrogen can be accomplished by denitrifiers through nitrous oxide reductase, the enzyme that catalyzes the last step of the denitrification, a pathway of the biogeochemical nitrogen cycle. Nitrous oxide reductase is a multicopper enzyme containing a mixed valence CuA center that can accept electrons from small electron shuttle proteins, triggering electron flow to the catalytic sulfide-bridged tetranuclear copper "CuZ center". This enzyme has been isolated with its catalytic center in two forms, CuZ*(4Cu1S) and CuZ(4Cu2S), proven to be spectroscopic and structurally different. In the last decades, it has been a challenge to characterize the properties of this complex enzyme, due to the different oxidation states observed for each of its centers and the heterogeneity of its preparations. The substrate binding site in those two "CuZ center" forms and which is the active form of the enzyme is still a matter of debate. However, in the last years the application of different spectroscopies, together with theoretical calculations have been useful in answering these questions and in identifying intermediate species of the catalytic cycle. An overview of the spectroscopic, kinetics and structural properties of the two forms of the catalytic "CuZ center" is given here, together with the current knowledge on nitrous oxide reduction mechanism by nitrous oxide reductase and its intermediate species. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Oxidative Esterification of Aldehydes with Urea Hydrogen Peroxide Catalyzed by Aluminum Chloride Hexahydrate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sin-Ae; Kim, Yoon Mi; Lee, Jong Chan [Chung-Ang University, Seoul (Korea, Republic of)

    2016-08-15

    We have developed a new, environmentally benign and highly efficient oxidative preparation of methyl esters by the reaction of various aldehydes with UHP in methanol catalyzed by readily accessible aluminum(III) chloride hexahydrate. This new greener and cost effective direct esterification method can serve as a useful alternative to existing protocols. Esters are some of the most important functional groups in organic chemistry and have been found in the sub-structure of a variety of natural products, industrial chemicals, and pharmaceuticals. Numerous methods have been reported for the preparation of various esters. In particular, this method gives low yields for both aldehydes containing electron donating substituents in aromatic rings and heterocyclic aldehydes. Therefore, development of a more general, efficient, and greener protocol for the esterification of aldehydes with readily available catalyst is still desirable.

  3. Effect of soybean lecithin on iron-catalyzed or chlorophyll-photosensitized oxidation of canola oil emulsion.

    Science.gov (United States)

    Choe, Jeesu; Oh, Boyoung; Choe, Eunok

    2014-11-01

    The effect of soybean lecithin addition on the iron-catalyzed or chlorophyll-photosensitized oxidation of emulsions consisting of purified canola oil and water (1:1, w/w) was studied based on headspace oxygen consumption using gas chromatography and hydroperoxide production using the ferric thiocyanate method. Addition levels of iron sulfate, chlorophyll, and soybean lecithin were 5, 4, and 350 mg/kg, respectively. Phospholipids (PLs) during oxidation of the emulsions were monitored by high performance liquid chromatography. Addition of soybean lecithin to the emulsions significantly reduced and decelerated iron-catalyzed oil oxidation by lowering headspace oxygen consumption and hydroperoxide production. However, soybean lecithin had no significant antioxidant effect on chlorophyll-photosensitized oxidation of the emulsions. PLs in soybean lecithin added to the emulsions were degraded during both oxidation processes, although there was little change in PL composition. Among PLs in soybean lecithin, phosphatidylethanolamine and phosphatidylinositol were degraded the fastest in the iron-catalyzed and the chlorophyll-photosensitized oxidation, respectively. The results suggest that addition of soybean lecithin as an emulsifier can also improve the oxidative stability of oil in an emulsion. © 2014 Institute of Food Technologists®

  4. Solid oxide fuel cell power plant having a fixed contact oxidation catalyzed section of a multi-section cathode air heat exchanger

    Science.gov (United States)

    Saito, Kazuo; Lin, Yao

    2015-02-17

    The multi-section cathode air heat exchanger (102) includes at least a first heat exchanger section (104), and a fixed contact oxidation catalyzed section (126) secured adjacent each other in a stack association. Cool cathode inlet air flows through cool air channels (110) of the at least first (104) and oxidation catalyzed sections (126). Hot anode exhaust flows through hot air channels (124) of the oxidation catalyzed section (126) and is combusted therein. The combusted anode exhaust then flows through hot air channels (112) of the first section (104) of the cathode air heat exchanger (102). The cool and hot air channels (110, 112) are secured in direct heat exchange relationship with each other so that temperatures of the heat exchanger (102) do not exceed 800.degree. C. to minimize requirements for using expensive, high-temperature alloys.

  5. Cu(II)-catalyzed esterification reaction via aerobic oxidative cleavage of C(CO)-C(alkyl) bonds.

    Science.gov (United States)

    Ma, Ran; He, Liang-Nian; Liu, An-Hua; Song, Qing-Wen

    2016-02-04

    A novel Cu(II)-catalyzed aerobic oxidative esterification of simple ketones for the synthesis of esters has been developed with wide functional group tolerance. This process is assumed to go through a tandem sequence consisting of α-oxygenation/esterification/nucleophilic addition/C-C bond cleavage and carbon dioxide is released as the only byproduct.

  6. In situ spectroscopic investigation of the cobalt-catalyzed oxidation of lignin model compounds in ionic liquids

    NARCIS (Netherlands)

    Zakzeski, J.|info:eu-repo/dai/nl/326160256; Bruijnincx, P.C.A.|info:eu-repo/dai/nl/33799529X; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2011-01-01

    The cobalt-catalyzed oxidation of lignin and lignin model compounds using molecular oxygen in ionic liquids proceeds readily under mild conditions, but mechanistic insight and evidence for the species involved in the catalytic cycle is lacking. In this study, a spectroscopic investigation of the

  7. Importance of Vanadium-Catalyzed Oxidation of SO2to SO3in Two-Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Colom, Juan M.; Alzueta, María U.; Christensen, Jakob Munkholt

    2016-01-01

    Low-speed marine diesel engines are mostly operated on heavy fuel oils, which have a high content of sulfur andash, including trace amounts of vanadium, nickel, and aluminum. In particular, vanadium oxides could catalyze in-cylinderoxidation of SO2 to SO3, promoting the formation of sulfuric acid...

  8. Pd-Catalyzed C-H activation/oxidative cyclization of acetanilide with norbornene: concise access to functionalized indolines.

    Science.gov (United States)

    Gao, Yang; Huang, Yubing; Wu, Wanqing; Huang, Kefan; Jiang, Huanfeng

    2014-08-07

    An efficient Pd-catalyzed oxidative cyclization reaction for the synthesis of functionalized indolines by direct C-H activation of acetanilide has been developed. The norbornylpalladium species formed via direct ortho C-H activation of acetanilides is supposed to be a key intermediate in this transformation.

  9. Formation of brominated phenolic contaminants from natural manganese oxides-catalyzed oxidation of phenol in the presence of Br(.).

    Science.gov (United States)

    Lin, Kunde; Song, Lianghui; Zhou, Shiyang; Chen, Da; Gan, Jay

    2016-07-01

    Brominated phenolic compounds (BPCs) are a class of persistent and potentially toxic compounds ubiquitously present in the aquatic environment. However, the origin of BPCs is not clearly understood. In this study, we investigated the formation of BPCs from natural manganese oxides (MnOx)-catalyzed oxidation of phenol in the presence of Br(-). Experiments at ambient temperature clearly demonstrated that BPCs were readily produced via the oxidation of phenol by MnOx in the presence of Br(-). In the reaction of MnOx sand with 0.213 μmol/L phenol and 0.34 mmol/L Br(-) for 10 min, more than 60% of phenol and 56% of Br(-) were consumed to form BPCs. The yield of BPCs increased with increasing concentrations of phenol and Br(-). Overall, a total of 14 BPCs including simple bromophenols (4-bromophenol, 2,4-dibromophenol, and 2,4,6-tribromophenol), hydroxylated polybrominated diphenyl ethers (OH-PBDEs), and hydroxylated polybrominated biphenyls (OH-PBBs) were identified. The production of BPCs increased with increasing concentrations of Br(-) or phenol. It was deduced that Br(-) was first oxidized to form active bromine, leading to the subsequent bromination of phenol to form bromophenols. The further oxidation of bromophenols by MnOx resulted in the formation of OH-PBDEs and OH-PBBs. In view of the ubiquity of phenol, Br(-), and MnOx in the environment, MnOx-mediated oxidation may play a role on the natural production of BPCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Indium-Catalyzed Reductive Dithioacetalization of Carboxylic Acids with Dithiols: Scope, Limitations, and Application to Oxidative Desulfurization.

    Science.gov (United States)

    Nishino, Kota; Minato, Kohei; Miyazaki, Takahiro; Ogiwara, Yohei; Sakai, Norio

    2017-04-07

    In this study an InI 3 -TMDS (1,1,3,3-tetramethyldisiloxane) reducing system effectively catalyzed the reductive dithioacetalization of a variety of aromatic and aliphatic carboxylic acids with 1,2-ethanedithiol or 1,3-propanedithiol leading to the one-pot preparation of either 1,3-dithiolane derivatives or a 1,3-dithiane derivative. Also, the intact indium catalyst continuously catalyzed the subsequent oxidative desulfurization of an in situ formed 1,3-dithiolane derivative, which led to the preparation of the corresponding aldehydes.

  11. Ru (III) Catalyzed Oxidation of Aliphatic Ketones by N-Bromosuccinimide in Aqueous Acetic Acid: A Kinetic Study

    Science.gov (United States)

    Giridhar Reddy, P.; Ramesh, K.; Shylaja, S.; Rajanna, K. C.; Kandlikar, S.

    2012-01-01

    Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [N-bromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated. PMID:22654610

  12. Inducible nitric oxide synthase catalyzes ethanol oxidation to α-hydroxyethyl radical and acetaldehyde

    International Nuclear Information System (INIS)

    Porasuphatana, Supatra; Weaver, John; Rosen, Gerald M.

    2006-01-01

    The physiologic function of nitric oxide synthases, independent of the isozyme, is well established, metabolizing L-arginine to L-citrulline and nitric oxide (NO). This enzyme can also transfer electrons to O 2 , affording superoxide (O 2 · - ) and hydrogen peroxide (H 2 O 2 ). We have demonstrated that NOS1, in the presence of L-arginine, can biotransform ethanol (EtOH) to α-hydroxyethyl radical (CH 3 ·CHOH). We now report that a competent NOS2 with L-arginine can, like NOS1, oxidize EtOH to CH 3 ·CHOH. Once this free radical is formed, it is metabolized to acetaldehyde as shown by LC-ESI-MS/MS and HPLC analysis. These observations suggest that NOS2 can behave similarly to cytochrome P-450 in the catalysis of acetaldehyde formation from ethanol via the generation of α-hydroxyethyl radical when L-arginine is present

  13. Nitrile-assisted oxidation over oxidative-annulation: Pd-catalyzed α,β-dehydrogenation of α-cinnamyl β-keto nitriles.

    Science.gov (United States)

    Nallagonda, Rajender; Reddy, Reddy Rajasekhar; Ghorai, Prasanta

    2017-09-13

    A palladium-catalyzed oxidation reaction is disclosed where the nitrile functionality on the substrate simply changes the course of the reaction. Our previous finding showed that using the Pd(ii)-catalyst in the presence of benzoquinone as an oxidant, 2-cinnamyl-1,3-dicarbonyls provides functionalized furans via oxidative cyclization. When a nitrile group is replaced with one of the carbonyl functionalities of the same substrate, the oxidative cyclization was completely suppressed; instead, the oxidation at the α,β-position occurred to provide α,β,γ,δ-diene containing β-keto nitriles.

  14. Nb effect in the nickel oxide-catalyzed low-temperature oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo; Ould-Chikh, Samy; Anjum, Dalaver Hussain; Sun, Miao; Biausque, Gregory; Basset, Jean-Marie; Caps, Valerie

    2012-01-01

    evaporation method from nickel nitrate and ammonium niobium oxalate. These consist in NiO nanocrystallites (7-13 nm) associated, at Nb contents >3 at.%., with an amorphous thin layer (1-2 nm) of a niobium-rich mixed oxide with a structure similar

  15. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase*

    Science.gov (United States)

    Mishanina, Tatiana V.; Yadav, Pramod K.; Ballou, David P.; Banerjee, Ruma

    2015-01-01

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be −123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450

  16. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    Science.gov (United States)

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-09

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Hydrous Ferric Oxides in Sediment Catalyze Formation of Reactive Oxygen Species during Sulfide Oxidation

    Directory of Open Access Journals (Sweden)

    Sarah A. Murphy

    2016-11-01

    Full Text Available Abstract: This article describes the formation of reactive oxygen species as a result of the oxidation of dissolved sulfide by Fe(III-containing sediments suspended in oxygenated seawater over the pH range 7.00 and 8.25. Sediment samples were obtained from across the coastal littoral zone in South Carolina, US, at locations from the beach edge to the forested edge of a Spartina dominated estuarine salt marsh and suspended in aerated seawater. Reactive oxygen species (superoxide and hydrogen peroxide production was initiated in sediment suspensions by the addition of sodium bisulfide. The subsequent loss of HS-, formation of Fe(II (as indicated by Ferrozine, and superoxide and hydrogen peroxide were monitored over time. The concentration of superoxide rose from the baseline and then persisted at an apparent steady state concentration of approximately 500 nanomolar at pH 8.25 and 200 nanomolar at pH 7.00 respectively until >97% hydrogen sulfide was consumed. Measured superoxide was used to predict hydrogen peroxide yield based on superoxide dismutation. Dismutation alone quantitatively predicted hydrogen peroxide formation at pH 8.25 but over predicted hydrogen peroxide formation at pH 7 by a factor of approximately 102. Experiments conducted with episodic spikes of added hydrogen peroxide indicated rapid hydrogen peroxide consumption could account for its apparent low instantaneous yield, presumably the result of its reaction with Fe(II species, polysulfides or bisulfite. All sediment samples were characterized for total Fe, Cu, Mn, Ni, Co and hydrous ferric oxide by acid extraction followed by mass spectrometric or spectroscopic characterization. Sediments with the highest loadings of hydrous ferric oxide were the only sediments that produced significant dissolved Fe(II species or ROS as a result of sulfide exposure.

  18. Catalyzed oxidation reactions. IV. Picolinic acid catalysis of chromic acid oxidations

    International Nuclear Information System (INIS)

    Rocek, J.; Peng, T.Y.

    1977-01-01

    Picolinic acid and several closely related acids are effective catalysts in the chromic acid oxidation of primary and secondary alcohols; the oxidation of other substrates is accelerated only moderately. The reaction is first order in chromium-(VI), alcohol, and picolinic acid; it is second order in hydrogen ions at low acidity and approaches acidity independence at high perchloric acid concentrations. A primary deuterium kinetic isotope effect is observed at high but not at low acidities. At low acidity the reaction has a considerably lower activation energy and more negative activation entropy than at higher acidities. The reactive intermediate in the proposed mechanism is a negatively charged termolecular complex formed from chromic acid, picolinic acid, and alcohol. The rate-limiting step of the reaction changes with the acidity of the solution. At higher acidities the intermediate termolecular complex is formed reversibly and the overall reaction rate is determined by the rate of its decomposition into reaction products; at low acidities the formation of the complex is irreversible and hence rate limiting. Picolinic acids with a substituent in the 6 position show a greatly reduced catalytic activity. This observation is interpreted as suggesting a square pyramidal or octahedral structure for the reactive chromium (VI) intermediate. The temperature dependence of the deuterium isotope effect has been determined and the significance of the observed large values for E/sub a//sup D/ - E/sub a//sup H/ and A/sup D//A/sup H/ is discussed

  19. Degradation of Perfluorooctanoic Acid and Perfluoroctane Sulfonate by Enzyme Catalyzed Oxidative Humification Reactions

    Science.gov (United States)

    Huang, Q.

    2016-12-01

    Poly- and perfluoroalkyl substances (PFASs) are alkyl based chemicals having multiple or all hydrogens replaced by fluorine atoms, and thus exhibit high thermal and chemical stability and other unusual characteristics. PFASs have been widely used in a wide variety of industrial and consumer products, and tend to be environmentally persistent. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two representative PFASs that have drawn particular attention because of their ubiquitous presence in the environment, resistance to degradation and toxicity to animals. This study examined the decomposition of PFOA and PFOS in enzyme catalyzed oxidative humification reactions (ECOHR), a class of reactions that are ubiquitous in the environment involved in natural organic humification. Reaction rates and influential factors were examined, and high-resolution mass spectrometry was used to identify possible products. Fluorides and partially fluorinated compounds were identified as likely products from PFOA and PFOS degradation, which were possibly formed via a combination of free radical decomposition, rearrangements and coupling processes. The findings suggest that PFOA and PFOS may be transformed during humification, and ECOHR can potentially be used for the remediation of these chemicals.

  20. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    International Nuclear Information System (INIS)

    Huanosta-Gutiérrez, T.; Dantas, Renato F.; Ramírez-Zamora, R.M.; Esplugas, S.

    2012-01-01

    Highlights: ► We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. ► The copper slag was effective to remove organic pollutants (phenol) from water. ► During experimentation, Cu and Fe leaching were not higher than the acceptable levels. ► Slag/H 2 O 2 /UV and slag/H 2 O 2 treatments promoted biodegradability increment of the contaminated water. ► The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H 2 O 2 (slag/H 2 O 2 ) and H 2 O 2 /UV (slag/H 2 O 2 /UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H 2 O 2 /UV and slag/H 2 O 2 treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD 5 /TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  1. Rh(III) -Catalyzed C-H Olefination of Benzoic Acids under Mild Conditions using Oxygen as the Sole Oxidant.

    Science.gov (United States)

    Jiang, Quandi; Zhu, Changlei; Zhao, Huaiqing; Su, Weiping

    2016-02-04

    Phthalide skeletons have been synthesized for the first time through a Rh(III) -catalyzed C-H olefination of benzoic acids under mild conditions using oxygen as the sole oxidant. Aromatic acids bearing a variety of functional groups could react with diverse alkenes to afford the desired cyclized lactones or uncyclized alkenylarenes in moderate-to-excellent yields. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Regioselective C2 Oxidative Olefination of Indoles and Pyrroles through Cationic Rhodium(III)-Catalyzed C-H Bond Activation.

    Science.gov (United States)

    Li, Bin; Ma, Jianfeng; Xie, Weijia; Song, Haibin; Xu, Shansheng; Wang, Baiquan

    2013-09-02

    Be economic with your atoms! An efficient Rh-catalyzed oxidative olefination of indoles and pyrroles with broad substrate scope and tolerance is reported. The catalytic reaction proceeds with excellent regio- and stereoselectivity. The directing group N,N-dimethylcarbamoyl was crucial for the reaction and could be removed easily. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Huanosta-Gutierrez, T. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Dantas, Renato F., E-mail: falcao@angel.qui.ub.es [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Ramirez-Zamora, R.M. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Esplugas, S. [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. Black-Right-Pointing-Pointer The copper slag was effective to remove organic pollutants (phenol) from water. Black-Right-Pointing-Pointer During experimentation, Cu and Fe leaching were not higher than the acceptable levels. Black-Right-Pointing-Pointer Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments promoted biodegradability increment of the contaminated water. Black-Right-Pointing-Pointer The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H{sub 2}O{sub 2} (slag/H{sub 2}O{sub 2}) and H{sub 2}O{sub 2}/UV (slag/H{sub 2}O{sub 2}/UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD{sub 5}/TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  4. Synthesis of Formate Esters and Formamides Using an Au/TiO2-Catalyzed Aerobic Oxidative Coupling of Paraformaldehyde

    Directory of Open Access Journals (Sweden)

    Ioannis Metaxas

    2017-12-01

    Full Text Available A simple method for the synthesis of formate esters and formamides is presented based on the Au/TiO2-catalyzed aerobic oxidative coupling between alcohols or amines and formaldehyde. The suitable form of formaldehyde is paraformaldehyde, as cyclic trimeric 1,3,5-trioxane is inactive. The reaction proceeds via the formation of an intermediate hemiacetal or hemiaminal, respectively, followed by the Au nanoparticle-catalyzed aerobic oxidation of the intermediate. Typically, the oxidative coupling between formaldehyde (2 equiv and amines occurs quantitatively at room temperature within 4 h, and there is no need to add a base as in analogous coupling reactions. The oxidative coupling between formaldehyde (typically 3 equiv and alcohols is unprecedented and occurs more slowly, yet in good to excellent yields and selectivity. Minor side-products (2–12% from the acetalization of formaldehyde by the alcohol are also formed. The catalyst is recyclable and can be reused after a simple filtration in five consecutive runs with a small loss of activity.

  5. N-oxide as a traceless oxidizing directing group: mild rhodium(III)-catalyzed C-H olefination for the synthesis of ortho-alkenylated tertiary anilines.

    Science.gov (United States)

    Huang, Xiaolei; Huang, Jingsheng; Du, Chenglong; Zhang, Xingyi; Song, Feijie; You, Jingsong

    2013-12-02

    Double role: A traceless directing group also acts as an internal oxidant in a novel Rh(III) -catalyzed protocol developed for the synthesis of ortho-alkenylated tertiary anilines. A five-membered cyclometalated Rh(III) complex is proposed as a plausible intermediate and confirmed by X-ray crystallographic analysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Oxidation reactions catalyzed by cobalt ions in a photocatalytic system based on solutions of lecit hin vesicles

    International Nuclear Information System (INIS)

    Tsvetkov, I.M.; Lymar, S.V.; Parmon, V.N.; Zamaraev, V.I.

    1986-01-01

    The features of the light-induced transfer of electrons through the membranes of lecithin vesicles with an electron carrier, viz., cetyl viologen, incorporated in the lipid bilayer have been studied with the use of the water-soluble trisbipyridyl complex of ruthenium (II) as a photocatalyst. It has been shown that additions of cobalt ions to the systems just indicated are capable of catalyzing the oxidation processes of organic compounds (most probably, of lecithin), the role of the oxidizing agent being played by Ru(bpy) 3 3+ , which forms upon the transfer of an electron to the acceptor Fe(CN) 6 3- through the lipid membrane The possibility of the utilization of the photocatalytic oxidation of water to oxygen under the action of visible light has been discussed

  7. Low-temperature, mineral-catalyzed air oxidation: a possible new pathway for PAH stabilization in sediments and soils.

    Science.gov (United States)

    Ghislain, Thierry; Faure, Pierre; Biache, Coralie; Michels, Raymond

    2010-11-15

    Reactivity of polycyclic aromatic hydrocarbons (PAHs) in the subsurface is of importance to environmental assessment, as they constitute a highly toxic hazard. Understanding their reactivity in the long term in natural recovering systems is thus a key issue. This article describes an experimental investigation on the air oxidation of fluoranthene (a PAH abundant in natural systems polluted by industrial coal use) at 100°C on different mineral substrates commonly found in soils and sediments (quartz sand, limestone, and clay). Results demonstrate that fluoranthene is readily oxidized in the presence of limestone and clay, leading to the formation of high molecular weight compounds and a carbonaceous residue as end product especially for clay experiments. As demonstrated elsewhere, the experimental conditions used permitted the reproduction of the geochemical pathway of organic matter observed under natural conditions. It is therefore suggested that low-temperature, mineral-catalyzed air oxidation is a mechanism relevant to the stabilization of PAHs in sediments and soils.

  8. Platinum-Catalyzed Terminal-Selective C(sp3)–H Oxidation of Aliphatic Amines

    Science.gov (United States)

    Lee, Melissa; Sanford, Melanie S.

    2016-01-01

    This paper describes the terminal-selective Pt-catalyzed C(sp3)–H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol %. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (ii) it electronically deactivates the C–H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp3)–H oxidation of a variety of primary, secondary and tertiary amines. PMID:26439251

  9. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: Kinetics, reaction pathways, and formation of brominated by-products

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yuefei [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Kong, Deyang [Nanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC, Nanjing 210042 (China); Lu, Junhe, E-mail: jhlu@njau.edu.cn [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Jin, Hao; Kang, Fuxing; Yin, Xiaoming; Zhou, Quansuo [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-08-05

    Highlights: • Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A. • Phenolic moiety was the reactive site for sulfate radical attack. • Pathways include β-scission, oxidation, debromination and coupling reactions. • Brominated disinfection by-products were found during TBBPA degradation. • Humic acid inhibited TBBPA degradation but promoted DBPs formation. - Abstract: Degradation of tetrabromobisphenol A (TBBPA), a flame retardant widely spread in the environment, in Co(II) catalyzed peroxymonosulfate (PMS) oxidation process was systematically explored. The second-order-rate constant for reaction of sulfate radical (SO{sub 4}{sup ·−}) with TBBPA was determined to be 5.27 × 10{sup 10} M{sup −1} s{sup −1}. Apparently, degradation of TBBPA showed first-order kinetics to the concentrations of both Co(II) and PMS. The presence of humic acid (HA) and bicarbonate inhibited TBBPA degradation, most likely due to their competition for SO{sub 4}{sup ·−}. Degradation of TBBPA was initiated by an electron abstraction from one of the phenolic rings. Detailed transformation pathways were proposed, including β-scission of isopropyl bridge, phenolic ring oxidation, debromination and coupling reactions. Further oxidative degradation of intermediates in Co(II)/PMS process yielded brominated disinfection by-products (Br-DBPs) such as bromoform and brominated acetic acids. Evolution profile of Br-DBPs showed an initially increasing and then decreasing pattern with maximum concentrations occurring around 6–10 h. The presence of HA enhanced the formation of Br-DBPs significantly. These findings reveal potentially important, but previously unrecognized, formation of Br-DBPs during sulfate radical-based oxidation of bromide-containing organic compounds that may pose toxicological risks to human health.

  10. Copper-catalyzed oxidative desulfurization-oxygenation of thiocarbonyl compounds using molecular oxygen: an efficient method for the preparation of oxygen isotopically labeled carbonyl compounds.

    Science.gov (United States)

    Shibahara, Fumitoshi; Suenami, Aiko; Yoshida, Atsunori; Murai, Toshiaki

    2007-06-21

    A novel copper-catalyzed oxidative desulfurization reaction of thiocarbonyl compounds, using molecular oxygen as an oxidant and leading to formation of carbonyl compounds, has been developed, and the utility of the process is demonstrated by its application to the preparation of a carbonyl-18O labeled sialic acid derivative.

  11. Steady-state oxidation of cholesterol catalyzed by cholesterol oxidase in lipid bilayer membranes on platinum electrodes

    International Nuclear Information System (INIS)

    Bokoch, Michael P.; Devadoss, Anando; Palencsar, Mariela S.; Burgess, James D.

    2004-01-01

    Cholesterol oxidase is immobilized in electrode-supported lipid bilayer membranes. Platinum electrodes are initially modified with a self-assembled monolayer of thiolipid. A vesicle fusion method is used to deposit an outer leaflet of phospholipids onto the thiolipid monolayer forming a thiolipid/lipid bilayer membrane on the electrode surface. Cholesterol oxidase spontaneously inserts into the electrode-supported lipid bilayer membrane from solution and is consequently immobilized to the electrode surface. Cholesterol partitions into the membrane from buffer solutions containing cyclodextrin. Cholesterol oxidase catalyzes the oxidation of cholesterol by molecular oxygen, forming hydrogen peroxide as a product. Amperometric detection of hydrogen peroxide for continuous solution flow experiments are presented, where flow was alternated between cholesterol solution and buffer containing no cholesterol. Steady-state anodic currents were observed during exposures of cholesterol solutions ranging in concentration from 10 to 1000 μM. These data are consistent with the Michaelis-Menten kinetic model for oxidation of cholesterol as catalyzed by cholesterol oxidase immobilized in the lipid bilayer membrane. The cholesterol detection limit is below 1 μM for cholesterol solution prepared in buffered cyclodextrin. The response of the electrodes to low density lipoprotein solutions is increased upon addition of cyclodextrin. Evidence for adsorption of low density lipoprotein to the electrode surface is presented

  12. Amidines for versatile ruthenium(II)-catalyzed oxidative C-H activations with internal alkynes and acrylates.

    Science.gov (United States)

    Li, Jie; John, Michael; Ackermann, Lutz

    2014-04-25

    Cationic ruthenium complexes derived from KPF6 or AgOAc enabled efficient oxidative CH functionalizations on aryl and heteroaryl amidines. Thus, oxidative annulations of diversely decorated internal alkynes provided expedient access to 1-aminoisoquinolines, while catalyzed C-H activations with substituted acrylates gave rise to structurally novel 1-iminoisoindolines. The powerful ruthenium(II) catalysts displayed a remarkably high site-, regio- and, chemoselectivity. Therefore, the catalytic system proved tolerant of a variety of important electrophilic functional groups. Detailed mechanistic studies provided strong support for the cationic ruthenium(II) catalysts to operate by a facile, reversible C-H activation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Gold nanoparticle catalyzed oxidation of alcohols - From biomass to commodity chemicals

    DEFF Research Database (Denmark)

    Taarning, Esben; Christensen, Claus H.

    2007-01-01

    and glycerol are rich in alcohol functionalities. Thus, a key step in utilizing these resources lies in the conversion of this functional group. Benign oxidations involving oxygen as the stoichiometric oxidant are important from both an environmental and economical perspective. Recently, it has become clear...... that supported gold nanoparticles are highly active catalysts for oxidizing alcohols and aldehydes using oxygen as the oxidant. This perspective will focus on the use of gold nanoparticles in the oxidation of renewables....

  14. Reaction of CO2 with propylene oxide and styrene oxide catalyzed by a chromium(III) amine-bis(phenolate) complex.

    Science.gov (United States)

    Dean, Rebecca K; Devaine-Pressing, Katalin; Dawe, Louise N; Kozak, Christopher M

    2013-07-07

    A diamine-bis(phenolate) chromium(III) complex, {CrCl[O2NN'](BuBu)}2 catalyzes the copolymerization of propylene oxide with carbon dioxide. The synthesis of this metal complex is straightforward and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities when the reaction is performed at room temperature. Performing the reaction at elevated temperatures causes the selective synthesis of propylene carbonate. The copolymerization activity for propylene oxide and carbon dioxide, as well as the coupling of carbon dioxide and styrene oxide to give styrene carbonate are presented.

  15. Novel Oxidative Desulfurization of a Model Fuel with H2O2 Catalyzed by AlPMo12O40 under Phase Transfer Catalyst-Free Conditions

    OpenAIRE

    José da Silva, Márcio; Faria dos Santos, Lidiane

    2013-01-01

    A novel process was developed for oxidative desulfurization (ODS) in the absence of a phase transfer catalyst (PTC) using only Keggin heteropolyacids and their aluminum salts as catalysts. Reactions were performed in biphasic mixtures of isooctane/acetonitrile, with dibenzothiophene (DBT) as a model sulfur compound and hydrogen peroxide as the oxidant. Remarkably, only the AlPMo12O40-catalyzed reactions resulted in complete oxidation of DBT into DBT sulfone, which was totally extracted by ace...

  16. Kinetic Studies on Enzyme-Catalyzed Reactions: Oxidation of Glucose, Decomposition of Hydrogen Peroxide and Their Combination

    Science.gov (United States)

    Tao, Zhimin; Raffel, Ryan A.; Souid, Abdul-Kader; Goodisman, Jerry

    2009-01-01

    The kinetics of the glucose oxidase-catalyzed reaction of glucose with O2, which produces gluconic acid and hydrogen peroxide, and the catalase-assisted breakdown of hydrogen peroxide to generate oxygen, have been measured via the rate of O2 depletion or production. The O2 concentrations in air-saturated phosphate-buffered salt solutions were monitored by measuring the decay of phosphorescence from a Pd phosphor in solution; the decay rate was obtained by fitting the tail of the phosphorescence intensity profile to an exponential. For glucose oxidation in the presence of glucose oxidase, the rate constant determined for the rate-limiting step was k = (3.0 ± 0.7) ×104 M−1s−1 at 37°C. For catalase-catalyzed H2O2 breakdown, the reaction order in [H2O2] was somewhat greater than unity at 37°C and well above unity at 25°C, suggesting different temperature dependences of the rate constants for various steps in the reaction. The two reactions were combined in a single experiment: addition of glucose oxidase to glucose-rich cell-free media caused a rapid drop in [O2], and subsequent addition of catalase caused [O2] to rise and then decrease to zero. The best fit of [O2] to a kinetic model is obtained with the rate constants for glucose oxidation and peroxide decomposition equal to 0.116 s−1 and 0.090 s−1 respectively. Cellular respiration in the presence of glucose was found to be three times as rapid as that in glucose-deprived cells. Added NaCN inhibited O2 consumption completely, confirming that oxidation occurred in the cellular mitochondrial respiratory chain. PMID:19348778

  17. 4-Alkyl radical extrusion in the cytochrome P-450-catalyzed oxidation of 4-alkyl-1,4-dihydropyridines

    International Nuclear Information System (INIS)

    Lee, J.S.; Jacobsen, N.E.; Ortiz de Montellano, P.R.

    1988-01-01

    Rat liver microsomal cytochrome P-450 oxidizes the 4-methyl, 4-ethyl (DDEP), and 4-isopropyl derivatives of 3,5-bis(carbethoxy)-2,6-dimethyl-1,4,-dihydropyridine to mixtures of the corresponding 4-alkyl and 4-dealkyl pyridines. A fraction of the total microsomal enzyme is destroyed in the process. The 4-dealkyl to 4-alkyl pyridine metabolite ratio, the extent of cytochrome P-450 destruction, and the rate of spin-trapped radical accumulation are correlated in a linear inverse manner with the homolytic or heterolytic bond energies of the 4-alkyl groups of the 4-alkyl-1,4-dihydropyridines. No isotope effects are observed on the pyridine matabolite ratio, the destruction of cytochrome P-450, or the formation of ethyl radicals when [4- 2 H]DDEP is used instead of DDEP. N-Methyl- and N-ethyl-DDEP undergo N-dealkylation rather than aromatization but N-phenyl-DDEP is oxidized to a mixture of the 4-ethyl and 4-deethyl N-phenylpyridinium metabolites. In contrast to the absence of an isotope effect in the oxidation of DDEP, the 4-deethyl to 4-ethyl N-phenylpyridinium metabolite ratio increases 6-fold when N-phenyl[4- 2 H]DDEP is used. The results support the hypothesis that cytochrome P-450 catalyzes the oxidation of dihydropyridines to radical cations and show that the radical cations decay to nonradical products by multiple, substituent-dependent, mechanisms

  18. Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products

    Energy Technology Data Exchange (ETDEWEB)

    Achyuthan, Komandoor; Adams, Paul; Simmons, Blake; Singh, Anup

    2011-07-13

    Lignin composition (monolignol types of coniferyl, sinapyl or p-coumaryl alcohol) is causally related to biomass recalcitrance. We describe multiwavelength (220, 228, 240, 250, 260, 290, 295, 300, 310 or 320 nm) absorption spectroscopy of coniferyl alcohol and its laccase- or peroxidase-catalyzed products during real time kinetic, pseudo-kinetic and endpoint analyses, in optical turn on or turn off modes, under acidic or basic conditions. Reactions in microwell plates and 100 mu L volumes demonstrated assay miniaturization and high throughput screening capabilities. Bathochromic and hypsochromic shifts along with hyperchromicity or hypochromicity accompanied enzymatic oxidations by laccase or peroxidase. The limits of detection and quantitation of coniferyl alcohol averaged 2.4 and 7.1 mu M respectively, with linear trend lines over 3 to 4 orders of magnitude. Coniferyl alcohol oxidation was evident within 10 minutes or with 0.01 mu g/mL laccase and 2 minutes or 0.001 mu g/mL peroxidase. Detection limit improved to 1.0 mu M coniferyl alcohol with Km of 978.7 +/- 150.7 mu M when examined at 260 nm following 30 minutes oxidation with 1.0 mu g/mL laccase. Our assays utilized the intrinsic spectroscopic properties of coniferyl alcohol or its oxidation products for enabling detection, without requiring chemical synthesis or modification of the substrate or product(s). These studies facilitate lignin compositional analyses and augment pretreatment strategies for reducing biomass recalcitrance.

  19. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag

    International Nuclear Information System (INIS)

    Tsai, T.T.; Kao, C.M.

    2009-01-01

    The contamination of subsurface soils with petroleum hydrocarbons is a widespread environmental problem. The objective of this study was to evaluate the potential of applying waste basic oxygen furnace slag (BOF slag) as the catalyst to enhance the Fenton-like oxidation to remediate fuel oil or diesel contaminated soils. The studied controlling factors that affect the removal efficiency of petroleum hydrocarbons included concentrations of H 2 O 2 , BOF slag dosages, types of petroleum hydrocarbons (e.g., fuel oil and diesel), and types of iron mineral. Experimental results indicate that oxidation of petroleum hydrocarbon via the Fenton-like process can be enhanced with the addition of BOF slag. Results from the X-ray powder diffraction analysis reveal that the major iron type of BOF slag/sandy loam system was iron mineral (e.g., α-Fe 2 O 3 and α-FeOOH). Approximately 76% and 96% of fuel oil and diesel removal were observed (initial total petroleum hydrocarbon (TPH) concentration = 10,000 mg kg -1 ), respectively, with the addition of 15% of H 2 O 2 and 100 g kg -1 of BOF slag after 40 h of reaction. Because BOF slag contains extractable irons such as amorphous iron and soluble iron, it can act as an iron sink to supply iron continuously for Fenton-like oxidation. Results demonstrate that Fenton-like oxidation catalyzed by BOF slag is a potential method to be able to remediate petroleum-hydrocarbon contaminated soils efficiently and effectively.

  20. Preparation of Biocolorant and Eco-Dyeing Derived from Polyphenols Based on Laccase-Catalyzed Oxidative Polymerization

    Directory of Open Access Journals (Sweden)

    Fubang Wang

    2018-02-01

    Full Text Available Natural products have been believed to be a promising source to obtain ecological dyes and pigments. Plant polyphenol is a kind of significant natural compound, and tea provides a rich source of polyphenols. In this study, biocolorant derived from phenolic compounds was generated based on laccase-catalyzed oxidative polymerization, and eco-dyeing of silk and wool fabrics with pigments derived from tea was investigated under the influence of pH variation. This work demonstrated that the dyeing property was better under acidic conditions compared to alkalinity, and fixation rate was the best when pH value was 3. Furthermore, breaking strength of dyed fabrics sharply reduced under the condition of pH 11. Eventually, the dyeing method was an eco-friendly process, which was based on bioconversion, and no mordant was added during the process of dyeing.

  1. Luminescent chemical waves in the Cu(II)-catalyzed oscillatory oxidation of SCN- ions with hydrogen peroxide.

    Science.gov (United States)

    Pekala, Katarzyna; Jurczakowski, Rafał; Lewera, Adam; Orlik, Marek

    2007-05-10

    The oscillatory oxidation of thiocyanate ions with hydrogen peroxide, catalyzed by Cu2+ ions in alkaline media, was so far observed as occurring simultaneously in the entire space of the batch or flow reactor. We performed this reaction for the first time in the thin-layer reactor and observed the spatiotemporal course of the above process, in the presence of luminol as the chemiluminescent indicator. A series of luminescent patterns periodically starting from the random reaction center and spreading throughout the entire solution layer was reported. For a batch-stirred system, the bursts of luminescence were found to correlate with the steep decreases of the oscillating Pt electrode potential. These novel results open possibilities for further experimental and theoretical investigations of those spatiotemporal patterns, including studies of the mechanism of this chemically complex process.

  2. On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation

    KAUST Repository

    Quinet, Elodie

    2009-12-10

    The kinetics of CO oxidation, H2 oxidation and preferential CO oxidation (PrOx) over Au/Al2O3 catalysts have been investigated. The catalysts with the smallest particles (∼2 nm) are the most active for all three reactions. As previously observed, the presence of H2 greatly promotes CO oxidation, which becomes faster than CO-free H2 oxidation at low temperature. From these results and on the basis of previous works, we propose a complete PrOx mechanism. The reaction involves Au-OOH, Au-OH and Au-H intermediates, also involved in H2 oxidation, and benefits from the presence of low-coordination sites. © 2009 Elsevier Inc. All rights reserved.

  3. On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation

    KAUST Repository

    Quinet, Elodie; Piccolo, Laurent; Morfin, Franck; Avenier, Priscilla; Diehl, Fabrice; Caps, Valerie; Rousset, Jean Luc

    2009-01-01

    The kinetics of CO oxidation, H2 oxidation and preferential CO oxidation (PrOx) over Au/Al2O3 catalysts have been investigated. The catalysts with the smallest particles (∼2 nm) are the most active for all three reactions. As previously observed, the presence of H2 greatly promotes CO oxidation, which becomes faster than CO-free H2 oxidation at low temperature. From these results and on the basis of previous works, we propose a complete PrOx mechanism. The reaction involves Au-OOH, Au-OH and Au-H intermediates, also involved in H2 oxidation, and benefits from the presence of low-coordination sites. © 2009 Elsevier Inc. All rights reserved.

  4. Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems

    International Nuclear Information System (INIS)

    Zhan, Guoqiang; Zhang, Lixia; Tao, Yong; Wang, Yujian; Zhu, Xiaoyu; Li, Daping

    2014-01-01

    In this paper we report ammonia oxidation to nitrogen gas using microbes as biocatalyst on the anode, with polarized electrode (+600 mV vs. Ag/AgCl) as electron acceptor. In batch experiments, the maximal rate of ammonia-N oxidation by the mixed culture was ∼ 60 mg L −1 d −1 , and nitrogen gas was the main products in anode compartment. Cyclic voltammetry for testing the electroactivity of the anodic biofilms revealed that an oxidation peak appeared at +600 mV (vs. Ag/AgCl), whereas the electrode without biofilms didn’t appear oxidation peak, indicating that the bioanode had good electroactivities for ammonia oxidation. Microbial community analysis of 16S rRNA genes based on high throughput sequencing indicated that the combination of the dominant genera of Nitrosomonas, Comamonas and Paracocus could be important for the electron transfer from ammonia oxidation to anode

  5. Biomimetic oxidation of piperine and piplartine catalyzed by iron(III) and manganese(III) porphyrins.

    Science.gov (United States)

    Schaab, Estela Hanauer; Crotti, Antonio Eduardo Miller; Iamamoto, Yassuko; Kato, Massuo Jorge; Lotufo, Letícia Veras Costa; Lopes, Norberto Peporine

    2010-01-01

    Synthetic metalloporphyrins, in the presence of monooxygen donors, are known to mimetize various reactions of cytochrome P450 enzymes systems in the oxidation of drugs and natural products. The oxidation of piperine and piplartine by iodosylbenzene using iron(III) and manganese(III) porphyrins yielded mono- and dihydroxylated products, respectively. Piplartine showed to be a more reactive substrate towards the catalysts tested. The structures of the oxidation products were proposed based on electrospray ionization tandem mass spectrometry.

  6. Mn-Catalyzed Highly Efficient Aerobic Oxidative Hydroxyazidation of Olefins: A Direct Approach to β-Azido Alcohols.

    Science.gov (United States)

    Sun, Xiang; Li, Xinyao; Song, Song; Zhu, Yuchao; Liang, Yu-Feng; Jiao, Ning

    2015-05-13

    An efficient Mn-catalyzed aerobic oxidative hydroxyazidation of olefins for synthesis of β-azido alcohols has been developed. The aerobic oxidative generation of azido radical employing air as the terminal oxidant is disclosed as the key process for this transformation. The reaction is appreciated by its broad substrate scope, inexpensive Mn-catalyst, high efficiency, easy operation under air, and mild conditions at room temperature. This chemistry provides a novel approach to high value-added β-azido alcohols, which are useful precursors of aziridines, β-amino alcohols, and other important N- and O-containing heterocyclic compounds. This chemistry also provides an unexpected approach to azido substituted cyclic peroxy alcohol esters. A DFT calculation indicates that Mn catalyst plays key dual roles as an efficient catalyst for the generation of azido radical and a stabilizer for peroxyl radical intermediate. Further calculation reasonably explains the proposed mechanism for the control of C-C bond cleavage or for the formation of β-azido alcohols.

  7. Preparation of deuterated heterocyclic five-membered ring compounds (furan, thiophene, pyrrole, and derivatives) by base-catalyzed hydrogen isotope exchange with deuterium oxide

    International Nuclear Information System (INIS)

    Heinrich, K.H.; Herrmann, M.; Moebius, G.; Sprinz, H.

    1984-01-01

    Several deuterated heterocyclic compounds of the type of furan,thiophene and pyrrole were prepared by base-catalyzed proton exchange with deuterium oxide at temperatures above 423 K in a closed system. The determination of deuterium and its distribution within the molecules was carried out by mass spectrometry and 1 H nmr spectrometry. (author)

  8. Gold-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural in Water at Ambient Temperature

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Woodley, John

    2009-01-01

    The aerobic oxidation of 5-hydroxymethylfurfural, a versatile biomass-derived chemical, is examined in water with a titania-supported gold-nanoparticle catalyst at ambient temperature (30 degrees C). The selectivity of the reaction towords 2,5-furandicarboxylic acid and the intermediate oxidation...

  9. A hydrogen-bonding network is important for oxidation and isomerization in the reaction catalyzed by cholesterol oxidase

    International Nuclear Information System (INIS)

    Lyubimov, Artem Y.; Chen, Lin; Sampson, Nicole S.; Vrielink, Alice

    2009-01-01

    The importance of active-site electrostatics for oxidative and reductive half-reactions in a redox flavoenzyme (cholesterol oxidase) have been investigated by a combination of biochemistry and atomic resolution crystallography. A detailed examination of active-site dynamics demonstrates that the oxidation of substrate and the re-oxidation of the flavin cofactor by molecular oxygen are linked by a single active-site asparagine. Cholesterol oxidase is a flavoenzyme that catalyzes the oxidation and isomerization of 3β-hydroxysteroids. Structural and mutagenesis studies have shown that Asn485 plays a key role in substrate oxidation. The side chain makes an NH⋯π interaction with the reduced form of the flavin cofactor. A N485D mutant was constructed to further test the role of the amide group in catalysis. The mutation resulted in a 1800-fold drop in the overall k cat . Atomic resolution structures were determined for both the N485L and N485D mutants. The structure of the N485D mutant enzyme (at 1.0 Å resolution) reveals significant perturbations in the active site. As predicted, Asp485 is oriented away from the flavin moiety, such that any stabilizing interaction with the reduced flavin is abolished. Met122 and Glu361 form unusual hydrogen bonds to the functional group of Asp485 and are displaced from the positions they occupy in the wild-type active site. The overall effect is to disrupt the stabilization of the reduced FAD cofactor during catalysis. Furthermore, a narrow transient channel that is shown to form when the wild-type Asn485 forms the NH⋯π interaction with FAD and that has been proposed to function as an access route of molecular oxygen, is not observed in either of the mutant structures, suggesting that the dynamics of the active site are altered

  10. Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: mechanism and kinetics.

    Science.gov (United States)

    Pham, A Ninh; Waite, T David

    2014-08-01

    Spontaneous oxidation of dopamine (DA) and the resultant formation of free radical species within dopamine neurons of the substantia nigra (SN) is thought to bestow a considerable oxidative load upon these neurons and may contribute to their vulnerability to degeneration in Parkinson's disease (PD). An understanding of DA oxidation under physiological conditions is thus critical to understanding the relatively selective vulnerability of these dopaminergic neurons in PD and may support the development of novel neuro-protective approaches for this disorder. In this study, the oxidation of dopamine (0.2-10μM) was investigated both in the absence and the presence of copper (0.01-0.4μM), a redox active metal that is present at considerable concentrations in the SN, over a range of background chloride concentrations (0.01-0.7M), different oxygen concentrations and at physiological pH7.4. DA was observed to oxidize extremely slowly in the absence of copper and at moderate rates only in the presence of copper but without chloride. The oxidation of DA however was significantly enhanced in the presence of both copper and chloride with the rate of DA oxidation greatest at intermediate chloride concentrations (0.05-0.2M). The variability of the catalytic effect of Cu(II) on DA oxidation at different chloride concentrations can be explained and successfully modeled by appropriate consideration of the reaction of Cu(II) species with DA and the conversion of Cu(I) to Cu(II) through oxygenation. This model suggests that the speciation of Cu(II) and Cu(I) is critically important to the kinetics of DA oxidation and thus the vulnerability to degradation of dopaminergic neuron in the brain milieu. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. An Alternative Reaction Pathway for Iridium Catalyzed Water Oxidation Driven by CAN

    KAUST Repository

    Bucci, Alberto

    2016-06-10

    The generation of solar fuels by means of a photosynthetic apparatus strongly relies on the development of an efficient water oxidation catalyst (WOC). Cerium ammonium nitrate (CAN) is the most commonly used sacrificial oxidant to explore the potentiality of WOCs. It is usually assumed that CAN has the unique role to oxidatively energize WOCs, making them capable to offer a low energy reaction pathway to transform H2O to O2. Herein we show that CAN might have a much more relevant and direct role in WO, mainly related to the capture and liberation of O–O containing molecular moieties.

  12. An Alternative Reaction Pathway for Iridium Catalyzed Water Oxidation Driven by CAN

    KAUST Repository

    Bucci, Alberto; Menendez Rodriguez, Gabriel; Bellachioma, Gianfranco; Zuccaccia, Cristiano; Poater, Albert; Cavallo, Luigi; Macchioni, Alceo

    2016-01-01

    The generation of solar fuels by means of a photosynthetic apparatus strongly relies on the development of an efficient water oxidation catalyst (WOC). Cerium ammonium nitrate (CAN) is the most commonly used sacrificial oxidant to explore the potentiality of WOCs. It is usually assumed that CAN has the unique role to oxidatively energize WOCs, making them capable to offer a low energy reaction pathway to transform H2O to O2. Herein we show that CAN might have a much more relevant and direct role in WO, mainly related to the capture and liberation of O–O containing molecular moieties.

  13. o-Naphthoquinone-Catalyzed Aerobic Oxidation of Amines to (Ket)imines: A Modular Catalyst Approach.

    Science.gov (United States)

    Goriya, Yogesh; Kim, Hun Young; Oh, Kyungsoo

    2016-10-07

    A modular aerobic oxidation of amines to imines has been achieved using an ortho-naphthoquinone (o-NQ) catalyst. The cooperative catalyst system of o-NQ and Cu(OAc) 2 enabled the formation of homocoupled imines from benzylamines, while the presence of TFA helped the formation of cross-coupled imines in excellent yields. The current mild aerobic oxidation protocol could also be applied to the oxidation of secondary amines to imines or ketimines with the help of cocatalyst, Ag 2 CO 3 , with excellent yields.

  14. Desain Topologi Jaringan Kabel Nirkabel PDII-LIPI dengan Cisco Three-Layered Hierarchical menggunakan NDLC

    Directory of Open Access Journals (Sweden)

    MUHAMMAD TEGUH KURNIAWAN

    2016-02-01

    Full Text Available ABSTRAK Saat ini Teknologi Informasi (TI merupakan salah satu hal yang penting dalam suatu perusahaan. Dalam penerapan TI diperlukan infrastruktur jaringan yang dapat mendukung pertukaran informasi baik melalui intranet mauapun internet yang diakses melalui kabel maupun nirkabel. Salah satu pendukung Infrastruktur jaringan adalah topologi jaringan yang handal.  PDII-LIPI (Pusat Dokumentasi dan Informasi Ilmiah - Lembaga Ilmu Pengetahuan Indonesia Jakarta merupakan lembaga di bawah LIPI yang berfokus pada tiga kegiatan yaitu  jasa  dokumentasi,  jasa  informasi, pembinaan dan pengembangan bidang dokumentasi informasi. Untuk mendukung proses bisnis berbasis TI di PDII-LIPI diperlukan infrastruktur jaringan yang memadai. Oleh karena itu, pada penelitian ini dilakukan perancangan infrastruktur jaringan kabel dan nirkabel di PDII-LIPI dengan menggunakan metode Network Development Life Cycle (NDLC. Metode ini berguna dalam mengembangkan infrastruktur jaringan kabel dan nirkabel dan dapat memantau kinerja jaringan. Dengan penelitian ini diharapkan dapat membantu PDII-LIPI dalam membangun, dan mengembangkan infrastruktur jaringan kabel dan nirkabel agar lebih optimal dalam mendukung proses bisnis yang ada. Kata Kunci: topologi jaringan, kabel, nirkabel, NDLC, PDII-LIPI. ABSTRACT Information Technology (IT has significant influence to a company. The robust network IT infrastructure should be installed earlier, supporting the information exchange through internet or intranet and it also should be easily accessible via wired or wireless network.  PDII-LIPI (Pusat Dokumentasi dan Informasi Ilmiah - Lembaga Ilmu Pengetahuan Indonesia Jakarta is an organization under LIPI which focuses on three processes for instance the documentation services, the  information services and the development of  documentation services. PDII-LIPI has already used IT to support those businesses so they must carefully choose the best network IT infrastructure. To

  15. Desain Topologi Jaringan Kabel Nirkabel PDII-LIPI dengan Cisco Three-Layered Hierarchical menggunakan NDLC

    Directory of Open Access Journals (Sweden)

    MUHAMMAD TEGUH KURNIAWAN

    2016-01-01

    Full Text Available ABSTRAK Saat ini Teknologi Informasi (TI merupakan salah satu hal yang penting dalam suatu perusahaan. Dalam penerapan TI diperlukan infrastruktur jaringan yang dapat mendukung pertukaran informasi baik melalui intranet mauapun internet yang diakses melalui kabel maupun nirkabel. Salah satu pendukung Infrastruktur jaringan adalah topologi jaringan yang handal.  PDII-LIPI (Pusat Dokumentasi dan Informasi Ilmiah - Lembaga Ilmu Pengetahuan Indonesia Jakarta merupakan lembaga di bawah LIPI yang berfokus pada tiga kegiatan yaitu  jasa  dokumentasi,  jasa  informasi, pembinaan dan pengembangan bidang dokumentasi informasi. Untuk mendukung proses bisnis berbasis TI di PDII-LIPI diperlukan infrastruktur jaringan yang memadai. Oleh karena itu, pada penelitian ini dilakukan perancangan infrastruktur jaringan kabel dan nirkabel di PDII-LIPI dengan menggunakan metode Network Development Life Cycle (NDLC. Metode ini berguna dalam mengembangkan infrastruktur jaringan kabel dan nirkabel dan dapat memantau kinerja jaringan. Dengan penelitian ini diharapkan dapat membantu PDII-LIPI dalam membangun, dan mengembangkan infrastruktur jaringan kabel dan nirkabel agar lebih optimal dalam mendukung proses bisnis yang ada. Kata Kunci: topologi jaringan, kabel, nirkabel, NDLC, PDII-LIPI.   ABSTRACT Information Technology (IT has significant influence to a company. The robust network IT infrastructure should be installed earlier, supporting the information exchange through internet or intranet and it also should be easily accessible via wired or wireless network.  PDII-LIPI (Pusat Dokumentasi dan Informasi Ilmiah - Lembaga Ilmu Pengetahuan Indonesia Jakarta is an organization under LIPI which focuses on three processes for instance the documentation services, the  information services and the development of  documentation services. PDII-LIPI has already used IT to support those businesses so they must carefully choose the best network IT infrastructure. To

  16. Water oxidation catalyzed by molecular di- and nonanuclear Fe complexes: importance of a proper ligand framework.

    Science.gov (United States)

    Das, Biswanath; Lee, Bao-Lin; Karlsson, Erik A; Åkermark, Torbjörn; Shatskiy, Andrey; Demeshko, Serhiy; Liao, Rong-Zhen; Laine, Tanja M; Haukka, Matti; Zeglio, Erica; Abdel-Magied, Ahmed F; Siegbahn, Per E M; Meyer, Franc; Kärkäs, Markus D; Johnston, Eric V; Nordlander, Ebbe; Åkermark, Björn

    2016-09-14

    The synthesis of two molecular iron complexes, a dinuclear iron(iii,iii) complex and a nonanuclear iron complex, based on the dinucleating ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(1H-benzo[d]imidazole-4-carboxylic acid) is described. The two iron complexes were found to drive the oxidation of water by the one-electron oxidant [Ru(bpy)3](3+).

  17. KEMAS ULANG INFORMASI UNTUK PEMENUHAN KEBUTUHAN INFORMASI USAHA KECIL MENENGAH: TINJAUAN ANALISIS DI PDII-LIPI

    Directory of Open Access Journals (Sweden)

    Tupan Tupan

    2016-03-01

    Full Text Available This purposed of study to determine: 1 the types of information packaging products; 2 the process of information repackaging; and 3 the complied effort to the user information needs of smart scale enterprises (UKM through PDII-LIPI information packs. Data of this study is a descriptive. Data collected by a discussion with the users or subscribers of information repackaging products of PDII-LIPI. The collected data are then be identified, analyzed, and interpreted the results and discussion chapter. The results of this study are known: 1 the types of information repackaging products of PDII-LIPI, namely: paket informasi teknologi, informasi kilat, pohon industri, panduan usaha, tinjauan literatur, fokus informasi indonesia, dan film animasi; 2 the process of making the package of information repackaging PDII-LIPI, namely the determination of topics, literature searching, analysis of the literature, making the design/template, duplication of information packing, and report generation; and 3 the efforts of institutions to complied the information needs of UKM through the product of information repackaging, namely: promotion, identification of needs, choosing the sources of information, product offerings, product evaluation utilization, and create innovative policies. In principle that the packaging of the information provided and created by PDII-LIPI had oriented by information needs of users, in particular to meet the UKM information needs.

  18. The mechanism of the catalytic oxidation of hydrogen sulfide: II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur

    NARCIS (Netherlands)

    Steijns, M.; Derks, F.; Verloop, A.; Mars, P.

    1976-01-01

    The kinetics of the catalytic oxidation of hydrogen sulfide by molecular oxygen have been studied in the temperature range 20–250 °C. The primary reaction product is sulfur which may undergo further oxidation to SO2 at temperatures above 200 °C. From the kinetics of this autocatalytic reaction we

  19. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, T.T. [Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Kao, C.M., E-mail: jkao@mail.nsysu.edu.tw [Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China)

    2009-10-15

    The contamination of subsurface soils with petroleum hydrocarbons is a widespread environmental problem. The objective of this study was to evaluate the potential of applying waste basic oxygen furnace slag (BOF slag) as the catalyst to enhance the Fenton-like oxidation to remediate fuel oil or diesel contaminated soils. The studied controlling factors that affect the removal efficiency of petroleum hydrocarbons included concentrations of H{sub 2}O{sub 2}, BOF slag dosages, types of petroleum hydrocarbons (e.g., fuel oil and diesel), and types of iron mineral. Experimental results indicate that oxidation of petroleum hydrocarbon via the Fenton-like process can be enhanced with the addition of BOF slag. Results from the X-ray powder diffraction analysis reveal that the major iron type of BOF slag/sandy loam system was iron mineral (e.g., {alpha}-Fe{sub 2}O{sub 3} and {alpha}-FeOOH). Approximately 76% and 96% of fuel oil and diesel removal were observed (initial total petroleum hydrocarbon (TPH) concentration = 10,000 mg kg{sup -1}), respectively, with the addition of 15% of H{sub 2}O{sub 2} and 100 g kg{sup -1} of BOF slag after 40 h of reaction. Because BOF slag contains extractable irons such as amorphous iron and soluble iron, it can act as an iron sink to supply iron continuously for Fenton-like oxidation. Results demonstrate that Fenton-like oxidation catalyzed by BOF slag is a potential method to be able to remediate petroleum-hydrocarbon contaminated soils efficiently and effectively.

  20. Structural and Mechanistic Insights into Hemoglobin-catalyzed Hydrogen Sulfide Oxidation and the Fate of Polysulfide Products

    Energy Technology Data Exchange (ETDEWEB)

    Vitvitsky, Victor; Yadav, Pramod K.; An, Sojin; Seravalli, Javier; Cho, Uhn-Soo; Banerjee, Ruma (Michigan-Med); (UNL)

    2017-02-17

    Hydrogen sulfide is a cardioprotective signaling molecule but is toxic at elevated concentrations. Red blood cells can synthesize H2S but, lacking organelles, cannot dispose of H2S via the mitochondrial sulfide oxidation pathway. We have recently shown that at high sulfide concentrations, ferric hemoglobin oxidizes H2S to a mixture of thiosulfate and iron-bound polysulfides in which the latter species predominates. Here, we report the crystal structure of human hemoglobin containing low spin ferric sulfide, the first intermediate in heme-catalyzed sulfide oxidation. The structure provides molecular insights into why sulfide is susceptible to oxidation in human hemoglobin but is stabilized against it in HbI, a specialized sulfide-carrying hemoglobin from a mollusk adapted to life in a sulfide-rich environment. We have also captured a second sulfide bound at a postulated ligand entry/exit site in the α-subunit of hemoglobin, which, to the best of our knowledge, represents the first direct evidence for this site being used to access the heme iron. Hydrodisulfide, a postulated intermediate at the junction between thiosulfate and polysulfide formation, coordinates ferric hemoglobin and, in the presence of air, generated thiosulfate. At low sulfide/heme iron ratios, the product distribution between thiosulfate and iron-bound polysulfides was approximately equal. The iron-bound polysulfides were unstable at physiological glutathione concentrations and were reduced with concomitant formation of glutathione persulfide, glutathione disulfide, and H2S. Hence, although polysulfides are unlikely to be stable in the reducing intracellular milieu, glutathione persulfide could serve as a persulfide donor for protein persulfidation, a posttranslational modification by which H2S is postulated to signal.

  1. Complementation of biotransformations with chemical C-H oxidation: copper-catalyzed oxidation of tertiary amines in complex pharmaceuticals.

    Science.gov (United States)

    Genovino, Julien; Lütz, Stephan; Sames, Dalibor; Touré, B Barry

    2013-08-21

    The isolation, quantitation, and characterization of drug metabolites in biological fluids remain challenging. Rapid access to oxidized drugs could facilitate metabolite identification and enable early pharmacology and toxicity studies. Herein, we compared biotransformations to classical and new chemical C-H oxidation methods using oxcarbazepine, naproxen, and an early compound hit (phthalazine 1). These studies illustrated the low preparative efficacy of biotransformations and the inability of chemical methods to oxidize complex pharmaceuticals. We also disclose an aerobic catalytic protocole (CuI/air) to oxidize tertiary amines and benzylic CH's in drugs. The reaction tolerates a broad range of functionalities and displays a high level of chemoselectivity, which is not generally explained by the strength of the C-H bonds but by the individual structural chemotype. This study represents a first step toward establishing a chemical toolkit (chemotransformations) that can selectively oxidize C-H bonds in complex pharmaceuticals and rapidly deliver drug metabolites.

  2. Multicomponent kinetic analysis and theoretical studies on the phenolic intermediates in the oxidation of eugenol and isoeugenol catalyzed by laccase.

    Science.gov (United States)

    Qi, Yan-Bing; Wang, Xiao-Lei; Shi, Ting; Liu, Shuchang; Xu, Zhen-Hao; Li, Xiqing; Shi, Xuling; Xu, Ping; Zhao, Yi-Lei

    2015-11-28

    Laccase catalyzes the oxidation of natural phenols and thereby is believed to initialize reactions in lignification and delignification. Numerous phenolic mediators have also been applied in laccase-mediator systems. However, reaction details after the primary O-H rupture of phenols remain obscure. In this work two types of isomeric phenols, EUG (eugenol) and ISO (trans-/cis-isoeugenol), were used as chemical probes to explore the enzymatic reaction pathways, with the combined methods of time-resolved UV-Vis absorption spectra, MCR-ALS, HPLC-MS, and quantum mechanical (QM) calculations. It has been found that the EUG-consuming rate is linear to its concentration, while the ISO not. Besides, an o-methoxy quinone methide intermediate, (E/Z)-4-allylidene-2-methoxycyclohexa-2,5-dienone, was evidenced in the case of EUG with the UV-Vis measurement, mass spectra and TD-DFT calculations; in contrast, an ISO-generating phenoxyl radical, a (E/Z)-2-methoxy-4-(prop-1-en-1-yl) phenoxyl radical, was identified in the case of ISO. Furthermore, QM calculations indicated that the EUG-generating phenoxyl radical (an O-centered radical) can easily transform into an allylic radical (a C-centered radical) by hydrogen atom transfer (HAT) with a calculated activation enthalpy of 5.3 kcal mol(-1) and then be fast oxidized to the observed eugenol quinone methide, rather than an O-radical alkene addition with barriers above 12.8 kcal mol(-1). In contrast, the ISO-generating phenoxyl radical directly undergoes a radical coupling (RC) process, with a barrier of 4.8 kcal mol(-1), while the HAT isomerization between O- and C-centered radicals has a higher reaction barrier of 8.0 kcal mol(-1). The electronic conjugation of the benzyl-type radical and the aromatic allylic radical leads to differentiation of the two pathways. These results imply that competitive reaction pathways exist for the nascent reactive intermediates generated in the laccase-catalyzed oxidation of natural phenols, which is

  3. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klobukowski, Erik [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallic complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system and

  4. Demonstration test and evaluation of Ultraviolet/Ultraviolet Catalyzed Peroxide Oxidation for Groundwater Remediation at Oak Ridge K-25 Site

    International Nuclear Information System (INIS)

    1994-03-01

    We demonstrated, tested and evaluated a new ultraviolet (UV) lamp integrated with an existing commercial technology employing UV catalyzed peroxide oxidation to destroy organics in groundwater at an Oak Ridge K-25 site. The existing commercial technology is the perox-pure trademark process of Peroxidation Systems Incorporated (PSI) that employs standard UV lamp technology to catalyze H 2 O 2 into OH radicals, which attack many organic molecules. In comparison to classical technologies for remediation of groundwater contaminated with organics, the perox-pure trademark process not only is cost effective but also reduces contaminants to harmless by-products instead of transferring the contaminants from one medium to another. Although the perox-pure trademark process is cost effective against many organics, it is not effective for some organic contaminants of interest to DOE such as TCA, which has the highest concentration of the organics at the K-25 test site. Contaminants such as TCA are treated more readily by direct photolysis using short wavelength UV light. WJSA has been developing a unique UV lamp which is very efficient in the short UV wavelength region. Consequently, combining this UV lamp with the perox-pure trademark process results in a means for treating essentially all organic contaminants. In the program reported here, the new UV lamp lifetime was improved and the lamp integrated into a PSI demonstration trailer. Even though this UV lamp operated at less than optimum power and UV efficiency, the destruction rate for the highest concentration organic (TCA) was more than double that of the commercial unit. An optimized UV lamp may double again the destruction rate; i.e., a factor of four greater than the commercial system. The demonstration at K-25 included tests with (1) the commercial PSI system, (2) the new UV lamp-based system and (3) the commercial PSI and new UV lamp systems in series

  5. RESULTS OF COPPER CATALYZED PEROXIDE OXIDATION (CCPO) OF TANK 48H SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.; Pareizs, J.; Newell, J.; Fondeur, F.; Nash, C.; White, T.; Fink, S.

    2012-08-14

    Savannah River National Laboratory (SRNL) performed a series of laboratory-scale experiments that examined copper-catalyzed hydrogen peroxide (H{sub 2}O{sub 2}) aided destruction of organic components, most notably tetraphenylborate (TPB), in Tank 48H simulant slurries. The experiments were designed with an expectation of conducting the process within existing vessels of Building 241-96H with minimal modifications to the existing equipment. Results of the experiments indicate that TPB destruction levels exceeding 99.9% are achievable, dependent on the reaction conditions. The following observations were made with respect to the major processing variables investigated. A lower reaction pH provides faster reaction rates (pH 7 > pH 9 > pH 11); however, pH 9 reactions provide the least quantity of organic residual compounds within the limits of species analyzed. Higher temperatures lead to faster reaction rates and smaller quantities of organic residual compounds. Higher concentrations of the copper catalyst provide faster reaction rates, but the highest copper concentration (500 mg/L) also resulted in the second highest quantity of organic residual compounds. Faster rates of H{sub 2}O{sub 2} addition lead to faster reaction rates and lower quantities of organic residual compounds. Testing with simulated slurries continues. Current testing is examining lower copper concentrations, refined peroxide addition rates, and alternate acidification methods. A revision of this report will provide updated findings with emphasis on defining recommended conditions for similar tests with actual waste samples.

  6. Copper-Catalyzed Oxidative Reaction of β-Keto Sulfones with Alcohols via C-S Bond Cleavage: Reaction Development and Mechanism Study.

    Science.gov (United States)

    Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi

    2018-02-16

    A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Copper(I)/TEMPO Catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes with Ambient Air

    Science.gov (United States)

    Hoover, Jessica M.; Steves, Janelle E.; Stahl, Shannon S.

    2012-01-01

    This protocol describes a practical laboratory-scale method for aerobic oxidation of primary alcohols to aldehydes, using a chemoselective CuI/TEMPO catalyst system. The catalyst is prepared in situ from commercially available reagents, and the reactions are performed in a common organic solvent (acetonitrile) with ambient air as the oxidant. Three different reaction conditions and three procedures for the isolation and purification of the aldehyde product are presented. The oxidations of eight different alcohols, described here, include representative examples of each reaction condition and purification method. Reaction times vary from 20 min to 24 h, depending on the alcohol, while the purification methods each take about 2 h. The total time necessary for the complete protocol ranges from 3 – 26 h. PMID:22635108

  8. Oxidation of Phenol by Hydrogen Peroxide Catalyzed by Metal-Containing Poly(amidoxime Grafted Starch

    Directory of Open Access Journals (Sweden)

    Hany El-Hamshary

    2011-11-01

    Full Text Available Polyamidoxime chelating resin was obtained from polyacrylonitrile (PAN grafted starch. The nitrile groups of the starch-grafted polyacrylonitrile (St-g-PAN were converted into amidoximes by reaction with hydroxylamine under basic conditions. The synthesized graft copolymer and polyamidoxime were characterized by FTIR, TGA and elemental microanalysis. Metal chelation of the polyamidoxime resin with iron, copper and zinc has been studied. The produced metal-polyamidoxime polymer complexes were used as catalysts for the oxidation of phenol using H2O2 as oxidizing agent. The oxidation of phenol depends on the central metal ion present in the polyamidoxime complex. Reuse of M-polyamidoxime catalyst/H2O2 system showed a slight decrease in catalytic activities for all M-polyamidoxime catalysts.

  9. The effect of oxidation on the enzyme-catalyzed hydrolytic biodegradation of poly(urethane)s.

    Science.gov (United States)

    Labow, Rosalind S; Tang, Yiwen; McCloskey, Christopher B; Santerre, J Paul

    2002-01-01

    Although the biodegradation of polyurethanes (PU) by oxidative and hydrolytic agents has been studied extensively, few investigations have reported on the combination of their effects. Since neutrophils (PMN) arrive at an implanted device first and release HOCl, followed by monocyte-derived macrophages (MDM) which have potent esterase activities and oxidants of their own, the combined effect of oxidative and hydrolytic degradation on radiolabeled polycarbonate-polyurethanes (PCNU)s was investigated and compared to that of a polyester-PU (PESU) and a polyether-PU (PEU). The PCNUs were synthesized with PCN (MW = 1,000), and butanediol (14C-BD) and one of two diisocyanates, hexane-1,6-diisocyanate (14C-HDI) or methylene bis-p-phenyl diisocyanate (MDI). The PESU and PEU were synthesized using toluene-diisocyanate (14C-TDI), with polycaprolactone and polytetramethylene oxide as soft segments respectively, and ethylene diamine as the chain extender. The effect of pre-treatment with 0.1 mM HOC1 for 1 week on the HDI-based PCNUs and both TDI-based PUs resulted in a significant inhibition of radiolabel release (RR) elicited by cholesterol esterase (CE), when compared to buffer alone, whereas the MDI-based PCNU showed a small but significant increase. When PMN were activated on the HDI-based PCNU surface with phorbol myristate acetate (PMA), HOCl was released for 3 h, and was almost completely abolished by sodium azide (AZ). Simultaneously, the PMN-elicited RR, shown previously to be due to the esterolytic cleavage by serine proteases, was inhibited approximately 75% by PMA-activation of the cells, but significantly increased relative to the latter when AZ was added. Both in vitro oxidation by HOCl and the release of HOCI by PMN were associated with the inhibition of RR and suggest perturbations between oxidative and hydrolytic mechanisms of biodegradation.

  10. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature.

    Science.gov (United States)

    Kim, Jinho; Stahl, Shannon S

    2013-07-05

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4'- t Bu 2 bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N -oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst is the turnover-limiting step of the reaction.

  11. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature

    OpenAIRE

    Kim, Jinho; Stahl, Shannon S.

    2013-01-01

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4′-tBu2bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N-oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst...

  12. 1,4-Diamino-2-butanone, a wide-spectrum microbicide, yields reactive species by metal-catalyzed oxidation.

    Science.gov (United States)

    Soares, Chrislaine O; Alves, Maria Julia M; Bechara, Etelvino J H

    2011-06-15

    The α-aminoketone 1,4-diamino-2-butanone (DAB), a putrescine analogue, is highly toxic to various microorganisms, including Trypanosoma cruzi. However, little is known about the molecular mechanisms underlying DAB's cytotoxic properties. We report here that DAB (pK(a) 7.5 and 9.5) undergoes aerobic oxidation in phosphate buffer, pH 7.4, at 37°C, catalyzed by Fe(II) and Cu(II) ions yielding NH(4)(+) ion, H(2)O(2), and 4-amino-2-oxobutanal (oxoDAB). OxoDAB, like methylglyoxal and other α-oxoaldehydes, is expected to cause protein aggregation and nucleobase lesions. Propagation of DAB oxidation by superoxide radical was confirmed by the inhibitory effect of added SOD (50 U ml-1) and stimulatory effect of xanthine/xanthine oxidase, a source of superoxide radical. EPR spin trapping studies with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) revealed an adduct attributable to DMPO-HO(•), and those with α-(4-pyridyl-1-oxide)-N-tert-butylnitrone or 3,5-dibromo-4-nitrosobenzenesulfonic acid, a six-line adduct assignable to a DAB(•) resonant enoyl radical adduct. Added horse spleen ferritin (HoSF) and bovine apo-transferrin underwent oxidative changes in tryptophan residues in the presence of 1.0-10 mM DAB. Iron release from HoSF was observed as well. Assays performed with fluorescein-encapsulated liposomes of cardiolipin and phosphatidylcholine (20:80) incubated with DAB resulted in extensive lipid peroxidation and consequent vesicle permeabilization. DAB (0-10 mM) administration to cultured LLC-MK2 epithelial cells caused a decline in cell viability, which was inhibited by preaddition of either catalase (4.5 μM) or aminoguanidine (25 mM). Our findings support the hypothesis that DAB toxicity to several pathogenic microorganisms previously described may involve not only reported inhibition of polyamine metabolism but also DAB pro-oxidant activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Carbon Support Surface Effects in the Gold-Catalyzed Oxidation of 5-Hydroxymethylfurfural

    NARCIS (Netherlands)

    Donoeva, Baira; Masoud, Nazila; De Jongh, Petra E.

    2017-01-01

    Oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid is an important transformation for the production of bio-based polymers. Carbon-supported gold catalysts hold great promise for this transformation. Here we demonstrate that the activity, selectivity, and stability of the

  14. A Phase Transfer Catalyzed Permanganate Oxidation: Preparation of Vanillin from Isoeugenol Acetate.

    Science.gov (United States)

    Lampman, Gary M.; Sharpe, Steven D.

    1983-01-01

    Background information, laboratory procedures, and results are provided for the preparation of vanillin from isoeugenol acetate. Reaction scheme used to prepare the vanillin and a table indicating the different oxidation experiments carried out on isoeugenol or isoeugenol acetate are also provided. (JN)

  15. CO oxidation catalyzed by ag nanoparticles supported on SnO/CeO2

    KAUST Repository

    Khan, Inayatali; Sajid, Nida K M; Badshah, Amin; Wattoo, Muhammad Hamid Sarwar; Anjum, Dalaver H.; Nadeem, Muhammad Amtiaz

    2015-01-01

    by the XRD technique due to sintering inside the 3D array channels of CeO2 during the calcination process. The Ag-Sn/CeO2 (4%) catalyst was the most efficient and exhibited 100% CO oxidation at 100 °C due to small particle size and strong electronic

  16. Solvent and temperature effects on the platinum-catalyzed oxidative coupling of 1-naphthols

    CSIR Research Space (South Africa)

    Maphoru, MV

    2015-08-01

    Full Text Available one-pot two-step oxidation of 1-naphthols to the diones (e.g. 81 % from 4-methoxy-1- naphthol). In most other solvents (reflux) naphthoquinones are observed as byproducts. In an attempt to optimize the yield of menadione, 30.5 % was obtained in boiling...

  17. Green Synthesis of Carvenone by Montmorillonite-Catalyzed Isomerization of 1,2-Limonene Oxide

    DEFF Research Database (Denmark)

    Nguyen, Thao-Tran Thi; Chau, Duy-Khiem Nguyen; Duus, Fritz

    2013-01-01

    Montmorillonite was considered as a good heterogeneous catalyst for the isomerization of 1,2-limonene oxide into car-venone under solvent-free condition. Both conventional heating and green activations were tested in this research. The microwave-assisted isomerization afforded carvenone in high...

  18. Facile synthesis of benzofurans via copper-catalyzed aerobic oxidative cyclization of phenols and alkynes.

    Science.gov (United States)

    Zeng, Wei; Wu, Wanqing; Jiang, Huanfeng; Huang, Liangbin; Sun, Yadong; Chen, Zhengwang; Li, Xianwei

    2013-07-28

    Regioselective synthesis of polysubstituted benzofurans using a copper catalyst and molecular oxygen from phenols and alkynes in a one-pot procedure has been reported. The transformation consists of a sequential nucleophilic addition of phenols to alkynes and oxidative cyclization. A wide variety of phenols and alkynes can be used in the same manner.

  19. Application of NAD(P)H oxidase for cofactor regeneration in dehydrogenase catalyzed oxidations

    DEFF Research Database (Denmark)

    Rehn, Gustav; Pedersen, Asbjørn Toftgaard; Woodley, John

    2016-01-01

    alcohol dehydrogenases. However, their effective use requires an effective regeneration of the oxidized nicotinamide cofactor (NAD(P)+), which is critical for the economic feasibility of the process. NAD(P)H oxidase is an enzyme class of particular interest for this cofactor regeneration since it enables...

  20. Heterogeneous oxidative desulfurization of diesel fuel catalyzed by mesoporous polyoxometallate-based polymeric hybrid.

    Science.gov (United States)

    Yang, Huawei; Jiang, Bin; Sun, Yongli; Zhang, Luhong; Huang, Zhaohe; Sun, Zhaoning; Yang, Na

    2017-07-05

    In this work, the simple preparation of novel polymer supported polyoxometallates (POMs) catalysts has been reported. Soluble task-specific cross-linked poly (ionic liquid) (PIL) was prepared with N,​N-​dimethyl-​dodecyl-​(4-​vinylbenzyl) ammonium chloride and divinylbenzene as co-monomers. The as-prepared cationic PILs were assembled with different commercial POMs to form the interlinked mesoporous catalysts, and the formation mechanism was provided. The catalytic oxidation activities of the catalysts were closely related to the formation pathway of their corresponding peroxide active species. The catalyst with H 2 W 12 O 42 10- as counterion, which exhibited the best activity in the oxidation of benzothiophene (BT) and dibenzothiophene (DBT) to sulfones in model oil with hydrogen peroxide (H 2 O 2 , 30wt%) as oxidant, was characterized by different techniques and systematically studied for its sulfur removal performance. As for the oxidative desulfurization of a real diesel, it was observed that almost all of the original sulfur compounds could be completely converted, and the catalyst could be reused for at least eight cycles without noticeable changes in both catalytic activity and chemical structure. In the end, a catalytic mechanism was put forward with the assistant of Raman analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor

    NARCIS (Netherlands)

    Rebrov, E.V.; Croon, de M.H.J.M.; Schouten, J.C.

    2002-01-01

    The ammonia oxidation reaction on supported polycrystalline platinum catalyst was investigated in an aluminum-based microreactor. An extensive set of reactions was included in the chemical reactor modeling to facilitate the construction of a kinetic model capable of satisfactory predictions for a

  2. The effect of Au on TiO2 catalyzed selective photocatalytic oxidation of cyclohexane

    NARCIS (Netherlands)

    Carneiro, J.T.; Carneiro, Joana T.; Savenije, Tom J.; Moulijn, Jacob A.; Mul, Guido

    2011-01-01

    Gold does not induce visible light activity of anatase Hombikat UV100 in the selective photo-oxidation of cyclohexane, as can be concluded from in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) measurements. Extremely small conductance values measured at 530 nm in Time

  3. Efficient Aerobic Oxidation of Cyclohexane to KA Oil Catalyzed by Pt ...

    Indian Academy of Sciences (India)

    127, No. 7, July 2015, pp. 1167–1172. c Indian Academy of Sciences. ... The catalyst was used for the partial oxidation of cyclohexane in a Parr type reactor. It was found that Pt-Sn supported on MWCNTs can act as an efficient catalyst for the partial ... version ratio with high selectivity for KA oil in a liquid ... These gases.

  4. Anaerobic Nitroxide-Catalyzed Oxidation of Alcohols Using the NO+/NO center dot Redox Pair

    Czech Academy of Sciences Publication Activity Database

    Holan, Martin; Jahn, Ullrich

    2014-01-01

    Roč. 16, č. 1 (2014), s. 58-61 ISSN 1523-7060 R&D Projects: GA ČR GA13-40188S Institutional support: RVO:61388963 Keywords : oxidation * nitroxides * aldehydes * alcohols * ketones * alkyl nitrites Subject RIV: CC - Organic Chemistry Impact factor: 6.364, year: 2014

  5. Remediation of Soil and Ground Water Contaminated with PAH using Heat and Fe(II)-EDTA Catalyzed Persulfate Oxidation

    International Nuclear Information System (INIS)

    Nadim, Farhad; Huang, Kun-Chang; Dahmani, Amine M.

    2006-01-01

    The feasibility of degrading 16 USEPA priority polycyclic aromatic (PAH) hydrocarbons (PAHs) with heat and Fe(II)-EDTA catalyzed persulfate oxidation was investigated in the laboratory. The experiments were conducted to determine the effects of temperature (i.e. 20 deg. C, 30 deg. C and 40 deg. C) and iron-chelate levels (i.e., 250 mg/L-, 375 mg/L- and 500 mg/L-Fe(II)) on the degradation of dissolved PAHs in aqueous systems, using a series of amber glass jars as the reactors that were placed on a shaker inside an incubator for temperature control. Each experiment was run in duplicate and had two controls (i.e., no persulfate in systems). Samples were collected after a reaction period of 144 hrs and measured for PAHs, pH and sodium persulfate levels. The extent of degradation of PAHs was determined by comparing the data for samples with the controls.The experimental results showed that persulfate oxidation under each of the tested conditions effectively degraded the 16 target PAHs. All of the targeted PAHs were degraded to below the instrument detection limits (∼4 μ/L) from a range of initial concentration (i.e., 5 μ/L for benzo(a)pyrene to 57 μ/L for Phenanthrene) within 144 hrs with 5 g/L of sodium persulfate at 20 deg. C, 30 deg. C and 40 deg. C. The data indicated that the persulfate oxidation was effective in degrading the PAHs and that external heat and iron catalysts might not be needed for the degradation of PAHs.The Fe(II)-EDTA catalyzed persulfate also effectively degraded PAHs in the study. In addition, the data on the variation of persulfate concentrations during the experiments indicated that Fe(II)-EDTA accelerated the consumption of persulfate ions.The obtained degradation data cannot be used to evaluate the influence of temperature and Fe(II) levels on the PAH degradation because the PAHs under each of the tested conditions were degraded to below the instrument detection limit within the first sampling point. However, these experiments have

  6. Oxidative kinetic resolution of racemic alcohols catalyzed by chiral ferrocenyloxazolinylphosphine-ruthenium complexes.

    Science.gov (United States)

    Nishibayashi, Yoshiaki; Yamauchi, Akiyoshi; Onodera, Gen; Uemura, Sakae

    2003-07-25

    Oxidative kinetic resolution of racemic secondary alcohols by using acetone as a hydrogen acceptor in the presence of a catalytic amount of [RuCl(2)(PPh(3))(ferrocenyloxazolinylphosphine)] (2) proceeds effectively to recover the corresponding alcohols in high yields with an excellent enantioselectivity. When 1-indanol is employed as a racemic alcohol, the oxidation proceeds quite smoothly even in the presence of 0.0025 mol % of the catalyst 2 to give an optically active 1-indanol in good yield with high enantioselectivity (up to 94% ee), where turnover frequency (TOF) exceeds 80,000 h(-1). From a practical viewpoint, the kinetic resolution is investigated in a large scale, optically pure (S)-1-indanol (75 g, 56% yield, >99% ee) being obtained from racemic 1-indanol (134 g) by employing this kinetic resolution method twice.

  7. Alkylselenite-catalyzed Oxidative Carbonylation of Amines: Density Functional Theory Study

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sun; Kim, Hoon Sik; Cheong, Minserk [Kyung Hee Univ., Seoul (Korea, Republic of)

    2012-11-15

    Ureas and carbamates have been conventionally produced by the reaction of amines with phosgene. However, phosgenation processes raise severe environmental concerns, which are attributed to the toxicity of phosgene and the formation of corrosive hydrogen chloride as a co-product. The considerable industrial interest in replacing current phosgene-based processes prompted several methods using non-phosgene routes including carbonylation of amines or nitro compounds and carbomethoxylation of amines with dialkylcarbonates. Among these, catalytic oxidative carbonylation of an amine in the presence of alcohol has been studied most extensively. Catalytic systems based on precious metals such as Rh and Pd are commonly used for this purpose, but most of these catalytic systems suffer from either low reactivity or severe reaction conditions such as high temperature and pressures. In conclusion, the facile change of selenium oxidation state by CO and O{sub 2} might be the main reason for the activity of the selenium catalyst for this reaction.

  8. Alkylselenite-catalyzed Oxidative Carbonylation of Amines: Density Functional Theory Study

    International Nuclear Information System (INIS)

    Hwang, Sun; Kim, Hoon Sik; Cheong, Minserk

    2012-01-01

    Ureas and carbamates have been conventionally produced by the reaction of amines with phosgene. However, phosgenation processes raise severe environmental concerns, which are attributed to the toxicity of phosgene and the formation of corrosive hydrogen chloride as a co-product. The considerable industrial interest in replacing current phosgene-based processes prompted several methods using non-phosgene routes including carbonylation of amines or nitro compounds and carbomethoxylation of amines with dialkylcarbonates. Among these, catalytic oxidative carbonylation of an amine in the presence of alcohol has been studied most extensively. Catalytic systems based on precious metals such as Rh and Pd are commonly used for this purpose, but most of these catalytic systems suffer from either low reactivity or severe reaction conditions such as high temperature and pressures. In conclusion, the facile change of selenium oxidation state by CO and O 2 might be the main reason for the activity of the selenium catalyst for this reaction

  9. Solvent-Free Selective Oxidation of Toluene with O2 Catalyzed by Metal Cation Modified LDHs and Mixed Oxides

    Directory of Open Access Journals (Sweden)

    Xiaoli Wang

    2016-01-01

    Full Text Available A series of metal cation modified layered-double hydroxides (LDHs and mixed oxides were prepared and used to be the selective oxidation of toluene with O2. The results revealed that the modified LDHs exhibited much higher catalytic performance than their parent LDH and the modified mixed oxides. Moreover, the metal cations were also found to play important roles in the catalytic performance and stabilities of modified catalysts. Under the optimal reaction conditions, the highest toluene conversion reached 8.7% with 97.5% of the selectivity to benzyldehyde; moreover, the catalytic performance remained after nine catalytic runs. In addition, the reaction probably involved a free-radical mechanism.

  10. Highly selective solid-phase extraction of trace Pd(II) by murexide functionalized halloysite nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Li Ruijun; He Qun; Hu Zheng; Zhang Shengrui [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000 (China); Zhang Lijun [Faculty of Science and Engineer, Curtin University, Perth, WA 6845 (Australia); Chang Xijun, E-mail: lirj2010@lzu.edu.cn [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000 (China)

    2012-02-03

    Graphical abstract: Murexide functionalized halloysite nanotubes have been developed to separate and concentrate trace Pd(II) from aqueous samples. Parameters that affected the sorption and elution efficiency were studied in column mode, and the new adsorbent presented high selectivity and adsorption capacity for the solid phase extraction of trace Pd(II). Highlights: Black-Right-Pointing-Pointer Murexide modified halloysite nanotubes as adsorbent has been reported originally. Black-Right-Pointing-Pointer This adsorbent has a unique selectivity for Pd(II) at pH 1.0. Black-Right-Pointing-Pointer This adsorbent had high adsorption capacity for Pd(II). Black-Right-Pointing-Pointer The precision and accuracy of the method are satisfactory. - Abstract: The originality on the high efficiency of murexide modified halloysite nanotubes as a new adsorbent of solid phase extraction has been reported to preconcentrate and separate Pd(II) in solution samples. The new adsorbent was confirmed by Fourier transformed infrared spectra, X-ray diffraction, scanning electron microscope, transmission electron microscope and N{sub 2} adsorption-desorption isotherms. Effective preconcentration conditions of analyte were examined using column procedures prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The effects of pH, the amount of adsorbent, the sample flow rate and volume, the elution condition and the interfering ions were optimized in detail. Under the optimized conditions, Pd(II) could be retained on the column at pH 1.0 and quantitatively eluted by 2.5 mL of 0.01 mol L{sup -1} HCl-3% thiourea solution at a flow rate of 2.0 mL min{sup -1}. The analysis time was 5 min. An enrichment factor of 120 was accomplished. Common interfering ions did not interfere in both separation and determination. The maximum adsorption capacity of the adsorbent at optimum conditions was found to be 42.86 mg g{sup -1} for Pd(II). The detection limit (3{sigma}) of

  11. Highly selective solid-phase extraction of trace Pd(II) by murexide functionalized halloysite nanotubes

    International Nuclear Information System (INIS)

    Li Ruijun; He Qun; Hu Zheng; Zhang Shengrui; Zhang Lijun; Chang Xijun

    2012-01-01

    Graphical abstract: Murexide functionalized halloysite nanotubes have been developed to separate and concentrate trace Pd(II) from aqueous samples. Parameters that affected the sorption and elution efficiency were studied in column mode, and the new adsorbent presented high selectivity and adsorption capacity for the solid phase extraction of trace Pd(II). Highlights: ► Murexide modified halloysite nanotubes as adsorbent has been reported originally. ► This adsorbent has a unique selectivity for Pd(II) at pH 1.0. ► This adsorbent had high adsorption capacity for Pd(II). ► The precision and accuracy of the method are satisfactory. - Abstract: The originality on the high efficiency of murexide modified halloysite nanotubes as a new adsorbent of solid phase extraction has been reported to preconcentrate and separate Pd(II) in solution samples. The new adsorbent was confirmed by Fourier transformed infrared spectra, X-ray diffraction, scanning electron microscope, transmission electron microscope and N 2 adsorption–desorption isotherms. Effective preconcentration conditions of analyte were examined using column procedures prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The effects of pH, the amount of adsorbent, the sample flow rate and volume, the elution condition and the interfering ions were optimized in detail. Under the optimized conditions, Pd(II) could be retained on the column at pH 1.0 and quantitatively eluted by 2.5 mL of 0.01 mol L −1 HCl–3% thiourea solution at a flow rate of 2.0 mL min −1 . The analysis time was 5 min. An enrichment factor of 120 was accomplished. Common interfering ions did not interfere in both separation and determination. The maximum adsorption capacity of the adsorbent at optimum conditions was found to be 42.86 mg g −1 for Pd(II). The detection limit (3σ) of the method was 0.29 ng mL −1 , and the relative standard deviation (RSD) was 3.1% (n = 11). The method was

  12. Early events in copper-ion catalyzed oxidation of α-synuclein

    DEFF Research Database (Denmark)

    Tiwari, Manish Kumar; Leinisch, Fabian; Sahin, Cagla

    2018-01-01

    -synuclein modification using six different molar ratios of Cu2+/H2O2/protein and Cu2+/H2O2/ascorbate/protein resulting in mild to moderate extents of oxidation. For a Cu2+/H2O2/protein molar ratio of 2.3:7.8:1 only low levels of carbonyls were detected (0.078 carbonyls per protein), whereas a molar ratio of 4...

  13. CO oxidation catalyzed by Pt-embedded graphene: A first-principles investigation

    KAUST Repository

    Liu, Xin; Sui, Yanhui; Duan, Ting; Meng, Changong; Han, Yu

    2014-01-01

    We addressed the potential catalytic role of Pt-embedded graphene in CO oxidation by first-principles-based calculations. We showed that the combination of highly reactive Pt atoms and defects over graphene makes the Pt-embedded graphene a superior mono-dispersed atomic catalyst for CO oxidation. The binding energy of a single Pt atom onto monovacancy defects is up to -7.10 eV, which not only ensures the high stability of the embedded Pt atom, but also vigorously excludes the possibility of diffusion and aggregation of embedded Pt atoms. This strong interfacial interaction also tunes the energy level of Pt-d states for the activation of O2, and promotes the formation and dissociation of the peroxide-like intermediate. The catalytic cycle of CO oxidation is initiated through the Langmuir-Hinshelwood mechanism, with the formation of a peroxide-like intermediate by the coadsorbed CO and O2, by the dissociation of which the CO2 molecule and an adsorbed O atom are formed. Then, another gaseous CO will react with the remnant O atom and make the embedded Pt atom available for the subsequent reaction. The calculated energy barriers for the formation and dissociation of the peroxide-like intermediate are as low as 0.33 and 0.15 eV, respectively, while that for the regeneration of the embedded Pt atom is 0.46 eV, indicating the potential high catalytic performance of Pt-embedded graphene for low temperature CO oxidation.

  14. Pd2+ and Cu2+ catalyzed oxidative cross-coupling of mercaptoacetylenes and arylboronic acids

    Czech Academy of Sciences Publication Activity Database

    Henke, Adam; Šrogl, Jiří

    2011-01-01

    Roč. 47, č. 14 (2011), s. 4282-4284 ISSN 1359-7345 R&D Projects: GA ČR GA203/08/1318 Grant - others:AV ČR(CZ) M200550908 Institutional research plan: CEZ:AV0Z40550506 Keywords : mercaptoacetylenes * oxidative cross - coupling * Cu/Pd catalysis Subject RIV: CC - Organic Chemistry Impact factor: 6.169, year: 2011

  15. Practical Synthesis of Amides via Copper/ABNO-Catalyzed Aerobic Oxidative Coupling of Alcohols and Amines.

    Science.gov (United States)

    Zultanski, Susan L; Zhao, Jingyi; Stahl, Shannon S

    2016-05-25

    A modular Cu/ABNO catalyst system has been identified that enables efficient aerobic oxidative coupling of alcohols and amines to amides. All four permutations of benzylic/aliphatic alcohols and primary/secondary amines are viable in this reaction, enabling broad access to secondary and tertiary amides. The reactions exhibit excellent functional group compatibility and are complete within 30 min-3 h at rt. All components of the catalyst system are commercially available.

  16. Mechanism of Water Oxidation Catalyzed by a Dinuclear Ruthenium Complex Bridged by Anthraquinone

    Directory of Open Access Journals (Sweden)

    Tohru Wada

    2017-02-01

    Full Text Available We synthesized 1,8-bis(2,2′:6′,2″-terpyrid-4′-ylanthraquinone (btpyaq as a new dimerizing ligand and determined its single crystal structure by X-ray analysis. The dinuclear Ruthenium complex [Ru2(µ-Cl(bpy2(btpyaq](BF43 ([3](BF43, bpy = 2,2′-bipyridine was used as a catalyst for water oxidation to oxygen with (NH42[Ce(NO36] as the oxidant (turnover numbers = 248. The initial reaction rate of oxygen evolution was directly proportional to the concentration of the catalyst and independent of the oxidant concentration. The cyclic voltammogram of [3](BF43 in water at pH 1.3 showed an irreversible catalytic current above +1.6 V (vs. SCE, with two quasi-reversible waves and one irreversible wave at E1/2 = +0.62, +0.82 V, and Epa = +1.13 V, respectively. UV-vis and Raman spectra of [3](BF43 with controlled-potential electrolysis at +1.40 V revealed that [Ru(IV=O O=Ru(IV]4+ is stable under electrolysis conditions. [Ru(III, Ru(II] species are recovered after dissociation of an oxygen molecule from the active species in the catalytic cycle. These results clearly indicate that an O–O bond is formed via [Ru(V=O O=Ru(IV]5+.

  17. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils.

    Science.gov (United States)

    Seki, Miharu; Oikawa, Jun-ichi; Taguchi, Taro; Ohnuki, Toshihiko; Muramatsu, Yasuyuki; Sakamoto, Kazunori; Amachi, Seigo

    2013-01-02

    Laccase oxidizes iodide to molecular iodine or hypoiodous acid, both of which are easily incorporated into natural soil organic matter. In this study, iodide sorption and laccase activity in 2 types of Japanese soil were determined under various experimental conditions to evaluate possible involvement of this enzyme in the sorption of iodide. Batch sorption experiment using radioactive iodide tracer ((125)I(-)) revealed that the sorption was significantly inhibited by autoclaving (121 °C, 40 min), heat treatment (80 and 100 °C, 10 min), γ-irradiation (30 kGy), N(2) gas flushing, and addition of reducing agents and general laccase inhibitors (KCN and NaN(3)). Interestingly, very similar tendency of inhibition was observed in soil laccase activity, which was determined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as a substrate. The partition coefficient (K(d): mL g(-1)) for iodide and specific activity of laccase in soils (Unit g(-1)) showed significant positive correlation in both soil samples. Addition of a bacterial laccase with an iodide-oxidizing activity to the soils strongly enhanced the sorption of iodide. Furthermore, the enzyme addition partially restored iodide sorption capacity of the autoclaved soil samples. These results suggest that microbial laccase is involved in iodide sorption on soils through the oxidation of iodide.

  18. Biochemistry and Ecology of Novel Cytochromes Catalyzing Fe(II) Oxidation by an Acidophilic Microbial Community

    Science.gov (United States)

    Singer, S. W.; Jeans, C. J.; Thelen, M. P.; Verberkmoes, N. C.; Hettich, R. C.; Chan, C. S.; Banfield, J. F.

    2007-12-01

    An acidophilic microbial community found in the Richmond Mine at Iron Mountain, CA forms abundant biofilms in extremely acidic (pHindicated that several variants of Cyt579 were present in Leptospirillum strains. Intact protein MS analysis identified the dominant variants in each biofilm and documented multiple N-terminal cleavage sites for Cyt579. By combining biochemical, geochemical and microbiological data, we established that the sequence variation and N-terminal processing of Cyt579 are selected by ecological conditions. In addition to the soluble Cyt579, the second cytochrome appears as a much larger protein complex of ~210 kDa predominant in the biofilm membrane fraction, and has an alpha-band absorption at 572 nm. The 60 kDa cytochrome subunit, Cyt572, resides in the outer membrane of LeptoII, and readily oxidizes Fe(II) at low pH (0.95 - 3.0). Several genes encoding Cyt572 were localized within a recombination hotspot between two strains of LeptoII, causing a large range of variation in the sequences. Genomic sequencing and MS proteomic studies established that the variants were also selected by ecological conditions. A general mechanistic model for Fe(II) oxidation has been developed from these studies. Initial Fe(II) oxidation by Cyt572 occurs at the outer membrane. Cyt572 then transfers electrons to Cyt579, perhaps representing an initial step in energy flow to the biofilm community. Amino acid variations and post-translational modifications of these unique cytochromes may represent fine-tuning of function in response to local environmental conditions.

  19. Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes.

    Science.gov (United States)

    Tejirian, Ani; Xu, Feng

    2010-12-01

    Enzymatic lignocellulose hydrolysis plays a key role in microbially driven carbon cycling and energy conversion and holds promise for bio-based energy and chemical industries. Cellulases (key lignocellulose-active enzymes) are prone to interference from various noncellulosic substances (e.g., metal ions). During natural cellulolysis, these substances may arise from other microbial activities or abiotic events, and during industrial cellulolysis, they may be derived from biomass feedstocks or upstream treatments. Knowledge about cellulolysis-inhibiting reactions is of importance for the microbiology of natural biomass degradation and the development of biomass conversion technology. Different metal ions, including those native to microbial activity or employed for biomass pretreatments, are often tested for enzymatic cellulolysis. Only a few metal ions act as inhibitors of cellulases, which include ferrous and ferric ions as well as cupric ion. In this study, we showed inhibition by ferrous/ferric ions as part of a more general effect from oxidative (or redox-active) metal ions and their complexes. The correlation between inhibition and oxidation potential indicated the oxidative nature of the inhibition, and the dependence on air established the catalytic role that iron ions played in mediating the dioxygen inhibition of cellulolysis. Individual cellulases showed different susceptibilities to inhibition. It is likely that the inhibition exerted its effect more on cellulose than on cellulase. Strong iron ion chelators and polyethylene glycols could mitigate the inhibition. Potential microbiological and industrial implications of the observed effect of redox-active metal ions on enzymatic cellulolysis, as well as the prevention and mitigation of this effect in industrial biomass conversion, are discussed.

  20. Copper-Catalyzed Eglinton Oxidative Homocoupling of Terminal Alkynes: A Computational Study

    Directory of Open Access Journals (Sweden)

    Jesús Jover

    2015-01-01

    Full Text Available The copper(II acetate mediated oxidative homocoupling of terminal alkynes, namely, the Eglinton coupling, has been studied with DFT methods. The mechanism of the whole reaction has been modeled using phenylacetylene as substrate. The obtained results indicate that, in contrast to some classical proposals, the reaction does not involve the formation of free alkynyl radicals and proceeds by the dimerization of copper(II alkynyl complexes followed by a bimetallic reductive elimination. The calculations demonstrate that the rate limiting-step of the reaction is the alkyne deprotonation and that more acidic substrates provide faster reactions, in agreement with the experimental observations.

  1. Palladium catalyzed direct oxidation of benzene with molecular oxygen to phenol

    International Nuclear Information System (INIS)

    Jintoku, Tetsuro; Takaki, Ken; Fujiwara, Yuzo; Fuchita, Yoshio; Hiraki, Katsuma.

    1990-01-01

    Direct phenol synthesis from benzene is currently one of the most important problems in modern chemistry. We have reported new phenol synthesis from benzene and O 2 via direct activation of a C-H aromatic bond by the Pd(OAc) 2 /phenanthroline catalyst system. The evidence for direct oxidation of benzene by O 2 was obtained using 18 O and 2 H isotopes. The mechanism was proposed on the basis of these results and the reactions of Ph-Pd σ complex intermediates. (author)

  2. "Nanorust"-catalyzed benign oxidation of amines for selective synthesis of nitriles.

    Science.gov (United States)

    Jagadeesh, Rajenahally V; Junge, Henrik; Beller, Matthias

    2015-01-01

    Organic nitriles constitute key precursors and central intermediates in organic synthesis. In addition, nitriles represent a versatile motif found in numerous medicinally and biologically important compounds. Generally, these nitriles are synthesized by traditional cyanation procedures using toxic cyanides. Herein, we report the selective and environmentally benign oxidative conversion of primary amines for the synthesis of structurally diverse aromatic, aliphatic and heterocyclic nitriles using a reusable "nanorust" (nanoscale Fe2 O3 )-based catalysts applying molecular oxygen. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Results Of Copper Catalyzed Peroxide Oxidation (CCPO) Of Tank 48H Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. B.; Pareizs, J. M.; Newell, J. D.; Fondeur, F. F.; Nash, C. A.; White, T. L.; Fink, S. D.

    2012-12-13

    Savannah River National Laboratory (SRNL) performed a series of laboratory-scale experiments that examined copper-catalyzed hydrogen peroxide (H{sub 2}O{sub 2}) aided destruction of organic components, most notably tetraphenylborate (TPB), in Tank 48H simulant slurries. The experiments were designed with an expectation of conducting the process within existing vessels of Building 241-96H with minimal modifications to the existing equipment. Results of the experiments indicate that TPB destruction levels exceeding 99.9% are achievable, dependent on the reaction conditions. A lower reaction pH provides faster reaction rates (pH 7 > pH 9 > pH 11); however, pH 9 reactions provide the least quantity of organic residual compounds within the limits of species analyzed. Higher temperatures lead to faster reaction rates and smaller quantities of organic residual compounds. A processing temperature of 50°C as part of an overall set of conditions appears to provide a viable TPB destruction time on the order of 4 days. Higher concentrations of the copper catalyst provide faster reaction rates, but the highest copper concentration (500 mg/L) also resulted in the second highest quantity of organic residual compounds. The data in this report suggests 100-250 mg/L as a minimum. Faster rates of H{sub 2}O{sub 2} addition lead to faster reaction rates and lower quantities of organic residual compounds. An addition rate of 0.4 mL/hour, scaled to the full vessel, is suggested for the process. SRNL recommends that for pH adjustment, an acid addition rate 42 mL/hour, scaled to the full vessel, is used. This is the same addition rate used in the testing. Even though the TPB and phenylborates can be destroyed in a relative short time period, the residual organics will take longer to degrade to <10 mg/L. Low level leaching on titanium occurred, however, the typical concentrations of released titanium are very low (~40 mg/L or less). A small amount of leaching under these conditions is not

  4. Enzyme-Catalyzed Oxidation of 17β-Estradiol Using Immobilized Laccase from Trametes versicolor

    Science.gov (United States)

    Cardinal-Watkins, Chantale; Nicell, Jim A.

    2011-01-01

    Many natural and synthetic estrogens are amenable to oxidation through the catalytic action of oxidative enzymes such as the fungal laccase Trametes versicolor. This study focused on characterizing the conversion of estradiol (E2) using laccase that had been immobilized by covalent bonding onto silica beads contained in a bench-scale continuous-flow packed bed reactor. Conversion of E2 accomplished in the reactor declined when the temperature of the system was changed from room temperature to just above freezing at pH 5 as a result of a reduced rate of reaction rather than inactivation of the enzyme. Similarly, conversion increased when the system was brought to warmer temperatures. E2 conversion increased when the pH of the influent to the immobilized laccase reactor was changed from pH 7 to pH 5, but longer-term experiments showed that the enzyme is more stable at pH 7. Results also showed that the immobilized laccase maintained its activity when treating a constant supply of aqueous E2 at a low mean residence time over a 12-hour period and when treating a constant supply of aqueous E2 at a high mean residence time over a period of 9 days. PMID:21869925

  5. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2 in ionic liquid

    International Nuclear Information System (INIS)

    Zhu, Wenshuai; Xu, Yehai; Li, Huaming; Dai, Bilian; Xu, Hui; Wang, Chao; Chao, Yanhong; Liu, Hui

    2014-01-01

    Three types of TiO 2 were synthesized by a hydrolysis and calcination method. The catalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectrum (DRS), Raman spectra, and X-ray photoelectron spectroscopy (XPS). The XRD and Raman spectra indicated that amorphous TiO 2 was successfully obtained at 100 .deg. C. The results indicated that amorphous TiO 2 achieved the highest efficiency of desulfurization. The photocatalytic oxidation of dibenzothiophene (DBT), benzothiophene (BT), 4,6-dimethyldibenzothiophene (4,6-DMDBT) and dodecanethiol (RSH) in model oil was studied at room temperature (30 .deg. C) with three catalysts. The system contained amorphous TiO 2 , H 2 O 2 , and [Bmim]BF 4 ionic liquid, ultraviolet (UV), which played vitally important roles in the photocatalytic oxidative desulfurization. Especially, the molar ratio of H 2 O 2 and sulfur (O/S) was only 2 : 1, which corresponded to the stoichiometric reaction. The sulfur removal of DBT-containing model oil with amorphous TiO 2 could reach 96.6%, which was apparently superior to a system with anatase TiO 2 (23.6%) or with anatase - rutile TiO 2 (18.2%). The system could be recycled seven times without a signicant decrease in photocatalytic activity

  6. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO{sub 2} in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenshuai; Xu, Yehai; Li, Huaming; Dai, Bilian; Xu, Hui; Wang, Chao; Chao, Yanhong; Liu, Hui [Jiangsu University, Zhenjiang (China)

    2014-02-15

    Three types of TiO{sub 2} were synthesized by a hydrolysis and calcination method. The catalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectrum (DRS), Raman spectra, and X-ray photoelectron spectroscopy (XPS). The XRD and Raman spectra indicated that amorphous TiO{sub 2} was successfully obtained at 100 .deg. C. The results indicated that amorphous TiO{sub 2} achieved the highest efficiency of desulfurization. The photocatalytic oxidation of dibenzothiophene (DBT), benzothiophene (BT), 4,6-dimethyldibenzothiophene (4,6-DMDBT) and dodecanethiol (RSH) in model oil was studied at room temperature (30 .deg. C) with three catalysts. The system contained amorphous TiO{sub 2}, H{sub 2}O{sub 2}, and [Bmim]BF{sub 4} ionic liquid, ultraviolet (UV), which played vitally important roles in the photocatalytic oxidative desulfurization. Especially, the molar ratio of H{sub 2}O{sub 2} and sulfur (O/S) was only 2 : 1, which corresponded to the stoichiometric reaction. The sulfur removal of DBT-containing model oil with amorphous TiO{sub 2} could reach 96.6%, which was apparently superior to a system with anatase TiO{sub 2} (23.6%) or with anatase - rutile TiO{sub 2} (18.2%). The system could be recycled seven times without a signicant decrease in photocatalytic activity.

  7. CO oxidation catalyzed by ag nanoparticles supported on SnO/CeO2

    KAUST Repository

    Khan, Inayatali

    2015-01-01

    Ag-Sn/CeO2 catalysts were synthesized by the co-precipitation method with different Ag-Sn wt.% loadings and were tested for the oxidation of CO. The catalysts were characterized by powder X-ray diffractometry (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS), and selected area electron diffraction (SAED) techniques. UV-Vis measurements were carried out to elucidate the ionic states of the silver particles, and the temperature-programmed reduction (TPR) technique was employed to check the reduction temperature of the catalyst supported on CeO2. There are peaks for silver crystallites in the X-ray diffraction patterns and the presence of SnO was not well evidenced by the XRD technique due to sintering inside the 3D array channels of CeO2 during the calcination process. The Ag-Sn/CeO2 (4%) catalyst was the most efficient and exhibited 100% CO oxidation at 100 °C due to small particle size and strong electronic interaction with the SnO/CeO2 support. © 2015 Sociedade Brasileira de Química.

  8. Modeling chemical kinetics of avocado oil ethanolysis catalyzed by solid glycerol-enriched calcium oxide

    International Nuclear Information System (INIS)

    Avhad, M.R.; Sánchez, M.; Bouaid, A.; Martínez, M.; Aracil, J.; Marchetti, J.M.

    2016-01-01

    Highlights: • Raw materials for biodiesel production can be obtained from the natural resources. • The glycerol-enriched CaO catalyst was tested for the ethanolysis of avocado oil. • CaO synthesized through the thermal treatment of Mytilus Galloprovincialis shells. • The ethanol-adsorption step controlled the overall ethanolysis process. • The physico-chemical properties of avocado oil and FAEEs is presented. - Abstract: The catalytic activity of glycerol-enriched calcium oxide for the alcoholysis reaction between avocado oil and ethanol was investigated. The calcium oxide was derived from Mytilus Galloprovincialis shells. This study systematically examined the influence of temperature, ethanol-to-oil molar ratio, and the catalyst amount on the variation in the concentration of triacylglycerols and biodiesel with reaction time. The interaction between the reaction variables (ethanol-to-oil molar ratio and catalyst amount), their influence on the ethanolysis process, and the optimum variables affecting the process were determined through the response surface methodology. A previously developed mathematical model was applied for the current ethanolysis process, and the model parameters were determined. The ethanolysis reaction occurred between the surface chemisorbed ethoxide ions and oil molecules in the liquid phase, while, the overall process was controlled by the ethanol-adsorption step. The physico-chemical properties of biodiesel, produced using potassium methoxide catalyst, were additionally measured.

  9. Refinement of Modeled Aqueous-Phase Sulfate Production via the Fe- and Mn-Catalyzed Oxidation Pathway

    Directory of Open Access Journals (Sweden)

    Syuichi Itahashi

    2018-04-01

    Full Text Available We refined the aqueous-phase sulfate (SO42− production in the state-of-the-art Community Multiscale Air Quality (CMAQ model during the Japanese model inter-comparison project, known as Japan’s Study for Reference Air Quality Modeling (J-STREAM. In Japan, SO42− is the major component of PM2.5, and CMAQ reproduces the observed seasonal variation of SO42− with the summer maxima and winter minima. However, CMAQ underestimates the concentration during winter over Japan. Based on a review of the current modeling system, we identified a possible reason as being the inadequate aqueous-phase SO42− production by Fe- and Mn-catalyzed O2 oxidation. This is because these trace metals are not properly included in the Asian emission inventories. Fe and Mn observations over Japan showed that the model concentrations based on the latest Japanese emission inventory were substantially underestimated. Thus, we conducted sensitivity simulations where the modeled Fe and Mn concentrations were adjusted to the observed levels, the Fe and Mn solubilities were increased, and the oxidation rate constant was revised. Adjusting the concentration increased the SO42− concentration during winter, as did increasing the solubilities and revising the rate constant to consider pH dependencies. Statistical analysis showed that these sensitivity simulations improved model performance. The approach adopted in this study can partly improve model performance in terms of the underestimation of SO42− concentration during winter. From our findings, we demonstrated the importance of developing and evaluating trace metal emission inventories in Asia.

  10. Fish proteins as targets of ferrous-catalyzed oxidation: identification of protein carbonyls by fluorescent labeling on two-dimensional gels and MALDI-TOF/TOF mass spectrometry.

    Science.gov (United States)

    Pazos, Manuel; da Rocha, Angela Pereira; Roepstorff, Peter; Rogowska-Wrzesinska, Adelina

    2011-07-27

    Protein oxidation in fish meat is considered to affect negatively the muscle texture. An important source of free radicals taking part in this process is Fenton's reaction dependent on ferrous ions present in the tissue. The aim of this study was to investigate the susceptibility of cod muscle proteins in sarcoplasmic and myofibril fractions to in vitro metal-catalyzed oxidation and to point out protein candidates that might play a major role in the deterioration of fish quality. Extracted control proteins and proteins subjected to free radicals generated by Fe(II)/ascorbate mixture were labeled with fluorescein-5-thiosemicarbazide (FTSC) to tag carbonyl groups and separated by two-dimensional gel electrophoresis. Consecutive visualization of protein carbonyl levels by capturing the FTSC signal and total protein levels by capturing the SyproRuby staining signal allowed us to quantify the relative change in protein carbonyl levels corrected for changes in protein content. Proteins were identified using MALDI-TOF/TOF mass spectrometry and homology-based searches. The results show that freshly extracted cod muscle proteins exhibit a detectable carbonylation background and that the incubation with Fe(II)/ascorbate triggers a further oxidation of both sarcoplasmic and myofibril proteins. Different proteins exhibited various degrees of sensitivity to oxidation processes. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), nucleoside diphosphate kinase B (NDK), triosephosphate isomerase, phosphoglycerate mutase, lactate dehydrogenase, creatine kinase, and enolase were the sarcoplasmic proteins most vulnerable to ferrous-catalyzed oxidation. Moreover, NDK, phosphoglycerate mutase, and GAPDH were identified in several spots differing by their pI, and those forms showed different susceptibilities to metal-catalyzed oxidation, indicating that post-translational modifications may change the resistance of proteins to oxidative damage. The Fe(II)/ascorbate treatment significantly

  11. Enhanced removal of aqueous acetaminophen by a laccase-catalyzed oxidative coupling reaction under a dual-pH optimization strategy.

    Science.gov (United States)

    Wang, Kaidong; Huang, Ke; Jiang, Guoqiang

    2018-03-01

    Acetaminophen is one kind of pharmaceutical contaminant that has been detected in municipal water and is hard to digest. A laccase-catalyzed oxidative coupling reaction is a potential method of removing acetaminophen from water. In the present study, the kinetics of radical polymerization combined with precipitation was studied, and the dual-pH optimization strategy (the enzyme solution at pH7.4 being added to the substrate solution at pH4.2) was proposed to enhance the removal efficiency of acetaminophen. The reaction kinetics that consisted of the laccase-catalyzed oxidation, radical polymerization and precipitation were studied by UV in situ, LC-MS and DLS (dynamic light scattering) in situ. The results showed that the laccase-catalyzed oxidation is the rate-limiting step in the whole process. The higher rate of enzyme-catalyzed oxidation under a dual-pH optimization strategy led to much faster formation of the dimer, trimer and tetramer. Similarly, the formation of polymerized products that could precipitate naturally from water was faster. Under the dual-pH optimization strategy, the initial laccase activity was increased approximately 2.9-fold, and the activity remained higher for >250s, during which approximately 63.7% of the total acetaminophen was transformed into biologically inactive polymerized products, and part of these polymerized products precipitated from the water. Laccase belongs to the family of multi-copper oxidases, and the present study provides a universal method to improve the activity of multi-copper oxidases for the high-performance removal of phenol and its derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. (E)-α,β-unsaturated amides from tertiary amines, olefins and CO via Pd/Cu-catalyzed aerobic oxidative N-dealkylation.

    Science.gov (United States)

    Shi, Renyi; Zhang, Hua; Lu, Lijun; Gan, Pei; Sha, Yuchen; Zhang, Heng; Liu, Qiang; Beller, Matthias; Lei, Aiwen

    2015-02-21

    A novel Pd/Cu-catalyzed chemoselective aerobic oxidative N-dealkylation/carbonylation reaction has been developed. Tertiary amines are utilized as a "reservoir" of "active" secondary amines in this transformation, which inhibits the formation of undesired by-products and the deactivation of the catalysts. This protocol allows for an efficient and straightforward construction of synthetically useful and bioactive (E)-α,β-unsaturated amide derivatives from easily available tertiary amines, olefins and CO.

  13. Tandem Rh-Catalyzed Oxidative C-H Olefination and Cyclization of Enantiomerically Enriched Benzo-1,3-Sulfamidates: Stereoselective Synthesis of trans-1,3-Disubstituted Isoindolines.

    Science.gov (United States)

    Achary, Raghavendra; Jung, In-A; Lee, Hyeon-Kyu

    2018-04-06

    A tandem process, involving Rh(III)-catalyzed oxidative C-H olefination of enantiomerically enriched 4-aryl-benzo-1,3-sulfamidates and subsequent intramolecular aza-Michael cyclization has been developed. The reaction produces trans-benzosulfamidate-fused-1,3-disubstituted isoindolines as major products, in which the configurational integrity of the stereogenic center in the starting material is preserved. Further transformations of the benzosulfamidate-fused-1,3-disubstituted isoindolines are described.

  14. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    Science.gov (United States)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  15. Mild and selective vanadium-catalyzed oxidation of benzylic, allylic, and propargylic alcohols using air

    Science.gov (United States)

    Hanson, Susan Kloek; Silks, Louis A; Wu, Ruilian

    2013-08-27

    The invention concerns processes for oxidizing an alcohol to produce a carbonyl compound. The processes comprise contacting the alcohol with (i) a gaseous mixture comprising oxygen; and (ii) an amine compound in the presence of a catalyst, having the formula: ##STR00001## where each of R.sup.1-R.sup.12 are independently H, alkyl, aryl, CF.sub.3, halogen, OR.sup.13, SO.sub.3R.sup.14, C(O)R.sup.15, CONR.sup.16R.sup.17 or CO.sub.2R.sup.18; each of R.sup.13-R.sup.18 is independently alkyl or aryl; and Z is alkl or aryl.

  16. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

    CERN Document Server

    Foulon, V; Croes, K; Waelkens, E

    1999-01-01

    Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

  17. Oxidative desulfurization of fuels catalyzed by Fenton-like ionic liquids at room temperature.

    Science.gov (United States)

    Jiang, Yunqing; Zhu, Wenshuai; Li, Huaming; Yin, Sheng; Liu, Hua; Xie, Qingjie

    2011-03-21

    Oxidation of the sulfur-containing compounds benzothiophene (BT), dibenzothiophene (DBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT) has been studied in a desulfurization system composed of model oil, hydrogen peroxide, and different types of ionic liquids [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3), [(C(8)H(17))(3)CH(3)N]Cl/CuCl(2), [(C(8)H(17))(3)CH(3)N]Cl/ZnCl(2), [(C(8)H(17))(3)CH(3)N]Cl/SnCl(2), [(C(4)H(9))(3)CH(3)N]Cl/FeCl(3), [C(10)H(21)(CH(3))(3)N]Cl/FeCl(3), [(C(10)H(21))(2)(CH(3))(2)N]Cl/FeCl(3). Deep desulfurization is achieved in the Fenton-like ionic liquid [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) at 25 °C for 1 h. The desulfurization of DBT reaches 97.9%, in consuming very low amount of [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) (only 0.702 mmol). The reaction conditions, for example, the amount of [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) or H(2)O(2), the temperature, and the molar ratio of FeCl(3) to [(C(8)H(17))(3)CH(3)N]Cl, are investigated for this system. The oxidation reactivity of the different sulfur-containing compounds is found to decrease in the order of DBT>BT>4,6-DMDBT. The desulfurization system can be recycled six times without significant decrease in activity. The sulfur level of FCC gasoline could be reduced from 360 ppm to 110 ppm. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Selective recovery of Pd(II) from extremely acidic solution using ion-imprinted chitosan fiber: Adsorption performance and mechanisms

    International Nuclear Information System (INIS)

    Lin, Shuo; Wei, Wei; Wu, Xiaohui; Zhou, Tao; Mao, Juan; Yun, Yeoung-Sang

    2015-01-01

    Highlights: • An acid-resisting chitosan fiber was prepared by ion-imprinting technique. • Pd(II) and ECH were as template and two-step crosslinking agent, respectively. • IIF showed a good adsorption and selectivity performance on Pd(II) solutions. • Selectivity was due to the electrostatic attraction between −NH_3"+ and [PdCl_4]"2"−. • Stable sorption/desorption performance shows a potential in further application. - Abstract: A novel, selective and acid-resisting chitosan fiber adsorbent was prepared by the ion-imprinting technique using Pd(II) and epichlorohydrin as the template and two-step crosslinking agent, respectively. The resulting ion-imprinted chitosan fibers (IIF) were used to selectively adsorb Pd(II) under extremely acidic synthetic metal solutions. The adsorption and selectivity performances of IIF including kinetics, isotherms, pH effects, and regeneration were investigated. Pd(II) rapidly adsorbed on the IIF within 100 min, achieving the adsorption equilibrium. The isotherm results showed that the maximum Pd(II) uptake on the IIF was maintained as 324.6–326.4 mg g"−"1 in solutions containing single and multiple metals, whereas the Pd(II) uptake on non-imprinted fibers (NIF) decreased from 313.7 to 235.3 mg g"−"1 in solution containing multiple metals. Higher selectivity coefficients values were obtained from the adsorption on the IIF, indicating a better Pd(II) selectivity. The amine group, supposedly the predominant adsorption site for Pd(II), was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The pH value played a significant role on the mechanism of the selective adsorption in the extremely acidic conditions. Furthermore, the stabilized performance for three cycles of sorption/desorption shows a potential for further large-scale applications.

  19. Selective recovery of Pd(II) from extremely acidic solution using ion-imprinted chitosan fiber: Adsorption performance and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shuo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wei, Wei [School of Chemical Engineering, Chonbuk National University, Jeonbuk 561-756 (Korea, Republic of); Wu, Xiaohui; Zhou, Tao [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Mao, Juan, E-mail: monicamao45@hust.edu.cn [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yun, Yeoung-Sang, E-mail: ysyun@jbnu.ac.kr [School of Chemical Engineering, Chonbuk National University, Jeonbuk 561-756 (Korea, Republic of)

    2015-12-15

    Highlights: • An acid-resisting chitosan fiber was prepared by ion-imprinting technique. • Pd(II) and ECH were as template and two-step crosslinking agent, respectively. • IIF showed a good adsorption and selectivity performance on Pd(II) solutions. • Selectivity was due to the electrostatic attraction between −NH{sub 3}{sup +} and [PdCl{sub 4}]{sup 2−}. • Stable sorption/desorption performance shows a potential in further application. - Abstract: A novel, selective and acid-resisting chitosan fiber adsorbent was prepared by the ion-imprinting technique using Pd(II) and epichlorohydrin as the template and two-step crosslinking agent, respectively. The resulting ion-imprinted chitosan fibers (IIF) were used to selectively adsorb Pd(II) under extremely acidic synthetic metal solutions. The adsorption and selectivity performances of IIF including kinetics, isotherms, pH effects, and regeneration were investigated. Pd(II) rapidly adsorbed on the IIF within 100 min, achieving the adsorption equilibrium. The isotherm results showed that the maximum Pd(II) uptake on the IIF was maintained as 324.6–326.4 mg g{sup −1} in solutions containing single and multiple metals, whereas the Pd(II) uptake on non-imprinted fibers (NIF) decreased from 313.7 to 235.3 mg g{sup −1} in solution containing multiple metals. Higher selectivity coefficients values were obtained from the adsorption on the IIF, indicating a better Pd(II) selectivity. The amine group, supposedly the predominant adsorption site for Pd(II), was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The pH value played a significant role on the mechanism of the selective adsorption in the extremely acidic conditions. Furthermore, the stabilized performance for three cycles of sorption/desorption shows a potential for further large-scale applications.

  20. The potential for biologically catalyzed anaerobic methane oxidation on ancient Mars.

    Science.gov (United States)

    Marlow, Jeffrey J; Larowe, Douglas E; Ehlmann, Bethany L; Amend, Jan P; Orphan, Victoria J

    2014-04-01

    This study examines the potential for the biologically mediated anaerobic oxidation of methane (AOM) coupled to sulfate reduction on ancient Mars. Seven distinct fluids representative of putative martian groundwater were used to calculate Gibbs energy values in the presence of dissolved methane under a range of atmospheric CO2 partial pressures. In all scenarios, AOM is exergonic, ranging from -31 to -135 kJ/mol CH4. A reaction transport model was constructed to examine how environmentally relevant parameters such as advection velocity, reactant concentrations, and biomass production rate affect the spatial and temporal dependences of AOM reaction rates. Two geologically supported models for ancient martian AOM are presented: a sulfate-rich groundwater with methane produced from serpentinization by-products, and acid-sulfate fluids with methane from basalt alteration. The simulations presented in this study indicate that AOM could have been a feasible metabolism on ancient Mars, and fossil or isotopic evidence of this metabolic pathway may persist beneath the surface and in surface exposures of eroded ancient terrains.

  1. Kinetics and mechanism of OsOsub(4) catalyzed oxidation of chalcones by Cesub(4) in aqueous acetic sulfuric acid media

    International Nuclear Information System (INIS)

    Srinivasulu, P.V.; Adinarayana, M.; Sethuram, B.; Rao, T.N.

    1985-01-01

    Kinetics of OsOsub(4) catalyzed oxidation of chalcones by Cesup(4+) was studied in aqueous acetic-sulfuric acid medium in the temperature range 313 to 338 K. The order in oxidant is zero while the order with respect to substrate and catalyst are each fractional. The rate of the reaction decreased with increase in percentage of acetic acid while [Hsup(+)] had practically no effect on the rate. The rates of various substituted chalcones are given. A mechanism in which formation of a cyclic ester between chalcone and OsOsub(4) in a fast step followed by its decomposition in a rate-determining step is envisaged. (author)

  2. Iron-catalyzed oxidative biaryl cross-couplings via mixed diaryl titanates: significant influence of the order of combining aryl Grignard reagents with titanate.

    Science.gov (United States)

    Liu, Kun Ming; Wei, Juan; Duan, Xin Fang

    2015-03-18

    The mixed diaryl titanates were used for the first time to modify the reactivity of two aryl Grignard reagents. Two titanate intermediates, Ar[Ar'Ti(OR)3]MgX and Ar'[ArTi(OR)3]MgX, formed via alternating the sequence of combining Grignard reagents with ClTi(OR)3 showed a significant reactivity difference. Taking advantage of such different reactivity, two highly structurally similar aryl groups could be facilely assembled through iron-catalyzed oxidative cross-couplings using oxygen as the oxidant.

  3. A non-diazo approach to α-oxo gold carbenes via gold-catalyzed alkyne oxidation.

    Science.gov (United States)

    Zhang, Liming

    2014-03-18

    For the past dozen years, homogeneous gold catalysis has evolved from a little known topic in organic synthesis to a fully blown research field of significant importance to synthetic practitioners, due to its novel reactivities and reaction modes. Cationic gold(I) complexes are powerful soft Lewis acids that can activate alkynes and allenes toward efficient attack by nucleophiles, leading to the generation of alkenyl gold intermediates. Some of the most versatile aspects of gold catalysis involve the generation of gold carbene intermediates, which occurs through the approach of an electrophile to the distal end of the alkenyl gold moiety, and their diverse transformations thereafter. On the other hand, α-oxo metal carbene/carbenoids are highly versatile intermediates in organic synthesis and can undergo various synthetically challenging yet highly valuable transformations such as C-H insertion, ylide formation, and cyclopropanation reactions. Metal-catalyzed dediazotizations of diazo carbonyl compounds are the principle and most reliable strategy to access them. Unfortunately, the substrates contain a highly energetic diazo moiety and are potentially explosive. Moreover, chemists need to use energetic reagents to prepare them, putting further constrains on operational safety. In this Account, we show that the unique access to the gold carbene species in homogeneous gold catalysis offers an opportunity to generate α-oxo gold carbenes if both nucleophile and electrophile are oxygen. Hence, this approach would enable readily available and safer alkynes to replace hazardous α-diazo carbonyl compounds as precursors in the realm of gold carbene chemistry. For the past several years, we have demonstrated that alkynes can indeed effectively serve as precursors to versatile α-oxo gold carbenes. In our initial study, we showed that a tethered sulfoxide can be a suitable oxidant, which in some cases leads to the formation of α-oxo gold carbene intermediates. The

  4. A Non-Diazo Approach to α-Oxo Gold Carbenes via Gold-Catalyzed Alkyne Oxidation

    Science.gov (United States)

    2015-01-01

    For the past dozen years, homogeneous gold catalysis has evolved from a little known topic in organic synthesis to a fully blown research field of significant importance to synthetic practitioners, due to its novel reactivities and reaction modes. Cationic gold(I) complexes are powerful soft Lewis acids that can activate alkynes and allenes toward efficient attack by nucleophiles, leading to the generation of alkenyl gold intermediates. Some of the most versatile aspects of gold catalysis involve the generation of gold carbene intermediates, which occurs through the approach of an electrophile to the distal end of the alkenyl gold moiety, and their diverse transformations thereafter. On the other hand, α-oxo metal carbene/carbenoids are highly versatile intermediates in organic synthesis and can undergo various synthetically challenging yet highly valuable transformations such as C–H insertion, ylide formation, and cyclopropanation reactions. Metal-catalyzed dediazotizations of diazo carbonyl compounds are the principle and most reliable strategy to access them. Unfortunately, the substrates contain a highly energetic diazo moiety and are potentially explosive. Moreover, chemists need to use energetic reagents to prepare them, putting further constrains on operational safety. In this Account, we show that the unique access to the gold carbene species in homogeneous gold catalysis offers an opportunity to generate α-oxo gold carbenes if both nucleophile and electrophile are oxygen. Hence, this approach would enable readily available and safer alkynes to replace hazardous α-diazo carbonyl compounds as precursors in the realm of gold carbene chemistry. For the past several years, we have demonstrated that alkynes can indeed effectively serve as precursors to versatile α-oxo gold carbenes. In our initial study, we showed that a tethered sulfoxide can be a suitable oxidant, which in some cases leads to the formation of α-oxo gold carbene intermediates. The

  5. ANALISIS TINGKAT KEMATANGAN PENYEDIAAN TATA KELOLA TEKNOLOGI INFORMASI DI PDII LIPI MENGGUNAKAN FRAMEWORK COBIT 4.1

    Directory of Open Access Journals (Sweden)

    Rima Octavia

    2014-12-01

    Full Text Available Centre for Scientific Documentation and Information – Indonesian Institute of Science (PDII LIPI began to developbusiness objectives towards a digital library. To support this goal should be held IT governance while PDII LIPI hasno specific IT governance. This research aims to study the condition of the IT management and determine the levelof maturity of the provision of IT governance framework based on COBIT 4.1. COBIT is one of the internationalstandard for IT governance. COBIT is used in this study were able to measure the COBIT 4.1 for organizations thatdo not use IT governance. Analysis of the level of maturity of the provision of IT governance is based on aquestionnaire that is processed by the COBIT 4.1 framework and compared with the actual conditions in the ITmanagement in PDII LIPI. The results of the calculation of the maturity level of to provided IT governance in PDIILIPI based on framework COBIT 4.1 shows that PDII-LIPI already at level 3 (Defined Process. This is consistent withthe actual conditions in PDII-LIPI. COBIT 4.1 is considered quite capable, reliable and easy to implement in PDII LIPI. 

  6. Eosin Y photoredox catalyzed net redox neutral reaction for regiospecific annulation to 3-sulfonylindoles via anion oxidation of sodium sulfinate salts.

    Science.gov (United States)

    Rohokale, Rajendra S; Tambe, Shrikant D; Kshirsagar, Umesh A

    2018-01-24

    An eosin Y photoredox catalyzed net redox neutral process for 3-sulfonylindoles via the anionic oxidation of sodium sulfinate salts and its radical cascade cyclization with 2-alkynyl-azidoarenes was developed with visible light as a mediator. The reaction offers metal and oxidant/reductant free, visible light mediated vicinal sulfonamination of alkynes to 2-aryl/alkyl-3-sulfonylindoles and proceeds via the generation of a sulfur-centered radical through direct oxidation of the sulfinate anion by an excited photocatalyst with a reductive quenching cycle. The mild conditions, use of an organic dye as photo-catalyst, bench stability and easily accessible starting materials make the present approach green and attractive.

  7. Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C-H bond and Lewis acid catalysis.

    Science.gov (United States)

    Wang, Ming-Zhong; Zhou, Cong-Ying; Wong, Man-Kin; Che, Chi-Ming

    2010-05-17

    Ruthenium porphyrins (particularly [Ru(2,6-Cl(2)tpp)CO]; tpp=tetraphenylporphinato) and RuCl(3) can act as oxidation and/or Lewis acid catalysts for direct C-3 alkylation of indoles, giving the desired products in high yields (up to 82% based on 60-95% substrate conversions). These ruthenium compounds catalyze oxidative coupling reactions of a wide variety of anilines and indoles bearing electron-withdrawing or electron-donating substituents with high regioselectivity when using tBuOOH as an oxidant, resulting in the alkylation of N-arylindoles to 3-{[(N-aryl-N-alkyl)amino]methyl}indoles (yield: up to 82%, conversion: up to 95%) and the alkylation of N-alkyl or N-H indoles to 3-[p-(dialkylamino)benzyl]indoles (yield: up to 73%, conversion: up to 92%). A tentative reaction mechanism involving two pathways is proposed: an iminium ion intermediate may be generated by oxidation of an sp(3) C-H bond of the alkylated aniline by an oxoruthenium species; this iminium ion could then either be trapped by an N-arylindole (pathway A) or converted to formaldehyde, allowing a subsequent three-component coupling reaction of the in situ generated formaldehyde with an N-alkylindole and an aniline in the presence of a Lewis acid catalyst (pathway B). The results of deuterium-labeling experiments are consistent with the alkylation of N-alkylindoles via pathway B. The relative reaction rates of [Ru(2,6-Cl(2)tpp)CO]-catalyzed oxidative coupling reactions of 4-X-substituted N,N-dimethylanilines with N-phenylindole (using tBuOOH as oxidant), determined through competition experiments, correlate linearly with the substituent constants sigma (R(2)=0.989), giving a rho value of -1.09. This rho value and the magnitudes of the intra- and intermolecular deuterium isotope effects (k(H)/k(D)) suggest that electron transfer most likely occurs during the initial stage of the oxidation of 4-X-substituted N,N-dimethylanilines. Ruthenium-catalyzed three-component reaction of N-alkyl/N-H indoles

  8. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

    Science.gov (United States)

    Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning

    2014-10-22

    The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process.

  9. Dynamics of the NbCl5-catalyzed cycloaddition of propylene oxide and CO2: Assessing the dual role of the nucleophilic co-catalysts

    KAUST Repository

    D'Elia, Valerio

    2014-07-23

    A mechanistic study on the synthesis of propylene carbonate (PC) from CO2 and propylene oxide (PO) catalyzed by NbCl5 and organic nucleophiles such as 4-dimethylaminopyridine (DMAP) or tetra-n-butylammonium bromide (NBu4Br) is reported. A combination of in situ spectroscopic techniques and kinetic studies has been used to provide detailed insight into the reaction mechanism, the formation of intermediates, and interactions between the reaction partners. The results of DFT calculations support the experimental observations and allow us to propose a mechanism for this reaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. N-Boc Amines to Oxazolidinones via Pd(II)/Bis-sulfoxide/Brønsted Acid Co-Catalyzed Allylic C–H Oxidation

    Science.gov (United States)

    2015-01-01

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C–H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C–H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C–H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration. PMID:24999765

  11. N-Boc amines to oxazolidinones via Pd(II)/bis-sulfoxide/Brønsted acid co-catalyzed allylic C-H oxidation.

    Science.gov (United States)

    Osberger, Thomas J; White, M Christina

    2014-08-06

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C-H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C-H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C-H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration.

  12. Mechanistic Study of the Oxidative Coupling of Styrene with 2-Phenylpyridine Derivatives Catalyzed by Cationic Rhodium( III) via C–H Activation

    Science.gov (United States)

    Brasse, Mikaël; Cámpora, Juan; Ellman, Jonathan A.; Bergman, Robert G.

    2013-01-01

    The Rh(III) catalyzed oxidative coupling of alkenes with arenes provides a greener alternative to the classical Heck reaction for the synthesis of arene-functionalized alkenes. The present mechanistic study gives insights for the rational development of this key transformation. The catalyst resting states and the rate law of the reaction have been identified. The reaction rate is solely dependent on catalyst and alkene concentrations and the rate determining step is the migratory insertion of alkene into a Rh–C(aryl) bond. PMID:23590843

  13. Fate Of Fissile Material Bound To Monosodium Titanate During Cooper Catalyzed Peroxide Oxidation Of Tank 48H Waste

    International Nuclear Information System (INIS)

    Taylor-Pashow, K.

    2012-01-01

    At the Savannah River Site (SRS), Tank 48H currently holds approximately 240,000 gallons of slurry which contains potassium and cesium tetraphenylborate (TPB). A copper catalyzed peroxide oxidation (CCPO) reaction is currently being examined as a method for destroying the TPB present in Tank 48H. Part of the development of that process includes an examination of the fate of the Tank 48H fissile material which is adsorbed onto monosodium titanate (MST) particles. This report details results from experiments designed to examine the potential degradation of MST during CCPO processing and the subsequent fate of the adsorbed fissile material. Experiments were conducted to simulate the CCPO process on MST solids loaded with sorbates in a simplified Tank 48H simulant. Loaded MST solids were placed into the Tank 48H simplified simulant without TPB, and the experiments were then carried through acid addition (pH adjustment to 11), peroxide addition, holding at temperature (50 C) for one week, and finally NaOH addition to bring the free hydroxide concentration to a target concentration of 1 M. Testing was conducted without TPB to show the maximum possible impact on MST since the competing oxidation of TPB with peroxide was absent. In addition, the Cu catalyst was also omitted, which will maximize the interaction of H 2 O 2 with the MST; however, the results may be non-conservative assuming the Cu-peroxide active intermediate is more reactive than the peroxide radical itself. The study found that both U and Pu desorb from the MST when the peroxide addition begins, although to different extents. Virtually all of the U goes into solution at the beginning of the peroxide addition, whereas Pu reaches a maximum of ∼34% leached during the peroxide addition. Ti from the MST was also found to come into solution during the peroxide addition. Therefore, Ti is present with the fissile in solution. After the peroxide addition is complete, the Pu and Ti are found to precipitate from

  14. Palladium(II-Catalyzed othro-C–H-Benzoxylation of 2-Arylpyridines by Oxidative Coupling with Aryl Acylperoxides

    Directory of Open Access Journals (Sweden)

    Wing-Yiu Yu

    2013-04-01

    Full Text Available A palladium(II-catalyzed ortho-benzoxylation of 2-arylpyridines with aryl acylperoxides was developed. With pyridyl as directing group, the benzoxylation reaction exhibits remarkable regioselectivity and excellent functional group tolerance, providing the products in up to 87% yield.

  15. Long-term chemiluminescence signal is produced in the course of luminol oxidation catalyzed by enhancer-independent peroxidase purified from Jatropha curcas leaves.

    Science.gov (United States)

    Duan, Peipei; Cai, Feng; Luo, Yongting; Chen, Yangxi; Zou, Shujuan

    2015-09-01

    Isoenzyme c of horseradish peroxidase (HRP-C) is widely used in enzyme immunoassay combined with chemiluminescence (CL) detection. For this application, HRP-C activity measurement is usually based on luminol oxidation in the presence of hydrogen peroxide (H2O2). However, this catalysis reaction was enhancer dependent. In this study, we demonstrated that Jatropha curcas peroxidase (JcGP1) showed high efficiency in catalyzing luminol oxidation in the presence of H2O2. Compared with HRP-C, the JcGP1-induced reaction was enhancer independent, which made the enzyme-linked immunosorbent assay (ELISA) simpler. In addition, the JcGP1 catalyzed reaction showed a long-term stable CL signal. We optimized the conditions for JcGP1 catalysis and determined the favorable conditions as follows: 50 mM Tris buffer (pH 8.2) containing 10 mM H2 O2, 14 mM luminol and 0.75 M NaCl. The optimum catalysis temperature was 30°C. The detection limit of JcGP1 under optimum condition was 0.2 pM. Long-term stable CL signal combined with enhancer-independent property indicated that JcGP1 might be a valuable candidate peroxidase for clinical diagnosis and enzyme immunoassay with CL detection. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Label-Free and Ultrasensitive Biomolecule Detection Based on Aggregation Induced Emission Fluorogen via Target-Triggered Hemin/G-Quadruplex-Catalyzed Oxidation Reaction.

    Science.gov (United States)

    Li, Haiyin; Chang, Jiafu; Gai, Panpan; Li, Feng

    2018-02-07

    Fluorescence biosensing strategy has drawn substantial attention due to their advantages of simplicity, convenience, sensitivity, and selectivity, but unsatisfactory structure stability, low fluorescence quantum yield, high cost of labeling, and strict reaction conditions associated with current fluorescence methods severely prohibit their potential application. To address these challenges, we herein propose an ultrasensitive label-free fluorescence biosensor by integrating hemin/G-quadruplex-catalyzed oxidation reaction with aggregation induced emission (AIE) fluorogen-based system. l-Cysteine/TPE-M, which is carefully and elaborately designed and developed, obviously contributes to strong fluorescence emission. In the presence of G-rich DNA along with K + and hemin, efficient destruction of l-cysteine occurs due to hemin/G-quadruplex-catalyzed oxidation reactions. As a result, highly sensitive fluorescence detection of G-rich DNA is readily realized, with a detection limit down to 33 pM. As a validation for the further development of the proposed strategy, we also successfully construct ultrasensitive platforms for microRNA by incorporating the l-cysteine/TPE-M system with target-triggered cyclic amplification reaction. Thus, this proposed strategy is anticipated to find use in basic biochemical research and clinical diagnosis.

  17. Oxidant-free Rh(III)-catalyzed direct C-H olefination of arenes with allyl acetates.

    Science.gov (United States)

    Feng, Chao; Feng, Daming; Loh, Teck-Peng

    2013-07-19

    Rh(III)-catalyzed direct olefination of arenes with allyl acetate via C-H bond activation is described using N,N-disubstituted aminocarbonyl as the directing group. The catalyst undergoes a redox neutral process, and high to excellent yields of trans-products are obtained. This protocol exhibits a wide spectrum of functionality compatibility because of the simple reaction conditions employed and provides a highly effective synthetic method in the realm of C-H olefination.

  18. Water oxidation catalyzed by mononuclear ruthenium complexes with a 2,2'-bipyridine-6,6'-dicarboxylate (bda) ligand: how ligand environment influences the catalytic behavior.

    Science.gov (United States)

    Staehle, Robert; Tong, Lianpeng; Wang, Lei; Duan, Lele; Fischer, Andreas; Ahlquist, Mårten S G; Sun, Licheng; Rau, Sven

    2014-02-03

    A new water oxidation catalyst [Ru(III)(bda)(mmi)(OH2)](CF3SO3) (2, H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; mmi = 1,3-dimethylimidazolium-2-ylidene) containing an axial N-heterocyclic carbene ligand and one aqua ligand was synthesized and fully characterized. The kinetics of catalytic water oxidation by 2 were measured using stopped-flow technique, and key intermediates in the catalytic cycle were probed by density functional theory calculations. While analogous Ru-bda water oxidation catalysts [Ru(bda)L2] (L = pyridyl ligands) are supposed to catalyze water oxidation through a bimolecular coupling pathway, our study points out that 2, surprisingly, undergoes a single-site water nucleophilic attack (acid-base) pathway. The diversion of catalytic mechanisms is mainly ascribed to the different ligand environments, from nonaqua ligands to an aqua ligand. Findings in this work provide some critical proof for our previous hypothesis about how alternation of ancillary ligands of water oxidation catalysts influences their catalytic efficiency.

  19. The Study of NADPH-Dependent Flavoenzyme-Catalyzed Reduction of Benzo[1,2-c]1,2,5-oxadiazole N-Oxides (Benzofuroxans

    Directory of Open Access Journals (Sweden)

    Jonas Šarlauskas

    2014-12-01

    Full Text Available The enzymatic reactivity of a series of benzo[1,2-c]1,2,5-oxadiazole N-oxides (benzofuroxans; BFXs towards mammalian single-electron transferring NADPH:cytochrome P-450 reductase (P-450R and two-electron (hydride transferring NAD(PH:quinone oxidoreductase (NQO1 was examined in this work. Since the =N+ (→OO− moiety of furoxan fragments of BFXs bears some similarity to the aromatic nitro-group, the reactivity of BFXs was compared to that of nitro-aromatic compounds (NACs whose reduction mechanisms by these and other related flavoenzymes have been extensively investigated. The reduction of BFXs by both P-450R and NQO1 was accompanied by O2 uptake, which was much lower than the NADPH oxidation rate; except for annelated BFXs, whose reduction was followed by the production of peroxide. In order to analyze the possible quantitative structure-activity relationships (QSARs of the enzymatic reactivity of the compounds, their electron-accepting potency and other reactivity indices were assessed by quantum mechanical methods. In P-450R-catalyzed reactions, both BFXs and NACs showed the same reactivity dependence on their electron-accepting potency which might be consistent with an “outer sphere” electron transfer mechanism. In NQO1-catalyzed two-electron (hydride transferring reactions, BFXs acted as more efficient substrates than NACs, and the reduction efficacy of BFXs by NQO1 was in general higher than by single-electron transferring P-450R. In NQO1-catalyzed reactions, QSARs obtained showed that the reduction efficacy of BFXs, as well as that of NACs, was determined by their electron-accepting potency and could be influenced by their binding mode in the active center of NQO1 and by their global softness as their electronic characteristic. The reductive conversion of benzofuroxan by both flavoenzymes yielded the same reduction product of benzofuroxan, 2,3-diaminophenazine, with the formation of o-benzoquinone dioxime as a putative primary

  20. Kinetics of the H 2O 2-dependent ligninase-catalyzed oxidation of veratryl alcohol in the presence of cationic surfactant studied by spectrophotometric technique

    Science.gov (United States)

    Liu, Airong; Huang, Xirong; Song, Shaofang; Wang, Dan; Lu, Xuemei; Qu, Yinbo; Gao, Peiji

    2003-09-01

    The kinetics of ligninase-catalyzed oxidation of veratryl alcohol (VA) by H 2O 2 in the aqueous medium containing cationic surfactant cetyltrimethylammonium bromide (CTAB) has been investigated using spectrophotometric technique. Steady-state kinetic studies at different concentrations of CTAB indicate that the reaction follows a ping pong mechanism and the mechanism always holds but the kinetic parameters vary with CTAB concentrations. CTAB is a weak inhibitor for ligninase; it lowers the maximum initial velocity. CTAB also causes the Michaelis constant of H 2O 2 to decrease dramatically and that of VA to increase markedly. Based on the changes in kinetic parameters of the enzyme-catalyzed reaction at different CTAB concentrations (lower than, near to and larger than its critical micelle concentration) and the effects of the CTAB monomer and the micelles on the spectra of VA and its corresponding aldehyde, a conclusion could be made that modification of the enzymatic protein by the surfactant monomer should be responsible for the above-mentioned results.

  1. Novel Dry-Type Glucose Sensor Based on a Metal-Oxide-Semiconductor Capacitor Structure with Horseradish Peroxidase + Glucose Oxidase Catalyzing Layer

    Science.gov (United States)

    Lin, Jing-Jenn; Wu, You-Lin; Hsu, Po-Yen

    2007-10-01

    In this paper, we present a novel dry-type glucose sensor based on a metal-oxide-semiconductor capacitor (MOSC) structure using SiO2 as a gate dielectric in conjunction with a horseradish peroxidase (HRP) + glucose oxidase (GOD) catalyzing layer. The tested glucose solution was dropped directly onto the window opened on the SiO2 layer, with a coating of HRP + GOD catalyzing layer on top of the gate dielectric. From the capacitance-voltage (C-V) characteristics of the sensor, we found that the glucose solution can induce an inversion layer on the silicon surface causing a gate leakage current flowing along the SiO2 surface. The gate current changes Δ I before and after the drop of glucose solution exhibits a near-linear relationship with increasing glucose concentration. The Δ I sensitivity is about 1.76 nA cm-2 M-1, and the current is quite stable 20 min after the drop of the glucose solution is tested.

  2. Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hui; Li, Mengyang; Zhang, Guanghui; Gallagher, James R.; Huang, Zhiliang; Sun, Yu; Luo, Zhong; Chen, Hongzhong; Miller, Jeffrey T.; Zou, Ruqiang; Lei, Aiwen; Zhao, Yanli

    2015-01-01

    ABSTRACT: The development of organometallic single-site catalysts (SSCs) has inspired the designs of new heterogeneous catalysts with high efficiency. Nevertheless, the application of SSCs in certain modern organic reactions, such as C-C bond formation reactions, has still been less investigated. In this study, a single-site Pd(II) catalyst was developed, where 2,2'-bipyridine-grafted periodic mesoporous organosilica (PMO) was employed as the support of a Pd(II) complex. The overall performance of the single-site Pd(II) catalyst in the oxidative Heck reaction was then investigated. The investigation results show that the catalyst displays over 99% selectivity for the product formation with high reaction yield. Kinetic profiles further confirm its high catalytic efficiency, showing that the rate constant is nearly 40 times higher than that for the free Pd(II) salt. X-ray absorption spectroscopy reveals that the catalyst has remarkable lifetime and recyclability.

  3. Cu-catalyzed aerobic oxidative cyclizations of 3-N-hydroxyamino-1,2-propadienes with alcohols, thiols, and amines to form α-O-, S-, and N-substituted 4-methylquinoline derivatives.

    Science.gov (United States)

    Sharma, Pankaj; Liu, Rai-Shung

    2015-03-16

    A one-pot, two-step synthesis of α-O-, S-, and N-substituted 4-methylquinoline derivatives through Cu-catalyzed aerobic oxidations of N-hydroxyaminoallenes with alcohols, thiols, and amines is described. This reaction sequence involves an initial oxidation of N-hydroxyaminoallenes with NuH (Nu = OH, OR, NHR, and SR) to form 3-substituted 2-en-1-ones, followed by Brønsted acid catalyzed intramolecular cyclizations of the resulting products. Our mechanistic analysis suggests that the reactions proceed through a radical-type mechanism rather than a typical nitrone-intermediate route. The utility of this new Cu-catalyzed reaction is shown by its applicability to the synthesis of several 2-amino-4-methylquinoline derivatives, which are known to be key precursors to several bioactive molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Efficient oxidation of alcohols to carbonyl compounds with molecular oxygen catalyzed by N-hydroxyphthalimide combined with a Co species

    Science.gov (United States)

    Iwahama; Yoshino; Keitoku; Sakaguchi; Ishii

    2000-10-06

    Highly efficient catalytic oxidation of alcohols with molecular oxygen by N-hydroxyphthalimide (NHPI) combined with a Co species was developed. The oxidation of 2-octanol in the presence of catalytic amounts of NHPI and Co(OAc)2 under atmospheric dioxygen in AcOEt at 70 degrees C gave 2-octanone in 93% yield. The oxidation was significantly enhanced by adding a small amount of benzoic acid to proceed smoothly even at room temperature. Primary alcohols were oxidized by NHPI in the absence of any metal catalyst to form the corresponding carboxylic acids in good yields. In the oxidation of terminal vic-diols such as 1,2-butanediol, carbon-carbon bond cleavage was induced to give one carbon less carboxylic acids such as propionic acid, while internal vic-diols were selectively oxidized to 1,2-diketones.

  5. Electrooxidative Rhodium-Catalyzed C-H/C-H Activation: Electricity as Oxidant for Cross-Dehydrogenative Alkenylation.

    Science.gov (United States)

    Qiu, Youai; Kong, Wei-Jun; Struwe, Julia; Sauermann, Nicolas; Rogge, Torben; Scheremetjew, Alexej; Ackermann, Lutz

    2018-04-06

    Rhodium(III) catalysis has enabled a plethora of oxidative C-H functionalizations, which predominantly employ stoichiometric amounts of toxic and/or expensive metal oxidants. In contrast, we describe the first electrochemical C-H activation by rhodium catalysis that avoids hazardous chemical oxidants. Thus, environmentally-benign twofold C-H/C-H functionalizations were accomplished with weakly-coordinating benzoic acids and benzamides, employing electricity as the terminal oxidant with H2 as the sole byproduct. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst.

    Science.gov (United States)

    Labiadh, Lazhar; Oturan, Mehmet A; Panizza, Marco; Hamadi, Nawfel Ben; Ammar, Salah

    2015-10-30

    The mineralization of a new azo dye - the (4-amino-3-hydroxy-2-p-tolylazo-naphthalene-1-sulfonic acid) (AHPS) - has been studied by a novel electrochemical advanced oxidation process (EAOP), consisting in electro-Fenton (EF) oxidation, catalyzed by pyrite as the heterogeneous catalyst - the so-called 'pyrite-EF'. This solid pyrite used as heterogeneous catalyst instead of a soluble iron salt, is the catalyst the system needs for production of hydroxyl radicals. Experiments were performed in an undivided cell equipped with a BDD anode and a commercial carbon felt cathode to electrogenerate in situ H2O2 and regenerate ferrous ions as catalyst. The effects on operating parameters, such as applied current, pyrite concentration and initial dye content, were investigated. AHPS decay and mineralization efficiencies were monitored by HPLC analyses and TOC measurements, respectively. Experimental results showed that AHPS was quickly oxidized by hydroxyl radicals (OH) produced simultaneously both on BDD surface by water discharge and in solution bulk from electrochemically assisted Fenton's reaction with a pseudo-first-order reaction. AHPS solutions with 175 mg L(-1) (100 mg L(-1) initial TOC) content were then almost completely mineralized in 8h. Moreover, the results demonstrated that, under the same conditions, AHPS degradation by pyrite electro-Fenton process was more powerful than the conventional electro-Fenton process. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Redox-neutral rhodium-catalyzed C-H functionalization of arylamine N-oxides with diazo compounds: primary C(sp(3))-H/C(sp(2))-H activation and oxygen-atom transfer.

    Science.gov (United States)

    Zhou, Bing; Chen, Zhaoqiang; Yang, Yaxi; Ai, Wen; Tang, Huanyu; Wu, Yunxiang; Zhu, Weiliang; Li, Yuanchao

    2015-10-05

    An unprecedented rhodium(III)-catalyzed regioselective redox-neutral annulation reaction of 1-naphthylamine N-oxides with diazo compounds was developed to afford various biologically important 1H-benzo[g]indolines. This coupling reaction proceeds under mild reaction conditions and does not require external oxidants. The only by-products are dinitrogen and water. More significantly, this reaction represents the first example of dual functiaonalization of unactivated a primary C(sp(3) )H bond and C(sp(2) )H bond with diazocarbonyl compounds. DFT calculations revealed that an intermediate iminium is most likely involved in the catalytic cycle. Moreover, a rhodium(III)-catalyzed coupling of readily available tertiary aniline N-oxides with α-diazomalonates was also developed under external oxidant-free conditions to access various aminomandelic acid derivatives by an O-atom-transfer reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Pd-nanoparticles cause increased toxicity to kiwifruit pollen compared to soluble Pd(II)

    International Nuclear Information System (INIS)

    Speranza, Anna; Leopold, Kerstin; Maier, Marina; Taddei, Anna Rita; Scoccianti, Valeria

    2010-01-01

    In the present study, endpoints including in vitro pollen performance (i.e., germination and tube growth) and lethality were used as assessments of nanotoxicity. Pollen was treated with 5-10 nm-sized Pd particles, similar to those released into the environment by catalytic car exhaust converters. Results showed Pd-nanoparticles altered kiwifruit pollen morphology and entered the grains more rapidly and to a greater extent than soluble Pd(II). At particulate Pd concentrations well below those of soluble Pd(II), pollen grains experienced rapid losses in endogenous calcium and pollen plasma membrane damage was induced. This resulted in severe inhibition and subsequent cessation of pollen tube emergence and elongation at particulate Pd concentrations as low as 0.4 mg L -1 . Particulate Pd emissions related to automobile traffic have been increasing and are accumulating in the environment. This could seriously jeopardize in vivo pollen function, with impacts at an ecosystem level. - Nanoparticulate Pd - which resembles emissions from automobile catalysts - affects pollen to a higher extent than soluble Pd.

  9. Pd-nanoparticles cause increased toxicity to kiwifruit pollen compared to soluble Pd(II)

    Energy Technology Data Exchange (ETDEWEB)

    Speranza, Anna, E-mail: anna.speranza@unibo.i [Dipartimento di Biologia, Universita di Bologna, via Irnerio 42, 40126 Bologna (Italy); Leopold, Kerstin, E-mail: kerstin.leopold@lrz.tu-muenchen.d [Arbeitsgruppe fuer Analytische Chemie, Technische Universitaet Muenchen, Garching (Germany); Maier, Marina, E-mail: marina.maier@ch.tum.d [Arbeitsgruppe fuer Analytische Chemie, Technische Universitaet Muenchen, Garching (Germany); Taddei, Anna Rita, E-mail: artaddei@unitus.i [CIME, Universita della Tuscia, Viterbo (Italy); Scoccianti, Valeria, E-mail: valeria.scoccianti@uniurb.i [Dipartimento di Scienze dell' Uomo, dell' Ambiente e della Natura, Universita di Urbino ' Carlo Bo' , Urbino (Italy)

    2010-03-15

    In the present study, endpoints including in vitro pollen performance (i.e., germination and tube growth) and lethality were used as assessments of nanotoxicity. Pollen was treated with 5-10 nm-sized Pd particles, similar to those released into the environment by catalytic car exhaust converters. Results showed Pd-nanoparticles altered kiwifruit pollen morphology and entered the grains more rapidly and to a greater extent than soluble Pd(II). At particulate Pd concentrations well below those of soluble Pd(II), pollen grains experienced rapid losses in endogenous calcium and pollen plasma membrane damage was induced. This resulted in severe inhibition and subsequent cessation of pollen tube emergence and elongation at particulate Pd concentrations as low as 0.4 mg L{sup -1}. Particulate Pd emissions related to automobile traffic have been increasing and are accumulating in the environment. This could seriously jeopardize in vivo pollen function, with impacts at an ecosystem level. - Nanoparticulate Pd - which resembles emissions from automobile catalysts - affects pollen to a higher extent than soluble Pd.

  10. AKSES JENIS DOKUMEN PADA BASIS DATA TERPADU: SUATU TINJAUAN TERHADAP OPAC DI PDII-LIPI

    Directory of Open Access Journals (Sweden)

    Ade Kohar

    2012-07-01

    Full Text Available Integrated data base is a data base records bibliographic data of several types of document like textbook, periodicals, proceedings, research report, thesis, and article. Purposes of this study were to investigate document type description and searching strategy in integrated data base of online public access catalogs (OPAC in PDII-LIPI, and to know user opinion about that data base existence. It used observation and interviews to 100 data base users to collect data. Result of this study stated that document type description in OPAC was not indexed, so users couldn't do information searching of special type of document directly in the data base. There was only one method could be used to search information of special type of document. User could select it from some information records on the computer screen as the result of document title, author name or subject searching in the data base. This information access method was not efficient. So document type description and indexing was an important factor and should be done in information retrieval system using integrated data base. But respondent majority (84% in PDII-LIPI stated that they liked using separated data base to search information of special type of document.

  11. Oxidation and reduction of copper and iron species in steam generator deposits - Effects of hydrazine, carbohydrazide and catalyzed hydrazine

    International Nuclear Information System (INIS)

    Marks, C.R.; Varrin, R.D.; Gorman, J.A.; McIlree, A.R.; Stanley, R.

    2002-01-01

    It has long been suspected that oxidation and reduction of secondary side deposits in PWR steam generators have a significant influence on the onset of intergranular attack and stress corrosion cracking (IGA/SCC) of mill annealed Alloy 600 steam generator tubes. It is believed that these same processes could affect the possible future occurrence of IGA/SCC of thermally treated Alloy 600 and Alloy 690 tubes that are in newer steam generators. The working hypothesis for describing the influence of oxides on accelerated tube degradation is that deposits formed during normal operation are oxidized during lay-up. During subsequent operation, these oxidized species accelerate tube degradation by raising the electrochemical potential. (authors)

  12. Gold nanoparticles on OMS-2 for heterogeneously catalyzed aerobic oxidative α,β-dehydrogenation of β-heteroatom-substituted ketones.

    Science.gov (United States)

    Yoshii, Daichi; Jin, Xiongjie; Yatabe, Takafumi; Hasegawa, Jun-Ya; Yamaguchi, Kazuya; Mizuno, Noritaka

    2016-12-06

    In the presence of Au nanoparticles supported on manganese oxide OMS-2 (Au/OMS-2), various kinds of β-heteroatom-substituted α,β-unsaturated ketones (heteroatom = N, O, S) can be synthesized through α,β-dehydrogenation of the corresponding saturated ketones using O 2 (in air) as the oxidant. The catalysis of Au/OMS-2 is truly heterogeneous, and the catalyst can be reused.

  13. Laccase-catalyzed oxidation and intramolecular cyclization of dopamine: A new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Xiang, Ling; Lin, Yuqing; Yu, Ping; Su, Lei; Mao, Lanqun

    2007-01-01

    This study demonstrates a new electrochemical method for the selective determination of dopamine (DA) with the coexistence of ascorbic acid (AA) and 3,4-dihydroxyphenylacetic acid (DOPAC) with laccase/multi-walled carbon nanotube (MWNT)-based biosensors prepared by cross-linking laccase into MWNT layer confined onto glassy carbon electrodes. The method described here is essentially based on the chemical reaction properties of DA including oxidation, intramolecular cyclization and disproportionation reactions to finally give 5,6-dihydroxyindoline quinone and on the uses of the two-electron and two-proton reduction of the formed 5,6-dihydroxyindoline quinone to constitute a method for the selective determination of DA at a negative potential that is totally separated from those for the redox processes of AA and DOPAC. Instead of the ECE reactions of DA with the first oxidation of DA being driven electrochemically, laccase is used here as the biocatalyst to drive the first oxidation of DA into its quinone form and thus initialize the sequential reactions of DA finally into 5,6-dihydroxyindoline quinone. In addition, laccase also catalyzes the oxidation of AA and DOPAC into electroinactive species with the concomitant reduction of O 2 . As a consequence, a combinational exploitation of the chemical properties inherent in DA and the multifunctional catalytic properties of laccase as well as the excellent electrochemical properties of carbon nanotubes substantially enables the prepared laccase/MWNT-based biosensors to be well competent for the selective determination of DA with the coexistence of physiological levels of AA and DOPAC. This demonstration offers a new method for the selective determination of DA, which could be potentially employed for the determination of DA in biological systems

  14. Organic contaminants degradation from the S(IV) autoxidation process catalyzed by ferrous-manganous ions: A noticeable Mn(III) oxidation process.

    Science.gov (United States)

    Zhang, Jiaming; Ma, Jun; Song, Haoran; Sun, Shaofang; Zhang, Zhongxiang; Yang, Tao

    2018-04-15

    Remarkable atrazine degradation in the S(IV) autoxidation process catalyzed by Fe 2+ -Mn 2+ (Fe 2+ /Mn 2+ /sulfite) was demonstrated in this study. Competitive kinetic experiments, alcohol inhibiting methods and electron spin resonance (ESR) experiments proved that sulfur radicals were not the major oxidation species. Mn(III) was demonstrated to be the primary active species in the Fe 2+ /Mn 2+ /sulfite process based on the comparison of oxidation selectivity. Moreover, the inhibiting effect of the Mn(III) hydrolysis and the S(IV) autoxidation in the presence of organic contaminants indicated the existence of three Mn(III) consumption routes in the Fe 2+ /Mn 2+ /sulfite process. The absence of hydroxyl radical and sulfate radical was interpreted by the competitive dynamics method. The oxidation capacity of the Fe 2+ /Mn 2+ /sulfite was independent of the initial pH (4.0-6.0) because the fast decay of S(IV) decreased initial pH below 4.0 rapidly. The rate of ATZ degradation was independent of the dissolved oxygen (DO) because that the major DO consumption process was not the rate determining step during the production of SO 5 •- . Phosphate and bicarbonate were confirmed to have greater inhibitory effects than other environmental factors because of their strong pH buffering capacity and complexing capacity for Fe 3+ . The proposed acetylation degradation pathway of ATZ showed the application of the Fe 2+ /Mn 2+ /sulfite process in the research of contaminants degradation pathways. This work investigated the characteristics of the Fe 2+ /Mn 2+ /sulfite process in the presence of organic contaminants, which might promote the development of Mn(III) oxidation technology. Copyright © 2018. Published by Elsevier Ltd.

  15. PENGUJIAN COGNITIVE WALKTHROUGH ANTARMUKA PERPUSTAKAAN DIGITAL (E-LIBRARY PUSAT DOKUMENTASI DAN INFORMASI ILMIAH – LIPI (PDII-LIPI

    Directory of Open Access Journals (Sweden)

    Ira Maryati

    2014-06-01

    Full Text Available Interface design has a significant role towards the successful of digital librarys application use. Digital libraryservices developed by Centre for Scientific Documentation and Information - Indonesian Institute of Sciences (PDII-LIPI has yet to be evaluated. This research analyzed the design of the web interface of PDII-LIPI’s digitallibraries using the method of cognitive walkthrough (CW. The aim of the research is to identify user constraints inusing PDII-LIPI’s digital libraries. Object of this study are three menus in digital library web interface that is “KaryaIlmiah Indonesia”, “Buku Elektronik”, and “Jurnal Indonesia (ISJD”. CW testing parameters for PDII-LIPI’s digitallibrary interface consists of the successful completion of the task, and the effectiveness of the task. The successfulcompletion of the task was assessed by comparing the standard time with task completion time by respondents. Effectiveness accessed based on the processing time of each stage and the number of mistakes made by therespondent. The test results showed that all respondents successfully completed the task with the time that goesbeyond the standard set time. The analysis was conducted on all test results indicate that the obstacles faced byusers in general are finding menu of “E-Library”, specify the search facility is used, and searching the articles.

  16. Selective Oxidation of Glycerol to Glyceric Acid in Base-Free Aqueous Solution at Room Temperature Catalyzed by Platinum Supported on Carbon Activated with Potassium Hydroxide

    KAUST Repository

    Tan, Hua

    2016-04-18

    Pt supported on KOH-activated mesoporous carbon (K-AMC) was used to catalyze glycerol oxidation under base-free conditions at room temperature. To study the relationship between the carbon surface chemistry and the catalytic performance of the K-AMC-based Pt catalysts, different levels of surface oxygen functional groups (SOFGs) on the AMC supports were induced by thermal treatment at different temperatures under inert or H2 gas. A strong effect of the surface chemistry was observed on AMC-supported Pt catalysts for glycerol oxidation. The presence of carboxylic acid groups impedes the adsorption of glycerol, which leads to the reduction of catalytic activity, whereas the presence of high-desorption-temperature SOFGs, such as phenol, ether, and carbonyl/quinone groups, provide hydrophilicity to the carbon surface that improves the adsorption of glycerol molecules on Pt metal surface, which is beneficial for the catalytic activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2015-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH and the aldehyde dehydrogenase (ALDH. We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6 and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  18. Pd-catalyzed aerobic oxidative annulation of cyclohexanones and 2-aminophenyl ketones: A direct approach to acridines

    Science.gov (United States)

    Mu, Wanlu; Li, Xiaowei; Wang, Longfei; Chen, Yong; Wu, Yanchao

    2017-08-01

    An efficient aerobic oxidative annulation of cyclohexanones and 2-aminophenyl ketones approach to substituted acridines, a structural motif for a large number of pharmaceuticals and functional materials is described. The key feature of this method is the use of oxygen as the sole oxidant and Pd catalyst, which resulting in the high regioselectivity with unsymmetrical meta-substituted cyclohexanones. The electron gap of the global redox condensation process is filled and the reaction efficiency is significantly promoted by O2 as a redox moderator. This protocol possesses many advantages such as using O2 as a cheap and nonhazardous oxidant, high regioselectivity and water as the only by-product, which meet the principle of green chemistry.

  19. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    Directory of Open Access Journals (Sweden)

    Michel D. Santos

    2008-01-01

    Full Text Available This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules.

  20. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    International Nuclear Information System (INIS)

    Santos, Michel D.; Lopes, Norberto P.; Iamamoto, Yassuko

    2008-01-01

    This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III) tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules. (author)

  1. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Michel D.; Lopes, Norberto P. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Fisica e Quimica]. E-mail: npelopes@fcfrp.usp.br; Iamamoto, Yassuko [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Quimica

    2008-07-01

    This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III) tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules. (author)

  2. Solvent 1H/2H isotopic effects in the reaction of the L-Tyrosine oxidation catalyzed by Tyrosinase

    International Nuclear Information System (INIS)

    Kozlowska, M.; Kanska, M.

    2006-01-01

    Tyrosinase is well known catalyst in the oxidation of L-Tyrosine to L-DOPA and following oxidation of L-DOPA to dopachinone. The aim of communication is to present the results of studies on the solvent isotopic effects (SIE) in the above reactions for the 1 H/ 2 H in the 3',5' and 2',6' substituted tyrosine. Obtained dependence of the reaction rate on the substrate concentration were applied for optimization of the kinetic parameters, k cat and k cat /K m , in the Michaelis-Menten equation. As a result - better understanding of the L-DOPA creation can be achieved

  3. Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal-Organic Framework.

    Science.gov (United States)

    Ikuno, Takaaki; Zheng, Jian; Vjunov, Aleksei; Sanchez-Sanchez, Maricruz; Ortuño, Manuel A; Pahls, Dale R; Fulton, John L; Camaioni, Donald M; Li, Zhanyong; Ray, Debmalya; Mehdi, B Layla; Browning, Nigel D; Farha, Omar K; Hupp, Joseph T; Cramer, Christopher J; Gagliardi, Laura; Lercher, Johannes A

    2017-08-02

    Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal-organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu + and ∼85% Cu 2+ . The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu 2+ to Cu + . The products, methanol, dimethyl ether, and CO 2 , were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45-60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst.

  4. Mechanistic Dichotomy in the Asymmetric Allylation of Aldehydes with Allyltrichlorosilanes Catalyzed by Chiral Pyridine N-Oxides

    Czech Academy of Sciences Publication Activity Database

    Malkov, A. V.; Stončius, S.; Bell, M.; Castelluzzo, F.; Ramírez-López, P.; Biedermannová, Lada; Langer, V.; Rulíšek, Lubomír; Kočovský, P.

    2013-01-01

    Roč. 19, č. 28 (2013), s. 9167-9185 ISSN 0947-6539 R&D Projects: GA MŠk LC512 Institutional support: RVO:61388963 ; RVO:86652036 Keywords : allylation * allylsilanes * calculations * organocatalysis * pyridine N-oxides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.696, year: 2013

  5. Single Pd Atoms on θ-Al2O3 (010) Surface do not Catalyze NO Oxidation.

    Science.gov (United States)

    Narula, Chaitanya K; Allard, Lawrence F; Moses-DeBusk, Melanie; Stocks, G Malcom; Wu, Zili

    2017-04-03

    New convenient wet-chemistry synthetic routes have made it possible to explore catalytic activities of a variety of single supported atoms, however, the single supported atoms on inert substrates (e.g. alumina) are limited to adatoms and cations of Pt, Pd, and Ru. Previously, we have found that single supported Pt atoms are remarkable NO oxidation catalysts. In contrast, we report that Pd single atoms are completely inactive for NO oxidation. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show the absence of nitrate formation on catalyst. To explain these results, we explored modified Langmuir-Hinshelwood type pathways that have been proposed for oxidation reactions on single supported atom. In the first pathway, we find that there is energy barrier for the release of NO 2 which prevent NO oxidation. In the second pathway, our results show that there is no driving force for the formation of O=N-O-O intermediate or nitrate on single supported Pd atoms. The decomposition of nitrate, if formed, is an endothermic event.

  6. OMS-2-Supported Cu Hydroxide-Catalyzed Benzoxazoles Synthesis from Catechols and Amines via Domino Oxidation Process at Room Temperature.

    Science.gov (United States)

    Meng, Xu; Wang, Yanmin; Wang, Yuanguang; Chen, Baohua; Jing, Zhenqiang; Chen, Gexin; Zhao, Peiqing

    2017-07-07

    In the presence of manganese oxide octahedral molecular sieve (OMS-2) supported copper hydroxide Cu(OH) x /OMS-2, aerobic synthesis of benzoxazoles from catechols and amines via domino oxidation/cyclization at room temperature is achieved. This heterogeneous benzoxazoles synthesis initiated by the efficient oxidation of catechols over Cu(OH) x /OMS-2 tolerates a variety of substrates, especially amines containing sensitive groups (hydroxyl, cyano, amino, vinyl, ethynyl, ester, and even acetyl groups) and heterocycles, which affords functionalized benzoxazoles in good to excellent yields by employing low catalyst loading (2 mol % Cu). The characterization and plausible catalytic mechanism of Cu(OH) x /OMS-2 are described. The notable features of our catalytic protocol such as the use of air as the benign oxidant and EtOH as the solvent, mild conditions, ease of product separation, being scalable up to the gram level, and superior reusability of catalyst (up to 10 cycles) make it more practical and environmentally friendly for organic synthesis.

  7. Effective oxidation of benzylic and alkane C-H bonds catalyzed by sodium o-iodobenzenesulfonate with Oxone as a terminal oxidant under phase-transfer conditions.

    Science.gov (United States)

    Cui, Li-Qian; Liu, Kai; Zhang, Chi

    2011-04-07

    Catalytic oxidation of benzylic C-H bonds could be efficiently realized using IBS as a catalyst which was generated in situ from the oxidation of sodium 2-iodobenzenesulfonate (1b) by Oxone in the presence of a phase-transfer catalyst, tetra-n-butylammonium hydrogen sulfate, in anhydrous acetonitrile at 60 °C. Various alkylbenzenes, including toluenes and ethylbenzenes, several oxygen-containing functionalities substituted alkylbenzenes, and a cyclic benzyl ether could be efficiently oxidized. And, the same reagent system of cat. 1b/Oxone/cat. n-Bu(4)NHSO(4) could be applied to the effective oxidation of alkanes as well.

  8. Density functional theory analysis of the reaction pathway for methane oxidation to acetic acid catalyzed by Pd2+ in sulfuric acid.

    Science.gov (United States)

    Chempath, Shaji; Bell, Alexis T

    2006-04-12

    Density functional theory has been used to investigate the thermodynamics and activation barriers associated with the direct oxidation of methane to acetic acid catalyzed by Pd2+ cation in concentrated sulfuric acid. Pd2+ cations in such solutions are ligated by two bisulfate anions and by one or two molecules of sulfuric acid. Methane oxidation is initiated by the addition of CH4 across one of the Pd-O bonds of a bisulfate ligand to form Pd(HSO4)(CH3)(H2SO4)2. The latter species will react with CO to produce Pd(HSO4)(CH3CO)(H2SO4)2. The most likely path to the final products is found to be via oxidation of Pd(HSO4)(CH3)(H2SO4)2 and Pd(HSO4)(CH3CO)(H2SO4)2 to form Pd(eta2-HSO4)(HSO4)2(CH3)(H2SO4) and Pd(eta2-HSO4)(HSO4)2(CH3CO)(H2SO4), respectively. CH3HSO4 or CH3COHSO4 is then produced by reductive elimination from the latter two species, and CH(3)COOH is then formed by hydrolysis of CH3COHSO4. The loss of Pd2+ from solution to form Pd(0) or Pd-black is predicted to occur via reduction with CO. This process is offset, though, by reoxidation of palladium by either H2SO4 or O2.

  9. Selective liquid-phase oxidation of alcohols catalyzed by a silver-based catalyst promoted by the presence of ceria

    DEFF Research Database (Denmark)

    Beier, Matthias Josef; Hansen, Thomas Willum; Grunwaldt, Jan-Dierk

    2009-01-01

    simultaneously. When a high catalytic conversion (>30% over 2 h) was found the number of catalyst components was reduced in the following tests. Thereby, a collaborative effect between a physical mixture of ceria nanoparticles and silver-impregnated silica (10 wt.% Ag–SiO2) was found. The catalytic activity...... by in situ XAS experiments. Oxygen species incorporated in the silver lattice appear to be important for the catalytic oxidation of the alcohol for which a preliminary mechanism is presented. The application of the catalyst was extended to the oxidation of a wide range of primary and secondary alcohols....... Compared to palladium and gold catalysts, the new silver catalyst performed similarly or even superior in the presence of CeO2. In addition, the presence of ceria increased the catalytic activity of all investigated catalysts....

  10. Eosin Y-catalyzed visible-light-mediated aerobic oxidative cyclization of N,N-dimethylanilines with maleimides

    Directory of Open Access Journals (Sweden)

    Zhongwei Liang

    2015-04-01

    Full Text Available A novel and simple strategy for the efficient synthesis of the corresponding tetrahydroquinolines from N,N-dimethylanilines and maleimides using visible light in an air atmosphere in the presence of Eosin Y as a photocatalyst has been developed. The metal-free protocol involves aerobic oxidative cyclization via sp3 C–H bond functionalization process to afford good yields in a one-pot procedure under mild conditions.

  11. Oxidative C-H Activation Approach to Pyridone and Isoquinolone through an Iron-Catalyzed Coupling of Amides with Alkynes.

    Science.gov (United States)

    Matsubara, Tatsuaki; Ilies, Laurean; Nakamura, Eiichi

    2016-02-04

    An iron catalyst combined with a mild organic oxidant promotes both C-H bond cleavage and C-N bond formation, and forms 2-pyridones and isoquinolones from an alkene- or arylamide and an internal alkyne, respectively. An unsymmetrical alkyne gives the pyridone derivative with high regioselectivity, this could be due to the sensitivity of the reaction to steric effects because of the compact size of iron. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Oxidative decarboxylation of glycolic and phenylacetic acids with cerium(4) catalyzed by silver ions in the sulfuric acid media

    International Nuclear Information System (INIS)

    Venkatesvar Rao, G.; Nagardzhun Rao, Ch.; Sajprakash, P.K.

    1981-01-01

    Oxidative decarboxylation of glycolic and phenylacetic acids by cerium (4) in the presence of Ag + ions is studied. The Ce(4) order equals 1, glycolic acid order in the absence of a catalyst also equals 1 and is fractional (0.5) for a catalytic reaction. The phenylacetic acid order is fractional (0.75). The Ag + ion reaction order is fractional and constitutes 0.32 for glycolic and 0.36 for phenylacetic acids. The reaction mechanism is proposed [ru

  13. Eosin Y-catalyzed visible-light-mediated aerobic oxidative cyclization of N,N-dimethylanilines with maleimides.

    Science.gov (United States)

    Liang, Zhongwei; Xu, Song; Tian, Wenyan; Zhang, Ronghua

    2015-01-01

    A novel and simple strategy for the efficient synthesis of the corresponding tetrahydroquinolines from N,N-dimethylanilines and maleimides using visible light in an air atmosphere in the presence of Eosin Y as a photocatalyst has been developed. The metal-free protocol involves aerobic oxidative cyclization via sp(3) C-H bond functionalization process to afford good yields in a one-pot procedure under mild conditions.

  14. Electroremovable Traceless Hydrazides for Cobalt-Catalyzed Electro-Oxidative C-H/N-H Activation with Internal Alkynes.

    Science.gov (United States)

    Mei, Ruhuai; Sauermann, Nicolas; Oliveira, João C A; Ackermann, Lutz

    2018-06-27

    Electrochemical oxidative C-H/N-H activations have been accomplished with a versatile cobalt catalyst in terms of [4 + 2] annulations of internal alkynes. The electro-oxidative C-H activation manifold proved viable with an undivided cell setup under exceedingly mild reaction conditions at room temperature using earth-abundant cobalt catalysts. The electrochemical cobalt catalysis prevents the use of transition metal oxidants in C-H activation catalysis, generating H 2 as the sole byproduct. Detailed mechanistic studies provided strong support for a facile C-H cobaltation by an initially formed cobalt(III) catalyst. The subsequent alkyne migratory insertion was interrogated by mass spectrometry and DFT calculations, providing strong support for a facile C-H activation and the formation of a key seven-membered cobalta(III) cycle in a regioselective fashion. Key to success for the unprecedented use of internal alkynes in electrochemical C-H/N-H activations was represented by the use of N-2-pyridylhydrazides, for which we developed a traceless electrocleavage strategy by electroreductive samarium catalysis at room temperature.

  15. Antibacterial activity of Pd(II) complexes with salicylaldehyde-amino acids Schiff bases ligands.

    Science.gov (United States)

    Rîmbu, Cristina; Danac, Ramona; Pui, Aurel

    2014-01-01

    Palladium(II) complexes with Schiff bases ligands derived from salicylaldehyde and amino acids (Ala, Gly, Met, Ser, Val) have been synthesized and characterized by Fourier transform (FT)-IR, UV-Vis and (1)H-NMR spectroscopy. The electrospray mass spectrometry (ES-MS) spectrometry confirms the formation of palladium(II) complexes in 1/2 (M/L) molar ratio. All the Pd(II) complexes 1, [Pd(SalAla)2]Cl2; 2, [Pd(SalGly)2]Cl2; 3, [Pd(SalMet)2]Cl2; 4, [Pd(SalSer)2]Cl2; 5, [Pd(SalVal)2]Cl2; have shown antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli.

  16. Spectrophotometric Analysis of the Kinetic of Pd(II Chloride Complex Ions Sorption Process from Diluted Aqua Solutions Using Commercially Available Activated Carbon

    Directory of Open Access Journals (Sweden)

    Wojnicki M.

    2017-12-01

    Full Text Available In this paper, results of adsorption kinetic studies of Pd(II chloride complex ions on activated carbon Organosrob 10 CO are presented. Spectorphotometrical method was applied to investigate the process. Kinetic model was proposed, and fundamental thermodynamic parameters were determined. Proposed kinetic model describes well observed phenomenon in the studied range of concentration of Pd(II chloride complex ions as well, as concentration of activated carbon.

  17. Extraction behaviour and mechanism of Pt(iv) and Pd(ii) by liquid-liquid extraction with an ionic liquid [HBBIm]Br.

    Science.gov (United States)

    Liu, Wenhui; Wang, Qi; Zheng, Yan; Wang, Shubin; Yan, Yan; Yang, Yanzhao

    2017-06-06

    In this study, a method of one-step separation and recycling of high purity Pd(ii) and Pt(iv) using an ionic liquid, 1-butyl-3-benzimidazolium bromate ([HBBIm]Br), was investigated. The effects of [HBBIm]Br concentration, initial metal concentration, and loading capacity of [HBBIm]Br were examined in detail. It was observed that [HBBIm]Br was a very effective extractant for selectively extracting Pd(ii) and precipitating Pt(iv). Through selectively extracting Pd(ii) and precipitating Pt(iv), each metal with high purity was separately obtained from mixed Pd(ii) and Pt(iv) multi-metal solution. The method of one-step separation of Pd(ii) and Pt(iv) is simple and convenient. The anion exchange mechanism between [HBBIm]Br and Pt(iv) was proven through Job's method and FTIR and 1 H NMR spectroscopies. The coordination mechanism between [HBBIm]Br and Pd(ii) was demonstrated via single X-ray diffraction and was found to be robust and distinct, as supported by the ab initio quantum-chemical studies. The crystals of the [PdBr 2 ·2BBIm] complex were formed first. Moreover, the influence of the concentrations of hydrochloric acid, sodium chloride, and sodium nitrate on the precipitation of Pt(iv) and extraction of Pd(ii) was studied herein. It was found that only the concentration of H + could inhibit the separation of Pt(iv) because H + could attract the anion PtCl 6 2- ; thus, the exchange (anion exchange mechanism) between the anions PtCl 6 2- and Br - was prevented. However, both the concentration of H + and Cl - can obviously inhibit the extraction of Pd(ii) because H + and Cl - are the reaction products and increasing their concentration can inhibit the progress of the reaction (coordination mechanism).

  18. Studies of Heterogeneously Catalyzed Liquid-Phase Alcohol Oxidation on Platinum bySum-frequency Generation Vibrational Spectroscopy and Reaction Rate Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher [Univ. of California, Berkeley, CA (United States)

    2014-05-15

    Compared to many branches of chemistry, the molecular level study of catalytically active surfaces is young. Only with the invention of ultrahigh vacuum technology in the past half century has it been possible to carry out experiments that yield useful molecular information about the reactive occurrences at a surface. The reason is two-fold: low pressure is necessary to keep a surface clean for an amount of time long enough to perform an experiment, and most atomic scale techniques that are surface speci c (x-ray photoelectron spectroscopy, electron energy loss spectroscopy, Auger electron spectroscopy, etc.) cannot be used at ambient pressures, because electrons, which act as chemical probes in these techniques, are easily scattered by molecules. Sum-frequency generation (SFG) vibrational spectroscopy is one technique that can provide molecular level information from the surface without the necessity for high vacuum. Since the advent of SFG as a surface spectroscopic tool it has proved its worth in the studies of surface catalyzed reactions in the gas phase, with numerous reactions in the gas phase having been investigated on a multitude of surfaces. However, in situ SFG characterization of catalysis at the solid-liquid interface has yet to be thoroughly pursued despite the broad interest in the use of heterogeneous catalysts in the liquid phase as replacements for homogeneous counterparts. This work describes an attempt to move in that direction, applying SFG to study the solid-liquid interface under conditions of catalytic alcohol oxidation on platinum.

  19. Biomimetic oxidation studies of monensin A catalyzed by metalloporphyrins: identification of hydroxyl derivative product by electrospray tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    José N. Sousa-Junior

    2013-08-01

    Full Text Available Monensin A is an important commercially available natural product isolated from Streptomyces cinnamonensins that shows antibiotic and anti-parasitic activities. This molecule has a significant influence in the antibiotic market, but until now there are no studies on putative metabolite formations. Bioorganic catalysts applying metalloporphyrins and mono-oxygen donors are able to mimic the cytochrome P450 reactions. This model has been employed for natural product metabolism studies affording several new putative metabolites and in vivo experiments confirming the relevance of this procedure. In this work we evaluated the potential of 10,15,20-tetrakis (pentafluorophenyl porphyrin metal(III chloride [Fe(TFPPCl] catalyst models to afford a putative monensin A metabolite. Oxidation agents such as meta-chloroperoxy benzoic acid, iodosylbenzene, hydrogen peroxide 30 wt.% and tert-butyl hydroperoxide 70 wt.%, were used to investigate different reaction conditions, in addition to the analysis of the influence of the solvent. The quantification of total monensin A conversion and the structure of the new hydroxylated putative metabolite were proposed based on electrospray ionization tandem mass spectrometry analysis. The porphyrin tested, afforded moderate conversions of monensin A in all reaction conditions and the selectivity was found to be dependent on the oxidation/medium employed.

  20. Sulfate radical degradation of acetaminophen by novel iron-copper bimetallic oxidation catalyzed by persulfate: Mechanism and degradation pathways

    Science.gov (United States)

    Zhang, Yuanchun; Zhang, Qian; Hong, Junming

    2017-11-01

    A novel iron coupled copper oxidate (Fe2O3@Cu2O) catalyst was synthesized to activate persulfate (PS) for acetaminophen (APAP) degradation. The catalysts were characterized via field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry. The effects of the catalyst, PS concentration, catalyst dosage, initial pH, dissolved oxygen were analyzed for treatment optimization. Results indicated that Fe2O3@Cu2O achieved higher efficiency in APAP degradation than Fe2O3/PS and Cu2O/PS systems. The optimal removal efficiency of APAP (90%) was achieved within 40 min with 0.6 g/L PS and 0.3 g/L catalyst. To clarify the mechanism for APAP degradation, intermediates were analyzed with gas chromatography-mass spectrometry. Three possible degradation pathways were identified. During reaction, Cu(I) was found to react with Fe(III) to generate Fe(II), which is the most active phase for PS activation. Through the use of methanol and tert-butyl alcohol (TBA) as radical trappers, SO4rad - was identified as the main radical species that is generated during oxidation.

  1. I2-Catalyzed Oxidative Condensation of Aldoses with Diamines: Synthesis of Aldo-Naphthimidazoles for Carbohydrate Analysis

    Directory of Open Access Journals (Sweden)

    Chunchi Lin

    2010-03-01

    Full Text Available A novel method for the conversion of unprotected and unmodified aldoses to aldo-imidazoles has been developed. Using iodine as a catalyst in acetic acid solution, a series of mono- and oligosaccharides, including those containing carboxyl and acetamido groups, undergo an oxidative condensation reaction with aromatic vicinal diamines at room temperature to give the corresponding aldo-imidazole products in high yields. No cleavage of the glycosidic bond occurs under the mild reaction conditions. The compositional analysis of saccharides is commonly realized by capillary electropheresis of the corresponding aldo-imidazole derivatives, which are easily synthesized by the reported iodine-promoted oxidative condensation. In addition, a series of aldo-imidazoles were determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF MS to analyze molecular weight and ion intensity. The diamine-labeled saccharides showed enhanced signals in MALDI–TOF MS. The combined use of aldoimidazole derivatization and mass spectrometric analysis thus provides a rapid method for identification of saccharides, even when less than 1 pmol of saccharide is present in the sample. These results can be further applied to facilitate the isolation and analysis of novel saccharides.

  2. Selective Oxidation of Glycerol with 3% H2O2 Catalyzed by LDH-Hosted Cr(III Complex

    Directory of Open Access Journals (Sweden)

    Gongde Wu

    2015-11-01

    Full Text Available A series of layered double hydroxides (LDHs –hosted sulphonato-salen Cr(III complexes were prepared and characterized by various physico-chemical measurements, such as Fourier transform infrared spectroscopy (FTIR, ultraviolet-visible spectroscopy (UV-Vis, powder X-ray diffraction (XRD, transmission electron microscope (TEM, scanning electron microscope (SEM and elemental analysis. Additionally, their catalytic performances were investigated in the selective oxidation of glycerol (GLY using 3% H2O2 as an oxidant. It was found that all the LDH-hosted Cr(III complexes exhibited significantly enhanced catalytic performance compared to the homogeneous Cr(III complex. Additionally, it was worth mentioning that the metal composition of LDH plates played an important role in the catalytic performances of LDH-hosted Cr(III complex catalysts. Under the optimal reaction conditions, the highest GLY conversion reached 85.5% with 59.3% of the selectivity to 1,3-dihydroxyacetone (DHA. In addition, the catalytic activity remained after being recycled five times.

  3. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand

    2015-01-01

    illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin......-substituted phenols, benzenethiols, polyphenols, and polyamines, which may be oxidized. In addition, the currently available analytical methods that can be used to detect enzyme catalyzed changes in lignin are summarized, and an improved nomenclature for unequivocal interpretation of the action of laccases on lignin...

  4. Sulfate radical-induced degradation of Acid Orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process.

    Science.gov (United States)

    Chen, Dan; Ma, Xiaolong; Zhou, Jizhi; Chen, Xi; Qian, Guangren

    2014-08-30

    We synthesized a novel magnetic composite, Fe3O4/Cu(Ni)Cr-LDH, as a heterogeneous catalyst for the degradation of organic dyes in the solution using sulfate radical-based advanced oxidation processes. The physicochemical properties of the composite synthesized via two-step microwave hydrothermal method were characterized by several techniques, such as X-ray diffraction (XRD), inductively coupled plasma (ICP), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The degradation tests were performed at 25°C with Acid Orange 7 (AO7) initial concentration of 25mg/L and AO7/peroxymonosulfate (PMS) molar ratio of 1:10, which showed that the complete degradation by Fe3O4/Cu1.5Ni0.5Cr-LDH could be achieved and the mineralization rate could reach 46%. PMS was activated by Cu (II) and Fe (II/III) of Fe3O4/Cu(Ni)Cr-LDH to generate sulfate radicals (SO4(-)). Subsequently, the organic functional groups of AO7 molecules were destroyed by sulfate radicals (SO4(-)), inducing the degradation of AO7. Moreover, the catalytic behavior of the catalysts could be reused five times. Therefore, our work suggested that the Fe3O4/Cu(Ni)Cr-LDH composite could be applied widely for the treatment of organic dyes in wastewater. Copyright © 2014. Published by Elsevier B.V.

  5. Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of Eosin-Y

    Science.gov (United States)

    Santhanalakshmi, J.; Venkatesan, P.

    2011-02-01

    Mono metallic (Au, Ag, Pd) and bimetallic (Au-Ag, Ag-Pd, Au-Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au-Ag = 9.2, Ag-Pd = 9.6, Au-Pd = 9.4 nm) are characterized by UV-Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.

  6. Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of Eosin-Y

    International Nuclear Information System (INIS)

    Santhanalakshmi, J.; Venkatesan, P.

    2011-01-01

    Mono metallic (Au, Ag, Pd) and bimetallic (Au–Ag, Ag–Pd, Au–Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au–Ag = 9.2, Ag–Pd = 9.6, Au–Pd = 9.4 nm) are characterized by UV–Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.Graphical Abstract

  7. Efficient asymmetric hydrolysis of styrene oxide catalyzed by Mung bean epoxide hydrolases in ionic liquid-based biphasic systems.

    Science.gov (United States)

    Chen, Wen-Jing; Lou, Wen-Yong; Zong, Min-Hua

    2012-07-01

    The asymmetric hydrolysis of styrene oxide to (R)-1-phenyl-1,2-ethanediol using Mung bean epoxide hydrolases was, for the first time, successfully conducted in an ionic liquid (IL)-containing biphasic system. Compared to aqueous monophasic system, IL-based biphasic systems could not only dissolve the substrate, but also effectively inhibit the non-enzymatic hydrolysis, and therefore markedly improve the reaction efficiency. Of all the tested ILs, the best results were observed in the biphasic system containing C(4)MIM·PF(6), which exhibited good biocompatibility with the enzyme and was an excellent solvent for the substrate. In the C(4)MIM·PF(6)/buffer biphasic system, it was found that the optimal volume ratio of IL to buffer, reaction temperature, buffer pH and substrate concentration were 1/6, 35°C, 6.5 and 100 mM, respectively, under which the initial reaction rate, the yield and the product e.e. were 18.4 mM/h, 49.4% and 97.0%. The biocatalytic process was shown to be feasible on a 500-mL preparative scale. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process.

    Science.gov (United States)

    Madhuvilakku, Rajesh; Piraman, Shakkthivel

    2013-12-01

    Biodiesel is a promising alternating environmentally benign fuel to mineral diesel. For the development of easier transesterification process, stable and active heterogeneous mixed metal oxide of TiO2-ZnO and ZnO nanocatalysts were synthesized and exploited for the palm oil transesterification process. The synthesized catalysts were characterized by XRD, FT-IR, and FE-SEM studies for their structural and morphological characteristics. It was found that TiO2-ZnO nanocatalyst exhibits good catalytic activity and the catalytic performance was greatly depends on (i) catalyst concentration (ii) methanol to oil molar ratio (iii) reaction temperature and (iv) reaction time. A highest 98% of conversion was obtained at the optimum reaction parameters with 200 mg of catalyst loading and the biodiesel was analyzed by TLC and (1)H NMR techniques. The TiO2-ZnO nanocatalyst shows good catalytic performance over the ZnO catalyst, which could be a potential candidate for the large-scale biodiesel production from palm oil at the reduced temperature and time. Copyright © 2013. Published by Elsevier Ltd.

  9. Fenton-like Degradation of Phenol Catalyzed by a Series of Fe-Containing Mixed Oxides Systems

    Science.gov (United States)

    Alhmoud, T. T.; Mahmoud, S. S.; Hammoudeh, A. Y.

    2018-02-01

    In our attempts to develop a solid catalyst to degrade organic pollutants in wastewater via the Fenton-like reaction, six Fe-containing mixed oxide systems were prepared by means of the sol-gel auto-combustion method to have the following stoichiometries: CuFe1.2O2.8, BaFe7.2O11.8, BaFe7.2Cu2O13.8, BaFe5.4V3O16.6, BaFe4.8Cu2V3O17.7 and Ag2Fe5.4V3O16.6. The prepared systems were thermally treated at 550°C, 650°C, 800°C and 1100°C, and then characterized by XRD to identify the present phases. The systems were tested with respect to their catalytic efficiency in the degradation of phenol (200 ppm) in water where CuFe1.2O2.8 was found to be the most reactive one (80% removal in 60 min). It showed thereby first-order kinetics and an enhanced behavior under irradiation with a 30-W LED light source. The positive role of irradiation was most obvious in the case of Ag2Fe5.4V3O16.6 in which almost complete conversion was achieved in 120 min compared to only 45% in the same period but without irradiation. However, increasing the temperature at which thermal treatment is performed was found to suppress the catalytic activity of the system. Due to their high efficiency and rather low leaching rates of constituents, CuFe1.2O2.8 or Ag2Fe5.4V3O16.6 seem to be very promising in the Fenton-like degradation of organic pollutants.

  10. Sulfate radical-induced degradation of Acid Orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process

    International Nuclear Information System (INIS)

    Chen, Dan; Ma, Xiaolong; Zhou, Jizhi; Chen, Xi; Qian, Guangren

    2014-01-01

    Graphical abstract: Organic dyes could be absorbed on the surface of the composite or dispersed in the solution. Sulfate radicals (SO 4 · − ) generated by the synergistic reaction between peroxymonosulfate (PMS) and the composite, attacked the organic functional groups of the dyes molecules both adsorbed on the composite surface and dispersed in the solution, which resulted in the degradation of AO7 dye. - Highlights: • A new composite was synthesized successfully via microwave hydrothermal method. • The complete degradation in the system of FLCN and PMS can be achieved. • The catalytic behavior of FLCN can be reused at least for five times. • The AO7 degradation mechanism in the system of FLCN and PMS was demonstrated. - Abstract: We synthesized a novel magnetic composite, Fe 3 O 4 /Cu(Ni)Cr-LDH, as a heterogeneous catalyst for the degradation of organic dyes in the solution using sulfate radical-based advanced oxidation processes. The physicochemical properties of the composite synthesized via two-step microwave hydrothermal method were characterized by several techniques, such as X-ray diffraction (XRD), inductively coupled plasma (ICP), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The degradation tests were performed at 25 °C with Acid Orange 7 (AO7) initial concentration of 25 mg/L and AO7/peroxymonosulfate (PMS) molar ratio of 1:10, which showed that the complete degradation by Fe 3 O 4 /Cu 1.5 Ni 0.5 Cr-LDH could be achieved and the mineralization rate could reach 46%. PMS was activated by Cu (II) and Fe (II/III) of Fe 3 O 4 /Cu(Ni)Cr-LDH to generate sulfate radicals (SO 4 · − ). Subsequently, the organic functional groups of AO7 molecules were destroyed by sulfate radicals (SO 4 · − ), inducing the degradation of AO7. Moreover, the catalytic behavior of the catalysts could be reused five times. Therefore, our work suggested that the Fe 3 O 4 /Cu(Ni)Cr-LDH composite could be applied widely for the

  11. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinhua [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I2, ICl, PhSeCl, PhSCl and p-O2NC6H4SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement

  12. PENGEMBANGAN SISTEM TEMU KEMBALI INFORMASI DIGITAL FULLTEXT ARTIKEL JURNAL DI PDII – LIPI

    Directory of Open Access Journals (Sweden)

    Sjaeful Afandi

    2016-03-01

    Full Text Available One of the tasks in Center for Scientific Documentation and Information – Indonesian Institutes of Sciences (PDII - LIPI is to disseminate the results of existing research in Indonesia. The research result can be either books or journal articles. Currently, activity of retrieval system on a journal article have still using a traditional retrieve systems regardless of the relevance of data search results. The order of search results based only on the order of data entry that need to be developed information retrieval of digital full text articles as data retrieval alternative. Development of information retrieval system that uses Sphinx Search software. The data used are the result of the conversion from Portable Digital Format (PDF into XML as much as 1000 file. Data of conversion result, then are processed through “tokenisasi” and indexing techniques using Sphinx Search software. Retrieval system tested with a query that has been determined. Retrieval results calculated using standard recalls eleven that in mind the relevance and accuracy. Data retrieval system produces search results that are relevant and accurate with average presicion (AVP value is of 79%.

  13. Selective separation, preconcentration and determination of Pd(II ions in environmental samples by coprecipitation with a 1,2,4-triazole derivative

    Directory of Open Access Journals (Sweden)

    D. Ozdes

    2015-01-01

    Full Text Available A simple, sensitive, facile and low cost methodology, combined with flame atomic absorption spectrometry (FAAS, was employed to evaluate the selective separation and preconcentration of Pd(II ions in environmental samples by using a triazole derivative as an organic coprecipitating agent without a carrier element. The developed method was systematically investigated in different set of experimental parameters that influence the quantitative recovery of Pd(II ions. The accuracy of the method was tested by analyzing certified reference material and spike tests. The developed coprecipitation procedure has been applied to road dust, anodic slime, industrial electronic waste materials and water samples to determine their Pd(II levels. DOI: http://dx.doi.org/10.4314/bcse.v29i1.1

  14. Pyridine synthesis by reactions of allyl amines and alkynes proceeding through a Cu(OAc)2 oxidation and Rh(III)-catalyzed N-annulation sequence.

    Science.gov (United States)

    Kim, Dong-Su; Park, Jung-Woo; Jun, Chul-Ho

    2012-11-28

    A new methodology has been developed for the synthesis of pyridines from allyl amines and alkynes, which involves sequential Cu(II)-promoted dehydrogenation of the allylamine and Rh(III)-catalyzed N-annulation of the resulting α,β-unsaturated imine and alkyne.

  15. Biochemistry of methyl-coenzyme M reductase: the nickel metalloenzyme that catalyzes the final step in synthesis and the first step in anaerobic oxidation of the greenhouse gas methane.

    Science.gov (United States)

    Ragsdale, Stephen W

    2014-01-01

    Methane, the major component of natural gas, has been in use in human civilization since ancient times as a source of fuel and light. Methanogens are responsible for synthesis of most of the methane found on Earth. The enzyme responsible for catalyzing the chemical step of methanogenesis is methyl-coenzyme M reductase (MCR), a nickel enzyme that contains a tetrapyrrole cofactor called coenzyme F430, which can traverse the Ni(I), (II), and (III) oxidation states. MCR and methanogens are also involved in anaerobic methane oxidation. This review describes structural, kinetic, and computational studies aimed at elucidating the mechanism of MCR. Such studies are expected to impact the many ramifications of methane in our society and environment, including energy production and greenhouse gas warming.

  16. Mononuclear Pd(II) complex as a new therapeutic agent: Synthesis, characterization, biological activity, spectral and DNA binding approaches

    Science.gov (United States)

    Saeidifar, Maryam; Mirzaei, Hamidreza; Ahmadi Nasab, Navid; Mansouri-Torshizi, Hassan

    2017-11-01

    The binding ability between a new water-soluble palladium(II) complex [Pd(bpy)(bez-dtc)]Cl (where bpy is 2,2‧-bipyridine and bez-dtc is benzyl dithiocarbamate), as an antitumor agent, and calf thymus DNA was evaluated using various physicochemical methods, such as UV-Vis absorption, Competitive fluorescence studies, viscosity measurement, zeta potential and circular dichroism (CD) spectroscopy. The Pd(II) complex was synthesized and characterized using elemental analysis, molar conductivity measurements, FT-IR, 1H NMR, 13C NMR and electronic spectra studies. The anticancer activity against HeLa cell lines demonstrated lower cytotoxicity than cisplatin. The binding constants and the thermodynamic parameters were determined at different temperatures (300 K, 310 K and 320 K) and shown that the complex can bind to DNA via electrostatic forces. Furthermore, this result was confirmed by the viscosity and zeta potential measurements. The CD spectral results demonstrated that the binding of Pd(II) complex to DNA induced conformational changes in DNA. We hope that these results will provide a basis for further studies and practical clinical use of anticancer drugs.

  17. Preparation of Benzo[c]carbazol-6-amines via Manganese-Catalyzed Enaminylation of 1-(Pyrimidin-2-yl)-1H-indoles with Ketenimines and Subsequent Oxidative Cyclization.

    Science.gov (United States)

    Zhou, Xiaorong; Li, Zhenmin; Zhang, Zhiyin; Lu, Ping; Wang, Yanguang

    2018-03-02

    Manganese-catalyzed C 2 -H enaminylation of 1-(pyrimidin-2-yl)-1H-indoles with ketenimines is reported. The reaction provided 2-enaminylated indole derivatives in moderate to excellent yields with a broad substrate scope. A migration of the directing group pyrimidinyl occurred during this process. The synthesized 2-enaminyl indoles could be conveniently converted into 5-aryl-7H-benzo[c]carbazol-6-amines.

  18. Stereoselective synthesis of 1,3-disubstituted isoindolines via Rh(III)-catalyzed tandem oxidative olefination-cyclization of 4-aryl cyclic sulfamidates.

    Science.gov (United States)

    Son, Se-Mi; Seo, Yeon Ji; Lee, Hyeon-Kyu

    2016-03-21

    Rh(III)-catalyzed tandem ortho C-H olefination of cyclic 4-aryl sulfamidates (1) and subsequent intramolecular cyclization are described. This reaction serves as a method for the direct and stereoselective synthesis of 1,3-disubstituted isoindolines (3) starting with enantiomerically enriched 4-aryl cyclic sulfamidates. In this process, the configurational integrity of the stereogenic center in the starting cyclic sulfamidate is completely retained. In addition, the process generates trans-1,3-disubstituted isoindolines exclusively.

  19. From atactic to isotactic CO/p-methylstyrene copolymer by proper modification of Pd(II) catalysts bearing achiral alpha-diimines.

    Science.gov (United States)

    Binotti, Barbara; Carfagna, Carla; Zuccaccia, Cristiano; Macchioni, Alceo

    2005-01-07

    Cationic Pd(II) complexes modified with achiral C(2v)-symmetric alpha-diimine ligands allow preparation of atactic or isotactic stereoblock CO/p-methylstyrene copolymers; both catalyst activity and polyketone microstructure depend on the choice of alpha-diimine substituents and counterion.

  20. Exploring electronic and steric effects on the insertion and polymerization reactivity of phosphinesulfonato pdii catalysts

    KAUST Repository

    Neuwald, Boris

    2013-11-21

    Thirteen different symmetric and asymmetric phosphinesulfonato palladium complexes ([{(X1-Cl)-μ-M}n], M=Na, Li, 1= X(P^O)PdMe) were prepared (see Figure 1). The solid-state structures of the corresponding pyridine or lutidine complexes were determined for (MeO)21-py, (iPrO)21-lut, (MeO,Me2)1-lut, (MeO)31-lut, CF31-lut, and Ph1-lut. The reactivities of the catalysts X1, obtained after chloride abstraction with AgBF4, toward methyl acrylate (MA) were quantified through determination of the rate constants for the first and the consecutive MA insertion and the analysis of β-H and other decomposition products through NMR spectroscopy. Differences in the homo- and copolymerization of ethylene and MA regarding catalyst activity and stability over time, polymer molecular weight, and polar co-monomer incorporation were investigated. DFT calculations were performed on the main insertion steps for both monomers to rationalize the effect of the ligand substitution patterns on the polymerization behaviors of the complexes. Full analysis of the data revealed that: 1) electron-deficient catalysts polymerize with higher activity, but fast deactivation is also observed; 2) the double ortho-substituted catalysts (MeO)21 and (MeO)31 allow very high degrees of MA incorporation at low MA concentrations in the copolymerization; and 3) steric shielding leads to a pronounced increase in polymer molecular weight in the copolymerization. The catalyst properties induced by a given P-aryl (alkyl) moiety were combined effectively in catalysts with two different non-chelating aryl moieties, such as cHexO/(MeO)21, which led to copolymers with significantly increased molecular weights compared to the prototypical MeO1. Catalyst control: The influence of steric and electronic effects on the reactivity of phosphinesulfonato PdII catalysts in polymerization and copolymerization is explored through experimental and DFT methods. A comparison of thirteen different X(P O)PdMe catalysts ((P O)= κ2-P

  1. Copper-catalyzed difunctionalization of activated alkynes by radical oxidation-tandem cyclization/dearomatization to synthesize 3-trifluoromethyl spiro[4.5]trienones.

    Science.gov (United States)

    Hua, Hui-Liang; He, Yu-Tao; Qiu, Yi-Feng; Li, Ying-Xiu; Song, Bo; Gao, Pin; Song, Xian-Rong; Guo, Dong-Hui; Liu, Xue-Yuan; Liang, Yong-Min

    2015-01-19

    A copper-catalyzed difunctionalizing trifluoromethylation of activated alkynes with the cheap reagent sodium trifluoromethanesulfinate (NaSO2CF3 or Langlois' reagent) has been developed incorporating a tandem cyclization/dearomatization process. This strategy affords a straightforward route to synthesis of 3-(trifluoromethyl)-spiro[4.5]trienones, and presents an example of difunctionalization of alkynes for simultaneous formation of two carbon-carbon single bonds and one carbon-oxygen double bond. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Catalyzing RE Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Kate; Elgqvist, Emma; Walker, Andy; Cutler, Dylan; Olis, Dan; DiOrio, Nick; Simpkins, Travis

    2016-09-01

    This poster details how screenings done with REopt - NREL's software modeling platform for energy systems integration and optimization - are helping to catalyze the development of hundreds of megawatts of renewable energy.

  3. Nonafluorobutanesulfonyl azide as a shelf-stable highly reactive oxidant for the copper-catalyzed synthesis of 1,3-diynes from terminal alkynes.

    Science.gov (United States)

    Suárez, José Ramón; Collado-Sanz, Daniel; Cárdenas, Diego J; Chiara, Jose Luis

    2015-01-16

    Nonafluorobutanesulfonyl azide is a highly efficient reagent for the copper-catalyzed coupling of terminal alkynes to give symmetrical and unsymmetrical 1,3-diynes in good to excellent yields and with good functional group compatibility. The reaction is extremely fast (<10 min), even at low temperature (−78 °C), and requires substoichiometric amounts of a simple copper(I) or copper(II) salt (2–5 mol %) and an organic base (0.6 mol %). A possible mechanistic pathway is briefly discussed on the basis of model DFT theoretical calculations. The quantitative assessment of the safety of use and shelf stability of nonafluorobutanesulfonyl azide has confirmed that this reagent is a superior and safe alternative to other electrophilic azide reagents in use today.

  4. Stereoselective Synthesis of Functionalized 1,3-Disubstituted Isoindolines via Rh(III)-Catalyzed Tandem Oxidative Olefination-Cyclization of 4-Aryl-cyclic Sulfamidate-5-Carboxylates.

    Science.gov (United States)

    Achary, Raghavendra; Jung, In-A; Son, Se-Mi; Lee, Hyeon-Kyu

    2017-07-21

    A new method for the direct, stereoselective synthesis of highly functionalized 1,3-disubstituted isoindolines 6 from enantiomerically enriched cyclic 4-aryl-sulfamidate-5-carboxylates (5) is described. The process involves sulfamidate directed, Rh(III)-catalyzed tandem ortho C-H olefination of the 4-aryl-sulfamidate-5-carboxylates and subsequent cyclization by aza-Michael addition. In the reaction, which generates trans-1,3-disubstituted isoindolines exclusively, the configurational integrity of the stereogenic center in the starting cyclic sulfamidate is completely retained in the product. Examples are provided which show that the cyclic sulfamidate moiety not only serves as a chiral directing group but also as a versatile handle for further functionalization of the generated isoindoline ring system.

  5. REGIOSELECTIVE OXIDATIONS OF EQUILENIN DERIVATIVES CATALYZED BY A RHODIUM (III) PORPHYRIN COMPLEX-CONTRAST WITH THE MANGANESE (III) PORPHYRIN. (R826653)

    Science.gov (United States)

    AbstractEquilenin acetate and dihydroequilenin acetate were oxidized with iodosobenzene and a rhodium(III) porphyrin catalyst. The selectivity of the reactions differs from that with the corresponding Mn(III) catalyst, or from that of free radical chain oxidation.

  6. CYP2B6, CYP2D6, and CYP3A4 catalyze the primary oxidative metabolism of perhexiline enantiomers by human liver microsomes.

    Science.gov (United States)

    Davies, Benjamin J; Coller, Janet K; Somogyi, Andrew A; Milne, Robert W; Sallustio, Benedetta C

    2007-01-01

    The cytochrome P450 (P450)-mediated 4-monohydroxylations of the individual enantiomers of the racemic antianginal agent perhexiline (PHX) were investigated in human liver microsomes (HLMs) to identify stereoselective differences in metabolism and to determine the contribution of the polymorphic enzyme CYP2D6 and other P450s to the intrinsic clearance of each enantiomer. The cis-, trans1-, and trans2-4-monohydroxylation rates of (+)- and (-)-PHX by human liver microsomes from three extensive metabolizers (EMs), two intermediate metabolizers (IMs), and two poor metabolizers (PMs) of CYP2D6 were measured with a high-performance liquid chromatography assay. P450 isoform-specific inhibitors, monoclonal antibodies directed against P450 isoforms, and recombinantly expressed human P450 enzymes were used to define the P450 isoform profile of PHX 4-monohydroxylations. The total in vitro intrinsic clearance values (mean +/- S.D.) of (+)- and (-)-PHX were 1376 +/- 330 and 2475 +/- 321, 230 +/- 225 and 482 +/- 437, and 63.4 +/- 1.6 and 54.6 +/- 1.2 microl/min/mg for the EM, IM, and PM HLMs, respectively. CYP2D6 catalyzes the formation of cis-OH-(+)-PHX and trans1-OH-(+)-PHX from (+)-PHX and cis-OH-(-)-PHX from (-)-PHX with high affinity. CYP2B6 and CYP3A4 each catalyze the trans1- and trans2-4-monohydroxylation of both (+)- and (-)-PHX with low affinity. Both enantiomers of PHX are subject to significant polymorphic metabolism by CYP2D6, although this enzyme exhibits distinct stereoselectivity with respect to the conformation of metabolites and the rate at which they are formed. CYP2B6 and CYP3A4 are minor contributors to the intrinsic P450-mediated hepatic clearance of both enantiomers of PHX, except in CYP2D6 PMs.

  7. CuX2络合物催化甲基丙烯酸甲酯的氧化聚合%CuX2 COMPLEX-CATALYZED OXIDATIVE POLYMERIZATIONS OF METHYL METHACRYLATE

    Institute of Scientific and Technical Information of China (English)

    孙燕; 孙晋; 宋瑾; 黄文艳; 蒋必彪; 翟光群

    2011-01-01

    Oxidative polymerizations of methyl methacrylate ( MMA) catalyzed by complexes of transition metal halides in high oxidation states were investigated. First, CuBr2/2, 2'-bipyridine ( bPy)-catalyzed oxidative polymerizations of MMA in the presence of poly (2-( N, iV-dimethylamino) ethyl methacrylate) were performed in different solvents. When cyclohexanone was used as a solvent, only poly ( methyl methacrylate) ( PMMA) was obtained, suggesting redox initiation between CuBr2/bPy and tertiary amines in cyclohexanone is negligible. Second, oxidative polymerizations of MMA catalyzed by different complexes were carried out. Complexes of CuCl2 ,CuBr2 or FeCl3 with bPy,N,N,/V',N",/V"-pentamethyldiethylenetriamine or N,N,N',N'-tetramethylethylenediamine can catalyze oxidative polymerizations of MMA, and polymerization rates increased with the increase of the catalyst concentration. Molecular weight of PMMA increases with monomer conversions initially and maintains constant later. Last,atom transfer radical polymerization ( ATRP) chain extension using PMMA from the oxidative polymerizations at different conversions was performed. The results show the C-X functionality of PMMA chains at low conversion was also 100% ,and it decreased sharply with conversions. Two different mechanisms were conceived to contribute to the oxidative polymerization of MMA: (1) the complexes form ATRP initiators and catalysts with MMA via monomer addition, and then ATRP proceeds to give rise to PMMA chains with C-X terminal groups; (2) the complexes catalyze/initiate conventional free radical polymerizations of MMA.%研究了高氧化态过渡金属卤化物络合物催化甲基丙烯酸甲酯(MMA)的氧化聚合.首先在叔胺类聚合物存在条件下以CuBr2/2,2′-联吡啶(bPy)络合物催化MMA在不同溶剂中的氧化聚合,结果在环己酮中得到PMMA均聚物,CuBr2/bPy同叔胺的氧化还原引发可以忽略.随后在环己酮中分别以不同络合物催化MMA的

  8. Highly efficient alkane oxidation catalyzed by [Mn(V)(N)(CN)4](2-). Evidence for [Mn(VII)(N)(O)(CN)4](2-) as an active intermediate.

    Science.gov (United States)

    Ma, Li; Pan, Yi; Man, Wai-Lun; Kwong, Hoi-Ki; Lam, William W Y; Chen, Gui; Lau, Kai-Chung; Lau, Tai-Chu

    2014-05-28

    The oxidation of various alkanes catalyzed by [Mn(V)(N)(CN)4](2-) using various terminal oxidants at room temperature has been investigated. Excellent yields of alcohols and ketones (>95%) are obtained using H2O2 as oxidant and CF3CH2OH as solvent. Good yields (>80%) are also obtained using (NH4)2[Ce(NO3)6] in CF3CH2OH/H2O. Kinetic isotope effects (KIEs) are determined by using an equimolar mixture of cyclohexane (c-C6H12) and cyclohexane-d12 (c-C6D12) as substrate. The KIEs are 3.1 ± 0.3 and 3.6 ± 0.2 for oxidation by H2O2 and Ce(IV), respectively. On the other hand, the rate constants for the formation of products using c-C6H12 or c-C6D12 as single substrate are the same. These results are consistent with initial rate-limiting formation of an active intermediate between [Mn(N)(CN)4](2-) and H2O2 or Ce(IV), followed by H-atom abstraction from cyclohexane by the active intermediate. When PhCH2C(CH3)2OOH (MPPH) is used as oxidant for the oxidation of c-C6H12, the major products are c-C6H11OH, c-C6H10O, and PhCH2C(CH3)2OH (MPPOH), suggesting heterolytic cleavage of MPPH to generate a Mn═O intermediate. In the reaction of H2O2 with [Mn(N)(CN)4](2-) in CF3CH2OH, a peak at m/z 628.1 was observed in the electrospray ionization mass spectrometry, which is assigned to the solvated manganese nitrido oxo species, (PPh4)[Mn(N)(O)(CN)4](-)·CF3CH2OH. On the basis of the experimental results the proposed mechanism for catalytic alkane oxidation by [Mn(V)(N)(CN)4](2-)/ROOH involves initial rate-limiting O-atom transfer from ROOH to [Mn(N)(CN)4](2-) to generate a manganese(VII) nitrido oxo active species, [Mn(VII)(N)(O)(CN)4](2-), which then oxidizes alkanes (R'H) via a H-atom abstraction/O-rebound mechanism. The proposed mechanism is also supported by density functional theory calculations.

  9. CuO and Ag2O/CuO Catalyzed Oxidation of Aldehydes to the Corresponding Carboxylic Acids by Molecular Oxygen

    Directory of Open Access Journals (Sweden)

    Yaowu Sha

    2008-04-01

    Full Text Available Furfural was oxidized to furoic acid by molecular oxygen under catalysis by 150nm-sized Ag2O/CuO (92% or simply CuO (86.6%. When 30 nm-size catalyst was used,the main product was a furfural Diels-Alder adduct. Detailed reaction conditions andregeneration of catalysts were investigated. Under optimal conditions, a series of aromaticand aliphatic aldehydes were oxidized to the corresponding acids in good yields.

  10. Synthesis of 1,3,5-triazines via Cu(OAc)2-catalyzed aerobic oxidative coupling of alcohols and amidine hydrochlorides.

    Science.gov (United States)

    You, Qing; Wang, Fei; Wu, Chaoting; Shi, Tianchao; Min, Dewen; Chen, Huajun; Zhang, Wu

    2015-06-28

    Cu(OAc)2 was found to be an efficient catalyst for dehydrogenative synthesis of 1,3,5-triazine derivatives via oxidative coupling reaction of amidine hydrochlorides and alcohols in air. Both aromatic and aliphatic alcohols can be involved in the reaction and thirty-three products were obtained with good to excellent yields. Moreover, the use of a ligand, strong base and organic oxidant is unnecessary.

  11. Deep Desulfurization of Diesel Fuels with Plasma/Air as Oxidizing Medium, Diperiodatocuprate (III) as Catalyzer and Ionic Liquid as Extraction Solvent

    Science.gov (United States)

    Ban, Lili; Liu, Ping; Ma, Cunhua; Dai, Bin

    2013-12-01

    In this paper, the oxidative desulfurization (ODS) system is directly applied to deal with the catalytic oxidation of sulfur compounds of sulfur-containing model oil by dielectric barrier discharge (DBD) plasma in the presence of air plus an extraction step with the oxidation-treated fuel put over ionic liquid [BMIM]FeCl4 (1-butyl-3-methylimidazolium tetrachloroferrate). This new system exhibited an excellent desulfurization effect. The sulfur content of DBT in diesel oil decreased from 200 ppm to 4.92 ppm (S removal rate up to 97.5%) under the following optimal reaction conditions: air flow rate (ν) of 60 mL/min, amplitude of applied voltage (U) on DBD of 16 kV, input frequency (f) of 79 kHz, catalyst amount (ω) of 1.25 wt%, reaction time (t) of 10 min. Moreover, a high desulfurization rate was obtained during oxidation of benzothiophene (BT) or 4,6-DMDBT (4,6-dimethyl-dibenzothiophene) under the aforementioned conditions. The oxidation reactivity of different S compounds was decreased in the order of DBT, 4,6-DMDBT and BT. The remarkable advantage of the novel ODS system is that the desulfurization condition applies in the presence of air at ambient conditions without peroxides, aqueous solvent or biphasic oil-aqueous solution system.

  12. Deep Desulfurization of Diesel Fuels with Plasma/Air as Oxidizing Medium, Diperiodatocuprate (III) as Catalyzer and Ionic Liquid as Extraction Solvent

    International Nuclear Information System (INIS)

    Ban Lili; Liu Ping; Ma Cunhua; Dai Bin

    2013-01-01

    In this paper, the oxidative desulfurization (ODS) system is directly applied to deal with the catalytic oxidation of sulfur compounds of sulfur-containing model oil by dielectric barrier discharge (DBD) plasma in the presence of air plus an extraction step with the oxidation-treated fuel put over ionic liquid [BMIM]FeCl 4 (1-butyl-3-methylimidazolium tetrachloroferrate). This new system exhibited an excellent desulfurization effect. The sulfur content of DBT in diesel oil decreased from 200 ppm to 4.92 ppm (S removal rate up to 97.5%) under the following optimal reaction conditions: air flow rate (ν) of 60 mL/min, amplitude of applied voltage (U) on DBD of 16 kV, input frequency (f) of 79 kHz, catalyst amount (ω) of 1.25 wt%, reaction time (t) of 10 min. Moreover, a high desulfurization rate was obtained during oxidation of benzothiophene (BT) or 4,6-DMDBT (4,6-dimethyl-dibenzothiophene) under the aforementioned conditions. The oxidation reactivity of different S compounds was decreased in the order of DBT, 4,6-DMDBT and BT. The remarkable advantage of the novel ODS system is that the desulfurization condition applies in the presence of air at ambient conditions without peroxides, aqueous solvent or biphasic oil-aqueous solution system. (plasma technology)

  13. Inter- and intramolecular deuterium isotope effects on the cytochrome P-450-catalyzed oxidative dehalogenation of 1,1,2,2-tetrachloroethane

    International Nuclear Information System (INIS)

    Hales, D.B.; Ho, B.; Thompson, J.A.

    1987-01-01

    The oxidation of 1,1,2,2-tetrachloroethane to dichloroacetic acid was investigated with rat liver microsomes and purified cytochrome P-450. Deuterium substitution had no effect on Km values, but both the inter- and intramolecular isotope effects (kH/kD) on Vmax were in the range 5.7-6.1. The equivalence of the inter- and intramolecular values indicates that 6.0 may be a good estimate of the intrinsic isotope effect. The intermolecular kH/kD value for the conversion of 1,1,2,2-trichloroethane and its 1- 2 H analog to chloroacetic acid was 5.5. These data, and the finding that 1 atom of 18 O was incorporated into the product when TCEA was oxidized in an 18 O 2 atmosphere, support an oxidative dechlorination mechanism that involves hydrogen atom abstraction by the P-450 intermediate oxo complex

  14. Kinetics of phosphotungstic acid catalyzed oxidation of propan-1,3-diol and butan-1,4-diol by N-chlorosaccharin

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar Singh

    2011-09-01

    Full Text Available The kinetic studies of N-chlorosaccharin (NCSA oxidation of propan-1,3-diol and butan-1,4-diol have been reported in presence of phophotungstic acid and in aqueous acetic acid medium. The reactions follow first-order in NCSA and one to zero order with respect to substrate and phosphotungstic acid. Increase in the concentration of added perchloric acid increases the rate of oxidation. A negative effect on the oxidation rate is observed for solvent whereas the ionic strength does not influence the rate of reaction. Addition of the reaction product, saccharin, exhibited retarding effect. Various activation parameters have been evaluated. The products of the reactions were identified as the corresponding aldehydes. A suitable scheme of mechanism consistent with the experimental results has been proposed.

  15. A convenient method for determination of quizalofop-p-ethyl based on the fluorescence quenching of eosin Y in the presence of Pd(II)

    Science.gov (United States)

    Wu, Huan; Zhao, Yanmei; Tan, Xuanping; Zeng, Xiaoqing; Guo, Yuan; Yang, Jidong

    2017-03-01

    A convenient fluorescence quenching method for determination of Quizalofop-p-ethyl(Qpe) was proposed in this paper. Eosin Y(EY) is a red dye with strong green fluorescence (λex/λem = 519/540 nm). The interaction between EY, Pd(II) and Qpe was investigated by fluorescence spectroscopy, resonance Rayleigh scattering(RRS) and UV-Vis absorption. Based on changes in spectrum, Pd(II) associated with Qpe giving a positively charged chelate firstly, then reacted with EY through electrostatic and hydrophobic interaction formed ternary chelate could be demonstrated. Under optimum conditions, the fluorescence intensity of EY could be quenched by Qpe in the presence of Pd(II) and the RRS intensity had a remarkable enhancement, which was directly proportional to the Qpe concentration within a certain concentration range, respectively. Based on the fluorescence quenching of EY-Pd(II) system by Qpe, a novel, convenient and specific method for Qpe determination was developed. To our knowledge, this is the first fluorescence method for determination of Qpe was reported. The detection limit for Qpe was 20.3 ng/mL and the quantitative determination range was 0.04-1.0 μg/mL. The method was highly sensitive and had larger detection range compared to other methods. The influence of coexisting substances was investigated with good anti-interference ability. The new analytical method has been applied to determine of Qpe in real samples with satisfactory results.

  16. Synthesis and spectroscopic studies of biologically active tetraazamacrocyclic complexes of Mn(II, Co(II, Ni(II, Pd(II and Pt(II

    Directory of Open Access Journals (Sweden)

    Monika Tyagi

    2014-01-01

    Full Text Available Complexes of Mn(II, Co(II, Ni(II, Pd(II and Pt(II were synthesized with the macrocyclic ligand, i.e., 2,3,9,10-tetraketo-1,4,8,11-tetraazacycoletradecane. The ligand was prepared by the [2 + 2] condensation of diethyloxalate and 1,3-diamino propane and characterized by elemental analysis, mass, IR and 1H NMR spectral studies. All the complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, IR, electronic and electron paramagnetic resonance spectral studies. The molar conductance measurements of Mn(II, Co(II and Ni(II complexes in DMF correspond to non electrolyte nature, whereas Pd(II and Pt(II complexes are 1:2 electrolyte. On the basis of spectral studies an octahedral geometry has been assigned for Mn(II, Co(II and Ni(II complexes, whereas square planar geometry assigned for Pd(II and Pt(II. In vitro the ligand and its metal complexes were evaluated against plant pathogenic fungi (Fusarium odum, Aspergillus niger and Rhizoctonia bataticola and some compounds found to be more active as commercially available fungicide like Chlorothalonil.

  17. A single source precursor route to group 13 homo- and heterometallic oxides as highly active supports for gold-catalyzed aerobic epoxidation of trans-stilbene

    KAUST Repository

    Mishra, Shashank K.; Mendez, Violaine; Jeanneau, Erwann; Caps, Valerie; Daniè le, Sté phane

    2012-01-01

    A new Mitsubishi-type of star-shaped homoleptic derivative of indium(III), In4(mdea)6 (2, mdeaH2 = N-methyldiethanolamine) , was synthesized by the chloro-aminoalkoxo exchange reaction of a heteroleptic complex In6Cl6(mdea)6 (1) and used as a facile single source molecular precursor for the sol-gel preparation of high surface area indium oxide. Successful deposition of gold nanoparticles (1 wt.-%) of average size 3.3 nm on the above metal oxide by using HAuCl4· 3H2O afforded a highly efficient Au/In2O3 catalyst for the aerobic epoxidation of trans-stilbene at low temperature. The above single source precursor approach was further extended to obtain other group 13 homo- and heterometallic oxides, namely, α-Ga2O 3, β-Ga2O3 and Al4Ga 2O9, as highly active supports for gold catalysts. The obtained Au/M2O3 (M = Ga, In) and Au/Al4Ga 2O9 catalysts were thoroughly characterized by using several physicochemical techniques such as XRD, high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). A comparative study of the above catalysts for the model aerobic oxidation of stilbene in methylcyclohexane was undertaken. Highly efficient catalysts for aerobic oxidation reactions were obtained by depositing gold nanoparticles on group 13 mono- or mixed metal oxides prepared from the hydrolysis of well-characterized homo- and heterometallic N-methyldiethanolaminate derivatives. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A single source precursor route to group 13 homo- and heterometallic oxides as highly active supports for gold-catalyzed aerobic epoxidation of trans-stilbene

    KAUST Repository

    Mishra, Shashank K.

    2012-12-14

    A new Mitsubishi-type of star-shaped homoleptic derivative of indium(III), In4(mdea)6 (2, mdeaH2 = N-methyldiethanolamine) , was synthesized by the chloro-aminoalkoxo exchange reaction of a heteroleptic complex In6Cl6(mdea)6 (1) and used as a facile single source molecular precursor for the sol-gel preparation of high surface area indium oxide. Successful deposition of gold nanoparticles (1 wt.-%) of average size 3.3 nm on the above metal oxide by using HAuCl4· 3H2O afforded a highly efficient Au/In2O3 catalyst for the aerobic epoxidation of trans-stilbene at low temperature. The above single source precursor approach was further extended to obtain other group 13 homo- and heterometallic oxides, namely, α-Ga2O 3, β-Ga2O3 and Al4Ga 2O9, as highly active supports for gold catalysts. The obtained Au/M2O3 (M = Ga, In) and Au/Al4Ga 2O9 catalysts were thoroughly characterized by using several physicochemical techniques such as XRD, high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). A comparative study of the above catalysts for the model aerobic oxidation of stilbene in methylcyclohexane was undertaken. Highly efficient catalysts for aerobic oxidation reactions were obtained by depositing gold nanoparticles on group 13 mono- or mixed metal oxides prepared from the hydrolysis of well-characterized homo- and heterometallic N-methyldiethanolaminate derivatives. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Oxidative N-Heterocyclic Carbene-Catalyzed γ-Carbon Addition of Enals to Imines: Mechanistic Studies and Access to Antimicrobial Compounds.

    Science.gov (United States)

    Zheng, Peng-Cheng; Cheng, Jiajia; Su, Shihu; Jin, Zhichao; Wang, Yu-Huang; Yang, Song; Jin, Lin-Hong; Song, Bao-An; Chi, Yonggui Robin

    2015-07-06

    The reaction mechanism of the γ-carbon addition of enal to imine under oxidative N-heterocyclic carbene catalysis is studied experimentally. The oxidation, γ-carbon deprotonation, and nucleophilic addition of γ-carbon to imine were found to be facile steps. The results of our study also provide highly enantioselective access to tricyclic sulfonyl amides that exhibit interesting antimicrobial activities against X. oryzae, a bacterium that causes bacterial disease in rice growing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fish Proteins as Targets of Ferrous-Catalyzed Oxidation: Identification of Protein Carbonyls by Fluorescent Labeling on Two-Dimensional Gels and MALDI-TOF/TOF Mass Spectrometry

    DEFF Research Database (Denmark)

    Pazos, Manuel; da Rocha, Angela Pereira; Roepstorff, Peter

    2011-01-01

    Protein oxidation in fish meat is considered to affect negatively the muscle texture. An important source of free radicals taking part in this process is Fenton's reaction dependent on ferrous ions present in the tissue. The aim of this study was to investigate the susceptibility of cod muscle pr...

  1. Synthesis of New Chiral 2,2'-bipyridine ligands and their application in copper-catalyzed asymmetric allylic oxidation and cyclopropanation

    Czech Academy of Sciences Publication Activity Database

    Malkov, A. V.; Pernazza, D.; Bell, M.; Bella, M.; Massa, A.; Teplý, Filip; Meghani, P.; Kočovský, P.

    2003-01-01

    Roč. 68, č. 12 (2003), s. 4727-4742 ISSN 0022-3263 Institutional research plan: CEZ:AV0Z4055905 Keywords : optically-active bipyridine * enantioselective cyclopropanation * allylic oxidation Subject RIV: CC - Organic Chemistry Impact factor: 3.297, year: 2003

  2. Rhodium Catalyzed Decarbonylation

    DEFF Research Database (Denmark)

    Garcia Suárez, Eduardo José; Kahr, Klara; Riisager, Anders

    2017-01-01

    Rhodium catalyzed decarbonylation has developed significantly over the last 50 years and resulted in a wide range of reported catalyst systems and reaction protocols. Besides experimental data, literature also includes mechanistic studies incorporating Hammett methods, analysis of kinetic isotope...

  3. Selective Oxidation of Cyclohexene, Toluene and Ethyl Benzene Catalyzed by Bis-(L-tyrosinatocopper(II, Immersed in a Magnetite-Infused Silica Matrix

    Directory of Open Access Journals (Sweden)

    Massomeh Ghorbanloo

    2016-01-01

    Full Text Available Bis-(L-tyrosinatocopper(II was reacted with 3-(chloropropyl-trimethoxysilane functionalized silica that has infused magnetite to yield a magnetically separable catalyst in which the copper carboxylate is covalently linked to the silica matrix through the silane linkage. The immobilized catalyst has been characterized by spectroscopic studies (such as FT-IR, EPR, Magnetic Measurement, SEM and chemical analyses. The immobilized catalytic system functions as an efficient heterogeneous catalyst for oxidation of cyclohexene, toluene and ethyl benzene in the presence of hydrogen peroxide (as an oxidant and sodium bicarbonate (a co-catalyst. The reaction conditions have been optimized for solvent, temperature and amount of oxidant and catalyst. Comparison of the encapsulated catalyst with the corresponding homogeneous catalyst showed that the heterogeneous catalyst had higher activity and selectivity than the homogeneous catalyst. The immobilized catalyst could be readily recovered from the reaction mixture by using a simple magnet, and  reused up to five times without any loss of activity.

  4. Synthesis and spectral studies of Pd(II) complexes with 2, 3-disubstituted quinazolin-(3H)-4-ones

    International Nuclear Information System (INIS)

    Prabhakar, B.; Lingaiah, P.; Laxima Reddy, K.

    1991-01-01

    A number of palladium(II) complexes of bidentate O-O and O-N donors, 2,3-disubstituted quinazoline-(3H)-4-ones, have been synthesized and characterized based on analytical, conductivity, magnetic, thermal, IR, electronic and PMR spectral data. The complexes of Pd(II) with ligands such as 2-(R)-3-(X)-substituted quinazoline-(3H)-4-ones, where R=methyl/phenyl and X=2'-hydroxybenzalimino (MHBQ/PHBQ), carboxymethyl (MCMQ/PCMQ), furfuralimino (MFQ/PFQ), acetamino (MAQ/PAQ), uramino (MUQ/PUQ) and thiouramino (MTUQ/PTUQ), yielded the complexes of the type [Pd(O-N) 2 ]Cl 2 and [Pd(O-O) 2 ]. The IR and PMR spectral data of the metal complexes indicate that MHQB, PHQB, MCMQ, and PCMQ act as uninegative bidentate ligands whereas MFQ, PFQ, MAQ, PAQ, MUQ, PUQ, MTUQ and PTUQ act as neutral bidentate ligands. The electronic spectral studies of these complexes indicate that they were square-planar geometry. (author). 23 refs., 2 tabs

  5. Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions

    DEFF Research Database (Denmark)

    Hansen, Thomas S.; Sádaba, Irantzu; Garcia, Eduardo

    2013-01-01

    containing promoters (NCPs) to obtain excellent yields. In acetonitrile a 95% DFF yield was obtained after 24h with ambient pressure of dioxygen at room temperature in the presence of different NCPs, which – to our knowledge – is the best result reported thus far for this reaction. The use of NCPs made...... it further possible to apply various traditional solvents, e.g. acetone, methanol and methyl isobutyl ketone for the reaction. The latter can be used as extraction solvent for HMF synthesis in aqueous media and thus integrate the two processes. Additionally, HMF was oxidized to 2,5-furandicarboxylic acid...

  6. CuCl-catalyzed aerobic oxidation of 2,3-allenols to 1,2-allenic ketones with 1:1 combination of phenanthroline and bipyridine as ligands

    Directory of Open Access Journals (Sweden)

    Shengming Ma

    2011-04-01

    Full Text Available A protocol has been developed to prepare 1,2-allenyl ketones using molecular oxygen in air or pure oxygen as the oxidant from 2,3-allenylic alcohols with moderate to good yields under mild conditions. In this reaction CuCl (20 mol % with 1,10-phenanthroline (10 mol % and bipyridine (10 mol % was used as the catalyst. It is interesting to observe that the use of the mixed ligands is important for the higher yields of this transformation: With the monoligand approach developed by Markó et al., the yields are relatively lower.

  7. Role of Bi promotion and solvent in platinum-catalyzed alcohol oxidation probed by in situ X-ray absorption and ATR-IR spectroscopy

    DEFF Research Database (Denmark)

    Mondelli, C.; Grunwaldt, Jan-Dierk; Ferri, D.

    2010-01-01

    the catalysts under working conditions using in situ X-ray absorption spectroscopy (XAS) and attenuated total reflection infrared spectroscopy (ATR-IR), aiming at uncovering the roles of the metal promoter and the reaction medium. XAS confirms that Bi is oxidized more easily than Pt, maintaining the catalytic...... surfaces than on step or kink sites. Side products, CO and benzoate species, appearing during the reaction reveal that the geometric suppression of undesired reactions does not occur to the same extent on Pt-based catalysts as on Pd, suggesting that decarbonylation of the produced aldehyde on Pt may occur...

  8. Oxidative Olefination of Anilides with Unactivated Alkenes Catalyzed by an (Electron-Deficient η(5) -Cyclopentadienyl)Rhodium(III) Complex Under Ambient Conditions.

    Science.gov (United States)

    Takahama, Yuji; Shibata, Yu; Tanaka, Ken

    2015-06-15

    The oxidative olefination of sp(2) C-H bonds of anilides with both activated and unactivated alkenes using an (electron-deficient η(5) -cyclopentadienyl)rhodium(III) complex is reported. In contrast to reactions using this electron-deficient rhodium(III) catalyst, [Cp*RhCl2 ]2 showed no activity against olefination with unactivated alkenes. In addition, the deuterium kinetic isotope effect (DKIE) study revealed that the C-H bond cleavage step is thought to be the turnover-limiting step. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Conversion of actual flue gas CO 2 via cycloaddition to propylene oxide catalyzed by a single-site, recyclable zirconium catalyst

    KAUST Repository

    Kelly, Michael J.

    2017-06-12

    A reusable zirconium-based catalyst for the cycloaddition of CO2 to propylene oxide (PO) was prepared by the surface organometallic chemistry (SOMC) methodology. Accordingly, well-defined amounts of the ZrCl4·(OEt2)2 precursor were grafted on the surface of silica dehydroxylated at 700°C (SiO2-700) and at 200°C (SiO2-200) in order to afford surface coordination compounds with different podality and chemical environment. The identity of the surface complexes was thoroughly investigated by FT-IR, elemental microanalysis and solid state NMR and applied as a recoverable and reusable heterogeneous catalyst for the title reaction using pure CO2 and flue gas samples from a cement factory. The observed catalytic activity for the isolated zirconium complexes is rationalized by means of systematic DFT calculations.

  10. Conversion of actual flue gas CO 2 via cycloaddition to propylene oxide catalyzed by a single-site, recyclable zirconium catalyst

    KAUST Repository

    Kelly, Michael J.; Barthel, Alexander; Maheu, Clement; Sodpiban, Ounjit; Dega, Frank-Blondel; Vummaleti, Sai V.C.; Abou-Hamad, Edy; Pelletier, Jeremie; Cavallo, Luigi; D'Elia, Valerio; Basset, Jean-Marie

    2017-01-01

    A reusable zirconium-based catalyst for the cycloaddition of CO2 to propylene oxide (PO) was prepared by the surface organometallic chemistry (SOMC) methodology. Accordingly, well-defined amounts of the ZrCl4·(OEt2)2 precursor were grafted on the surface of silica dehydroxylated at 700°C (SiO2-700) and at 200°C (SiO2-200) in order to afford surface coordination compounds with different podality and chemical environment. The identity of the surface complexes was thoroughly investigated by FT-IR, elemental microanalysis and solid state NMR and applied as a recoverable and reusable heterogeneous catalyst for the title reaction using pure CO2 and flue gas samples from a cement factory. The observed catalytic activity for the isolated zirconium complexes is rationalized by means of systematic DFT calculations.

  11. Kinetic Studies of Iron Deposition Catalyzed by Recombinant Human Liver Heavy, and Light Ferritins and Azotobacter Vinelandii Bacterioferritin Using O2 and H2O2 as Oxidants

    Science.gov (United States)

    Bunker, Jared; Lowry, Thomas; Davis, Garrett; Zhang, Bo; Brosnahan, David; Lindsay, Stuart; Costen, Robert; Choi, Sang; Arosio, Paolo; Watt, Gerald D.

    2005-01-01

    The discrepancy between predicted and measured H2O2 formation during iron deposition with recombinant heavy human liver ferritin (rHF) was attributed to reaction with the iron protein complex [Biochemistry 40 (2001) 10832-10838]. This proposal was examined by stopped-flow kinetic studies and analysis for H2O2 production using (1) rHF, and Azotobacter vinelandii bacterial ferritin (AvBF), each containing 24 identical subunits with ferroxidase centers; (2) site-altered rHF mutants with functional and dysfunctional ferroxidase centers; and (3) rccombinant human liver light ferritin (rLF), containing 110 ferroxidase center. For rHF, nearly identical pseudo-first-order rate constants of 0.18 per second at pH 7.5 were measured for Fe(2+) oxidation by both O2 and H2O2, but for rLF, the rate with O2 was 200-fold slower than that for H2O2 (k-0.22 per second). A Fe(2+)/O2 stoichiometry near 2.4 was measured for rHF and its site altered forms, suggesting formation of H2O2. Direct measurements revealed no H2O2 free in solution 0.5-10 min after all Fe(2+) was oxidized at pH 6.5 or 7.5. These results are consistent with initial H2O2 formation, which rapidly reacts in a secondary reaction with unidentified solution components. Using measured rate constants for rHF, simulations showed that steady-state H2O2 concentrations peaked at 14 pM at approx. 600 ms and decreased to zero at 10-30 s. rLF did not produce measurable H2O2 but apparently conducted the secondary reaction with H2O2. Fe(2+)/O2 values of 4.0 were measured for AvBF. Stopped-flow measurements with AvBF showed that both H2O2 and O2 react at the same rate (k=0.34 per second), that is faster than the reactions with rHF. Simulations suggest that AvBF reduces O2 directly to H2O without intermediate H2O2 formation.

  12. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications.

    Science.gov (United States)

    Zhao, Qingxia; Mao, Qiming; Zhou, Yaoyu; Wei, Jianhong; Liu, Xiaocheng; Yang, Junying; Luo, Lin; Zhang, Jiachao; Chen, Hong; Chen, Hongbo; Tang, Lin

    2017-12-01

    In recent years, advanced oxidation processes (AOPs), especially sulfate radical based AOPs have been widely used in various fields of wastewater treatment due to their capability and adaptability in decontamination. Recently, metal-free carbon materials catalysts in sulfate radical production has been more and more concerned because these materials have been demonstrated to be promising alternatives to conventional metal-based catalysts, but the review of metal-free catalysts is rare. The present review outlines the current state of knowledge on the generation of sulfate radical using metal-free catalysts including carbon nanotubes, graphene, mesoporous carbon, activated carbon, activated carbon fiber, nanodiamond. The mechanism such as the radical pathway and non-radical pathway, and factors influencing of the activation of sulfate radical was also be revealed. Knowledge gaps and research needs have been identified, which include the perspectives on challenges related to metal-free catalyst, heterogeneous metal-free catalyst/persulfate systems and their potential in practical environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Forms of adsorption and transition states of oxidation of carbon monoxide by molecular oxygen and dissociation of nitrogen monooxide, catalyzed by monovalent copper

    Science.gov (United States)

    Ermakov, A. I.; Mashutin, V. Y.; Vishnjakov, A. V.

    With the help of the results of semiempirical (parametric method 3) and ab initio (second-order Møller-Plesset [MP2] unrestricted Hartree-Fock [UHF] 6-31G**, unrestricted density functional theory [UDFT] 6-31G** Becke's three-parameter exchange functional and the gradient-corrected functional of Lee, Yang, and Paar [B3LYP] and UDFT LANL2DZ B3LYP) quantum-chemical calculations has been studied the complexation CO and NO with molecular hydroxide of copper(I). The influence of charge defects has been simulated by the calculations of anionic, neutral, and cationic systems. It is shown that CO and NO are mainly coordinated by nonoxygen atom on an atom of copper(I) hydroxide as one- and two-center forms. These forms are suitable for appearance of prereactionary complexes of catalytic oxidation CO by molecular oxygen and decomposition NO into atoms of nitrogen and oxygen. The corresponding prereactionary complexes for systems with participation of copper(II) hydroxide and copper(III) hydroxide are not revealed. The calculations predict inhibiting impact of copper(II) and copper(III) of the observed reactions. Computed stability of complexes CO and NO with copper(I) hydroxide and activation energy of catalytic conversion of monooxides essentially depend on an excessive charge of the system. Introduction of electron-donating additives into copper(I) hydroxide promotes rise of catalytic activity of copper(I) compound.

  14. Synthesis of o-Alkenylated 2-Arylbenzoxazoles via Rh-Catalyzed Oxidative Olefination of 2-Arylbenzoxazoles: Scope Investigation, Structural Features, and Mechanism Studies.

    Science.gov (United States)

    Zhou, Quan; Zhang, Jing-Fan; Cao, Hui; Zhong, Rui; Hou, Xiu-Feng

    2016-12-16

    2-Arylbenzazoles are promising molecules for potential applications in medicine and material areas. Efficient protocols for direct regioselective functionalization of 2-arylbenzoxazoles are in high demand. Herein, we disclose a general method for selective ortho-olefination of 2-arylbenzo[d]oxazoles with alkenes enabled by versatile Cp*Rh(III) in high yields. This protocol features broad functional group tolerance and high regioselectivity. Intermolecular competition studies and kinetic isotope effect experiments imply that the oxidative olefination process occurs via an electrophilic C-H activation pathway. The molecular structure of the m-fluoro-substituted olefination product confirms regioselective C-H activation/olefination at the more hindered site in cases where the meta F atom or heteroatom substituent existed. Apparent torsion angles were observed in the structures of mono- and bis-olefination products, which resulted in distinct different chemical shifts of olefinic protons. Additionally, two gram-scale reactions and further transformation experiments demonstrate that this method is practical for synthesis of ortho-alkenylated 2-arylbenzoxazole derivatives.

  15. Detailed Mechanistic Studies on Palladium-Catalyzed Selective C-H Olefination with Aliphatic Alkenes: A Significant Influence of Proton Shuttling.

    Science.gov (United States)

    Deb, Arghya; Hazra, Avijit; Peng, Qian; Paton, Robert S; Maiti, Debabrata

    2017-01-18

    Directing group-assisted regioselective C-H olefination with electronically biased olefins is well studied. However, the incorporation of unactivated olefins has remained largely unsuccessful. A proper mechanistic understanding of olefination involving unactivated alkenes is therefore essential for enhancing their usage in future. In this Article, detailed experimental and computational mechanistic studies on palladium catalyzed C-H olefination with unactivated, aliphatic alkenes are described. The isolation of Pd(II) intermediates is shown to be effective for elucidating the elementary steps involved in catalytic olefination. Reaction rate and order determination, control experiments, isotopic labeling studies, and Hammett analysis have been used to understand the reaction mechanism. The results from these experimental studies implicate β-hydride elimination as the rate-determining step and that a mechanistic switch occurs between cationic and neutral pathway. Computational studies support this interpretation of the experimental evidence and are used to uncover the origins of selectivity.

  16. Caffeine-catalyzed gels.

    Science.gov (United States)

    DiCiccio, Angela M; Lee, Young-Ah Lucy; Glettig, Dean L; Walton, Elizabeth S E; de la Serna, Eva L; Montgomery, Veronica A; Grant, Tyler M; Langer, Robert; Traverso, Giovanni

    2018-07-01

    Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Spectroscopic, electrochemical and photovoltaic properties of Pt(ii) and Pd(ii) complexes of a chelating 1,10-phenanthroline appended perylene diimide.

    Science.gov (United States)

    Işık Büyükekşi, Sebile; Şengül, Abdurrahman; Erdönmez, Seda; Altındal, Ahmet; Orman, Efe Baturhan; Özkaya, Ali Rıza

    2018-02-20

    In this study, a bis-chelating bridging perylene diimide ditopic ligand, namely N,N'-di(1,10-phenanthroline)-1,6,7,12-tetrakis-(4-methoxyphenoxy)perylene tetracarboxylic acid diimide (1), was synthesized and characterized. Further reactions of 1 with d 8 metal ions such as Pt(ii) and Pd(ii) having preferential square-planar geometry afforded the novel triads [(Cl 2 )M(ii)-(1)-M(ii)(Cl 2 )] where M(ii) = Pt(ii) (2), and Pd(ii) (3), respectively. The isolated triads and the key precursor were fully characterized by FT-IR, 1D-NMR ( 1 H NMR and 13 C DEPT NMR), 2D-NMR ( 1 H- 1 H COSY, 1 H- 13 C HSQC, 1 H- 13 C HMBC), MALDI-TOF mass and UV/Vis spectroscopy. The electrochemical properties of 1, 2 and 3 were investigated by cyclic voltammetry as well as in situ spectroelectrochemistry and also in situ electrocolorimetric measurements. These compounds were shown to exhibit net colour changes suitable for electrochromic applications. The compounds exhibited remarkably narrow HOMO-LUMO gaps, leading to their ease of reduction at low negative potentials. More importantly, dye-sensitized solar cells (DSSCs) were also fabricated using 1-3 to clarify the potential use of these complexes as a sensitizer. Analysis of the experimental data indicated that 2 has good potential as a sensitizer material for DSSCs.

  18. Ni(II, Pd(II and Pt(II complexes with ligand containing thiosemicarbazone and semicarbazone moiety: synthesis, characterization and biological investigation

    Directory of Open Access Journals (Sweden)

    SULEKH CHANDRA

    2008-07-01

    Full Text Available The synthesis of nickel(II, palladium(II and platinum(II complexes with thiosemicarbazone and semicarbazone of p-tolualdehyde are reported. All the new compounds were characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H-NMR, IR and electronic spectral studies. Based on the molar conductance measurements in DMSO, the complexes may be formulated as [Ni(L2Cl2] and [M(L2]Cl2 (where M = Pd(II and Pt(II due to their non-electrolytic and 1:2 electrolytic nature, respectively. The spectral data are consistent with an octahedral geometry around Ni(II and a square planar geometry for Pd(II and Pt(II, in which the ligands act as bidentate chelating agents, coordinated through the nitrogen and sulphur/oxygen atoms. The ligands and their metal complexes were screened in vitro against fungal species Alternaria alternata, Aspergillus niger and Fusarium odum, using the food poison technique.

  19. Enantioselective [3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes

    KAUST Repository

    Zhao, Changgui; Guo, Donghui; Munkerup, Kristin; Huang, Kuo-Wei; Li, Fangyi; Wang, Jian

    2018-01-01

    on the transition-metal-catalyzed transformations. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic carbenes) atroposelective annulation of cyclic 1,3-diones with ynals. In the presence of NHC precatalyst, base, Lewis acid and oxidant, a

  20. Desaturation reactions catalyzed by soluble methane monooxygenase.

    Science.gov (United States)

    Jin, Y; Lipscomb, J D

    2001-09-01

    Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.

  1. Catalyzing alignment processes

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jørgensen, Ulrik

    2004-01-01

    This paper describes how environmental management systems (EMS) spur the circulation of processes that support the constitution of environmental issues as specific environ¬mental objects and objectives. EMS catalyzes alignmentprocesses that produce coherence among the different elements involved......, the networks of environmental professionals that work in the environmental organisation, in consulting and regulatory enforcement, and dominating business cultures. These have previously been identified in the literature as individually significant in relation to the evolving environmental agendas...... they are implemented in and how the changing context is reflected in the environmental objectives that are established and prioritised. Our argument is, that the ability of the standard to achieve an impact is dependant on the constitution of ’coherent’ environmental issues in the context, where the management system...

  2. Catalyzed deuterium fueled tokamak reactors

    International Nuclear Information System (INIS)

    Southworth, F.H.

    1977-01-01

    Catalyzed deuterium fuel presents several advantages relative to D-T. These are, freedom from tritium breeding, high charged particle power fraction and lowered neutron energy deposition in the blanket. Higher temperature operation, lower power densities and increased confinement are simultaneously required. However, the present study has developed designs which have capitalized upon the advantages of catalyzed deuterium to overcome the difficulties associated with the fuel while obtaining high efficiency

  3. Development of a second generation palladium-catalyzed cycloalkenylation and its application to bioactive natural product synthesis.

    Science.gov (United States)

    Toyota, Masahiro

    2013-07-01

    A novel palladium-catalyzed intramolecular oxidative alkylation of unactivated olefins is described. This protocol was devised to solve one of the drawbacks of the original palladium-catalyzed cycloalkenylation that we developed. We call this new procedure the 'second generation palladium-catalyzed cycloalkenylation'. This protocol has been applied to the total syntheses of cis-195A, trans-195A, boonein, scholareins A, C, D, and alpha-skytanthine.

  4. Enhancing the muon-catalyzed fusion yield

    International Nuclear Information System (INIS)

    Jones, S.E.

    1987-01-01

    Much has been learned about muon-catalyzed fusion since the last conference on emerging nuclear energy systems. Here the authors consider what they have learned about enhancing the muon-catalyzed fusion energy yield

  5. Copper-catalyzed radical carbooxygenation: alkylation and alkoxylation of styrenes.

    Science.gov (United States)

    Liao, Zhixiong; Yi, Hong; Li, Zheng; Fan, Chao; Zhang, Xu; Liu, Jie; Deng, Zixin; Lei, Aiwen

    2015-01-01

    A simple copper-catalyzed direct radical carbooxygenation of styrenes is developed utilizing alkyl bromides as radical resources. This catalytic radical difunctionalization accomplishes both alkylation and alkoxylation of styrenes in one pot. A broad range of styrenes and alcohols are well tolerated in this transformation. The EPR experiment shows that alkyl halides could oxidize Cu(I) to Cu(II) in this transformation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Practical and General Palladium-Catalyzed Synthesis of Ketones from Internal Olefins

    KAUST Repository

    Morandi, Bill; Wickens, Zachary K.; Grubbs, Robert H.

    2013-01-01

    Make it simple! A convenient and general palladium-catalyzed oxidation of internal olefins to ketones is reported. The transformation occurs at room temperature and shows wide substrate scope. Applications to the oxidation of seed-oil derivatives and a bioactive natural product (see scheme) are described, as well as intriguing mechanistic features.

  7. Practical and General Palladium-Catalyzed Synthesis of Ketones from Internal Olefins

    KAUST Repository

    Morandi, Bill

    2013-01-16

    Make it simple! A convenient and general palladium-catalyzed oxidation of internal olefins to ketones is reported. The transformation occurs at room temperature and shows wide substrate scope. Applications to the oxidation of seed-oil derivatives and a bioactive natural product (see scheme) are described, as well as intriguing mechanistic features.

  8. CuO-Nanoparticles Catalyzed Synthesis of 1,4-Disubstituted-1,2,3 ...

    Indian Academy of Sciences (India)

    John Paul Raj

    2018-04-13

    Apr 13, 2018 ... has been developed for the synthesis of 1,2,3-triazoles. A library of 1 ... Kuang et al., described Cu-catalyzed synthesis of 1H-. 1,2,3-triazoles from 1 ..... Tornøe C W, Christensen C and Meldal M 2002 Peptido- triazoles on solid ... 2015 Copper-catalyzed [3+2] cycloaddition/oxidation reactions between ...

  9. Manganese Catalyzed C–H Halogenation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Groves, John T.

    2015-06-16

    The remarkable aliphatic C–H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon–halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C–H bonds to C–Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L–MnV$=$O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn–F fluorine source, effecting carbon–fluorine bond

  10. Electrochemical Cobalt-Catalyzed C-H Activation.

    Science.gov (United States)

    Sauermann, Nicolas; Meyer, Tjark H; Ackermann, Lutz

    2018-06-19

    Carbon-heteroatom bonds represent omnipresent structural motifs of the vast majority of functionalized materials and bioactive compounds. C-H activation has emerged as arguably the most efficient strategy to construct C-Het bonds. Despite of major advances, these C-H transformations were largely dominated by precious transition metal catalysts, in combination with stoichiometric, toxic metal oxidants. Herein, we discuss the recent evolution of cobalt-catalyzed C-H activations that enable C-Het formations with electricity as the sole sustainable oxidant until May 2018. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis and Spectroscopic Studies of Mixed Ligand Complexes of Pt(II and Pd(II with Ethyl-α-Isonitrosoacetoacetate and Dienes

    Directory of Open Access Journals (Sweden)

    Anita Krishankant Taksande

    2015-12-01

    Full Text Available The mixed ligand complexes of the kind [M(L1 (L2] where M= Pt(II, Pd(II.L1 = primary ligand ethyl-α-isonitrosoacetoacetate derived from reaction between ethyl acetoacetate, acetic acid and sodium nitrite and L2=secondary ligand para-phenyldiamine (PPD are synthesized. All the prepared complexes were identified and confirmed by elemental analysis, molar conductance measurements, and infrared electronic absorption. Their complexes has been made based on elemental analysis, molar conductivity, UV-Vis, FT-IR and 1HNMR spectroscopy and magnetic moment measurements as well as thermal analysis (TGA and DTA. The elemental analysis information recommends that the stoichiometry of the complexes to be 1:2:1. The molar conductance measurements of the complexes indicate their non-electrolytic nature. The infrared spectral information showed the coordination sites of the free ligand with the central metal particle. The electronic absorption spectral information disclosed the existence of an octahedral geometry for Pt(II and Pd(II complexes. DOI: http://dx.doi.org/10.17807/orbital.v7i4.633 

  12. Experimental and theoretical investigations on Pd(II) host-guest compound: Deciphering the structural and electronic features of a potential bioactive complex

    Science.gov (United States)

    Sreejith, S. S.; Mohan, Nithya; Prathapachandra Kurup, M. R.

    2017-10-01

    A Pd(II) complex from N,N‧-bis(2-hydroxy-3-ethoxybenzylidene)butane-1,4-diamine salen-type ligand has been synthesized and characterised using single crystal XRD analysis, elemental analysis, IR and UV-Vis spectroscopic methods. Thermal profile of the compound is investigated using TG-DTG-DSC method. The quantification of intermolecular interactions and surface morphology has been done using Hirshfeld surface study mapped using various functions like dnorm, shape index and curvedness. ESP analysis is done to visualize the electrophilic and nucleophilic regions in the complex. Geometry optimization of the structure is done using DFT at B3LYP/def2-TZVP level of theory. Frontier orbital analysis reveals the kinetical stability and chemical inertness of the complex. A detailed charge distribution analysis is done using different analytical methods like Mulliken, Löwdin, NPA and AIM methods. Further bond order analysis and topological analysis are also done. Finally the bioactivity of the titled complex is checked using molecular docking method on both DNA and protein.

  13. Pt(II) and Pd(II) complexes with ibuprofen hydrazide: Characterization, theoretical calculations, antibacterial and antitumor assays and studies of interaction with CT-DNA

    Science.gov (United States)

    Manzano, Carlos M.; Bergamini, Fernando R. G.; Lustri, Wilton R.; Ruiz, Ana Lúcia T. G.; de Oliveira, Ellen C. S.; Ribeiro, Marcos A.; Formiga, André L. B.; Corbi, Pedro P.

    2018-02-01

    Palladium(II) and platinum(II) complexes with a hydrazide derivative of ibuprofen (named HIB) were synthesized and characterized by chemical and spectroscopic methods. Elemental and thermogravimetric analyses, as well as ESI-QTOF-MS studies for both complexes, confirmed a 1:2:2 metal/HIB/Cl- molar ratio. The crystal structure of the palladium(II) complex was solved by single crystal X-ray diffractometric analysis, which permitted identifying the coordination formula [PdCl2(HIB)2]. Crystallographic studies also indicate coordination of HIB to the metal by the NH2 group. Nuclear magnetic resonance and infrared spectroscopies reinforced the coordination observed in the crystal structure and suggested that the platinum(II) complex presents similar coordination modes and structure when compared with the Pd(II) complex. The complexes had their structures optimized with the aid of DFT methods. In vitro antiproliferative assays showed that the [PdCl2(HIB)2] complex is active over ovarian cancer cell line OVCAR-03, while biophysical studies indicated its capacity to interact with CT-DNA. The complexes were inactive over Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacterial strains.

  14. Mechanisms of bacterially catalyzed reductive dehalogenation

    Energy Technology Data Exchange (ETDEWEB)

    Picardal, Flynn William [Univ. of Arizona, Tucson, AZ (United States)

    1992-01-01

    Nine bacteria were tested for the ability to dehalogenate tetrachloromethane (CT), tetrachloroethene (PCE), and 1, 1, 1-trichloroethane (TCA) under anaerobic conditions. Three bacteria were able to reductively dehalogenate CT. Dehalogenation ability was not readily linked to a common metabolism or changes in culture redox potential. None of the bacteria tested were able to dehalogenate PCE or TCA. One of the bacteria capable of dehalogenating CT, Shewanella putrefaciens, was chosen as a model organism to study mechanisms of bacterially catalyzed reductive dehalogenation. The effect of a variety of alternate electron acceptors on CT dehalogenation ability by S. putrefaciens was determined. oxygen and nitrogen oxides were inhibitory but Fe (III), trimethylamine oxide, and fumarate were not. A model of the electron transport chain of S. putrefaciens was developed to explain inhibition patterns. A period of microaerobic growth prior to CT exposure increased the ability of S. putrefaciens to dehalogenate CT. A microaerobic growth period also increased cytochrome concentrations. A relationship between cytochrome content and dehalogenation ability was developed from studies in which cytochrome concentrations in S. putrefaciens were manipulated by changing growth conditions. Stoichiometry studies using 14C-CT suggested that CT was first reduced to form a trichloromethyl radical. Reduction of the radical to produce chloroform and reaction of the radical with cellular biochemicals explained observed product distributions. Carbon dioxide or other fully dehalogenated products were not found.

  15. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hainey, Mel F.; Redwing, Joan M. [Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-12-15

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  16. Protection of Wood from Microorganisms by Laccase-Catalyzed Iodination

    Science.gov (United States)

    Engel, J.; Thöny-Meyer, L.; Schwarze, F. W. M. R.; Ihssen, J.

    2012-01-01

    In the present work, Norway spruce wood (Picea abies L.) was reacted with a commercial Trametes versicolor laccase in the presence of potassium iodide salt or the phenolic compounds thymol and isoeugenol to impart an antimicrobial property to the wood surface. In order to assess the efficacy of the wood treatment, a leaching of the iodinated and polymerized wood and two biotests including bacteria, a yeast, blue stain fungi, and wood decay fungi were performed. After laccase-catalyzed oxidation of the phenols, the antimicrobial effect was significantly reduced. In contrast, the enzymatic oxidation of iodide (I−) to iodine (I2) in the presence of wood led to an enhanced resistance of the wood surface against all microorganisms, even after exposure to leaching. The efficiency of the enzymatic wood iodination was comparable to that of a chemical wood preservative, VP 7/260a. The modification of the lignocellulose by the laccase-catalyzed iodination was assessed by the Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The intensities of the selected lignin-associated bands and carbohydrate reference bands were analyzed, and the results indicated a structural change in the lignin matrix. The results suggest that the laccase-catalyzed iodination of the wood surface presents an efficient and ecofriendly method for wood protection. PMID:22865075

  17. Kinetics and mechanism of the oxidation of alkenes and silanes by hydrogen peroxide catalyzed by methylrhenium trioxide (MTO) and a novel application of electrospray mass spectrometry to study the hydrolysis of MTO

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Haisong [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Conjugated dienes were oxidized by hydrogen peroxide with methylrhenium trioxide (MTO) as catalyst. Methylrhenium bis-peroxide was the major reactive catalyst present. Hydroxyalkenes and trisubstituted silane were also tested. Mechanisms for each of these reactions are presented.

  18. Ni-Catalyzed Dehydrogenative Cross-Coupling: Direct Transformation of Aldehydes to Esters and Amides

    Science.gov (United States)

    Whittaker, Aaron M.; Dong, Vy M.

    2015-01-01

    By exploring a new mode of Ni-catalyzed cross-coupling, we have developed a protocol to transform both aromatic and aliphatic aldehydes into either esters or amides directly. The success of this oxidative coupling depends on the appropriate choice of catalyst and organic oxidant, including the use of either α,α,α-trifluoroacetophenone or excess aldehyde. We present mechanistic data that supports a catalytic cycle involving oxidative addition into the aldehyde C–H bond. PMID:25424967

  19. Unusual reactions of diazocarbonyl compounds with α,β-unsaturated δ-amino esters: Rh(II-catalyzed Wolff rearrangement and oxidative cleavage of N–H-insertion products

    Directory of Open Access Journals (Sweden)

    Valerij A. Nikolaev

    2016-08-01

    Full Text Available Rh(II-сatalyzed reactions of aroyldiazomethanes, diazoketoesters and diazodiketones with α,β-unsaturated δ-aminoesters, in contrast to reactions of diazomalonates and other diazoesters, give rise to the Wolff rearrangement and/or oxidative cleavage of the initially formed N–H-insertion products. These oxidation processes are mediated by Rh(II catalysts possessing perfluorinated ligands. The formation of pyrrolidine structures, characteristic for catalytic reactions of diazoesters, was not observed in these processes at all.

  20. Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations

    KAUST Repository

    Vummaleti, Sai V. C.; Alghamdi, Miasser; Poater, Albert; Falivene, Laura; Scaranto, Jessica; Beetstra, Dirk J.; Morton, Jason G.; Cavallo, Luigi

    2015-01-01

    Density functional theory calculations have been used to investigate the reaction mechanism for the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-bis(diphenylphosphino)propane) and [Pd]/BPh3 dual catalytic system assisted intramolecular alkoxycyanation ([Pd] = Pd-Xantphos) using acylated and cyanated 2-allylphenol derivatives as substrates, respectively. Our results substantially confirm the proposed mechanism for both [Rh]- and [Pd]/ BPh3-mediated alkoxyfunctionalizations, offering a detailed geometrical and energetical understanding of all the elementary steps. Furthermore, for the [Rh]-mediated alkoxyacylation, our observations support the hypothesis that the quinoline group of the substrate is crucial to stabilize the acyl metal complex and prevent further decarbonylation. For [Pd]/BPh3-catalyzed alkoxycyanation, our findings clarify how the Lewis acid BPh3 cocatalyst accelerates the only slow step of the reaction, corresponding to the oxidative addition of the cyanate O-CN bond to the Pd center. © 2015 American Chemical Society.

  1. Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations

    KAUST Repository

    Vummaleti, Sai V. C.

    2015-11-13

    Density functional theory calculations have been used to investigate the reaction mechanism for the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-bis(diphenylphosphino)propane) and [Pd]/BPh3 dual catalytic system assisted intramolecular alkoxycyanation ([Pd] = Pd-Xantphos) using acylated and cyanated 2-allylphenol derivatives as substrates, respectively. Our results substantially confirm the proposed mechanism for both [Rh]- and [Pd]/ BPh3-mediated alkoxyfunctionalizations, offering a detailed geometrical and energetical understanding of all the elementary steps. Furthermore, for the [Rh]-mediated alkoxyacylation, our observations support the hypothesis that the quinoline group of the substrate is crucial to stabilize the acyl metal complex and prevent further decarbonylation. For [Pd]/BPh3-catalyzed alkoxycyanation, our findings clarify how the Lewis acid BPh3 cocatalyst accelerates the only slow step of the reaction, corresponding to the oxidative addition of the cyanate O-CN bond to the Pd center. © 2015 American Chemical Society.

  2. Study of selective oxidation of methane catalyzed by solid superacid in unique reaction field; Tokushu hannoba no kotai chokyosan wo mochiiru methane no sentaku sanka hanno ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Misonoo, M; Tatsumi, T; Mizuno, T; Inumaru, T [The University of Tokyo, Tokyo (Japan)

    1997-02-01

    Selective oxidation of lower alkanes by use of heteropolymeric compounds is studied. Alkanes are activated on Cs2.5H0.5PW12O40 serving as catalyst, and their activity and selectivity improve when the catalyst is developed into a dual function catalyst in which Cs and Pt are combined. A success is reported of the synthesis of a heteropolymeric acid in which two molecules of the coordination element wolfram are replaced with a transition metal of the first period, on which acid the oxidation of cyclohexane is enhanced. Cs2.5Ni0.08H1.34PVMo11O40 as a metal/heteropolymeric acid dual function catalyst enables the direct oxidation (9% recovered at 340{degree}C) of isobutane into a methacrylic acid, which is attributed to the harmonious coordination of the oxidizing work of the catalyst and acidity. It is possible to oxidize propane into the acrylic acid, but not ethane into the acetic acid. In the case of Pd/Cs2.5H1.5PVMo11O40, the formic acid, methanol, etc., are produced upon addition of hydrogen to the system. This reaction in the hydrogen/oxygen system is supposed to take place via activated oxygen seeds as in the case of oxidation by hydrogen peroxide. 10 refs.

  3. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  4. Efficient oxidative desulfurization (ODS) of model fuel with H{sub 2}O{sub 2} catalyzed by MoO{sub 3}/{gamma}-Al{sub 2}O{sub 3} under mild and solvent free conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yuhua; Li, Gang; Ning, Guiling [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology (China)

    2011-01-15

    An efficient process to remove organic sulfur compounds from model fuel has been explored. Dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) can be completely oxidized into their corresponding sulfones by H{sub 2}O{sub 2} over 14 wt.% MoO{sub 3}/{gamma}-Al{sub 2}O{sub 3} catalyst under mild conditions in 15 min. The effects of solvent, initial sulfide concentration, loading of MoO{sub 3} and amount of catalyst on oxidative removal of DBT were studied. The employments of solvents have decreased the reaction rate of DBT, which can be attributed to the competitive adsorption between the sulfide and solvent. The oxidative reactivity increases in the order of thiophene (Th) < benzothiophene (BT) < DBT < 4, 6-DMDBT. The catalyst can be regenerated by methanol washing at 333 K. (author)

  5. Al(III), Pd(II), and Zn(II) phthalocyanines for inactivation of dental pathogen Aggregatibacter actinomycetemcomitans as planktonic and biofilm-cultures

    Science.gov (United States)

    Kussovski, V.; Mantareva, V.; Angelov, I.; Avramov, L.; Popova, E.; Dimitrov, S.

    2012-06-01

    The Gram-negative, oral bacterium Aggregatibacter actinomycetemcomitans has been implicated as the causative agent of several forms of periodontal disease in humans. The new periodontal disease treatments are emergence in order to prevent infection progression. Antimicrobial photodynamic therapy (a-PDT) can be a useful tool for this purpose. It involves the use of light of specific wavelength to activate a nontoxic photosensitizing agent in the presence of oxygen for eradication of target cells, and appears effective in photoinactivation of microorganisms. The phthalocyanine metal complexes of Pd(II)- (PdPcC) and Al(III)- (AlPc1) were evaluated as photodynamic sensitizers towards a dental pathogen A. actinomycetemcomitans in comparison to the known methylpyridyloxy-substituted Zn(II) phthalocyanine (ZnPcMe). The planktonic and biofilm-cultivated species of A. actinomycetemcomitans were treated. The photophysical results showed intensive and far-red absorbance with high tendency of aggregation for Pd(II)-phthalocyanine. The dark toxicities of both photosensitizers were negligible at concentrations used (bacteria was full photoinactivation after a-PDT with ZnPcMe. In case of the newly studied complexes, the effect was lower for PdPcC (4 log) as well as for AlPc1 (1.5-2 log). As it is known the bacterial biofilms were more resistant to a-PDT, which was confirmed for A. actinomycetemcomitans biofilms with 3 log reductions of viable cells after treatment with ZnPcMe and approximately 1 log reduction of biofilms after PdPcC and AlPc1. The initial results suggest that a-PDT can be useful for effective inactivation of dental pathogen A. actinomycetemcomitans.

  6. Suppression of amyloid beta A11 antibody immunoreactivity by vitamin C: possible role of heparan sulfate oligosaccharides derived from glypican-1 by ascorbate-induced, nitric oxide (NO)-catalyzed degradation.

    Science.gov (United States)

    Cheng, Fang; Cappai, Roberto; Ciccotosto, Giuseppe D; Svensson, Gabriel; Multhaup, Gerd; Fransson, Lars-Åke; Mani, Katrin

    2011-08-05

    Amyloid β (Aβ) is generated from the copper- and heparan sulfate (HS)-binding amyloid precursor protein (APP) by proteolytic processing. APP supports S-nitrosylation of the HS proteoglycan glypican-1 (Gpc-1). In the presence of ascorbate, there is NO-catalyzed release of anhydromannose (anMan)-containing oligosaccharides from Gpc-1-nitrosothiol. We investigated whether these oligosaccharides interact with Aβ during APP processing and plaque formation. anMan immunoreactivity was detected in amyloid plaques of Alzheimer (AD) and APP transgenic (Tg2576) mouse brains by immunofluorescence microscopy. APP/APP degradation products detected by antibodies to the C terminus of APP, but not Aβ oligomers detected by the anti-Aβ A11 antibody, colocalized with anMan immunoreactivity in Tg2576 fibroblasts. A 50-55-kDa anionic, sodium dodecyl sulfate-stable, anMan- and Aβ-immunoreactive species was obtained from Tg2576 fibroblasts using immunoprecipitation with anti-APP (C terminus). anMan-containing HS oligo- and disaccharide preparations modulated or suppressed A11 immunoreactivity and oligomerization of Aβ42 peptide in an in vitro assay. A11 immunoreactivity increased in Tg2576 fibroblasts when Gpc-1 autoprocessing was inhibited by 3-β[2(diethylamino)ethoxy]androst-5-en-17-one (U18666A) and decreased when Gpc-1 autoprocessing was stimulated by ascorbate. Neither overexpression of Gpc-1 in Tg2576 fibroblasts nor addition of copper ion and NO donor to hippocampal slices from 3xTg-AD mice affected A11 immunoreactivity levels. However, A11 immunoreactivity was greatly suppressed by the subsequent addition of ascorbate. We speculate that temporary interaction between the Aβ domain and small, anMan-containing oligosaccharides may preclude formation of toxic Aβ oligomers. A portion of the oligosaccharides are co-secreted with the Aβ peptides and deposited in plaques. These results support the notion that an inadequate supply of vitamin C could contribute to late onset AD

  7. Pd(II) catalyzed transformation of Schiff bases in complexes of the type trans-[PdCl2(NH2Ar-X)(2)] (X = H, CH3, Cl): Reactivity with aldehydes and Heck coupling reaction

    Czech Academy of Sciences Publication Activity Database

    Kumari, N.; Yadav, V. K.; Záliš, Stanislav; Mishra, L.

    2012-01-01

    Roč. 51, č. 4 (2012), s. 554-563 ISSN 0376-4710 Institutional support: RVO:61388955 Keywords : Schiff base * Palladium * crystal structure Subject RIV: CG - Electrochemistry Impact factor: 0.787, year: 2012

  8. Rh-catalyzed linear hydroformylation of styrene

    NARCIS (Netherlands)

    Boymans, E.H.; Janssen, M.C.C.; Mueller, C.; Lutz, M.; Vogt, D.

    2012-01-01

    Usually the Rh-catalyzed hydroformylation of styrene predominantly yields the branched, chiral aldehyde. An inversion of regioselectivity can be achieved using strong p-acceptor ligands. Binaphthol-based diphosphite and bis(dipyrrolyl-phosphorodiamidite) ligands were applied in the Rh-catalyzed

  9. Ethanol oxidation reactions catalyzed by water molecules: CH3CH2OH+n H2O→ CH3CHO+ H2+n H2O (n=0,1,2)

    Science.gov (United States)

    Takahashi, H.; Hisaoka, S.; Nitta, T.

    2002-09-01

    Ab initio density functional theory calculations have been performed to investigate the catalytic role of water molecules in the oxidation reaction of ethanol: CH3CH2OH+n H2O→ CH3CHO+ H2+n H2O (n=0,1,2) . The results show that the potential energy barrier for the reaction is 88.0 kcal/mol in case of n=0, while it is reduced by ˜34 kcal/mol when two water molecules are involved ( n=2) in the reaction. As a result, the rate constant increases to 3.31×10 -4 s-1, which shows a significant catalytic role of water molecules in the ethanol oxidation reactions.

  10. Rhodium-catalyzed regioselective olefination directed by a carboxylic group.

    Science.gov (United States)

    Mochida, Satoshi; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2011-05-06

    The ortho-olefination of benzoic acids can be achieved effectively through rhodium-catalyzed oxidative coupling with alkenes. The carboxylic group is readily removable to allow ortho-olefination/decarboxylation in one pot. α,β-Unsaturated carboxylic acids such as methacrylic acid also undergo the olefination at the β-position. Under the rhodium catalysis, the cine-olefination of heteroarene carboxylic acids such as thiophene-2-carboxylic acid proceeds smoothly accompanied by decarboxylation to selectively produce the corresponding vinylheteroarene derivatives. © 2011 American Chemical Society

  11. Determination of the human cytochrome P450 monooxygenase catalyzing the enantioselective oxidation of 2,2',3,5',6-pentachlorobiphenyl (PCB 95) and 2,2',3,4,4',5',6-heptachlorobiphenyl (PCB 183).

    Science.gov (United States)

    Nagayoshi, Haruna; Kakimoto, Kensaku; Konishi, Yoshimasa; Kajimura, Keiji; Nakano, Takeshi

    2017-10-17

    2,2',3,5',6-Pentachlorobiphenyl (PCB 95) and 2,2',3,4,4',5',6-heptachlorobiphenyl (PCB 183) possess axial chirality and form the aS and aR enantiomers. The enantiomers of these congeners have been reported to accumulate in the human body enantioselectively via unknown mechanisms. In this study, we determined the cytochrome P450 (CYP) monooxygenase responsible for the enantioselective oxidization of PCB 95 and PCB 183, using a recombinant human CYP monooxygenase. We evaluated 13 CYP monooxygenases, namely CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2, CYP3A4, CYP3A5, CYP4F2, and aromatase (CYP19), and revealed that CYP2A6 preferably oxidizes aS-PCB 95 enantioselectively; however, it did not oxidize PCB 183. The enantiomer composition was elevated from 0.5 (racemate) to 0.54. In addition, following incubation with CYP2A6, the enantiomer fraction (EF) of PCB 95 demonstrated a time-dependent increase.

  12. Preparation and Spectral Properties of Mixed-Ligand Complexes of VO(IV, Ni(II, Zn(II, Pd(II, Cd(II and Pb(II with Dimethylglyoxime and N-acetylglycine

    Directory of Open Access Journals (Sweden)

    Shayma A. Shaker

    2010-01-01

    Full Text Available A number of mixed-ligand complexes of the general formula [M(D(G] where D=dimethylglyoximato monoanion, G=N-acetylglycinato and M=VO(IV, Ni(II, Zn(II, Pd(II, Cd(II and Pb(II were prepared. Each complex was characterized by elemental analysis, determination of metal, infrared spectra, electronic spectra, (1H and 13C NMR spectra, conductivity and magnetic moments. All these complexes were not soluble in some of the organic solvent but highly soluble in dimethylformamide. The conductivity data showed the non-electrolytic nature of the complexes. The electronic spectra exhibited absorption bands in the visible region caused by the d-d electronic transition such as VO(IV, Ni(II and Pd(II. The IR and (1H, 13C NMR spectra which have indicate that the dimethylglyoxime was coordinated with the metal ions through the N and O atoms of the oxime group and N-acetylglycine was coordinated with metal ions through the N atom and terminal carboxyl oxygen atom.

  13. Synthesis, spectral and theoretical studies of Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2‧-hydroxynaphyhaline

    Science.gov (United States)

    Gaber, Mohamed; El-Ghamry, Hoda; Atlam, Faten; Fathalla, Shaimaa

    2015-02-01

    Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2‧-hydroxynaphthaline have been isolated and characterized by elemental analysis, IR, 1H NMR, EI-mass, UV-vis, molar conductance, magnetic moment measurements and thermogravimetric analysis. The molar conductance values indicated that the complexes are non-electrolytes. The magnetic moment values of the complexes displayed diamagnetic behavior for Pd(II) and Pt(II) complexes and tetrahedral geometrical structure for Ni(II) complex. From the bioinorganic applications point of view, the interaction of the ligand and its metal complexes with CT-DNA was investigated using absorption and viscosity titration techniques. The Schiff-base ligand and its metal complexes have also been screened for their antimicrobial and antitumor activities. Also, theoretical investigation of molecular and electronic structures of the studied ligand and its metal complexes has been carried out. Molecular orbital calculations were performed using DFT (density functional theory) at B3LYP level with standard 6-31G(d,p) and LANL2DZ basis sets to access reliable results to the experimental values. The calculations were performed to obtain the optimized molecular geometry, charge density distribution, extent of distortion from regular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), Mulliken atomic charges, reactivity index (ΔE), dipole moment (D), global hardness (η), softness (σ), electrophilicity index (ω), chemical potential and Mulliken electronegativity (χ).

  14. Coordination behavior of tetraaza [N4] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: Synthesis, spectroscopic characterization and anticancer activity

    Science.gov (United States)

    El-Boraey, Hanaa A.

    2012-11-01

    Novel eight Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes with [N4] ligand (L) i.e. 2-amino-N-{2-[(2-aminobenzoyl)amino]ethyl}benzamide have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and molar conductivity measurements. On the basis of IR, mass, electronic and EPR spectral studies an octahedral geometry has been proposed for Co(II), Ni(II) complexes and Cu(II) chloride complex, square-pyramidal for Cu(I) bromide complex. For Cu(II) nitrate complex (6), Pd(II) complex (8) square planar geometry was proposed. The EPR data of Cu(II) complexes in powdered form indicate dx2-y2 ground state of Cu(II) ion. The antitumor activity of the synthesized ligand and some selected metal complexes has been studied. The palladium(II) complex (8) was found to display cytotoxicity (IC50 = 25.6 and 41 μM) against human breast cancer cell line MCF-7 and human hepatocarcinoma HEPG2 cell line.

  15. 针铁矿催化氧化溴酚生成羟基多溴联苯醚和溴代二英%Formation of hydroxylated polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins via goethite-catalyzed oxidation of bromophenols

    Institute of Scientific and Technical Information of China (English)

    孙粉玲; 丁佳锋; 周时洋; 林坤德

    2015-01-01

    探究了针铁矿催化转化溴酚(2,4⁃DBP或2,4,6⁃TBP)生成羟基化多溴联苯醚(HO⁃PBDEs)和溴代二噁英( PBDD/Fs)的可能性.结果表明,针铁矿可以在常温和干反应条件下有效地催化转化溴酚化合物生成HO⁃PBDEs和PBDD/Fs.反应16 d,97.3%的2,4⁃DBP被针铁矿氧化转化,其中2.4%被转化为2′⁃OH⁃BDE⁃68,2.8%被转化为2,2′⁃OH⁃BB⁃80,0.2%被转化1,3,8⁃TrBDD,0.4%被转化为2,4,6,8⁃TeBDF.同样的反应时间内,98.7%的2,4,6⁃TBP被针铁矿氧化转化,反应产物可能为2′⁃OH⁃BDE⁃121、4′⁃OH⁃BDE⁃121、1,3,6,8⁃TeBDD和1,3,7,9⁃TeBDD.根据检测到的产物,提出了针铁矿氧化转化溴酚的可能途径.%The formation of hydroxylated polybrominated diphenyl ethers ( HO⁃PBDEs ) and brominated dibenzo⁃p⁃dioxins, dibenzofurans ( PBDD/Fs ) from goethite⁃catalyzed oxidation of bromophenols ( BPs, e. g., 2, 4⁃DBP and 2, 4, 6⁃TBP ) was investigated. Results showed that goethite readily catalyzed the conversion of 2,4⁃DBP and 2,4,6⁃TBP to HO⁃PBDEs and PBDD/Fs under dry conditions and at ambient temperature. In 16 d, 97.3%of 2,4⁃DBP was converted and the yields of 2′⁃OH⁃BDE⁃68, 2,2′⁃OH⁃BB⁃80, 1,3,8⁃TrBDD and 2,4,6,8⁃TeBDF were 2.4%, 2.8%, 0.2% and 0. 4%, respectively. Similarly, 98. 7% of 2,4,6⁃TBP was transformed and the possible reaction products were 2′⁃OH⁃BDE⁃121, 4′⁃OH⁃BDE⁃121, 1,3,6,8⁃TBDD and 1,3,7,9⁃TBDD. The possible formation pathways for the goethite⁃catalyzed oxidation of bromophenols were proposed.

  16. Ruthenium-catalyzed cyclization of N-carbamoyl indolines with alkynes: an efficient route to pyrroloquinolinones.

    Science.gov (United States)

    Manoharan, Ramasamy; Jeganmohan, Masilamani

    2015-09-21

    A regioselective synthesis of substituted pyrroloquinolinones via a ruthenium-catalyzed oxidative cyclization of substituted N-carbamoyl indolines with alkynes is described. The cyclization reaction was compatible with various symmetrical and unsymmetrical alkynes including substituted propiolates. Later, we performed the aromatization of pyrroloquinolinones into indole derivatives in the presence of 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ).

  17. Laccase catalyzed grafting of-N-OH type mediators to lignin via radical-radical coupling

    NARCIS (Netherlands)

    Munk, L.; Punt, A.M.; Kabel, M.A.; Meyer, A.S.

    2017-01-01

    Lignin is an underexploited resource in biomass refining. Laccases (EC 1.10.3.2) catalyze oxidation of phenolic hydroxyls using O2 as electron acceptor and may facilitate lignin modification in the presence of mediators. This study assessed the reactivity of four different synthetic mediators by

  18. $MNO_2$ catalyzed carbon electrodes for dioxygen reduction in concentrated alkali

    OpenAIRE

    Manoharan, R; Shulka, AK

    1984-01-01

    A process to deposit $\\gamma-MnO_2$ catalytic oxide onto coconut-shell charcoal substrate is described. Current-potential curves for electroreduction of dioxygen with electrodes fabricated from this catalyzed substrate are obtained in 6M KOH under ambient conditions. The performance of these electrodes is competitive with platinized carbon electrodes.

  19. xanthen-11-ones by ZnO Nanoparticles Catalyzed Three Co

    African Journals Online (AJOL)

    NICO

    Highly effective zinc oxide nanoparticles catalyzed solvent-free synthesis of some tetrahydrobenzo[a]xanthen-11-one derivatives ... efficient, green and simple method for the preparation of ... Characterization of ZnO NPs structure was continued by SEM ... catalysts may be related to higher surface area available for.

  20. Alkynes as Allylmetal Equivalents in Redox-Triggered C–C Couplings to Primary Alcohols: (Z)-Homoallylic Alcohols via Ruthenium-Catalyzed Propargyl C–H Oxidative Addition

    Science.gov (United States)

    2015-01-01

    The cationic ruthenium catalyst generated upon the acid–base reaction of H2Ru(CO)(PPh3)3 and 2,4,6-(2-Pr)3PhSO3H promotes the redox-triggered C–C coupling of 2-alkynes and primary alcohols to form (Z)-homoallylic alcohols with good to complete control of olefin geometry. Deuterium labeling studies, which reveal roughly equal isotopic compositions at the allylic and distal vinylic positions, along with other data, corroborate a catalytic mechanism involving ruthenium(0)-mediated allene–aldehyde oxidative coupling to form a transient oxaruthenacycle, an event that ultimately defines (Z)-olefin stereochemistry. PMID:25075434

  1. A facile copper(I)-catalyzed homocoupling of terminal alkynes to 1,3-diynes with diaziridinone under mild conditions.

    Science.gov (United States)

    Zhu, Yingguang; Shi, Yian

    2013-11-21

    A novel and efficient Cu(I)-catalyzed oxidative homocoupling of terminal alkynes with diaziridinone as an oxidant is described. Various terminal alkynes can be transformed into the corresponding 1,3-diynes in good yields. The reaction process is base-free, operationally simple, and amenable to the gram scale.

  2. A facile copper(I)-catalyzed homocoupling of terminal alkynes to 1,3-diynes with diaziridinone under mild conditions

    OpenAIRE

    Zhu, Yingguang; Shi, Yian

    2013-01-01

    A novel and efficient Cu(I)-catalyzed oxidative homocoupling of terminal alkynes with diaziridinone as oxidant is described. Various terminal alkynes can be transformed into the corresponding 1,3-diynes in good yields. The reaction process is base-free, operationally simple, and amenable to gram scale.

  3. Muon-catalyzed fusion revisited

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-12-15

    A negative muon can induce nuclear fusion in the reaction of deuteron and triton nuclei giving a helium nucleus, a neutron and an emerging negative muon. The muon forms a tightlybound deuteron-triton-muon molecule and fusion follows in about 10{sup -12}s. Then the muon is free again to induce further reactions. Thus the muon can serve as a catalyst for nuclear fusion, which can proceed without the need for the high temperatures which are needed in the confinement and inertial fusion schemes. At room temperature, up to 80 fusions per muon have recently been observed at the LAMPF machine at Los Alamos, and it is clear that this number can be exceeded. These and other results were presented at a summer Workshop on Muon-Catalyzed Fusion held in Jackson, Wyoming. Approximately fifty scientists attended from Austria, Canada, India, Italy, Japan, South Africa, West Germany, and the United States. The Workshop itself is symbolic of the revival of interest in this subject.

  4. Nitroreductase catalyzed biotransformation of CL-20

    International Nuclear Information System (INIS)

    Bhushan, Bharat; Halasz, Annamaria; Hawari, Jalal

    2004-01-01

    Previously, we reported that a salicylate 1-monooxygenase from Pseudomonas sp. ATCC 29352 biotransformed CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane) (C 6 H 6 N 12 O 12 ) and produced a key metabolite with mol. wt. 346Da corresponding to an empirical formula of C 6 H 6 N 10 O 8 which spontaneously decomposed in aqueous medium to produce N 2 O, NH4+, and HCOOH [Appl. Environ. Microbiol. (2004)]. In the present study, we found that nitroreductase from Escherichia coli catalyzed a one-electron transfer to CL-20 to form a radical anion (CL-20 - ) which upon initial N-denitration also produced metabolite C 6 H 6 N 10 O 8 . The latter was tentatively identified as 1,4,5,8-tetranitro-1,3a,4,4a,5,7a,8,8a-octahydro-diimidazo[4,5-b:4',5'-e] pyrazine [IUPAC] which decomposed spontaneously in water to produce glyoxal (OHCCHO) and formic acid (HCOOH). The rates of CL-20 biotransformation under anaerobic and aerobic conditions were 3.4+/-0.2 and 0.25+/-0.01nmolmin -1 mg of protein -1 , respectively. The product stoichiometry showed that each reacted CL-20 molecule produced about 1.8 nitrite ions, 3.3 molecules of nitrous oxide, 1.6 molecules of formic acid, 1.0 molecule of glyoxal, and 1.3 ammonium ions. Carbon and nitrogen products gave mass-balances of 60% and 81%, respectively. A comparative study between native-, deflavo-, and reconstituted-nitroreductase showed that FMN-site was possibly involved in the biotransformation of CL-20

  5. Iron Catalyzed Cycloaddition of Alkynenitriles and Alkynes

    Science.gov (United States)

    D’Souza, Brendan R.; Lane, Timothy K.

    2011-01-01

    The combination of Fe(OAc)2 and an electron-donating, sterically-hindered pyridyl bisimine ligand catalyzes the cycloaddition of alkynenitriles and alkynes. A variety of substituted pyridines were obtained in good yields. PMID:21557582

  6. Oxidation of 2,4,6,-tri-chlorophenol catalyzed by iron phthalocyanines covalently bound to silica. Oxydation du 2,4,6-trichlorophenol catalyse par des phtalocyanines de fer greffees sur silice par liaisons covalentes

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, M.; Hadasch, A.; Meunier, B. (Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Laboratoire de Chimie de Coordination); Rabion, A. (Elf-Atochem, 64 - Artix (France). Centre de Recherche)

    1999-04-01

    The degradation of recalcitrant pollutants remains a high priority in order to preserve our environment. For example, chlorinated aromatic compounds are extremely persistent in the environment because of their slow biodegradation by microorganisms. One of the most notable toxic offenders is 2,4,6-tri-chlorophenol (TCP) which is produced by paper mills and also used as a biocide. Thus TCP is an obvious benchmark for research on the decontamination of waste waters. In this work, the covalent attachment of an iron phthalocyanine with chloro-sulfonyl substituents (FePcSO[sub 2]Cl) onto a functionalized 3-amino-propyl-silica has been achieved. This supported catalyst FePcSO[sub 2]Cl-silica is able to degrade a recalcitrant pollutant like TCP with hydrogen peroxide as oxidant. In order to improve the catalytic efficiency of the grafted iron phthalocyanine complex, modifications of the macrocycle substituents, passivation of the silica surface, variation of the loading of the carrier and addition of an organic co solvent to the reaction mixture were carried out. (authors) 21 refs.

  7. Green biosynthesis of magnetic iron oxide (Fe3O4) nanoparticles using the aqueous extracts of food processing wastes under photo-catalyzed condition and investigation of their antimicrobial and antioxidant activity.

    Science.gov (United States)

    Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2017-08-01

    In this study, a simple, rapid, and eco-friendly green method was introduced to synthesize magnetite iron oxide nanoparticles (Fe 3 O 4 NPs) using the aqueous extracts of two food processing wastes, namely silky hairs of corn (Zea mays L.) and outer leaves of Chinese cabbage (Brassica rapa L. subsp. pekinensis). The boiled solutions of silky hairs (MH) and outer leaves of Chinese cabbage (CCP) were used to synthesize Fe 3 O 4 NPs under photo exposed condition. The MH-FeNPs and CCP-FeNPs synthesized via green route were characterized by UV-Vis spectroscopy, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential thermogravimetric (TG/DTG) analysis, and vibrating sample magnetometer (VSM) analysis. The UV-Visible spectra displayed two absorption bands at 325nm and 375mm for the MH-FeNPs, and 325mm and 365mm for the CCP-FeNPs, respectively. The estimated absolute crystallite sizes of the MH-FeNPs and CCP-FeNPs were calculated to be 84.81 and 48.91nm, respectively. VSM analysis revealed that both FeNPs were superparamagnetic in nature. Both FeNPs mixed with kanamycin and rifampicin displayed positive synergistic antibacterial activity against pathogenic foodborne bacteria (9.36-24.42mm inhibition zones), and those mixed with amphotericin b also exerted synergistic anticandidal activity against five different pathogenic Candida species (9.81-17.68mm inhibition zones). Both FeNPs exhibited strong antioxidant activities; therefore, all the properties of the green synthesized MH-FeNPs and CCP-FeNPs using food processing wastes could be beneficial for their potential applications in various fields such as drug delivery, antibacterial and anticandidal drugs, and biomedical fields. Copyright © 2017. Published by Elsevier B.V.

  8. Synthesis of phenanthridines via palladium-catalyzed picolinamide-directed sequential C–H functionalization

    Directory of Open Access Journals (Sweden)

    Ryan Pearson

    2013-05-01

    Full Text Available We report a new synthesis of phenanthridines based on palladium-catalyzed picolinamide-directed sequential C–H functionalization reactions starting from readily available benzylamine and aryl iodide precursors. Under the catalysis of Pd(OAc2, the ortho-C–H bond of benzylpicolinamides is first arylated with an aryl iodide. The resulting biaryl compound is then subjected to palladium-catalyzed picolinamide-directed intramolecular dehydrogenative C–H amination with PhI(OAc2 oxidant to form the corresponding cyclized dihydrophenanthridines. The benzylic position of these dihydrophenanthridines could be further oxidized with Cu(OAc2, removing the picolinamide group and providing phenathridine products. The cyclization and oxidation could be carried out in a single step and afford phenathridines in moderate to good yields.

  9. Enantioselective [3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes

    KAUST Repository

    Zhao, Changgui

    2018-02-05

    Axially chiral molecules are among the most valuable substrates in organic synthesis. They are typically used as chiral ligands or catalysts in asymmetric reactions. Recent progress for the construction of these chiral molecules is mainly focused on the transition-metal-catalyzed transformations. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic carbenes) atroposelective annulation of cyclic 1,3-diones with ynals. In the presence of NHC precatalyst, base, Lewis acid and oxidant, a catalytic C–C bond formation occurs, providing axially chiral α-pyrone−aryls in moderate to good yields and with high enantioselectivities. Control experiments indicated that alkynyl acyl azoliums, acting as active intermediates, are employed to atroposelectively assemble chiral biaryls and such a methodology may be creatively applied to other useful NHC-catalyzed asymmetric transformations.

  10. Reactivity and operational stability of N-tailed TAMLs through kinetic studies of the catalyzed oxidation of orange II by H2 O2 : synthesis and X-ray structure of an N-phenyl TAML.

    Science.gov (United States)

    Warner, Genoa R; Mills, Matthew R; Enslin, Clarissa; Pattanayak, Shantanu; Panda, Chakadola; Panda, Tamas Kumar; Gupta, Sayam Sen; Ryabov, Alexander D; Collins, Terrence J

    2015-04-13

    The catalytic activity of the N-tailed ("biuret") TAML (tetraamido macrocyclic ligand) activators [Fe{4-XC6 H3 -1,2-(NCOCMe2 NCO)2 NR}Cl](2-) (3; N atoms in boldface are coordinated to the central iron atom; the same nomenclature is used in for compounds 1 and 2 below), [X, R=H, Me (a); NO2 , Me (b); H, Ph (c)] in the oxidative bleaching of Orange II dye by H2 O2 in aqueous solution is mechanistically compared with the previously investigated activator [Fe{4-XC6 H3 -1,2-(NCOCMe2 NCO)2 CMe2 }OH2 ](-) (1) and the more aggressive analogue [Fe(Me2 C{CON(1,2-C6 H3 -4-X)NCO}2 )OH2 ](-) (2). Catalysis by 3 of the reaction between H2 O2 and Orange II (S) occurs according to the rate law found generally for TAML activators (v=kI kII [Fe(III) ][S][H2 O2 ]/(kI [H2 O2 ]+kII [S]) and the rate constants kI and kII at pH 7 both decrease within the series 3 b>3 a>3 c. The pH dependency of kI and kII was investigated for 3 a. As with all TAML activators studied to-date, bell-shaped profiles were found for both rate constants. For kI , the maximal activity was found at pH 10.7 marking it as having similar reactivity to 1 a. For kII , the broad bell pH profile exhibits a maximum at pH about 10.5. The condition kI ≪kII holds across the entire pH range studied. Activator 3 b exhibits pronounced activity in neutral to slightly basic aqueous solutions making it worthy of consideration on a technical performance basis for water treatment. The rate constants ki for suicidal inactivation of the active forms of complexes 3 a-c were calculated using the general formula ln([S0 ]/[S∞ ])=(kII /ki )[Fe(III) ]; here [Fe(III) ], [S0 ], and [S∞ ] are the total catalyst concentration and substrate concentration at time zero and infinity, respectively. The synthesis and X-ray characterization of 3 c are also described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Pd(II)-Catalyzed Hydroxyl-Directed C–H Olefination Enabled by Mono-Protected Amino Acid Ligands

    Science.gov (United States)

    Lu, Yi; Wang, Dong-Hui; Engle, Keary M.

    2010-01-01

    A novel Pd(II)-catalyzed ortho-C–H olefination protocol has been developed using spatially remote, unprotected tertiary, secondary, and primary alcohols as the directing groups. Mono-N-protected amino acid ligands were found to promote the reaction, and an array of olefin coupling partners could be used. When electron-deficient alkenes were used, the resulting olefinated intermediates underwent subsequent Pd(II)-catalyzed oxidative intramolecular cyclization to give the corresponding pyran products, which could be converted into ortho-alkylated alcohols under hydrogenolysis conditions. The mechanistic details of the oxidative cyclization step are discussed and situated in the context of the overall catalytic cycle. PMID:20359184

  12. Synthesis, spectral and theoretical studies of Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2'-hydroxynaphthaline.

    Science.gov (United States)

    Gaber, Mohamed; El-Ghamry, Hoda; Atlam, Faten; Fathalla, Shaimaa

    2015-02-25

    Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2'-hydroxynaphthaline have been isolated and characterized by elemental analysis, IR, (1)H NMR, EI-mass, UV-vis, molar conductance, magnetic moment measurements and thermogravimetric analysis. The molar conductance values indicated that the complexes are non-electrolytes. The magnetic moment values of the complexes displayed diamagnetic behavior for Pd(II) and Pt(II) complexes and tetrahedral geometrical structure for Ni(II) complex. From the bioinorganic applications point of view, the interaction of the ligand and its metal complexes with CT-DNA was investigated using absorption and viscosity titration techniques. The Schiff-base ligand and its metal complexes have also been screened for their antimicrobial and antitumor activities. Also, theoretical investigation of molecular and electronic structures of the studied ligand and its metal complexes has been carried out. Molecular orbital calculations were performed using DFT (density functional theory) at B3LYP level with standard 6-31G(d,p) and LANL2DZ basis sets to access reliable results to the experimental values. The calculations were performed to obtain the optimized molecular geometry, charge density distribution, extent of distortion from regular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), Mulliken atomic charges, reactivity index (ΔE), dipole moment (D), global hardness (η), softness (σ), electrophilicity index (ω), chemical potential and Mulliken electronegativity (χ). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Sequential addition of H{sub 2} O{sub 2}, pH and solvent effects as key factors in the oxidation of 2,4,6-tri-chloro-phenol catalyzed by iron tetra-sulfo-phthalocyanine; Facteur cles dans l`oxydation du 2,4,6-trichlorophenol catalysee par la tetrasulfophtalocyanine de fer: ajout sequentiel d`eau oxygenee, effets du pH et du solvant

    Energy Technology Data Exchange (ETDEWEB)

    Hadasch, A.; Sorokin, A.; Meunier, B. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Lab. de Chimie de Coordination; Rabion, A. [Centre de Recherche ELF-Atochem, Departement Chimie Organique et Biochimie, 64 - Artix (France)

    1998-01-01

    Degradation of chlorinated aromatics is an important environmental research field since these compounds are among the most recalcitrant pollutants. With hydrogen peroxide, iron tetra-sulfo-phthalocyanine (FePcS) has been shown to catalyze aromatic ring cleavage of 2,4,6-tri-chloro-phenol (TCP). Here are reported new data on the key factors controlling the catalytic activity of the FePcS-H{sub 2} O{sub 2} system in the oxidation of TCP: the sequential addition of H{sub 2} O{sub 2} and the pH and solvent effects on the monomer/dimer equilibria of the catalyst precursors. The efficiency of the H{sub 2}O{sub 2} oxidation TCP catalyzed by FePcS is highly dependent on the pH value of the reaction mixture, the local hydrogen peroxide concentration and the organisation of FePcS molecules in solution. Among the several forms of FePcS in aqueous solutions (dimer or monomer), monomeric FePcS is proposed to be the catalytically active complex. The key role of the organic co-solvent (acetonitrile, acetone, alcohol,...) is to shift the dimer/monomer equilibrium toward monometric FePcS, the efficient catalyst precursor. A stepwise addition of hydrogen peroxide significantly improves the conversion of TCP and allows a low catalyst loading, below 1% with respect to the pollutant, to improves the conversion of TCP and allows a low catalyst loading, below 1% with respect to the pollutant, to be used. (authors) 23 refs.

  14. Palladium-Catalyzed Cross-Coupling Reactions of Perfluoro Organic Compounds

    Directory of Open Access Journals (Sweden)

    Masato Ohashi

    2014-09-01

    Full Text Available In this review, we summarize our recent development of palladium(0-catalyzed cross-coupling reactions of perfluoro organic compounds with organometallic reagents. The oxidative addition of a C–F bond of tetrafluoroethylene (TFE to palladium(0 was promoted by the addition of lithium iodide, affording a trifluorovinyl palladium(II iodide. Based on this finding, the first palladium-catalyzed cross-coupling reaction of TFE with diarylzinc was developed in the presence of lithium iodide, affording α,β,β-trifluorostyrene derivatives in excellent yield. This coupling reaction was expanded to the novel Pd(0/PR3-catalyzed cross-coupling reaction of TFE with arylboronates. In this reaction, the trifluorovinyl palladium(II fluoride was a key reaction intermediate that required neither an extraneous base to enhance the reactivity of organoboronates nor a Lewis acid additive to promote the oxidative addition of a C–F bond. In addition, our strategy utilizing the synergetic effect of Pd(0 and lithium iodide could be applied to the C–F bond cleavage of unreactive hexafluorobenzene (C6F6, leading to the first Pd(0-catalyzed cross-coupling reaction of C6F6 with diarylzinc compounds.

  15. Catalyzed borohydrides for hydrogen storage

    Science.gov (United States)

    Au, Ming [Augusta, GA

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  16. Heterocycles by Transition Metals Catalyzed Intramolecular Cyclization of Acetylene Compounds

    International Nuclear Information System (INIS)

    Vizer, S.A.; Yerzhanov, K.B.; Dedeshko, E.C.

    2003-01-01

    Review shows the new strategies in the synthesis of heterocycles, having nitrogen, oxygen and sulfur atoms, via transition metals catalyzed intramolecular cyclization of acetylenic compounds on the data published at the last 30 years, Unsaturated heterocyclic compounds (pyrroles and pyrroline, furans, dihydro furans and benzofurans, indoles and iso-indoles, isoquinolines and isoquinolinones, aurones, iso coumarins and oxazolinone, lactams and lactones with various substitutes in heterocycles) are formed by transition metals, those salts [PdCl 2 , Pd(OAc) 2 , HgCl 2 , Hg(OAc) 2 , Hg(OCOCF 3 ) 2 , AuCl 3 ·2H 2 O, NaAuCl 4 ·2H 2 O, CuI, CuCl], oxides (HgO) and complexes [Pd(OAc) 2 (PPh 3 )2, Pd(PPh 3 ) 4 , PdCl 2 (MeCN) 2 , Pd(OAc ) 2 /TPPTS] catalyzed intramolecular cyclization of acetylenic amines, amides, ethers, alcohols, acids, ketones and βdiketones. More complex hetero polycyclic systems typical for natural alkaloids can to obtain similar. Proposed mechanisms of pyrroles, isoquinolines, iso indoles and indoles, benzofurans and iso coumarins, thiazolopyrimidinones formation are considered. (author)

  17. Electrochemical reduction of oxygen catalyzed by Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Cournet, Amandine [Universite de Toulouse, UPS, LU49, Adhesion bacterienne et formation de biofilms, 35 chemin des Maraichers, 31062 Toulouse Cedex 09 (France)] [Laboratoire de Genie Chimique CNRS UMR5503, 4 allee Emile Monso, BP 84234, 31432 Toulouse Cedex 04 (France); Berge, Mathieu; Roques, Christine [Universite de Toulouse, UPS, LU49, Adhesion bacterienne et formation de biofilms, 35 chemin des Maraichers, 31062 Toulouse Cedex 09 (France); Bergel, Alain [Laboratoire de Genie Chimique CNRS UMR5503, 4 allee Emile Monso, BP 84234, 31432 Toulouse Cedex 04 (France); Delia, Marie-Line, E-mail: marieline.delia@ensiacet.f [Laboratoire de Genie Chimique CNRS UMR5503, 4 allee Emile Monso, BP 84234, 31432 Toulouse Cedex 04 (France)

    2010-07-01

    Pseudomonas aeruginosa has already been shown to catalyze oxidation processes in the anode compartment of a microbial fuel cell. The present study focuses on the reverse capacity of the bacterium, i.e. reduction catalysis. Here we show that P. aeruginosa is able to catalyze the electrochemical reduction of oxygen. The use of cyclic voltammetry showed that, for a given range of potential values, the current generated in the presence of bacteria could reach up to four times the current obtained without bacteria. The adhesion of bacteria to the working electrode was necessary for the catalysis to be observed but was not sufficient. The electron transfer between the working electrode and the bacteria did not involve mediator metabolites like phenazines. The transfer was by direct contact. The catalysis required a certain contact duration between electrodes and live bacteria but after this delay, the metabolic activity of cells was no longer necessary. Membrane-bound proteins, like catalase, may be involved. Various strains of P. aeruginosa, including clinical isolates, were tested and all of them, even catalase-defective mutants, presented the same catalytic property. P. aeruginosa offers a new model for the analysis of reduction catalysis and the protocol designed here may provide a basis for developing an interesting tool in the field of bacterial adhesion.

  18. Reactions of ethyl diazoacetate catalyzed by methylrhenium trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.; Espenson, H. [Iowa State Univ., Ames, IA (United States)

    1995-11-03

    Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) has found wise use in catalysis, including the epoxidation and metathesis of olefins, aldehyde olefination, and oxygen transfer. Extensive reports have now appeared in the area of MTO-catalyzed substrate oxidations with hydrogen peroxide. Certain catalytic applications of MTO for organic reactions that do not utilize peroxide have now been realized. In particular, a catalytic amount of MTO with ethyl diazoacetate (EDA) will convert aromatic imines to aziridines and convert aldehydes and ketones to epoxides. The aziridine preparation proceeds in high yields under anaerobic conditions more conveniently than with existing methods. Compounds with a three-membered heterocyclic ring can be obtained with the EDA/MTO catalytic system. Aromatic imines undergo cycloaddition reactions to give aziridines under mild conditions.

  19. Flavoenzyme-catalyzed oxygenations and oxidations of phenolic compounds

    NARCIS (Netherlands)

    Moonen, MJH; Fraaije, MW; Rietjens, IMCM; Laane, C; van Berkel, WJH

    2002-01-01

    Flavin-dependent monooxygenases and oxidases play an important role in the mineralization of phenolic compounds. Because of their exquisite regioselectivity and stereoselectivity, these enzymes are of interest for the biocatalytic production of fine chemicals and food ingredients. In our group, we

  20. Zeolite 5A Catalyzed Etherification of Diphenylmethanol

    Science.gov (United States)

    Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.

    2009-01-01

    An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

  1. Muon catalyzed fusion under compressive conditions

    International Nuclear Information System (INIS)

    Cripps, G.; Goel, B.; Harms, A.A.

    1991-01-01

    The viability of a symbiotic combination of Muon Catalyzed Fusion (μCF) and high density generation processes has been investigated. The muon catalyzed fusion reaction rates are formulated in the temperature and density range found under moderate compressive conditions. Simplified energy gain and power balance calculations indicate that significant energy gain occurs only if standard type deuterium-tritium (dt) fusion is ignited. A computer simulation of the hydrodynamics and fusion kinetics of a spherical deuterium-tritium pellet implosion including muons is performed. Using the muon catalyzed fusion reaction rates formulated and under ideal conditions, the pellet ignites (and thus has a significant energy gain) only if the initial muon concentration is approximately 10 17 cm -3 . The muons need to be delivered to the pellet within a very short-time (≅ 1 ns). The muon pulse required in order to make the high density and temperature muon catalyzed fusion scheme viable is beyond the present technology for muon production. (orig.) [de

  2. Enyne Metathesis Catalyzed by Ruthenium Carbene Complexes

    DEFF Research Database (Denmark)

    Poulsen, Carina Storm; Madsen, Robert

    2003-01-01

    Enyne metathesis combines an alkene and an alkyne into a 1,3-diene. The first enyne metathesis reaction catalyzed by a ruthenium carbene complex was reported in 1994. This review covers the advances in this transformation during the last eight years with particular emphasis on methodology...

  3. Enzyme-Catalyzed Transetherification of Alkoxysilanes

    Directory of Open Access Journals (Sweden)

    Peter G. Taylor

    2013-01-01

    Full Text Available We report the first evidence of an enzyme-catalyzed transetherification of model alkoxysilanes. During an extensive enzymatic screening in the search for new biocatalysts for silicon-oxygen bond formation, we found that certain enzymes promoted the transetherification of alkoxysilanes when tert-butanol or 1-octanol were used as the reaction solvents.

  4. Biodiesel production by enzyme-catalyzed transesterification

    Directory of Open Access Journals (Sweden)

    Stamenković Olivera S.

    2005-01-01

    Full Text Available The principles and kinetics of biodiesel production from vegetable oils using lipase-catalyzed transesterification are reviewed. The most important operating factors affecting the reaction and the yield of alkyl esters, such as: the type and form of lipase, the type of alcohol, the presence of organic solvents, the content of water in the oil, temperature and the presence of glycerol are discussed. In order to estimate the prospects of lipase-catalyzed transesterification for industrial application, the factors which influence the kinetics of chemically-catalysed transesterification are also considered. The advantages of lipase-catalyzed transesterification compared to the chemically-catalysed reaction, are pointed out. The cost of down-processing and ecological problems are significantly reduced by applying lipases. It was also emphasized that lipase-catalysed transesterification should be greatly improved in order to make it commercially applicable. The further optimization of lipase-catalyzed transesterification should include studies on the development of new reactor systems with immobilized biocatalysts and the addition of alcohol in several portions, and the use of extra cellular lipases tolerant to organic solvents, intracellular lipases (i.e. whole microbial cells and genetically-modified microorganisms ("intelligent" yeasts.

  5. Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida

    International Nuclear Information System (INIS)

    Wackett, L.P.; Kwart, L.D.; Gibson, D.T.

    1988-01-01

    Toluene dioxygenase, a multicomponent enzyme system known to oxidize mononuclear aromatic hydrocarbons to cis-dihydrodiols, oxidized indene and indan to 1-indenol and 1-indanol, respectively. In addition, the enzyme catalyzed dioxygen addition to the nonaromatic double bond of indene to form cis-1,2-indandiol. The oxygen atoms in 1-indenol and cis-1,2-indandiol were shown to be derived from molecular oxygen, whereas 70% of the oxygen in 1-indanol was derived from water. All of the isolated products were optically active as demonstrated by 19 F NMR and HPLC discrimination of diastereomeric esters and by chiroptic methods. The high optical purity of (-)-(1R)-indanol (84% enantiomeric excess) and the failure of scavengers of reactive oxygen species to inhibit the monooxygenation reaction supported the contention that monooxygen insertion is mediated by an active-site process. Experiments with 3-[ 2 H] indene indicated that equilibration between C-1 and C-3 occurred prior to the formation of the carbon-oxygen bond to yield 1-indenol. Naphthalene dioxygenase also oxidized indan to 1-indanol, which suggested that benzylic monoxygenation may be typical of this group of dioxygenases

  6. Cobalt-Catalyzed, Aminoquinoline-Directed sp2 C-H Bond Alkenylation by Alkynes**

    Science.gov (United States)

    Grigorjeva, Liene; Daugulis, Olafs

    2014-01-01

    We have developed a method for cobalt-catalyzed, aminoquinoline- and picolinamide-directed sp2 C-H bond alkenylation by alkynes. Method shows excellent functional group tolerance and both internal and terminal alkynes are competent substrates for the coupling. The reaction employs Co(OAc)2*4H2O catalyst, Mn(OAc)2 cocatalyst, and oxygen from air as a terminal oxidant. PMID:25060365

  7. Kinetics of aggregation growth with competition between catalyzed birth and catalyzed death

    International Nuclear Information System (INIS)

    Wang Haifeng; Gao Yan; Lin Zhenquan

    2008-01-01

    An aggregation growth model of three species A, B and C with the competition between catalyzed birth and catalyzed death is proposed. Irreversible aggregation occurs between any two aggregates of the like species with the constant rate kernels I n (n = 1,2,3). Meanwhile, a monomer birth of an A species aggregate of size k occurs under the catalysis of a B species aggregate of size j with the catalyzed birth rate kernel K(k,j) = Kkj v and a monomer death of an A species aggregate of size k occurs under the catalysis of a C species aggregate of size j with the catalyzed death rate kernel L(k,j)=Lkj v , where v is a parameter reflecting the dependence of the catalysis reaction rates of birth and death on the size of catalyst aggregate. The kinetic evolution behaviours of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A species a k (t) is found to be dependent crucially on the competition between the catalyzed birth and death of A species, as well as the irreversible aggregation processes of the three species: (1) In the v k (t) satisfies the conventional scaling form; (2) In the v ≥ 0 case, the competition between the catalyzed birth and death dominates the process. When the catalyzed birth controls the process, a k (t) takes the conventional or generalized scaling form. While the catalyzed death controls the process, the scaling description of the aggregate size distribution breaks down completely

  8. An Efficient Synthesis of Substituted Quinolines via Indium(III) Chloride Catalyzed Reaction of Imines with Alkynes

    International Nuclear Information System (INIS)

    Zhu, Mei; Fu, Weijun; Xun, Chen; Zou, Guanglong

    2012-01-01

    An efficient synthetic method for the preparation of quinolines through indium(III) chloride-catalyzed tandem addition-cyclization-oxidation reactions of imines with alkynes was developed. The processes can provide a diverse range of quinoline derivatives in good yields from simple imines and alkynes

  9. The Arabidopsis aldehyde oxidase 3 (AA03) gene product catalyzes the final step in abscisic acid biosynthesis in leaves

    NARCIS (Netherlands)

    Seo, M.; Peeters, A.J.M.; Koiwai, H.; Oritani, T.; Marion-Poll, A.; Zeevaart, J.A.D.; Koornneef, M.; Kamiya, Y.; Koshiba, T.

    2000-01-01

    Abscisic acid (ABA) is a plant hormone involved in seed development and germination and in responses to various environmental stresses. The last step of ABA biosynthesis involves oxidation of abscisic aldehyde, and aldehyde oxidase (EC 1.2.3.1) is thought to catalyze this reaction. An aldehyde

  10. A role of proton transfer in peroxidase-catalyzed process elucidated by substrates docking calculations

    Directory of Open Access Journals (Sweden)

    Ziemys Arturas

    2001-08-01

    Full Text Available Abstract Background Previous kinetic investigations of fungal-peroxidase catalyzed oxidation of N-aryl hydroxamic acids (AHAs and N-aryl-N-hydroxy urethanes (AHUs revealed that the rate of reaction was independent of the formal redox potential of substrates. Moreover, the oxidation rate was 3–5 orders of magnitude less than for oxidation of physiological phenol substrates, though the redox potential was similar. Results To explain the unexpectedly low reactivity of AHAs and AHUs we made ab initio calculations of the molecular structure of the substrates following in silico docking in the active center of the enzyme. Conclusions AHAs and AHUs were docked at the distal side of heme in the sites formed by hydrophobic amino acid residues that retarded a proton transfer and finally the oxidation rate. The analogous phenol substrates were docked at different sites permitting fast proton transfer in the relay of distal His and water that helped fast substrate oxidation.

  11. Highly selective formation of imines catalyzed by silver nanoparticles supported on alumina

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Poreddy, Raju; Engelbrekt, Christian

    2014-01-01

    The oxidative dehydrogenation of alcohols to aldehydes catalyzed by Ag nanoparticles supported on Al2O3 was studied. The catalyst promoted the direct formation of imines by tandem oxidative dehydrogenation and condensation of alcohols and amines. The reactions were performed under mild conditions......-2 in the gas phase. The use of an efficient and selective Ag catalyst for the oxidative dehydrogenation of alcohol in the presence of amines gives a new green reaction protocol for imine synthesis. (C) 2014, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B...... and afforded the imines in high yield (up to 99%) without any byproducts other than H2O. The highest activity was obtained over 5 wt% Ag/Al2O3 in toluene with air as oxidant. The reactions were also performed under oxidant-free conditions where the reaction was driven to the product side by the production of H...

  12. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue; Gao, Jinhao; Zhang, Bei; Zhang, Xixiang; Xu, Bing

    2010-01-01

    nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X

  13. Cold fusion catalyzed by muons and electrons

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as ''Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed

  14. Production of Chemoenzymatic Catalyzed Monoepoxide Biolubricant: Optimization and Physicochemical Characteristics

    Directory of Open Access Journals (Sweden)

    Jumat Salimon

    2012-01-01

    Full Text Available Linoleic acid (LA is converted to per-carboxylic acid catalyzed by an immobilized lipase from Candida antarctica (Novozym 435. This per-carboxylic acid is only intermediate and epoxidized itself in good yields and almost without consecutive reactions. Monoepoxide linoleic acid 9(12-10(13-monoepoxy 12(9-octadecanoic acid (MEOA was optimized using D-optimal design. At optimum conditions, higher yield% (82.14 and medium oxirane oxygen content (OOC (4.91% of MEOA were predicted at 15 μL of H2O2, 120 mg of Novozym 435, and 7 h of reaction time. In order to develop better-quality biolubricants, pour point (PP, flash point (FP, viscosity index (VI, and oxidative stability (OT were determined for LA and MEOA. The results showed that MEOA exhibited good low-temperature behavior with PP of −41°C. FP of MEOA increased to 128°C comparing with 115°C of LA. In a similar fashion, VI for LA was 224 generally several hundred centistokes (cSt more viscous than MEOA 130.8. The ability of a substance to resist oxidative degradation is another important property for biolubricants. Therefore, LA and MEOA were screened to measure their OT which was observed at 189 and 168°C, respectively.

  15. Indolenine meso-substituted dibenzotetraaza[14]annulene and its coordination chemistry toward the transition metal ions Mn(III), Fe(III), Co(II), Ni(II), Cu(II), and Pd(II).

    Science.gov (United States)

    Khaledi, Hamid; Olmstead, Marilyn M; Ali, Hapipah Mohd; Thomas, Noel F

    2013-02-18

    A new dibenzotetraaza[14]annulene bearing two 3,3-dimethylindolenine fragments at the meso positions (LH(2)), has been synthesized through a nontemplate method. X-ray crystallography shows that the whole molecule is planar. The basicity of the indolenine ring permits the macrocycle to be protonated external to the core and form LH(4)(2+)·2Cl(-). Yet another structural modification having strong C-H···π interactions was found in the chloroform solvate of LH(2). The latter two modifications are accompanied by a degree of nonplanar distortion. The antiaromatic core of the macrocycle can accommodate a number of metal ions, Mn(III), Fe(III), Co(II), Ni(II) and Cu(II), to form complexes of [Mn(L)Br], [Mn(L)Cl], [Fe(LH(2))Cl(2)](+)·Cl(-), [Co(L)], [Ni(L)], and [Cu(L)]. In addition, the reaction of LH(2) with the larger Pd(II) ion leads to the formation of [Pd(2)(LH(2))(2)(OAc)(4)] wherein the macrocycle acts as a semiflexible ditopic ligand to coordinate pairs of metal ions via its indolenine N atoms into dinuclear metallocycles. The compounds LH(2), [Co(L)], and [Ni(L)] are isostructural and feature close π-stacking as well as linear chain arrangements in the case of the metal complexes. Variable temperature magnetic susceptibility measurements showed thermally induced paramagnetism in [Ni(L)].

  16. 34S/32S fractionation in sulfur cycles catalyzed by anaerobic bacteria

    Science.gov (United States)

    Fry, B.; Gest, H.; Hayes, J. M.

    1988-01-01

    Stable isotopic distributions in the sulfur cycle were studied with pure and mixed cultures of the anaerobic bacteria, Chlorobium vibrioforme and Desulfovibrio vulgaris. D. vulgaris and C. vibrioforme can catalyze three reactions constituting a complete anaerobic sulfur cycle: reduction of sulfate to sulfide (D. vulgaris), oxidation of sulfide to elemental sulfur (C. vibrioforme), and oxidation of sulfur to sulfate (C. vibrioforme). In all experiments, the first and last reactions favored concentration of the light 32S isotope in products (isotopic fractionation factor epsilon = -7.2 and -1.7%, respectively), whereas oxidation of sulfide favored concentration of the heavy 34S isotope in products (epsilon = +1.7%). Experimental results and model calculations suggest that elemental sulfur enriched in 34S versus sulfide may be a biogeochemical marker for the presence of sulfide-oxidizing bacteria in modern and ancient environments.

  17. Mechanistic studies of copper(I)-catalyzed 1,3-halogen migration.

    Science.gov (United States)

    Van Hoveln, Ryan; Hudson, Brandi M; Wedler, Henry B; Bates, Desiree M; Le Gros, Gabriel; Tantillo, Dean J; Schomaker, Jennifer M

    2015-04-29

    An ongoing challenge in modern catalysis is to identify and understand new modes of reactivity promoted by earth-abundant and inexpensive first-row transition metals. Herein, we report a mechanistic study of an unusual copper(I)-catalyzed 1,3-migration of 2-bromostyrenes that reincorporates the bromine activating group into the final product with concomitant borylation of the aryl halide bond. A combination of experimental and computational studies indicated this reaction does not involve any oxidation state changes at copper; rather, migration occurs through a series of formal sigmatropic shifts. Insight provided from these studies will be used to expand the utility of aryl copper species in synthesis and develop new ligands for enantioselective copper-catalyzed halogenation.

  18. Rhodium(III)- and iridium(III)-catalyzed C7 alkylation of indolines with diazo compounds.

    Science.gov (United States)

    Ai, Wen; Yang, Xueyan; Wu, Yunxiang; Wang, Xuan; Li, Yuanchao; Yang, Yaxi; Zhou, Bing

    2014-12-22

    A Rh(III)-catalyzed procedure for the C7-selective C-H alkylation of various indolines with α-diazo compounds at room temperature is reported. The advantages of this process are: 1) simple, mild, and pH-neutral reaction conditions, 2) broad substrate scope, 3) complete regioselectivity, 4) no need for an external oxidant, and 5) N2 as the sole byproduct. Furthermore, alkylation and bis-alkylation of carbazoles at the C1 and C8 positions have also been developed. More significantly, for the first time, a successful Ir(III)-catalyzed intermolecular insertion of arene C-H bonds into α-diazo compounds is reported. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. catalysed selective oxidation of benzyl alcohols using TEMPO and ...

    Indian Academy of Sciences (India)

    A general scheme for the oxidation of benzyl alcohols catalyzed by silica functionalized copper (II) has been designed. TEMPO, a free radical, assists this oxidation that was initiated by molecular oxygen which converts it to a primary oxidant. This catalytic combination i.e. SiO2 -Cu(II) in presence of TEMPO and oxygen ...

  20. The mechanism of transition-metal (Cu or Pd)-catalyzed synthesis of benzimidazoles from amidines: theoretical investigation.

    Science.gov (United States)

    Li, Juan; Gu, Honghong; Wu, Caihong; Du, Lijuan

    2014-11-28

    In this study, the Cu(OAc)2- and [PdCl2(PhCN)2]-catalyzed syntheses of benzimidazoles from amidines were theoretically investigated using density functional theory calculations. For the Cu-catalyzed system, our calculations supported a four-step-pathway involving C-H activation of an arene with Cu(II) via concerted metalation-deprotonation (CMD), followed by oxidation of the Cu(II) intermediate and deprotonation of the imino group by Cu(III), and finally reductive elimination from Cu(III). In our calculations, the barriers for the CMD step and the oxidation step are the same. The results are different from the ones reported by Fu et al. in which the whole reaction mechanism includes three steps and the CMD step is rate determining. On the basis of the calculation results for the [PdCl2(PhCN)2]-catalyzed system, C-H bond breaking by CMD occurs first, followed by the rate-determining C-N bond formation and N-H deprotonation. Pd(III) species is not involved in the [PdCl2(PhCN)2]-catalyzed syntheses of benzimidazoles from amidines.

  1. Iodine-Catalyzed Isomerization of Dimethyl Muconate

    Energy Technology Data Exchange (ETDEWEB)

    Settle, Amy E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berstis, Laura R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Shuting [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rorrer, Nicholas [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hu, Haiming [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, Ryan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vardon, Derek R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-12

    cis,cis-Muconic acid is a platform biobased chemical that can be upgraded to drop-in commodity and novel monomers. Among the possible drop-in products, dimethyl terephthalate can be synthesized via esterification, isomerization, Diels-Alder cycloaddition, and dehydrogenation. The isomerization of cis,cis-dimethyl muconate (ccDMM) to the trans,trans-form (ttDMM) can be catalyzed by iodine; however, studies have yet to address (i) the mechanism and reaction barriers unique to DMM, and (ii) the influence of solvent, potential for catalyst recycle, and recovery of high-purity ttDMM. To address this gap, we apply a joint computational and experimental approach to investigate iodine-catalyzed isomerization of DMM. Density functional theory calculations identified unique regiochemical considerations due to the large number of halogen-diene coordination schemes. Both transition state theory and experiments estimate significant barrier reductions with photodissociated iodine. Solvent selection was critical for rapid kinetics, likely due to solvent complexation with iodine. Under select conditions, ttDMM yields of 95% were achieved in <1 h with methanol, followed by high purity recovery (>98%) with crystallization. Lastly, post-reaction iodine can be recovered and recycled with minimal loss of activity. Overall, these findings provide new insight into the mechanism and conditions necessary for DMM isomerization with iodine to advance the state-of-the-art for biobased chemicals.

  2. Flavin-catalyzed redox tailoring reactions in natural product biosynthesis.

    Science.gov (United States)

    Teufel, Robin

    2017-10-15

    Natural products are distinct and often highly complex organic molecules that constitute not only an important drug source, but have also pushed the field of organic chemistry by providing intricate targets for total synthesis. How the astonishing structural diversity of natural products is enzymatically generated in biosynthetic pathways remains a challenging research area, which requires detailed and sophisticated approaches to elucidate the underlying catalytic mechanisms. Commonly, the diversification of precursor molecules into distinct natural products relies on the action of pathway-specific tailoring enzymes that catalyze, e.g., acylations, glycosylations, or redox reactions. This review highlights a selection of tailoring enzymes that employ riboflavin (vitamin B2)-derived cofactors (FAD and FMN) to facilitate unusual redox catalysis and steer the formation of complex natural product pharmacophores. Remarkably, several such recently reported flavin-dependent tailoring enzymes expand the classical paradigms of flavin biochemistry leading, e.g., to the discovery of the flavin-N5-oxide - a novel flavin redox state and oxygenating species. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications

    KAUST Repository

    Ebner, Davidâ C.

    2009-12-07

    The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (-)-sparteine as a chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of the base and hydrogen-bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 degrees C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good-to-excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones.

  4. Recent advances in the ruthenium-catalyzed hydroarylation of alkynes with aromatics: synthesis of trisubstituted alkenes.

    Science.gov (United States)

    Manikandan, Rajendran; Jeganmohan, Masilamani

    2015-11-14

    The hydroarylation of alkynes with substituted aromatics in the presence of a metal catalyst via chelation-assisted C-H bond activation is a powerful method to synthesize trisubstituted alkenes. Chelation-assisted C-H bond activation can be done by two ways: (a) an oxidative addition pathway and (b) a deprotonation pathway. Generally, a mixture of cis and trans stereoisomeric as well as regioisomeric trisubstituted alkenes was observed in an oxidative addition pathway. In the deprotonation pathway, the hydroarylation reaction can be done in a highly regio- and stereoselective manner, and enables preparation of the expected trisubstituted alkenes in a highly selective manner. Generally, ruthenium, rhodium and cobalt complexes are used as catalysts in the reaction. In this review, a ruthenium-catalyzed hydroarylation of alkynes with substituted aromatics is covered completely. The hydroarylation reaction of alkynes with amide, azole, carbamate, phosphine oxide, amine, acetyl, sulfoxide and sulphur directed aromatics is discussed.

  5. The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications

    KAUST Repository

    Ebner, Davidâ C.; Bagdanoff, Jeffreyâ T.; Ferreira, Ericâ M.; McFadden, Ryanâ M.; Caspi, Danielâ D.; Trend, Raissaâ M.; Stoltz, Brianâ M.

    2009-01-01

    The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (-)-sparteine as a chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of the base and hydrogen-bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 degrees C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good-to-excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones.

  6. Green synthesis of Ni-Nb oxide catalysts for low-temperature oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo; Rosenfeld, Devon C.; Anjum, Dalaver H.; Caps, Valerie; Basset, Jean-Marie

    2015-01-01

    The straightforward solid-state grinding of a mixture of Ni nitrate and Nb oxalate crystals led to, after mild calcination (T<400°C), nanostructured Ni-Nb oxide composites. These new materials efficiently catalyzed the oxidative dehydrogenation (ODH

  7. Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: A hydrolytically-degradable poly(ethylene oxide) platform

    OpenAIRE

    Lundberg, Pontus; Lee, Bongjae F.; van den Berg, Sebastiaan A.; Pressly, Eric D.; Lee, Annabelle; Hawker, Craig J.; Lynd, Nathaniel A.

    2012-01-01

    A facile method for imparting hydrolytic degradability to poly(ethylene oxide) (PEO), compatible with current PEGylation strategies, is presented. By incorporating methylene ethylene oxide (MEO) units into the parent PEO backbone, complete degradation was defined by the molar incorporation of MEO, and the structure of the degradation byproducts was consistent with an acid-catalyzed vinyl-ether hydrolysis mechanism. The hydrolytic degradation of poly[(ethylene oxide)-co-(methylene ethylene oxi...

  8. Representing Rate Equations for Enzyme-Catalyzed Reactions

    Science.gov (United States)

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  9. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.

    Science.gov (United States)

    Zhu, Junjun; Rong, Yayun; Yang, Jinlong; Zhou, Xin; Xu, Yong; Zhang, Lingling; Chen, Jiahui; Yong, Qiang; Yu, Shiyuan

    2015-07-01

    High-efficiency xylose utilization is one of the restrictive factors of bioethanol industrialization. However, xylonic acid (XA) as a new bio-based platform chemical can be produced by oxidation of xylose with microbial. So, an applicable technology of XA bioconversion was integrated into the process of bioethanol production. After corn stover was pretreated with acid-catalyzed steam-explosion, solid and liquid fractions were obtained. The liquid fraction, also named as acid-catalyzed steam-exploded corn stover (ASC) prehydrolyzate (mainly containing xylose), was catalyzed with Gluconobacter oxydans NL71 to prepare XA. After 72 h of bioconversion of concentrated ASC prehydrolyzate (containing 55.0 g/L of xylose), the XA concentration reached a peak value of 54.97 g/L, the sugar utilization ratio and XA yield were 94.08 and 95.45 %, respectively. The solid fraction was hydrolyzed to produce glucose with cellulase and then fermented with Saccharomyces cerevisiae NL22 to produce ethanol. After 18 h of fermentation of concentrated enzymatic hydrolyzate (containing 86.22 g/L of glucose), the ethanol concentration reached its highest value of 41.48 g/L, the sugar utilization ratio and ethanol yield were 98.72 and 95.25 %, respectively. The mass balance showed that 1 t ethanol and 1.3 t XA were produced from 7.8 t oven dry corn stover.

  10. The Enzymatic Oxidation of Graphene Oxide

    Science.gov (United States)

    Kotchey, Gregg P.; Allen, Brett L.; Vedala, Harindra; Yanamala, Naveena; Kapralov, Alexander A.; Tyurina, Yulia Y.; Klein-Seetharaman, Judith; Kagan, Valerian E.; Star, Alexander

    2011-01-01

    Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon – the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (~40 µM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, UV-Vis, EPR and FT-IR spectroscopy, TEM, AFM, SDS-PAGE, and GC-MS. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Due to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors. PMID:21344859

  11. Gold(I)-catalyzed diazo coupling: strategy towards alkene formation and tandem benzannulation.

    Science.gov (United States)

    Zhang, Daming; Xu, Guangyang; Ding, Dong; Zhu, Chenghao; Li, Jian; Sun, Jiangtao

    2014-10-06

    A gold(I)-catalyzed cross-coupling of diazo compounds to afford tetrasubstituted alkenes has been developed by taking advantage of a trivial electronic difference between two diazo substrates. A N-heterocyclic-carbene-derived gold complex is the most effective catalyst for this transformation. Based on this new strategy, a gold(I)-initiated benzannulation has been achieved through a tandem reaction involving a diazo cross-coupling, 6π electrocyclization, and oxidative aromatization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Gold-catalyzed Bicyclization of Diaryl Alkynes: Synthesis of Polycyclic Fused Indole and Spirooxindole Derivatives.

    Science.gov (United States)

    Cai, Ju; Wu, Bing; Rong, Guangwei; Zhang, Cheng; Qiu, Lihua; Xu, Xinfang

    2018-04-13

    An unprecedented gold-catalyzed bicyclization reaction of diaryl alkynes has been developed for the synthesis of indoles in good to high yields. Mechanistically, this alkyne bifunctionalization transformation was terminated by a stepwise formal X-H insertion reaction to furnish the corresponding polycyclic-frameworks with structural diversity, and the key intermediate 3 H-indole was isolated and characterized for the first time. In addition, further transformation of these generated tetracyclic-indoles with PCC as the oxidant provided straightforward access to the spirooxindoles in high yields.

  13. Enzyme-Catalyzed Modifications of Polysaccharides and Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    H. N. Cheng

    2012-06-01

    Full Text Available Polysaccharides are used extensively in various industrial applications, such as food, adhesives, coatings, construction, paper, pharmaceuticals, and personal care. Many polysaccharide structures need to be modified in order to improve their end-use properties; this is mostly done through chemical reactions. In the past 20 years many enzyme-catalyzed modifications have been developed to supplement chemical derivatization methods. Typical reactions include enzymatic oxidation, ester formation, amidation, glycosylation, and molecular weight reduction. These reactions are reviewed in this paper, with emphasis placed on the work done by the authors. The polymers covered in this review include cellulosic derivatives, starch, guar, pectin, and poly(ethylene glycol.

  14. Rhodium(I)-catalyzed cycloisomerization of benzylallene-alkynes through C-H activation.

    Science.gov (United States)

    Kawaguchi, Yasuaki; Yasuda, Shigeo; Kaneko, Akira; Oura, Yuki; Mukai, Chisato

    2014-07-14

    The efficient Rh(I)-catalyzed cycloisomerization of benzylallene-alkynes produced the tricyclo[9.4.0.0(3,8)]pentadecapentaene skeleton through a C(sp2)-H bond activation in good yields. A plausible reaction mechanism proceeds via oxidative addition of the acetylenic C-H bond to Rh(I), an ene-type cyclization to the vinylidenecarbene-Rh(I) intermediate, and an electrophilic aromatic substitution with the vinylidenecarbene species. It was proposed based on deuteration and competition experiments. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Cobalt-catalyzed, aminoquinoline-directed C(sp²)-H bond alkenylation by alkynes.

    Science.gov (United States)

    Grigorjeva, Liene; Daugulis, Olafs

    2014-09-15

    A method for cobalt-catalyzed, aminoquinoline- and picolinamide-directed C(sp(2))-H bond alkenylation by alkynes was developed. The method shows excellent functional-group tolerance and both internal and terminal alkynes are competent substrates for the coupling. The reaction employs a Co(OAc)2⋅4 H2O catalyst, Mn(OAc)2 co-catalyst, and oxygen (from air) as a terminal oxidant. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Redox-Neutral Rhodium-Catalyzed [4+1] Annulation through Formal Dehydrogenative Vinylidene Insertion.

    Science.gov (United States)

    Liu, Huan; Song, Shengjin; Wang, Cheng-Qiang; Feng, Chao; Loh, Teck-Peng

    2017-01-10

    A synthetic protocol for the expedient construction of 5-methylene-1H-pyrrol-2(5H)-one derivatives through rhodium-catalyzed [4+1] annulation with gem-difluoroacrylate as the C 1 component was reported. By taking advantage of the twofold C-F bond cleavage occurring during the annulation, this reaction not only allows the synthesis of these heterocyclic compounds under overall oxidant-free conditions but also renders the transformation stereospecific. The very mild reaction conditions employed ensure compatibility with a wide variety of synthetically useful functional groups. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Rhodium-catalyzed redox-neutral coupling of phenidones with alkynes.

    Science.gov (United States)

    Fan, Zhoulong; Lu, Heng; Li, Wei; Geng, Kaijun; Zhang, Ao

    2017-07-21

    A switchable synthesis of N-substituted indole derivatives from phenidones via rhodium-catalyzed redox-neutral C-H activation has been achieved. In this protocol, we firstly disclosed that the reactivity of Rh(iii) catalysis could be enhanced through employing palladium acetate as an additive. Some representative features include external oxidant-free, applicable to terminal alkynes, short reaction time and operational simplicity. The utility of this method is further showcased by the economical synthesis of potent anticancer PARP-1 inhibitors.

  18. Atmosphere-Controlled Chemoselectivity: Rhodium-Catalyzed Alkylation and Olefination of Alkylnitriles with Alcohols.

    Science.gov (United States)

    Li, Junjun; Liu, Yuxuan; Tang, Weijun; Xue, Dong; Li, Chaoqun; Xiao, Jianliang; Wang, Chao

    2017-10-17

    The chemoselective alkylation and olefination of alkylnitriles with alcohols have been developed by simply controlling the reaction atmosphere. A binuclear rhodium complex catalyzes the alkylation reaction under argon through a hydrogen-borrowing pathway and the olefination reaction under oxygen through aerobic dehydrogenation. Broad substrate scope is demonstrated, permitting the synthesis of some important organic building blocks. Mechanistic studies suggest that the alkylation product may be formed through conjugate reduction of an alkene intermediate by a rhodium hydride, whereas the formation of olefin product may be due to the oxidation of the rhodium hydride complex with molecular oxygen. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Theoretical survey of muon catalyzed fusion

    International Nuclear Information System (INIS)

    Leon, M.

    1988-01-01

    The main steps in the muon-catalyzed d-t fusion cycle are given in this report. Most of the stages are very fast, and therefore do not contribute significantly to the cycling time. Thus at liquid H 2 densities (/phi/ = 1 in the standard convention) the time for stopping the negative muon, its subsequent capture and deexcitation to the ground state is estimated to be /approximately/ 10/sup/minus/11/ sec. 1 The muon spends essentially all of its time in either the (dμ) ground state, waiting for transfer to a (tμ) ground state to occur, or in the (tμ) ground state, writing for molecular formation to occur. Following the formation of this ''mesomolecule'' (actually a muonic molecular ion), deexcitation and fusion are again fast. Then the muon is (usually) liberated to go around again. We will discuss these steps in some detail. 5 refs., 3 figs

  20. Myoglobin-Catalyzed Olefination of Aldehydes.

    Science.gov (United States)

    Tyagi, Vikas; Fasan, Rudi

    2016-02-12

    The olefination of aldehydes constitutes a most valuable and widely adopted strategy for constructing carbon-carbon double bonds in organic chemistry. While various synthetic methods have been made available for this purpose, no biocatalysts are known to mediate this transformation. Reported herein is that engineered myoglobin variants can catalyze the olefination of aldehydes in the presence of α-diazoesters with high catalytic efficiency (up to 4,900 turnovers) and excellent E diastereoselectivity (92-99.9 % de). This transformation could be applied to the olefination of a variety of substituted benzaldehydes and heteroaromatic aldehydes, also in combination with different alkyl α-diazoacetate reagents. This work provides a first example of biocatalytic aldehyde olefination and extends the spectrum of synthetically valuable chemical transformations accessible using metalloprotein-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Selective Formation of Secondary Amides via the Copper-Catalyzed Cross-Coupling of Alkylboronic Acids with Primary Amides

    Science.gov (United States)

    Rossi, Steven A.; Shimkin, Kirk W.; Xu, Qun; Mori-Quiroz, Luis M.; Watson, Donald A.

    2014-01-01

    For the first time, a general catalytic procedure for the cross coupling of primary amides and alkylboronic acids is demonstrated. The key to the success of this reaction was the identification of a mild base (NaOSiMe3) and oxidant (di-tert-butyl peroxide) to promote the copper-catalyzed reaction in high yield. This transformation provides a facile, high-yielding method for the mono-alkylation of amides. PMID:23611591

  2. Palladium-Catalyzed Decarboxylative γ-Olefination of 2,5-Cyclohexadiene-1-carboxylic Acid Derivatives with Vinyl Halides.

    Science.gov (United States)

    Chang, Chi-Hao; Chou, Chih-Ming

    2018-04-06

    This study explores a Pd-catalyzed decarboxylative Heck-type Csp 3 -Csp 2 coupling reaction of 2,5-cyclohexadiene-1-carboxylic acid derivatives with vinyl halides to provide γ-olefination products. The olefinated 1,3-cyclohexadienes can be further oxidized to produce meta-alkylated stilbene derivatives. Additionally, the conjugated diene products can also undergo a Diels-Alder reaction to produce a bicyclo[2.2.2]octadiene framework.

  3. Uptake kinetics and biodistribution of C-14-D-luciferin-a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction : impact on bioluminescence based reporter gene imaging

    NARCIS (Netherlands)

    Berger, Frank; Paulmurugan, Ramasamy; Bhaumik, Srabani; Gambhir, Sanjiv Sam

    2008-01-01

    Purpose Firefly luciferase catalyzes the oxidative decarboxylation of D-luciferin to oxyluciferin in the presence of cofactors, producing bioluminescence. This reaction is used in optical bioluminescence-based molecular imaging approaches to detect the expression of the firefly luciferase reporter

  4. Cu-catalyzed C(sp³)-H bond activation reaction for direct preparation of cycloallyl esters from cycloalkanes and aromatic aldehydes.

    Science.gov (United States)

    Zhao, Jincan; Fang, Hong; Han, Jianlin; Pan, Yi

    2014-05-02

    Cu-catalyzed dehydrogenation-olefination and esterification of C(sp(3))-H bonds of cycloalkanes with TBHP as an oxidant has been developed. The reaction involves four C-H bond activations and gives cycloallyl ester products directly from cycloalkanes and aromatic aldehydes.

  5. Synthesis of hexahydropyrrolo[2,1-a]isoquinoline compound libraries through a Pictet–Spengler cyclization/metal-catalyzed cross coupling/amidation sequence

    DEFF Research Database (Denmark)

    Petersen, Rico; Cohrt, A. Emil; Petersen, Michael Åxman

    2015-01-01

    incorporating two handles for diversification, were synthesized through an oxidative cleavage/Pictet–Spengler reaction sequence in high overall yields. A subsequent metal-catalyzed cross coupling/amidation protocol was developed and its utility in library synthesis was validated by construction of a 20-membered...

  6. Pd-Catalyzed Acetoxylation of γ-C(sp3)-H Bonds of Amines Directed by a Removable Bts-Protecting Group.

    Science.gov (United States)

    Zheng, Yong; Song, Weibin; Zhu, Yefu; Wei, Bole; Xuan, Lijiang

    2018-02-16

    Pd-catalyzed acetoxylation of γ-C(sp 3 )-H bonds directed by Bts-protected amines using inexpensive PhI(OAc) 2 as oxidant is reported. The Bts-protecting group is easily introduced and removed under mild conditions. This protocol provides an important strategy for the construction of γ-hydroxyl amine derivatives.

  7. Convenient synthesis of benzothiazoles and benzimidazoles through Brønsted acid catalyzed cyclization of 2-amino thiophenols/anilines with β-diketones.

    Science.gov (United States)

    Mayo, Muhammad Shareef; Yu, Xiaoqiang; Zhou, Xiaoyu; Feng, Xiujuan; Yamamoto, Yoshinori; Bao, Ming

    2014-02-07

    Brønsted acid catalyzed cyclization reactions of 2-amino thiophenols/anilines with β-diketones under oxidant-, metal-, and radiation-free conditions are described. Various 2-substituted benzothiazoles/benzimidazoles are obtained in satisfactory to excellent yields. Different groups such as methyl, chloro, nitro, and methoxy linked on benzene rings were tolerated under the optimized reaction conditions.

  8. Perfluorinated cobalt phthalocyanine effectively catalyzes water electrooxidation

    KAUST Repository

    Morlanes, Natalia Sanchez

    2014-12-08

    Efficient electrocatalysis of water oxidation under mild conditions at neutral pH was achieved by a fluorinated cobalt phthalocyanine immobilized on fluorine-doped tin oxide (FTO) surfaces with an onset potential at 1.7 V vs. RHE. Spectroscopic, electrochemical, and inhibition studies indicate that phthalocyanine molecular species are the operational active sites. Neither free cobalt ions nor heterogeneous cobalt oxide particles or films were observed. During long-term controlled-potential electrolysis at 2 V vs. RHE (phosphate buffer, pH 7), electrocatalytic water oxidation was sustained for at least 8 h (TON ≈ 1.0 × 105), producing about 4 μmol O2 h-1 cm-2 with a turnover frequency (TOF) of about 3.6 s-1 and no measurable catalyst degradation.

  9. Iodine-catalyzed diazo activation to access radical reactivity.

    Science.gov (United States)

    Li, Pan; Zhao, Jingjing; Shi, Lijun; Wang, Jin; Shi, Xiaodong; Li, Fuwei

    2018-05-17

    Transition-metal-catalyzed diazo activation is a classical way to generate metal carbene, which are valuable intermediates in synthetic organic chemistry. An alternative iodine-catalyzed diazo activation is disclosed herein under either photo-initiated or thermal-initiated conditions, which represents an approach to enable carbene radical reactivity. This metal-free diazo activation strategy were successfully applied into olefin cyclopropanation and epoxidation, and applying this method to pyrrole synthesis under thermal-initiated conditions further demonstrates the unique reactivity using this method over typical metal-catalyzed conditions.

  10. Cu-catalyzed esterification reaction via aerobic oxygenation and C-C bond cleavage: an approach to α-ketoesters.

    Science.gov (United States)

    Zhang, Chun; Feng, Peng; Jiao, Ning

    2013-10-09

    The Cu-catalyzed novel aerobic oxidative esterification reaction of 1,3-diones for the synthesis of α-ketoesters has been developed. This method combines C-C σ-bond cleavage, dioxygen activation and oxidative C-H bond functionalization, as well as provides a practical, neutral, and mild synthetic approach to α-ketoesters which are important units in many biologically active compounds and useful precursors in a variety of functional group transformations. A plausible radical process is proposed on the basis of mechanistic studies.

  11. Rhodium catalyzed regioselective arene homologation of aryl urea via double C-H bond activation and migratory insertion of alkyne

    Institute of Scientific and Technical Information of China (English)

    Yan Wang; Hao Zhou; Ke Xu; Mei-Hua Shen; Hua-Dong Xu

    2017-01-01

    A convenient rhodium catalyzed oxidative arene homologation of aniline derivatives with symmetrical or unsymmetrical alkynes using Cu(OAc)2 as oxidant is described.Urea group is shown to be effective as a directing group for initial ortho C-H activation.Two migratory insertion events of alkyne into Rh-C bond occur successively,both with complete regioselectivity.This method is particularly useful for synthesis of polyarenes with different substituents,which has not been reported with conventional protocol.A mechanism has been proposed to explain the observed data.

  12. Plasma-plasmonics synergy in the Ga-catalyzed growth of Si-nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Bianco, Giuseppe Valerio, E-mail: giuseppevalerio.bianco@cnr.it [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry, University of Bari, via Orabona 4, 70126 Bari (Italy); Giangregorio, Maria M.; Capezzuto, Pio [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry, University of Bari, via Orabona 4, 70126 Bari (Italy); Losurdo, Maria [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry, University of Bari, via Orabona 4, 70126 Bari (Italy); Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 (United States); Kim, Tong-Ho; Brown, April S. [Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 (United States); Bruno, Giovanni, E-mail: giovanni.bruno@ba.imip.cnr.it [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry, University of Bari, via Orabona 4, 70126 Bari (Italy)

    2012-06-05

    This paper reports on the growth of Si nanowires (NWs) by SiH{sub 4}/H{sub 2} plasmas using the non-noble Ga-nanoparticles (NPs) catalysts. A comparative investigation of conventional Si-NWs vapour-liquid-solid (VLS) growth catalyzed by Au NPs is also reported. We investigate the use of a hydrogen plasma and of a SiH{sub 4}/H{sub 2} plasma for removing Ga oxide shell and for enhancing the Si dissolution into the catalyst, respectively. By exploiting the Ga NPs surface plasmon resonance (SPR) sensitivity to their surface chemistry, the SPR characteristic of Ga NPs has been monitored by real time spectroscopic ellipsometry in order to control the hydrogen plasma/Ga NPs interaction and the involved processes (oxide removal and NPs dissolution by volatile gallium hydride). Using in situ laser reflectance interferometry the metal catalyzed Si NWs growth process has been investigated to find the effect of the plasma activation on the growth kinetics. The role of atomic hydrogen in the NWs growth mechanism and, in particular, in the SiH{sub 4} dissolution into the catalysts, is discussed. We show that while Au catalysts because of the re-aggregation of NPs yields NWs that do not correspond to the original size of the Au NPs catalyst, the NWs grown by the Ga catalyst retains the diameter dictated by the size of the Ga NPs. Therefore, the advantage of Ga NPs as catalysts for controlling NWs diameter is demonstrated.

  13. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review.

    Science.gov (United States)

    He, Jie; Yang, Xiaofang; Men, Bin; Wang, Dongsheng

    2016-01-01

    The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals (OH) from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH. Hence, it can effectively oxidize refractory organics in water or soils and has become a promising environmentally friendly treatment technology. Due to the complex reaction system, the mechanism behind heterogeneous Fenton reactions remains unresolved but fascinating, and is crucial for understanding Fenton chemistry and the development and application of efficient heterogeneous Fenton technologies. Iron-based materials usually possess high catalytic activity, low cost, negligible toxicity and easy recovery, and are a superior type of heterogeneous Fenton catalysts. Therefore, this article reviews the fundamental but important interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials. OH, hydroperoxyl radicals/superoxide anions (HO2/O2(-)) and high-valent iron are the three main types of reactive oxygen species (ROS), with different oxidation reactivity and selectivity. Based on the mechanisms of ROS generation, the interfacial mechanisms of heterogeneous Fenton systems can be classified as the homogeneous Fenton mechanism induced by surface-leached iron, the heterogeneous catalysis mechanism, and the heterogeneous reaction-induced homogeneous mechanism. Different heterogeneous Fenton systems catalyzed by characteristic iron-based materials are comprehensively reviewed. Finally, related future research directions are also suggested. Copyright © 2015. Published by Elsevier B.V.

  14. Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes

    Science.gov (United States)

    Ceyhan, Gökhan; Çelik, Cumali; Uruş, Serhan; Demirtaş, İbrahim; Elmastaş, Mahfuz; Tümer, Mehmet

    2011-10-01

    In this study, two Schiff base ligands (HL 1 and HL 2) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as Gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as Gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.

  15. Characterization of a Flavoprotein Oxidase from Opium Poppy Catalyzing the Final Steps in Sanguinarine and Papaverine Biosynthesis*

    Science.gov (United States)

    Hagel, Jillian M.; Beaudoin, Guillaume A. W.; Fossati, Elena; Ekins, Andrew; Martin, Vincent J. J.; Facchini, Peter J.

    2012-01-01

    Benzylisoquinoline alkaloids are a diverse class of plant specialized metabolites that includes the analgesic morphine, the antimicrobials sanguinarine and berberine, and the vasodilator papaverine. The two-electron oxidation of dihydrosanguinarine catalyzed by dihydrobenzophenanthridine oxidase (DBOX) is the final step in sanguinarine biosynthesis. The formation of the fully conjugated ring system in sanguinarine is similar to the four-electron oxidations of (S)-canadine to berberine and (S)-tetrahydropapaverine to papaverine. We report the isolation and functional characterization of an opium poppy (Papaver somniferum) cDNA encoding DBOX, a flavoprotein oxidase with homology to (S)-tetrahydroprotoberberine oxidase and the berberine bridge enzyme. A query of translated opium poppy stem transcriptome databases using berberine bridge enzyme yielded several candidate genes, including an (S)-tetrahydroprotoberberine oxidase-like sequence selected for heterologous expression in Pichia pastoris. The recombinant enzyme preferentially catalyzed the oxidation of dihydrosanguinarine to sanguinarine but also converted (RS)-tetrahydropapaverine to papaverine and several protoberberine alkaloids to oxidized forms, including (RS)-canadine to berberine. The Km values of 201 and 146 μm for dihydrosanguinarine and the protoberberine alkaloid (S)-scoulerine, respectively, suggested high concentrations of these substrates in the plant. Virus-induced gene silencing to reduce DBOX transcript levels resulted in a corresponding reduction in sanguinarine, dihydrosanguinarine, and papaverine accumulation in opium poppy roots in support of DBOX as a multifunctional oxidative enzyme in BIA metabolism. PMID:23118227

  16. Characterization of a flavoprotein oxidase from opium poppy catalyzing the final steps in sanguinarine and papaverine biosynthesis.

    Science.gov (United States)

    Hagel, Jillian M; Beaudoin, Guillaume A W; Fossati, Elena; Ekins, Andrew; Martin, Vincent J J; Facchini, Peter J

    2012-12-14

    Benzylisoquinoline alkaloids are a diverse class of plant specialized metabolites that includes the analgesic morphine, the antimicrobials sanguinarine and berberine, and the vasodilator papaverine. The two-electron oxidation of dihydrosanguinarine catalyzed by dihydrobenzophenanthridine oxidase (DBOX) is the final step in sanguinarine biosynthesis. The formation of the fully conjugated ring system in sanguinarine is similar to the four-electron oxidations of (S)-canadine to berberine and (S)-tetrahydropapaverine to papaverine. We report the isolation and functional characterization of an opium poppy (Papaver somniferum) cDNA encoding DBOX, a flavoprotein oxidase with homology to (S)-tetrahydroprotoberberine oxidase and the berberine bridge enzyme. A query of translated opium poppy stem transcriptome databases using berberine bridge enzyme yielded several candidate genes, including an (S)-tetrahydroprotoberberine oxidase-like sequence selected for heterologous expression in Pichia pastoris. The recombinant enzyme preferentially catalyzed the oxidation of dihydrosanguinarine to sanguinarine but also converted (RS)-tetrahydropapaverine to papaverine and several protoberberine alkaloids to oxidized forms, including (RS)-canadine to berberine. The K(m) values of 201 and 146 μm for dihydrosanguinarine and the protoberberine alkaloid (S)-scoulerine, respectively, suggested high concentrations of these substrates in the plant. Virus-induced gene silencing to reduce DBOX transcript levels resulted in a corresponding reduction in sanguinarine, dihydrosanguinarine, and papaverine accumulation in opium poppy roots in support of DBOX as a multifunctional oxidative enzyme in BIA metabolism.

  17. RNA-Catalyzed Polymerization and Replication of RNA

    Science.gov (United States)

    Horning, D. P.; Samantha, B.; Tjhung, K. F.; Joyce, G. F.

    2017-07-01

    In an effort to reconstruct RNA-based life, in vitro evolution was used to obtain an RNA polymerase ribozyme that can synthesize a variety of complex functional RNAs and can catalyze the exponential amplification of short RNAs.

  18. FeBr3-catalyzed dibromination of alkenes and alkynes

    Institute of Scientific and Technical Information of China (English)

    Yun Fa Zheng; Jian Yu; Guo Bing Yan; Xu Li; Song Luo

    2011-01-01

    The dibromination of alkenes and alkynes with bromosuccinimide and sodium bromide catalyzed by FeBr3 under mild conditions has been developed. The trans-dibromo compounds were exclusively obtained with excellent yields.

  19. Biodiesel production from Jatropha curcas oil catalyzed by whole ...

    African Journals Online (AJOL)

    my mord

    2013-07-03

    Jul 3, 2013 ... catalyzed by whole cells of Aureobasidium pullulans var. melanogenum ... friendly and renewable fuel that can be used directly in diesel engines ... methanol (or supercritical ethanol) transesterification is not commercially ...

  20. Rhodium-Catalyzed Dehydrogenative Borylation of Cyclic Alkenes

    Science.gov (United States)

    Kondoh, Azusa; Jamison, Timothy F.

    2010-01-01

    A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented. PMID:20107646

  1. Palladium Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Engelin, Casper Junker; Fristrup, Peter

    2011-01-01

    are highlighted with emphasis on those leading to C-C bond formation, but where it was deemed necessary for the general understanding of the process closely related C-H oxidations and aminations are also included. It is found that C-H cleavage is most likely achieved by ligand participation which could involve......-H alkylation reaction which is the topic of the current review. Particular emphasis is put on current mechanistic proposals for the three reaction types comprising the overall transformation: C-H activation, nucleophillic addition, and re-oxidation of the active catalyst. Recent advances in C-H bond activation...... an acetate ion coordinated to Pd. Several of the reported systems rely on benzoquinone for re-oxidation of the active catalyst. The scope for nucleophilic addition in allylic C-H alkylation is currently limited, due to demands on pKa of the nucleophile. This limitation could be due to the pH dependence...

  2. Rhenium and Manganese-Catalyzed Selective Alkenylation of Indoles

    KAUST Repository

    Wang, Chengming

    2018-04-06

    An efficient rhenium‐catalyzed regioselective C‐H bond alkenylation of indoles is reported. The protocol operates well for internal as well as terminal alkynes, affording products in good to excellent yields. Furthermore, a manganese catalyzed, acid free, regioselective C2‐alkenylation of indoles with internal alkynes is described. The directing groups can be easily removed after the reaction and the resulting products can be used as valuable building blocks for the synthesis of diverse heterocyclic compounds.

  3. Toward Efficient Palladium-Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Jensen, Thomas; Fristrup, Peter

    2009-01-01

    Recent breakthroughs have proved that direct palladium (II)-catalyzed allylic C-H alkylation can be achieved. This new procedure shows that the inherent requirement for a leaving group in the Tsuji-Trost palladium-catalyzed allylic alkylation can be lifted. These initial reports hold great promise...... for the development of allylic C-H alkylation into a widely applicable methodology, thus providing a means to enhance synthetic efficiency in these reactions....

  4. Rhenium and Manganese-Catalyzed Selective Alkenylation of Indoles

    KAUST Repository

    Wang, Chengming; Rueping, Magnus

    2018-01-01

    An efficient rhenium‐catalyzed regioselective C‐H bond alkenylation of indoles is reported. The protocol operates well for internal as well as terminal alkynes, affording products in good to excellent yields. Furthermore, a manganese catalyzed, acid free, regioselective C2‐alkenylation of indoles with internal alkynes is described. The directing groups can be easily removed after the reaction and the resulting products can be used as valuable building blocks for the synthesis of diverse heterocyclic compounds.

  5. EFFICIENTONE-POT SYNTHESIS OF IMIDAZOLES CATALYZED ...

    African Journals Online (AJOL)

    component compression of an aldehyde and ammonium acetate with an ... temperature requirement, longer reaction time, highly acidic conditions, use of expensive ... of perovskite-type oxide La0.5Pb0.5MnO3(LPMO) nanoparticles and ... Determination of melting points were carried out using an Electro thermal type.

  6. Aerobic oxidation of alcohols in visible light on Pd-grafted Ti cluster

    Science.gov (United States)

    The titanium cluster with the reduced band gap has been synthesized having the palladium nanoparticles over the surface, which not only binds to the atmospheric oxygen but also catalyzes the oxidation of alcohols under visible light.

  7. METHANOL OXIDATION OVER AU/ γ -AL 2O3 CATALYSTS 149

    African Journals Online (AJOL)

    DR. AMINU

    catalysts were used to catalyze the oxidation of methanol and characterised using X-ray ... As the concentration of methoxy diminishes, so the mechanism reverts to a decomposition pathway ..... Catalysis Reviews: Science and Engineering 41.

  8. C3 Epimerization of Glucose, via Regioselective Oxidation and Reduction

    NARCIS (Netherlands)

    Jumde, Varsha R.; Eisink, Niek N. H. M.; Witte, Martin D.; Minnaard, Adriaan J.

    2016-01-01

    Palladium-catalyzed oxidation can single out the secondary hydroxyl group at C3 in glucose, circumventing the more readily accessible hydroxyl at C6 and the more reactive anomeric hydroxyl. Oxidation followed by reduction results in either allose or allitol, each a rare sugar that is important in

  9. Nitric oxide in health and disease of the respiratory system

    NARCIS (Netherlands)

    Ricciardolo, Fabio L. M.; Sterk, Peter J.; Gaston, Benjamin; Folkerts, Gert

    2004-01-01

    During the past decade a plethora of studies have unravelled the multiple roles of nitric oxide (NO) in airway physiology and pathophysiology. In the respiratory tract, NO is produced by a wide variety of cell types and is generated via oxidation of l-arginine that is catalyzed by the enzyme NO

  10. Gold-catalyzed aerobic epoxidation of trans-stilbene in methylcyclohexane. Part II: Identification and quantification of a key reaction intermediate

    KAUST Repository

    Guillois, Kevin

    2013-03-01

    The gold-catalyzed aerobic oxidations of alkenes are thought to rely on the in situ synthesis of hydroperoxide species, which have however never been clearly identified. Here, we show direct experimental evidence for the presence of 1-methylcyclohexyl hydroperoxide in the aerobic co-oxidation of stilbene and methylcyclohexane catalyzed by the Au/SiO2-R972 optimized catalyst prepared in Part I. Determination of its response in gas chromatography, by triphenylphosphine titration followed by 31P NMR, allows to easily follow its concentration throughout the co-oxidation process and to clearly highlight the simultaneous existence of the methylcyclohexane autoxidation pathway and the stilbene epoxidation pathway. © 2012 Elsevier B.V. All rights reserved.

  11. Gold-catalyzed aerobic epoxidation of trans-stilbene in methylcyclohexane. Part II: Identification and quantification of a key reaction intermediate

    KAUST Repository

    Guillois, Kevin; Mangematin, Sté phane; Tuel, Alain; Caps, Valerie

    2013-01-01

    The gold-catalyzed aerobic oxidations of alkenes are thought to rely on the in situ synthesis of hydroperoxide species, which have however never been clearly identified. Here, we show direct experimental evidence for the presence of 1-methylcyclohexyl hydroperoxide in the aerobic co-oxidation of stilbene and methylcyclohexane catalyzed by the Au/SiO2-R972 optimized catalyst prepared in Part I. Determination of its response in gas chromatography, by triphenylphosphine titration followed by 31P NMR, allows to easily follow its concentration throughout the co-oxidation process and to clearly highlight the simultaneous existence of the methylcyclohexane autoxidation pathway and the stilbene epoxidation pathway. © 2012 Elsevier B.V. All rights reserved.

  12. catalysed oxidation of atenolol by alkaline permanganate

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Kinetics of ruthenium (III) catalyzed oxidation of atenolol by permanganate in alkaline medium at constant ionic strength of 0⋅30 mol dm3 has been studied spectrophotometrically using a rapid kinetic accessory. Reaction between permanganate and atenolol in alkaline medium exhibits 1 : 8 stoichiometry.

  13. The oxidative conversion of toluene to benzene

    NARCIS (Netherlands)

    Jong, de J.G.; Batist, P.A.

    1971-01-01

    An oxidative reaction is described in which toluene is converted into benzene. The reaction is catalyzed by bismuth uranate. Selectivities up to 70% are obtained if toluene vapor reacts with the catalyst without O (g) being present; the catalyst becomes partially reduced, but is easily reoxidized

  14. Aminodiols via stereocontrolled oxidation of methyleneaziridines.

    Science.gov (United States)

    Rigoli, Jared W; Guzei, Ilia A; Schomaker, Jennifer M

    2014-03-21

    A highly diastereoselective Ru-catalyzed oxidation/reduction sequence of bicyclic methyleneaziridines provides a facile route to complex 1-amino-2,3-diol motifs. The relative anti stereochemistry between the amine and the vicinal alcohol are proposed to result from 1,3-bischelation in the transition state by the C1 and C3 heteroatoms.

  15. Diversity and abundance of ammonia-oxidizing

    NARCIS (Netherlands)

    Cardoso, J.F.M.F.; van Bleijswijk, J.D.L.; Witte, H.; van Duyl, F.C.

    2013-01-01

    We analysed the diversity and abundance of ammonia-oxidizing Archaea (AOA) and Bacteria (AOB) in the shallow warm-water sponge Halisarca caerulea and the deep cold-water sponges Higginsia thielei and Nodastrella nodastrella. The abundance of AOA and AOB was analysed using catalyzed reporter

  16. Anaerobic oxidation of methane and ammonium.

    NARCIS (Netherlands)

    Strous, M.; Jetten, M.S.M.

    2004-01-01

    Anaerobic oxidation of methane and ammonium are two different processes catalyzed by completely unrelated microorganisms. Still, the two processes do have many interesting aspects in common. First, both of them were once deemed biochemically impossible and nonexistent in nature, but have now been

  17. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Dezhao, Liu; Hansen, Michael Jørgen

    Observed hydrogen sulfide uptake rates in a biofilter treating waste air from a pig farm were too high to be explained within conventional limits of sulfide solubility, diffusion in a biofilm and bacterial metabolism. Clone libraries of 16S and 18S rRNA genes from the biofilter found no sulfide...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  18. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Liu, Dezhao; Hansen, Michael Jørgen

    2012-01-01

    Observed hydrogen sulfide uptake rates in a biofilter treating waste air from a pig farm were too high to be explained within conventional limits of sulfide solubility, diffusion in a biofilm and bacterial metabolism. Clone libraries of 16S and 18S rRNA genes from the biofilter found no sulfide...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  19. Palladium(II-catalyzed Heck reaction of aryl halides and arylboronic acids with olefins under mild conditions

    Directory of Open Access Journals (Sweden)

    Tanveer Mahamadali Shaikh

    2013-08-01

    Full Text Available A series of general and selective Pd(II-catalyzed Heck reactions were investigated under mild reaction conditions. The first protocol has been developed employing an imidazole-based secondary phosphine oxide (SPO ligated palladium complex (6 as a precatalyst. The catalytic coupling of aryl halides and olefins led to the formation of the corresponding coupled products in excellent yields. A variety of substrates, both electron-rich and electron-poor olefins, were converted smoothly to the targeted products in high yields. Compared with the existing approaches employing SPO–Pd complexes in a Heck reaction, the current strategy features mild reaction conditions and broad substrate scope. Furthermore, we described the coupling of arylboronic acids with olefins, which were catalyzed by Pd(OAc2 and employed N-bromosuccinimide as an additive under ambient conditions. The resulted biaryls have been obtained in moderate to good yields.

  20. Catalyzed reactions at illuminated semiconductor interfaces

    International Nuclear Information System (INIS)

    Wrighton, M.S.

    1984-01-01

    Many desirable minority carrier chemical redox processes are too slow to compete with e - -h + recombination at illuminated semiconductor/liquid electrolyte junction interfaces. Reductions of H 2 O to H 2 or CO 2 to compounds having C--H bonds are too slow to compete with e - -h + recombination at illuminated p-type semiconductors, for example. Approaches to improve the rate of the desired processes involving surface modification techniques are described. Photoanodes are plagued by the additional problem of oxidative decomposition under illumination with > or =E/sub g/ illumination. The photo-oxidation of Cl - , Br - , and H 2 O is considered to illustrate the concepts involved. Proof of concept experiments establish that catalysis can be effective in dramatically improving direct solar fuel production; efficiencies of >10% have been demonstrated

  1. Effects of engineered nanomaterials on microbial catalyzed biogeochemical processes in sediments

    Energy Technology Data Exchange (ETDEWEB)

    Gao Jie, E-mail: jgao@perc.ufl.edu [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611 (United States); Wang Yu; Hovsepyan, Anna [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611 (United States); Bonzongo, Jean-Claude J., E-mail: bonzongo@ufl.edu [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611 (United States)

    2011-02-15

    Engineered nanomaterials (ENMs) are anticipated to find use in many human activities and commercial products. Concerns are therefore being raised regarding their environmental fate and toxicological implications, which remain largely unknown. In this study, we investigate the effects of C{sub 60}, nano-Ag and CdSe quantum dots (QD) on microbial-catalyzed oxidation of organic matter in freshwater sediments. Sediment slurries spiked with sodium acetate at a final concentration of 150 mg/L were separately treated with pre-identified toxic levels of the tested ENMs. The study focused primarily on acetate oxidation by nitrate reducing bacteria. Sediment slurries were incubated under anaerobic conditions in parallel with control samples, and changes in concentrations of acetate, nitrate and nitrite tracked over time. The results showed that tested C{sub 60} concentration completely inhibited the microbial oxidation of acetate, whereas the addition of nano-Ag and CdSe QD to sediment slurries negatively affected the rates of acetate oxidation. Under conditions with nitrate as prevalent electron acceptor, reaction rates of acetate degradation decreased from 0.44 day{sup -1} in control slurries to 0.24 day{sup -1} and 0.20 day{sup -1} in slurries treated with nano-Ag and CdSe QD, respectively. These preliminary results call for further investigations on potential long-term effects of ENMs on microbial driven basic ecosystem services.

  2. In situ XAS study of the Mn(III)(salen)Br catalyzed synthesis of cyclic organic carbonates from epoxides and CO2

    DEFF Research Database (Denmark)

    Jutz, Fabian; Grunwaldt, Jan-Dierk; Baiker, Alfons

    2009-01-01

    In situ X-ray absorption spectroscopy at the Mn K- and Br K-edge was employed to study the cycloaddition of carbon dioxide to propylene oxide and styrene oxide, catalyzed by Mn(III) salen bromide complexes. Three homogeneous complexes with varying salen ligand structure and one complex immobilized...... coordination of the bromine neighbors to the Mn central atom was also evidenced by EXAFS spectra, e.g. loss of Br backscattering in the Mn K-EXAFS spectra and the Mn-backscattering in the Br K-edge spectra. In the catalytic studies it was observed that propylene oxide usually reacted much faster than styrene...

  3. Oxidation of amines by flavoproteins.

    Science.gov (United States)

    Fitzpatrick, Paul F

    2010-01-01

    Many flavoproteins catalyze the oxidation of primary and secondary amines, with the transfer of a hydride equivalent from a carbon-nitrogen bond to the flavin cofactor. Most of these amine oxidases can be classified into two structural families, the D-amino acid oxidase/sarcosine oxidase family and the monoamine oxidase family. This review discusses the present understanding of the mechanisms of amine and amino acid oxidation by flavoproteins, focusing on these two structural families. Copyright 2009 Elsevier Inc. All rights reserved.

  4. UDP-glucuronosyltransferases 1A6 and 1A10 catalyze reduced menadione glucuronidation

    International Nuclear Information System (INIS)

    Nishiyama, Takahito; Ohnuma, Tomokazu; Inoue, Yuu; Kishi, Takehiko; Ogura, Kenichiro; Hiratsuka, Akira

    2008-01-01

    Menadione (2-methyl-1,4-naphthoquine), also known as vitamin K3, has been widely used as a model compound in the field of oxidative stress-related research. The metabolism of menadione has been studied, and it is known that menadione undergoes a two-electron reduction by NAD(P)H:Quinone oxidoreductase 1 (NQO1) after which the reduced form of menadione (2-methyl-1,4-naphthalenediol, menadiol) is glucuronidated and excreted in urine. To investigate which human UDP-glucuronosyltransferase (UGT) isoforms participate in the glucuronidation of menadiol reduced by NQO1 from menadione, we first constructed heterologously expressed NQO1 in Sf9 cells and tested the menadiol glucuronidating activity of 16 human recombinant UGT isoforms. Of the 16 UGT isoforms, UGTs 1A6, 1A7, 1A8, 1A9, and 1A10 catalyzed menadiol glucuronidation, and, of these, UGTs 1A6 and 1A10 catalyzed menadiol glucuronidation at much higher rates than the other UGTs. Menadiol was regioselectively glucuronidated in the manner of 4-position > 1-position by UGTs 1A7, 1A8, 1A9, and 1A10. In contrast to these UGTs, only UGT1A6 exhibited 1-menadiol-preferential glucuronidating activity. The results suggest possible detoxification pathways for quinones via NQO1 reduction followed by UGT glucuronidation

  5. Aerosol - assisted Chemical Vapor Deposition of Metal Oxide Structures: Zinc Oxide Rods

    Czech Academy of Sciences Publication Activity Database

    Vallejos, S.; Pizúrová, Naděžda; Čechal, J.; Grácia, I.; Cané, C.

    2017-01-01

    Roč. 2017, Č. 127 (2017), č. článku e56127. ISSN 1940-087X Institutional support: RVO:68081723 Keywords : Zinc oxide * columnar structures * rods * AACVD * non-catalyzed growth * vapor-solid mechanism Subject RIV: CA - Inorganic Chemistry OBOR OECD: Polymer science Impact factor: 1.232, year: 2016 https://www.jove.com/video/56127

  6. Microbial-Catalyzed Biotransformation of Multifunctional Triterpenoids Derived from Phytonutrients

    Science.gov (United States)

    Shah, Syed Adnan Ali; Tan, Huey Ling; Sultan, Sadia; Mohd Faridz, Muhammad Afifi Bin; Mohd Shah, Mohamad Azlan Bin; Nurfazilah, Sharifah; Hussain, Munawar

    2014-01-01

    Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids. They offer efficient and economical ways to produce semi-synthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio- and stereospecific hydroxylations of diverse triterpenoid substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive triterpenoids, in order to obtain biologically active molecules with diverse structures features. This article reviews the microbial modifications of tetranortriterpenoids, tetracyclic triterpenoids and pentacyclic triterpenoids. PMID:25003642

  7. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    International Nuclear Information System (INIS)

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.; Bourne, H.R.

    1981-01-01

    Cholera toxin catalyzes transfer of radiolabel from [ 32 P]NAD + to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and [ 32 P]NAD + caused radiolabeling of purified microtubule and intermediate filament proteins

  8. Cold, muon-catalyzed fusion - just another swarm experiment?

    International Nuclear Information System (INIS)

    Robson, R.E.

    1992-01-01

    The paper briefly reviewed the muon-catalyzed fusion cycle and indicated how it may be likened to a swarm experiment. In particular, it has been pointed out that an external electric field can influence the properties of a muon swarm (and reactive derivatives), just as it can for ion and electron swarms. Since n 0 is typically around liquid hydrogen densities, very large fields, E≥10 9 V/m, would be required to achieve the desired outcome. This is presently achievable in small regions of intense laser focus, but it remains to be seen whether muon-catalyzed fusion experiments can actually be influenced in this way. 20 refs., 4 figs

  9. Transition Metal Catalyzed Synthesis of Carboxylic Acids, Imines, and Biaryls

    DEFF Research Database (Denmark)

    Santilli, Carola; Madsen, Robert

    the carboxylate.  Manganese catalyzed radical Kumada-type reaction between aryl halidesand aryl Grignard reagents. The reaction between aryl halides and aryl Grignard reagents catalyzed by MnCl2 has been extended to several methyl-substituted aryl iodide reagents byperforming the reaction at 120 ˚C in a microwave...... oven (Scheme ii). A limitation of the heterocoupling process is the concomitant dehalogenation of the aryl halide and homocoupling of the Grignard reagent leading low to moderate yields of the desired heterocoupling product. The mechanism of the cross-coupling process was investigated by performing two...

  10. Muon-catalyzed fusion theory - introduction and review

    International Nuclear Information System (INIS)

    Cohen, J.S.

    1990-01-01

    Muon-catalyzed fusion (μCF) has proved to be a fruitful subject for basic physics research as well as a source of cold nuclear fusion. Experiments have demonstrated that over 100 fusions per muon can be catalyzed by formation of the dtμ molecules in mixtures of deuterium and tritium. After a brief review of the subject's history, the dtμ catalysis cycle and the principle relations used in its analysis are described. Some of the important processes in the μCF cycle are then discussed. Finally, the status of current research is appraised. (author)

  11. Cyclodextrin-Catalyzed Organic Synthesis: Reactions, Mechanisms, and Applications

    Directory of Open Access Journals (Sweden)

    Chang Cai Bai

    2017-09-01

    Full Text Available Cyclodextrins are well-known macrocyclic oligosaccharides that consist of α-(1,4 linked glucose units and have been widely used as artificial enzymes, chiral separators, chemical sensors, and drug excipients, owing to their hydrophobic and chiral interiors. Due to their remarkable inclusion capabilities with small organic molecules, more recent interests focus on organic reactions catalyzed by cyclodextrins. This contribution outlines the current progress in cyclodextrin-catalyzed organic reactions. Particular emphases are given to the organic reaction mechanisms and their applications. In the end, the future directions of research in this field are proposed.

  12. Enhancement effects of reducing agents on the degradation of tetrachloroethene in the Fe(II)/Fe(III) catalyzed percarbonate system

    International Nuclear Information System (INIS)

    Miao, Zhouwei; Gu, Xiaogang; Lu, Shuguang; Brusseau, Mark L.; Yan, Ni; Qiu, Zhaofu; Sui, Qian

    2015-01-01

    Highlights: • PCE degradation by reducing-agent modified Fe-catalyzed percarbonate was studied. • The addition of reducing agents significantly increased PCE degradation. • Hydroxylamine hydrochloride showed the best effect on enhancing PCE degradation. • The primary PCE degradation mechanism was oxidation by hydroxyl radical. • O_2·"− participated in the degradation of PCE in reducing-agent modified system. - Abstract: In this study, the effects of reducing agents on the degradation of tetrachloroethene (PCE) were investigated in the Fe(II)/Fe(III) catalyzed sodium percarbonate (SPC) system. The addition of reducing agents, including hydroxylamine hydrochloride, sodium sulfite, ascorbic acid and sodium ascorbate, accelerated the Fe(III)/Fe(II) redox cycle, leading to a relatively steady Fe(II) concentration and higher production of free radicals. This, in turn, resulted in enhanced PCE oxidation by SPC, with almost complete PCE removal obtained for appropriate Fe and SPC concentrations. The chemical probe tests, using nitrobenzene and carbon tetrachloride, demonstrated that HO· was the predominant radical in the system and that O_2·"− played a minor role, which was further confirmed by the results of electron spin resonance measurements. PCE degradation decreased significantly with the addition of isopropanol, a HO· scavenger, supporting the hypothesis that HO· was primarily responsible for PCE degradation. It is noteworthy that Cl"− release was slightly delayed in the first 20 min, indicating that intermediate products were produced. However, these intermediates were further degraded, resulting in the complete conversion of PCE to CO_2. In conclusion, the use of reducing agents to enhance Fe(II)/Fe(III) catalyzed SPC oxidation appears to be a promising approach for the rapid degradation of organic contaminants in groundwater.

  13. Enhancement effects of reducing agents on the degradation of tetrachloroethene in the Fe(II)/Fe(III) catalyzed percarbonate system

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhouwei [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Soil, Water and Environmental Science Department, School of Earth and Environmental Sciences, The University of Arizona, 429 Shantz Building, Tucson, AZ 85721 (United States); Gu, Xiaogang [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Lu, Shuguang, E-mail: lvshuguang@ecust.edu.cn [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Brusseau, Mark L. [Soil, Water and Environmental Science Department, School of Earth and Environmental Sciences, The University of Arizona, 429 Shantz Building, Tucson, AZ 85721 (United States); Yan, Ni [Hydrology and Water Resources Department, School of Earth and Environmental Sciences, University of Arizona, 429 Shantz Building, Tucson, AZ 85721 (United States); Qiu, Zhaofu; Sui, Qian [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China)

    2015-12-30

    Highlights: • PCE degradation by reducing-agent modified Fe-catalyzed percarbonate was studied. • The addition of reducing agents significantly increased PCE degradation. • Hydroxylamine hydrochloride showed the best effect on enhancing PCE degradation. • The primary PCE degradation mechanism was oxidation by hydroxyl radical. • O{sub 2}·{sup −} participated in the degradation of PCE in reducing-agent modified system. - Abstract: In this study, the effects of reducing agents on the degradation of tetrachloroethene (PCE) were investigated in the Fe(II)/Fe(III) catalyzed sodium percarbonate (SPC) system. The addition of reducing agents, including hydroxylamine hydrochloride, sodium sulfite, ascorbic acid and sodium ascorbate, accelerated the Fe(III)/Fe(II) redox cycle, leading to a relatively steady Fe(II) concentration and higher production of free radicals. This, in turn, resulted in enhanced PCE oxidation by SPC, with almost complete PCE removal obtained for appropriate Fe and SPC concentrations. The chemical probe tests, using nitrobenzene and carbon tetrachloride, demonstrated that HO· was the predominant radical in the system and that O{sub 2}·{sup −} played a minor role, which was further confirmed by the results of electron spin resonance measurements. PCE degradation decreased significantly with the addition of isopropanol, a HO· scavenger, supporting the hypothesis that HO· was primarily responsible for PCE degradation. It is noteworthy that Cl{sup −} release was slightly delayed in the first 20 min, indicating that intermediate products were produced. However, these intermediates were further degraded, resulting in the complete conversion of PCE to CO{sub 2}. In conclusion, the use of reducing agents to enhance Fe(II)/Fe(III) catalyzed SPC oxidation appears to be a promising approach for the rapid degradation of organic contaminants in groundwater.

  14. Ni-Catalyzed Carbon-Carbon Bond-Forming Reductive Amination.

    Science.gov (United States)

    Heinz, Christoph; Lutz, J Patrick; Simmons, Eric M; Miller, Michael M; Ewing, William R; Doyle, Abigail G

    2018-02-14

    This report describes a three-component, Ni-catalyzed reductive coupling that enables the convergent synthesis of tertiary benzhydryl amines, which are challenging to access by traditional reductive amination methodologies. The reaction makes use of iminium ions generated in situ from the condensation of secondary N-trimethylsilyl amines with benzaldehydes, and these species undergo reaction with several distinct classes of organic electrophiles. The synthetic value of this process is demonstrated by a single-step synthesis of antimigraine drug flunarizine (Sibelium) and high yielding derivatization of paroxetine (Paxil) and metoprolol (Lopressor). Mechanistic investigations support a sequential oxidative addition mechanism rather than a pathway proceeding via α-amino radical formation. Accordingly, application of catalytic conditions to an intramolecular reductive coupling is demonstrated for the synthesis of endo- and exocyclic benzhydryl amines.

  15. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    International Nuclear Information System (INIS)

    Paik, Seung Uk; Jung, Myoung Geun

    2012-01-01

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions

  16. Investigation of transition metal-catalyzed nitrene transfer reactions in water.

    Science.gov (United States)

    Alderson, Juliet M; Corbin, Joshua R; Schomaker, Jennifer M

    2018-04-11

    Transition metal-catalyzed nitrene transfer is a powerful method for incorporating new CN bonds into relatively unfunctionalized scaffolds. In this communication, we report the first examples of site- and chemoselective CH bond amination reactions in aqueous media. The unexpected ability to employ water as the solvent in these reactions is advantageous in that it eliminates toxic solvent use and enables reactions to be run at increased concentrations with lower oxidant loadings. Using water as the reaction medium has potential to expand the scope of nitrene transfer to encompass a variety of biomolecules and highly polar substrates, as well as enable pH control over the site-selectivity of CH bond amination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Copper-catalyzed recycling of halogen activating groups via 1,3-halogen migration.

    Science.gov (United States)

    Grigg, R David; Van Hoveln, Ryan; Schomaker, Jennifer M

    2012-10-03

    A Cu(I)-catalyzed 1,3-halogen migration reaction effectively recycles an activating group by transferring bromine or iodine from a sp(2) to a benzylic carbon with concomitant borylation of the Ar-X bond. The resulting benzyl halide can be reacted in the same vessel under a variety of conditions to form an additional carbon-heteroatom bond. Cross-over experiments using an isotopically enriched bromide source support intramolecular transfer of Br. The reaction is postulated to proceed via a Markovnikov hydrocupration of the o-halostyrene, oxidative addition of the resulting Cu(I) complex into the Ar-X bond, reductive elimination of the new sp(3) C-X bond, and final borylation of an Ar-Cu(I) species to turn over the catalytic cycle.

  18. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    Energy Technology Data Exchange (ETDEWEB)

    Paik, Seung Uk; Jung, Myoung Geun [Keimyung University, Daegu (Korea, Republic of)

    2012-02-15

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions.

  19. Hydrophosphination of alkynes and related reactions catalyzed by rare-earth amides

    International Nuclear Information System (INIS)

    Takaki, Ken; Komeyama, Kimihiro; Kobayashi, Daisuke; Kawabata, Tomonori; Takehira, Katsuomi

    2006-01-01

    Intermolecular hydrophosphination of alkynes with Ph 2 PH was effectively catalyzed by Yb-imine complex [Yb(η 2 -Ph 2 CNPh)(hmpa) 3 ], in which the empirical rate law was described as v = k [catalyst] 2 [alkyne] 1 [phosphine] . The active catalysts were proved to be ytterbium(II) mono- and diphosphido species generated in situ. Although trivalent phosphido complex [Yb(PPh 2 ) 3 (hmpa) n ], gave the same results as the divalent complexes, Yb metals of the both complexes seemed to keep their original oxidation state unchanged. When Ph 2 PH was substituted by Ph 2 P-SiMe 3 , silylphosphination of aromatic internal alkynes took place to afford 1-trimethylsilyl-2-diphenylphosphinoalkenes in moderate yields. Moreover, one-pot synthesis of 1-diphenylphosphino-1,3-butadienes from terminal alkynes and Ph 2 PH has been achieved using Y[N(SiMe 3 ) 2 ] 3 catalyst through the alkyne dimerization and subsequent hydrophosphination

  20. Synthesis of heterocyclic compounds through palladium-catalyzed C-H cyclization processes.

    Science.gov (United States)

    Inamoto, Kiyofumi

    2013-01-01

    Herein, we describe our development of synthetic methods for heterocyclic compounds based on the palladium-catalyzed carbon-hydrogen bond (C-H) functionalization/intramolecular carbon-heteroatom (nitrogen or sulfur) bond formation process. By this C-H cyclization method, we efficiently prepared various N-heterocycles, including indazoles, indoles, and 2-quinolinones, as well as S-heterocycles such as benzothiazoles and benzo[b]thiophenes. Yields are typically good to high and good functional-group tolerance is observed for each process, thereby indicating that the method provides a novel, highly applicable synthetic route to the abovementioned biologically important heterocyclic frameworks. As an application of this approach, an auto-tandem-type, one-pot process involving the oxidative Heck reaction and subsequent C-H cyclization using cinnamamides and arylboronic acids as starting materials in the presence of a palladium catalyst was also developed for the rapid construction of the 2-quinolinone nucleus.

  1. Laccase catalyzed grafting of-N-OH type mediators to lignin via radical-radical coupling

    DEFF Research Database (Denmark)

    Munk, Line; Punt, A. M.; Kabel, M. A.

    2017-01-01

    Lignin is an underexploited resource in biomass refining. Laccases (EC 1.10.3.2) catalyze oxidation of phenolic hydroxyls using O2 as electron acceptor and may facilitate lignin modification in the presence of mediators. This study assessed the reactivity of four different synthetic mediators...... better than HBT (1-hydroxybenzotriazole). Three different mechanisms are suggested to explain the grafting of HPI and HBT, all involving radical-radical coupling to produce covalent bonding to lignin. Lignin from exhaustive cellulase treatment of wheat straw was more susceptible to grafting than beech...... organosolv lignin with the relative abundance of grafting being 35% vs. 11% for HPI and 5% vs. 1% for HBT on these lignin substrates. The data imply that lignin can be functionalized via laccase catalysis with-N-OH type mediators....

  2. Copper-Catalyzed Chan-Lam Cyclopropylation of Phenols and Azaheterocycles.

    Science.gov (United States)

    Derosa, Joseph; O'Duill, Miriam L; Holcomb, Matthew; Boulous, Mark N; Patman, Ryan L; Wang, Fen; Tran-Dubé, Michelle; McAlpine, Indrawan; Engle, Keary M

    2018-04-06

    Small molecules containing cyclopropane-heteroatom linkages are commonly needed in medicinal chemistry campaigns yet are problematic to prepare using existing methods. To address this issue, a scalable Chan-Lam cyclopropylation reaction using potassium cyclopropyl trifluoroborate has been developed. With phenol nucleophiles, the reaction effects O-cyclopropylation, whereas with 2-pyridones, 2-hydroxybenzimidazoles, and 2-aminopyridines the reaction brings about N-cyclopropylation. The transformation is catalyzed by Cu(OAc) 2 and 1,10-phenanthroline and employs 1 atm of O 2 as the terminal oxidant. This method is operationally convenient to perform and provides a simple, strategic disconnection toward the synthesis of cyclopropyl aryl ethers and cyclopropyl amine derivatives bearing an array of functional groups.

  3. Effects of Low Sulfur Fuel and a Catalyzed Particle Trap on the Composition and Toxicity of Diesel Emissions

    Science.gov (United States)

    McDonald, Jacob D.; Harrod, Kevin S.; Seagrave, JeanClare; Seilkop, Steven K.; Mauderly, Joe L.

    2004-01-01

    In this study we compared a “baseline” condition of uncontrolled diesel engine exhaust (DEE) emissions generated with current (circa 2003) certification fuel to an emissions-reduction (ER) case with low sulfur fuel and a catalyzed particle trap. Lung toxicity assessments (resistance to respiratory viral infection, lung inflammation, and oxidative stress) were performed on mice (C57Bl/6) exposed by inhalation (6 hr/day for 7 days). The engine was operated identically (same engine load) in both cases, and the inhalation exposures were conducted at the same exhaust dilution rate. For baseline DEE, this dilution resulted in a particle mass (PM) concentration of approximately 200 μg/m3 PM, whereas the ER reduced the PM and almost every other measured constituent [except nitrogen oxides (NOx)] to near background levels in the exposure atmospheres. These measurements included PM, PM size distribution, PM composition (carbon, ions, elements), NOx, carbon monoxide, speciated/total volatile hydrocarbons, and several classes of semi-volatile organic compounds. After exposure concluded, one group of mice was immediately sacrificed and assessed for inflammation and oxidative stress in lung homogenate. Another group of mice were intratracheally instilled with respiratory syncytial virus (RSV), and RSV lung clearance and inflammation was assessed 4 days later. Baseline DEE produced statistically significant biological effects for all measured parameters. The use of low sulfur fuel and a catalyzed trap either completely or nearly eliminated the effects. PMID:15345344

  4. Diazo compounds and N-tosylhydrazones: novel cross-coupling partners in transition-metal-catalyzed reactions.

    Science.gov (United States)

    Xiao, Qing; Zhang, Yan; Wang, Jianbo

    2013-02-19

    Transition-metal-catalyzed carbene transformations and cross-couplings represent two major reaction types in organometallic chemistry and organic synthesis. However, for a long period of time, these two important areas have evolved separately, with essentially no overlap or integration. Thus, an intriguing question has emerged: can cross-coupling and metal carbene transformations be merged into a single reaction cycle? Such a combination could facilitate the development of novel carbon-carbon bond-forming methodologies. Although this concept was first explored about 10 years ago, rapid developments inthis area have been achieved recently. Palladium catalysts can be used to couple diazo compounds with a wide variety of organic halides. Under oxidative coupling conditions, diazo compounds can also react with arylboronic acids and terminal alkynes. Both of these coupling reactions form carbon-carbon double bonds. As the key step in these catalytic processes, Pd carbene migratory insertion plays a vital role in merging the elementary steps of Pd intermediates, leading to novel carbon-carbon bond formations. Because the diazo substrates can be generated in situ from N-tosylhydrazones in the presence of base, the N-tosylhydrazones can be used as reaction partners, making this type of cross-coupling reaction practical in organic synthesis. N-Tosylhydrazones are easily derived from the corresponding aldehydes or ketones. The Pd-catalyzed cross-coupling of N-tosylhydrazones is considered a complementary reaction to the classic Shapiro reaction for converting carbonyl functionalities into carbon-carbon double bonds. It can also serve as an alternative approach for the Pd-catalyzed cross-coupling of carbonyl compounds, which is usually achieved via triflates. The combination of carbene formation and cross-coupling in a single catalytic cycle is not limited to Pd-catalyzed reactions. Recent studies of Cu-, Rh-, Ni-, and Co-catalyzed cross-coupling reactions with diazo

  5. Iron(II)-catalyzed intermolecular amino-oxygenation of olefins through the N-O bond cleavage of functionalized hydroxylamines.

    Science.gov (United States)

    Lu, Deng-Fu; Zhu, Cheng-Liang; Jia, Zhen-Xin; Xu, Hao

    2014-09-24

    An iron-catalyzed diastereoselective intermolecular olefin amino-oxygenation reaction is reported, which proceeds via an iron-nitrenoid generated by the N-O bond cleavage of a functionalized hydroxylamine. In this reaction, a bench-stable hydroxylamine derivative is used as the amination reagent and oxidant. This method tolerates a range of synthetically valuable substrates that have been all incompatible with existing amino-oxygenation methods. It can also provide amino alcohol derivatives with regio- and stereochemical arrays complementary to known amino-oxygenation methods.

  6. The Formation of Pyrroline and Tetrahydropyridine Rings in Amino Acids Catalyzed by Pyrrolysine Synthase (PylD)

    KAUST Repository

    Quitterer, Felix

    2014-06-10

    The dehydrogenase PylD catalyzes the ultimate step of the pyrrolysine pathway by converting the isopeptide L-lysine-Nε-3R-methyl-D-ornithine to the 22nd proteinogenic amino acid. In this study, we demonstrate how PylD can be harnessed to oxidize various isopeptides to novel amino acids by combining chemical synthesis with enzyme kinetics and X-ray crystallography. The data enable a detailed description of the PylD reaction trajectory for the biosynthesis of pyrroline and tetrahydropyridine rings as constituents of pyrrolysine analogues. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Aerobic Pd-Catalyzed sp3 C–H Olefination: A Route to Both N-Heterocyclic Scaffolds and Alkenes

    Science.gov (United States)

    Stowers, Kara J.; Fortner, Kevin C.

    2011-01-01

    This communication describes a new method for the Pd/polyoxometalate-catalyzed aerobic olefination of unactivated sp3 C–H bonds. Nitrogen heterocycles serve as directing groups, and air is used as the terminal oxidant. The products undergo reversible intramolecular Michael addition, which protects the mono-alkenylated product from over-functionalization. Hydrogenation of the Michael adducts provides access to bicyclic nitrogen-containing scaffolds that are prevalent in alkaloid natural products. Additionally, the cationic Michael adducts undergo facile elimination to release α,β-unsaturated olefins, which can be elaborated in numerous C–C and C–heteroatom bond-forming reactions. PMID:21476513

  8. Recent developments in gold-catalyzed cycloaddition reactions

    Directory of Open Access Journals (Sweden)

    Fernando López

    2011-08-01

    Full Text Available In the last years there have been extraordinary advances in the development of gold-catalyzed cycloaddition processes. In this review we will summarize some of the most remarkable examples, and present the mechanistic rational underlying the transformations.

  9. Amylase catalyzed synthesis of glycosyl acrylates and their polymerization

    NARCIS (Netherlands)

    Kloosterman, Wouter M.J.; Jovanovic, Danijela; Brouwer, Sander; Loos, Katja

    2014-01-01

    The enzymatic synthesis of novel (di)saccharide acrylates from starch and 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and 4-hydroxybutyl acrylate (2-HEA, 2-HEMA and 4-HBA) catalyzed by various commercially available amylase preparations is demonstrated. Both liquefaction and

  10. Straightforward uranium-catalyzed dehydration of primary amides to nitriles

    International Nuclear Information System (INIS)

    Enthaler, Stephan

    2011-01-01

    The efficient uranium-catalyzed dehydration of a variety of primary amides, using N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) as a dehydration reagent, to the corresponding nitriles has been investigated. With this catalyst system, extraordinary catalyst activities and selectivities were feasible. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Synthesis of glycoluril catalyzed by potassium hydroxide under ultrasound irradiation.

    Science.gov (United States)

    Li, Ji-Tai; Liu, Xiao-Ru; Sun, Ming-Xuan

    2010-01-01

    Synthesis of the glycolurils catalyzed by potassium hydroxide was carried out in 17-75% yield at 40 degrees C in EtOH under ultrasound irradiation. Compared to the method using stirring, the main advantage of the present procedure is milder conditions and shorter reaction time.

  12. Lactam hydrolysis catalyzed by mononuclear metallo-ß-bactamases

    DEFF Research Database (Denmark)

    Olsen, Lars; Antony, J; Ryde, U

    2003-01-01

    Two central steps in the hydrolysis of lactam antibiotics catalyzed by mononuclear metallo-beta-lactamases, formation of the tetrahedral intermediate and its breakdown by proton transfer, are studied for model systems using the density functional B3LYP method. Metallo-beta-lactamases have two metal...

  13. Palladium-catalyzed allylation of tautomerizable heterocycles with alkynes.

    Science.gov (United States)

    Lu, Chuan-Jun; Chen, Dong-Kai; Chen, Hong; Wang, Hong; Jin, Hongwei; Huang, Xifu; Gao, Jianrong

    2017-07-21

    A method for the allylic amidation of tautomerizable heterocycles was developed by a palladium catalyzed allylation reaction with 100% atom economy. A series of structurally diverse N-allylic substituted heterocycles can be synthesized in good yields with high chemo-, regio-, and stereoselectivities under mild conditions.

  14. Manganese-Catalyzed Aerobic Heterocoupling of Aryl Grignard Reagents

    DEFF Research Database (Denmark)

    Ghaleshahi, Hajar Golshahi; Antonacci, Giuseppe; Madsen, Robert

    2017-01-01

    An improved protocol has been developed for the MnCl2-catalyzed cross-coupling reaction of two arylmagnesium bromides under dioxygen. The reaction was achieved by using the Grignard reagents in a 2:1 ratio and 20 % of MnCl2. Very good yields of the heterocoupling product were obtained when the li...

  15. CU(II): catalyzed hydrazine reduction of ferric nitrate

    International Nuclear Information System (INIS)

    Karraker, D.G.

    1981-11-01

    A method is described for producing ferrous nitrate solutions by the cupric ion-catalyzed reduction of ferric nitrate with hydrazine. The reaction is complete in about 1.5 hours at 40 0 C. Hydrazoic acid is also produced in substantial quantities as a reaction byproduct

  16. Hydroformylation of methyl oleate catalyzed by rhodium complexes

    International Nuclear Information System (INIS)

    Mendes, Ana Nery Furlan; Rosa, Ricardo Gomes da; Gregorio, Jose Ribeiro

    2012-01-01

    In this work, we describe the hydroformylation of methyl oleate catalyzed by several rhodium complexes. Parameters including total pressure, phosphorous/rhodium and CO/H 2 ratio, temperature and phosphorous ligands were scanned. Total conversion of the starting double bonds was achieved while maintaining excellent selectivity in aldehydes. (author)

  17. Manganese Catalyzed Regioselective C–H Alkylation: Experiment and Computation

    KAUST Repository

    Wang, Chengming

    2018-05-08

    A new efficient manganese-catalyzed selective C2-alkylation of indoles via carbenoid insertion has been achieved. The newly developed C-H functionalization protocol provides access to diverse products and shows good functional group tolerance. Mechanistic and computational studies support the formation of a Mn(CO)3 acetate complex as the catalytically active species.

  18. UDP-glucuronyltransferase-catalyzed deconjugation of bilirubin monoglucuronide

    NARCIS (Netherlands)

    Cuypers, H. T.; ter Haar, E. M.; Jansen, P. L.

    1984-01-01

    Bilirubin monoglucuronide is rapidly deconjugated when incubated with UDP and rat liver microsomal preparations at pH 5.1. The following evidence was found that this reaction is catalyzed by UDP-glucuronyltransferase: (i) unconjugated bilirubin and UDP-glucuronic acid were identified as the reaction

  19. DNA strand exchange catalyzed by molecular crowding in PEG solutions

    KAUST Repository

    Feng, Bobo; Frykholm, Karolin; Nordé n, Bengt; Westerlund, Fredrik

    2010-01-01

    DNA strand exchange is catalyzed by molecular crowding and hydrophobic interactions in concentrated aqueous solutions of polyethylene glycol, a discovery of relevance for understanding the function of recombination enzymes and with potential applications to DNA nanotechnology. © 2010 The Royal Society of Chemistry.

  20. Rhodium(iii)-catalyzed ortho-olefination of aryl phosphonates.

    Science.gov (United States)

    Chary, Bathoju Chandra; Kim, Sunggak

    2013-09-25

    Rhodium(iii)-catalyzed C-H olefination of aryl phosphonic esters is reported for the first time. In this mild and efficient process, the phosphonic ester group is utilized successfully as a new directing group. In addition, mono-olefination for aryl phosphonates is observed using a phosphonic diamide directing group.