WorldWideScience

Sample records for oxidative hair dye

  1. Unconsumed precursors and couplers after formation of oxidative hair dyes

    DEFF Research Database (Denmark)

    Rastogi, Suresh Chandra; Søsted, Heidi; Johansen, Jeanne Duus

    2006-01-01

    Contact allergy to hair dye ingredients, especially precursors and couplers, is a well-known entity among consumers having hair colouring done at home or at a hairdresser. The aim of the present investigation was to estimate consumer exposure to some selected precursors (p-phenylenediamine, toluene......-2,5-diamine) and couplers (3-aminophenol, 4-aminophenol, resorcinol) of oxidative hair dyes during and after hair dyeing. Concentrations of unconsumed precursors and couplers in 8 hair dye formulations for non-professional use were investigated, under the conditions reflecting hair dyeing. Oxidative...... hair dye formation in the absence of hair was investigated using 6 products, and 2 products were used for experimental hair dyeing. In both presence and absence of hair, significant amounts of unconsumed precursors and couplers remained in the hair dye formulations after final colour development. Thus...

  2. Investigation of hair dye deposition, hair color loss, and hair damage during multiple oxidative dyeing and shampooing cycles.

    Science.gov (United States)

    Zhang, Guojin; McMullen, Roger L; Kulcsar, Lidia

    2016-01-01

    Color fastness is a major concern for consumers and manufacturers of oxidative hair dye products. Hair dye loss results from multiple wash cycles in which the hair dye is dissolved by water and leaches from the hair shaft. In this study, we carried out a series of measurements to help us better understand the kinetics of the leaching process and pathways associated with its escape from the fiber. Hair dye leaching kinetics was measured by suspending hair in a dissolution apparatus and monitoring the dye concentration in solution (leached dye) with an ultraviolet-visible spectrophotometer. The physical state of dye deposited in hair fibers was evaluated by a reflectance light microscopy technique, based on image stacking, allowing enhanced depth of field imaging. The dye distribution within the fiber was monitored by infrared spectroscopic imaging of hair fiber cross sections. Damage to the ultrafine structure of the hair cuticle (surface, endocuticle, and cell membrane complex) and cortex (cell membrane complex) was determined in hair cross sections and on the hair fiber surface with atomic force microscopy. Using differential scanning calorimetry, we investigated how consecutive coloring and leaching processes affect the internal proteins of hair. Further, to probe the surface properties of hair we utilized contact angle measurements. This study was conducted on both pigmented and nonpigmented hair to gain insight into the influence of melanin on the hair dye deposition and leaching processes. Both types of hair were colored utilizing a commercial oxidative hair dye product based on pyrazole chemistry.

  3. Occupational exposure to allergens in oxidative hair dyes

    Directory of Open Access Journals (Sweden)

    Polona Zaletel

    2013-05-01

    Full Text Available Oxidative hair dyes are the most important hair dying products. Hairdressers are exposed to the allergens found in oxidative hair dyes during the process of applying dyes to the hair, when cutting freshly dyed hair, or as a consequence of prior contamination of the working environment. pphenylenediamine, toluene-2,5-diamine and its sulphate are the most common ingredients in oxidative hair dyes that cause allergic contact dermatitis in hairdressers. Cross-reactivity of p-phenylenediamine with para-amino benzoic acid, sulphonamides, sulphonylurea, dapsone, azo dyes, benzocaine, procaine, and black henna temporary tattoos is possible. Allergic contact dermatitis is classified as delayed-type hypersensitivity, according to Coombs and Gell. Skin changes typically appear on the hands after previous sensitization to causative allergens. Combined with the patient’s overall medical and work history and clinical picture, epicutaneous testing is the basic diagnostic procedure for confirming the diagnosis and identifying the causative allergens. The simplest and most effective measure for preventing the occurrence of allergic contact dermatitis in hairdressers is prevention. Preventive measures should be applied as early as in the beginning stage of vocational guidance for this profession. It is important to include health education in the process of professional training and to implement general technical safety measures, in order to reduce sensitization to allergens in hairdressing. Here, special emphasis must be given to the correct use of protective gloves. Legislation must limit the concentration of allergenic substances in hair dyes, based on their potential hazards documented by scientific research.

  4. Hair Dye and Hair Relaxers

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  5. Hair cosmetics: dyes.

    Science.gov (United States)

    Guerra-Tapia, A; Gonzalez-Guerra, E

    2014-11-01

    Hair plays a significant role in body image, and its appearance can be changed relatively easily without resort to surgical procedures. Cosmetics and techniques have therefore been used to change hair appearance since time immemorial. The cosmetics industry has developed efficient products that can be used on healthy hair or act on concomitant diseases of the hair and scalp. Dyes embellish the hair by bleaching or coloring it briefly, for temporary periods of longer duration, or permanently, depending on the composition of a dye (oxidative or nonoxidative) and its degree of penetration of the hair shaft. The dermatologist's knowledge of dyes, their use, and their possible side effects (contact eczema, cancer, increased porosity, brittleness) can extend to an understanding of cosmetic resources that also treat hair and scalp conditions. Copyright © 2013 Elsevier España, S.L.U. and AEDV. All rights reserved.

  6. Evaluation of concordance between labelling and content of 52 hair dye products: overview of the market of oxidative hair dye.

    Science.gov (United States)

    Antelmi, Annarita; Bruze, Magnus; Zimerson, Erik; Engfeldt, Malin; Young, Ewa; Persson, Lena; Foti, Caterina; Sörensen, Östen; Svedman, Cecilia

    2017-04-01

    Hair dyes contain strong allergens and are widely available. Correct labelling is a necessity in order to provide information about the contents. To compare the labelling and content of hair dyes. In total, 52 hair dyes, from 11 different countries, were bought over the counter. High-pressure liquid chromatography was used for the analysis of p-phenylenediamine (PPD), toluene-2,5-diamine (2,5-TDA), and three oxidation products of PPD. There was good agreement between labelling and content, although seven of the 52 products (13.5%) studied were incorrectly labelled. There were differences in the geographical use of PPD and 2,5-TDA; 2,5-TDA was more common in European products, while PPD was more common in products purchased outside Europe and was present in higher concentrations. All dyes purchased in Europe contained PPD and 2,5-TDA at levels within the limits defined by European legislation, however, levels were higher in some products purchased outside Europe. Only a small group of hair dyes sold in Europe were mislabelled. Further improvement in labelling, by providing the concentration of chemicals, may facilitate products to be purchased both locally and within the global market, when travelling or on the internet.

  7. Hair dye poisoning

    Science.gov (United States)

    Hair tint poisoning ... Different types of hair dye contain different harmful ingredients. The harmful ingredients in permanent dyes are: Naphthylamine Other aromatic amino compounds Phenylenediamines Toluene ...

  8. Human systemic exposure to [14C]-paraphenylenediamine-containing oxidative hair dyes: Absorption, kinetics, metabolism, excretion and safety assessment

    NARCIS (Netherlands)

    Nohynek, G.J.; Skare, J.A.; Meuling, W.J.A.; Wehmeyer, K.R.; Bie, A.T.H.J. de; Vaes, W.H.J.; Dufour, E.K.; Fautz, R.; Steiling, W.; Bramante, M.; Toutain, H.

    2015-01-01

    Systemic exposure was measured in humans after hair dyeing with oxidative hair dyes containing 2.0% (A) or 1.0% (B) [14C]-p-phenylenediamine (PPD). Hair was dyed, rinsed, dried, clipped and shaved; blood and urine samples were collected for 48 hours after application. [14C] was measured in all

  9. Hair dye contact allergy

    DEFF Research Database (Denmark)

    Søsted, Heidi; Rastogi, Suresh Chandra; Andersen, Klaus Ejner

    2004-01-01

    Colouring of hair can cause severe allergic contact dermatitis. The most frequently reported hair dye allergens are p-phenylenediamine (PPD) and toluene-2,5-diamine, which are included in, respectively, the patch test standard series and the hairdressers series. The aim of the present study...... was to identify dye precursors and couplers in hair dyeing products causing clinical hair dye dermatitis and to compare the data with the contents of these compounds in a randomly selected set of similar products. The patient material comprised 9 cases of characteristic clinical allergic hair dye reaction, where...... exposure history and patch testing had identified a specific hair dye product as the cause of the reaction. The 9 products used by the patients were subjected to chemical analysis. 8 hair dye products contained toluene-2,5-diamine (0.18 to 0.98%). PPD (0.27%) was found in 1 product, and m-aminophenol (0...

  10. Occupational exposure of hairdressers to [14C]-para-phenylenediamine-containing oxidative hair dyes: A mass balance study

    NARCIS (Netherlands)

    Hueber-Becker, F.; Nohynek, G.J.; Dufour, E.K.; Meuling, W.J.A.; Bie, A.T.H.J.de; Toutain, H.; Bolt, H.M.

    2007-01-01

    We monitored the exposure of hairdressers to oxidative hair dyes for 6 working days under controlled conditions. Eighteen professional hairdressers (3/day) coloured hairdresser's training heads bearing natural human hair (hair length: approximately 30 cm) for 6 h/working day with a dark-shade

  11. Supramolecular hair dyes: a new application of cocrystallization

    DEFF Research Database (Denmark)

    Delori, Amit; Urquhart, Andrew; Oswald, Iain D. H.

    2016-01-01

    The manuscript presents the first report of hair dyes of various colors formed by cocrystallization. Unlike the most popular oxidative hair dye (OHD) products, these dyes are NH3 free and do not require H2O2 as a color developer. The importance of these new hair dyes products is further enhanced...

  12. A Review of Aspects of Oxidative Hair Dye Chemistry with Special Reference to N-Nitrosamine Formation

    Science.gov (United States)

    Lewis, David; Mama, John; Hawkes, Jamie

    2013-01-01

    This review discusses a new aspect to the safety profile of oxidative hair dyes using data already in the public domain. These dyes contain secondary amines that are capable of forming potentially carcinogenic nitrosamine derivatives when exposed to atmospheric pollution. Numerous scientific articles confirm the existence of secondary amines in hair dyes (and their intermediates), the possibility of nitrosation by atmospheric NOx of secondary amines to give the N-nitrosamines, and the significant safety risks on N-nitrosamines. It is believed that such nitrosamine derivatives should be investigated more fully in the interests of consumer safety. PMID:28809322

  13. A Review of Aspects of Oxidative Hair Dye Chemistry with Special Reference to N-Nitrosamine Formation

    Directory of Open Access Journals (Sweden)

    Jamie Hawkes

    2013-02-01

    Full Text Available This review discusses a new aspect to the safety profile of oxidative hair dyes using data already in the public domain. These dyes contain secondary amines that are capable of forming potentially carcinogenic nitrosamine derivatives when exposed to atmospheric pollution. Numerous scientific articles confirm the existence of secondary amines in hair dyes (and their intermediates, the possibility of nitrosation by atmospheric NOx of secondary amines to give the N-nitrosamines, and the significant safety risks on N-nitrosamines. It is believed that such nitrosamine derivatives should be investigated more fully in the interests of consumer safety.

  14. Hair Dyes and Cancer Risk

    Science.gov (United States)

    ... http://www.fda.gov/aboutfda/centersoffices/officeoffoods/cfsan/default.htm . Selected References Huncharek M, Kupelnick B. Personal use of hair dyes and the risk of bladder cancer: results of a meta-analysis. ...

  15. Human systemic exposure to [¹⁴C]-paraphenylenediamine-containing oxidative hair dyes: Absorption, kinetics, metabolism, excretion and safety assessment.

    Science.gov (United States)

    Nohynek, Gerhard J; Skare, Julie A; Meuling, Wim J A; Wehmeyer, Kenneth R; de Bie, Albertus Th H J; Vaes, Wouter H J; Dufour, Eric K; Fautz, Rolf; Steiling, Winfried; Bramante, Mario; Toutain, Herve

    2015-07-01

    Systemic exposure was measured in humans after hair dyeing with oxidative hair dyes containing 2.0% (A) or 1.0% (B) [(14)C]-p-phenylenediamine (PPD). Hair was dyed, rinsed, dried, clipped and shaved; blood and urine samples were collected for 48 hours after application. [(14)C] was measured in all materials, rinsing water, hair, plasma, urine and skin strips. Plasma and urine were also analysed by HLPC/MS/MS for PPD and its metabolites (B). Total mean recovery of radioactivity was 94.30% (A) or 96.21% (B). Mean plasma Cmax values were 132.6 or 97.4 ng [(14)C]-PPDeq/mL, mean AUC(0-∞) values 1415 or 966 ng [(14)C]-PPDeq/mL*hr in studies A or B, respectively. Urinary excretion of [(14)C] mainly occurred within 24 hrs after hair colouring with a total excretion of 0.72 or 0.88% of applied radioactivity in studies A or B, respectively. Only N,N'-diacetylated-PPD was detected in plasma and the urine. A TK-based human safety assessment estimated margins of safety of 23.3- or 65-fold relative to respective plasma AUC or Cmax values in rats at the NOAEL of a toxicity study. Overall, hair dyes containing PPD are unlikely to pose a health risk since they are used intermittently and systemic exposure is limited to the detoxified metabolite N,N'-diacetyl-PPD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Significance of hair-dye base-induced sensory irritation.

    Science.gov (United States)

    Fujita, F; Azuma, T; Tajiri, M; Okamoto, H; Sano, M; Tominaga, M

    2010-06-01

    Oxidation hair-dyes, which are the principal hair-dyes, sometimes induce painful sensory irritation of the scalp caused by the combination of highly reactive substances, such as hydrogen peroxide and alkali agents. Although many cases of severe facial and scalp dermatitis have been reported following the use of hair-dyes, sensory irritation caused by contact of the hair-dye with the skin has not been reported clearly. In this study, we used a self-assessment questionnaire to measure the sensory irritation in various regions of the body caused by two model hair-dye bases that contained different amounts of alkali agents without dyes. Moreover, the occipital region was found as an alternative region of the scalp to test for sensory irritation of the hair-dye bases. We used this region to evaluate the relationship of sensitivity with skin properties, such as trans-epidermal water loss (TEWL), stratum corneum water content, sebum amount, surface temperature, current perception threshold (CPT), catalase activities in tape-stripped skin and sensory irritation score with the model hair-dye bases. The hair-dye sensitive group showed higher TEWL, a lower sebum amount, a lower surface temperature and higher catalase activity than the insensitive group, and was similar to that of damaged skin. These results suggest that sensory irritation caused by hair-dye could occur easily on the damaged dry scalp, as that caused by skin cosmetics reported previously.

  17. Hair dye poisoning and the developing world

    Directory of Open Access Journals (Sweden)

    Sampathkumar Krishnaswamy

    2009-01-01

    Full Text Available Hair dye poisoning has been emerging as one of the important causes of intentional self harm in the developing world. Hair dyes contain paraphenylene-diamine and a host of other chemicals that can cause rhabdomyolysis, laryngeal edema, severe metabolic acidosis and acute renal failure. Intervention at the right time has been shown to improve the outcome. In this article, we review the various manifestations, clinical features and treatment modalities for hair dye poisoning.

  18. Hair dyeing, hair washing and hair cortisol concentrations among women from the healthy start study

    DEFF Research Database (Denmark)

    Kristensen, Sheila K.; Larsen, Sofus C.; Olsen, Nanna J.

    2017-01-01

    Background: Hair cortisol concentration (HCC) has been suggested as a promising marker for chronic stress. However, studies investigating the influence of hair dyeing and hair washing frequency on HCC have shown inconsistent results. Objective: To examine associations between HCC and hair dyeing...... status or weekly hair washing frequency among women. Methods: This cross-sectional study was based on data from 266 mothers participating in the Healthy Start intervention study. HCC was measured in the proximal end of the hair (1–2 cm closest to the scalp) while hair dyeing status, frequency of hair...... washing and covariates were reported by the women. Linear regression analyses were applied to assess the associations between HCC and hair dyeing or weekly frequency of hair washing. Results: No statistically significant difference (p = 0.91) in HCC was found between women who dyed hair (adjusted mean...

  19. Contact allergy to common ingredients in hair dyes

    DEFF Research Database (Denmark)

    Søsted, Heidi; Rustemeyer, Thomas; Gonçalo, Margarida

    2013-01-01

    p-Phenylenediamine (PPD) is the primary patch test screening agent for hair dye contact allergy, and approximately 100 different hair dye chemicals are allowed.......p-Phenylenediamine (PPD) is the primary patch test screening agent for hair dye contact allergy, and approximately 100 different hair dye chemicals are allowed....

  20. Consumer available permanent hair dye products cause major allergic immune activation in an animal model

    DEFF Research Database (Denmark)

    Bonefeld, C M; Larsen, J M; Dabelsteen, S

    2010-01-01

    Background p-Phenylenediamine (PPD) and related substances are ingredients of more than two-thirds of oxidative (permanent) hair dyes currently used. Although PPD is a potent skin sensitizer in predictive assays, the extent to which permanent hair dyes sensitize humans has been questioned due...... to the in-use conditions, e.g. the presence of couplers in the hair dye gel and rapid oxidation using a developer. Objectives To study the skin sensitizing potential of permanent hair dyes in mice. Methods Two different permanent hair dye products containing PPD were studied in CBA mice using a modified......-cell proliferation within the draining lymph nodes. Treatment with the mixture induced at least 20% more skin inflammation, cytokine production and CD4+ T-cell activation compared with the colour gel alone. Conclusions Consumer available PPD-containing permanent hair dyes can be potent and rapid immune activators...

  1. Immune responses to hair dyes containing toluene-2,5-diamine

    DEFF Research Database (Denmark)

    Schmidt, J D; Johansen, J D; Nielsen, M M

    2014-01-01

    BACKGROUND: Toluene-2,5-diamine (PTD) is the most frequently used dye in oxidative hair dyes on the Scandinavian market. However, little is known about immune responses to PTD-containing oxidative hair dyes. OBJECTIVES: To study immune responses induced by PTD-containing hair dyes in mice. METHODS......: Immune responses against two different permanent hair dye products containing 1·60% (w/w) and 0·48% (w/w) PTD within the colour gel, and various concentrations of pure PTD were studied. The local inflammatory response was measured by ear swelling and cell infiltration, and T- and B-cell infiltration...... and proliferation was determined in the draining lymph nodes. RESULTS: Concentration-dependent immune responses were seen to PTD both in the skin and draining lymph nodes. The hair dye containing 1·60% PTD induced strong local inflammation and caused T- and B-cell infiltration and proliferation as well...

  2. Enhancing and inhibiting effects of aromatic compounds on luminol-dimethylsulfoxide-OH(-) chemiluminescence and determination of intermediates in oxidative hair dyes by HPLC with chemiluminescence detection.

    Science.gov (United States)

    Zhou, Jian; Xu, Hong; Wan, Guo-Hui; Duan, Chun-Feng; Cui, Hua

    2004-10-08

    The effect of 36 aromatic compounds on the luminol-dimethylsulfoxide-OH(-) chemiluminescence (CL) was systematically studied. It was found that dihydroxybenzenes, and ortho- and para-substituted aminophenols and phenylenediamines inhibited the CL and phenols with three or more than three hydroxyls except phloroglucin tended to enhance the CL. The CL inhibition and enhancement was proposed to be dependent on whether superoxide anion radical (O(2)(-)) was competitively consumed by compounds in the CL system. Trihydroxybenzenes were capable of generating superoxide anion radical, leading to the CL enhancement, whereas dihydroxybenzenes were superoxide anion radical scavenger, causing the CL inhibition. Based on the inhibited CL, a novel method for the simultaneous determination of p-phenylenediamine, o-phenylenediamine, p-aminophenol, o-aminophenol, resorcinol and hydroquinone by high-performance liquid chromatography coupled with chemiluminescence detection was developed. The method has been successfully applied to determine intermediates in oxidative hair dyes and wastewater of shampooing after hair dyed.

  3. A STUDY ON CONTACT DERMATITIS TO HAIR DYE AND HENNA

    Directory of Open Access Journals (Sweden)

    Neerja Puri

    2013-10-01

    Full Text Available P- Phenylenediamine is an oxidative chemical that is frequently used as a permanent hair-coloring agent. It is added to henna to increase the intensity and longevity of the tattoo and expedites its drying time. Henna itself is a greenish brown vegetable coloring made from the leaves of Lawsonia inermis and rarely causes allergic contact dermatitis. The addition of PPD causes the contact sensitization to black henna. Serious adverse skin reactions to permanent hair dyes and temporary black tattoos have been reported. As temporary tattoos have become fashionable among adolescents, the risk profile for p-phenylenediamine (PPD sensitization of the population has changed simultaneously with an increasing use of hair dyes in this age group. With increased popularity of body art such as body piercing and tattooing, an increase in temporary henna tattoos has also occurred. Although the appeal of non-permanence exists for henna tattoos, dermatologists have begun to see numerous cases of allergic contact dermatitis linked with a certain type of henna. We selected 50 patients using hair dye and henna for our study. Patch testing was done in all the patients using Indian standard series of antigens. Regarding to the side effects to hair dye and henna and itching was the commonest symptom seen in 16% patients, erythematous scaly plaques were seen in 10% patients, vesicular reactions were seen in 6% patients, angioneurotic oedema and contact urticaria was seen in 4% patients each and anaphylaxis and keloidal reaction was seen in 2% patients each.

  4. The use of personal hair dye and its implications for human health.

    Science.gov (United States)

    Kim, Ki-Hyun; Kabir, Ehsanul; Jahan, Shamin Ara

    2016-01-01

    Hair dye products now represent one of the most rapidly growing beauty and personal care industries as both men and women commonly change hair color to enhance youth and beauty and to follow fashion trends. Irrespective of economic and education status, people dye their hair to emphasize the importance given to appearance. Despite adverse reactions, many people continue dyeing mainly for cosmetic purposes. This paper provides a comprehensive review on various aspects of hair dying products, especially with respect to the hair-coloring process, classification, chemical ingredients, possible human health impacts, and regulations. Permanent hair dye, which is the most commonly used product type, is formed by an oxidative process involving arylamines to bring about concerns with long-term exposure. Hence, significant efforts have been put to understand the possible side effects of such exposure including cancer risk. However, hair dyes and their ingredients are mainly identified to have moderate to low acute toxicity such as the cause of allergic contact dermatitis. Although some hair dye components are reported to be carcinogenic in animals, such evidence is not consistent enough in the case of human studies. Consequently, further research is desirable to critically address the significance of this issue, especially with respect to the safety of hair dye ingredients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ranking of hair dye substances according to predicted sensitization potency

    DEFF Research Database (Denmark)

    Søsted, H; Basketter, D A; Estrada, E

    2004-01-01

    Allergic contact dermatitis following the use of hair dyes is well known. Many chemicals are used in hair dyes and it is unlikely that all cases of hair dye allergy can be diagnosed by means of patch testing with p-phenylenediamine (PPD). The objectives of this study are to identify all hair dye...... in order to help select a number of chemically diverse hair dye substances that could be used in subsequent clinical work. Various information sources, including the Inventory of Cosmetics Ingredients, new regulations on cosmetics, data on total use and ChemId (the Chemical Search Input website provided...... by the National Library of Medicine), were used in order to identify the names and structures of the hair dyes. A QSAR model, developed with the help of experimental local lymph node assay data and topological sub-structural molecular descriptors (TOPS-MODE), was used in order to predict the likely sensitization...

  6. Comparative sensitizing potencies of fragrances, preservatives, and hair dyes

    DEFF Research Database (Denmark)

    Lidén, Carola; Yazar, Kerem; Johansen, Jeanne Duus

    2016-01-01

    the sensitizing potencies of fragrance substances, preservatives, and hair dye substances, which are skin sensitizers that frequently come into contact with the skin of consumers and workers, LLNA results and EC3 values for 72 fragrance substances, 25 preservatives and 107 hair dye substances were obtained from...... two published compilations of LLNA data and opinions by the Scientific Committee on Consumer Safety and its predecessors. The median EC3 values of fragrances (n = 61), preservatives (n = 19) and hair dyes (n = 59) were 5.9%, 0.9%, and 1.3%, respectively. The majority of sensitizing preservatives...... and hair dyes are thus strong or extreme sensitizers (EC3 value of ≤2%), and fragrances are mostly moderate sensitizers. Although fragrances are typically moderate sensitizers, they are among the most frequent causes of contact allergy. This indicates that factors other than potency need to be addressed...

  7. Severe allergic hair dye reactions in 8 children

    DEFF Research Database (Denmark)

    Sosted, Heidi; Johansen, Jeanne Duus; Andersen, Klaus Ejner

    2006-01-01

    Serious adverse skin reactions to permanent hair dyes and temporary black tattoos have been reported. As temporary tattoos have become fashionable among adolescents, the risk profile for p-phenylenediamine (PPD) sensitization of the population has changed simultaneously with an increasing use...... of hair dyes in this age group. This investigation reports PPD sensitization in children with regard to cause of sensitization, clinical presentation and consequences. Clinical history and patch test results for consecutive children below 16 years of age with suspected hair dye allergic reactions...... and positive patch tests to PPD were collected over 2 years in 2 Danish dermatology clinics. 8 children aged 12-15 years were collected, and they all reacted to several hair dye ingredients. 5 of the patients were hospitalized, 1 in the intensive care unit. 6 of the patients gave a history of prior reaction...

  8. Detection of oxidative hair treatment using fluorescence microscopy.

    Science.gov (United States)

    Witt, Silvana; Wunder, Cora; Paulke, Alexander; Verhoff, Marcel A; Schubert-Zsilavecz, Manfred; Toennes, Stefan W

    2016-08-01

    In assessing abstinence from drug or alcohol abuse, hair analysis plays an important role. Cosmetic hair treatment influences the content of deposited drugs which is not always detectable during analysis. Since oxidation of melanin leads to an increase in fluorescence, a microscopic method was developed to distinguish natural from cosmetically treated hair. For validation, natural hair samples were treated with different types of cosmetics and inspected by fluorescence microscopy. Hair samples from 20 volunteers with documented cosmetic treatment and as a proof of concept 100 hair samples from forensic cases were analyzed by this method. Apart from autofluorescence with excitation at 365 nm, no obvious fluorescence was observed in untreated hair samples. Tinting and a natural plant product had no influence on fluorescence, but dyeing procedures including oxidation led to a marked increase in fluorescence. Proof of cosmetic treatment was achieved in hair samples from the 20 volunteers. In 100 forensic cases, 13 samples were characterized as oxidatively treated, which was in accordance with the respective disclosure except for one case where treatment was not admitted. This fluorescence microscopic procedure proved to be fast, easy, and reliable to identify oxidatively treated hair samples, which must be considered especially in evaluating cases of negative drug results. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Personal use of hair dyes and temporary black tattoos in Copenhagen hairdressers

    DEFF Research Database (Denmark)

    Hansen, Henriette S; Johansen, Jeanne D; Thyssen, Jacob P

    2010-01-01

    Hairdressers are occupationally and personally exposed to hair dye substances and adverse reactions from the skin are well known. Currently, little is known about personal exposure to hair dye ingredients and temporary black tattoos.......Hairdressers are occupationally and personally exposed to hair dye substances and adverse reactions from the skin are well known. Currently, little is known about personal exposure to hair dye ingredients and temporary black tattoos....

  10. 21 CFR 740.18 - Coal tar hair dyes posing a risk of cancer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Coal tar hair dyes posing a risk of cancer. 740.18... (CONTINUED) COSMETICS COSMETIC PRODUCT WARNING STATEMENTS Warning Statements § 740.18 Coal tar hair dyes... coal tar hair dye containing any ingredient listed in paragraph (b) of this section shall bear, in...

  11. 55 cases of allergic reactions to hair dye: a descriptive, consumer complaint-based study

    DEFF Research Database (Denmark)

    Søsted, H; Agner, T; Andersen, Klaus Ejner

    2002-01-01

    themselves, and adverse reactions to hair dye may not necessarily be recorded by the health care system, unless the reactions are especially severe. Based on this assumption, we suspected that hair dye dermatitis was occurring more frequently than reported in the literature. Consumer complaint-based data......Severe facial and scalp dermatitis following the use of permanent hair dyes has been reported in several cases. Para-phenylenediamine (PPD) is known as a potent contact allergen, and PPD is allowed in hair dye at a concentration of 6%. Hair dye reactions are usually diagnosed by the patients...

  12. Continuous usage of a hair dye product containing 2-methoxymethyt-para-phenylenediamine by hair-dye-allergic individuals

    NARCIS (Netherlands)

    Kock, M.; Coenraads, P. -J.; Bloemeke, B.; Goebel, C.

    Background Despite a positive patch test reaction to para-phenylenediamine (PPD) and/or toluene-2,5-diamine (PTD), many people attempt to continue dyeing their hair with products containing PPD or its derivatives. Objectives Investigation of elicitation reactions among PPD/PTD-allergic individuals

  13. Contact dermatitis to hair dyes in a Danish adult population: an interview-based study

    DEFF Research Database (Denmark)

    Søsted, H; Hesse, U; Menné, T

    2005-01-01

    BACKGROUND: Contact allergy to hair dye ingredients is a well-known entity seen both in consumers using hair dyes and among hairdressers with occupational contact dermatitis. Surveys show that consumers with even severe adverse skin reactions to hair dyes only rarely contact the healthcare services....... The frequency of hair dye-induced skin reactions in the consumer population is unknown. OBJECTIVES: An epidemiological investigation with the aim of establishing the proportion of hair dye-induced skin reactions was performed in a population-based sample. METHODS: A representative random sample (n = 4000......) was taken of the Danish adult population. Personal interview questions were asked regarding adverse skin reactions to hair dyes, either compatible with a classical allergic eczematous reaction with redness, scaling and itching or a severe allergic reaction with oedema of the forehead and face. The response...

  14. Nanoporous of W/WO{sub 3} thin film electrode grown by electrochemical anodization applied in the photoelectrocatalytic oxidation of the basic red 51 used in hair dye

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Luciano E.; Zanoni, Maria Valnice B., E-mail: fraga@iq.unesp.b [Universidade Estadual Paulista (IQ/UNESP), Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica Analitica

    2011-07-01

    Self-organized W/WO{sub 3} nanoporous electrodes can be obtained by simple electrochemical anodization of W foil in 0.15 mol L{sup -1} NaF solution as the supporting electrolyte, applying a ramp potential of 0.2 V s{sup -1} until it reached 60 V, which was maintained for 2 h. The monoclinic form is majority in the highly ordered WO{sub 3} annealed at 450 deg C, obtaining a higher photoactivity when irradiated by visible light than by UV light. The electrode promotes complete discoloration of the investigated basic red 51 dye after 60 min of photoelectrocatalytic oxidation, on current density of 1.25 mA cm{sup -2} and irradiation on wavelength of 420-630 nm. In this condition it was obtained 63% of mineralization. Lower efficiency is obtained for the system irradiated by wavelength (280- 400 nm) when only 40% of total organic carbon removal is obtained and 120 min is required for complete discoloration. (author)

  15. Hair-dye induced erythema multiforme like allergic contact dermatitis

    Directory of Open Access Journals (Sweden)

    Mrinal Gupta

    2017-04-01

    Full Text Available Erythema multiforme (EM is an acute, self limited skin disease characterized by the sudden eruption of symmetrical lesions in typical targetoid fashion usually confined to face and extremities. The most commonly implicated factors include infections like herpes simplex, mycoplasma, drugs like antibiotics and anticonvulsants and vaccinations. Contact dermatitis induced EM is a rarely reported entity. Herein we present a case of a 40 year old female who presented with EM due to contact sensitivity to p-Paraphenylenediamine (PPD, a common coloring agent in hair-dyes and a potent sensitizer. Till date, there have been only a few case reports of PPD induced EM.

  16. 21 CFR 70.20 - Packaging requirements for straight colors (other than hair dyes).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Packaging requirements for straight colors (other than hair dyes). 70.20 Section 70.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... straight colors (other than hair dyes). Straight colors shall be packaged in containers which prevent...

  17. Repeated exposure to hair dye induces regulatory T cells in mice

    DEFF Research Database (Denmark)

    Rubin, I M C; Dabelsteen, S; Nielsen, M M

    2010-01-01

    We have recently shown that commercial p-phenylenediamine (PPD)-containing hair dyes are potent immune activators that lead to severe contact hypersensitivity in an animal model. However, only a minority of people exposed to permanent hair dyes develops symptomatic contact hypersensitivity...

  18. Morbidity and Mortality in 7,684 Women According to Personal Hair Dye Use

    DEFF Research Database (Denmark)

    Vedel-Krogh, Signe; Nielsen, Sune F; Schnohr, Peter

    2016-01-01

    BACKGROUND: Permanent hair dye contains aromatic amines which are carcinogenic, and can cause allergic skin reactions. In the long term personal use of hair dye might therefore influence both morbidity and mortality. OBJECTIVES: We tested the hypothesis that personal use of hair dye in women...... is associated with increased morbidity and mortality in the general population. METHODS: We included 7,684 women from the Copenhagen City Heart Study with information on the use of personal hair dye. We assessed the risk of cancer, skin diseases, other morbidities, and mortality during a median follow-up of 27...... years (range 0-37). RESULTS: The multivariable adjusted hazard ratio for malignant melanoma in women with versus without personal use of hair dye was 2.07 (95% confidence interval 1.25-3.42). There was no increased risk of other cancer types. For other skin diseases and other major causes of morbidity...

  19. A study of knowledge, attitude and practices regarding hair dye use among general population

    Directory of Open Access Journals (Sweden)

    Mrinal Gupta

    2018-02-01

    Full Text Available Background: Hair dye usage is extremely common all over the world. Hair dyes have been reported to cause a wide range of adverse effects, therefore, the consumer’s knowledge about hair dyeing and related side effects are important. Aim: To assess the knowledge, attitude and practices of general population towards the use of hair dyes. Materials and Methods: Two hundred and fifty consecutive persons using hair dyes were enrolled for this questionnaire-based cross-sectional, descriptive study. Results: These 250 patients comprised 141 men (56.4% and 109 women (43.6% (M: F 1.29:1, aged between 16 and 74 (mean 47.13 years. The majority, 212 patients (84.8% were aged between 20–60 years and 66.4% (n=166 belonged to an urban background. When asked about the reason for using hair color, the principle reason was “to look younger” (59.6%, n=149. Most of the respondents were using synthetic hair dye preparations (55.2%, n=138 and when asked about the brand of hair dye being used, 25.2% (n=63 did not know about the brand they were using. When asked about their perception regarding safety of HD, 61% (n=152 respondents agreed that hair dyes are not safe and on being asked about the carcinogenic potential of HD, only 24% (n=60 respondents agreed. When enquired about the safest variety of HD, majority of respondents (52.4%, n=131 believed that plant based hair colors are the safest. When asked about the safety of HD during pregnancy and lactation, 68% (n=168 of the respondents were unaware regarding this aspect. 14.4% of the respondents reported suffering from some adverse effects due to hair dye use but only 11.11% (n=4 of those stopped using hair dyes. Conclusions: There is lack of awareness about the hair dyes and their adverse effects in the general population. There is an urgent need to increase awareness among consumers regarding the adverse effects of hair dyes and the available safer alternatives. Limitations: Small number of respondents and

  20. Protection of oxidative hair color fading from shampoo washing by hydrophobically modified cationic polymers.

    Science.gov (United States)

    Zhou, Y; Foltis, L; Moore, D J; Rigoletto, R

    2009-01-01

    The fading of oxidative color in hair as a result of daily shampoo washing activities has become a common problem and a source of frequent complaints by consumers. The fading occurs primarily through hair dye solubility in water. One aspect of the current study investigates the physical and chemical factors that influence hair color fading during the washing process. This is accomplished by testing hair dye dissolution in water from dyed hair samples with variation of surfactant type, pH, and hair type. Furthermore, a new approach to preventing color fading is developed aiming to provide an effective barrier function for hair dye from dissolving into water. The preliminary investigation of a series of polymers with various functional groups indicates that polymers with hydrophobically modified and cationic functionalities are most effective in preventing hair dye dissolution in water. It is also evident that a synergistic effect of the polymer's hydrophobic moieties and cationic charges are important on hair color protection during shampoo washing processes. A primary example of a polymer within this category is a cationic terpolymer of vinylpyrrolidone, dimethylaminopropyl methacrylamide, and methacryloylaminopropyl lauryldimonium chloride (INCI: Polyquaternium-55). The color protection benefit of this polymer is evaluated using newly developed methodologies for evaluating hair color changes, such as hair color fading tests through multiple shampoo washes with mannequin heads and hair tresses, both derived from human hair, colorimetry, and quantitative digital image analysis. In addition, new infrared spectroscopic imaging techniques are used to detect the hair dye deposition behavior inside hair fibers both with and without the color protection treatment. Both visual and instrumental measurement results indicate that Polyquaternium-55 provides a high level of color protection when formulated in a hair color protection regimen with up to 50% color protection. This

  1. Oxidative stress in ageing of hair.

    Science.gov (United States)

    Trüeb, Ralph M

    2009-01-01

    Experimental evidence supports the hypothesis that oxidative stress plays a major role in the ageing process. Reactive oxygen species are generated by a multitude of endogenous and environmental challenges. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage cellular structural membranes, lipids, proteins, and DNA. The body possesses endogenous defence mechanisms, such as antioxidative enzymes and non-enzymatic antioxidative molecules, protecting it from free radicals by reducing and neutralizing them. With age, the production of free radicals increases, while the endogenous defence mechanisms decrease. This imbalance leads to the progressive damage of cellular structures, presumably resulting in the ageing phenotype. Ageing of hair manifests as decrease of melanocyte function or graying, and decrease in hair production or alopecia. There is circumstantial evidence that oxidative stress may be a pivotal mechanism contributing to hair graying and hair loss. New insights into the role and prevention of oxidative stress could open new strategies for intervention and reversal of the hair graying process and age-dependent alopecia.

  2. Hair dye dermatitis and p-phenylenediamine contact sensitivity: A preliminary report

    Directory of Open Access Journals (Sweden)

    Mrinal Gupta

    2015-01-01

    Full Text Available Background: The contact allergic reactions from p-phenylenediamine (PPD in hair dyes vary from mild contact dermatitis to severe life- threatening events (angioedema, bronchospasm, asthma, renal impairment. Objectives: To study the clinical patterns and PPD contact sensitivity in patients with hair-dye dermatitis. Materials and Methods: Eighty (M: F 47:33 consecutive patients aged between 18 and 74 years suspected to have contact allergy from hair dye were studied by patch testing with Indian Standard Series including p-phenylenediamine (PPD, 1.0% pet. Results: 54 Fifty-four (M: F 21:33 patients showed positive patch tests from PPD. Eight of these patients also showed positive patch test reaction from fragrance mix, thiuram mix, paraben mix, or colophony. Fifty-seven (71% patients affected were aged older than 40 years. The duration of dermatitis varied from 1 year with exacerbation following hair coloring. Forty-nine patients had dermatitis of scalp and/or scalp margins and 23 patients had face and neck dermatitis. Periorbital dermatitis, chronic actinic dermatitis, and erythema multiforme-like lesions were seen in 4, 2, and 1 patients, respectively. Conclusions: Hair dyes and PPD constitute a significant cause of contact dermatitis. There is an urgent need for creating consumer awareness regarding hair-dyes contact sensitivity and the significance of performing sensitivity testing prior to actual use.

  3. Are gloves sufficiently protective when hairdressers are exposed to permanent hair dyes? An in vivo study.

    Science.gov (United States)

    Antelmi, Annarita; Young, Ewa; Svedman, Cecilia; Zimerson, Erik; Engfeldt, Malin; Foti, Caterina; Bruze, Magnus

    2015-04-01

    The use of permanent hair dyes exposes hairdressers to contact allergens such as p-phenylenediamine (PPD), and the preventive measures are insufficient. To perform an in vivo test to study the protective effect of gloves commonly used by hairdressers. Six gloves from Sweden, Italy and Germany were studied: two vinyl, one natural rubber latex, two nitrile, and one polyethylene. The hair dye used for the provocation was a dark shade permanent dye containing PPD. The dye was mixed with hydrogen peroxide, and 8 PPD-sensitized volunteers were tested with the gloves as a membrane between the hair dye and the skin in a cylindrical open chamber system. Three exposure times (15, 30 and 60 min) were used. Eczematous reactions were found when natural rubber latex, polyethylene and vinyl gloves were tested with the dye. The nitrile gloves gave good protection, even after 60 min of exposure to the hair dye. Many protective gloves used by hairdressers are unsuitable for protection against the risk of elicitation of allergic contact dermatitis caused by PPD. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. p-Phenylenediamine and other allergens in hair dye products in the United States

    DEFF Research Database (Denmark)

    Hamann, Dathan; Yazar, Kerem; Hamann, Carsten R

    2014-01-01

    product contained six (range 0-11). p-Phenylenediamine (PPD) was found in 83 products (78%), but resorcinol (89%), m-aminophenol (75%), p-aminophenol (60%) and toluene-2,5-diamine (21%) were also frequently identified. CONCLUSIONS: Potent contact sensitizers were almost universally included in the hair...... dyes investigated in the United States. Although PPD is a common allergen, resorcinol and m-aminophenol were found more frequently. In total, 30 potent sensitizers were found. Clinicians should consider other allergens in addition to PPD when evaluating patients with suspected hair dye allergy....

  5. Personal use of hair dyes and temporary black tattoos in Copenhagen hairdressers.

    Science.gov (United States)

    Hansen, Henriette S; Johansen, Jeanne D; Thyssen, Jacob P; Linneberg, Allan; Søsted, Heidi

    2010-06-01

    Hairdressers are occupationally and personally exposed to hair dye substances and adverse reactions from the skin are well known. Currently, little is known about personal exposure to hair dye ingredients and temporary black tattoos. To investigate hairdressers' professional and personal risk exposures and to compare the frequency of temporary tattoos among hairdressers and subjects from the general population. A questionnaire was sent to 1679 Copenhagen hairdressers and 1063 (63.3%) responded; 3471 subjects from the general population in Copenhagen were asked about temporary black tattoos. Of the female hairdressers, 38.3% had coloured hair within the previous week. Adverse skin reactions to own hair dye were reported in 29.5%. In the hairdresser population, no significant association was observed between self-reported adverse skin reactions to hair dye and having had a temporary black tattoo when adjusted for sex, age, and atopy. A total of 19.0% of hairdressers (43.5% of apprentices) and 6.3% of participants from the general population had ever had a temporary black tattoo performed at one point. There were no differences in frequency of eczema after temporary tattooing between hairdressers and subjects in the general population. Almost all hairdressers (99.2%) used gloves for hair colouring, 51% for high/low lighting, 39.6% for perming and 21.1% used gloves for shampooing. In conclusion, skin reactions to hair colour are frequent among Copenhagen hairdressers. Temporary black tattoos were more frequent among hairdressers than in a sample of the general population and increased with decreasing age.

  6. Skin sensitization quantitative risk assessment for occupational exposure of hairdressers to hair dye ingredients.

    Science.gov (United States)

    Goebel, Carsten; Diepgen, Thomas L; Blömeke, Brunhilde; Gaspari, Anthony A; Schnuch, Axel; Fuchs, Anne; Schlotmann, Kordula; Krasteva, Maya; Kimber, Ian

    2018-06-01

    Occupational exposure of hairdressers to hair dyes has been associated with the development of allergic contact dermatitis (ACD) involving the hands. p-Phenylenediamine (PPD) and toluene-2,5-diamine (PTD) have been implicated as important occupational contact allergens. To conduct a quantitative risk assessment for the induction of contact sensitization to hair dyes in hairdressers, available data from hand rinsing studies following typical occupational exposure conditions to PPD, PTD and resorcinol were assessed. By accounting for wet work, uneven exposure and inter-individual variability for professionals, daily hand exposure concentrations were derived. Secondly, daily hand exposure was compared with the sensitization induction potency of the individual hair dye defined as the No Expected Sensitization Induction Levels (NESIL). For PPD and PTD hairdresser hand exposure levels were 2.7 and 5.9 fold below the individual NESIL. In contrast, hand exposure to resorcinol was 50 fold below the NESIL. Correspondingly, the risk assessment for PPD and PTD indicates that contact sensitization may occur, when skin protection and skin care are not rigorously applied. We conclude that awareness of health risks associated with occupational exposure to hair dyes, and of the importance of adequate protective measures, should be emphasized more fully during hairdresser education and training. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Preparation of demipermanent and semipermanent hair dyes gels from ethanol extract of Caesalpinia sappan L. using carbomer as gelling agent

    Science.gov (United States)

    Indrawati, T.; Syahrin, A.; Irpan

    2017-07-01

    Caesalpinia sappan L. (Cs L) contains of essential oils, saponin, brazilin, brazilein, alkaloids, flavonoids and tannins that have a function as cationic natural dyes. The aim of this research was to prepare the ethanol extract of Cs L wood and to prepare demi-permanent and semi-permanent of hair dye gels by using Carbomer of 2 % and 1.5 % as gelling agent and Cs L extract as cationic dyes. The Extract of Cs L was macerated by using ethanol of 96 % as the solvent, and then thickened. Three formula of demi-permanent hair dye gels were made by using Cs L extract of 3 %, 6% and 9 %. Three formula of semi-permanent hair dye gels were made by using Cs L extract of 2.50 %, 7.00 % and 10.50 %. Those hair dyes gels were prepared by swelling and mixing methods. All products of hair dyes gels were evaluated with organoleptic test, homogeneity test, pH test, consistency test, rheological properties test and dyeing effect test. The demi-permanent hair dye gels products had brown to brown dark black colors, pH of 5.05-5.43, homogeny, specific Cs L odor, and had pseudoplastic thixotropic flow characteristic. The semi-permanent hair dye gels products had red color pH of 6.5-6.25, homogeny, Cs L odor, and have pseudoplastic thixotropic flow characteristics. The optimum formula of demi-permanent was formula gel that contained of 6 % extract of Cs L and the optimum formula of permanent hair dyes gel was formula that contained of 10.50 % extract of Cs L.

  8. Hair cosmetics

    Directory of Open Access Journals (Sweden)

    Nina Madnani

    2013-01-01

    Full Text Available The hair cosmetic industry has undergone a revolutionary change over the last two decades. The focus has dramatically veered from merely cleaning to repair, increasing the tensile strength, reducing oxidative damage, and stimulating growth. Newer shorter procedures to make hair look naturally more lustrous, smooth, and manageable have evolved. Specialized grooming products have been formulated to cleanse, calm, and condition the hair, and are tailored for different hair-types, for example, dry, dry-damaged, oily, colored, and gray hair. Other products are formulated to alter the color or structure of the hair shaft, for example, hair dyes, perming/relaxing. Hair sprays and waxes/gels, can alter the ′lift′ of the hair-shaft. Although dermatologists are experts in managing scalp and hair diseases, the esthetic applications of newer cosmetic therapies still remain elusive. This article attempts to fill the lacunae in our knowledge of hair cosmetics and esthetic procedures relevant in today′s rapidly changing beauty-enhancing industry, with special emphasis on the Indian scenario for chemical and ′natural′ hair products.

  9. Permeation of hair dye ingredients, p-phenylenediamine and aminophenol isomers, through protective gloves.

    Science.gov (United States)

    Lee, Hsiao-Shu; Lin, Yu-Wen

    2009-04-01

    Skin irritation and contact allergies are skin disorders common to hairdressers. The predominant oxidative hair dye components, such as p-phenylenediamine (PPD) and aminophenol isomers, can cause contact dermatitis. Use of protective gloves can prevent dermal contact with skin irritants. This study investigates the permeation behaviors of p-aminophenol (PAP), m-aminophenol (MAP), o-aminophenol (OAP) and PPD in single and mixed challenge solutions with disposable natural rubber latex (NRL) gloves, disposable polyvinylchloride (PVC) gloves and neoprene (NP) gloves. The challenge solutions were 4% PPD (w/v), 3% OAP (w/v), 2% PAP (w/v) and 2% MAP (w/v) in ethanol or 12% hydrogen peroxide solutions. The cocktail solutions of the four chemicals were also tested. An American Society for Testing and Materials type permeation cell, ethanol liquid collection and gas chromatography-flame ionization detection of samples taken from the collection medium every 10 min facilitated determination of breakthrough times (BTs), cumulative permeated masses and steady-state permeation rates (SSPRs). Experiments were 4 h long for the NRL and PVC gloves and 8 h for NP gloves. No chemicals tested broke through the NP gloves when exposed for 8 h. In the ethanol solution, PPD and OAP started breaking through the PVC gloves at 40 min. The SSPRs of PVC gloves were higher than those for NRL gloves in all challenge conditions for both single chemicals and mixtures. No tested chemicals in hydrogen peroxide solutions permeated the gloves during the 4-h tests. The chemical composition of the challenge solution was a main effecter of BTs and SSPRs for the NRL glove. For disposable PVC gloves, the main factors of BTs were molecular size [molar volume (MV)] and polarity (logK(ow)), and the primary factors of SSPRs were concentration, MV and logK(ow). In conclusion, disposable NRL gloves and disposable PVC gloves should not be used repeatedly for handling the hair dye products. Hydrogen peroxide did not

  10. Advanced oxidation of acid and reactive dyes

    DEFF Research Database (Denmark)

    Arslan-Alaton, I.; Gursoy, B.H.; Schmidt, Jens Ejbye

    2008-01-01

    M) for 10:hsp sp="0.25" min Fenton treatment at pH 3, resulting in reduced chemical oxygen demand and dissolved organic carbon removal efficiencies; only acetate was detected as a stable dye oxidation end product. During anaerobic digestion, 100, 29% and no inhibition in methane production was observed...

  11. Distribution kinetics of 3H-labelled p-phenylene diamine - - a hair dye

    International Nuclear Information System (INIS)

    Rehani, M.M.; Jain, I.S.; Sharma, S.K.

    1981-01-01

    The distribution kinetics of the 3 H-labelled p-phenylene diamine (a hair dye compound), was studied when administered iv and when applied percutaneously. The tracer experiments in rabbits after iv administration showed a biphasic blood clearance with half life values of 24 min and 43.5 h and quick-percutaneous absorption. The tissue distribution pattern investigated after iv and percutaneous administration in 16 different tissues and also in blood did not demonstrate any target organ for selective localisation of the dye. Not more than 0.06 percent of the iv administered radioactivity was measured per 10 mg of any tissue at 12th day. (author)

  12. PTCA (1H-pyrrole-2,3,5-tricarboxylic acid) as a marker for oxidative hair treatment.

    Science.gov (United States)

    Petzel-Witt, Silvana; Meier, Sylvia I; Schubert-Zsilavecz, Manfred; Toennes, Stefan W

    2018-04-01

    Hair analysis for the assessment of alcohol or drug abstinence has become a routine procedure in forensic toxicology. Hair coloration leading to loss of incorporated xenobiotics and to false negative results has turned out to be a major problem. Currently only colored extracts provide hints of manipulations but not bleaching. A liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method was developed and validated to determine 1H-pyrrole-2,3,5-tricarboxylic acid (PTCA), a major oxidation product of melanin. PTCA was determined in natural hair samples (n = 21) after treatment with 3% hydrogen peroxide (H 2 O 2 ) for 30 or 40 minutes with concentrations up to 12% for 40 minutes. In another series, 12 natural hair samples were submitted to different coloration procedures (henna, tinting, semi-permanent and permanent dyeing, bleaching) and the changes in PTCA content were determined. A significant increase in the PTCA content was found for both incubation times and increasing H 2 O 2 concentrations. Coloration with henna or tinting had no influence on PTCA levels detected, but a significant increase was observed after semi-permanent and permanent dyeing and bleaching. As PTCA concentrations in natural hair were found to be in a range of <2.1-16.4 ng/mg (8.4 ± 3.8 ng/mg, mean ± SD, n = 33), a cut-off of 20 ng/mg is recommended for the distinction between natural vs. excessively oxidized hair. In case of naturally low melanin content (light-blond or white hair), no marked increase in PTCA may occur. The present study demonstrated that PTCA is formed during oxidative treatment of melanin in hair, which can be used to detect previous hair coloration including oxidation. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Self-testing for contact sensitization to hair dyes--scientific considerations and clinical concerns of an industry-led screening programme

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Søsted, Heidi; Uter, Wolfgang

    2012-01-01

    The cosmetic industry producing hair dyes has, for many years, recommended that their consumers perform 'a hair dye allergy self-test' or similar prior to hair dyeing, to identify individuals who are likely to react upon subsequent hair dyeing. This review offers important information...... on the requirements for correct validation of screening tests, and concludes that, in its present form, the hair dye self-test has severe limitations: (i) it is not a screening test but a diagnostic test; (ii) it has not been validated according to basic criteria defined by scientists; (iii) it has been evaluated...... in the wrong population group; (iv) skin reactions have been read by dermatologists and not by the targeted group (consumers and hairdressers); (v) hair dyes contain strong and extreme sensitizers that are left on the skin in high concentrations, potentially resulting in active sensitization; and (vi...

  14. Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation

    Directory of Open Access Journals (Sweden)

    Lee HY

    2011-11-01

    Full Text Available Hye-Young Lee1,*, Young-IL Jeong2,*, Ki-Choon Choi31Anyang Science University, Anyang, Gyeonggi, South Korea; 2Chonnam National University Hwasun Hospital, Jeonnam, South Korea; 3Grassland and Forages Research Center, National Institute of Animal Science, Rural Development Administration, Chungnam, South Korea*These authors contributed equally to this work.Background: p-Phenylenediamine (PDA or its related chemicals are used more extensively than oxidative hair dyes. However, permanent hair dyes such as PDA are known to have potent contact allergy reactions in humans, and severe allergic reactions are problematic.Methods: PDA-incorporated nanoparticles were prepared based on ion-complex formation between the cationic groups of PDA and the anionic groups of poly(γ-glutamic acid (PGA. To reinforce PDA/PGA ion complexes, glycol chitosan (GC was added. PDA-incorporated nanoparticles were characterized using field-emission scanning electron microscopy, Fourier-transform infrared (FT-IR spectroscopy, dynamic light scattering, and powder X-ray diffractometry (XRD.Results: Nanoparticles were formed by ion-complex formation between the amine groups of PDA and the carboxyl groups of PGA. PDA-incorporated nanoparticles are small in size (<100 nm, and morphological observations showed spherical shapes. FT-IR spectra results showed that the carboxylic acid peak of PGA decreased with increasing PDA content, indicating that the ion complexes were formed between the carboxyl groups of PGA and the amine groups of PDA. Furthermore, the intrinsic peak of the carboxyl groups of PGA was also decreased by the addition of GC. Intrinsic crystalline peaks of PDA were observed by XRD. This crystalline peak of PDA was completely nonexistent when nanoparticles were formed by ion complex between PDA, PGA, and GC, indicating that PDA was complexed with PGA and no free drug existed in the formulation. During the drug-release experiment, an initial burst release of PDA was

  15. Hemolytic anemia after ingestion of the natural hair dye Lawsonia inermis (henna) in a dog.

    Science.gov (United States)

    Jardes, Daniel J; Ross, Linda A; Markovich, Jessica E

    2013-01-01

    To describe the clinical presentation and case management of a dog that developed hemolytic anemia and evidence of renal tubular dysfunction after ingestion of a natural hair dye containing Lawsonia inermis (henna). To review cases of henna toxicity reported in the human literature. An 8-year-old female spayed Border Collie was presented 5 days after ingestion of a box of natural hair dye. The dog was showing signs of lethargy, vomiting, diarrhea, and weakness. A serum biochemistry profile, complete blood count, and urinalysis demonstrated evidence of renal tubular dysfunction and a regenerative anemia without spherocytosis. The dog was treated with a transfusion of packed RBCs and IV fluids, resulting in significant clinical improvement. Repeat diagnostics showed resolution of the anemia and no lasting evidence of tubular dysfunction. To the authors' knowledge, this is the first reported case in the veterinary literature of toxicity following ingestion of Lawsonia inermis (henna). Henna ingestion was associated with the development of hemolytic anemia and acute kidney injury. © Veterinary Emergency and Critical Care Society 2013.

  16. Self-testing for contact allergy to hair dyes - a 5-year follow-up multicentre study

    DEFF Research Database (Denmark)

    Friis, Ulrik F; Goosens, An; Giménez-Arnau, Ana Maria

    2018-01-01

    the method of application, the amount of hair dye applied, the location and size of the application area, the number of applications, whether or not rinsing was performed after application, the reading times, and how a positive reaction was defined. CONCLUSIONS: Self-testing is still recommended by almost...

  17. Hair Dyes Resorcinol and Lawsone Reduce Production of Melanin in Melanoma Cells by Tyrosinase Activity Inhibition and Decreasing Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF Expression

    Directory of Open Access Journals (Sweden)

    Shu-Mei Lee

    2015-01-01

    Full Text Available Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future.

  18. In liquid laser treated graphene oxide for dye removal

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paola, E-mail: rsspla1@gmail.com [Dipartimento di Scienze Chimiche, Universita’ degli Studi di Catania, Viale Andrea Doria 6, Catania 95125 (Italy); Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave., West Waterloo, Ontario N2L 3G1 (Canada); D’Urso, Luisa [Dipartimento di Scienze Chimiche, Universita’ degli Studi di Catania, Viale Andrea Doria 6, Catania 95125 (Italy); Hu, Anming [Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 57996-2210 (United States); Zhou, Norman [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave., West Waterloo, Ontario N2L 3G1 (Canada); Compagnini, Giuseppe [Dipartimento di Scienze Chimiche, Universita’ degli Studi di Catania, Viale Andrea Doria 6, Catania 95125 (Italy)

    2015-09-01

    Highlights: • Graphene oxide and reduced graphene oxide were tested as adsorbents for dye removal from water. • Reduced graphene oxide was obtained after laser irradiation of a colloidal suspension of graphene oxide. • Methylene blue was chosen as the dye to test graphene oxide and reduced graphene oxide. - Abstract: The presence of dyes, pharmaceuticals and many other pollutants in wastewaters is critical due to severe effects on the human beings and on the environment. Here, solutions of graphene oxide (GO) and reduced graphene oxide (rGO) were tested as adsorbents for the removal of methylene blue (MB), a cationic dye, from aqueous media. The reduced forms of graphene oxide were obtained after laser irradiation of colloidal suspensions of graphene oxide, obtained by the Hummers and Offeman's method. We observed that both graphene oxide and its reduced forms are excellent adsorbents towards methylene blue. In particular, rGO showed a higher adsorption capacity than GO, suggesting that a strict control of laser irradiation time permits to obtain rGO with different degrees of reduction and therefore the residual oxygenated functional groups may influence the adsorption behaviour more or less. Characterization of the samples by atomic force microscopy (AFM) showed that produced rGO sheets via laser irradiation exhibited a discontinuous surface where some holes could be detected contributing to an enhancement of the rGO surface area that is a higher adsorption capacity.

  19. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes.

    Science.gov (United States)

    Balcioglu, I A; Arslan, I; Sacan, M T

    2001-07-01

    Two commercial reactive dyes, the azo dye Reactive Black 5 and the copper phythalocyanine dye Reactive Blue 21, have been treated at a concentration of 75 mg l(-1) by titanium dioxide mediated photocatalytic (TiO2/UV), dark and UV-light assisted Fenton (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) processes in acidic medium. For the treatment of Reactive Black 5, all investigated advanced oxidation processes were quite effective in terms of colour, COD as well as TOC removal. Moreover, the relative growth inhibition of the azo dye towards the marine algae Dunaliella tertiolecta that was initially 70%, did not exhibit an increase during the studied advanced oxidation reactions and complete detoxification at the end of the treatment period could be achieved for all investigated treatment processes. However, for Reactive Blue 21, abatement in COD and UV-VIS absorbance values was mainly due to the adsorption of the dye on the photocatalyst surface and/or the coagulative effect of Fe3+/Fe2+ ions. Although only a limited fraction of the copper phythalocyanine dye underwent oxidative degradation, 47% of the total copper in the dye was already released after 1 h photocatalytic treatment.

  20. The oxidation of acid azo dye AY 36 by a manganese oxide containing mine waste

    International Nuclear Information System (INIS)

    Clarke, Catherine E.; Kielar, Filip; Johnson, Karen L.

    2013-01-01

    Highlights: ► This study looks at the oxidative breakdown of the amine containing dye acid yellow 36 by a Mn oxide containing mine waste. ► The oxidation proceeds by successive one electron transfers between the dye molecule and the Mn oxide minerals. ► The initial decolorization of the dye is rapid, but does not involve the cleavage of the azo bond. -- Abstract: The oxidative breakdown of acid azo dye acid yellow 36 (AY 36) by a Mn oxide containing mine tailings is demonstrated. The oxidation reaction is pH dependent with the rate of decolorization increasing with decreasing pH. The oxidation reaction mechanism is initiated at the amino moiety and proceeds via successive, one electron transfers from the dye to the Mn oxide minerals. The reaction pathway involves the formation of a number of colorless intermediate products, some of which hydrolyze in a Mn oxide-independent step. Decolorization of the dye is rapid and is observed before the cleavage of the azo-bond, which is a slower process. The terminal oxidation products were observed to be p-benzoquinone and 3-hydroxybenzenesulfonate. The reaction order of the initial decolorization was determined to be pseudo fractional order with respect to pH and pseudo first order with respect to dye concentration and Mn tailings’ surface area

  1. Photo- and chemocatalytic oxidation of dyes in water.

    Science.gov (United States)

    Du, Wei-Ning; Chen, Shyi-Tien

    2018-01-15

    Three commonly used dyes, Acid Red-114 (AR-114), Reactive Black-5 (RB-5), and Disperse Black EX-SF (DB-EX-SF), were treated in a pH-neutral liquid with ultraviolet (UV) light by two reactive methods: photocatalysis with titanium dioxide (TiO 2 ), and/or chemocatalysis with hydrogen peroxide (H 2 O 2 ) as the oxidant and various ferrous-based electron mediators as catalysts. Important factors for dye oxidation were determined through bifactorial experiments. The optimum combinations and doses of the three key reagents, namely TiO 2 , H 2 O 2 , and EDTA-Fe, were also determined. The degradation kinetics of the studied dyes at their optimum doses reveal that the oxidation reactions are pseudo-first-order in nature, and that certain dyes are selectively degraded more by one method than the other. The overall results suggest that co-treatment using more than one oxidative method is beneficial for the treatment of wastewater from dyeing processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Hair Dye–DNA Interaction: Plausible Cause of Mutation

    Directory of Open Access Journals (Sweden)

    Swati Maiti

    2015-09-01

    Full Text Available Hair dye is one of the most popular cosmetic products which are used more widely and frequently to improve an individual’s appearance. Although the genotoxic effects of dye ingredients are widely reported, hair dye in its usable form is not reported extensively. In this contribution, we report the possible mode of interaction of hair dye with DNA which leads to genotoxicity. The effect of dye DNA interaction was studied on the most popular and globally used hair dye with Calf Thymus DNA and plasmid DNA. This interaction of dye DNA was studied by spectroscopic analyses and gel electrophoresis. The result had shown positive interaction of dye with DNA. Gel electrophoresis study confirms the binding of dye with DNA which results in linearization and fragmentation of the plasmid DNA. Dye–DNA interaction causes fragmentation and oxidation of DNA in absence of any catalyst, implies high toxicity of commercial hair dyes. Thus, it can be deduced from the present studies that hair dye in its usable form may lead to its penetration through skin affecting genomic DNA possesses genotoxic property and can be treated as one of the most common mutagen.

  3. Dye-sensitized solar cells based on nanostructured zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Conradt, Jonas; Maier-Flaig, Florian; Sartor, Janos; Fallert, Johannes [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Szmytkowski, Jedrzej; Kalt, Heinz [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Center for Functional Nanostructures (CFN), Karlsruhe (Germany); Reinhard, Manuel; Colsmann, Alexander [Karlsruhe Institute of Technology (KIT), Lichttechnisches Institut, Karlsruhe (Germany); Lemmer, Uli [Center for Functional Nanostructures (CFN), Karlsruhe (Germany); Karlsruhe Institute of Technology (KIT), Lichttechnisches Institut, Karlsruhe (Germany); Balaban, Teodor Silviu [Center for Functional Nanostructures (CFN), Karlsruhe (Germany); Karlsruhe Institute of Technology (KIT), Institute for Nanotechnology, Karlsruhe (Germany)

    2009-07-01

    Hybrid solar cells represent a promising (cost-efficient) alternative to pure inorganic solar cells. We present dye-sensitized solar cells (DSSC) which are based on a zinc oxide (ZnO) electrode covered with a ruthenium dye. Our work focuses on the morphology of the ZnO electrode and its impact on the photovoltaic performance of the solar cell. Nanocrystalline ZnO powder layers and arrays of nanorods are incorporated into the DSSCs. The ZnO nanorods are grown by vapor transport deposition. The morphology and doping concentration of the rods can be controlled by the choice of substrate material, growth condition and catalytic metal layers. The nanorod arrays are expected to fasten the electron transport towards the anode and thereby improve the solar cell efficiency. In addition, novel self-assembling (porphyrin) dyes are tested as sensitizer within a DSSC.

  4. Metal oxide semiconductors for dye degradation

    International Nuclear Information System (INIS)

    Adhikari, Sangeeta; Sarkar, Debasish

    2015-01-01

    Highlights: • Hydrothermal synthesis of monoclinic and hexagonal WO 3 nanostructures. • Nanocuboid and nanofiber growth using different structure directing agents. • WO 3 –ZnO nanocomposites for dye degradation under UV and visible light. • High photocatalytic efficiency is achieved by 10 wt% monoclinic WO 3 . • WO 3 assists to trap hole in UV and arrests electron in visible light irradiation. - Abstract: Organic contaminants are a growing threat to the environment that widely demands their degradation by high efficient photocatalysts. Thus, the proposed research work primely focuses on the efficient degradation of methyl orange using designed WO 3 –ZnO photocatalysts under both UV and visible light irradiation. Two different sets of WO 3 nanostructures namely, monoclinic WO 3 (m-WO 3 ) and hexagonal WO 3 (h-WO 3 ) synthesizes in presence of a different structure directing agents. A specific dispersion technique allows the intimate contact of as-synthesized WO 3 and ultra-violet active commercial ZnO photocatalyst in different weight variations. ZnO nanocrystal in presence of an optimum 10 wt% m-WO 3 shows a high degree of photocatalytic activity under both UV and visible light irradiation compared to counterpart h-WO 3 . Symmetrical monoclinic WO 3 assists to trap hole in UV, but electron arresting mechanism predominates in visible irradiation. Coupling of monoclinic nanocuboid WO 3 with ZnO proves to be a promising photocatalyst in both wavelengths.

  5. Trichocyanines: a Red-Hair-Inspired Modular Platform for Dye-Based One-Time-Pad Molecular Cryptography.

    Science.gov (United States)

    Leone, Loredana; Pezzella, Alessandro; Crescenzi, Orlando; Napolitano, Alessandra; Barone, Vincenzo; d'Ischia, Marco

    2015-06-01

    Current molecular cryptography (MoCryp) systems are almost exclusively based on DNA chemistry and reports of cryptography technologies based on other less complex chemical systems are lacking. We describe herein, as proof of concept, the prototype of the first asymmetric MoCryp system, based on an 8-compound set of a novel bioinspired class of cyanine-type dyes called trichocyanines. These novel acidichromic cyanine-type dyes inspired by red hair pigments were synthesized and characterized with the aid of density functional theory (DFT) calculations. Trichocyanines consist of a modular scaffold easily accessible via an expedient condensation of 3-phenyl- or 3-methyl-2H-1,4-benzothiazines with N-dimethyl- or o-methoxyhydroxy-substituted benzaldehyde or cinnamaldehyde derivatives. The eight representative members synthesized herein can be classified as belonging to two three-state systems tunable through four different control points. This versatile dye platform can generate an expandable palette of colors and appears to be specifically suited to implement an unprecedented single-use asymmetric molecular cryptography system. With this system, we intend to pioneer the translation of digital public-key cryptography into a chemical-coding one-time-pad-like system.

  6. Metal oxide semiconductors for dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, Sangeeta; Sarkar, Debasish, E-mail: dsarkar@nitrkl.ac.in

    2015-12-15

    Highlights: • Hydrothermal synthesis of monoclinic and hexagonal WO{sub 3} nanostructures. • Nanocuboid and nanofiber growth using different structure directing agents. • WO{sub 3}–ZnO nanocomposites for dye degradation under UV and visible light. • High photocatalytic efficiency is achieved by 10 wt% monoclinic WO{sub 3}. • WO{sub 3} assists to trap hole in UV and arrests electron in visible light irradiation. - Abstract: Organic contaminants are a growing threat to the environment that widely demands their degradation by high efficient photocatalysts. Thus, the proposed research work primely focuses on the efficient degradation of methyl orange using designed WO{sub 3}–ZnO photocatalysts under both UV and visible light irradiation. Two different sets of WO{sub 3} nanostructures namely, monoclinic WO{sub 3} (m-WO{sub 3}) and hexagonal WO{sub 3} (h-WO{sub 3}) synthesizes in presence of a different structure directing agents. A specific dispersion technique allows the intimate contact of as-synthesized WO{sub 3} and ultra-violet active commercial ZnO photocatalyst in different weight variations. ZnO nanocrystal in presence of an optimum 10 wt% m-WO{sub 3} shows a high degree of photocatalytic activity under both UV and visible light irradiation compared to counterpart h-WO{sub 3}. Symmetrical monoclinic WO{sub 3} assists to trap hole in UV, but electron arresting mechanism predominates in visible irradiation. Coupling of monoclinic nanocuboid WO{sub 3} with ZnO proves to be a promising photocatalyst in both wavelengths.

  7. Monodispersed Zinc Oxide Nanoparticle-Dye Dyads and Triads

    Energy Technology Data Exchange (ETDEWEB)

    Gladfelter, Wayne L. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry; Blank, David A. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry; Mann, Kent R. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry

    2017-06-22

    The overall energy conversion efficiency of photovoltaic cells depends on the combined efficiencies of light absorption, charge separation and charge transport. Dye-sensitized solar cells are photovoltaic devices in which a molecular dye absorbs light and uses this energy to initiate charge separation. The most efficient dye-sensitized solar cells (DSSCs) use nanocrystal titanium dioxide films to which are attached ruthenium complexes. Numerous studies have provided valuable insight into the dynamics of these and analogous photosystems, but the lack of site homogeneity in binding dye molecules to metal oxide films and nanocrystals (NCs) is a significant impediment to extracting fundamental details about the electron transfer across the interface. Although zinc oxide is emerging as a potential semiconducting component in DSSCs, there is less known about the factors controlling charge separation across the dye/ZnO interface. Zinc oxide crystallizes in the wurtzite lattice and has a band gap of 3.37 eV. One of the features that makes ZnO especially attractive is the remarkable ability to control the morphology of the films. Using solution deposition processes, one can prepare NCs, nanorods and nanowires having a variety of shapes and dimensions. This project solved problems associated with film heterogeneity through the use of dispersible sensitizer/ZnO NC ensembles. The overarching goal of this research was to study the relationship between structure, energetics and dynamics in a set of synthetically controlled donor-acceptor dyads and triads. These studies provided access to unprecedented understanding of the light absorption and charge transfer steps that lie at the heart of DSSCs, thus enabling significant future advances in cell efficiencies. The approach began with the construction of well-defined dye-NC dyads that were sufficiently dispersible to allow the use of state of the art pulsed laser spectroscopic and kinetic methods to understand the charge transfer

  8. Cross-elicitation responses to 2-methoxymethyl-p-phenylenediamine under hair dye use conditions in p-phenylenediamine-allergic individuals

    NARCIS (Netherlands)

    Bloemeke, B.; Pot, L. M.; Coenraads, P. -J.; Hennen, J.; Kock, M.; Goebel, C.

    Background The factors influencing elicitation responses in individuals allergic to p-phenylenediamine (PPD) in hair dyes are not well understood. Objectives Investigation of the elicitation response to the new, less-sensitizing PPD alternative 2-methoxymethyl-p-phenylenediamine (ME-PPD) under

  9. Research Advances: Pacific Northwest National Laboratory Finds New Way to Detect Destructive Enzyme Activity--Hair Dye Relies on Nanotechnology--Ways to Increase Shelf Life of Milk

    Science.gov (United States)

    King, Angela G.

    2007-01-01

    Recent advances in various research fields are described. Scientists at the Pacific Northwest National Laboratory have found a new way to detect destructive enzyme activity, scientists in France have found that an ancient hair dye used by ancient people in Greece and Rome relied on nanotechnology and in the U.S. scientists are developing new…

  10. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Manwaring, John, E-mail: manwaring.jd@pg.com [Procter & Gamble Inc., Mason Business Center, Mason, OH 45040 (United States); Rothe, Helga [Procter & Gamble Service GmbH, Sulzbacher Str. 40, 65823 Schwalbach am Taunus (Germany); Obringer, Cindy; Foltz, David J.; Baker, Timothy R.; Troutman, John A. [Procter & Gamble Inc., Mason Business Center, Mason, OH 45040 (United States); Hewitt, Nicola J. [SWS, Erzhausen (Germany); Goebel, Carsten [Procter & Gamble Service GmbH, Sulzbacher Str. 40, 65823 Schwalbach am Taunus (Germany)

    2015-09-01

    Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis–Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte K{sub m} and V{sub max} values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and C{sub max} was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. - Highlights: • An entirely in silico/in vitro approach to predict in vivo exposure to dermally applied hair dyes • Skin penetration and epidermal conversion assessed in human

  11. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro

    International Nuclear Information System (INIS)

    Manwaring, John; Rothe, Helga; Obringer, Cindy; Foltz, David J.; Baker, Timothy R.; Troutman, John A.; Hewitt, Nicola J.; Goebel, Carsten

    2015-01-01

    Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis–Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte K m and V max values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and C max was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. - Highlights: • An entirely in silico/in vitro approach to predict in vivo exposure to dermally applied hair dyes • Skin penetration and epidermal conversion assessed in human skin explants and

  12. Oxidative stability of yogurt with added lutein dye.

    Science.gov (United States)

    Domingos, L D; Xavier, A A O; Mercadante, A Z; Petenate, A J; Jorge, R A; Viotto, W H

    2014-02-01

    This study evaluated the effect of adding lutein dye on the oxidative stability of yogurt during 35 d of refrigerated storage, in the presence and absence of light. Yogurts manufactured without and with the equivalent of 1.5mg of lutein in 120 g of the final product were characterized for their total carotenoid and riboflavin contents, and the behaviors of both riboflavin and lutein were monitored during storage. A decrease in riboflavin content occurred, with concurrent appearance of its derived-oxidation products in the yogurts without added lutein and exposed to light during storage. The yogurts with added lutein dye showed constant lutein and riboflavin contents throughout storage both for the samples stored under light and for those stored in the dark. Yogurts (120 g) with the addition of 0.5, 1.5, and 2.5mg of lutein dye were evaluated for their sensory acceptance, and the statistical analysis showed no differences between the samples for the attributes of aroma and flavor. These results indicate that the added lutein remained stable throughout the storage period and conferred protection for the riboflavin against photooxidation, preserving the quality of the yogurts. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro.

    Science.gov (United States)

    Manwaring, John; Rothe, Helga; Obringer, Cindy; Foltz, David J; Baker, Timothy R; Troutman, John A; Hewitt, Nicola J; Goebel, Carsten

    2015-09-01

    Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis-Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte Km and Vmax values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and Cmax was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. Copyright © 2015. Published by Elsevier Inc.

  14. Zinc oxide based dye sensitized solar cell using eosin – Y as ...

    African Journals Online (AJOL)

    A zinc oxide based Dye sensitized Solar Cell (DSSC) has been fabricated, using Eosin-Y as the dye adsorbed on a nanocrystalline zinc oxide - fluorine doped tin oxide electrode, for the sensitization of the large band gap semiconductor. The absorption spectrum of Eosin-Y showed high absorption of visible light between ...

  15. Photo-oxidative degradation of Chicago Sky Blue azo dye on transition metal oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Slote, J.; Luo, J.; Hepel, M. [State Univ. of New York at Potsdam, NY (United States). Dept. of Chemistry; Zhong, C.-J. [State Univ. of New York at Binghamton, NY (United States). Dept. of Chemistry

    2003-07-01

    Every day, an average of 128 tons of dye staffs are discharged into waste water, causing environmental harm. The authors discussed the photo-electrical method for separating the semiconductor catalyst particles from the solution and direct control of the interfacial potential as an efficient and convenient method for degrading organic dyes. Photocurrent-potential measurements were made using a standard photoelectrochemical setup. It involved a microcomputer-controlled potentiostat and a 500 watts (W) quartz halogen lamp as the illumination source. The measurement of the photocurrent represented the difference between the current under illumination and current in the dark. Three-electrode electrochemical cells were used for all experiments. The best results concerning the degradation of dyes were obtained with tungsten oxides (WO3) and molybdenum oxides (MoO3) electrodes. Confirmation that the dyes had been fully degraded was obtained by performing absorbance measurements and a high performance liquid chromatography (HPLC) analysis of the samples after degradation. The effect on the rate of decolorisation process of Chicago Sky Blue, a diazo dye, and other dyes, of pH, potential, concentration, and type of supporting electrolyte was examined. The supporting electrolyte was found to have a strong influence on the degradation of diazo dye. Illumination with visible light yielded lower degradation rates than that with ultraviolet-visible light. It appears that Chicago Sky Blue dye sensitizes the semiconductor to expand the absorption of light energy well into visible range, despite the photoelectrochemical degradation of the dye being mainly induced by the ultraviolet light. The authors proposed the mechanisms of the reactions occurring during the photodegradation process. 6 refs., 1 fig.

  16. REMOVAL OF REMAZOL ROSSO RB DYE FROM AQUEOUS EFFLUENTS BY HOMOGENOUS FENTON OXIDATION PROCESSES

    Directory of Open Access Journals (Sweden)

    Carmen Zaharia

    2014-06-01

    Full Text Available The paper presents some data from our laboratory-setup experiments of homogenous oxidative processes with hydrogen peroxide (i.e. advanced Fenton oxidation processes applied for Remazol Rosso RB dye-containing aqueous systems, especially textile effluents. Therefore, some different operating parameters (including pH, concentration of dye, H2O2 and ferrous ions, oxidation time, temperature, stirring regime, among its were tested for determination of the best performance in effluent decoloration and dye removal, meaning the optimal values of each studied parameters for highest decoloration or dye removal.

  17. HSL Attenuates the Follicular Oxidative Stress and Enhances the Hair Growth in ob/ob Mice

    Directory of Open Access Journals (Sweden)

    Takeo Minematsu, PhD

    2013-10-01

    Full Text Available Summary: We demonstrated enhanced hair regeneration following topical administration of N-(3-oxododecanoyl-L-homoserine lactone (HSL in ob/ob mice. The ob/ob mice showed delayed hair regeneration (more than 6 wk after depilation, which rapidly induced transition to anagen in the hair cycle in wild-type mice. Vehicle and HSL solutions were applied to the depilated dorsal skin of ob/ob mice. The depilated skin of the HSL-treated mice was fully covered with hair, whereas no macroscopic alteration was observed in vehicle-treated group by the fourth week after depilation. Oxidative stress was drastically decreased and the expression of the antioxidative enzymes PON1 and PON3 was increased in the HSL-treated skin with highly proliferative anagen follicles. These results suggest that HSL is a candidate therapeutic agent for alopecia in metabolic syndrome.

  18. Hair cosmetics

    OpenAIRE

    Nina Madnani; Kaleem Khan

    2013-01-01

    The hair cosmetic industry has undergone a revolutionary change over the last two decades. The focus has dramatically veered from merely cleaning to repair, increasing the tensile strength, reducing oxidative damage, and stimulating growth. Newer shorter procedures to make hair look naturally more lustrous, smooth, and manageable have evolved. Specialized grooming products have been formulated to cleanse, calm, and condition the hair, and are tailored for different hair-types, for example, dr...

  19. Hyposmotic stimulation-induced nitric oxide production in outer hair cells of the guinea pig cochlea.

    Science.gov (United States)

    Takeda-Nakazawa, Hiroko; Harada, Narinobu; Shen, Jing; Kubo, Nobuo; Zenner, Hans-Peter; Yamashita, Toshio

    2007-08-01

    Nitric oxide (NO) production during hyposmotic stimulation in outer hair cells (OHCs) of the guinea pig cochlea was investigated using the NO sensitive dye DAF-2. Simultaneous measurement of the cell length and NO production showed rapid hyposmotic-induced cell swelling to precede NO production in OHCs. Hyposmotic stimulation failed to induce NO production in the Ca2+-free solution. L-NG-nitroarginine methyl ester (L-NAME), a non-specific NO synthase inhibitor and gadolinium, a stretch-activated channel blocker inhibited the hyposmotic stimulation-induced NO production whereas suramin, a P2 receptor antagonist did not. S-nitroso-N-acetylpenicillamine (SNAP), a NO donor inhibited the hyposmotic stimulation-induced increase in the intracellular Ca2+ concentrations ([Ca2+]i) while L-NAME enhanced it. 1H-[1,2,4]oxadiazole[4,3a]quinoxalin-1-one, an inhibitor of guanylate cyclase and KT5823, an inhibitor of cGMP-dependent protein kinase (PKG) mimicked effects of L-NAME on the Ca2+ response. Transient receptor potential vanilloid 4 (TRPV4), an osmo- and mechanosensitive channel was expressed in the OHCs by means of immunohistochemistry. 4alpha-phorbol 12,13-didecanoate, a TRPV4 synthetic activator, induced NO production in OHCs. These results suggest that hyposmotic stimulation can induce NO production by the [Ca2+]i increase, which is presumably mediated by the activation of TRPV4 in OHCs. NO conversely inhibits the Ca2+ response via the NO-cGMP-PKG pathway by a feedback mechanism.

  20. Optical study of planar waveguides based on oxidized porous silicon impregnated with laser dyes

    Energy Technology Data Exchange (ETDEWEB)

    Chouket, A. [Unite de recherche de Spectroscopie Raman, Departement de Physique, Faculte des Sciences de Tunis, Elmanar 2092, Tunis (Tunisia); Charrier, J. [Laboratoire d' Optronique CNRS-UMR FOTON 6082, Universite de Rennes 1, ENSSAT-6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France); Elhouichet, H. [Unite de recherche de Spectroscopie Raman, Departement de Physique, Faculte des Sciences de Tunis, Elmanar 2092, Tunis (Tunisia)], E-mail: habib.elhouichet@fst.rnu.tn; Oueslati, M. [Unite de recherche de Spectroscopie Raman, Departement de Physique, Faculte des Sciences de Tunis, Elmanar 2092, Tunis (Tunisia)

    2009-05-15

    Oxidized porous silicon optical planar waveguides were elaborated and impregnated with rhodamine B and rhodamine 6G. The waveguiding, absorption, and photoluminescence properties of these impregnated waveguides were studied. Successful impregnation of the structure with laser dyes is shown from photoluminescence and reflectivity measurements. Furthermore, the reflectivity spectra prove the homogenous incorporation of both dye molecules inside the pores of the matrices. The refractive indices of waveguide layers were determined before and after dye impregnation to indicate the conservation of guiding conditions. The optical losses in the visible wavelengths are studied as a function of dye concentration. The dye absorption is the main reason for these losses.

  1. Degradation of the ethyl glucuronide content in hair by hydrogen peroxide and a non-destructive assay for oxidative hair treatment using infra-red spectroscopy.

    Science.gov (United States)

    Ammann, Dominic; Becker, Roland; Kohl, Anka; Hänisch, Jessica; Nehls, Irene

    2014-11-01

    The assessment of quantification results of the alcohol abuse marker ethyl glucuronide (EtG) in hair in comparison to the cut-off values for the drinking behavior may be complicated by cosmetic hair bleaching. Thus, the impact of increasing exposure to hydrogen peroxide on the EtG content of hair was investigated. Simultaneously, the change of absorbance in the range of 1000-1100 cm(-1) indicative for the oxidation of cystine was investigated non-destructively by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) using pulverized portions of the respective hair samples. Hair samples treated with hydrogen peroxide consistently displayed a significantly increased absorbance at 1040 cm(-1) associated with the formation of cysteic acid. The EtG content decreased significantly if the hair was treated with alkaline hydrogen peroxide as during cosmetic bleaching. It could be shown that ATR-FTIR is capable of detecting an exposure to hydrogen peroxide when still no brightening was visible and already before the EtG content deteriorated significantly. Thus, hair samples suspected of having been exposed to oxidative treatment may be checked non-destructively by a readily available technique. This assay is also possible retrospectively after EtG extraction and using archived samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Solar photoassisted advanced oxidation process of azo dyes.

    Science.gov (United States)

    Prato-Garcia, D; Buitrón, G

    2009-01-01

    Advanced oxidation processes assisted with natural solar radiation in CPC type reactors (parabolic collector compound), was applied for the degradation of three azo dyes: acid orange (AO7), acid red 151 (AR151) and acid blue 113 (AB113). Fenton, Fenton like and ferrioxalate-type complexes showed to be effective for degrade the azo linkage and moieties in different extensions. Initially, the best dose of reagents (Fe(3 + )-H(2)O(2)) was determined through a factorial experimental design, next, using response surface methodologies, the reagent consumption was reduced up to 40%, maintaining in all cases high decolourisation percentages (>98%) after 60 min. of phototreatment. In this work, it was also studied the effect of concentration changes of the influent between 100-300 mg/L and the operation of the photocatalytic process near neutral conditions (pH 6.0-6.5) by using ferrioxalate type complex (FeOx).

  3. Can long-term alopecia occur after appropriate pulsed-dye laser therapy in hair-bearing sites? Pediatric dermatologists weigh in.

    Science.gov (United States)

    Feldstein, Stephanie; Totri, Christine R; Friedlander, Sheila F

    2015-03-01

    The risk of long-term alopecia after pulsed-dye laser (PDL) therapy is unknown. To identify how many practitioners treat hair-bearing sites with PDL and how commonly long-term alopecia occurs, the authors queried pediatric dermatologists about their experiences using this modality. A survey was designed to evaluate the frequency of and factors contributing to long-term alopecia after PDL treatment of port-wine stains (PWS). "Long-term" was defined as no sign of hair regrowth after several years of nontreatment. The survey was administered to attendees at the 2014 Society for Pediatric Dermatology biannual meeting. Sixty-four pediatric dermatologists completed the survey, 50 of whom had experience using PDL. Of these physicians, 86% have used PDL to treat PWS of the eyebrow and 80% have treated PWS of the scalp. Over one-quarter of respondents (25.5%) using PDL on hair-bearing areas had at least 1 of their patients develop long-term alopecia after PDL treatment. The incidence of long-term alopecia after PDL treatment in the surveyed population was 1.5% to 2.6%. The occurrence of long-term alopecia at hair-bearing sites after treatment with PDL may be greater than previously thought. Because the majority of physicians using PDL treat hair-bearing areas, prospective studies are needed to more accurately determine the risk of long-term alopecia and the factors that contribute to it.

  4. An investigation to adopt zero liquid discharge in textile dyeing using advanced oxidation processes

    International Nuclear Information System (INIS)

    Ahmd, F.

    2015-01-01

    In this study, a novel idea of using ozone oxidation at the end of reactive dyeing process was explored in order to achieve zero discharge dyeing. An advanced oxidative treatment was given during the dyeing process to remove unfixed and hydrolyzed reactive dyes from cotton substrate. Three different shades were dyed using vinylsulphone reactive class of dyes. At the end of fixation step, washing of fabrics was carried out using appropriate quantities of ozone in the process. Ozone oxidation continued until the liquor was decolorized around 95-100% and COD (Chemical Oxygen Demand) was reduced about 80-90%, thus achieving zero liquid discharge dyeing process. The decolouration efficiency of wastewater was regarded as an indicative of removal of dyes from the textile materials because fabric was being washed continuously in the same liquor. Fabric samples dyed with conventional and new methods were compared in terms of change in shade, colourfastness properties, colour stripping, and fabric appearance. Overall results showed that the use of ozone during reactive dyeing can result in less water consumption, reduced process time, and zero discharge of coloured effluents from textile dyeing factories. (author)

  5. Magnetic graphene oxide for adsorption of organic dyes from aqueous solution

    Science.gov (United States)

    Drashya, Lal, Shyam; Hooda, Sunita

    2018-05-01

    Graphene oxide (GO), a 2-D carbon nanomaterial, large surface area, oxygen-containing groups (like: hydroxyl, epoxy and carboxyl) and excellent water dispersibility due to it is good adsorbent dye removal from pollutant water1. But it's difficult to separate GO from water after adsorption. Therefore, Iron oxide was introduced in Graphene oxide by decorating method to make separation more efficient2. We present herein a one step process to prepare Magnetic Graphene oxide (MGO). The Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and Raman Spectroscopy characterized the chemical structure of the MGO composite. The adsorption of dyes onto MGO was studied in relation to initial concentration of Dyes, contact time, adsorbent dose, temperature and pH value of solution. We have studied adsorption capacity of different dyes (Methylene blue and crystal violet) by MGO.

  6. Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles

    DEFF Research Database (Denmark)

    Gilbert, Benjamin; Katz, Jordan E.; Huse, Nils

    2013-01-01

    photo-initiated interfacial electron transfer. This approach enables time-resolved study of the fate and mobility of electrons within the solid phase. However, complete analysis of the ultrafast processes following dye photoexcitation of the sensitized iron(iii) oxide nanoparticles has not been reported....... We addressed this topic by performing femtosecond transient absorption (TA) measurements of aqueous suspensions of uncoated and DCF-sensitized iron oxide and oxyhydroxide nanoparticles, and an aqueous iron(iii)–dye complex. Following light absorption, excited state relaxation times of the dye of 115...... a four-state model of the dye-sensitized system, finding electron and energy transfer to occur on the same ultrafast timescale. The interfacial electron transfer rates for iron oxides are very close to those previously reported for DCF-sensitized titanium dioxide (for which dye–oxide energy transfer...

  7. Nanobeads of zinc oxide with rhodamine B dye as a sensitizer for dye sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Baviskar, P.K. [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001, MS (India); Zhang, J.B. [Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Gupta, V.; Chand, S. [Organic and Hybrid Solar Cell, Physics of Energy Harvesting Division, Dr. K. S. Krishnan Marg, National Physical Laboratory, New Delhi 110012 (India); Sankapal, B.R., E-mail: brsankapal@rediffmail.com [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001, MS (India)

    2012-01-05

    Highlights: > Synthesis of ZnO film was done at room temperature (27 deg. C). > Simple and inexpensive chemical bath deposition method was employed. > The as deposited film consists of mixed phases of hydroxide and oxide. > The post annealing was done at 200 deg. C in order to remove hydroxide phase. > Low-cost, metal free Rhodamine B dye was used for DSSC application. - Abstract: Cost effective, ruthenium metal free rhodamine B dye has been chemically adsorbed on ZnO films consisting of nanobeads to serve as a photo anode in dye sensitized solar cells. These ZnO films were chemically synthesized at room temperature (27 deg. C) on to fluorine doped tin oxide (FTO) coated glass substrates followed by annealing at 200 deg. C. These films consisting of inter connected nanobeads (20-40 nm) which are due to the agglomeration of very small size particles (3-5 nm) leading to high surface area. The film shows wurtzite structure having high crystallinity with optical direct band gap of 3.3 eV. Optical absorbance measurements for rhodamine B dye covered ZnO film revealed the good coverage in the visible region (460-590 nm) of the solar spectrum. With poly-iodide liquid as an electrolyte, device exhibits photon to electric energy conversion efficiency ({eta}) of 1.26% under AM 1.5G illumination at 100 mW/cm{sup 2}.

  8. Degradation of azo dyes by sequential Fenton's oxidation and aerobic biological treatment

    International Nuclear Information System (INIS)

    Tantak, Nilesh P.; Chaudhari, Sanjeev

    2006-01-01

    A two stage sequential Fenton's oxidation followed by aerobic biological treatment train was used to achieve decolorization and to enhance mineralization of azo dyes, viz. Reactive Black 5 (RB5), Reactive Blue 13 (RB13), and Acid Orange 7 (AO7). In the first stage, Fenton's oxidation process was used while in the second stage aerobic sequential batch reactors (SBRs) were used as biological process. Study was done to evaluate effect of pH on Fenton's oxidation process. Results reveal that pH 3 was optimum pH for achieving decolorization and dearomatization of dyes by Fenton's process. Degradation of dye was assessed by COD reduction and reduction in aromatic amines (naphthalene chromophores) which was measured by reduction in absorbance at 200 nm. More than 95% of color was removed with Fenton's oxidation process in all dyes. In overall treatment train 81.95, 85.57, and 77.83% of COD reduction was achieved in RB5, RB13, and AO7 dyes, respectively. In the Fenton's oxidation process 56, 24.5, and 80% reduction in naphthalene group was observed in RB5, RB13, and AO7, respectively, which further increased to 81.34, 68.73, and 92% after aerobic treatment. Fenton's oxidation process followed by aerobic SBRs treatment sequence seems to be viable method for achieving significant degradation of azo dye

  9. Investigation on Fluorescence Quenching Mechanism of Perylene Diimide Dyes by Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Yuzhen Zhao

    2016-11-01

    Full Text Available Perylene diimide derivatives were used as probes to investigate the effect of the molecular structures on the fluorescence quenching mechanism in a perylene diimide/graphene oxide system. The electrons transferred from the excited state of dyes to the conductive band of graphene oxide with different concentrations were determined by fluorescence spectra. The results indicated that the quenching efficiency of perylene diimides by graphene oxide was not only dependent on the difference between the lowest unoccupied molecular orbital level of dyes and the conduction band of the graphene oxide, but also mainly on the difference in the molecular structures.

  10. Oxidative treatment characteristics of biotreated textile-dyeing wastewater and chemical agents used in a textile-dyeing process by advanced oxidation process.

    Science.gov (United States)

    Lim, B R; Hu, H Y; Ahn, K H; Fujie, K

    2004-01-01

    The oxidative treatment characteristics of biotreated textile-dyeing wastewater and typical chemicals such as desizing, scouring, dispersing and swelling agents used in the textile-dyeing process by advanced oxidation process were experimentally studied. The refractory organic matters remained in the effluent of biological treatment process without degradation may be suitable for the improvement of biodegradability and mineralized to CO2 by combined ozonation with and without hydrogen peroxide. On the other hand, the refractory chemicals contained in the scouring agent A and swelling agent may not be mineralized and their biodegradability may not be improved by ozonation. However, the BOD/DOC ratio of scouring agent B increased from 0.3 to 0.45 after ozonation. Based on the results described above, advanced treatment process involving the ozonation without and with the addition of hydrogen peroxide, followed by biological treatment was proposed for the treatment of refractory wastewater discharged from the textile-dyeing process.

  11. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes.

    Science.gov (United States)

    Nidheesh, P V; Zhou, Minghua; Oturan, Mehmet A

    2018-04-01

    Wastewater containing dyes are one of the major threats to our environment. Conventional methods are insufficient for the removal of these persistent organic pollutants. Recently much attention has been received for the oxidative removal of various organic pollutants by electrochemically generated hydroxyl radical. This review article aims to provide the recent trends in the field of various Electrochemical Advanced Oxidation Processes (EAOPs) used for removing dyes from water medium. The characteristics, fundamentals and recent advances in each processes namely anodic oxidation, electro-Fenton, peroxicoagulation, fered Fenton, anodic Fenton, photoelectro-Fenton, sonoelectro-Fenton, bioelectro-Fenton etc. have been examined in detail. These processes have great potential to destroy persistent organic pollutants in aqueous medium and most of the studies reported complete removal of dyes from water. The great capacity of these processes indicates that EAOPs constitute a promising technology for the treatment of the dye contaminated effluents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Synthesis, Characterization, and Use of Novel Bimetal Oxide Catalyst for Photoassisted Degradation of Malachite Green Dye

    Directory of Open Access Journals (Sweden)

    K. L. Ameta

    2014-01-01

    Full Text Available This work reports a simple, novel, and cost effective synthesis of nanobimetal oxide catalyst using cerium and cadmium nitrates as metal precursors. The cerium-cadmium oxide nanophotocatalyst was synthesized by coprecipitation method and characterized by X-ray powder diffraction method to analyze the particle size. XRD study reveals a high degree of crystallinity and 28.43 nm particle size. The photocatalytic efficiency of the synthesized nanobimetal catalyst was examined by using it for the photocatalytic degradation of malachite green dye. Experiments were conducted to study the effect of various parameters, such as the pH of the dye solution, concentration of dye, amount of catalyst, and light intensity on the rate of dye degradation. The progress of the dye degradation was monitored spectrophotometrically by taking the optical density of the dye solution at regular intervals. Experimental results indicate that the dye degrades best at pH 8.0 with light intensity 600 Wm−2 and catalyst loading 0.03 g/50 mL of dye solution. The rate constant for the reaction was 7.67 × 10−4 s−1.

  13. The role of rare earth oxide nanoparticles in suppressing the photobleaching of fluorescent organic dyes

    Science.gov (United States)

    Guha, Anubhav; Basu, Anindita

    2013-03-01

    Organic dyes are widely used for both industrial as well as in scientific applications such as the fluorescent tagging of materials. However the process of photobleaching can rapidly degrade dye fluorescence rendering the material non-functional. Thus exploring novel methods for preventing photobleaching can have widespread benefits. In this work we show that the addition of minute quantities of rare earth (RE) oxide nanoparticles can significantly suppress the photobleaching of dyes. The fluorescence of Rhodamine and AlexaFluor dyes was measured as a function of time with and without the addition of CeO2 and La2O3 nanoparticle additives (two RE oxides that contain an oxygen vacancy based defect structure), as well as with FeO nanoparticles (which has an oxygen excess stoichiometry). We find that the rare earth oxides significantly prolonged the lifetimes of the dyes. The results allow us to develop a model based upon the presence of oxygen vacancies defects that allow the RE oxides to act as oxygen scavengers. This enables the RE oxide particles to effectively remove reactive oxygen free radicals generated in the dye solutions during the photoabsorption process. Current affiliation: Harvard University

  14. The oxidative response and viable reaction mechanism of the textile dyes by fenton reagent

    International Nuclear Information System (INIS)

    Masooda, Q.; Hijira, T.; Sitara, M.; Sehar, M.; Sundus, A.; Mohsin, A.

    2017-01-01

    The mechanism of the degradation of the Reactive Red 239 and Reactive Blue 19 by Fenton reagent was studied by advanced oxidation process in aqueous medium. The spectroscopic technique was adopted for the measurements of dye concentration. Moreover they were determined at 540 nm and 590 nm, respectively. Kinetics of the reaction was studied under the effect of concentration of reactive dyes, concentration of oxidant were followed under pseudo first order condition and found to influence the catalytic mechanism. The pH of the medium, vibrant response of several cations and anions and influence of ionic strength on the reaction kinetics were also monitored. Physical evidences for the degradation and mineralization of the dyes were evaluated by Lime water test, Ring Test and TLC test also confirmed the degradation of dye. Inhibitory effects of dyes were observed by CO3-, HCO3-, HPO42-, Cl-, I- Al3+ and Na+. Thermodynamic activation parameters in the oxidation reaction were studied and mode of mechanism was suggested on the basic of these parameters. This study explored the safe and eco friendly degradation of the textile dyes under Pseudo first order rate constant. It was observed that Fenton assisted degradation of the dyes under controlled conditions was found to be favorable for the treatment of textile wastewater. Moreover compared to other chemical methods it is effective and harmless to the environment. (author)

  15. The hair-dye reagent 2-(2',4'-diaminophenoxy)ethanol is mutagenic to Salmonella typhimurium.

    Science.gov (United States)

    Venitt, S; Crofton-Sleigh, C; Osborne, M R

    1984-01-01

    A new hair-dye ingredient, 2-(2',4'-diaminophenoxy)ethanol (2,4-DAPE), was described as being devoid of any genotoxic activity on the basis of a multi-laboratory study. Since 2,4-DAPE is a close analogue of 2,4-diaminoanisole (2,4-DAA), which is mutagenic and carcinogenic, we tested this claim by assaying 2,4-DAPE for bacterial mutagenicity. Two samples of 2,4-DAPE X 2HCl were synthesized by reduction of the corresponding dinitrophenoxyethanol and identity and purity were established by elemental analysis, NMR spectrometry, mass-spectrometry, UV-spectrophotometry, TLC and HPLC. Fresh aqueous solutions of 2,4-DAPE X 2HCl were assayed in several separate plate tests using S. typhimurium TA1538, TA97, TA98 and TA100, and E. coli WP2uvrA (pKM101), 3 plates per dose and 0%, 4%, 10% and 30% Aroclor 1254-induced rat-liver S9 in S9 mixes. We obtained negative results in TA100 and E. coli. Reproducible, statistically significant dose-related increases in revertants (up to 14 times the background) were obtained in frame-shift mutants of S. typhimurium in the dose range 10-80 micrograms per plate. Mutagenicity was S9-dependent, significant increases in revertants being obtained only with 50 microliter per plate or more of S9. 2,4-DAPE induced significant mutagenic effects at doses of less than 1 micrograms per ml in TA1538 and TA98 in fluctuation tests using 2% S9 in the S9 mix. In plate tests, 2,4-DAPE was less mutagenic (by a factor of about 8) than 2,4-DAA, which gave the highest mutant yields with 20 microliter S9 per plate (4% S9 in the S9 mix). 2,4-DAPE obtained commercially was about 8 times more mutagenic than our sample of 2,4-DAPE. After purification, the commercial product, now chromatographically identical with our own sample, gave plate-test results close to those obtained for our samples of 2,4-DAPE. A review of the published reports (in which 2,4-DAPE was claimed to be inactive in a variety of short-term tests) revealed: (a) the use of protocols for bacterial

  16. Sensitization and Clinically Relevant Allergy to Hair Dyes and Clothes from Black Henna Tattoos: Do People Know the Risk? An Uncommon Serious Case and a Review of the Literature

    Directory of Open Access Journals (Sweden)

    Paola A. Moro

    2016-07-01

    Full Text Available Henna (Lawsonia inermis L. tattooing has been used in Egypt and India since ancient times. Today this temporary body art is becoming increasingly popular among young people. Various chemicals are added to henna to darken and enhance the definition of tattoos, especially para-phenylenediamine (PPD, which is a strong sensitizer known to cause cross sensitive reactions to azoic dyes and other para-amino compounds. We present the case of an 18-year-old girl who became clinically sensitive to textile dyes after having showed a serious reaction both to her first hair dying when she was 16 years old and following the application of a temporary henna tattoo when she was a kid. The evidence from our literature review showed 33 cases of manifest sensitization to hair dye and only one of observable contact allergy to both hair and textile dyes from henna tattoos. The sensitization of children may have long-life lasting consequences, because of cross-reaction to dyes and other chemicals contained in hair colourants, clothes and drugs. Since tattoos are very popular and globalization has increased the circulation of unauthorized products we point out the need for informative campaigns about the risk of sensitization caused by temporary tattoos.

  17. Kinetics and mechanism of azo dye destruction in advanced oxidation processes

    International Nuclear Information System (INIS)

    Wojnarovits, L.; Palfi, T.; Takacs, E.

    2007-01-01

    The kinetics and mechanism of dye destruction in advanced oxidation processes is discussed on the example of Apollofix Red (Ar-28) radiolysis in aqueous solution. When the reactive intermediate reacts with the color bearing part of the molecule causing with nearly 100% efficiency destruction of the conjugation, the dose dependence, or time dependence of color disappearance is linear. In this case, spectrophotometry can be used to follow-up dye decomposition. Linear dependence was observed when hydrated electrons or hydrogen atoms reacted with the dye. In hydroxyl radical reactions some colored products form with spectra similar to those of the starting dye molecules. For that reason, spectrophotometry gives false result about the intact dye molecule concentration. Analysis by the HPLC reveals logarithmic time dependence in agreement with a theoretical model developed

  18. Efficient dye-sensitized solar cells from mesoporous zinc oxide nanostructures sensitized by N719 dye

    Science.gov (United States)

    Kumara, G. R. A.; Deshapriya, U.; Ranasinghe, C. S. K.; Jayaweera, E. N.; Rajapakse, R. M. G.

    2018-03-01

    Dye-sensitized solar cells (DSCs) have attracted a great deal of attention due to their low-cost and high power conversion efficiencies. They usually utilize an interconnected nanoparticle layer of TiO2 as the electron transport medium. From the fundamental point of view, faster mobility of electrons in ZnO is expected to contribute to better performance in DSCs than TiO2, though the actual practical situation is quite the opposite. In this research, we addressed this problem by first applying a dense layer of ZnO on FTO followed by a mesoporous layer of interconnected ZnO nanoparticle layer, both were prepared by spray pyrolysis technique. The best cell shows a power conversion efficiency of 5.2% when the mesoporous layer thickness is 14 μm and the concentration of the N719 dye in dye coating solution is 0.3 mM, while a cell without a dense layer shows 4.2% under identical conditions. The surface concentration of dye adsorbed in the cell with a dense layer and that without a dense layer are 5.00 × 10‑7 and 3.34 × 10‑7 mol/cm2, respectively. The cell with the dense layer has an electron lifetime of 54.81 ms whereas that without the dense layer is 11.08 ms. As such, the presence of the dense layer improves DSC characteristics of ZnO-based DSCs.

  19. Photocatalytic oxidation of a reactive azo dye and evaluation of the ...

    African Journals Online (AJOL)

    The purpose of this study was to investigate the photocatalytic oxidation of a reactive azo dye and determine the improvement in the biodegradability when photocatalytic oxidation was used as a pretreatment step prior to biological treatment. The results obtained from the experiments adding H2O2/TiO2 show that the ...

  20. On the degradability of printing and dyeing wastewater by wet air oxidation.

    Science.gov (United States)

    Hu, X; Lei, L; Chen, G; Yue, P L

    2001-06-01

    A modified first-order kinetics model was used to study the wet air oxidation of printing and dyeing wastewater. The model simulations are in good agreement with experimental data. The results indicate that a certain fraction of organic pollutants in the printing and dyeing wastewater could not be removed even at elevated temperature and prolonged reaction time. The ratio of degradable organic matter is found independent of temperature and can be improved by using a catalyst.

  1. Effect of Ionic Liquid on the Determination of Aromatic Amines as Contaminants in Hair Dyes by Liquid Chromatography Coupled to Electrochemical Detection

    Directory of Open Access Journals (Sweden)

    Maria Valnice Boldrin Zanoni

    2012-07-01

    Full Text Available The room temperature ionic liquid (IL 1-butyl-3-methylimidazolium bis-(trifluorometanesulfonylimide BMIm[NTf2] was used as a novel medium for improvement of separation and quantization of 16 aromatic amines typically present as contaminants in consumer products and detected by HPLC coupled to an electrochemical detector. The aromatic amines, namely 4,4'-diaminodiphenylmethane, 4-chloroaniline, 2-methoxy-5-methyl-aniline, 3,3'-dimethylbenzidine, 2,4-diaminotoluidine, 2-chloro-4-nitroaniline, 4,4'-oxydianiline, aniline, 3,3'-dichlorobenzidine, benzidine, 4-aminobiphenyl, o-dianisidine, o-anisidine, o-toluidine, 4,4'-methylene-bis-2-chloroaniline and 2-naphthyl-amine are oxidized in methanol/BMIm[NTf2] at a potential around +0.68V to +0.93V vs. Ag/AgCl at a glassy carbon electrode, which is the base for their determination by HPLC/ED. Using the optimized conditions of methanol/BMIm[NTf2] 70:30 (v/v as mobile phase, flow-rate of 0.8 mL·min−1, column CLC-ODS, Eap = +1.0 V and T = 40 °C analytical curves were constructed for each of the tested amines. Good linearity was obtained in the concentration range of 1.09 mg·L−1 to 217 mg·L−1, with excellent correlation coefficients. The limits of detection reached 0.021 mg·L−1 to 0.246 mg·L−1 and good relative standard deviations (RSD, n = 3 were obtained from the measurements. Satisfactory recovery for each aromatic amine was achieved, ranging from 95 to 103%. The developed method was successfully applied to determine six aromatic amines present as contaminants in commercial hair dye samples.

  2. Towards a "free radical theory of graying": melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage.

    Science.gov (United States)

    Arck, Petra Clara; Overall, Rupert; Spatz, Katharina; Liezman, Christiane; Handjiski, Bori; Klapp, Burghard F; Birch-Machin, Mark A; Peters, Eva Milena Johanne

    2006-07-01

    Oxidative stress is generated by a multitude of environmental and endogenous challenges such as radiation, inflammation, or psychoemotional stress. It also speeds the aging process. Graying is a prominent but little understood feature of aging. Intriguingly, the continuous melanin synthesis in the growing (anagen) hair follicle generates high oxidative stress. We therefore hypothesize that hair bulb melanocytes are especially susceptible to free radical-induced aging. To test this hypothesis, we subjected human scalp skin anagen hair follicles from graying individuals to macroscopic and immunohistomorphometric analysis and organ culture. We found evidence of melanocyte apoptosis and increased oxidative stress in the pigmentary unit of graying hair follicles. The "common" deletion, a marker mitochondrial DNA-deletion for accumulating oxidative stress damage, occurred most prominently in graying hair follicles. Cultured unpigmented hair follicles grew better than pigmented follicles of the same donors. Finally, cultured pigmented hair follicles exposed to exogenous oxidative stress (hydroquinone) showed increased melanocyte apoptosis in the hair bulb. We conclude that oxidative stress is high in hair follicle melanocytes and leads to their selective premature aging and apoptosis. The graying hair follicle, therefore, offers a unique model system to study oxidative stress and aging and to test antiaging therapeutics in their ability to slow down or even stop this process.

  3. Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability

    International Nuclear Information System (INIS)

    Mahmoodi, Niyaz Mohammad; Najafi, Farhood

    2012-01-01

    Highlights: ► Amine-functionalized zinc oxide nanoparticle (AFZON) was synthesized. ► Isotherm and kinetics data followed Langmuir isotherm and pseudo-second order kinetic model, respectively. ► Q 0 of ZON for AB25, DR23 and DR31 was 20, 12 and 15 mg/g, respectively. ► Q 0 of AFZON for AB25, DR23 and DR31 was 1250, 1000 and 1429 mg/g, respectively. ► AFZON was regenerated at pH 12. -- Abstract: In this paper, the surface modification of zinc oxide nanoparticle (ZON) by amine functionalization was studied to prepare high capacity adsorbent. Dye removal ability of amine-functionalized zinc oxide nanoparticle (AFZON) and zinc oxide nanoparticle (ZON) was also investigated. The physical characteristics of AFZON were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acid Blue 25 (AB25), Direct Red 23 (DR23) and Direct Red 31 (DR31) were used as model compounds. The effect of operational parameters such as dye concentration, adsorbent dosage, pH and salt on dye removal was evaluated. The isotherm and kinetic of dye adsorption were studied. The maximum dye adsorption capacity (Q 0 ) was 20 mg/g AB25, 12 mg/g DR23 and 15 mg/g DR31 for ZON and 1250 mg/g AB25, 1000 mg/g DR23 and 1429 mg/g DR31 for AFZON. It was found that dye adsorption followed Langmuir isotherm. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% AB25, 86% for DR23 and 90% for DR31 were achieved in aqueous solution at pH 12. Based on the data of the present investigation, it can be concluded that the AFZON being an adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored aqueous solutions.

  4. Protein loss in human hair from combination straightening and coloring treatments.

    Science.gov (United States)

    França-Stefoni, Simone Aparecida; Dario, Michelli Ferrera; Sá-Dias, Tânia Cristina; Bedin, Valcinir; de Almeida, Adriano José; Baby, André Rolim; Velasco, Maria Valéria R

    2015-09-01

    Hair chemical treatments, such as dyeing and straightening products, are known to cause damage that can be assessed by protein loss. The aim of this study was to evaluate the hair protein loss caused by combined chemical treatments (dye and relaxer) using the validated bicinchoninic acid (BCA) method. Three kinds of straighteners, based on ammonium thioglycolate, guanidine hydroxide and sodium hydroxide, were evaluated and the least harmful combination indicated. Caucasian virgin dark brown hair tresses were treated with developed natural brown color oxidative hair dyeing and/or straightening commercial products based on ammonium thioglycolate, sodium hydroxide, or guanidine hydroxide. Protein loss quantification was assessed by the validated BCA method which has several advantages for quantifying protein loss in chemically treated hair. When both treatments (straightening and dyeing) were combined, a higher negative effect was observed, particularly for dyed hair treated with sodium hydroxide. In this case, a 356% increase in protein loss relative to virgin hair was observed and 208% in relation to only dyed hair. The combination of dying and relaxers based on ammonium thioglycolate or guanidine hydroxide caused a small increase in protein loss, suggesting that these straightening products could be the best alternatives for individuals wishing to combine both treatments. These results indicated that when application of both types of products is desired, ammonium thioglycolate or guanidine hydroxide should be chosen for the straightening process. © 2015 Wiley Periodicals, Inc.

  5. Photosensitized Oxidation of 9,10-Dimethylanthracene on Dye-Doped Silica Composites

    Directory of Open Access Journals (Sweden)

    Elim Albiter

    2012-01-01

    Full Text Available A series of cationic dyes, methylene blue (MB, safranin O (SF, toluidine blue (TB, and neutral red (NR, were successfully incorporated into a silica matrix by using ultrasound irradiation during the Stöber process. Several analyses were performed, including scanning dynamic light scattering (DLS, electron microscopy (SEM, nitrogen physisorption, FTIR spectroscopy, UV-vis, and diffuse reflectance spectroscopy. The entrapped dyes on silica were evaluated in singlet oxygen (1O2 generation under visible light irradiation, by means of the photosensitized oxidation of 9,10-dimethylanthracene (DMA. According to the results, the photocatalytic performance of the silica composites was improved, and the leakage of the dye from the particles was suppressed. Among these four different types of dye-doped silica composites, the SiO2-SF composite showed the most efficient delivery of 1O2.

  6. Dye-sensitized solar cells based on different nano-oxides on plastic PET substrate

    Science.gov (United States)

    Mikula, Milan; Gemeiner, Pavol; Beková, Zuzana; Dvonka, Vladimír; Búc, Dalibor

    2015-01-01

    Polyethylene-terephthalate (PET) foils and glass slides coated with thin conductive layers were used as substrates for TiO2 or ZnO based photoactive electrodes of dye-sensitized solar cells (DSSC) with organo-metallic Ru-dye, standard iodine electrolyte and Pt coated FTO/glass counterelectrode (CE). Different compositions of nanoparticle oxides in forms of alcohol pastes as well as the CE paste were applied onto the substrates by screen printing or by doctor blade techniques. Photocurrents and I-V loading characteristics were measured depending on the solar cell structure and preparation, including the oxide composition, electrode conductivity and the dye type. The influence of thin TiO2 blocking layer prepared by sol-gel technique is also discussed.

  7. A Dye-Sensitized Solar Cell Using a Composite of PEDOT:PSS and Carbon Derived from Human Hair for a Counter Electrode

    Directory of Open Access Journals (Sweden)

    Klitsada Moolsarn

    2017-01-01

    Full Text Available Carbon derived from hair is interesting because it has good electrocatalytic activity due to the existence of innate heteroatom dopants especially nitrogen and sulfur. In this study, a carbon catalyst containing high nitrogen contents (9.47 at.% was fabricated without using any harsh chemicals. Moreover, the carbonization temperature was only 700°C. Carbonized hair/PEDOT:PSS composites (CxP with varied carbon contents from x = 0.2 to 0.8 g were tested as a counter electrode (CE for a dye-sensitized solar cell (DSSC. This type of DSSC CE has scarcely been investigated. A DSSC with a C0.6P CE provides the best efficiency (6.54 ± 0.11% among all composite CEs because it has a high fill factor (FF and a high short-circuit current density (Jsc. The efficiency of DSSC with C0.6P CE is lower than Pt’s (7.29 ± 0.01% since the Pt-based DSSC has higher FF and Jsc values. However, C0.6P is still promising as a DSSC CE since it is more cost-effective than Pt.

  8. Synthesis of oxidized guar gum by dry method and its application in reactive dye printing.

    Science.gov (United States)

    Gong, Honghong; Liu, Mingzhu; Zhang, Bing; Cui, Dapeng; Gao, Chunmei; Ni, Boli; Chen, Jiucun

    2011-12-01

    The aim of this study was to prepare oxidized guar gum with a simple dry method, basing on guar gum, hydrogen peroxide and a small amount of solvent. To obtain a product with suitable viscosity for reactive dye printing, the effects of various factors such as the amount of oxidant and solvent, reaction temperature and time were studied with respect to the viscosity of reaction products. The product was characterized by Fourier transform infrared spectroscopy, size exclusion chromatography, scanning electron microscopy and differential scanning calorimetry. The hydrated rate of guar gum and oxidized guar gum was estimated through measuring the required time when their solutions (1%, w/v) reached the maximum viscosity. The effects of the salt concentration and pH on viscosity of the resultant product were studied. The mixed paste containing oxidized guar gum and carboxymethyl starch was prepared and its viscosity was determined by the viscometer. The rheological property of the mixed paste was appraised by the printing viscosity index. In addition, the applied effect of mixed paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with sodium alginate. And the results indicated that the mixed paste could partially replace sodium alginate as thickener in reactive dye printing. The study also showed that the method was low cost and eco-friendly and the product would have an extensive application in reactive dye printing. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Mineralization and biodegradability enhancement of Methyl Orange dye by an effective advanced oxidation process

    International Nuclear Information System (INIS)

    Paul Guin, Jhimli; Bhardwaj, Y.K.; Varshney, Lalit

    2017-01-01

    An effective process for the oxidation of Methyl Orange dye (MO) was determined by comparing the mineralization efficiency between two advanced oxidation processes (AOPs) viz., ozonolysis and gamma radiolysis in presence and absence of an added inorganic salt potassium persulfate (K_2S_2O_8). The effects of various operating parameters such as ozone flow rate and reaction temperature were optimized to achieve the best possible mineralization extent of MO by ozonolysis. The mineralization efficiency of MO was significantly enhanced during gamma radiolysis in presence of K_2S_2O_8 (γ+K_2S_2O_8) compared to in absence of K_2S_2O_8. The presence of methyl group at the amine of phenyl ring assisted the mineralization of dye during γ+K_2S_2O_8. The oxygen-equivalent chemical-oxidation capacities (OCC) of ozonolysis and γ+K_2S_2O_8 for 75% mineralization of the dye solution were calculated as 7.008 and 0.0336 kg equiv. O_2 m"−"3, respectively which signifies that γ+K_2S_2O_8 can be explored as an effective AOP. The non-biodegradable MO dye solution became biodegradable even after the dose of 0.5 kGy during γ+K_2S_2O_8 compared to 1 kGy in absence of K_2S_2O_8. The study concludes that a lower dose γ+K_2S_2O_8 could be one of the efficient pretreatment steps before undergoing biological degradation of dye solution. - Highlights: • Systematic investigation was performed for the treatment of Methyl Orange dye solution. • AOPs investigated were ozonolysis and gamma radiolysis. • The OCC and % mineralizations of the AOPs were compared. • Gamma radiolysis in presence of K_2S_2O_8 was found as most effective AOP.

  10. Adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface: A spectroscopic study

    Science.gov (United States)

    Lucilha, Adriana Campano; Bonancêa, Carlos Eduardo; Barreto, Wagner José; Takashima, Keiko

    2010-01-01

    The adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface at 30 °C in the dark was investigated. The color reduction was monitored by spectrophotometry at 503 nm. The FTIR and Raman spectra of the Direct Red 23 adsorption as a function of ZnO concentration were registered. From the PM3 semi-empirical calculations of the atomic charge density and dipole moment of the Direct Red 23 molecule, it was demonstrated that the azo dye molecule may be adsorbed onto the ZnO surface through molecule geometry modifications, enhancing the interfacial area causing a variation in the bonding frequencies.

  11. The oxidation of luteolin, the natural flavonoid dye

    International Nuclear Information System (INIS)

    Ramešová, Šárka; Sokolová, Romana; Tarábek, Ján; Degano, Ilaria

    2013-01-01

    The oxidation of natural flavonoid luteolin in aqueous solution is studied by electrochemical methods, electron paramagnetic resonance (EPR), spectroelectrochemistry and separation techniques HPLC-DAD and HPLC–MS/MS. The number of electrons involved in the oxidation of luteolin depends on the presence of its dissociation forms in solution. The study explains the differences in the number of electrons presented in the literature. The overall one electron oxidation mechanism of luteolin in alkaline solution is explained by the comproportionation reaction of resulting quinone, despite the fact that quinone is formed by two electron oxidation. Then a hydroxylation takes place. The EPR spectroelectrochemical study of the semiquinone radical anion formation as well as of the reaction steps following the electron transfer during the oxidation is presented. The novelty of this contribution consists in the additional temperature controlled semi-quantitative in situ EPR spectroelectrochemical experiment of the flavonoid oxidation. The data acquired by temperature controlled in situ EPR spectroelectrochemistry supports the comproportionation/disproportionation equilibria as well as the oxidative decomposition of luteolin and shows that the formation of a pi-dimer is less probable. The oxidation products hydroxy-luteolin and 3,5-dihydroxy-2-(2-oxoacetyl)phenyl-3,4-dihydroxybenzoate are not stable under ambient conditions and decompose to low molecular hydroxycompounds such as 3,4-dihydroxybenzoic acid and 2,5,7-trihydroxy-4H-1-benzopyran-4-one

  12. Application of Ni-Oxide@TiO₂ Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors.

    Science.gov (United States)

    Lee, Seungwon; Lee, Jisuk; Nam, Kyusuk; Shin, Weon Gyu; Sohn, Youngku

    2016-12-20

    Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO₂ core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue) degradation under ultraviolet (UV) and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO₂ overlayer coating.

  13. THE DIMINISHING OF THE CONTENT OF TEXTILE DIRECT DYES AND AUXILIARY COMPOUNDS DURING THEIR CATALYTIC OXIDATION

    Directory of Open Access Journals (Sweden)

    Maria Gonta

    2014-06-01

    Full Text Available Advanced oxidation methods of organic compounds lead to their partial mineralization and increase of the adsorption process efficiency on the surface of oxidized activated carbon. We have studied the oxidation process using model solutions containing mixture of dye direct brown (DB, ethylene glycol (EGL and sodium lauryl sulfate (SLS under the action of Fenton reagent, in the presence and absence of UV irradiation or under the action of electric current (in the electrochemical cell. The same studies were performed by replacing the iron (II ion with titanium dioxide.

  14. Dye-Sensitized Solar Cells Based on High Surface Area Nanocrystalline Zinc Oxide Spheres

    Directory of Open Access Journals (Sweden)

    Pavuluri Srinivasu

    2011-01-01

    Full Text Available High surface area nanocrystalline zinc oxide material is fabricated using mesoporous nanostructured carbon as a sacrificial template through combustion process. The resulting material is characterized by XRD, N2 adsorption, HR-SEM, and HR-TEM. The nitrogen adsorption measurement indicates that the materials possess BET specific surface area ca. 30 m2/g. Electron microscopy images prove that the zinc oxide spheres possess particle size in the range of 0.12 μm–0.17 μm. The nanocrystalline zinc oxide spheres show 1.0% of energy conversion efficiency for dye-sensitized solar cells.

  15. Tryptophan and kynurenine determination in human hair by liquid chromatography.

    Science.gov (United States)

    Dario, Michelli F; Freire, Thamires Batello; Pinto, Claudinéia Aparecida Sales de Oliveira; Prado, María Segunda Aurora; Baby, André R; Velasco, Maria Valéria R

    2017-10-15

    Tryptophan, an amino acid found in hair proteinaceous structure is used as a marker of hair photodegradation. Also, protein loss caused by several chemical/physical treatments can be inferred by tryptophan quantification. Kynurenine is a photo-oxidation product of tryptophan, expected to be detected when hair is exposed mainly to UVB (290-320nm) radiation range. Tryptophan from hair is usually quantified directly as a solid or after alkaline hydrolysis, spectrofluorimetrically. However, these types of measure are not sufficiently specific and present several interfering substances. Thus, this work aimed to propose a quantification method for both tryptophan and kynurenine in hair samples, after alkali hydrolysis process, by using high-performance liquid chromatography (HPLC) with fluorimetric and UV detection. The tryptophan and kynurenine quantification method was developed and validated. Black, white, bleached and dyed (blond and auburn) hair tresses were used in this study. Tryptophan and kynurenine were separated within ∼9min by HPLC. Both black and white virgin hair samples presented similar concentrations of tryptophan, while bleaching caused a reduction in the tryptophan content as well as dyeing process. Unexpectedly, UV/vis radiation did not promote significantly the conversion of tryptophan into its photo-oxidation product and consequently, kynurenine was not detected. Thus, this works presented an acceptable method for quantification of tryptophan and its photooxidation metabolite kynurenine in hair samples. Also, the results indicated that bleaching and dyeing processes promoted protein/amino acids loss but tryptophan is not extensively degraded in human hair by solar radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Comparison in decoloration efficiency among radiation, ultraviolet ray and Fenton oxidation treatment for aqueous solution of dyes

    International Nuclear Information System (INIS)

    Shimokawa, Toshishige; Sawai, Takeshi

    1984-01-01

    To establish the methods of oxidation and decomposition treatment for dyeing waste water, the processes by radiation, ultraviolet ray and Fenton oxidation were examined comparatively for the decoloration efficiency. The dyes tested were commercially available reactive dyes, RBO-3R, DBR-BB, MBY-6GS and RBB-R. In the radiation process, the dye solution was irradiated with gamma ray of cobalt-60 while blowing air through it. Radiation process and Fenton oxidation were excellent for decoloration. Ultraviolet ray was low in the treatment efficiency, so it is not practical. In the radiation process, the addition of a reagent and the adjustment of pH are not required unlike the case of the Fenton oxidation process. Its continuous operation is also possible, so it is a highly practical means. (Mori, K.)

  17. Decolorization and removal of cod and bodfrom raw and biotreated textile dye bath effluent through advanced oxidation processes (AOPS

    Directory of Open Access Journals (Sweden)

    A. Muhammad

    2008-09-01

    Full Text Available In this paper, a comparative study of the treatment of raw and biotreated (upflow anaerobic sludge blanket, UASB textile dye bath effluent using advanced oxidation processes (AOPs is presented. The AOPs applied on raw and biotreated textile dye bath effluent, after characterization in terms of COD, colour, BOD and pH, were ozone, UV, UV/H2O2 and photo-Fenton. The decolorization of raw dye bath effluent was 58% in the case of ozonation. However it was 98% in the case of biotreated dye bath effluent when exposed to UV/H2O2. It is, therefore, suggested that a combination of biotreatment and AOPs be adopted to decolorize dye bath effluent in order to make the process more viable and effective. Biodegradability was also improved by applying AOPs after biotreatment of dye bath effluent.

  18. Synthesis of Nickel Oxide Nanoparticles Using Gelatine as a Green Template for Photocatalytic Degradation of Dye

    OpenAIRE

    JAY YANG LEE

    2018-01-01

    Nickel oxide (NiO) nanoparticles were synthesized through sol-gel method with an environmentally friendly templating agent, which is gelatin. The synthesized NiO were characterized to determine the chemical and physical properties of the nanoparticles. The optimum synthesis parameters were used in photocatalytic degradation of Reactive Black 5 and Acid Yellow 25 dye to determine the catalytic activity of the nanoparticles.

  19. Electro-oxidation of the dye azure B: kinetics, mechanism, and by-products.

    Science.gov (United States)

    Olvera-Vargas, Hugo; Oturan, Nihal; Aravindakumar, C T; Paul, M M Sunil; Sharma, Virender K; Oturan, Mehmet A

    2014-01-01

    In this work, the electrochemical degradation of the dye azure B in aqueous solutions was studied by electrochemical advanced oxidation processes (EAOPs), electro-Fenton, and anodic oxidation processes, using Pt/carbon-felt and boron-doped diamond (BDD)/carbon-felt cells with H₂O₂ electrogeneration. The higher oxidation power of the electro-Fenton (EF) process using BDD anode was demonstrated. The oxidative degradation of azure B by the electrochemically generated hydroxyl radicals ((•)OH) follows a pseudo-first-order kinetics. The apparent rate constants of the oxidation of azure B by (•)OH were measured according to pseudo-first-order kinetic model. The absolute rate constant of azure B hydroxylation reaction was determined by competition kinetics method and found to be 1.19 × 10(9) M(-1) s(-1). It was found that the electrochemical degradation of the dye leads to the formation of aromatic by-products which are then oxidized to aliphatic carboxylic acids before their almost mineralization to CO₂ and inorganic ions (sulfate, nitrate, and ammonium). The evolution of the TOC removal and time course of short-chain carboxylic acids during treatment were also investigated.

  20. The oxidation of luteolin, the natural flavonoid dye

    Czech Academy of Sciences Publication Activity Database

    Ramešová, Šárka; Sokolová, Romana; Tarábek, Ján; Degano, I.

    2013-01-01

    Roč. 110, NOV 2013 (2013), s. 646-654 ISSN 0013-4686 R&D Projects: GA ČR GA203/09/1607 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200401201 Program:M Institutional support: RVO:61388955 ; RVO:61388963 Keywords : oxidation * flavonoids * luteolin Subject RIV: CG - Electrochemistry Impact factor: 4.086, year: 2013

  1. Experimental Study on Treatment of Dyeing Wastewater by Activated Carbon Adsorption, Coagulation and Fenton Oxidation

    Science.gov (United States)

    Xiaoxu, SUN; Jin, XU; Xingyu, LI

    2017-12-01

    In this paper dyeing waste water was simulated by reactive brilliant blue XBR, activated carbon adsorption process, coagulation process and chemical oxidation process were used to treat dyeing waste water. In activated carbon adsorption process and coagulation process, the water absorbance values were measured. The CODcr value of water was determined in Fenton chemical oxidation process. Then, the decolorization rate and COD removal rate were calculated respectively. The results showed that the optimum conditions of activated carbon adsorption process were as follows: pH=2, the dosage of activated carbon was 1.2g/L, the adsorption reaction time was 60 min, and the average decolorization rate of the three parallel experiments was 85.30%. The optimum conditions of coagulation experiment were as follows: pH=8~9, PAC dosage was 70mg/L, stirring time was 20min, standing time was 45min, the average decolorization rate of the three parallel experiments was 74.48%. The optimum conditions for Fenton oxidation were Fe2+ 0.05g/L, H2O2 (30%) 14mL/L, pH=3, reaction time 40min. The average CODcr removal rate was 69.35% in three parallel experiments. It can be seen that in the three methods the activated carbon adsorption treatment of dyeing wastewater was the best one.

  2. Ingrown Hair

    Science.gov (United States)

    Ingrown hair Overview An ingrown hair occurs when a shaved or tweezed hair grows back into the skin. It can cause inflammation, pain and tiny bumps in the area where the hair was removed. Ingrown hair is a common condition ...

  3. Body Hair

    Science.gov (United States)

    ... girlshealth.gov/ Home Body Puberty Body hair Body hair Even before you get your first period , you ... removing pubic hair Ways to get rid of hair top Removing body hair can cause skin irritation, ...

  4. Toxicity Reduction of Reactive Red Dye-238 Using Advanced Oxidation Process by Solar Energy

    Directory of Open Access Journals (Sweden)

    Riyad Al-Anbari

    2017-09-01

    Full Text Available Decolorization of red azo dye (Cibacron Red FN-R from synthetic wastewater has been investigated as a function of solar advanced oxidation process. The photocatalytic activity using ZnO as a photocatalysis has been estimated. Different parameters affected the removal efficiency, including pH of the solution, initial dye concentration and H2O2 concentration were evaluated to find out the optimum value of these parameters. The results proved that the optimal pH value was 8 and the most efficient H2O2 concentration was 100mg/L. Toxicity reduction percent for effluent solution was also monitored to assess the degradation process. This treatment method was able to strongly reduce the color and toxicity of reactive red dye-238 to about (99 and 80 % respectively. It can be concluded, from these experiments, that the using of ZnO as a photocatalysis was exhibited as economical and efficient treatment method to remove reactive red dye-238 from aqueous solution.

  5. Gold Decorated Graphene for Rapid Dye Reduction and Efficient Electro Catalytic Oxidation of Ethanol

    Science.gov (United States)

    Siddhardha, R. S.; Kumar v, Lakshman; Kaniyoor, A.; Podila, R.; Kumar, V. S.; Venkataramaniah, K.; Ramaprabhu, S.; Rao, A.; Ramamurthy, S. S.; Clemson University Team; Sri Sathya Sai Institute of Higher Learning Team; IITMadras Team

    2013-03-01

    A well known disadvantage in fabrication of metal-graphene composite is the use of surfactants that strongly adsorb on the surface and reduce the performance of the catalyst. Here, we demonstrate a novel one pot synthesis of gold nanoparticles (AuNPs) by laser ablation of gold strip and simultaneous decoration of these on functionalized graphene derivatives. Not only the impregnation of AuNPs was linker free, but also the synthesis by itself was surfactant free. This resulted in in-situ decoration of pristine AuNPs on functionalized graphene derivatives. These materials were well characterized and tested for catalytic applications pertaining to dye reduction and electrooxidation. The catalytic reduction rates are 1.4 x 102 and 9.4x102 times faster for Rhodamine B and Methylene Blue dyes respectively, compared to earlier reports. The enhanced rate involves synergistic interplay of electronic relay between AuNPs and the dye, also charge transfer between the graphene system and dye. In addition, the onset potential for ethanol oxidation was found to be more negative ~ 100 mV, an indication of its promising application in direct ethanol fuel cells.

  6. Fibrous flexible solid-type dye-sensitized solar cells without transparent conducting oxide

    International Nuclear Information System (INIS)

    Fan Xing; Chu Zengze; Chen Lin; Zhang Chao; Wang Fuzhi; Tang Yanwei; Sun Jianliang; Zou Dechun

    2008-01-01

    We have explored a type of all-solid fibrous flexible dye-sensitized solar cells without transparent conducting oxide based on a CuI electrolyte. The working electrode's substrate is a metal wire. Cu wire counterelectrode is twisted with the dye-sensitized and CuI-coated working electrode. The cell's apparent diameter is about 150 μm. The cell's current-voltage output depends little on the incident angle of light. A 4-cm-long fibrous cell's open-circuit voltage and short-circuit current generate 304 mV and 0.032 mA, respectively. The interfacial interaction between the two electrodes has a significant influence on the inner charge transfer of the cell

  7. Fast degradation of dyes in water using manganese-oxide-coated diatomite for environmental remediation

    Science.gov (United States)

    Dang, Trung-Dung; Banerjee, Arghya Narayan; Tran, Quang-Tung; Roy, Sudipta

    2016-11-01

    By a simple wet-chemical procedure using a permanganate in the acidic medium, diatomite coated with amorphous manganese oxide nanoparticles was synthesized. The structural, microstructural and morphological characterizations of the as-synthesized catalysts confirmed the nanostructure of MnO2 and its stabilization on the support - diatomite. The highly efficient and rapid degradation of methylene blue and methyl orange over synthesized MnO2 coated Diatomite has been carried out. The results revealed considerably faster degradation of the dyes against the previously reported data. The proposed mechanism of the dye-degradation is considered to be a combinatorial effect of chemical, physicochemical and physical processes. Therefore, the fabricated catalysts have potential application in waste water treatment, and pollution degradation for environmental remediation.

  8. UV/Fenton photo-oxidation of Drimarene Dark Red (DDR) containing textile-dye wastewater

    Science.gov (United States)

    Hudaya, T.; Anthonios, J.; Septianto, E.

    2016-11-01

    Textile dye wastewater contains organic pollutants which are non-biodegradable, characterized by low BOD/COD ratio of typically Advanced Oxidation Processes (AOPs). One of the AOPs method which is the UV/H2O2/Fe2+ (or UV/Fenton) offers not only relatively low cost but also quite effective (in terms of color removal and reaction time) treatment. This particular research aimed to optimize the conditions of UV/Fenton photo-oxidation process for Drimarene Dark Red containing textile- dye wastewater. The two main operating conditions to be optimized were the initial concentration of H2O2 ranged between 0.022-0.078 %-w and the mol ratio of Fe2+: H2O2 was varied from 1: 13 up to 1: 45, using the Central Composite Design experimental matrix. The photo-oxidation was carried out at the optimum pH of 3 from some previous experiments. The best processing conditions of the photo-oxidation of Drimarene Dark Red (DDR) were found at the initial concentration of H2O2 at 0.050%-w and the mole ratio Fe2+: H2O2 of 1: 22. Under these conditions, the measured 2nd order pseudo-rate constantwas 0.021 M-1.min-1. The DDR color removal of 90% was surprisingly achievable within only 10 minutes reaction time.

  9. REMOVAL OF ORGANIC DYES FROM CONTAMINATED WATER USING COFE2O4 /REDUCED GRAPHENE OXIDE NANOCOMPOSITE

    Directory of Open Access Journals (Sweden)

    F. Sakhaei

    2016-12-01

    Full Text Available Up to now, lots of materials such as active carbon, iron, manganese, zirconium, and metal oxides have been widely used for removal of dyes from contaminated water. Among these, ferrite nanoparticle is an interesting magnetic material due to its moderate saturation magnetization, excellent chemical stability and mechanical hardness. Graphene, a new class of 2D carbonaceous material with atom thick layer features, has attracted much attention recently due to its high specific surface area. Reduced graphene oxide (rGO has also been of great interest because of its unique properties, which are similar to those of graphene, such as specific surface area, making it an ideal candidate for dye removal. Thus far, few works have been carried out on the preparation of CoFe2O4-rGO composite and its applications in removal of contaminants from water. In this paper, CoFe2O4 reduced graphene oxide nanocomposite was fabricated using hydrothermal process. During the hydrothermal process, the reduction of graphene oxide and growth of CoFe2O4 simultaneously occurred on the carbon basal planes under the conditions generated in the hydrothermal system. The samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and Fourier transform infrared spectroscopy contaminant and UV-Vis spectroscopy as the analytical method. The experimental results suggest that this material has great potential for treating Congo red contaminated water.

  10. Rapid and tunable selective adsorption of dyes using thermally oxidized nanodiamond.

    Science.gov (United States)

    Molavi, Hossein; Shojaei, Akbar; Pourghaderi, Alireza

    2018-03-27

    In the present study, capability of nanodiamond (ND) for the adsorption of anionic (methyl orange, MO) and cationic (methylene blue, MB) dyes from aqueous solution was investigated. Employing fourier transform infrared (FTIR) spectroscopy, Boehm titration method and zeta potential, it was found that the simple thermal oxidation of ND at 425 °C, increased the content of carboxylic acid of ND and accordingly the zeta potential of ND decreased considerably. Therefore, a series of oxidized NDs (OND) at various oxidation times and as-received untreated ND (UND) was used as adsorbents of MO and MB. The adsorption experiments exhibited that UND had large adsorption capacity, very fast adsorption kinetics and excellent selectivity for MO over MB. These results suggested that the adsorption tendency of UND toward anionic MO dye followed not only by electrostatic interactions but also via the chemical interaction caused by the strong hydrogen bond between the sulfonate groups of MO and the oxygen containing groups on the surface of UND. In contrast, ONDs exhibited higher adsorption capacity for cationic MB whose tendency toward MB increased by increasing the thermal oxidation time due to the promotion of the negative charge on the surface of OND leading to the higher electrostatic attraction. The adsorption rate of MB on ONDs was also very high. Kinetics data was well fitted with the pseudo- second-order model for most of the adsorbents. The adsorption selectivity analysis revealed that ONDs displayed more adsorption capacity for MB compared with MO which was also attributed to high electrostatic interactions of cationic dye with negative charges of ONDs. Finally, the release behavior of NDs was also demonstrated after soaking in ethanol and acetone. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Preparation of Biocolorant and Eco-Dyeing Derived from Polyphenols Based on Laccase-Catalyzed Oxidative Polymerization

    Directory of Open Access Journals (Sweden)

    Fubang Wang

    2018-02-01

    Full Text Available Natural products have been believed to be a promising source to obtain ecological dyes and pigments. Plant polyphenol is a kind of significant natural compound, and tea provides a rich source of polyphenols. In this study, biocolorant derived from phenolic compounds was generated based on laccase-catalyzed oxidative polymerization, and eco-dyeing of silk and wool fabrics with pigments derived from tea was investigated under the influence of pH variation. This work demonstrated that the dyeing property was better under acidic conditions compared to alkalinity, and fixation rate was the best when pH value was 3. Furthermore, breaking strength of dyed fabrics sharply reduced under the condition of pH 11. Eventually, the dyeing method was an eco-friendly process, which was based on bioconversion, and no mordant was added during the process of dyeing.

  12. Dye-sensitized solar cell architecture based on indium-tin oxide nanowires coated with titanium dioxide

    International Nuclear Information System (INIS)

    Joanni, Ednan; Savu, Raluca; Sousa Goes, Marcio de; Bueno, Paulo Roberto; Nei de Freitas, Jilian; Nogueira, Ana Flavia; Longo, Elson; Varela, Jose Arana

    2007-01-01

    A new architecture for dye-sensitized solar cells is employed, based on a nanostructured transparent conducting oxide protruding from the substrate, covered with a separate active oxide layer. The objective is to decrease electron-hole recombination. The concept was tested by growing branched indium-tin oxide nanowires on glass using pulsed laser deposition followed by deposition of a sputtered titanium dioxide layer covering the wires. The separation of charge generation and charge transport functions opens many possibilities for dye-sensitized solar cell optimization

  13. Tailoring oxides of copper-Cu_2O and CuO nanoparticles and evaluation of organic dyes degradation

    International Nuclear Information System (INIS)

    Raghav, Ragini; Aggarwal, Priyanka; Srivastava, Sudha

    2016-01-01

    We report a simple one-pot colloidal synthesis strategy tailoring cuprous or cupric nano-oxides in pure state. NaOH provided alkaline conditions (pH 12.5 -13) for nano-oxides formation, while its concentration regulated the oxidation state of the nano-oxides. The morphological, structural and optical properties of synthesized Cu_2O and CuO nanoparticles were studied by transmission electron microscopy (TEM), X-Ray diffraction (XRD) and UV-vis spectroscopy. Dye degradation capability of CuO and Cu2O nanoparticles was evaluated using four organic dyes - Malachite green, Methylene blue, Methyl orange and Methyl red. The results demonstrate effective degradation of all four dyes employing with almost comparable activity both Cu_2O and CuO nanoparticles.

  14. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

    Directory of Open Access Journals (Sweden)

    Subas K. Muduli

    2014-04-01

    Full Text Available A facile, solvothermal synthesis of mesoporous cerium oxide nanospheres is reported for the purpose of the photocatalytic degradation of organic dyes and future applications in sustainable energy research. The earth-abundant, relatively affordable, mixed valence cerium oxide sample, which consists of predominantly Ce7O12, has been characterized by powder X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy, and transmission electron microscopy. Together with N2 sorption experiments, the data confirms that the new cerium oxide material is mesoporous and absorbs visible light. The photocatalytic degradation of rhodamin B is investigated with a series of radical scavengers, suggesting that the mechanism of photocatalytic activity under visible-light irradiation involves predominantly hydroxyl radicals as the active species.

  15. Optically Transparent Cathode for Co(III/II) Mediated Dye-Sensitized Solar Cells Based on Graphene Oxide

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Yum, J. H.; Graetzel, M.

    2012-01-01

    Roč. 4, č. 12 (2012), s. 6998-7005 ISSN 1944-8244 R&D Projects: GA AV ČR IAA400400804; GA AV ČR KAN200100801 Institutional support: RVO:61388955 Keywords : graphene oxide * reduced graphene oxide * dye-sensitized solar cell Subject RIV: CG - Electrochemistry Impact factor: 5.008, year: 2012

  16. New porous titanium–niobium oxide for photocatalytic degradation of bromocresol green dye in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chaleshtori, Maryam Zarei, E-mail: mzarei@utep.edu [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Hosseini, Mahsa; Edalatpour, Roya [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Masud, S.M. Sarif [Department of Chemistry, University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Chianelli, Russell R., E-mail: chianell@utep.edu [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States)

    2013-10-15

    Graphical abstract: The photocatalytic activity of different porous titanium–niobium oxides was evaluated toward degradation of bromocresol green (BG) under UV light. A better catalytic activity was observed for all samples at lower pH. Catalysts have a stronger ability for degradation of BG in acid media than in alkaline media. - Highlights: • Different highly structured titanium–niobium oxides have been prepared using improved methods of synthesis. • Photo-degradation of bromocresol green dye (BG) with nanostructure titanium–niobium oxide catalysts was carried out under UV light. • The photo-catalytic activity of all catalysts was higher in lower pH. • Titanium–niobium oxide catalysts are considerably stable and reusable. - Abstract: In this study, high surface area semiconductors, non porous and porous titanium–niobium oxides derived from KTiNbO{sub 5} were synthesized, characterized and developed for their utility as photocatalysts for decontamination with sunlight. These materials were then used in the photocatalytic degradation of bromocresol green dye (BG) in aqueous solution using UV light and their catalytic activities were evaluated at various pHs. For all catalysts, the photocatalytic degradation of BG was most efficient in acidic solutions. Results show that the new porous oxides have large porous and high surface areas and high catalytic activity. A topotactic dehydration treatment greatly improves catalyst performance at various pHs. Stability and long term activity of porous materials (topo and non-topo) in photocatalysis reactions was also tested. These results suggest that the new materials can be used to efficiently purify contaminated water.

  17. One pot synthesis of multi-functional tin oxide nanostructures for high efficiency dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wali, Qamar; Fakharuddin, Azhar; Yasin, Amina; Ab Rahim, Mohd Hasbi; Ismail, Jamil; Jose, Rajan, E-mail: rjose@ump.edu.my

    2015-10-15

    Photoanode plays a key role in dye sensitized solar cells (DSSCs) as a scaffold for dye molecules, transport medium for photogenerated electrons, and scatters light for improved absorption. Herein, tin oxide nanostructures unifying the above three characteristics were optimized by a hydrothermal process and used as photoanode in DSSCs. The optimized morphology is a combination of hollow porous nanoparticles of size ∼50 nm and micron sized spheres with BET surface area (up to 29 m{sup 2}/g) to allow large dye-loading and light scattering as well as high crystallinity to support efficient charge transport. The optimized morphology gave the highest photovoltaic conversion efficiency (∼7.5%), so far achieved in DSSCs with high open circuit voltage (∼700 mV) and short circuit current density (∼21 mA/cm{sup 2}) employing conventional N3 dye and iodide/triiodide electrolyte. The best performing device achieved an incident photon to current conversion efficiency of ∼90%. The performance of the optimized tin oxide nanostructures was comparable to that of conventional titanium based DSSCs fabricated at similar conditions. - Graphical abstract: Tin oxide hollow nanostructure simultaneously supporting improved light scattering, dye-loading, and charge transport yielded high photovoltaic conversion efficiency in dye-sensitized solar cells. - Highlights: • Uniformly and bimodelly distributed tin oxide hollow nanospheres (HNS) are synthesized. • Uniform HNS are of size ∼10 nm; bimodel HNS has additional size up to ∼800 nm. • They are evaluated as photoelectrodes in dye-sensitized solar cells (DSSCs). • The uniform HNS increase dye-loading and the larger increase light scattering in DSSCs. • Photo conversion efficiency ∼7.5% is achieved using bimodel HNS.

  18. Gold nanoworms immobilized graphene oxide polymer brush nanohybrid for catalytic degradation studies of organic dyes

    International Nuclear Information System (INIS)

    Mogha, Navin Kumar; Gosain, Saransh; Masram, Dhanraj T.

    2017-01-01

    Highlights: • AuNPs on PDMAEMA brushes immobilized reduced graphene oxide was used as catalyst. • A novel highly efficient, reusable heterogeneous catalyst for dyes degradation. • Rhodamine B, Methyl Orange and Eosin Y was used for study. • Apparent rate constant observed was 21.8, 26.2, and 8.7 (×10 −3 s −1 ) respectively. - Abstract: In the present work, we report gold nanoparticles (AuNPs) on poly (dimethylaminoethyl methacrylate) (PDMAEMA) brushes immobilized reduced graphene oxide (Au/PDMAEMA/RGO) as catalyst for degradation kinetic studies of Rhodamine B (RB), Methyl Orange (MO) and Eosine Y (EY) dyes, having an excellent catalytic activity, as evident by the apparent rate constant (k app ), which is found to be 21.8, 26.2, and 8.7 (×10 −3 s −1 ), for RB, MO and EY respectively. Au/PDMAEMA/RGO catalyst is easy to use, highly efficient, recyclable, which make it suitable for applications in waste water management. Foremost, synthesis of PDMAEMA brushes on graphene oxide is accomplished by Atom transfer radical polymerization method (ATRP), whereas AuNPs are synthesized by simple chemical reduction method.

  19. Gold nanoworms immobilized graphene oxide polymer brush nanohybrid for catalytic degradation studies of organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Mogha, Navin Kumar; Gosain, Saransh; Masram, Dhanraj T., E-mail: dhnaraj_masram27@rediffmail.com

    2017-02-28

    Highlights: • AuNPs on PDMAEMA brushes immobilized reduced graphene oxide was used as catalyst. • A novel highly efficient, reusable heterogeneous catalyst for dyes degradation. • Rhodamine B, Methyl Orange and Eosin Y was used for study. • Apparent rate constant observed was 21.8, 26.2, and 8.7 (×10{sup −3} s{sup −1}) respectively. - Abstract: In the present work, we report gold nanoparticles (AuNPs) on poly (dimethylaminoethyl methacrylate) (PDMAEMA) brushes immobilized reduced graphene oxide (Au/PDMAEMA/RGO) as catalyst for degradation kinetic studies of Rhodamine B (RB), Methyl Orange (MO) and Eosine Y (EY) dyes, having an excellent catalytic activity, as evident by the apparent rate constant (k{sub app}), which is found to be 21.8, 26.2, and 8.7 (×10{sup −3} s{sup −1}), for RB, MO and EY respectively. Au/PDMAEMA/RGO catalyst is easy to use, highly efficient, recyclable, which make it suitable for applications in waste water management. Foremost, synthesis of PDMAEMA brushes on graphene oxide is accomplished by Atom transfer radical polymerization method (ATRP), whereas AuNPs are synthesized by simple chemical reduction method.

  20. Fenton oxidative decolorization of the azo dye Direct Blue 15 in aqueous solution

    DEFF Research Database (Denmark)

    Sun, Jian-Hui; Shi, Shao-Hui; Lee, Yi-Fan

    2009-01-01

    In this paper, the application of Fenton oxidation process for the decolorization of an azo dye Direct Blue 15 (DB15) in aqueous solution was investigated. The effect of initial pH, dosage of H2O2, H2O2/Fe2+ and H2O2/dye ratios and the reaction temperature on the decolorization efficiency...... = 60: 1 and temperature = 30 degrees C. Under the optimal conditions, 4.7 x 10(-5) mol/L of the DB15 aqueous solution can be completely decolorized by Fenton oxidation within 50-min reaction time and the decolorization kinetic rate constant k was determined as 0.1694 min(-1). Additionally increasing...... the reaction temperature from 20 to 40 degrees C showed a positive effect on the decolorization efficiency of DB15. The present study can provide guidance to relational industry operators and planners to effectively treat the DB15 contaminated wastewater by Fenton oxidation process. (C) 2009 Elsevier B. V. All...

  1. Morphology dependent dye-sensitized solar cell properties of nanocrystalline zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.K., E-mail: sanjeevlrs732000@yahoo.co.in [Department of Information and Communication, Cheju Halla College, Jeju City 690 708 (Korea, Republic of); Inamdar, A.I.; Im, Hyunsik [Department of Semiconductor Science, Dongguk University, Seoul 100 715 (Korea, Republic of); Kim, B.G. [Department of Information and Communication, Cheju Halla College, Jeju City 690 708 (Korea, Republic of); Patil, P.S. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India)

    2011-02-03

    Research highlights: > Nano-crystalline zinc oxide thin films were electrosynthesized from an aqueous zinc acetate [Zn(CH{sub 3}COO){sub 2}.2H{sub 2}O] solution onto FTO coated conducting glass substrates using two different electrochemical routes, namely (i) without an organic surfactant and (ii) with an organic surfactant, viz. PVA (poly-vinyl alcohol) or SDS (sodium dodecyl sulfate). > The reproducibility of the catalytic activity of the SDS and PVA surfactants in the modification of the morphologies was observed. > Vertically aligned nest-like and compact structures were observed from the SDS and PVA mediated films, respectively, while the grain size in the ZnO thin films without an organic surfactant was observed to be {approx}150 nm. > The dye sensitized ZnO electrodes displayed excellent properties in the conversion process from light to electricity. The efficiencies of the surfactant mediated nanocrystalline ZnO thin films, viz. ZnO:SDS and ZnO:PVA, sensitized with ruthenium-II (N3) dye were observed to be 0.49% and 0.27%, respectively. - Abstract: Nano-crystalline zinc oxide thin films were electrosynthesized with an aqueous zinc acetate [Zn(CH{sub 3}COO){sub 2}.2H{sub 2}O] solution on to FTO coated glass substrates. Two different electrochemical baths were used, namely (i) without an organic surfactant and (ii) with an organic surfactant, viz. PVA (poly-vinyl alcohol) and SDS (sodium dodecyl sulfate). The organic surfactants played an important role in modifying the surface morphology, which influenced the size of the crystallites and dye-sensitized solar cell (DSSC) properties. The vertically aligned thin and compact hexagonal crystallites were observed with SDS mediated films, while the grain size in the films without an organic surfactant was observed to be {approx}150 nm. The conversion efficiencies of the ZnO:SDS:Dye and ZnO:PVA:Dye thin films were observed to be 0.49% and 0.27%, respectively.

  2. Reverse Engineering Applied to Red Human Hair Pheomelanin Reveals Redox-Buffering as a Pro-Oxidant Mechanism

    Science.gov (United States)

    Kim, Eunkyoung; Panzella, Lucia; Micillo, Raffaella; Bentley, William E.; Napolitano, Alessandra; Payne, Gregory F.

    2015-01-01

    Pheomelanin has been implicated in the increased susceptibility to UV-induced melanoma for people with light skin and red hair. Recent studies identified a UV-independent pathway to melanoma carcinogenesis and implicated pheomelanin’s pro-oxidant properties that act through the generation of reactive oxygen species and/or the depletion of cellular antioxidants. Here, we applied an electrochemically-based reverse engineering methodology to compare the redox properties of human hair pheomelanin with model synthetic pigments and natural eumelanin. This methodology exposes the insoluble melanin samples to complex potential (voltage) inputs and measures output response characteristics to assess redox activities. The results demonstrate that both eumelanin and pheomelanin are redox-active, they can rapidly (sec-min) and repeatedly redox-cycle between oxidized and reduced states, and pheomelanin possesses a more oxidative redox potential. This study suggests that pheomelanin’s redox-based pro-oxidant activity may contribute to sustaining a chronic oxidative stress condition through a redox-buffering mechanism. PMID:26669666

  3. The performance and decolourization kinetics of O3/H2O2 oxidation of reactive green 19 dye in wastewater

    Science.gov (United States)

    Sabri, S. N.; Abidin, C. Z. A.; Fahmi; Kow, S. H.; Razali, N. A.

    2018-03-01

    The degradations characteristic of azo dye Reactive Green 19 (RG19) was investigated using advanced oxidation process (AOPs). It was evaluated based on colour and chemical oxygen demand (COD) removal. The effect of operational parameters such as initial dye concentration, initial dosage of hydrogen peroxide (H2O2), contact time, and pH was also being studied. The samples were treated by ozonation (O3) and peroxone O3/H2O2 process. Advanced oxidation processes (AOPs) involve two stages of oxidation; firstly is the formation of strong oxidant and secondly the reaction of organic contaminants in water. In addition, the term advanced oxidation is referring to the processes in which oxidation of organic contaminants occurs primarily through reactions with hydroxyl radicals. There are several analyses that use to determine the efficiency of the treatment process, which are UV-Vis absorption spectra, COD, Fourier Transform Infrared (FT-IR), and pH. The results demonstrated that the ozone oxidation was efficient in decolourization and good in mineralization, based on the reduction of colour and COD. Additionally, results indicate that H2O2 is able to perform better than ozonation in order to decolourize the dye wastewater with 0.5 mL H2O2/L dye dosage of H2O2 at different initial concentration, initial pH, with contact time.

  4. Hair Removal

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Hair Removal KidsHealth / For Teens / Hair Removal What's in ... you need any of them? Different Types of Hair Before removing hair, it helps to know about ...

  5. Hair Transplants

    Science.gov (United States)

    ... Search Skin Experts Skin Treatments Hair Transplants Share » HAIR TRANSPLANTS Before (left) and after (right) - front of ... transplant. Photo courtesy of N. Sadick What are hair transplants? In punch transplanting, a plug containing hair ...

  6. Your Hair

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Your Hair KidsHealth / For Kids / Your Hair What's in this ... eyes from sweat dripping down from your forehead. Hair Comes From Where? Whether hair is growing out ...

  7. Electronic structure of the indium tin oxide/nanocrystalline anatase (TiO2)/ruthenium-dye interfaces in dye-sensitized solar cells

    Science.gov (United States)

    Lyon, J. E.; Rayan, M. K.; Beerbom, M. M.; Schlaf, R.

    2008-10-01

    The electronic structure of two interfaces commonly found in dye-sensitized photovoltaic cells based on nanocrystalline anatase TiO2 ("Grätzel cells") was investigated using photoemission spectroscopy (PES). X-ray photoemission spectroscopy (XPS) and ultraviolet photoemission spectroscopy (UPS) measurements were carried out on the indium tin oxide (ITO)/TiO2 and the TiO2/cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II)bis-tetrabutylammonium dye ("N719" or "Ruthenium 535-bisTBA") interfaces. Both contacts were investigated using a multistep deposition procedure where the entire structure was prepared in vacuum using electrospray deposition. In between deposition steps the surface was characterized with XPS and UPS resulting in a series of spectra, allowing the determination of the orbital and band lineup at the interfaces. The results of these efforts confirm previous PES measurements on TiO2/dye contacts prepared under ambient conditions, suggesting that ambient contamination might not have significant influence on the electronic structure at the dye/TiO2 interface. The results also demonstrate that there may be a significant barrier for electron injection at the sputtered ITO/TiO2 interface and that this interface should be viewed as a semiconductor heterojunction rather than as metal-semiconductor (Schottky) contact.

  8. Immobilized Lignin Peroxidase-Like Metalloporphyrins as Reusable Catalysts in Oxidative Bleaching of Industrial Dyes

    Directory of Open Access Journals (Sweden)

    Paolo Zucca

    2016-07-01

    Full Text Available Synthetic and bioinspired metalloporphyrins are a class of redox-active catalysts able to emulate several enzymes such as cytochromes P450, ligninolytic peroxidases, and peroxygenases. Their ability to perform oxidation and degradation of recalcitrant compounds, including aliphatic hydrocarbons, phenolic and non-phenolic aromatic compounds, sulfides, and nitroso-compounds, has been deeply investigated. Such a broad substrate specificity has suggested their use also in the bleaching of textile plant wastewaters. In fact, industrial dyes belong to very different chemical classes, being their effective and inexpensive oxidation an important challenge from both economic and environmental perspective. Accordingly, we review here the most widespread synthetic metalloporphyrins, and the most promising formulations for large-scale applications. In particular, we focus on the most convenient approaches for immobilization to conceive economical affordable processes. Then, the molecular routes of catalysis and the reported substrate specificity on the treatment of the most diffused textile dyes are encompassed, including the use of redox mediators and the comparison with the most common biological and enzymatic alternative, in order to depict an updated picture of a very promising field for large-scale applications.

  9. Gold nanoworms immobilized graphene oxide polymer brush nanohybrid for catalytic degradation studies of organic dyes

    Science.gov (United States)

    Mogha, Navin Kumar; Gosain, Saransh; Masram, Dhanraj T.

    2017-02-01

    In the present work, we report gold nanoparticles (AuNPs) on poly (dimethylaminoethyl methacrylate) (PDMAEMA) brushes immobilized reduced graphene oxide (Au/PDMAEMA/RGO) as catalyst for degradation kinetic studies of Rhodamine B (RB), Methyl Orange (MO) and Eosine Y (EY) dyes, having an excellent catalytic activity, as evident by the apparent rate constant (kapp), which is found to be 21.8, 26.2, and 8.7 (×10-3 s-1), for RB, MO and EY respectively. Au/PDMAEMA/RGO catalyst is easy to use, highly efficient, recyclable, which make it suitable for applications in waste water management. Foremost, synthesis of PDMAEMA brushes on graphene oxide is accomplished by Atom transfer radical polymerization method (ATRP), whereas AuNPs are synthesized by simple chemical reduction method.

  10. Vanadium oxide (VO) based low cost counter electrode in dye sensitized solar cell (DSSC) applications

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, P.; Pandian, Muthu Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in [SSN Research Centre, SSN College of Engineering, Kalavakkam-603 110, Chennai, Tamilnadu (India)

    2015-06-24

    Vanadium oxide nanostars were synthesized by chemical method. The prepared Vanadium oxide nanostars are introduced into dye sensitized solar cell (DSSC) as counter electrode (CE) catalyst to replace the expensive platinum (Pt). The products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) method. The photovoltaic performance of the VO as counter electrode based DSSC was evaluated under simulated standard global AM 1.5G sunlight (100 mW/cm{sup 2}). The solar to electrical energy conversion efficiency (η) of the DSSC was found to be 0.38%.This work expands the Counter electrode catalyst, which can help to reduce the cost of DSSC and thereby encourage their fundamental research and commercial application.

  11. In-situ electrochemical doping of nanoporous anodic aluminum oxide with indigo carmine organic dye

    International Nuclear Information System (INIS)

    Stępniowski, Wojciech J.; Norek, Małgorzata; Budner, Bogusław; Michalska-Domańska, Marta; Nowak-Stępniowska, Agata; Bombalska, Aneta; Kaliszewski, Miron; Mostek, Anna; Thorat, Sanjay; Salerno, Marco; Giersig, Michael; Bojar, Zbigniew

    2016-01-01

    Nanoporous anodic aluminum oxide was formed in sulfuric acid with addition of indigo carmine. During anodizing, the organic dye was incorporated into the porous oxide walls. X-ray photoelectron spectroscopy revealed the presence of nitrogen and sulfur in the anodic aluminum oxide. Two types of incorporated sulfur were found: belonging to the sulfate anions SO_4"2"− of the electrolyte and belonging to the C-SO_3"− side groups of the indigo carmine. Raman spectroscopy confirmed the incorporation and showed that the inorganic–organic hybrid material inherited optical properties from the indigo carmine. Typical modes from pyrrolidone rings, unique for indigo carmine in the investigated system (650 and 1585 cm"−"1), were found to be the strongest for the greatest anodizing voltages used. Despite the indigo carmine incorporation, the morphology of the oxide is still nanoporous and its geometry is still tuned by the voltage applied during aluminum anodization. This work presents an inexpensive and facile approach to doping an inorganic oxide material with organic compounds. - Highlights: • Nanoporous anodic alumina was formed in electrolyte with indigo carmine. • XPS confirmed the presence of N and S in anodic alumina. • Raman spectroscopy revealed indigo carmine bands in anodic alumina. • The higher the voltage, the more indigo carmine was incorporated.

  12. In-situ electrochemical doping of nanoporous anodic aluminum oxide with indigo carmine organic dye

    Energy Technology Data Exchange (ETDEWEB)

    Stępniowski, Wojciech J., E-mail: wojciech.stepniowski@wat.edu.pl [Department of Advanced Materials and Technology, Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Norek, Małgorzata [Department of Advanced Materials and Technology, Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Budner, Bogusław [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Michalska-Domańska, Marta [Department of Advanced Materials and Technology, Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Nowak-Stępniowska, Agata; Bombalska, Aneta; Kaliszewski, Miron [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Mostek, Anna [Department of Advanced Materials and Technology, Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Thorat, Sanjay; Salerno, Marco [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, Genova I-16163 (Italy); Giersig, Michael [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Bojar, Zbigniew [Department of Advanced Materials and Technology, Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland)

    2016-01-01

    Nanoporous anodic aluminum oxide was formed in sulfuric acid with addition of indigo carmine. During anodizing, the organic dye was incorporated into the porous oxide walls. X-ray photoelectron spectroscopy revealed the presence of nitrogen and sulfur in the anodic aluminum oxide. Two types of incorporated sulfur were found: belonging to the sulfate anions SO{sub 4}{sup 2−} of the electrolyte and belonging to the C-SO{sub 3}{sup −} side groups of the indigo carmine. Raman spectroscopy confirmed the incorporation and showed that the inorganic–organic hybrid material inherited optical properties from the indigo carmine. Typical modes from pyrrolidone rings, unique for indigo carmine in the investigated system (650 and 1585 cm{sup −1}), were found to be the strongest for the greatest anodizing voltages used. Despite the indigo carmine incorporation, the morphology of the oxide is still nanoporous and its geometry is still tuned by the voltage applied during aluminum anodization. This work presents an inexpensive and facile approach to doping an inorganic oxide material with organic compounds. - Highlights: • Nanoporous anodic alumina was formed in electrolyte with indigo carmine. • XPS confirmed the presence of N and S in anodic alumina. • Raman spectroscopy revealed indigo carmine bands in anodic alumina. • The higher the voltage, the more indigo carmine was incorporated.

  13. PERSULFATE ACTIVATION BY A NATURAL IRON OXIDE FOR THE REMEDIATION OF DYE CONTAMINATION

    Directory of Open Access Journals (Sweden)

    Sihem BELAIDI

    2017-12-01

    Full Text Available The objective of this work was to evaluate the removal of crystal violet (CV, a cationic dye, using sodium persulfate (PS as an oxidant in the presence of a natural iron oxide (NIO. Experimental results indicate that approximately 89 % and 98% of CV removal was achieved by PS alone and by (PS/NIO system respectively after 1 hour of reaction. Persulfate oxidation activated with soluble Fe (II enhanced the kinetic oxidation of CV. The increase in the removal extent is due to the adsorption of CV onto NIO surface and to the increased formation of either SO4•- or •OH radicals. The effect of pH on the degradation of CV by PS/NIO was studied. Persulfate degradation increases with a reduction in pH causing increased rate of degradation of organic contaminants. An additional factor in the NIO/PS/UV process is the photolysis of PS which produce two sulfate radicals (SO4•-. Results of this study suggest that NIO can be used as iron source to activate persulfate oxidation.

  14. Characteristics of thermally reduced graphene oxide and applied for dye-sensitized solar cell counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Yuan, E-mail: cyho@cycu.edu.tw [Department of Mechanical Engineering, Chung Yuan Christian University, Chung-Li, Taiwan (China); Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung Yuan Christian University, Chung-Li, Taiwan (China); Wang, Hong-Wen [Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung Yuan Christian University, Chung-Li, Taiwan (China); Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan (China)

    2015-12-01

    Graphical abstract: Experimental process: (1) graphite oxidized to graphene oxide; (2) thermal reduction from graphene oxide to graphene; (3) applying to DSSC counter electrode. - Highlights: • Intercalated defects were eliminated by increasing reduction temperature of GO. • High reduction temperature of tGP has lower resistance, high the electron lifetime. • Higher thermal reduction of GO proposes electrocatalytic properties. • DSSC using tGP{sub 250} as counter electrode has energy conversion efficiency of 3.4%. - Abstract: Graphene oxide (GO) was synthesized from a flake-type of graphite powder, which was then reduced to a few layers of graphene sheets using the thermal reduction method. The surface morphology, phase crystallization, and defect states of the reduced graphene were determined from an electron microscope equipped with an energy dispersion spectrometer, X-ray diffraction, Raman spectroscopy, and infrared spectra. After graphene formation, the intercalated defects that existed in the GO were removed, and it became crystalline by observing impurity changes and d-spacing. Dye-sensitized solar cells, using reduced graphene as the counter electrode, were fabricated to evaluate the electrolyte activity and charge transport performance. The electrochemical impedance spectra showed that increasing the thermal reduction temperature could achieve faster electron transport and longer electron lifetime, and result in an energy conversion efficiency of approximately 3.4%. Compared to the Pt counter electrode, the low cost of the thermal reduction method suggests that graphene will enjoy a wide range of potential applications in the field of electronic devices.

  15. Characteristics of thermally reduced graphene oxide and applied for dye-sensitized solar cell counter electrode

    International Nuclear Information System (INIS)

    Ho, Ching-Yuan; Wang, Hong-Wen

    2015-01-01

    Graphical abstract: Experimental process: (1) graphite oxidized to graphene oxide; (2) thermal reduction from graphene oxide to graphene; (3) applying to DSSC counter electrode. - Highlights: • Intercalated defects were eliminated by increasing reduction temperature of GO. • High reduction temperature of tGP has lower resistance, high the electron lifetime. • Higher thermal reduction of GO proposes electrocatalytic properties. • DSSC using tGP 250 as counter electrode has energy conversion efficiency of 3.4%. - Abstract: Graphene oxide (GO) was synthesized from a flake-type of graphite powder, which was then reduced to a few layers of graphene sheets using the thermal reduction method. The surface morphology, phase crystallization, and defect states of the reduced graphene were determined from an electron microscope equipped with an energy dispersion spectrometer, X-ray diffraction, Raman spectroscopy, and infrared spectra. After graphene formation, the intercalated defects that existed in the GO were removed, and it became crystalline by observing impurity changes and d-spacing. Dye-sensitized solar cells, using reduced graphene as the counter electrode, were fabricated to evaluate the electrolyte activity and charge transport performance. The electrochemical impedance spectra showed that increasing the thermal reduction temperature could achieve faster electron transport and longer electron lifetime, and result in an energy conversion efficiency of approximately 3.4%. Compared to the Pt counter electrode, the low cost of the thermal reduction method suggests that graphene will enjoy a wide range of potential applications in the field of electronic devices.

  16. Supercritical water oxidation of colored smoke, dye, and pyrotechnic compositions. Final report: Pilot plant conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    LaJeunesse, C.A.; Chan, Jennifer P.; Raber, T.N.; Macmillan, D.C.; Rice, S.F.; Tschritter, K.L.

    1993-11-01

    The existing demilitarization stockpile contains large quantities of colored smoke, spotting dye, and pyrotechnic munitions. For many years, these munitions have been stored in magazines at locations within the continental United States awaiting completion of the life-cycle. The open air burning of these munitions has been shown to produce toxic gases that are detrimental to human health and harmful to the environment. Prior efforts to incinerate these compositions have also produced toxic emissions and have been unsuccessful. Supercritical water oxidation (SCWO) is a rapidly developing hazardous waste treatment method that can be an alternative to incineration for many types of wastes. The primary advantage SCWO affords for the treatment of this selected set of obsolete munitions is that toxic gas and particulate emissions will not occur as part of the effluent stream. Sandia is currently designing a SCWO reactor for the US Army Armament Research, Development & Engineering Center (ARDEC) to destroy colored smoke, spotting dye, and pyrotechnic munitions. This report summarizes the design status of the ARDEC reactor. Process and equipment operation parameters, process flow equations or mass balances, and utility requirements for six wastes of interest are developed in this report. Two conceptual designs are also developed with all process and instrumentation detailed.

  17. Two-Sided Surface Oxidized Cellulose Membranes Modified with PEI: Preparation, Characterization and Application for Dyes Removal

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-09-01

    Full Text Available Porous regenerated cellulose (RC membranes were prepared with cotton linter pulp as a raw material. These membranes were first oxidized on both sides by a modified (2,2,6,6-tetramethylpiperidin-1-yloxyl (TEMPO oxidation system using a controlled oxidation reaction technique. Then, the oxidized RC membranes were functionalized with polyethylenimine (PEI via the glutaraldehyde crosslinking method to obtain bifunctional (carboxyl and amino porous RC membranes, as revealed by Fourier transform infrared spectroscopy (FT-IR, elemental analysis and zeta potential measurement. The scanning electron microscopy (SEM and the tests of the mechanical properties and permeability characteristics of modified RC membranes demonstrated that the porous structure and certain mechanical properties could be retained. The adsorption performance of the modified membranes towards dyes was subsequently investigated. The modified membranes displayed good adsorption capacities, rapid adsorption equilibrium and removal efficiencies towards both anionic (xylenol orange (XO and cationic (methylene blue (MB dyes, making them suitable bioadsorbents for wastewater treatment.

  18. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.

    Science.gov (United States)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12h, the COD was decreased from 532 to 99 mg L(-1) (destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode

    International Nuclear Information System (INIS)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-01-01

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12 h, the COD was decreased from 532 to 99 mg L -1 ( -1 , the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters.

  20. Dynamical Orientation of Large Molecules on Oxide Surfaces and its Implications for Dye-Sensitized Solar Cells

    KAUST Repository

    Brennan, Thomas P.

    2013-11-12

    A dual experimental-computational approach utilizing near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and density functional theory-molecular dynamics (DFT-MD) is presented for determining the orientation of a large adsorbate on an oxide substrate. A system of interest in the field of dye-sensitized solar cells is studied: an organic cyanoacrylic acid-based donor-π-acceptor dye (WN1) bound to anatase TiO2. Assessment of nitrogen K-edge NEXAFS spectra is supported by calculations of the electronic structure that indicate energetically discrete transitions associated with the two π systems of the C-N triple bond in the cyanoacrylic acid portion of the dye. Angle-resolved NEXAFS spectra are fitted to determine the orientation of these two orbital systems, and the results indicate an upright orientation of the adsorbed dye, 63 from the TiO2 surface plane. These experimental results are then compared to computational studies of the WN1 dye on an anatase (101) TiO2 slab. The ground state structure obtained from standard DFT optimization is less upright (45 from the surface) than the NEXAFS results. However, DFT-MD simulations, which provide a more realistic depiction of the dye at room temperature, exhibit excellent agreement - within 2 on average - with the angles determined via NEXAFS, demonstrating the importance of accounting for the dynamic nature of adsorbate-substrate interactions and DFT-MD\\'s powerful predictive abilities. © 2013 American Chemical Society.

  1. Dynamical Orientation of Large Molecules on Oxide Surfaces and its Implications for Dye-Sensitized Solar Cells

    KAUST Repository

    Brennan, Thomas P.; Tanskanen, Jukka T.; Bakke, Jonathan R.; Nguyen, William H.; Nordlund, Dennis; Toney, Michael F.; McGehee, Michael D.; Sellinger, Alan; Bent, Stacey F.

    2013-01-01

    A dual experimental-computational approach utilizing near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and density functional theory-molecular dynamics (DFT-MD) is presented for determining the orientation of a large adsorbate on an oxide substrate. A system of interest in the field of dye-sensitized solar cells is studied: an organic cyanoacrylic acid-based donor-π-acceptor dye (WN1) bound to anatase TiO2. Assessment of nitrogen K-edge NEXAFS spectra is supported by calculations of the electronic structure that indicate energetically discrete transitions associated with the two π systems of the C-N triple bond in the cyanoacrylic acid portion of the dye. Angle-resolved NEXAFS spectra are fitted to determine the orientation of these two orbital systems, and the results indicate an upright orientation of the adsorbed dye, 63 from the TiO2 surface plane. These experimental results are then compared to computational studies of the WN1 dye on an anatase (101) TiO2 slab. The ground state structure obtained from standard DFT optimization is less upright (45 from the surface) than the NEXAFS results. However, DFT-MD simulations, which provide a more realistic depiction of the dye at room temperature, exhibit excellent agreement - within 2 on average - with the angles determined via NEXAFS, demonstrating the importance of accounting for the dynamic nature of adsorbate-substrate interactions and DFT-MD's powerful predictive abilities. © 2013 American Chemical Society.

  2. Charge transfer in graphene oxide-dye system for photonic applications

    International Nuclear Information System (INIS)

    Bongu, Sudhakara Reddy; Bisht, Prem B.; Thu, Tran V.; Sandhu, Adarsh

    2014-01-01

    The fluorescence of a standard dye Rhodamine 6G (R6G) in solution decreases on addition of reduced graphene oxide (rGO). The absorption spectra and lifetime measurements confirm that no excited-state but a ground-state complex formation is responsible for this effect. For silver decorated rGO (Ag-rGO), the quenching efficiency and ground state complex formation process is small. Z-scan measurements have been done to study the optical nonlinearity at 532 nm under ps time scale. Remarkable reduction in the saturable absorption (SA) effect of R6G indicates no nonlinear contribution from the ground state complex. The results have been explained with varying charge transfer rates and non-fluorescence nature of the complex

  3. Testing strategies in mutagenicity and genetic toxicology: an appraisal of the guidelines of the European Scientific Committee for Cosmetics and Non-Food Products for the evaluation of hair dyes.

    Science.gov (United States)

    Kirkland, D J; Henderson, L; Marzin, D; Müller, L; Parry, J M; Speit, G; Tweats, D J; Williams, G M

    2005-12-30

    The European Scientific Committee on Cosmetics and Non-Food Products (SCCNFP) guideline for testing of hair dyes for genotoxic/mutagenic/carcinogenic potential has been reviewed. The battery of six in vitro tests recommended therein differs substantially from the batteries of two or three in vitro tests recommended in other guidelines. Our evaluation of the chemical types used in hair dyes and comparison with other guidelines for testing a wide range of chemical substances, lead to the conclusion that potential genotoxic activity may effectively be determined by the application of a limited number of well-validated test systems that are capable of detecting induced gene mutations and structural and numerical chromosomal changes. We conclude that highly effective screening for genotoxicity of hair dyes can be achieved by the use of three assays, namely the bacterial gene mutation assay, the mammalian cell gene mutation assay (mouse lymphoma tk assay preferred) and the in vitro micronucleus assay. These need to be combined with metabolic activation systems optimised for the individual chemical types. Recent published evidence [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] suggests that our recommended three tests will detect all known genotoxic carcinogens, and that increasing the number of in vitro assays further would merely reduce specificity (increase false positives). Of course there may be occasions when standard tests need to be modified to take account of special situations such as a specific pathway of biotransformation, but this should be considered as part of routine testing. It is clear that individual dyes and any other novel ingredients should be tested in this three-test battery. However, new products are formed on the scalp by

  4. Ferroelectric BiFeO3as an Oxide Dye in Highly Tunable Mesoporous All-Oxide Photovoltaic Heterojunctions

    KAUST Repository

    Wang, Lingfei

    2016-10-12

    As potential photovoltaic materials, transition-metal oxides such as BiFeO3 (BFO) are capable of absorbing a substantial portion of solar light and incorporating ferroic orders into solar cells with enhanced performance. But the photovoltaic application of BFO has been hindered by low energy-conversion efficiency due to poor carrier transport and collection. In this work, a new approach of utilizing BFO as a light-absorbing sensitizer is developed to interface with charge-transporting TiO2 nanoparticles. This mesoporous all-oxide architecture, similar to that of dye-sensitized solar cells, can effectively facilitate the extraction of photocarriers. Under the standard AM1.5 (100 mW cm−2) irradiation, the optimized cell shows an open-circuit voltage of 0.67 V, which can be enhanced to 1.0 V by tailoring the bias history. A fill factor of 55% is achieved, which is much higher than those in previous reports on BFO-based photovoltaic devices. The results provide here a new viable approach toward developing highly tunable and stable photovoltaic devices based on ferroelectric transition-metal oxides.

  5. Ferroelectric BiFeO3 as an Oxide Dye in Highly Tunable Mesoporous All-Oxide Photovoltaic Heterojunctions.

    Science.gov (United States)

    Wang, Lingfei; Ma, He; Chang, Lei; Ma, Chun; Yuan, Guoliang; Wang, Junling; Wu, Tom

    2017-01-01

    As potential photovoltaic materials, transition-metal oxides such as BiFeO 3 (BFO) are capable of absorbing a substantial portion of solar light and incorporating ferroic orders into solar cells with enhanced performance. But the photovoltaic application of BFO has been hindered by low energy-conversion efficiency due to poor carrier transport and collection. In this work, a new approach of utilizing BFO as a light-absorbing sensitizer is developed to interface with charge-transporting TiO 2 nanoparticles. This mesoporous all-oxide architecture, similar to that of dye-sensitized solar cells, can effectively facilitate the extraction of photocarriers. Under the standard AM1.5 (100 mW cm -2 ) irradiation, the optimized cell shows an open-circuit voltage of 0.67 V, which can be enhanced to 1.0 V by tailoring the bias history. A fill factor of 55% is achieved, which is much higher than those in previous reports on BFO-based photovoltaic devices. The results provide here a new viable approach toward developing highly tunable and stable photovoltaic devices based on ferroelectric transition-metal oxides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Bioconjugated graphene oxide hydrogel as an effective adsorbent for cationic dyes removal.

    Science.gov (United States)

    Soleimani, Khadijeh; Tehrani, Abbas Dadkhah; Adeli, Mohsen

    2018-01-01

    In this study, graphene oxide - cellulose nanowhiskers nanocomposite hydrogel was easily synthesized through covalent functionalization of cellulose nanowhiskers with graphene oxide via a facile approach. The nitrene chemistry applied for covalent functionalization of graphene oxide sheets. The surface morphology and chemical structure of the nanocomposite hydrogel were characterized by FTIR, TGA, Raman, XRD, elemental analysis and SEM. The UV/Visible absorption spectrum revealed that the obtained porous nanocomposite hydrogel can efficiently remove cationic dyes such as methylene blue (MB) and Rhodamine B (RhB) from wastewater with high absorption power. The adsorption process showed that 100% of MB and 90% of RhB have been removed and the equilibrium state has been reached in 15min for low concentration solutions in accordance with the pseudo-second-order model. Moreover, the sample exhibited stable performance after being used several times. High adsorption capacity and easy recovery are the efficient factors making these materials as good adsorbent for water pollutants and wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Anodic oxidation of anthraquinone dye Alizarin Red S at Ti/BDD electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jianrui; Lu Haiyan [College of Chemistry, Jilin University, Changchun 130012 (China); Du Lili [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Lin Haibo, E-mail: lhb910@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China); State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012 (China); Li Hongdong, E-mail: hdli@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China)

    2011-05-15

    The boron-doped diamond (BDD) thin-film electrode with high quality using industrially titanium plate (Ti/BDD) as substrate has been prepared and firstly used in the oxidation of anthraquinone dye Alizarin Red S (ARS) in wastewaters. The Ti/BDD electrodes are shown to have high concentration of sp{sup 3}-bonded carbon and wide electrochemical window. The results of the cyclic voltammetries show that BDD has unique properties such as high anodic stability and the production of active intermediates at the high potential. The oxidation regions of ARS and water are significantly separated at the Ti/BDD electrode, and the peak current increases linearly with increasing ARS concentration. The bulk electrolysis shows that removal of chemical oxygen demand (COD) and color can be completely reached and the electrooxidation of ARS behaves as a mass-transfer-controlled process at the Ti/BDD electrode. It is demonstrated that the performances of the Ti/BDD electrode for anodic oxidation ARS have been significantly improved with respect to the traditional electrodes.

  8. Hair Loss

    Science.gov (United States)

    ... is why some people with eating disorders like anorexia and bulimia lose their hair: The body isn't getting enough protein, vitamins, and minerals to support hair growth. Some teens who are vegetarians also lose their hair if ...

  9. The effect of the textile industry dye bath additive EDTMPA on colour removal characteristics by ozone oxidation.

    Science.gov (United States)

    Olmez, T; Kabdaşli, I; Tünay, O

    2007-01-01

    In this study, the effects of the phosphonic acid based sequestering agent EDTMPA used in the textile dye baths on colour and organic matter removal by ozone oxidation was experimentally investigated. Procion Navy HEXL dyestuff that has been commonly used for the reactive dyeing of cellulose fibers was selected as the model component. The organic matter oxidation by ozone was determined to obey the pseudo-first order kinetics as they are treated singly or in combination. COD removal rates obtained from pseudo-first order reaction kinetics showed that oxidation of Navy HEXL alone (0.0947 L/min) was faster than that of EDTMPA (0.0171 L/min) and EDTMPA with dye (0.0155 L/min) at pH 3.0. It was also found that reaction rates of single EDTMPA removal and EDTMPA and dye mixture removal increased as the reaction pH was increased from 3.0 to 10.5.

  10. Anthocyanin – Rich Red Dye of Hibiscus Sabdariffa Calyx Modulates Cisplatin-induced Nephrotoxicity and Oxidative Stress in Rats

    Science.gov (United States)

    Ademiluyi, Adedayo O.; Oboh, Ganiyu; Agbebi, Oluwaseun J.; Akinyemi, Ayodele J.

    2013-01-01

    This study sought to investigate the protective effect of dietary inclusion of Hibiscus sabdariffa calyx red dye on cisplatin-induced nephrotoxicity and antioxidant status in rats. Adult male rats were randomly divided into four groups of six animals each. Groups I and II were fed basal diet while groups III and IV were fed diets containing 0.5% and 1% of the dye respectively for 20 days prior to cisplatin administration. Nephrotoxicity was induced by a single dose intraperitoneal administration of cisplatin (7 mg/kg b.w) and the experiment was terminated 3 days after. The kidney and plasma were studied for nephrotoxicity and oxidative stress indices. Cisplatin administration caused a significant (Psabdariffa dye could be attributed to its anthocyanin content. PMID:24711761

  11. Photocatalytic Oxidation of Azo Dyes and Oxalic Acid in Batch Reactors and CSTR: Introduction of Photon Absorption by Dyes to Kinetic Models

    Directory of Open Access Journals (Sweden)

    I. Grčić

    2018-04-01

    Full Text Available The possibilities of treating industrial effluents and water purification by advanced oxidation processes have been extensively studied; photocatalysis has emerged as a feasible alternative solution. In order to apply the photocatalytic treatment on a larger scale, relevant modeling approaches are necessary. The scope of this work was to investigate the applicability of recently published kinetic models in different reactor systems (batch and CSTR under UVA or UVC irradiation and in combination with two types of TiO2 catalyst, AEROXIDE® P25 and PC-500 for degradation of azo dyes (C.I. Reactive Violet 2, and C.I. Mordant Yellow 10, oxalic acid and their mixtures. The influences of reactor geometry and irradiation intensities on pollutant oxidation efficiency were examined. The effect of photon absorption by dyes in water matrix was thoroughly studied. Relevant kinetic models were introduced to the mass balance for particular reactor system. Resulting models were sufficient for description of pollutant degradation in batch reactors and CSTR. Experimental results showed 1.15 times higher mineralization extents achieved after 7 cycles in CSTR than in batch photoreactor of similar geometry within the equivalent time-span. The application of CSTR in-series could simplify the photocatalytic water treatment on a larger scale.

  12. Hydrogen production and metal-dye bioremoval by a Nostoc linckia strain isolated from textile mill oxidation pond.

    Science.gov (United States)

    Mona, Sharma; Kaushik, Anubha; Kaushik, C P

    2011-02-01

    Biohydrogen production by Nostoc linckia HA-46, isolated from a textile-industry oxidation-pond was studied by varying light/dark period, pH, temperature and ratio of carbon-dioxide and argon in the gas-mixture. Hydrogen production rates were maximum under 18 h of light and 6 h of darkness, pH 8.0, 31°C, a CO(2):Ar ratio 2:10. Hydrogen production of the strain acclimatized to 20 mg/L of chromium/cobalt and 100 mg/L of Reactive red 198/crystal violet dye studied in N-supplemented/deficient medium was 6-10% higher in the presence of 1.5 g/L of NaNO(3). Rates of hydrogen production in the presence of dyes/metals by the strain (93-105 μmol/h/mg Chlorophyll) were significantly higher than in medium without metals/dyes serving as control (91.3 μmol/h/mg Chlorophyll). About 58-60% of the two metals and 35-73% of dyes were removed by cyanobacterium. Optimal conditions of temperature, pH and metals/dyes concentration for achieving high hydrogen production and wastewater treatment were found practically applicable as similar conditions are found in the effluent of regional textile-mills. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Synthesis and Application of Iron Oxide/Silica Gel Nanocomposite for Removal of Sulfur Dyes from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Naser Tavassoli

    2017-03-01

    Full Text Available Background & Aims of the Study: water pollution by synthetic organic dyes is mainly regarded as environmental and ecological critical issues worldwide. In this research, magnetite iron oxide/silica gel nanocomposite (termed as Fe3O4/SG was synthesized chemically and then used as an effective adsorbent for removal of sulfur dyes from aqueous solution. Materials and Methods: The various parameters such as pH, sorbent dosage, initial dye concentration, contact time and dye solution temperature were investigated in a batch system. The equilibrium data were analyzed by Langmuir and Freundlich isotherm models. Results: The experimental data fit well with pseudo-second-order kinetic model (R2≥0.998 and conformed better to Langmuir isotherm model (R2≥0.997. The maximum adsorption capacity for Fe3O4/SG obtained from the Langmuir model was 11.1mg/g. Evaluation of thermodynamic parameters proved that the adsorption process was normally feasible, spontaneous and exothermic. Conclusion: It can be concluded that the Fe3O4/SG can be considered as a cost-effective and an environmental friendly adsorbent for efficient removal of sulfur dyes from aqueous solutions.

  14. Performance Assessment of Chemical Coagulation Together with Advanced Oxidation Peroxone Regarding Dye Wastewater Treatment of Appliance Factories

    Directory of Open Access Journals (Sweden)

    A R Shahriyari Farfani

    2016-01-01

    Full Text Available Abstract Introduction: Considering the important role of industry in polluting the environment, the present study aimed to evaluate the performance of chemical coagulation together with advanced oxidation (peroxone regarding dye wastewater treatment of appliance factories. Methods: This study was experimental, which it’s pilot-scale was conducted on the wastewater of the painting appliance Factory. The sample was selected via the combined sampling procedure. The processes used in the present study consisted of chemical coagulation and advanced oxidation (peroxone processes and 250 samples were analyzed. MgCl2, PAC and FeCl3, Bentonite, Cationic Polymer were used for chemical coagulation. The used equipments consisted of Spectrophotometer DR 2000, Jar taste and a ozonation reactor. COD and dye of samples were measured according to standard method. Results: The results revealed that each of the coagulants in its optimal pH were able to arrange the magnesium chloride 86.85%, poly aluminum chloride 88.47% and ferric chloride 85.41% in removal of COD. Poly aluminum chloride achieved the highest dye removal 90.92%. Furthermore, the highest COD removal efficiency was related to the combination of magnesium chloride (1.4 mg/l, poly aluminum chloride (0.6 mg/l and cationic polymers (0.4 mg/l with an efficiency of 89.11%, which managed to remove the dye up to 93.38%. COD removal efficiency reached to 99.67% using advanced oxidation process by peroxone method on pretreated wastewater (with chemical coagulation. Conclusions: For better performance of peroxone treatment, the wastewater should be pretreated for removal of dissolved solids. As a result, due to its suspension status of using peroxone method together chemical coagulation has a high capability to remove COD and dye from appliance Factore ,s wastewater.

  15. Elaboration of nano titania-magnetic reduced graphene oxide for degradation of tartrazine dye in aqueous solution

    Science.gov (United States)

    Nada, Amr A.; Tantawy, Hesham R.; Elsayed, Mohamed A.; Bechelany, Mikhael; Elmowafy, Mohamed E.

    2018-04-01

    In this paper, magnetic nanocomposites are synthesized by loading reduced graphene oxide (RG) with two components of nanoparticles consisting of titanium dioxide (TiO2) and magnetite (Fe3O4) with varying amounts. The structural and magnetic features of the prepared composite photocatalysts were investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (UV-vis/DRS), Raman and vibrating sample magnetometer (VSM). The resulting TiO2/magnetite reduced graphene oxide (MRGT) composite demonstrated intrinsic visible light photocatalytic activity, on degradation of tartrazine (TZ) dye from a synthetic aqueous solution. Specifically, it exhibits higher photocatalytic activity than magnetite reduced graphene oxide (MRG) and TiO2 nanoparticles. The photocatalytic degradation of TZ dye when using MRG and TiO2 for 3 h under visible light was 35% and 10% respectively, whereas for MRGT it was more than 95%. The higher photocatalytic efficiency of MRGT is due to the existence of reduced graphene oxide and magnetite which enhances the photocatalytic efficiency of the composite in visible light towards the degradation of harmful soluble azo dye (tartrazine).

  16. Application of Ni-Oxide@TiO2 Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors

    Directory of Open Access Journals (Sweden)

    Seungwon Lee

    2016-12-01

    Full Text Available Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO2 core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue degradation under ultraviolet (UV and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO2 overlayer coating.

  17. Paraphenylenediamine: Blackening more than just hair

    Directory of Open Access Journals (Sweden)

    Dilip Gude

    2012-01-01

    Full Text Available Paraphenylenediamine is an important constituent of hair dye toxicity of which one could herald fatal complications such as rhabdomyolysis, renal failure, angioneurotic edema, and respiratory failure. We present a case of hair dye poisoning that presented with respiratory distress due to laryngeal edema and later developed trismus, subclinical tetany, apnea, and conduction abnormality on electrocardiogram. This case report highlights the need for a thorough toxicological review of the components of any ingested substance.

  18. Enhanced performance of dye-sensitized solar cells using gold nanoparticles modified fluorine tin oxide electrodes

    International Nuclear Information System (INIS)

    Zhang Dingwen; Shen Jie; Huang Sumei; Wang Milton; Brolo, Alexandre G; Li Xiaodong

    2013-01-01

    We have investigated plasmon-assisted energy conversion in dye-sensitized solar cells (DSCs) applying gold nanoparticles (NPs) modified fluorine tin oxide (FTO) electrodes. A series of Au NPs with different sizes (15-80 nm) were synthesized and immobilized onto FTO glass slides. Photoanodes were prepared on these Au modified FTO substrates using P25 TiO 2 powders and by the screen-printing method. The size effects of Au NPs on the photovoltaic performance of the formed DSCs were investigated systematically. Structural and photoelectrochemical properties of the formed photoanodes were examined by field emission scanning electron microscopy and electrochemical impedance spectroscopy. It was found that the energy conversion efficiency of the DSC was highly dependent on the Au particle size. When the particle size was not greater than 60 nm, the DSC based on the Au NP-FTO composite electrode showed a higher short-circuit current density and better photovoltaic (PV) performance than the cell based on the bare FTO. The best cell was achieved using 25 nm sized Au NPs modified FTO. It exhibited a conversion efficiency of 6.69%, which was 15% higher than that of DSCs without Au NPs. The related PV performance enhancement mechanisms, photoelectrochemical processes and surface-plasmon resonances in DSCs with Au nanostructures are analysed and discussed.

  19. Preparation of tetraethylenepentamine modified magnetic graphene oxide for adsorption of dyes from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaosheng [Hubei Normal University (China); Tang, Ping; Liu, Liangliang, E-mail: liuliangliang@caas.cn [Chinese Academy of Agricultural Sciences, Changsha (China)

    2018-05-01

    In this study, tetraethylenepentamine modified magnetic graphene oxide nanomaterial (TMGO) was prepared and characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and vibration sample magnetometer (VSM). All the characterizations proved that the modification and preparation of TMGO were successful. The TMGO nanomaterial was used in the adsorption of Acid Red 18 (AR) in aqueous solution. The parameters like pH of solution, adsorption kinetics and isotherms were all investigated. The results indicated that the TMGO nanomaterial had satisfied adsorption ability and the maximum adsorption capacity was 524.2 mg g{sup -}'1 at 45 °C and pH 6. The adsorption capacity remained at 91.8% of the initial value after five cycles. The adsorption process with AR was found through fitting the pseudo-second-order kinetics equations and the Freundlich adsorption model. The experimental results demonstrated that the TMGO nanomaterial could be rapidly extracted from the medium and had a good adsorption ability to remove dyes in wastewater. (author)

  20. Efficiency of Polymeric Membrane Graphene Oxide-TiO2 for Removal of Azo Dye

    Directory of Open Access Journals (Sweden)

    Elahe Dadvar

    2017-01-01

    Full Text Available Achieving the desired standard of drinking water quality has been one of the concerns across water treatment plants in the developing countries. Processes such as grid chamber, coagulation, sedimentation, clarification, filtration, and disinfection are typically used in water purification plants. Among these methods, unit filtration which employs polymers is one of the new technologies. There have been many studies about the use of semiconductive TiO2 with graphene oxide (GO on the base of different polymeric membranes for the removal of azo dyes, especially methylene blue (MB. Polymeric GO-TiO2 membranes have high photocatalytic, antifouling property and permeate the flux removal of organic pollutants. The aim of this study was to investigate the characteristics of different polymeric membranes such as anionic perfluorinated polymer (Nafion, cellulose acetate, polycarbonate (PC, polysulfone fluoride (PSF, and polyvinylidene fluoride (PVDF. The result of this study showed that the GO-TiO2 membrane can be used in the field of water treatment and will be used for the removal of polycyclic aromatic hydrocarbons (PAHs from wastewater.

  1. Growth of TiO2-ZrO2 Binary Oxide Electrode for Dye Sensitized Solar Cell Application

    International Nuclear Information System (INIS)

    Than Than Win; Aye Myint Myat Kywe; Shwe Yee Win; Honey Thaw; Yin Maung Maung; Ko Ko Kyaw Soe

    2011-12-01

    TiO2-ZrO2 fine binary oxide was prepared by mechanochemical milling process to be homogeneous binary oxide powder. TiO2-ZrO2 paste was deposited on microscopic glass slide by rolling. It was immersed in the henna solution and annealed at 100C for 2h. It was deposited onto another glass slide and used as counter electrode (second electrode). Two glass slides were offset and two binder clips were used to hold the electrodes together. Photovoltaic properties of TiO2-ZrO2 cell were measured and it was expected to utilize the dye sensitized solar cells application.

  2. KINETIC BEHAVIOR OF SOME AZO DYES DECOLORIZATION BY VARIATION OF ZINC OXIDE AND TITANIUM DIOXIDE CONCENTRATIONS

    Directory of Open Access Journals (Sweden)

    Wallace J. C. da Silva

    Full Text Available The decolorization of three monoazo dyes (acid orange 7, direct orange 34, and methyl orange, one diazo dye (direct yellow 86 and one tetraazo dye (direct red 80 were mediated by n-type semiconductors as ZnO and TiO2 under pseudo-first order conditions at 30 ºC. The decolorization rate constants of these azo dyes were determined, varying the semiconductor concentration for the majority of them from 1.0 to 10.0 g L-1. In general, the highest rate constants were displayed for ZnO. This work elucidates that the decolorization capacity depends on the charge, structure, and adsorption of the azo dye on the semiconductor surface as well as the agglomeration of the photocatalyst particles.

  3. An Overview: Recent Development of Titanium Oxide Nanotubes as Photocatalyst for Dye Degradation

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2014-01-01

    Full Text Available Today, organic dyes are one of the largest groups of pollutants release into environment especially from textile industry. It is highly toxic and hazardous to the living organism; thus, the removal of these dyes prior to discharge into the environment is essential. Varieties of techniques have been employed to degrade organic dyes and heterogeneous photocatalysis involving titanium dioxide (TiO2 appears to be the most promising technology. In recent years, TiO2 nanotubes have attracted much attention due to their high surface area and extraordinary characteristics. This paper presents a critical review of recent achievements in the modification of TiO2 nanotubes for dye degradation. The photocatalytic activity on dye degradation can be further enhanced by doping with cationic or anionic dopant.

  4. Photocatalytic degradation and photo-Fenton oxidation of Congo red dye pollutants in water using natural chromite—response surface optimization

    Science.gov (United States)

    Shaban, Mohamed; Abukhadra, Mostafa R.; Ibrahim, Suzan S.; Shahien, Mohamed. G.

    2017-12-01

    Refined natural Fe-chromite was characterized by XRD, FT-IR, reflected polarized microscope, XRF and UV spectrophotometer. Photocatalytic degradation and photo-Fenton oxidation of Congo red dye by Fe-chromite was investigated using 1 mL H2O2. The degradation of dye was studied as a function of illumination time, chromite mass, initial dye concentration, and pH. Fe-chromite acts as binary oxide system from chromium oxide and ferrous oxide. Thus, it exhibits photocatalytic properties under UV illumination and photo-Fenton oxidation after addition of H2O2. The degradation in the presence of H2O2 reached the equilibrium stage after 8 h (59.4%) but in the absence of H2O2 continued to 12 h (54.6%). Photocatalytic degradation results fitted well with zero, first order and second order kinetic model but it represented by second order rather than by the other models. While the photo-Fenton oxidation show medium fitting with the second order kinetic model only. The values of kinetic rate constants for the photo-Fenton oxidation were greater than those for the photocatalytic degradation. Thus, degradation of Congo red dye using chromite as catalyst is more efficient by photo-Fenton oxidation. Based on the response surface analysis, the predicted optimal conditions for maximum removal of Congo red dye by photocatalytic degradation (100%) were 12 mg/l, 0.14 g, 3, and 11 h for dye concentration, chromite mass, pH, and illumination time, respectively. Moreover, the optimum condition for photo-Fenton oxidation of dye (100%) is 13.5 mg/l, 0.10 g, 4, and 10 h, respectively.

  5. Contact allergy to ingredients of hair cosmetics - a comparison of female hairdressers and clients based on IVDK 2007-2012 data.

    Science.gov (United States)

    Uter, Wolfgang; Gefeller, Olaf; John, Swen Malte; Schnuch, Axel; Geier, Johannes

    2014-07-01

    Cosmetics for bleaching, waving/relaxing and dyeing hair contain well-known allergens, leading to a substantial number of cases of allergic contact dermatitis. To compare the frequency of important contact allergens (i) between two distinct groups of exposed patients, and (ii) with previous surveillance data. On the basis of data collected by the Information Network of Departments of Dermatology (IVDK; www.ivkd.org) between 2007 and 2012 in 824 female hairdressers and 2067 female clients, the current spectrum of contact sensitization to ingredients of hair cosmetics, as contained in different pertinent series, is described. A similar burden of sensitization as in previous analyses was observed, but with some increase in sensitization to oxidative hair dye components in clients. Some allergens mainly affected hairdressers, such as ammonium persulfate (18.7% positive) and glyceryl monothioglycolate (GMTG; still 4.7% positive, with a few cases also in young hairdressers, despite removal from the German market). Hair dyes remain important contact allergens, despite various attempts by the cosmetic industry to introduce hair dyes with lower allergenic potential. The re-emergence of GMTG as an occupational allergen should be considered as a warning signal ('sentinel event') prompting close monitoring. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Hair Removal

    DEFF Research Database (Denmark)

    Hædersdal, Merete

    2011-01-01

    Hair removal with optical devices has become a popular mainstream treatment that today is considered the most efficient method for the reduction of unwanted hair. Photothermal destruction of hair follicles constitutes the fundamental concept of hair removal with red and near-infrared wavelengths...... suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair......, white skin, and a normal hormonal status. Currently, no method of lifelong permanent hair eradication is available, and it is important that patients have realistic expectations. Substantial evidence has been found for short-term hair removal efficacy of up to 6 months after treatment with the available...

  7. Hair removal

    DEFF Research Database (Denmark)

    Haedersdal, Merete; Haak, Christina S

    2011-01-01

    Hair removal with optical devices has become a popular mainstream treatment that today is considered the most efficient method for the reduction of unwanted hair. Photothermal destruction of hair follicles constitutes the fundamental concept of hair removal with red and near-infrared wavelengths...... suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair......, white skin, and a normal hormonal status. Currently, no method of lifelong permanent hair eradication is available, and it is important that patients have realistic expectations. Substantial evidence has been found for short-term hair removal efficacy of up to 6 months after treatment with the available...

  8. Hair Interactions

    OpenAIRE

    Cani , Marie-Paule; Bertails , Florence

    2006-01-01

    International audience; Processing interactions is one of the main challenges in hair animation. Indeed, in addition to the collisions with the body, an extremely large number of contacts with high friction rates are permanently taking place between individual hair strands. Simulating the latter is essential: without hair self-interactions, strands would cross each other during motion or come to rest at the same location, yielding unrealistic behavior and a visible lack of hair volume. This c...

  9. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiuping [Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing100871 (China); Ni, Jinren, E-mail: nijinren@iee.pku.edu.cn [Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing100871 (China); Wei, Junjun; Xing, Xuan; Li, Hongna [Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing100871 (China)

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12 h, the COD was decreased from 532 to 99 mg L{sup -1} (<100 mg L{sup -1}, the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters.

  10. Electrochemical reduction and oxidation pathways for Reactive Black 5 dye using nickel electrodes in divided and undivided cells

    International Nuclear Information System (INIS)

    Méndez-Martínez, Ana J.; Dávila-Jiménez, Martin M.; Ornelas-Dávila, Omar; Elizalde-González, María P.; Arroyo-Abad, Uriel; Sirés, Ignasi; Brillas, Enric

    2012-01-01

    Highlights: ► Ni electrodes were used for the mild degradation of the azo dye Reactive Black 5. ► Potentiostatic degradation was performed in undivided and divided cells. ► Degradation by-products were detected and monitored by RP-HPLC and LC–MS/MS. ► Small alkylsulfonyl phenol and isoxazole derivatives were identified. ► The cathodic and anodic degradation pathways for Reactive Black 5 were elucidated. - Abstract: The cathodic reduction and anodic ·OH-mediated oxidation of the azo dye Reactive Black 5 (RB5) have been studied potentiostatically by using undivided and divided cells with a Ni-polyvinylchloride (Ni-PVC) composite cathode and a Ni wire mesh anode. Solutions of 50–100 cm 3 of 20–80 mg dm −3 RB5 in 0.1 mol dm −3 KOH were degraded to assess the effect of electrolysis time and electrode potentials on the infrared and absorbance spectra, as well as on the decay of the total organic carbon and chemical oxygen demand. Reversed-phase high performance liquid chromatography (RP-HPLC) with ion-pairing and diode array detection (ion pair chromatography), along with coupling to tandem mass spectrometry (LC–MS/MS), were used for the identification of the aromatic degradation by-products and monitoring their time course. These analyses revealed the progressive conversion of the RB5 dye to simpler molecules with m/z 200, 369.5 and 547 under the direct action of the electron at the cathode and the formation of polar compounds such as alkylsulfonyl phenol derivatives with m/z 201, 185 and 171 by the ·OH mediation at the anode. From these results, the electrochemical reduction and oxidation pathways for the RB5 dye were elucidated.

  11. Optimization of the C11-BODIPY581/591 Dye for the Determination of Lipid Oxidation in Chlamydomonas reinhardtii by Flow Cytometry

    OpenAIRE

    CHELONI Giulia

    2013-01-01

    Lipid oxidation is a recognized end point for the study of oxidative stress and is an important parameter to describe the mode of micropollutant action on aquatic microorganisms. Therefore the development of quick and reliable methodologies probing the oxidative stress and damage in living cells is highly sought. In the present proof of concept work we examined the potential of the fluorescent dye C11 BODIPY591/581 to probe lipid oxidation in the green microalga Chlamydomonas reinhardtii. C11...

  12. UV-visible spectroscopic estimation of photodegradation of rhodamine-B dye using tin(IV) oxide nanoparticles.

    Science.gov (United States)

    Sangami, G; Dharmaraj, N

    2012-11-01

    Nanocrystalline, tin(IV) oxide (SnO(2)) particles has been prepared by thermal decomposition of tin oxalate precursor obtained from the reactions of tin(IV) chloride and sodium oxalate using eggshell membrane (ESM). The as-prepared SnO(2) nanoparticles were characterized by thermal studies, transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman, FT-IR and UV-visible studies and used as a photocatalyst for the degradation of rhodamine-B (Rh-B) dye. The size of the prepared nanoparticles was in the range of 5-12nm as identified from the TEM images. Powder XRD data revealed the presence of a tetragonal, rutile crystalline phase of the tin(IV) oxide nanoparticles. Thermal analysis showed that the decomposition of tin oxalate precursor to yield the titled tin(IV) oxide nanoparticles was completed below 500°C. The extent of degradation of Rh-B in the presence of SnO(2) monitored by absorption spectral measurements demonstrated that 94.48% of the selected dye was degraded upon irradiation with UV light for 60 min. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes

    International Nuclear Information System (INIS)

    Han, Zhenbang; Han, Xu; Zhao, Xiaoming; Yu, Jiantao; Xu, Hang

    2016-01-01

    Iron(II) phthalocyanine was immobilized onto amidoximated polyacrylonitrile fiber to construct a bioinspired catalytic system for oxidizing organic dyes by H 2 O 2 activation. The amidoxime groups greatly helped to anchor Iron(II) phthalocyanine molecules onto the fiber through coordination interaction, which has been confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and UV diffuse reflectance spectroscopy analyses. Electron spin resonance studies indicate that the catalytic process of physically anchored Iron(II) phthalocyanine performed via a hydroxyl radical pathway, while the catalyst bonded Iron(II) phthalocyanine through coordination effect could selectively catalyze the H 2 O 2 decomposition to generate high-valent iron-oxo species. This may result from the amidoxime groups functioning as the axial fifth ligands to favor the heterolytic cleavage of the peroxide O−O bond. This feature also enables the catalyst to only degrade the dyes adjacent to the catalytic active centers and enhances the efficient utilization of H 2 O 2 . In addition, this catalyst could effectively catalyze the mineralization of organic dyes and can be easily recycled without any loss of activity.

  14. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Zhenbang, E-mail: hzbang@aliyun.com [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Key Laboratory of Advanced Textile Composite Materials, Ministry of Education of China, Tianjin 300387 (China); Han, Xu [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Xiaoming, E-mail: zhaoxiaoming@tjpu.edu.cn [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Key Laboratory of Advanced Textile Composite Materials, Ministry of Education of China, Tianjin 300387 (China); Yu, Jiantao; Xu, Hang [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China)

    2016-12-15

    Iron(II) phthalocyanine was immobilized onto amidoximated polyacrylonitrile fiber to construct a bioinspired catalytic system for oxidizing organic dyes by H{sub 2}O{sub 2} activation. The amidoxime groups greatly helped to anchor Iron(II) phthalocyanine molecules onto the fiber through coordination interaction, which has been confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and UV diffuse reflectance spectroscopy analyses. Electron spin resonance studies indicate that the catalytic process of physically anchored Iron(II) phthalocyanine performed via a hydroxyl radical pathway, while the catalyst bonded Iron(II) phthalocyanine through coordination effect could selectively catalyze the H{sub 2}O{sub 2} decomposition to generate high-valent iron-oxo species. This may result from the amidoxime groups functioning as the axial fifth ligands to favor the heterolytic cleavage of the peroxide O−O bond. This feature also enables the catalyst to only degrade the dyes adjacent to the catalytic active centers and enhances the efficient utilization of H{sub 2}O{sub 2}. In addition, this catalyst could effectively catalyze the mineralization of organic dyes and can be easily recycled without any loss of activity.

  15. Nitrogen doped nanocrystalline semiconductor metal oxide: An efficient UV active photocatalyst for the oxidation of an organic dye using slurry Photoreactor.

    Science.gov (United States)

    Ramachandran, Saranya; Sivasamy, A; Kumar, B Dinesh

    2016-12-01

    Water pollution is a cause for serious concern in today's world. A major contributor to water pollution is industrial effluents containing dyes and other organic molecules. Waste water treatment has become a priority area in today's applied scientific research as it seeks to minimize the toxicity of the effluents being discharged and increase the possibility of water recycling. An efficient and eco-friendly way of degrading toxic molecules is to use nano metal-oxide photocatalysts. The present study aims at enhancing the photocatalytic activity of a semiconductor metal oxide by doping it with nitrogen. A sol-gel cum combustion method was employed to synthesize the catalyst. The prepared catalyst was characterized by FT-IR, XRD, UV-DRS, FESEM and AFM techniques. UV-DRS result showed the catalyst to possess band gap energy of 2.97eV, thus making it active in the UV region of the spectrum. Its photocatalytic activity was evaluated by the degradation of a model pollutant-Orange G dye, under UV light irradiation. Preliminary experiments were carried out to study the effects of pH, catalyst dosage and initial dye concentration on the extent of dye degradation. Kinetic studies revealed that the reaction followed pseudo first order kinetics. The effect of electrolytes on catalyst efficiency was also studied. The progress of the reaction was monitored by absorption studies and measuring the reduction in COD. The catalyst thus prepared was seen to have a high photocatalytic efficiency. The use of this catalyst is a promising means of waste water treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods.

    Science.gov (United States)

    Balcha, Abebe; Yadav, Om Prakash; Dey, Tania

    2016-12-01

    Zinc oxide (ZnO) nanoparticles were synthesized by precipitation and sol-gel methods. The aim of this study was to understand how different synthetic methods can affect the photocatalytic activity of ZnO nanoparticles. As-synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD) and UV-Visible spectroscopic techniques. XRD patterns of ZnO powders synthesized by precipitation and sol-gel methods revealed their hexagonal wurtzite structure with crystallite sizes of 30 and 28 nm, respectively. Their photocatalytic activities were evaluated by photocatalytic degradation of methylene blue, a common water pollutant, under UV radiation. The effects of operational parameters such as photocatalyst load and initial concentration of the dye on photocatalytic degradation of methylene blue were investigated. While the degradation of dye decreased over the studied dye concentration range of 20 to 100 mg/L, an optimum photocatalyst load of 250 mg/L was needed to achieve dye degradation as high as 81 and 92.5 % for ZnO prepared by precipitation and sol-gel methods, respectively. Assuming pseudo first-order reaction kinetics, this corresponded to rate constants of 8.4 × 10 -3 and 12.4 × 10 -3  min -1 , respectively. Hence, sol-gel method is preferred over precipitation method in order to achieve higher photocatalytic activity of ZnO nanostructures. Photocatalytic activity is further augmented by better choice of capping ligand for colloidal stabilization, starch being more effective than polyethylene glycol (PEG).

  17. Investigation on the Tunable-Length Zinc Oxide Nanowire Arrays for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Shou-Yi Kuo

    2014-01-01

    Full Text Available We had successfully fabricated ZnO-based nanowires by vapor transport method in the furnace tube. ZnO nanowire arrays grown in 600°C for 30 minutes, 60 minutes, 90 minutes, and 120 minutes had applied to the dye-sensitized solar cells. The dye loading is proportional to the total equivalent surface area of ZnO nanowire arrays in the cells and plays an important role in improving power conversion efficiency. The highest efficiency was observed in DSSC sample with ZnO nanowires grown for 90 minutes, which had the largest equivalent surface area and also the highest dye loading. According to our experimental results, the enhancement in power conversion efficiency is attributed to the higher light harvesting and reduction of carrier recombination. In addition, ZnO nanowires also contribute to the photocurrent in the UV region.

  18. Anodic oxidation of wastewater containing the Reactive Orange 16 Dye using heavily boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Migliorini, F.L.; Braga, N.A.; Alves, S.A.; Lanza, M.R.V.; Baldan, M.R.; Ferreira, N.G.

    2011-01-01

    Highlights: → Electrochemical advanced oxidation process was studied using BDD based anodes with different boron concentrations. → The difference between the non-active and active anodes for organics degradation. → The influence of morphologic and structural properties of BDD electrodes on the RO-16 dye degradation. - Abstract: Boron-doped diamond (BDD) films grown on the titanium substrate were used to study the electrochemical degradation of Reactive Orange (RO) 16 Dye. The films were produced by hot filament chemical vapor deposition (HFCVD) technique using two different boron concentrations. The growth parameters were controlled to obtain heavily doped diamond films. They were named as E1 and E2 electrodes, with acceptor concentrations of 4.0 and 8.0 x 10 21 atoms cm -3 , respectively. The boron levels were evaluated from Mott-Schottky plots also corroborated by Raman's spectra, which characterized the film quality as well as its physical property. Scanning Electron Microscopy showed well-defined microcrystalline grain morphologies with crystal orientation mixtures of (1 1 1) and (1 0 0). The electrode efficiencies were studied from the advanced oxidation process (AOP) to degrade electrochemically the Reactive Orange 16 azo-dye (RO16). The results were analyzed by UV/VIS spectroscopy, total organic carbon (TOC) and high-performance liquid chromatography (HPLC) techniques. From UV/VIS spectra the highest doped electrode (E2) showed the best efficiency for both, the aromaticity reduction and the azo group fracture. These tendencies were confirmed by the TOC and chromatographic measurements. Besides, the results showed a direct relationship among the BDD morphology, physical property, and its performance during the degradation process.

  19. Degradation and ecotoxicity of dye Reactive Black 5 after reductive-oxidative process : Environmental Science and Pollution Research.

    Science.gov (United States)

    Cuervo Lumbaque, Elisabeth; Gomes, Monike Felipe; Da Silva Carvalho, Vanessa; de Freitas, Adriane Martins; Tiburtius, Elaine Regina Lopes

    2017-03-01

    This research paper describes the study of a reduction-oxidation system using commercial steel wool (Fe 0 ) and H 2 O 2 for degradation of the dye Reactive Black 5 and aromatic compounds in water. The reductive process alone allowed the almost complete removal of color (97 ± 1 %) after 60 min of reaction. The decrease in spectral area (λ = 599 nm) associated with the chromophore group indicates breakage of the azo bonds. Moreover, the significant change in UV spectra can be associated with the formation of aromatic amines. Regarding the transformation products, a spectrophotometric method based on the diazotization reaction was employed to identify aromatic amines after reductive process, using sulfanilic acid as a model of aromatic amines. In addition, association with Fenton reagents improved the efficiency in the system with 93 ± 1 % degradation of intermediates formed during the reductive process. Ecotoxicological analysis revealed that the dye solution, after the reductive and oxidative processes, was not toxic to Lactuca sativa seeds. For Daphnia magna, the EC 50 (%) values observed revealed that dye solution has an EC 50 (%) = 74.1 and after reductive process, the toxicity increased (EC 50 (%) = 63.5), which might be related to the formation of aromatic amines. However, after the Fenton process, the EC 50 (%) was >100. These results demonstrated that the Fenton reaction using steel wool as an iron source was very efficient to decrease color, aromatic transformation products, and the ecotoxicity of Reactive Black 5 in solution.

  20. Hair casts

    OpenAIRE

    Sweta S Parmar; Kirti S Parmar; Bela J Shah

    2014-01-01

    Hair casts or pseudonits are circumferential concretions, which cover the hair shaft in such a way that, it could be easily removed. They are thin, cylindrical, and elongated in length. We present an unusual case of an 8-year-old girl presenting with hair casts. Occurrence of these is unusual, and they may have varied associations. This patient was suffering from developmental delay. It is commonly misdiagnosed as and very important to differentiate from pediculosis capitis.

  1. Photocatalytic oxidation of a reactive azo dye and evaluation of the ...

    African Journals Online (AJOL)

    driniev

    2004-07-03

    Jul 3, 2004 ... biological oxygen demand (BOD) test. The results ... Toxicity testing of photo- catalytically ... The dye solution contained in a flask was placed on a magnetic ..... opacity of the suspension in the excess of TiO2 particles (Fig. 4).

  2. Sandwich morphology and superior dye-removal performances for nanofiltration membranes self-assemblied via graphene oxide and carbon nanotubes

    Science.gov (United States)

    Kang, Hui; Shi, Jie; Liu, Liyan; Shan, Mingjing; Xu, Zhiwei; Li, Nan; Li, Jing; Lv, Hanming; Qian, Xiaoming; Zhao, Lihuan

    2018-01-01

    To tune interlayer spacing, regulate water channel and improve stability of composite membrane, graphene oxide (GO) and oxidized carbon nanotubes (OCNTs) were assembled alternately to form sandwich morphology on a polyacrylonitrile substrate by layer-by-layer self-assembly technique. Polyelectrolyte played a part in cross-linking between GO and OCNTs. The effects about concentration ratio of GO and OCNTs on nanofiltration performance were investigated in detail. The composite membrane was used for dye rejection. When composite membrane with concentration ratio of GO and OCNTs was 10:1, water flux and rejection rate for methyl blue reached 21.71 L/(m2 h) and 99.3%, respectively. Meanwhile, this composite membrane had higher flux compared with reported literatures in which rejection also reached up to 99%. When concentration ratio of composite membranes about GO and OCNTs were 10:1 and 15:1, dye rejection for methyl blue remained 99.3% and 99.6% respectively after operating time of 50 h. Irreversible fouling ratio of composite membrane in a concentration ratio of 10:1 was only 4.4%, indicating that composite membrane had excellent antifouling performance for Bovine Serum Albumin. It was speculated that proper distribution of OCNTs in the sandwich morphology formed proper support points and water channels which benefited for a more stable performance.

  3. Improvement of the electrochromic response of a low-temperature sintered dye-modified porous electrode using low-resistivity indium tin oxide nanoparticles

    International Nuclear Information System (INIS)

    Watanabe, Yuichi; Suemori, Kouji; Hoshino, Satoshi

    2016-01-01

    An indium tin oxide (ITO) nanoparticle-based porous electrode sintered at low temperatures was investigated as a transparent electrode for electrochromic displays (ECDs). The electrochromic (EC) response of the dye-modified ITO porous electrode sintered at 150 °C, which exhibited a generally low resistivity, was markedly superior to that of a conventional dye-modified TiO 2 porous electrode sintered at the same temperature. Moreover, the EC characteristics of the dye-modified ITO porous electrode sintered at 150 °C were better than those of the high-temperature (450 °C) sintered conventional dye-modified TiO 2 porous electrode. These improvements in the EC characteristics of the dye-modified ITO porous electrode are attributed to its lower resistivity than that of the TiO 2 porous electrodes. In addition to its sufficiently low resistivity attained under the sintering conditions required for flexible ECD applications, the ITO porous film had superior visible-light transparency and dye adsorption capabilities. We conclude that the process temperature, resistivity, optical transmittance, and dye adsorption capability of the ITO porous electrode make it a promising transparent porous electrode for flexible ECD applications.

  4. Optimization of the C11-BODIPY(581/591) dye for the determination of lipid oxidation in Chlamydomonas reinhardtii by flow cytometry.

    Science.gov (United States)

    Cheloni, Giulia; Slaveykova, Vera I

    2013-10-01

    Lipid oxidation is a recognized end point for the study of oxidative stress and is an important parameter to describe the mode of micropollutant action on aquatic microorganisms. Therefore, the development of quick and reliable methodologies probing the oxidative stress and damage in living cells is highly sought. In the present proof-of-concept work, we examined the potential of the fluorescent dye C11-BODIPY(591/581) to probe lipid oxidation in the green microalga Chlamydomonas reinhardtii. C11-BODIPY(591/581) staining was combined with flow cytometry measurements to obtain multiparameter information on cellular features and oxidative stress damage within single cells. First, staining conditions were optimized by exploring the capability of the dye to stain algal cells under increasing cell and dye concentrations and different staining procedures. Then lipid oxidation in algae induced by short- and long-term exposures to the three metallic micropollutants, copper, mercury, and nanoparticulate copper oxide, and the two organic contaminants, diethyldithiocarbamate (DDC) and diuron was determined. In this work we pointed out C11-BODIPY(591/581) applicability in a wide range of exposure conditions, including studies of oxidation as a function of time and that it is suitable for in vivo measurements of lipid oxidation due to its high permeation and stability in cells and its low interference with algal autofluorescence. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.

  5. Degradation of amaranth dye in alkaline medium by ultrasonic cavitation coupled with electrochemical oxidation using a boron-doped diamond anode

    International Nuclear Information System (INIS)

    Barros, Willyam R.P.; Steter, Juliana R.; Lanza, Marcos R.V.; Motheo, Artur J.

    2014-01-01

    Amaranth dye is used widely in the processing of paper, textiles, foods, cosmetics, beverages and medicines, and effluents contaminated with this compound are discharged daily into the environment. Recent studies have shown that azo dyes, especially those such as amaranth dye that have been classified as endocrine disruptors, may cause adverse effects to animal and human health. This paper describes the application of electrochemical oxidation (with a boron-doped diamond BDD thin-film anode) coupled with ultrasound sonolysis (20 kHz and 523 W cm −2 ) to the removal of amaranth dye from dilute alkaline solution. The electrochemical and sonoelectrochemical processes (ECh and SECh, respectively) were carried out at constant current density (10 to 50 mA cm −2 ) in a single compartment cylindrical cell. Sonolysis was virtually less useful for the decolorization and degradation of amaranth dye, whilst ECh and SECh were more effective in degrading the dye with almost complete removal (90 - 95%) attained after 90 min of experiment at an applied current density of 50 mA cm −2 . Degradation of the dye followed pseudo first-order kinetics in both processes, but the rate of reaction was faster with the SECh treatment confirming a synergistic effect between the cavitation process and the electrochemical system. Additionally, at low applied current densities (10 and 25 mA cm −2 ), SECh was considerably more effective than ECh for the amaranth dye mineralization. Although at 35 and 50 mA cm −2 , the two processes showed the respective removal of total organic carbon values: (i) 85% for the ECh and 90% for the SECh at 35 mA cm −2 ; (ii) 96% for the ECh and 98% for the SECh at 50 mA cm −2 . It is concluded that SECh presented the most favorable results for the decontamination of wastewaters containing azo dye compounds

  6. Synthesis of Polyaniline-Coated Graphene Oxide@SrTiO3 Nanocube Nanocomposites for Enhanced Removal of Carcinogenic Dyes from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2016-09-01

    Full Text Available The present investigation highlights the synthesis of polyaniline (PANI-coated graphene oxide doped with SrTiO3 nanocube nanocomposites through facile in situ oxidative polymerization method for the efficient removal of carcinogenic dyes, namely, the cationic dye methylene blue (MB and the anionic dye methyl orange (MO. The presence of oxygenated functional groups comprised of hydroxyl and epoxy groups in graphene oxide (GO and nitrogen-containing functionalities such as imine groups and amine groups in polyaniline work synergistically to impart cationic and anionic nature to the synthesised nanocomposite, whereas SrTiO3 nanocubes act as spacers aiding in segregation of GO sheets, thereby increasing the effective surface area of nanocomposite. The synthesised nanocomposites were characterised by field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, and Fourier transform infrared spectroscopy (FTIR. The adsorption efficiencies of graphene oxide (GO, PANI homopolymer, and SrTiO3 nanocubes-doped nanocomposites were assessed by monitoring the adsorption of methylene blue and methyl orange dyes from aqueous solution. The adsorption efficiency of nanocomposites doped with SrTiO3 nanocubes were found to be of higher magnitude as compared with undoped nanocomposite. Moreover, the nanocomposite with 2 wt % SrTiO3 with respect to graphene oxide demonstrated excellent adsorption behaviour with 99% and 91% removal of MB and MO, respectively, in a very short duration of time.

  7. Porphyrin Dye-Sensitized Zinc Oxide Aggregated Anodes for Use in Solar Cells

    Directory of Open Access Journals (Sweden)

    Yu-Kai Syu

    2016-08-01

    Full Text Available Porphyrin YD2-o-C8-based dyes were employed to sensitize room-temperature (RT chemical-assembled ZnO aggregated anodes for use in dye-sensitized solar cells (DSSCs. To reduce the acidity of the YD2-o-C8 dye solution, the proton in the carboxyl group of a porphyrin dye was replaced with tetrabuthyl ammonium (TBA+ in this work. The short-circuit current density (Jsc of the YD2-o-C8-TBA-sensitized ZnO DSSCs is higher than that of the YD2-o-C8-sensitized cells, resulting in the improvement of the efficiency of the YD2-o-C8-based ZnO DSSCs. With an appropriate incorporation of chenodeoxycholic acid (CDCA as coadsorbate, the Jsc and efficiency of the YD2-o-C8-TBA-sensitized ZnO DSSC are enhanced due to the improvement of the incident-photon-to-current efficiency (IPCE values in the wavelength range of 400–450 nm. Moreover, a considerable increase in Jsc is achieved by the addition of a light scattering layer in the YD2-o-C8-TBA-sensitized ZnO photoanodes. Significant IPCE enhancement in the range 475–600 nm is not attainable by tuning the YD2-o-C8-TBA sensitization processes for the anodes without light scattering layers. Using the RT chemical-assembled ZnO aggregated anode with a light scattering layer, an efficiency of 3.43% was achieved in the YD2-o-C8-TBA-sensitized ZnO DSSC.

  8. Treatment of dye wastewater with permanganate oxidation and in situ formed manganese dioxides adsorption: cation blue as model pollutant.

    Science.gov (United States)

    Liu, Ruiping; Liu, Huijuan; Zhao, Xu; Qu, Jiuhui; Zhang, Ran

    2010-04-15

    This study investigated the process of potassium permanganate (KMnO(4)) oxidation and in situ formed hydrous manganese dioxides (deltaMnO(2)) (i.e., KMnO(4) oxidation and deltaMnO(2) adsorption) for the treatment of dye wastewater. The effectiveness of decolorization, removing dissolved organic carbon (DOC), and increasing biodegradable oxygen demand (BOD) were compared among these processes of KMnO(4) oxidation, deltaMnO(2) adsorption, and KMnO(4) oxidation and deltaMnO(2) adsorption. DeltaMnO(2) adsorption contributed to the maximum DOC removal of 65.0%, but exhibited limited capabilities of decolorizing and increasing biodegradability. KMnO(4) oxidation alone at pH 0.5 showed satisfactory decrease of UV-vis absorption peaks, and the maximum BOD(5)/DOC value of 1.67 was achieved. Unfortunately, the DOC removal was as low as 27.4%. Additionally, the great amount of acid for pH adjustment and the much too low pH levels limited its application in practice. KMnO(4) oxidation and deltaMnO(2) adsorption at pH 2.0 was the best strategy prior to biological process, in balancing the objectives of decolorization, DOC removal, and BOD increase. The optimum ratio of KMnO(4) dosage to X-GRL concentration (R(KMnO(4)/X-GRL)) was determined to be 2.5, at which KMnO(4) oxidation and deltaMnO(2) adsorption contributed to the maximal DOC removal of 53.4%. Additionally, the optimum pH for X-GRL treatment was observed to be near 3.0. 2009 Elsevier B.V. All rights reserved.

  9. Combination of Asymmetric Supercapacitor Utilizing Activated Carbon and Nickel Oxide with Cobalt Polypyridyl-Based Dye-Sensitized Solar Cell

    International Nuclear Information System (INIS)

    Bagheri, Narjes; Aghaei, Alireza; Ghotbi, Mohammad Yeganeh; Marzbanrad, Ehsan; Vlachopoulos, Nick; Häggman, Leif; Wang, Michael; Boschloo, Gerrit; Hagfeldt, Anders; Skunik-Nuckowska, Magdalena; Kulesza, Pawel J.

    2014-01-01

    Highlights: • Dye Solar Cell and supercapacitor are integrated into a single device capable of generation and storage of energy. • The solar cell part of the device utilizes the Co-based electrolyte and nickel/PEDOT counter electrode. • A cobalt-doped nickel oxide together with activated carbon is used in the capacitor part of the device. • The integrated photocapacitor is characterized by the capacitance of 32 F g −1 and the total efficiency of 0.6%. - Abstract: A dye-sensitized solar cell (DSC) based on the metal-free organic sensitizer and the cobalt (II, III) polypyridyl electrolyte was integrated here within an asymmetric supercapacitor utilizing cobalt-doped nickel oxide and activated carbon as positive and negative electrodes, respectively. A low cost nickel foil served as intermediate (auxiliary) bifunctional electrode separating two parts of the device and permitting the DSC electrolyte regeneration at one side and charge storage within cobalt-doped nickel oxide at the other. The main purpose of the research was to develop an integrated photocapacitor system capable of both energy generation and its further storage. Following irradiation at the 100 mW cm −2 level, the solar cell generated an open-circuit voltage of 0.8 V and short-circuit current of 8 mA cm −2 which corresponds to energy conversion efficiency of 4.9%. It was further shown that upon integration with asymmetric supercapacitor, the photogenerated energy was directly injected into porous charge storage electrodes thus resulting in specific capacitance of 32 F g −1 and energy density of 2.3 Wh kg −1 . The coulumbic and total (energy conversion and charge storage) efficiency of photocapacitor were equal to 54% and 0.6%, respectively

  10. One-Pot Facile Methodology to Synthesize Chitosan-ZnO-Graphene Oxide Hybrid Composites for Better Dye Adsorption and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Anandhavelu Sanmugam

    2017-11-01

    Full Text Available Novel chitosan–ZnO–graphene oxide hybrid composites were prepared using a one-pot chemical strategy, and their dye adsorption characteristics and antibacterial activity were demonstrated. The prepared chitosan and the hybrids such as chitosan–ZnO and chitosan–ZnO–graphene oxide were characterized by UV-Vis absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The thermal and mechanical properties indicate a significant improvement over chitosan in the hybrid composites. Dye adsorption experiments were carried out using methylene blue and chromium complex as model pollutants with the function of dye concentration. The antibacterial properties of chitosan and the hybrids were tested against Gram-positive and Gram-negative bacterial species, which revealed minimum inhibitory concentrations (MICs of 0.1 µg/mL.

  11. Highly transparent and conducting boron doped zinc oxide films for window of Dye Sensitized Solar Cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod, E-mail: vinod.phy@gmail.com [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Department of Physics, Gurukula Kangri University, Haridwar 249404 (India); Singh, R.G. [Department of Electronic Science, Maharaja Agrasen College University of Delhi, New Delhi 110096 (India); Singh, Fouran [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Purohit, L.P. [Department of Physics, Gurukula Kangri University, Haridwar 249404 (India)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Synthesis of Boron doped ZnO (ZnO:B) films. Black-Right-Pointing-Pointer Minimum of resistivity is observed to be 7.9 Multiplication-Sign 10{sup -4} {Omega} cm. Black-Right-Pointing-Pointer Maximum transmittance {approx}91% for 450 Degree-Sign C annealed films. Black-Right-Pointing-Pointer Applicable for window materials in Dye Sensitized Solar Cell. - Abstract: Highly transparent and conducting boron doped zinc oxide (ZnO:B) films grown by sol-gel method are reported. The annealing temperature is varied from 350 to 550 Degree-Sign C and doping concentration of boron is kept fixed for 0.6 at.% for all the films. At low temperature the stress in the films is compressive, which becomes tensile for the films annealed at higher temperature. A minimum resistivity of 7.9 Multiplication-Sign 10{sup -4} {Omega} cm and maximum transmittance of {approx}91% are observed for the film annealed at 450 Degree-Sign C. This could be attributed to minimum stress of films, which is further evident by the evolution of A{sub 1} and defect related Raman modes without any shifting in its position. Such kind of highly transparent and conducting ZnO:B thin film could be used as window material in Dye Sensitized Solar Cell (DSSC).

  12. Transparent front contact optimization in dye sensitized solar cells: use of cadmium stannate and titanium oxide by sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Braga, A., E-mail: antonio.braga@iit.it [CNR-IDASC SENSOR Lab and Department of Chemistry and Physics, Brescia University, Via Valotti 9, 25131 Brescia (Italy); Baratto, C. [CNR-IDASC SENSOR Lab and Department of Chemistry and Physics, Brescia University, Via Valotti 9, 25131 Brescia (Italy); Bontempi, E. [INSTM and Chemistry for Technologies Laboratory, University of Brescia, Via Branze 28, 25133 Brescia (Italy); Colombi, P. [Centro Coating C.S.M.T. Gestione S.c.a.r.l., Via Branze, 45 25123 Brescia (Italy); Sberveglieri, G. [CNR-IDASC SENSOR Lab and Department of Chemistry and Physics, Brescia University, Via Valotti 9, 25131 Brescia (Italy)

    2014-03-31

    A reliable transparent front contact of cadmium stannate (CTO) and titanium oxide (TiO{sub 2}) entirely deposited by magnetron sputtering has been studied and applied to build standard dye-sensitized solar cell. CTO gives very high average optical transmittance (T{sub avg} ≥ 90%) along with competitive sheet resistance (R{sub sheet} ≤ 15 Ω/sq), while a very thin layer of TiO{sub 2} (thickness < 5 nm) acts as buffer layer to prevent charge recombination. The matched materials allow achievement of good performances of the cells, in terms of short circuit current and power conversion efficiency. UV-visible spectrophotometry, glancing incident X-rays diffraction and X-rays reflectivity techniques were used to characterize thin films before cell realization; sealed solar cells were tested under simulated solar irradiance at 1 Sun to determine functional properties. - Highlights: • Double layer cadmium stannate–TiO{sub 2} transparent front contact by sputtering. • Very thin TiO{sub 2} buffer layer for charge recombination prevention. • Application of novel transparent contact in standard dye sensitized solar cells.

  13. Characterization of poly methyl methaacrylate and reduced graphene oxide composite for application as electrolyte in dye sensitized solar cells

    Science.gov (United States)

    Shrivatsav, Roshan; Mahalingam, Vignesh; Lakshmi Narayanan, E. R.; Naveen Balaji, N.; Balu, Murali; Krishna Prasad, R.; Kumaresan, Duraisamy

    2018-04-01

    Quasi-solid state iodide/triiodide redox electrolyte containing reduced graphene oxide and poly (methyl methaacrylate) (RGO-PMMA) composites for the fabrication of more durable, high performance dye sensitized solar cells are prepared. The morphological analysis of prepared RGO-PMMA composites showed formation of spherical like morphologies of RGO dispersed PMMA particles with their macroscopic inter-particle networks having voids. The x ray diffraction and electrical conductivity studies showed the addition of 1 wt% of filler RGO into amorphous PMMA matrix increased the electrical conductivity of the polymer composite about three orders of magnitude from 10‑7 and 10‑4 S cm‑1. Further, the photovoltaic current-voltage analysis of DSSCs with different RGO-PMMA composite based iodide/triiodide redox electrolytes showed the highest power conversion efficiency of 5.38% and the fill factor 0.63 for 2% RGO-PMMA electrolyte. The EIS analysis showed an increased recombination resistance (Rct2) at TiO2 electrode/dye/electrolyte interface due to the better electrical conductivity of RGO with good ionic conductivity in 2% RGO-PMMA composite based redox electrolyte boosted the generation of a high current density and fill factor in their DSSCs.

  14. Decolourisation of dye solutions by oxidation with H2O2 in the presence of modified activated carbons

    International Nuclear Information System (INIS)

    Santos, V.P.; Pereira, M.F.R.; Faria, P.C.C.; Orfao, J.J.M.

    2009-01-01

    The decolourisation of dye solutions by oxidation with H 2 O 2 , using activated carbon as catalyst, is studied. For this purpose, three different samples, mainly differing in the respective surface chemistries, were prepared and characterized. Moreover, this work involved three pH levels, corresponding to acid, neutral and alkaline solutions, and six dyes belonging to several classes. The catalytic decolourisation tests were performed in a laboratorial batch reactor. Adsorption on activated carbon and non-catalytic peroxidation kinetic experiments were also carried out in the same reactor, in order to compare the efficiencies of the three processes. The non-catalytic reaction is usually inefficient and, typically, adsorption presents a low level of decolourisation. In these cases, the combination of activated carbon with hydrogen peroxide may significantly enhance the process, since the activated carbon catalyses the decomposition of H 2 O 2 into hydroxyl radicals, which are very reactive. Based on the experiments with the different activated carbon samples, which have similar physical properties, it is proved that the surface chemistry of the catalyst plays a key role, being the basic sample the most active. This is discussed considering the involvement of the free electrons on the graphene basal planes of activated carbon as active centres for the catalytic reaction. Additionally, it is shown that the decolourisation is enhanced at high pH values, and a possible explanation for this observation, based on the proposed mechanism, is given

  15. Transparent front contact optimization in dye sensitized solar cells: use of cadmium stannate and titanium oxide by sputtering

    International Nuclear Information System (INIS)

    Braga, A.; Baratto, C.; Bontempi, E.; Colombi, P.; Sberveglieri, G.

    2014-01-01

    A reliable transparent front contact of cadmium stannate (CTO) and titanium oxide (TiO 2 ) entirely deposited by magnetron sputtering has been studied and applied to build standard dye-sensitized solar cell. CTO gives very high average optical transmittance (T avg ≥ 90%) along with competitive sheet resistance (R sheet ≤ 15 Ω/sq), while a very thin layer of TiO 2 (thickness < 5 nm) acts as buffer layer to prevent charge recombination. The matched materials allow achievement of good performances of the cells, in terms of short circuit current and power conversion efficiency. UV-visible spectrophotometry, glancing incident X-rays diffraction and X-rays reflectivity techniques were used to characterize thin films before cell realization; sealed solar cells were tested under simulated solar irradiance at 1 Sun to determine functional properties. - Highlights: • Double layer cadmium stannate–TiO 2 transparent front contact by sputtering. • Very thin TiO 2 buffer layer for charge recombination prevention. • Application of novel transparent contact in standard dye sensitized solar cells

  16. pH effect on decolorization of raw textile wastewater polluted with reactive dyes by advanced oxidation with uv/h2o2

    NARCIS (Netherlands)

    Racyte, J.; Rimeika, M.; Bruning, H.

    2009-01-01

    The effectiveness of the advanced oxidation process (UV/H2O2) in decolorizing real textile wastewater polluted with commercial reactive dyes - Reactive Yellow 84 and Reactive Red 141 was investigated. All the experiments were performed in a lab-scale reactor with the original high pH of the

  17. A highly effective in vivo photothermal nanoplatform with dual imaging-guided therapy of cancer based on the charge reversal complex of dye and iron oxide

    NARCIS (Netherlands)

    Chang, Y.; Li, X.; Kong, X.; Li, Y.; Liu, X.; Zhang, Y.; Tu, L.; Xue, B.; Wu, F.; Cao, D.; Zhao, H.; Zhang, H.

    2015-01-01

    To enhance the treatment efficiency of photothermal therapy (PTT) with very little light-associated side effect, we have constructed a highly effective PTT nanoplatform for fluorescence and MRI dual imaging-guided PTT of cancer, based on IR806 dye and iron oxide complex functionalized with

  18. Rapid and efficient visible light photocatalytic dye degradation using AFe2O4 (A = Ba, Ca and Sr) complex oxides

    International Nuclear Information System (INIS)

    Vijayaraghavan, T.; Suriyaraj, S.P.; Selvakumar, R.; Venkateswaran, R.; Ashok, Anuradha

    2016-01-01

    Highlights: • Alkaline earth ferrites AFe 2 O 4 (A = Ba, Ca and Sr) were synthesized by sol–gel method. • Visible light photocatalytic activity of these ferrites were studied using congo red dye degradation. • BaFe 2 O 4 exhibited the best photocatalytic activity under visible light (xenon lamp) irradiation; CaFe 2 O 4 was the best photocatalyst under natural sun light irradiation. - Abstract: Photocatalytic activity of spinel type complex oxides has been investigated in this study. Alkaline earth ferrites AFe 2 O 4 (A = Ba, Ca, Sr) were synthesized by sol–gel method. Structural characterizations reveal that the synthesized ferrites have orthorhombic crystal structures with different space groups and cell dimensions when they have different alkaline earth metals in their A site. All the synthesized ferrites exhibited their bandgap in the range 2.14–2.19 eV. Their photocatalytic activities were studied using congo red dye under sunlight and xenon lamp radiation. The substitution of Ba, Ca and Sr at A site of these ferrites had varying impact on dye degradation process. Under xenon lamp irradiation, BaFe 2 O 4 exhibited the highest percentage of dye degradation (92% after 75 min). However, CaFe 2 O 4 showed the fastest degradation of the dye (70% within 15 min). In the absence of irradiation, SrFe 2 O 4 showed the highest dye adsorption (44% after 75 min).

  19. Obstrucción aguda de la vía respiratoria superior y rabdomiolisis luego de intoxicación por tintura para el cabello Acute upper respiratory obstruction and rhabdomiolysis due to intoxication with a hair dye

    Directory of Open Access Journals (Sweden)

    Claudia Arroyave

    2004-09-01

    Full Text Available Las intoxicaciones por tinturas para el cabello son infrecuentes en Antioquia; sin embargo, su toxicidad es potencialmente letal cuando ingresan al organismo por vía oral al producir un compromiso multiorgánico que puede llevar a la muerte del paciente. Se presenta el caso de una paciente de 2 años que ingirió una dosis de 125 mg/kg de parafenilendiamina, asociada a ácido bórico y perborato de sodio, compuestos que hacen parte de una presentación comercial de una tintura para el cabello; la intoxicación por parafenilendiamina tuvo como consecuencia principal la obstrucción de la vía aérea por angioedema que requirió intubación endotraqueal, soporte ventilatorio y administración de esteroides y antihistamínicos; secundario al compromiso aéreo la paciente presentó edema agudo de pulmón y posteriormente un cuadro neumónico que requirió tratamiento con antibióticos. Adicionalmente presentó rabdomiolisis severa que se trató con líquidos endovenosos para que no se comprometiera la función renal. Luego de una terapia durante 10 días en el hospital, la niña fue dada de alta con resolución completa del cuadro tóxico. Se revisan los posibles mecanismos fisiopatológicos, las manifestaciones clínicas y el tratamiento de la intoxicación por parafenilendiamina, dado que este fue el compuesto tóxico clínicamente importante en el contexto de este caso. There have been few cases reported of intoxication by hair dyes in Antioquia; however, their toxicity may be potentially lethal when their components enter the organism by oral route inducing a multiorganic compromise that may lead to death. We report the case of a two year old girl who ingested 125mg/kg of paraphenylenediamine, with boric acid and sodium perborate; these compounds are part of the commercial presentation of a hair dye; the child suffered airway obstruction because of angioedema that required intubation, ventila tory support, steroids and antihistaminics; due to

  20. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Science.gov (United States)

    Singh, Hemant Kr.; Avasthi, D. K.; Aggarwal, Shruti

    2015-06-01

    Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO2:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In2O3:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag+9 ions at fluences ranging from 3.0 × 1011 ions/cm2 to 3.0 × 1013 ions/cm2. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  1. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Dan; Guo, Yu-Qi; Cheng, Hao-Yi; Liang, Bin; Kong, Fan-Ying [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 202 Haihe Road, Harbin 150090 (China); Lee, Hyung-Sool [Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West Waterloo, Ontario, Canada N2L 3G1 (Canada); Wang, Ai-Jie, E-mail: waj0578@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 202 Haihe Road, Harbin 150090 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor was developed. Black-Right-Pointing-Pointer Alizarin Yellow R as the mode of azo dyes was efficiently converted to p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA). Black-Right-Pointing-Pointer PPD and 5-ASA were further oxidized in a bio-contact oxidation reactor. Black-Right-Pointing-Pointer The mechanism of UBER for azo dye removal was discussed. - Abstract: Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8 {+-} 1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 g m{sup -3} d{sup -1}) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 g m{sup -3} d{sup -1} (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China.

  2. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor

    International Nuclear Information System (INIS)

    Cui, Dan; Guo, Yu-Qi; Cheng, Hao-Yi; Liang, Bin; Kong, Fan-Ying; Lee, Hyung-Sool; Wang, Ai-Jie

    2012-01-01

    Highlights: ► A membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor was developed. ► Alizarin Yellow R as the mode of azo dyes was efficiently converted to p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA). ► PPD and 5-ASA were further oxidized in a bio-contact oxidation reactor. ► The mechanism of UBER for azo dye removal was discussed. - Abstract: Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8 ± 1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 g m −3 d −1 ) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 g m −3 d −1 (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China.

  3. Hair Transplants

    Science.gov (United States)

    ... for Every Season How to Choose the Best Skin Care Products In This Section Dermatologic Surgery What is dermatologic ... for Every Season How to Choose the Best Skin Care Products Hair Transplants Before (left) and after (right) - top ...

  4. Hair restoration.

    Science.gov (United States)

    Rawnsley, Jeffrey D

    2008-08-01

    The impact of male hair loss as a personal and social marker of aging is tremendous and its persistence as a human concern throughout recorded history places it in the forefront of male concern about the physical signs of aging. Restoration of the frontal hairline has the visual effect of re-establishing facial symmetry and turning back time. Follicular unit transplantation has revolutionized hair restoration, with its focus on redistributing large numbers of genetically stable hair to balding scalp in a natural distribution. Follicular unit hair restoration surgery is a powerful tool for the facial plastic surgeon in male aesthetic facial rejuvenation because it offers high-impact, natural-appearing results with minimal downtime and risk for adverse outcome.

  5. Structural Properties of Zinc Oxide Nanorods Grown on Al-Doped Zinc Oxide Seed Layer and Their Applications in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Kyung Ho Kim

    2014-03-01

    Full Text Available We fabricated zinc oxide (ZnO nanorods (NRs with Al-doped ZnO (AZO seed layers and dye-sensitized solar cells (DSSCs employed the ZnO NRs between a TiO2 photoelectrode and a fluorine-doped SnO2 (FTO electrode. The growth rate of the NRs was strongly dependent on the seed layer conditions, i.e., thickness, Al dopant and annealing temperature. Attaining a large particle size with a high crystallinity of the seed layer was vital to the well-aligned growth of the NRs. However, the growth was less related to the substrate material (glass and FTO coated glass. With optimized ZnO NRs, the DSSCs exhibited remarkably enhanced photovoltaic performance, because of the increase of dye absorption and fast carrier transfer, which, in turn, led to improved efficiency. The cell with the ZnO NRs grown on an AZO seed layer annealed at 350 °C showed a short-circuit current density (JSC of 12.56 mA/cm2, an open-circuit voltage (VOC of 0.70 V, a fill factor (FF of 0.59 and a power conversion efficiency (PCE, η of 5.20% under air mass 1.5 global (AM 1.5G illumination of 100 mW/cm2.

  6. Treatment of aqueous wastes contaminated with Congo Red dye by electrochemical oxidation and ozonation processes

    International Nuclear Information System (INIS)

    Faouzi Elahmadi, Mohammed; Bensalah, Nasr; Gadri, Abdellatif

    2009-01-01

    Synthetic aqueous wastes polluted with Congo Red (CR) have been treated by two advanced oxidation processes: electrochemical oxidation on boron doped diamond anodes (BDD-EO) and ozonation under alkaline conditions. For same concentrations, galvanostatic electrolyses have led to total COD and TOC removals but ozonation process can reach only 85% and 81% of COD and TOC removals, respectively. UV-vis qualitative analyses have shown different behaviors of CR molecules towards ozonation and electrochemical oxidation. Rapid discoloration has been observed during ozonation, whereas color persistence till the end of galvanostatic electrolyses has been seen during BDD-EO process. It seems that the oxidation mechanisms involved in the two processes are different: simultaneous destruction of azoic groups is suggested during ozonation process but consecutive destruction of these groups is proposed during BDD-EO. However, energetic study has evidenced that BDD-EO appears more efficient and more economic than ozonation in terms of TOC removals. These results have been explained by the fact that during BDD-EO, other strong oxidants electrogenerated from the electrolyte oxidation such as persulfates and direct-oxidation of CR and its byproducts on BDD anodes complement the hydroxyl radicals mediated oxidation to accomplish the total mineralization of organics.

  7. An integrated (electro- and bio-oxidation) approach for remediation of industrial wastewater containing azo-dyes: Understanding the degradation mechanism and toxicity assessment.

    Science.gov (United States)

    Aravind, Priyadharshini; Selvaraj, Hosimin; Ferro, Sergio; Sundaram, Maruthamuthu

    2016-11-15

    A hybrid approach for the remediation of recalcitrant dye wastewater is proposed. The chlorine-mediated electrochemical oxidation of real textile effluents and synthetic samples (using Ti/IrO2-RuO2-TiO2 anodes), lead to discoloration by 92% and 89%, respectively, in 100min, without significant mineralization. The remediation was obtained through biodegradation, after removing the residual bio-toxic active chlorine species via sunlight exposition. Results show that the electrochemical discoloration enhances the effluent biodegradability with about 90% COD removal employing acclimatized naphthalene-degrading bacterial consortia, within 144h. Based on results obtained through FT-IR and GC-MS, it is likely that azo group stripping and oxidative cleavage of dyes occur due to the nucleophilic attack of active chlorine species during electro-oxidation. This leads to generation of aromatic intermediates which are further desulfonated, deaminated or oxidized only at their functional groups. These aromatic intermediates were mineralized into simpler organic acids and aldehydes by bacterial consortia. Phyto-toxicity trials on Vigna radiata confirmed the toxic nature of the untreated dye solutions. An increase in root and shoot development was observed with the electrochemically treated solutions, the same was higher in case of bio-treated solutions. Overall, obtained results confirm the capability of the proposed hybrid oxidation scheme for the remediation of textile wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    International Nuclear Information System (INIS)

    Singh, Hemant Kr.; Avasthi, D.K.; Aggarwal, Shruti

    2015-01-01

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO 2 :F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In 2 O 3 :Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag +9 ions at fluences ranging from 3.0 × 10 11 ions/cm 2 to 3.0 × 10 13 ions/cm 2 . The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications

  9. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hemant Kr. [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India); Avasthi, D.K. [Inter University Accelerator Center, Post Box 10502, New Delhi (India); Aggarwal, Shruti, E-mail: shruti.al@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India)

    2015-06-15

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO{sub 2}:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In{sub 2}O{sub 3}:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag{sup +9} ions at fluences ranging from 3.0 × 10{sup 11} ions/cm{sup 2} to 3.0 × 10{sup 13} ions/cm{sup 2}. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  10. Investigation of electronic band structure and charge transfer mechanism of oxidized three-dimensional graphene as metal-free anodes material for dye sensitized solar cell application

    Science.gov (United States)

    Loeblein, Manuela; Bruno, Annalisa; Loh, G. C.; Bolker, Asaf; Saguy, Cecile; Antila, Liisa; Tsang, Siu Hon; Teo, Edwin Hang Tong

    2017-10-01

    Dye-sensitized solar cells (DSSCs) offer an optimal trade-off between conversion-efficiency and low-cost fabrication. However, since all its electrodes need to fulfill stringent work-function requirements, its materials have remained unchanged since DSSC's first report early-90s. Here we describe a new material, oxidized-three-dimensional-graphene (o-3D-C), with a band gap of 0.2 eV and suitable electronic band-structure as alternative metal-free material for DSSCs-anodes. o-3D-C/dye-complex has a strong chemical bonding via carboxylic-group chemisorption with full saturation after 12 sec at capacity of ∼450 mg/g (600x faster and 7x higher than optimized metal surfaces). Furthermore, fluorescence quenching of life-time by 28-35% was measured demonstrating charge-transfer from dye to o-3D-C.

  11. An integrated (electro- and bio-oxidation) approach for remediation of industrial wastewater containing azo-dyes: Understanding the degradation mechanism and toxicity assessment

    International Nuclear Information System (INIS)

    Aravind, Priyadharshini; Selvaraj, Hosimin; Ferro, Sergio; Sundaram, Maruthamuthu

    2016-01-01

    Highlights: • Firstly, the mediated electro-oxidation allows rapid discoloration of the effluent. • Cost effective sunlight-mediated removal of bio-toxic active chlorine species. • Electrochemical pretreatment enhances the biodegradability of textile wastewater. • About 90% COD removal was achieved by a subsequent biodegradation. • By-products from degradation of dyes have shown to be ecofriendly and non-toxic. - Abstract: A hybrid approach for the remediation of recalcitrant dye wastewater is proposed. The chlorine-mediated electrochemical oxidation of real textile effluents and synthetic samples (using Ti/IrO_2-RuO_2-TiO_2 anodes), lead to discoloration by 92% and 89%, respectively, in 100 min, without significant mineralization. The remediation was obtained through biodegradation, after removing the residual bio-toxic active chlorine species via sunlight exposition. Results show that the electrochemical discoloration enhances the effluent biodegradability with about 90% COD removal employing acclimatized naphthalene-degrading bacterial consortia, within 144 h. Based on results obtained through FT-IR and GC–MS, it is likely that azo group stripping and oxidative cleavage of dyes occur due to the nucleophilic attack of active chlorine species during electro-oxidation. This leads to generation of aromatic intermediates which are further desulfonated, deaminated or oxidized only at their functional groups. These aromatic intermediates were mineralized into simpler organic acids and aldehydes by bacterial consortia. Phyto-toxicity trials on Vigna radiata confirmed the toxic nature of the untreated dye solutions. An increase in root and shoot development was observed with the electrochemically treated solutions, the same was higher in case of bio-treated solutions. Overall, obtained results confirm the capability of the proposed hybrid oxidation scheme for the remediation of textile wastewater.

  12. An integrated (electro- and bio-oxidation) approach for remediation of industrial wastewater containing azo-dyes: Understanding the degradation mechanism and toxicity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, Priyadharshini, E-mail: priya.bdu07@gmail.com [Corrosion and Materials Protection Division (CMPD), CSIR—Central electrochemical research institute (CECRI), Karaikudi 630 003 (India); Selvaraj, Hosimin [Corrosion and Materials Protection Division (CMPD), CSIR—Central electrochemical research institute (CECRI), Karaikudi 630 003 (India); Ferro, Sergio [Ecas4 Australia, Unit 8, 1 London Road, Mile End, South Australia 5031 (Australia); Sundaram, Maruthamuthu [Corrosion and Materials Protection Division (CMPD), CSIR—Central electrochemical research institute (CECRI), Karaikudi 630 003 (India)

    2016-11-15

    Highlights: • Firstly, the mediated electro-oxidation allows rapid discoloration of the effluent. • Cost effective sunlight-mediated removal of bio-toxic active chlorine species. • Electrochemical pretreatment enhances the biodegradability of textile wastewater. • About 90% COD removal was achieved by a subsequent biodegradation. • By-products from degradation of dyes have shown to be ecofriendly and non-toxic. - Abstract: A hybrid approach for the remediation of recalcitrant dye wastewater is proposed. The chlorine-mediated electrochemical oxidation of real textile effluents and synthetic samples (using Ti/IrO{sub 2}-RuO{sub 2}-TiO{sub 2} anodes), lead to discoloration by 92% and 89%, respectively, in 100 min, without significant mineralization. The remediation was obtained through biodegradation, after removing the residual bio-toxic active chlorine species via sunlight exposition. Results show that the electrochemical discoloration enhances the effluent biodegradability with about 90% COD removal employing acclimatized naphthalene-degrading bacterial consortia, within 144 h. Based on results obtained through FT-IR and GC–MS, it is likely that azo group stripping and oxidative cleavage of dyes occur due to the nucleophilic attack of active chlorine species during electro-oxidation. This leads to generation of aromatic intermediates which are further desulfonated, deaminated or oxidized only at their functional groups. These aromatic intermediates were mineralized into simpler organic acids and aldehydes by bacterial consortia. Phyto-toxicity trials on Vigna radiata confirmed the toxic nature of the untreated dye solutions. An increase in root and shoot development was observed with the electrochemically treated solutions, the same was higher in case of bio-treated solutions. Overall, obtained results confirm the capability of the proposed hybrid oxidation scheme for the remediation of textile wastewater.

  13. Azo dyes degradation using TiO2-Pt/graphene oxide and TiO2-Pt/reduced graphene oxide photocatalysts under UV and natural sunlight irradiation

    Science.gov (United States)

    Rosu, Marcela-Corina; Coros, Maria; Pogacean, Florina; Magerusan, Lidia; Socaci, Crina; Turza, Alexandru; Pruneanu, Stela

    2017-08-01

    The photocatalytic degradation of azo dyes with different structures (amaranth, sunset yellow and tartrazine) using TiO2-Pt nanoparticles (TPt), TiO2-Pt/graphene oxide (TPt-GO) and TiO2-Pt/reduced graphene oxide (TPt-rGO) composites were investigated in the presence of UV and natural sunlight irradiation. The composites were prepared by a combined chemical-thermal method and characterized by Transmission Electron Microscopy (TEM), X-ray powder diffraction (XRD), Infrared (FTIR) and UV-Vis spectroscopy. The modification of TiO2-Pt with graphene oxide shifted its optical absorption edge towards the visible region and increased its photocatalytic activity under UV and natural sunlight irradiation. The efficiency of catalysts on azo dyes degradation (in similar conditions) reached high values (above 99%) under sunlight conditions, proving the remarkable photocatalytic activities of obtained composites. TPt-GO nanocomposite exhibited higher photoactivity than TPt or TPt-rGO, demonstrating degradation efficiencies of 99.56% for amaranth, 99.15% for sunset yellow and 96.23% for tartrazine. The dye photodegradation process follows a pseudo-first-order kinetic with respect to the Langmuir-Hinshelwood reaction mechanism. A direct dependence between azo dyes degradation rate and chemical structure of dyes has been observed.

  14. Electrodeposition of zinc oxide/tetrasulfonated copper phthalocyanine hybrid thin film for dye-sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Luo Xinze [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China); College of Chemistry and Biological Science, Yili Normal University, Yining 835000, (China); Xu Lin, E-mail: linxu@nenu.edu.cn [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China); Xu Bingbing; Li Fengyan [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2011-05-15

    Hybrid film of zinc oxide (ZnO) and tetrasulfonated copper phthalocyanine (TSPcCu) was grown on an indium tin oxide (ITO) glass by one-step cathodic electrodeposition from aqueous mixtures of Zn(NO{sub 3}){sub 2}, TSPcCu and KCl. The addition of TSPcCu strongly influences the morphology and crystallographic orientation of the ZnO. The nanosheets stack of ZnO leads to a porous surface structure which is advantageous to further adsorb organic dyes. The photovoltaic properties were investigated by assembling the DSSC device based on both the only ZnO film and the ZnO/TSPcCu hybrid films. Photoelectrochemical analysis revealed that the optimized DSSC device with TSPcCu represented a more than three-fold improvement in power conversion efficiency than the device without TSPcCu. The DSSC based on ZnO/TSPcCu hybrid films demonstrates an open circuit voltage of 0.308 V, a short circuit current of 90 {mu}A cm{sup -2}, a fill factor of 0.26, and a power conversion efficiency of 0.14%.

  15. Fabrication of Polymeric Antireflection Film Manufactured by Anodic Aluminum Oxide Template on Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Jenn-Kai Tsai

    2017-03-01

    Full Text Available In this study, high energy conversion efficient dye-sensitized solar cells (DSSCs were successfully fabricated by attaching a double anti-reflection (AR layer, which is composed of a subwavelength moth-eye structured polymethyl methacrylate (PMMA film and a polydimethylsiloxane (PDMS film. An efficiency of up to 6.79% was achieved. The moth-eye structured PMMA film was fabricated by using an anodic aluminum oxide (AAO template which is simple, low-cost and scalable. The nano-pattern of the AAO template was precisely reproduced onto the PMMA film. The photoanode was composed of Titanium dioxide (TiO2 nanoparticles (NPs with a diameter of 25 nm deposited on the fluorine-doped tin oxide (FTO glass substrate and the sensitizer N3. The double AR layer was proved to effectively improve the short-circuit current density (JSC and conversion efficiency from 14.77 to 15.79 mA/cm2 and from 6.26% to 6.79%, respectively.

  16. Electrodeposition of zinc oxide/tetrasulfonated copper phthalocyanine hybrid thin film for dye-sensitized solar cell application

    International Nuclear Information System (INIS)

    Luo Xinze; Xu Lin; Xu Bingbing; Li Fengyan

    2011-01-01

    Hybrid film of zinc oxide (ZnO) and tetrasulfonated copper phthalocyanine (TSPcCu) was grown on an indium tin oxide (ITO) glass by one-step cathodic electrodeposition from aqueous mixtures of Zn(NO 3 ) 2 , TSPcCu and KCl. The addition of TSPcCu strongly influences the morphology and crystallographic orientation of the ZnO. The nanosheets stack of ZnO leads to a porous surface structure which is advantageous to further adsorb organic dyes. The photovoltaic properties were investigated by assembling the DSSC device based on both the only ZnO film and the ZnO/TSPcCu hybrid films. Photoelectrochemical analysis revealed that the optimized DSSC device with TSPcCu represented a more than three-fold improvement in power conversion efficiency than the device without TSPcCu. The DSSC based on ZnO/TSPcCu hybrid films demonstrates an open circuit voltage of 0.308 V, a short circuit current of 90 μA cm -2 , a fill factor of 0.26, and a power conversion efficiency of 0.14%.

  17. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation.

    Science.gov (United States)

    Tang, Shoufeng; Yuan, Deling; Zhang, Qi; Liu, Yameng; Zhang, Qi; Liu, Zhengquan; Huang, Haiming

    2016-09-01

    A Fe-Mn bi-metallic oxide supported on granular activated carbon (Fe-Mn GAC) has been fabricated by an impregnation-desiccation method and tested in the catalytic ozonation of methyl orange (MO) degradation and mineralization. X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations revealed that Fe-Mn oxides were successfully loaded and uniformly distributed on the GAC, and nitrogen adsorption isotherms showed that the supported GAC retained a large surface area and a high pore volume compared with the pristine GAC. The catalytic activity was systematically assessed by monitoring the MO removal efficiencies at different operational parameters, such as catalyst dosage, initial solution pH, and ozone flow rate. The Fe-Mn GAC exhibited better catalytic activity relative to ozone alone and GAC alone, improving the TOC removal by 24.5 and 11.5 % and COD removal by 13.6 and 7.3 %, respectively. The reusability of the hybrid was examined over five consecutive cyclic treatments. The Fe-Mn GAC catalytic activity was only a slight loss in the cycles, showing good stability. The addition of Na2CO3 as hydroxyl radicals (•OH) scavengers proved that the catalytic ozonation mechanism was the enhanced generation of •OH by the Fe-Mn GAC. The above results render the Fe-Mn GAC an industrially promising candidate for catalytic ozonation of dye contaminant removal.

  18. Facile synthesis of nitrogen-doped reduced graphene oxide as an efficient counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Wei, Liguo; Wang, Ping; Yang, Yulin; Luo, Ruidong; Li, Jinqi; Gu, Xiaohu; Zhan, Zhaoshun; Dong, Yongli; Song, Weina; Fan, Ruiqing

    2018-04-01

    A nitrogen-doped reduced graphene oxide (N-RGO) nanosheet was synthesized by a simple hydrothermal method and characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electrode microscopy. After being deposited as counter electrode film for dye-sensitized solar cells (DSSCs), it is found that the synthesized N-RGO nanosheet has smaller charge-transfer resistance and better electrocatalytic activity towards reduction of triiodide than the reduced graphene oxide (RGO) nanosheet. Consequently, the DSSCs based on the N-RGO counter electrode achieve an energy conversion efficiency of 4.26%, which is higher than that of the RGO counter electrode (2.85%) prepared under the same conditions, and comparable to the value (5.21%) obtained with the Pt counter electrode as a reference. This N-RGO counter electrode offers the advantages of not only saving the cost of Pt itself but also simplifying the process of counter electrode preparation. Therefore, an inexpensive N-RGO nanosheet is a promising counter electrode material to replace noble metal Pt. [Figure not available: see fulltext.

  19. Ultraviolet laser ablation of fluorine-doped tin oxide thin films for dye-sensitized back-contact solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Fu, Dongchuan [ARC Centre of Excellence for Electromaterials Science, Department of Materials Engineering and School of Chemistry, Monash University, Clayton Victoria, 3800 (Australia); Jiang, Ming [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Duan, Jun, E-mail: duans@hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Zhang, Fei; Zeng, Xiaoyan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Bach, Udo [ARC Centre of Excellence for Electromaterials Science, Department of Materials Engineering and School of Chemistry, Monash University, Clayton Victoria, 3800 (Australia)

    2013-03-01

    In this study, laser ablation of a fluorine-doped tin oxide (FTO) thin film on a glass substrate was conducted using a 355 nm Nd:YVO{sub 4} ultraviolet (UV) laser to obtain a 4 × 4 mm microstructure. The microstructure contains a symmetric set of interdigitated FTO finger electrodes of a monolithic back-contact dye-sensitized solar cell (BC-DSC) on a common substrate. The effects of UV laser ablation parameters (such as laser fluence, repetition frequency, and scanning speed) on the size precision and quality of the microstructure were investigated using a 4 × 4 orthogonal design and an assistant experimental design. The incident photon-to-electron conversion efficiency and the current–voltage characteristics of the BC-DSC base of the interdigitated FTO finger electrodes were also determined. The experimental results show that an FTO film microstructure with high precision and good quality can be produced on a glass substrate via laser ablation with high scanning speed, high repetition frequency, and appropriate laser fluence. - Highlights: ► The ablation width and depth generally depend on the laser fluence. ► The scanning speed and the repetition frequency must match each other. ► Slight ablation of the glass substrate can completely remove F-doped tin oxide.

  20. Controllable Electrochemical Synthesis of Reduced Graphene Oxide Thin-Film Constructed as Efficient Photoanode in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Soon Weng Chong

    2016-01-01

    Full Text Available A controllable electrochemical synthesis to convert reduced graphene oxide (rGO from graphite flakes was introduced and investigated in detail. Electrochemical reduction was used to prepare rGO because of its cost effectiveness, environmental friendliness, and ability to produce rGO thin films in industrial scale. This study aimed to determine the optimum applied potential for the electrochemical reduction. An applied voltage of 15 V successfully formed a uniformly coated rGO thin film, which significantly promoted effective electron transfer within dye-sensitized solar cells (DSSCs. Thus, DSSC performance improved. However, rGO thin films formed in voltages below or exceeding 15 V resulted in poor DSSC performance. This behavior was due to poor electron transfer within the rGO thin films caused by poor uniformity. These results revealed that DSSC constructed using 15 V rGO thin film exhibited high efficiency (η = 1.5211% attributed to its higher surface uniformity than other samples. The addition of natural lemon juice (pH ~ 2.3 to the electrolyte accelerated the deposition and strengthened the adhesion of rGO thin film onto fluorine-doped tin oxide (FTO glasses.

  1. Removing Hair Safely

    Science.gov (United States)

    ... For Consumers Home For Consumers Consumer Updates Removing Hair Safely Share Tweet Linkedin Pin it More sharing ... related to common methods of hair removal. Laser Hair Removal In this method, a laser destroys hair ...

  2. Hair Loss (Alopecia)

    Science.gov (United States)

    ... care Kids’ zone Video library Find a dermatologist Hair loss Overview Hereditary hair loss: Millions of men ... of hair loss can often be successfully treated. Hair loss: Overview Also called alopecia (al-o-PEE- ...

  3. Nanostructured zinc oxide photoelectrodes by green routes M-SILAR and electrodeposition for dye sensitized solar cell

    Science.gov (United States)

    Gaikwad, M. A.; Suryawanshi, M. P.; Maldar, P. S.; Dongale, T. D.; Moholkar, A. V.

    2018-04-01

    Surfactant-free, ultrasound assisted modified successive ionic layer adsorption and reaction (M-SILAR) method and home-made microcontroller based low-cost potentiostat system are employed to prepare zinc oxide (ZnO) nanostructure based thin films. The comparison between physicochemical as well as photoelectrochemical (PEC) properties of the nanostructures prepared via two different template free, simplistic and cost-effective green routes have been discussed in detail. X-ray diffraction and Raman analysis confirm the formation of phase pure ZnO with the hexagonal crystal structure. Surface morphology significantly affects the physicochemical as well as PEC properties of ZnO thin films. Nanorods (NRs) and nanosheets (NSs) based ZnO thin films sensitized with N3 dye have been directly used as photoelectrodes in the dye-sensitized solar cell (DSSC). The power conversion efficiency (PCE) of 0.59% is achieved with Jsc of 4.04 mA/cm2 and Voc of 0.44 V for the DSSC in which the M-SILAR deposited 1-D ZnO NRs based thin film is used as the photoanode. While relatively less PCE of 0.29% with Jsc of 2.53 mA/cm2 and Voc of 0.36 V is obtained for DSSC prepared using electrodeposited 2-D ZnO NSs. In the NSs like 2-D surface morphology, the presence of multiple grain boundaries are acted as traps for the diffusing electrons, which reduces the electron mobility through it.

  4. Removing the residual cellulase by graphene oxide to recycle the bio-polishing effluent for dyeing cotton fabrics.

    Science.gov (United States)

    Wang, Rui; Yang, Chao; Fang, Kuanjun; Cai, Yuqing; Hao, Longyun

    2018-02-01

    In this research, a stable graphene oxide (GO) suspension was prepared by chemical reduction method from graphite powder. By TEM, the irregular GO sheets with single-atom-layered structure could be observed. The zeta potentials measurement indicated the surface charges of GO were strongly related to pH. BET analysis showed the GO had a specific surface area of 30.7 m 2 /g and pore volume of 0.10 cm 3 /g. When the GO was used to remove the residual cellulase in bio-polishing effluent, it was found the removal capacity reached its maximum value at the pH 4-5. The kinetics studies showed that the removal process of cellulase followed a pseudo-second-order kinetic model with a rate constant (k 2 ) of 0.276 × 10 -3  g/mg min and equilibrium adsorption capacity of 278.55 mg/g, respectively. By plotting the adsorption isotherms, it was found the Langmuir model fitted the experimental data well with a cellulase adsorption capacity of 574.71 mg/g, indicating the adsorption of cellulase by GO in a monolayer manner. When dyeing the cotton fabrics with reactive dyes, it was found that the cotton fabrics could acquire similar color properties in the recycled bio-polishing effluent as in fresh water, meaning the effectiveness of removing cellulase by GO and the feasibility of recycling the bio-polishing effluent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Ferroelectric BiFeO3as an Oxide Dye in Highly Tunable Mesoporous All-Oxide Photovoltaic Heterojunctions

    KAUST Repository

    Wang, Lingfei; Ma, He; Chang, Lei; Ma, Chun; Yuan, Guoliang; Wang, Junling; Wu, Tao

    2016-01-01

    As potential photovoltaic materials, transition-metal oxides such as BiFeO3 (BFO) are capable of absorbing a substantial portion of solar light and incorporating ferroic orders into solar cells with enhanced performance. But the photovoltaic

  6. A comparative study of quantum yield and electrical energy per order (E(Eo)) for advanced oxidative decolourisation of reactive azo dyes by UV light.

    Science.gov (United States)

    Muruganandham, M; Selvam, K; Swaminathan, M

    2007-06-01

    This paper evaluates the quantum yield and electrical energy per order (E(Eo)) efficiency of Reactive Orange 4 (RO4) and Reactive Yellow 14 (RY14) azo dyes by three advanced oxidation processes (AOPs). Both dyes were completely decolourised by all these processes. The relative decolourisation efficiencies of these processes were in the following order: Fe(2+)/H(2)O(2)/UV>UV/TiO(2)>UV/H(2)O(2). The low efficiency of UV/H(2)O(2) process is mainly due to low UV absorption by hydrogen peroxide at the 365nm. The figure of merit E(Eo) values showed that UV/H(2)O(2) process consumes more electrical energy than the other two processes. The electrical energy consumption is in the following order: UV/H(2)O(2)>UV/TiO(2)>Fe(2+)/H(2)O(2)/UV. At low initial dye concentration higher quantum yield was observed in UV/TiO(2) process, whereas in photo-Fenton process higher quantum yield was observed at high initial dye concentration. The structure of dye molecule also influences the quantum yield and E(Eo) value.

  7. TiO2/Ag modified penta-bismuth hepta-oxide nitrate and its adsorption performance for azo dye removal

    Institute of Scientific and Technical Information of China (English)

    Eshraq Ahmed Abdullah; Abdul Halim Abdullah; Zulkarnain Zainal; Mohd Zobir Hussein; Tan Kar Ban

    2012-01-01

    A modified hydrophilic penta-bismuth hepta-oxide nitrate (Bi5O7NO3) surface was synthesized via a precipitation method using TiO2 and Ag as modified agents.The synthesized product was characterized by different analytical techniques.The removal efficiency was evaluated using mono- and di-sulphonated azo dyes as model pollutants.Different kinetic,isotherm and diffusion models were chosen to describe the adsorption process.X-ray photoelectron spectroscopy (XPS) results revealed no noticeable differences in the chemical states of modified adsorbent when compared to pure Bi5O7NO3; however,the presence of hydrophilic centres such as TiO2 and Ag developed positively charged surface groups and improved its adsorption performance to a wide range of azo dyes.Dyes removal was found to be a function of adsorbent dosage,initial dye concentration,solution pH and temperature.The reduction of Langrnuir 1,2-mixed order kinetics to the second or first-order kinetics could be successfully used to describe the adsorption of dyes onto the modified adsorbent.Mass transfer can be described by intra-particle diffusion at a certain stage,but it was not the rate limiting step that controlled the adsorption process.Homogenous behavior of adsorbent surface can be explored by applying Langmuir isotherm to fit the adsorption data.

  8. A comparative study of quantum yield and electrical energy per order (E Eo) for advanced oxidative decolourisation of reactive azo dyes by UV light

    International Nuclear Information System (INIS)

    Muruganandham, M.; Selvam, K.; Swaminathan, M.

    2007-01-01

    This paper evaluates the quantum yield and electrical energy per order (E Eo ) efficiency of Reactive Orange 4 (RO4) and Reactive Yellow 14 (RY14) azo dyes by three advanced oxidation processes (AOPs). Both dyes were completely decolourised by all these processes. The relative decolourisation efficiencies of these processes were in the following order: Fe 2+ /H 2 O 2 /UV > UV/TiO 2 > UV/H 2 O 2 . The low efficiency of UV/H 2 O 2 process is mainly due to low UV absorption by hydrogen peroxide at the 365 nm. The figure of merit E Eo values showed that UV/H 2 O 2 process consumes more electrical energy than the other two processes. The electrical energy consumption is in the following order: UV/H 2 O 2 > UV/TiO 2 > Fe 2+ /H 2 O 2 /UV. At low initial dye concentration higher quantum yield was observed in UV/TiO 2 process, whereas in photo-Fenton process higher quantum yield was observed at high initial dye concentration. The structure of dye molecule also influences the quantum yield and E Eo value

  9. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction

    International Nuclear Information System (INIS)

    Vallet, Ana; Ovejero, Gabriel; Rodríguez, Araceli; Peres, José A.; García, Juan

    2013-01-01

    Highlights: ► Ni supported over hydrotalcite calcined precursors as catalyst. ► Catalytic wet air oxidation in trickle bed reactor for Chromotrope 2R removal. ► Dye removal depends on temperature, initial dye concentration and flow rate. ► The catalyst proved to bare-usable after in situ regeneration. -- Abstract: Active nickel catalysts (7 wt%) supported over Mg–Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min −1 and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min −1 , respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T r = 0.098 g Ni min mL −1 . After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T r = 0.098 g Ni min mL −1 , attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity

  10. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction

    Energy Technology Data Exchange (ETDEWEB)

    Vallet, Ana [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Ovejero, Gabriel, E-mail: govejero@quim.ucm.es [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Rodríguez, Araceli [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Peres, José A. [Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal); García, Juan, E-mail: juangcia@quim.ucm.es [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain)

    2013-01-15

    Highlights: ► Ni supported over hydrotalcite calcined precursors as catalyst. ► Catalytic wet air oxidation in trickle bed reactor for Chromotrope 2R removal. ► Dye removal depends on temperature, initial dye concentration and flow rate. ► The catalyst proved to bare-usable after in situ regeneration. -- Abstract: Active nickel catalysts (7 wt%) supported over Mg–Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min{sup −1} and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min{sup −1}, respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T{sub r} = 0.098 g{sub Ni} min mL{sup −1}. After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T{sub r} = 0.098 g{sub Ni} min mL{sup −1}, attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity.

  11. Influence of bleaching and coloring on ethyl glucuronide content in human hair.

    Science.gov (United States)

    Petzel-Witt, Silvana; Pogoda, Werner; Wunder, Cora; Paulke, Alexander; Schubert-Zsilavecz, Manfred; Toennes, Stefan W

    2018-01-01

    Ethyl glucuronide (EtG) is increasingly used in forensic toxicology as a marker for alcohol use in analyses of hair samples, especially in abstinence control. Some cosmetic treatments are considered to markedly reduce the EtG content. In view of especially many women with coloured hair the present study was performed to further investigate the effect of a variety of colouring procedures (bleaching, tinting, permanent and semi-permanent dyeing, henna) on the EtG content. Untreated hair samples (n = 12, EtG 13.9-64.7 pg/mg) were re-analyzed (gas chromatography- negative chemical ionization mass spectrometry, 0.8 pg/mg quantification limit) after different treatment procedures. A decrease of the EtG content of at least 10% occurred in every case. The reduction in comparison to the untreated hair was expectedly high for permanent dyeing and bleaching with 18.1% of the initial content (median, range 0.0-50.9%) and 18.4% (0.0-46.7%), respectively. For henna this was 38.3% (0.0-83.0%), for tinting 70.4% (29.0-90.8%), for semi-permanent dyeing 41.9% (0.0-77.4%). With permanent hair dye the EtG content was decreased to below 7 pg/mg in 10 of 12 cases, in 3 cases even below the LOD (0.2 pg/mg). Surprisingly henna treatment without oxidative component had a marked influence, EtG was below 2 pg/mg in 2 of 12 samples. The study showed that all tested coloration procedures markedly affected the deposited EtG content. Even temporary or henna coloration may have a marked effect. The present data support the recommendation to exclude hair samples with colour manipulations for analysis on the EtG content as a precaution in alcohol abstinence programs. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Dye-sensitized solar cell based on AZO/Ag/AZO multilayer transparent conductive oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Jin-He; Li, Ying [School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, Shanghai 200072 (China); Duong, Thanh-Tung; Choi, Hyung-Jin [Department of Materials Engineering, Chungnam National University, Daeduk Science Town, 305-764 Daejeon (Korea, Republic of); Yoon, Soon-Gil, E-mail: sgyoon@cnu.ac.kr [Department of Materials Engineering, Chungnam National University, Daeduk Science Town, 305-764 Daejeon (Korea, Republic of)

    2013-04-15

    Highlights: ► AZO/Ag/AZO (AAA) multilayer was used for working electrode of DSSC cell. ► The 100 nm-thick Nb-doped TiO{sub 2} layer showed a good blocking effect. ► The DSSC cell by AAA TCO material showed the highest efficiency of about 3.25%. -- Abstract: Niobium-doped TiO{sub 2} blocking layer and Al-doped ZnO (AZO)/Ag/AZO (AAA) TCO layers were grown onto glass substrate using pulsed laser deposition (PLD) and direct current (dc)/radio-frequency (rf) sputtering at room temperature, respectively for dye-sensitized solar cell (DSSC) applications. The 100 nm-thick NTO layer showed a blocking effect for the oxygen diffusion into AAA layer and for the recombination of the electrons. The DSSC cell composed of the NTO (100 nm)/AAA (400 nm) showed the highest photo-electrical efficiency of about 3.25%. An insertion of aluminum foil between serrated clip and AAA (100 nm) TCO improved a photo-conversion efficiency of the DSSC.

  13. The photocatalytic investigation of methylene blue dye with Cr doped zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Rajeev [School of Material Science and Nanotechnology, National Institute of Technology Kurukshetra, Haryana (India); Kumar, Ashavani, E-mail: ashavani@yahoo.com [Department of Physics, National Institute of Technology Kurukshetra, Haryana (India)

    2015-08-28

    The present work reports eco-friendly and cost effective sol-gel technique for synthesis of Chromium doped ZnO nanoparticles at room temperature. In this process Zinc nitrate, Chromium nitrate were used as precursor. Structural as well as optical properties of Cr induced ZnO samples were analysed by X-ray diffraction technique (XRD), SEM, PL and UV-Visible spectroscopy (UV-Vis) respectively. XRD analysis shows that the samples have hexagonal (wurtzite) structure with no additional peak which suggests that Cr ions fit into the regular Zn sites of ZnO crystal structure. By using Scherrer’s formula for pure and Cr doped ZnO samples the average grain size was found to be 32 nm. Further band gap of pure and doped ZnO samples have been calculated by using UV-Vis spectra. The photo-catalytic degradation of methyl blue dye under UV irradiation was examined for synthesized samples. The results show that the concentration plays an important role in photo-catalytic activity.

  14. Potassium-doped zinc oxide as photocathode material in dye-sensitized solar cells.

    Science.gov (United States)

    Bai, Jie; Xu, Xiaobao; Xu, Ling; Cui, Jin; Huang, Dekang; Chen, Wei; Cheng, Yibing; Shen, Yan; Wang, Mingkui

    2013-04-01

    ZnO nanoparticles are doped with K and applied in p-type dye-sensitized solar cells (DSCs). The microstructure and dynamics of hole transportation and recombination are investigated. The morphology of the K-doped ZnO nanoparticles shows a homogeneous distribution with sizes in the range 30-40 nm. When applied in p-type DSCs in combination with C343 as sensitizer, the K-doped ZnO nanoparticles achieve a photovoltaic power conversion efficiency of 0.012 % at full-intensity sunlight. A further study on the device by transient photovoltage/photocurrent decay measurements shows that the K-doped ZnO nanoparticles have an appreciable hole diffusion coefficient (ca. 10(-6) cm(2) s(-1) ). Compared to the widely used p-type NiO nanoparticles, this advantage is crucial for further improving the efficiency of p-type DSCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Dye-sensitized solar cell based on AZO/Ag/AZO multilayer transparent conductive oxide film

    International Nuclear Information System (INIS)

    Qi, Jin-He; Li, Ying; Duong, Thanh-Tung; Choi, Hyung-Jin; Yoon, Soon-Gil

    2013-01-01

    Highlights: ► AZO/Ag/AZO (AAA) multilayer was used for working electrode of DSSC cell. ► The 100 nm-thick Nb-doped TiO 2 layer showed a good blocking effect. ► The DSSC cell by AAA TCO material showed the highest efficiency of about 3.25%. -- Abstract: Niobium-doped TiO 2 blocking layer and Al-doped ZnO (AZO)/Ag/AZO (AAA) TCO layers were grown onto glass substrate using pulsed laser deposition (PLD) and direct current (dc)/radio-frequency (rf) sputtering at room temperature, respectively for dye-sensitized solar cell (DSSC) applications. The 100 nm-thick NTO layer showed a blocking effect for the oxygen diffusion into AAA layer and for the recombination of the electrons. The DSSC cell composed of the NTO (100 nm)/AAA (400 nm) showed the highest photo-electrical efficiency of about 3.25%. An insertion of aluminum foil between serrated clip and AAA (100 nm) TCO improved a photo-conversion efficiency of the DSSC

  16. Formulation of Synthesized Zinc Oxide Nanopowder into Hybrid Beads for Dye Separation

    Directory of Open Access Journals (Sweden)

    H. Shokry Hassan

    2014-01-01

    Full Text Available The sol-gel prepared zinc oxide nanopowder was immobilized onto alginate-polyvinyl alcohol polymer blend to fabricate novel biocomposite beads. Various physicochemical characterization techniques have been utilized to identify the crystalline, morphological, and chemical structures of both the fabricated zinc oxide hybrid beads and their corresponding zinc oxide nanopowder. The thermal stability investigations demonstrate that ZnO nanopowder stability dramatically decreased with its immobilization into the polymeric alginate and PVA matrix. The formulated beads had very strong mechanical strength and they are difficult to be broken up to 1500 rpm. Moreover, these hybrid beads are chemically stable at the acidic media (pH < 7 especially within the pH range of 2–7. Finally, the applicability of the formulated ZnO hybrid beads for C.I. basic blue 41 (BB41 decolorization from aqueous solution was examined.

  17. The influence of the host–guest interaction on the oxidation of natural flavonoid dyes

    Czech Academy of Sciences Publication Activity Database

    Ramešová, Šárka; Sokolová, Romana; Degano, I.; Hromadová, Magdaléna; Gál, Miroslav; Kolivoška, Viliam; Colombini, M. P.

    2011-01-01

    Roč. 76, č. 12 (2011), s. 1651-1667 ISSN 0010-0765 R&D Projects: GA ČR GA203/09/1607; GA ČR GA203/08/1157 Institutional research plan: CEZ:AV0Z40400503 Keywords : oxidation * inclusion complexes * flavonoids Subject RIV: CG - Electrochemistry Impact factor: 1.283, year: 2011

  18. Charge transport in dye-sensibilized porous zinc oxide films; Ladungstransport in farbstoffsensibilisierten poroesen Zinkoxidfilmen

    Energy Technology Data Exchange (ETDEWEB)

    Reemts, J.

    2006-05-18

    During the last decades, zinc oxide has attracted a lot of attention as an important material in various electrical, chemical, and optical applications. In the present work results are discussed gained from investigations of highly porous electrochemically deposited zinc oxide, which is a promising electrode material both in the area of solar energy conversion and sensor technology. The films were prepared by adding detergents during the electrodeposition process. The detergents have a structure-directing influence during the film deposition and, therefore, on the morphology of the films. The obtained electrodes can easily be sensitized for light or different chemicals by a simple adsorption of different molecules. In the present work I discuss the fundamental charge transport properties of electrochemically deposited zinc oxide films. Temperature-dependent measurements of the current-voltage characteristics are carried out and the spectral response of the photoconductivity is investigated. In order to understand the charge transport properties of this highly porous material, it is necessary to get a deeper insight in the electrode morphology. Therefore, different optical and scanning probe microscopy methods are used to characterize the inner structure of the electrodes. The electrical conductivity of the zinc oxide films can be seen as a thermally activated process, which can be explained by electronic transitions from the valence band of the zinc oxide to two shallow impurity levels. The current-voltage characteristic unveils a nonlinear behavior which can be explained by a space-charge-limited current model with traps distributed in energy. Upon excitation with different wavelengths, the conductivity of the zinc oxide increases already under sub-band gap illumination due to widely distributed trap states within the band gap. The transients of the photoconductivity follow a stretched exponential law with time scales in the range of several hours, either if the

  19. Photocatalytic discoloration of reactive blue 5g dye in the presence of mixed oxides and with the addition of iron and silver

    International Nuclear Information System (INIS)

    Souza, M.C.P; Lenzi, G.G.; Jorge, L.M.M.; Santos, O.A.A.; Colpini, L.M.S.

    2011-01-01

    This work reports the use of cerium-titania-alumina-based systems modified with Ag and Fe by the wetness impregnation method for the discoloration of blue 5G dye. The techniques employed to characterize the photocatalysts were: temperature-programmed reduction (TPR), X-ray diffraction (XRD), specific surface area, average pore volume, and average pore diameter. The characterization results indicated that the photocatalysts had different crystalline structures and textural properties. Discoloration with the mixed oxide photocatalyst CeO 2 -TiO 2 -Al 2 O 3 gave a result similar to that of TiO 2 . On the other hand, the addition of Ag and Fe to the mixed oxide increased the discoloration and reaction rates of reactive blue 5G dyes. (author)

  20. Photocatalytic discoloration of reactive blue 5g dye in the presence of mixed oxides and with the addition of iron and silver

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.C.P; Lenzi, G.G.; Jorge, L.M.M.; Santos, O.A.A. [Universidade Estadual de Maringa (UEM), PR (Brazil). Dept. de Engenharia Quimica; Colpini, L.M.S. [Universidade Federal do Parana (UFPR), Palotina, PR (Brazil). Curso Superior de Tecnologia em Biocombustiveis

    2011-07-15

    This work reports the use of cerium-titania-alumina-based systems modified with Ag and Fe by the wetness impregnation method for the discoloration of blue 5G dye. The techniques employed to characterize the photocatalysts were: temperature-programmed reduction (TPR), X-ray diffraction (XRD), specific surface area, average pore volume, and average pore diameter. The characterization results indicated that the photocatalysts had different crystalline structures and textural properties. Discoloration with the mixed oxide photocatalyst CeO{sub 2}-TiO{sub 2}-Al{sub 2}O{sub 3} gave a result similar to that of TiO{sub 2}. On the other hand, the addition of Ag and Fe to the mixed oxide increased the discoloration and reaction rates of reactive blue 5G dyes. (author)

  1. Microwave assisted facile hydrothermal synthesis and characterization of zinc oxide flower grown on graphene oxide sheets for enhanced photodegradation of dyes

    International Nuclear Information System (INIS)

    Kashinath, L.; Namratha, K.; Byrappa, K.

    2015-01-01

    Graphical abstract: - Highlights: • Synthesis of hybrid ZnO–GO nanocomposite via microwave assisted facile hydrothermal method. • The in situ flower like ZnO nano particles are densely decorated and anchored on the surfaces of graphene oxide sheets. • They exhibited high adsorption measurement, increase in surface area and meso/micro porous in nature. • The structure and morphology plays a vital role in enhancing the photo response activities of degradation of dyes. - Abstract: Microwave assisted hydrothermal process of synthesis of ZnO–GO nanocomposite by using ZnCl 2 and NaOH as precursors is being reported first time. In this investigation, a novel route to study on synthesis, interaction, kinetics and mechanism of hybrid zinc oxide–graphene oxide (ZnO–GO) nanocomposite using microwave assisted facile hydrothermal method has been reported. The results shows that the ZnO–GO nanocomposite exhibits an enhancement and acts as stable photo-response degradation performance of Brilliant Yellow under the UV light radiation better than pure GO and ZnO nanoparticles. The microwave exposure played a vital role in the synthesis process, it facilitates with well define crystalline structure, porosity and fine morphology of ZnO/GO nanocomposite. Different molar concentrations of ZnO precursors doped to GO sheets were been synthesized, characterized and their photodegradation performances were investigated. The optical studies by UV–vis and Photo Luminescence shows an increase in band gap of nanocomposite, which added an advantage in photodegradation performance. The in situ flower like ZnO nano particles are were densely decorated and anchored on the surfaces of graphene oxide sheets which aids in the enhancement of the surface area, adsorption, mass transfer of dyes and evolution of oxygen species. The nanocomposite having high surface area and micro/mesoporous in nature. This structure and morphology supports significantly in increasing photo catalytic

  2. Identification of Colored Dyes that are Resistant to Fading on Exposure to Ethylene Oxide; Use with Indicating FTA™ Sample Collection Cards

    Directory of Open Access Journals (Sweden)

    Nina Moran

    2016-01-01

    Full Text Available Regulatory Standards and Forensic Communities are expressing an expectation for HID products to be certified as “DNA-free.” Recently, “DNA-free” status was described for HID-related products using ethylene oxide (EtO; this gas reduces the presence of amplifiable DNA and causes minimal interference to downstream HID-analytical methods. During sample collection, indicating cards, for example, Indicating FTA™ (GE Healthcare Life Sciences, UK, are used to collect and store buccal cell DNA. These cards contain a dye which changes color on application of a colorless sample. Generating “DNA-free” indicating cards using EtO should not impact the dyes' ability to indicate sample location or the efficacy of the card in downstream HID-analytical methods. This study was initiated to identify alternative dyes to those currently used with sample indicating collection cards. The most promising, dyes when applied to cellulose papers exhibited a uniform color distribution and excellent sample indicating properties even when mixed with chemicals associated with FTA™. When dyed cellulose papers were exposed to EtO, ultraviolet radiation, elevated temperature, and humidity, negligible fading or discoloration was observed. The presence of these dyes on cellulose papers did not interfere with direct short tandem repeat (STR profiling. Allelic concordance, first pass success rate, and mean peak heights were comparable to samples applied to Indicating FTA. Biological samples applied to EtO-treated dyed cellulose papers and stored >1 month produced full STR profiles of sufficient quality to allow submission to DNA databases, confirming negligible interference from EtO treatment. These alternative sample indicating dyes resist EtO-mediated fading while fulfilling the Forensic Community's expectation for “DNA-free” with negligible impact on collection card performance.

  3. Rapid and efficient visible light photocatalytic dye degradation using AFe{sub 2}O{sub 4} (A = Ba, Ca and Sr) complex oxides

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, T. [PSG Institute of Advanced Studies, Coimbatore 641004 (India); Suriyaraj, S.P.; Selvakumar, R. [Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004 (India); Venkateswaran, R. [PSG Institute of Advanced Studies, Coimbatore 641004 (India); Ashok, Anuradha, E-mail: anu@psgias.ac.in [PSG Institute of Advanced Studies, Coimbatore 641004 (India)

    2016-08-15

    Highlights: • Alkaline earth ferrites AFe{sub 2}O{sub 4} (A = Ba, Ca and Sr) were synthesized by sol–gel method. • Visible light photocatalytic activity of these ferrites were studied using congo red dye degradation. • BaFe{sub 2}O{sub 4} exhibited the best photocatalytic activity under visible light (xenon lamp) irradiation; CaFe{sub 2}O{sub 4} was the best photocatalyst under natural sun light irradiation. - Abstract: Photocatalytic activity of spinel type complex oxides has been investigated in this study. Alkaline earth ferrites AFe{sub 2}O{sub 4} (A = Ba, Ca, Sr) were synthesized by sol–gel method. Structural characterizations reveal that the synthesized ferrites have orthorhombic crystal structures with different space groups and cell dimensions when they have different alkaline earth metals in their A site. All the synthesized ferrites exhibited their bandgap in the range 2.14–2.19 eV. Their photocatalytic activities were studied using congo red dye under sunlight and xenon lamp radiation. The substitution of Ba, Ca and Sr at A site of these ferrites had varying impact on dye degradation process. Under xenon lamp irradiation, BaFe{sub 2}O{sub 4} exhibited the highest percentage of dye degradation (92% after 75 min). However, CaFe{sub 2}O{sub 4} showed the fastest degradation of the dye (70% within 15 min). In the absence of irradiation, SrFe{sub 2}O{sub 4} showed the highest dye adsorption (44% after 75 min).

  4. Synthesis of 3D hierarchical porous iron oxides for adsorption of Congo red from dye wastewater

    International Nuclear Information System (INIS)

    Jia, Zhigang; Liu, Jianhong; Wang, Qiuze; Li, Shengbiao; Qi, Qin; Zhu, Rongsun

    2015-01-01

    Highlights: • Bowknot-like precursor is obtained via poval-mediated precipitation reaction. • The growth mechanism of the hierarchical superstructure has been discussed. • Mesoporous iron oxide superstructures have been successfully synthesized. • The magnetic superstructures can adsorb CR from aqueous solution effectively. • The adsorption kinetics and isotherm processes are discussed. - Abstract: In this study, 3D hierarchical porous iron oxides were prepared by a precursor thermal conversion method and their adsorption properties for Congo red were reported. The products were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron microscopy (EM) and nitrogen adsorption-desorption isotherms. Results demonstrated that the 3D magnetic bowknot-like iron oxides were constructed by three-dimensional self-assembly of nanorods with porous nanostructures. The effect of experimental parameters including polymer concentration, reaction temperature, reaction time and heat treatment atmosphere were studied. Bowknot-like α-Fe 2 O 3 , Fe 3 O 4 and γ-Fe 2 O 3 superstructures were obtained by the thermal transformation of the oxalate precursor under the various atmosphere. These porous iron oxide superstructures exhibited ferromagnetic property at room temperature. Adsorption of Congo red (CR) onto the as-prepared samples from aqueous solutions was investigated and discussed. The results indicated that pseudo-second-order kinetic equation model can better describe the adsorption kinetics of CR onto α-Fe 2 O 3 and γ-Fe 2 O 3 , and Lagergren-first-order kinetic model is better fitted for the adsorption of CR onto Fe 3 O 4 . The hierarchically α-Fe 2 O 3 bowknots showed better adsorption ability for CR than Fe 3 O 4 and γ-Fe 2 O 3 superstructure

  5. Synthesis of 3D hierarchical porous iron oxides for adsorption of Congo red from dye wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zhigang, E-mail: zjchemyue@126.com; Liu, Jianhong; Wang, Qiuze; Li, Shengbiao; Qi, Qin; Zhu, Rongsun

    2015-02-15

    Highlights: • Bowknot-like precursor is obtained via poval-mediated precipitation reaction. • The growth mechanism of the hierarchical superstructure has been discussed. • Mesoporous iron oxide superstructures have been successfully synthesized. • The magnetic superstructures can adsorb CR from aqueous solution effectively. • The adsorption kinetics and isotherm processes are discussed. - Abstract: In this study, 3D hierarchical porous iron oxides were prepared by a precursor thermal conversion method and their adsorption properties for Congo red were reported. The products were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron microscopy (EM) and nitrogen adsorption-desorption isotherms. Results demonstrated that the 3D magnetic bowknot-like iron oxides were constructed by three-dimensional self-assembly of nanorods with porous nanostructures. The effect of experimental parameters including polymer concentration, reaction temperature, reaction time and heat treatment atmosphere were studied. Bowknot-like α-Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4} and γ-Fe{sub 2}O{sub 3} superstructures were obtained by the thermal transformation of the oxalate precursor under the various atmosphere. These porous iron oxide superstructures exhibited ferromagnetic property at room temperature. Adsorption of Congo red (CR) onto the as-prepared samples from aqueous solutions was investigated and discussed. The results indicated that pseudo-second-order kinetic equation model can better describe the adsorption kinetics of CR onto α-Fe{sub 2}O{sub 3} and γ-Fe{sub 2}O{sub 3}, and Lagergren-first-order kinetic model is better fitted for the adsorption of CR onto Fe{sub 3}O{sub 4}. The hierarchically α-Fe{sub 2}O{sub 3} bowknots showed better adsorption ability for CR than Fe{sub 3}O{sub 4} and γ-Fe{sub 2}O{sub 3} superstructure.

  6. A one-electron oxidation of carcinogenic nonaminoazo dye Sudan I by horseradish peroxidase

    Czech Academy of Sciences Publication Activity Database

    Semanská, M.; Dračínský, Martin; Martínek, V.; Hudeček, J.; Hodek, P.; Frei, E.; Stiborová, M.

    2008-01-01

    Roč. 29, č. 5 (2008), s. 712-716 ISSN 0172-780X Grant - others:GA MŠk(CZ) 1M0505; GA ČR(CZ) GA203/06/0329 Program:1M Institutional research plan: CEZ:AV0Z40550506 Keywords : carcinogen * Sudan I * peroxidase * NMR spectroscopy * mechanism of oxidation Subject RIV: CC - Organic Chemistry Impact factor: 1.359, year: 2008 http://node.nel.edu

  7. Sonocatalytic degradation of methylene blue dye using a nanosized zinc oxide powder prepared via sonochemical method

    OpenAIRE

    Stanković, Ana; Veselinović, Ljiljana; Marković, Smilja; Uskoković, Dragan

    2013-01-01

    Nanostructured semiconductor materials are of great importance for various tecnological application due to their phisical and chemical properties wich are determined by the morphology and the size of the particles. Among semiconducor oxides, ZnO is one of the most important multifunctional material with its wide direct band gap energy of 3.37 eV and its excitation binding energy around 60 meV. Nowadays, many studies focus on the application of sonochemical reactions for treatment of industria...

  8. Enhancing the electrochemical oxidation of acid-yellow 36 azo dye using boron-doped diamond electrodes by addition of ferrous ion

    International Nuclear Information System (INIS)

    Villanueva-Rodriguez, M.; Hernandez-Ramirez, A.; Peralta-Hernandez, J.M.; Bandala, Erick R.; Quiroz-Alfaro, Marco A.

    2009-01-01

    This work shows preliminary results on the electrochemical oxidation process (EOP) using boron-doped diamond (BDD) electrode for acidic yellow 36 oxidation, a common azo dye used in textile industry. The study is centred in the synergetic effect of ferrous ions and hydroxyl free radicals for improving discoloration of azo dye. The assays were carried out in a typical glass cell under potentiostatic conditions. On experimental conditions, the EOP was able to partially remove the dye from the reaction mixture. The reaction rate increased significantly by addition of Fe 2+ (1 mM as ferrous sulphate) to the system and by (assumed) generation of ferrate ion [Fe(VI)] over BDD electrode. Ferrate is considered as a highly oxidizing reagent capable of removing the colorant from the reaction mixture, in synergistic action with the hydroxyl radicals produced on the BDD surface. Further increases in the Fe 2+ concentration lead to depletion of the reaction rate probably due to the hydroxyl radical scavenging effect of Fe 2+ excess in the system.

  9. High performance sponge-like cobalt sulfide/reduced graphene oxide hybrid counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Huo, Jinghao; Wu, Jihuai; Zheng, Min; Tu, Yongguang; Lan, Zhang

    2015-10-01

    A sponge-like cobalt sulfide/reduced graphene oxide (CoS/rGO) hybrid film is deposited on fluorine doped SnO2 (FTO) glass by electrophoretic deposition and ion exchange deposition, following by sodium borohydride and sulfuric acid solution treatment. The film is used as the counter electrode of dye-sensitized solar cells (DSSCs), and is characterized by field emission scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and Tafel measurements. The results show that the CoS counter electrode has a sponge structure with large specific surface area, small charge-transfer resistance at the electrode/electrolyte interface. The addition of rGO further improves the electrocatalytic activity for I3- reduction, which results in the better electrocatalytic property of CoS/rGO counter electrodes than that of Pt counter electrode. Using CoS/rGO0.2 as counter electrode, the DSSC achieves a power conversion efficiency of 9.39%; which is increased by 27.93% compared with the DSSC with Pt counter electrode (7.34%).

  10. Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide: New efficient photocatalyst for dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xia [School of Urban and Environmental Sciences, Northeast Normal University, Changchun 130024 (China); School of Chemistry, Northeast Normal University, Changchun 130024 (China); Ma Fengyan; Li Kexin; Guo Yingna; Hu Jianglei; Li Wei [School of Chemistry, Northeast Normal University, Changchun 130024 (China); Huo Mingxin [School of Urban and Environmental Sciences, Northeast Normal University, Changchun 130024 (China); Guo Yihang, E-mail: guoyh@nenu.edu.cn [School of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2010-03-15

    Titania nanocomposite codoped with metallic silver and vanadium oxide was prepared by a one-step sol-gel-solvothermal method in the presence of a triblock copolymer surfactant (P123). The resulting Ag/V-TiO{sub 2} three-component junction system exhibited an anatase/rutile (weight ratio of 73.8:26.2) mixed phase structure, narrower band gap (2.25 eV), and extremely small particle sizes (ca. 12 nm) with metallic Ag particles well distributed on the surface of the composite. The Ag/V-TiO{sub 2} nanocomposite was used as the visible- and UV-light-driven photocatalyst to degrade dyes rhodamine B (RB) and coomassie brilliant blue G-250 (CBB) in an aqueous solution. At 1.8% Ag and 4.9% V doping, the Ag/V-TiO{sub 2} system exhibited the highest visible- as well as UV-light photocatalytic activity; additionally, the activity of the three-component system exceeded that of Degussa P25, pure TiO{sub 2}, single-doped TiO{sub 2} system (Ag/TiO{sub 2} or V-TiO{sub 2}) as well as P123-free-Ag/V-TiO{sub 2} codoped system. The reasons for this enhanced photocatalytic activity were revealed.

  11. ZnO-Nanorod Dye-Sensitized Solar Cells: New Structure without a Transparent Conducting Oxide Layer

    Directory of Open Access Journals (Sweden)

    Ming-Hong Lai

    2010-01-01

    Full Text Available Conventional nanorod-based dye-sensitized solar cells (DSSCs are fabricated by growing nanorods on top of a transparent conducting oxide (TCO, typically fluorine-doped tin oxide—FTO. The heterogeneous interface between the nanorod and TCO forms a source for carrier scattering. This work reports on a new DSSC architecture without a TCO layer. The TCO-less structure consists of ZnO nanorods grown on top of a ZnO film. The ZnO film replaced FTO as the TCO layer and the ZnO nanorods served as the photoanode. The ZnO nanorod/film structure was grown by two methods: (1 one-step chemical vapor deposition (CVD (2 two-step chemical bath deposition (CBD. The thicknesses of the nanorods/film grown by CVD is more uniform than that by CBD. We demonstrate that the TCO-less DSSC structure can operate properly as solar cells. The new DSSCs yield the best short-current density of 3.96 mA/cm2 and a power conversion efficiency of 0.73% under 85 mW/cm2 of simulated solar illumination. The open-circuit voltage of 0.80 V is markedly higher than that from conventional ZnO DSSCs.

  12. Superparamagnetic iron oxide coated on the surface of cellulose nanospheres for the rapid removal of textile dye under mild condition

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yunfeng [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Qin, Zongyi, E-mail: phqin@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Liu, Yannan; Cheng, Miao; Qian, Pengfei [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Wang, Qian, E-mail: drwangqian23@163.com [Department of Orthopaedics, Shanghai First People' s Hospital, Shanghai Jiaotong University, 100 Haining Road, Hongkou District, Shanghai 200080 (China); Zhu, Meifang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Material Science and Engineering, Donghua University, Shanghai 201620 (China)

    2015-12-01

    Graphical abstract: - Highlights: • Anchoring superparamagnetic iron oxide on the surface of cellulose nanospheres as magnetically recyclable nanocatalys. • Achieving highly efficient Fenton-like reaction on the surface of composite nanospheres for rapid removal of textile dye. • Reaching nearly 98.0% degradation of Navy blue within 5 min under mild condition. - Abstract: Magnetic composite nanoparticles (MNPs) were prepared by anchoring iron oxide (Fe{sub 3}O{sub 4}) on the surface of carboxyl cellulose nanospheres through a facile chemical co-precipitation method. The as-prepared MNPs were characterized by atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, wide-angle X-ray diffraction measurement, thermal gravity analysis and vibrating sample magnetometry. These MNPs were of a generally spherical shape with a narrow size distribution, and exhibited superparamagnetic behaviors with high saturation magnetization. High efficient removal of Navy blue in aqueous solution was demonstrated at room temperature in a Fenton-like system containing the MNPs and H{sub 2}O{sub 2}, which benefited from small particle size, large surface area, high chemical activity, and good dispersibility of the MNPs. The removal efficiency of Navy blue induced by the MNPs prepared at a weight ratio of cellulose to iron of 1:2 were 90.6% at the first minute of the degradation reaction, and 98.0% for 5 min. Furthermore, these MNPs could be efficiently recycled and reused by using an external magnetic field. The approach presented in this paper promotes the use of renewable natural resources as templates for the preparation and stabilization of various inorganic nanomaterials for the purpose of catalysis, magnetic resonance imaging, biomedical and other potential applications.

  13. Understanding flocculation mechanism of graphene oxide for organic dyes from water: Experimental and molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-11-01

    Full Text Available Flocculation treatment processes play an important role in water and wastewater pretreatment. Here we investigate experimentally and theoretically the possibility of using graphene oxide (GO as a flocculant to remove methylene blue (MB from water. Experimental results show that GO can remove almost all MB from aqueous solutions at its optimal dosages and molecular dynamics simulations indicate that MB cations quickly congregate around GO in water. Furthermore, PIXEL energy contribution analysis reveals that most of the strong interactions between GO and MB are of a van der Waals (London dispersion character. These results offer new insights for shedding light on the molecular mechanism of interaction between GO and organic pollutants.

  14. Reduced graphene oxide–cuprous oxide composite via facial deposition for photocatalytic dye-degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, MingYan, E-mail: mingyanlyg@hotmail.com [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute of Innovative Materials, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Huang, JunRao; Tong, ZhiWei [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Li, WeiHua [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Chen, Jun, E-mail: junc@uow.edu.au [Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute of Innovative Materials, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia)

    2013-08-15

    Highlights: •Cubic Cu{sub 2}O were effectively loaded on n-propylamine (PA) intercalated graphene oxide. •The addition of PA on the carbon sheets supports the stable structure of the composites. •Cu{sub 2}O/PA/rGO showed superior adsorption capacity and photocatalytic activity. -- Abstract: Cubic Cu{sub 2}O nanoparticles have been successfully synthesized on n-propylamine (PA) intercalated graphene oxide (GO) with uniform distribution followed with a subsequent hydrazine hydrate reduction process to generate Cu{sub 2}O/PA/rGO composite. For comparison, Cu{sub 2}O conjugated reduced graphene oxide (Cu{sub 2}O/rGO) composite was also synthesized using the same method. The as-prepared Cu{sub 2}O/PA/rGO and Cu{sub 2}O/rGO nanocomposites are characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area analysis, and Electrochemical impedance spectra (EIS) measurements. UV/vis diffuse reflectance spectroscopy was employed to estimate band gap energies of cuprous oxide composites. The results show that the intercalation of PA into the layered GO increases the surface area of the composites and provides an efficient strategy to load Cu{sub 2}O due to the large and uniform distribution of active sites for anchoring copper ions. The surface area of the Cu{sub 2}O/PA/rGO (123 m{sup 2}/g) nanocomposite was found to be almost 2.5 times higher than that of Cu{sub 2}O/rGO (55.7 m{sup 2}/g). The as-prepared Cu{sub 2}O/PA/rGO show significant improvement on both adsorption capacity and photocatalytic activity towards organic pigment pollution compared with Cu{sub 2}O/rGO under identical performance conditions.

  15. In Vitro Methodologies to Evaluate the Effects of Hair Care Products on Hair Fiber

    Directory of Open Access Journals (Sweden)

    Robson Miranda da Gama

    2017-01-01

    Full Text Available Consumers use different hair care products to change the physical appearance of their hair, such as shampoos, conditioners, hair dye and hair straighteners. They expect cosmetics products to be available in the market to meet their needs in a broad and effective manner. Evaluating efficacy of hair care products in vitro involves the use of highly accurate equipment. This review aims to discuss in vitro methodologies used to evaluate the effects of hair care products on hair fiber, which can be assessed by various methods, such as Scanning Electron Microscopy, Transmission Electron Microscopy, Atomic Force Microscopy, Optical Coherence Tomography, Infrared Spectroscopy, Raman Spectroscopy, Protein Loss, Electrophoresis, color and brightness, thermal analysis and measuring mechanical resistance to combing and elasticity. The methodology used to test hair fibers must be selected according to the property being evaluated, such as sensory characteristics, determination of brightness, resistance to rupture, elasticity and integrity of hair strain and cortex, among others. If equipment is appropriate and accurate, reproducibility and ease of employment of the analytical methodology will be possible. Normally, the data set must be discussed in order to obtain conclusive answers to the test.

  16. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor.

    Science.gov (United States)

    Cui, Dan; Guo, Yu-Qi; Cheng, Hao-Yi; Liang, Bin; Kong, Fan-Ying; Lee, Hyung-Sool; Wang, Ai-Jie

    2012-11-15

    Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8±1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 gm(-3) d(-1)) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 gm(-3) d(-1) (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction.

    Science.gov (United States)

    Vallet, Ana; Ovejero, Gabriel; Rodríguez, Araceli; Peres, José A; García, Juan

    2013-01-15

    Active nickel catalysts (7 wt%) supported over Mg-Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min(-1) and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min(-1), respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T(r)=0.098 g(Ni) min mL(-1). After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T(r)=0.098 g(Ni) min mL(-1), attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Adsorption mechanism and kinetics of azo dye chemicals on oxide nanotubes: a case study using porous CeO_2 nanotubes

    International Nuclear Information System (INIS)

    Wu, Junshu; Wang, Jinshu; Du, Yucheng; Li, Hongyi; Jia, Xinjian

    2016-01-01

    Metal oxide nanotubes are believed to be promising materials with adsorption functionality for water purification due to their synergistic effect of the overall microscale morphology for easy separation and nanoscale surface characters providing enough surface active absorption sites. This work shows the synthesis of uniform hierarchical porous CeO_2 nanotubes via nanowire-directed templating method and describes the adsorption behavior of CeO_2 nanotubes for a typical azo dye Congo red which has resistance to oxidation and decoloration in natural conditions. Fourier transform infrared spectroscopy spectra provided the evidence that Congo red was successfully coated on the surface of CeO_2 nanotubes by both bidentate-type bridge link of Ce"4"+ cations from sulfonate SO_3"− groups and the electrostatic attraction between the protonated surface generated by oxygen vacancies and dissociated sulfonate groups. The adsorption kinetic data fitted well to the pseudo-second-order kinetic equation, whereas the Langmuir isotherm equation exhibited better correlation with the experimental data. The calculated maximum adsorption capacity from the isothermal model was 362.32 mg/g. In addition, the prepared CeO_2 nanotubes exhibited good recyclability and reusability as highly efficient adsorbents for Congo red removal after regeneration. These favorable performances enable the obtained CeO_2 nanotubes to be promising materials for dye removal from aqueous solution.Graphical AbstractCeO_2 nanotubes composed of crystallized nanoparticles exhibit well adsorption ability for a typical azo dye Congo red.

  19. Optimization of degration Basic blue 47 dye Without the use of oxidizing agents by ultrasound-electrochemical techniques and central composite design ( CCD

    Directory of Open Access Journals (Sweden)

    atefeh sadat rezaei tousi

    2017-07-01

    Full Text Available Intruoduction: One of the most important environmental pollutant is dye compounds. Accordingly, numerous methods have already been proposed for removing these pollutants from industrial waste especially the textile industry. One of the methods that has received a great deal of attention in recent years sono-electrochemical method. Methods: This experimental study was conducted in a batch laboratory scale. In this approach, using the Central Composite Design (CCD statistical method, the interactive effects of four important variables of pH, the dye solution concentration, decolorization time, and potential were analyzed and investigated. Results: Based on the conducted experiments and the results obtained in the absence of the hydrogen peroxide oxidant agent, the best conditions for decolorization in the optimal conditions of pH=9, dye concentration=303.3 μM, contact time of 93 min, and a potential of 0.81 V corresponding to the design by the software was 92.8% which was obtained experimentally as 92.34% . Chemical Oxygen Demand (COD removal was mention according optimized conditions by the combination of ultrasound-electrochemical process 96%  in this study. Conclusion: CCD was used as an effective method to measuring the concurrent effect of some important variables on BB47 dye removal. Based on the gained model. Accordingly, the optimal conditions (pH=9, dye concentration of 303/3μM, contact time of 93 min, and a potential of 0/81 V were determined by the software. The predicted decolorization percentage by the model was 92/8%  in these conditions, where it was obtained as 92/34 % after the experimental test. The closeness of these responses are indicative of appropriacy of the model.

  20. Gadolinium oxide decorated multiwalled carbon nanotube/tridoped titania nanocomposites for improved dye degradation under simulated solar light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mamba, Gcina [Department of Applied Chemistry, University of Johannesburg, Faculty of Science, P.O. Box 17011, Doornfontein 2028 (South Africa); Nanotechnology and Water Sustainability Research Unit, College of Engineering, Science and Technology, University of South Africa Florida Science Campus, 1709 Florida (South Africa); Mbianda, Xavier Yangkou [Department of Applied Chemistry, University of Johannesburg, Faculty of Science, P.O. Box 17011, Doornfontein 2028 (South Africa); Mishra, Ajay Kumar, E-mail: mishrak@unisa.ac.za [Nanotechnology and Water Sustainability Research Unit, College of Engineering, Science and Technology, University of South Africa Florida Science Campus, 1709 Florida (South Africa)

    2016-03-15

    Graphical abstract: Illustration of the collaborative effect between MWCNT-Gd and Gd,N,S-TiO{sub 2} towards degradation of AB 74. - Highlights: • MWCNT-Gd/tridoped titania was successfully prepared via a sol-gel method. • XPS revealed the presence of Ti, C, O, S, N and Gd in MWCNT-Gd/Gd,N,S-TiO{sub 2}. • MWCNT-Gd/Gd,N,S-TiO{sub 2} displayed 100% degradation of acid blue 74 in 150 min. • Over 60% TOC removal by MWCNT-Gd/Gd,N,S-TiO{sub 2}. - Abstract: Neodymium/gadolinium/europium, nitrogen and sulphur tridoped titania (Nd/Gd/Eu, N,S-TiO{sub 2}) was hybridised with pre-synthesised gadolinium oxide decorated multiwalled carbon nanotubes (MWCNT-Gd) using a sol–gel method. Subsequent to drying and calcination, composite photocatalysts: MWCNT-Gd/Nd,N,S-TiO{sub 2}, MWCNT-Gd/Gd,N,S-TiO{sub 2} and MWCNT-Gd/Eu,N,S-TiO{sub 2}, were obtained and characterised using TEM, SEM-EDX, UV–vis, XPS, XRD and FT-IR. Acid blue 74 (AB74) was used as a model dye to investigate the photocatalytic degradation properties of the prepared materials under simulated solar light irradiation. Coupling the different tridoped titania with MWCNT-Gd enhanced their activity compared to MWCNT/TiO{sub 2}, MWCNT-Gd/TiO{sub 2} and MWCNT/Gd,N,S-TiO{sub 2}. MWCNT-Gd/Gd,N,S-TiO{sub 2} showed the highest activity towards AB74 degradation reaching 100% decolourisation after 150 min of irradiation. Total organic carbon analysis revealed that over 50% of the AB74 molecules were completely mineralised after 180 min of irradiation in the presence of MWCNT-Gd/Gd,N,S-TiO{sub 2}.

  1. Enhancing photovoltaic performance of dye-sensitized solar cell by rare-earth doped oxide of Lu2O3:(Tm3+, Yb3+)

    International Nuclear Information System (INIS)

    Li Qingbei; Lin Jianming; Wu Jihuai; Lan Zhang; Wang Yue; Peng Fuguo; Huang Miaoliang

    2011-01-01

    Highlights: → Tm 3+ /Yb 3+ codoped oxide is introduced into the TiO 2 film in dye-sensitized solar cell. → The RE improves light harvest via conversion luminescence and increases photocurrent. → The RE elevates the oxide film energy level and increases the cell photovoltage. → The cell efficiency is increased by 11.1% compared to the cell lacking of RE doping. - Abstract: In order to increase of the photocurrent, photovoltage and energy conversion efficiency of dye-sensitized solar cell (DSSC), rare-earth doped oxide of Lu 2 O 3 :(Tm 3+ , Yb 3+ ) is prepared and introduced into the TiO 2 film in the DSSC. As a luminescence medium, Lu 2 O 3 :(Tm 3+ , Yb 3+ ) improves incident light harvest via a conversion luminescence process and increases photocurrent; as a p-type dopant, the rare-earth ions elevate the energy level of the oxide film and increase the photovoltage. Under a simulated solar light irradiation of 100 mW cm -2 , the light-to-electric energy conversion efficiency of the DSSC with Lu 2 O 3 :(Tm 3+ , Yb 3+ ) doping reaches 6.63%, which is increased by 11.1% compared to the DSSC without Lu 2 O 3 :(Tm 3+ , Yb 3+ ) doping.

  2. Telogen Effluvium Hair Loss

    Science.gov (United States)

    ... Category: Share: Yes No, Keep Private Telogen Effluvium Hair Loss Share | It is normal to lose up to ... months after the "shock". This sudden increase in hair loss, usually described as the hair coming out in ...

  3. Hair Pulling (Trichotillomania)

    Science.gov (United States)

    ... for Families - Vietnamese Spanish Facts for Families Guide Hair Pulling (Trichotillomania) No. 96; Reviewed July 2013 It ... for children and adolescents to play with their hair. However, frequent or obsessive hair pulling can lead ...

  4. Laser Dyes

    Indian Academy of Sciences (India)

    amplification or generation of coherent light waves in the UV,. VIS, and near IR region. .... ciency in most flashlamp pumped dye lasers. It is used as reference dye .... have led to superior laser dyes with increased photostabilities. For instance ...

  5. Application of electrochemical advanced oxidation processes with a boron-doped diamond anode to degrade acidic solutions of Reactive Blue 15 (Turqueoise Blue) dye

    International Nuclear Information System (INIS)

    Solano, Aline Maria Sales; Martínez-Huitle, Carlos Alberto; Garcia-Segura, Sergi; El-Ghenymy, Abdellatif

    2016-01-01

    Highlights: • Degradation of Reactive Blue 15 solution at pH 3.0 by electrochemical oxidation, electro-Fenton and photoelectro-Fenton. • Hard destruction of the dye and its products by BDD(·OH) and much more rapidly by ·OH. • 94% mineralization by the most powerful photoelectro-Fenton at 66.7 mA cm"−"2, with acetic acid accumulation. • 25 aromatics and heteroaromatics, 30 hydroxylated derivatives and 4 carboxylic acids as products. • Release of Cl"−, SO_4"2"− and pre-eminently NO_3"− during dye mineralization. - Abstract: The degradation of the copper-phthalocyanine dye Reactive Blue 15 dye in sulfate medium has been comparatively studied by electrochemical oxidation with electrogenerated H_2O_2 (EO-H_2O_2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments with 100 cm"3 solutions of 0.203 mmol dm"−"3 dye were performed with a stirred tank reactor containing a boron-doped diamond (BDD) anode and an air-diffusion cathode for continuous H_2O_2 production. Experimental conditions of pH 3.0 and 0.50 mmol dm"−"3 Fe"2"+ as catalyst were found optimal for the EF process by the predominant oxidation with hydroxyl radicals formed in the bulk from Fenton’s reaction between added Fe"2"+ and generated H_2O_2. The kinetics of Reactive Blue 15 abatement was followed by reversed-phase HPLC and always obeyed a pseudo-first-order reaction. The decolorization rate in EO-H_2O_2 was much lower than dye decay due to the formation of large quantities of colored intermediates under the action of hydroxyl radicals generated at the BDD anode from water oxidation. In contrast, the color and dye removals were much more rapid in EF and PEF by the most efficient oxidation of hydroxyl radicals produced from Fenton’s reaction. PEF was the most powerful treatment owing to the photolytic action of UVA irradiation, yielding 94% mineralization after 360 min at 66.7 mA cm"−"2. The effect of current density over the performance of all methods was examined. LC

  6. Limits of ZnO Electrodeposition in Mesoporous Tin Doped Indium Oxide Films in View of Application in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Christian Dunkel

    2014-04-01

    Full Text Available Well-ordered 3D mesoporous indium tin oxide (ITO films obtained by a templated sol-gel route are discussed as conductive porous current collectors. This paper explores the use of such films modified by electrochemical deposition of zinc oxide (ZnO on the pore walls to improve the electron transport in dye-sensitized solar cells (DSSCs. Mesoporous ITO film were dip-coated with pore sizes of 20–25 nm and 40–45 nm employing novel poly(isobutylene-b-poly(ethylene oxide block copolymers as structure-directors. After electrochemical deposition of ZnO and sensitization with the indoline dye D149 the films were tested as photoanodes in DSSCs. Short ZnO deposition times led to strong back reaction of photogenerated electrons from non-covered ITO to the electrolyte. ITO films with larger pores enabled longer ZnO deposition times before pore blocking occurred, resulting in higher efficiencies, which could be further increased by using thicker ITO films consisting of five layers, but were still lower compared to nanoporous ZnO films electrodeposited on flat ITO. The major factors that currently limit the application are the still low thickness of the mesoporous ITO films, too small pore sizes and non-ideal geometries that do not allow obtaining full coverage of the ITO surface with ZnO before pore blocking occurs.

  7. Enhanced photocatalytic activity of nanocellulose supported zinc oxide composite for RhB dye as well as ciprofloxacin drug under sunlight/visible light

    Science.gov (United States)

    Tavker, Neha; Sharma, Manu

    2018-05-01

    Zinc oxide nanoparticles were synthesised from zinc acetate di-hydrate via co-precipitation method. Nanocellulose was isolated from agrowaste using chemo-mechanical treatments and characterized. Nanocellulose supported zinc oxide composites were prepared through in-situ method by adding different amounts of nanocellulose. The photocatalytic efficiency of pure Zno and nanocellulose supported ZnO was calculated using RhB dye under visible light and sun light. The composites which had nanocellulose in greater ratio showed higher degradation efficiency in sunlight rather than visible light for both; dye and drug. All the composites showed high rate of photodegradation compared to bare ZnO and bare nanocellulose. The enhancement in photocatalytic activity was observed maximum where the amount of cellulose was maximum. The maximum observed rate was 0.025 min-1 using Ciprofloxacin drug due to the increase in lifetime of Z4 sample delaying the electron and hole pair recombination. The degrading efficiency of nanocellulose supported zinc oxide (NC/ZnO) composite for RhB was found to be 35% in visible, 76% in sunlight and 75% for ciprofloxacin under sunlight.

  8. Photo catalytic Degradation of Organic Dye by Sol-Gel-Derived Gallium-Doped Anatase Titanium Oxide Nanoparticles for Environmental Remediation

    International Nuclear Information System (INIS)

    Arghya, N.B.; Sang, W.J.; Bong-Ki, M.

    2012-01-01

    Photo catalytic degradation of toxic organic chemicals is considered to be the most efficient green method for surface water treatment. We have reported the sol-gel synthesis of Gadoped anatase TiO 2 nanoparticles and the photo catalytic oxidation of organic dye into nontoxic inorganic products under UV irradiation. Photodegradation experiments show very good photo catalytic activity of Ga-doped TiO 2 nanoparticles with almost 90% degradation efficiency within 3 hrs of UV irradiation, which is faster than the undoped samples. Doping levels created within the bandgap of TiO 2 act as trapping centers to suppress the photo generated electron-hole recombination for proper and timely utilization of charge carriers for the generation of strong oxidizing radicals to degrade the organic dye. Photo catalytic degradation is found to follow the pseudo-first-order kinetics with the apparent 1 st-order rate constant around 1.3 x 10 -2 min -1 . The cost-effective, sol-gel-derived TiO 2 : Ga nanoparticles can be used efficiently for light-assisted oxidation of toxic organic molecules in the surface water for environmental remediation.

  9. Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst.

    Science.gov (United States)

    Labiadh, Lazhar; Oturan, Mehmet A; Panizza, Marco; Hamadi, Nawfel Ben; Ammar, Salah

    2015-10-30

    The mineralization of a new azo dye - the (4-amino-3-hydroxy-2-p-tolylazo-naphthalene-1-sulfonic acid) (AHPS) - has been studied by a novel electrochemical advanced oxidation process (EAOP), consisting in electro-Fenton (EF) oxidation, catalyzed by pyrite as the heterogeneous catalyst - the so-called 'pyrite-EF'. This solid pyrite used as heterogeneous catalyst instead of a soluble iron salt, is the catalyst the system needs for production of hydroxyl radicals. Experiments were performed in an undivided cell equipped with a BDD anode and a commercial carbon felt cathode to electrogenerate in situ H2O2 and regenerate ferrous ions as catalyst. The effects on operating parameters, such as applied current, pyrite concentration and initial dye content, were investigated. AHPS decay and mineralization efficiencies were monitored by HPLC analyses and TOC measurements, respectively. Experimental results showed that AHPS was quickly oxidized by hydroxyl radicals (OH) produced simultaneously both on BDD surface by water discharge and in solution bulk from electrochemically assisted Fenton's reaction with a pseudo-first-order reaction. AHPS solutions with 175 mg L(-1) (100 mg L(-1) initial TOC) content were then almost completely mineralized in 8h. Moreover, the results demonstrated that, under the same conditions, AHPS degradation by pyrite electro-Fenton process was more powerful than the conventional electro-Fenton process. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Limits of ZnO Electrodeposition in Mesoporous Tin Doped Indium Oxide Films in View of Application in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Dunkel, Christian; von Graberg, Till; Smarsly, Bernd M.; Oekermann, Torsten; Wark, Michael

    2014-01-01

    Well-ordered 3D mesoporous indium tin oxide (ITO) films obtained by a templated sol-gel route are discussed as conductive porous current collectors. This paper explores the use of such films modified by electrochemical deposition of zinc oxide (ZnO) on the pore walls to improve the electron transport in dye-sensitized solar cells (DSSCs). Mesoporous ITO film were dip-coated with pore sizes of 20–25 nm and 40–45 nm employing novel poly(isobutylene)-b-poly(ethylene oxide) block copolymers as structure-directors. After electrochemical deposition of ZnO and sensitization with the indoline dye D149 the films were tested as photoanodes in DSSCs. Short ZnO deposition times led to strong back reaction of photogenerated electrons from non-covered ITO to the electrolyte. ITO films with larger pores enabled longer ZnO deposition times before pore blocking occurred, resulting in higher efficiencies, which could be further increased by using thicker ITO films consisting of five layers, but were still lower compared to nanoporous ZnO films electrodeposited on flat ITO. The major factors that currently limit the application are the still low thickness of the mesoporous ITO films, too small pore sizes and non-ideal geometries that do not allow obtaining full coverage of the ITO surface with ZnO before pore blocking occurs. PMID:28788618

  11. Comparative performance of anodic oxidation and electrocoagulation as clean processes for electrocatalytic degradation of diazo dye Acid Brown 14 in aqueous medium.

    Science.gov (United States)

    Bassyouni, D G; Hamad, H A; El-Ashtoukhy, E-S Z; Amin, N K; El-Latif, M M Abd

    2017-08-05

    In this study, a laboratory scale for the treatment of a recalcitrant and toxic synthetic wastewater containing diazo dye, acid brown 14 (AB-14) has been comparatively performed by two electro-catalytic treatment processes, namely anodic oxidation (AO) and electrocoagulation (EC) using a new batch electrochemical cell. Additionally, the influence of several operating parameters such as; current density (j), initial dye concentration (C o ), NaCl concentration (C N ), and pH on the color removal efficiency and chemical oxygen demand (COD) are evaluated. The powerful capability of the AO and EC of AB-14 which related to the mechanistic reaction pathway is shown. The poor degradation is ascribed to higher C o and pH, while the enhancement of j and C N is responsible for better degradation of AB-14 dye. The results indicate that the EC is more effective than AO under the same operational condition. A kinetic model is developed for evaluation of the pseudo-first-order-rate constant (k app ) as a function of various operational parameters. The results emphasize the high efficiency of AO and EC and the clean processes which are hopeful alternative for the treatment of the large volume wastewater of the textile industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Dye sensitized photoelectrochemical immunosensor for the tumor marker CEA by using a flower-like 3D architecture prepared from graphene oxide and MoS2.

    Science.gov (United States)

    Song, Kaijing; Ding, Chuanmin; Zhang, Bing; Chang, Honghong; Zhao, Zhihuan; Wei, Wenlong; Wang, Junwen

    2018-06-01

    The authors describe a dye-sensitized photoelectrochemical immunoassay for the tumor marker carcinoembryonic antigen (CEA). The method employs the rhodamine dye Rh123 with red color and absorption maximum at 500 nm for spectral sensitization, and a 3D nanocomposite prepared from graphene oxide and MoS 2 acting as the photoelectric conversion layer. The nanocomposite with flower-like 3D architectures was characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, and UV-vis diffuse reflectometry. A photoelectrochemical sandwich immunoassay was developed that is based on the use of the nanocomposite and based on the specific binding of antibody and antigen, and by using a secondary antibody labeled with Rh123 and CdS (Ab 2 -Rh123@CdS). Under optimal conditions and at a typical working voltage of 0 V (vs. Hg/HgCl 2 ), the photocurrent increases linearly 10 pg mL -1 to 80 ng mL -1 CEA concentration range, with a 3.2 pg mL -1 detection limit. Graphical abstract Flower-like GO-MoS 2 complex with high efficiency of electron transport was synthesized to construct photoelectrochemical platform. The sandwich-type immunoassay was built on this platform based on specific binding of antigen and antibody. Carcinoembryonic antigen in sample was detected sensitively by using sensitization of rhodamine dye Rh123 as signal amplification strategy.

  13. Calcium carbonate electronic-insulating layers improve the charge collection efficiency of tin oxide photoelectrodes in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Shaikh, Shoyebmohamad F.; Mane, Rajaram S.; Hwang, Yun Jeong; Joo, Oh-Shim

    2015-01-01

    In dye-sensitized solar cells (DSSCs), a surface passivation layer has been employed on the tin oxide (SnO 2 ) photoanodes to enhance the charge collection efficiency, and thus the power conversion efficiency. Herein, we demonstrate that the electronic-insulating layering of calcium carbonate (CaCO 3 ) can improve the charge collection efficiency in dye-sensitized solar cells designed with photoanodes. In order to evaluate the effectiveness of CaCO 3 layering, both layered and pristine SnO 2 photoanodes are characterized with regard to their structures, morphologies, and photo-electrochemical measurements. The SnO 2 -6L CaCO 3 photoanode has demonstrated as high as 3.5% power conversion efficiency; 3.5-fold greater than that of the pristine SnO 2 photoanode. The enhancement in the power conversion efficiency is corroborated with the number of the dye molecules, the passivation of surface states, a negative shift in the conduction band position, and the reduced electron recombination rate of photoelectrons following the coating of the CaCO 3 surface layer

  14. Characteristics of dye-sensitized solar cells using natural dye

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Shoji, E-mail: furukawa@cse.kyutech.ac.j [Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka-ken 820-8502 (Japan); Iino, Hiroshi; Iwamoto, Tomohisa; Kukita, Koudai; Yamauchi, Shoji [Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka-ken 820-8502 (Japan)

    2009-11-30

    Dye-sensitized solar cells are expected to be used for future clean energy. Recently, most of the researchers in this field use Ruthenium complex as dye in the dye-sensitized solar cells. However, Ruthenium is a rare metal, so the cost of the Ruthenium complex is very high. In this paper, various dye-sensitized solar cells have been fabricated using natural dye, such as the dye of red-cabbage, curcumin, and red-perilla. As a result, it was found that the conversion efficiency of the solar cell fabricated using the mixture of red-cabbage and curcumin was about 0.6% (light source: halogen lamp), which was larger than that of the solar cells using one kind of dye. It was also found that the conversion efficiency was about 1.0% for the solar cell with the oxide semiconductor film fabricated using polyethylene glycol (PEG) whose molecular weight was 2,000,000 and red-cabbage dye. This indicates that the cost performance (defined by [conversion efficiency]/[cost of dye]) of the latter solar cell (dye: red-cabbage) is larger by more than 50 times than that of the solar cell using Ruthenium complex, even if the effect of the difference between the halogen lamp and the standard light source is taken into account.

  15. Photoelectrochemical characterization of squaraine-sensitized nickel oxide cathodes deposited via screen-printing for p-type dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Naponiello, Gaia; Venditti, Iole [Department of Chemistry, Sapienza University of Rome P.le A. Moro 5, 00185 Rome (Italy); Zardetto, Valerio [Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome - Tor Vergata, via del Politecnico 1, 00133 Rome (Italy); Saccone, Davide [Department of Chemistry and NIS, Interdepartmental Centre of Excellence, University of Torino, via Pietro Giuria 7, I-10125 Torino (Italy); Di Carlo, Aldo [Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome - Tor Vergata, via del Politecnico 1, 00133 Rome (Italy); Fratoddi, Ilaria [Department of Chemistry, Sapienza University of Rome P.le A. Moro 5, 00185 Rome (Italy); Center for Nanotechnology for Engineering (CNIS), Sapienza University of Rome P.le A. Moro 5, 00185 Rome (Italy); Barolo, Claudia [Department of Chemistry and NIS, Interdepartmental Centre of Excellence, University of Torino, via Pietro Giuria 7, I-10125 Torino (Italy); Dini, Danilo, E-mail: danilo.dini@uniroma1.it [Department of Chemistry, Sapienza University of Rome P.le A. Moro 5, 00185 Rome (Italy)

    2015-11-30

    Graphical abstract: Screen-printing method has been adopted for the deposition of nickel oxide thin film electrodes with mesoporous features. Nickel oxide was sensitized with three newly synthesized squaraines (VG1C8,VG10C8 and DS2/35) and employed as photoelectroactive cathode of p-type dye-sensitized solar cells. Colorant erythrosine b (EB) was taken as commercial benchmark for comparative purposes. Sensitization was successful with the attainment of overall conversion efficiencies in the order of 0.025% when the mesoporous surface of nickel oxide was alkali treated. The prolongation of nickel oxide sensitization time up to 16 h led to a general increase of the open circuit voltage in the corresponding solar cells. - Highlights: • We deposited nickel oxide with screen-printing technique utilizing nickel oxide nanoparticles. • We employed screen-printed nickel oxide as cathodes of p-DSCs. • We employed new squaraine as sensitizers of screen-printed nickel oxide. • Further progress is expected when the formulation of the screen-printing paste will be optimized. - Abstract: In the present paper we report on the employment of the screen-printing method for the deposition of nickel oxide (NiO{sub x}) layers when preformed nanoparticles of the metal oxide (diameter < 50 nm) constitute the precursors in the paste. The applicative purpose of this study is the deposition of mesoporous NiO{sub x} electrodes in the configuration of thin films (thickness, l ≤ 4 μm) for the realization of p-type dye-sensitized solar cells (p-DSCs). Three different squaraine-based dyes (here indicated with VG1C8, VG10C8 and DS2/35), have been used for the first time as sensitizers of a p-type DSC electrode. VG1C8 and VG10C8 present two carboxylic groups as anchoring moieties, whereas DS2/35 sensitizer possesses four acidic anchoring groups. All three squaraines are symmetrical and differ mainly for the extent of electronic conjugation. The colorant erythrosine b (ERY B) was taken as

  16. Effect of hair care and hair cosmetics on the concentrations of fatty acid ethyl esters in hair as markers of chronically elevated alcohol consumption.

    Science.gov (United States)

    Hartwig, Sven; Auwärter, Volker; Pragst, Fritz

    2003-01-28

    Fatty acid ethyl esters (FAEE) can be used as alcohol markers in hair. It was investigated in this study whether this diagnostic method is disturbed by hair care and hair cosmetics. Traces of ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate were detected in all of 49 frequently applied hair care products by headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The highest concentration was 0.003% in a hair wax. From experiments with separated hair samples of alcoholics as well as from the evaluation of the FAEE concentrations and the data about hair care of 75 volunteers (alcoholics, social drinkers and teetotalers) follows that usual shampooing, permanent wave, dyeing, bleaching or shading are of minor importance as compared to the drinking amount and other individual features. However, false positive results were found after daily treatment with a hair lotion containing 62.5% ethanol, with a deodorant and with a hair spray. As an explanation, it is assumed that FAEE are formed in the sebum glands also after regular topical application of products with a higher ethanol content.

  17. Hair loss in women.

    Science.gov (United States)

    Harfmann, Katya L; Bechtel, Mark A

    2015-03-01

    Hair loss is a common cause of morbidity for many women. As a key member of the woman's health care team, the obstetrician/gynecologist may be the first person to evaluate the complaint of hair loss. Common types of nonscarring hair loss, including female pattern hair loss and telogen effluvium, may be diagnosed and managed by the obstetrician/gynecologist. A systematic approach to diagnosis and management of these common forms of hair loss is presented.

  18. Electrochemical pulsed deposition of platinum nanoparticles on indium tin oxide/polyethylene terephthalate as a flexible counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wei, Yu-Hsuan; Chen, Chih-Sheng; Ma, Chen-Chi M.; Tsai, Chuen-Horng; Hsieh, Chien-Kuo

    2014-01-01

    In this study, a pulsed-mode electrochemical deposition (Pulse-ECD) technique was employed to deposit platinum nanoparticles (PtNPs) on the indium tin oxide/polyethylene terephthalate (ITO/PET) substrate as a flexible counter electrode for dye-sensitized solar cells (DSSCs). The characteristic properties of the Pulse-ECD PtNPs were prepared and compared to the traditional (electron beam) Pt film. The surface morphologies of the PtNPs were examined by field emission scanning electron microscopy (FE-SEM) and the atomic force microscope (AFM). The FE-SEM results showed that our PtNPs were deposited uniformly on the ITO/PET flexible substrates via the Pulse-ECD technique. The AFM results indicated that the surface roughness of the pulsed PtNPs influenced the power conversion efficiency (PCE) of DSSCs, due to the high specific surface area of PtNPs which enhanced the catalytic activities for the reduction (I 3 − to I − ) of redox electrolyte. In combination with a N719 dye-sensitized TiO 2 working electrode and an iodine-based electrolyte, the DSSCs with the PtNPs flexible counter electrode showed a PCE of 4.3% under the illumination of AM 1.5 (100 mW cm −2 ). The results demonstrated that the Pulse-ECD PtNPs are good candidate for flexible DSSCs. - Highlights: • We used indium tin oxide/polyethylene terephthalate as a flexible substrate. • We utilized pulse electrochemical deposition to deposit platinum nanoparticles. • We synthesized a flexible counter electrode for dye-sensitized solar cell (DSSC). • The power conversion efficiency of DSSC was measured to be 4.3%

  19. Adsorption mechanism and kinetics of azo dye chemicals on oxide nanotubes: a case study using porous CeO{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junshu; Wang, Jinshu, E-mail: wangjsh@bjut.edu.cn; Du, Yucheng; Li, Hongyi; Jia, Xinjian [Beijing University of Technology, School of Materials Science and Engineering (China)

    2016-07-15

    Metal oxide nanotubes are believed to be promising materials with adsorption functionality for water purification due to their synergistic effect of the overall microscale morphology for easy separation and nanoscale surface characters providing enough surface active absorption sites. This work shows the synthesis of uniform hierarchical porous CeO{sub 2} nanotubes via nanowire-directed templating method and describes the adsorption behavior of CeO{sub 2} nanotubes for a typical azo dye Congo red which has resistance to oxidation and decoloration in natural conditions. Fourier transform infrared spectroscopy spectra provided the evidence that Congo red was successfully coated on the surface of CeO{sub 2} nanotubes by both bidentate-type bridge link of Ce{sup 4+} cations from sulfonate SO{sub 3}{sup −} groups and the electrostatic attraction between the protonated surface generated by oxygen vacancies and dissociated sulfonate groups. The adsorption kinetic data fitted well to the pseudo-second-order kinetic equation, whereas the Langmuir isotherm equation exhibited better correlation with the experimental data. The calculated maximum adsorption capacity from the isothermal model was 362.32 mg/g. In addition, the prepared CeO{sub 2} nanotubes exhibited good recyclability and reusability as highly efficient adsorbents for Congo red removal after regeneration. These favorable performances enable the obtained CeO{sub 2} nanotubes to be promising materials for dye removal from aqueous solution.Graphical AbstractCeO{sub 2} nanotubes composed of crystallized nanoparticles exhibit well adsorption ability for a typical azo dye Congo red.

  20. Determination of fast ozone oxidation rate for textile dyes by using a continuous quench-flow system.

    Science.gov (United States)

    Gomes, Arlindo C; Nunes, José C; Simões, Rogério M S

    2010-06-15

    To study the fast kinetic decolourisation of textile dyes by ozone a continuous quench-flow system was used. This system has not been used before for these purposes. Reaction times in the range of 7-3000 ms were explored. The reaction was quenched with potassium iodide, which proved to be very effective, and the indigo method was used to follow the ozone concentration. Dyes from the most representative chemical classes currently used in the textile industry, i.e. azo and anthraquinone, were selected. Using the initial slope method, the effect of dye and ozone concentrations was researched and the kinetic equations thus established. Using tert-butyl alcohol, as radical scavenger, and pH close to 2.5, the second-order rate constant of the reactant dyes at 280 K varies in the range of 1.20x10(4)-7.09x10(5)M(-1)s(-1); the Acid Orange 7 exhibiting thus its lowest value, the Acid Blue 45 its highest value and the Acid Green 25 and 27 and Direct Yellow 4 intermediate values (approximately 1.6x10(5)M(-1)s(-1)). Without radical scavenger and the pH close to 4, the reaction rate increases one order of magnitude, but, on the reverse, the efficiency of ozone to decolourisation decreases. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Ytterbium oxide nanodots via block copolymer self-assembly and their efficacy to dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwang-Won; Ahn, Sungwoo; Lim, Sung-Hwan; Jin, Ming Hao; Song, Jeemin; Yun, Seung-Young [Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Kim, Hyeon Mo; Kim, Gi Jeong [Sooyang Chemtec Co., Ltd., Digital-ro 32-gil, Guro-gu, Seoul 152-777 (Korea, Republic of); Ok, Kang Min [Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Hong, Jongin, E-mail: hongj@cau.ac.kr [Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756 (Korea, Republic of)

    2016-02-28

    Graphical abstract: - Highlights: • A novel phosphor, Yb{sub 2}O{sub 3}, was developed as a UV-absorbing spectral converter for dye-sensitized solar cells (DSSCs). • The ordered Yb{sub 2}O{sub 3} nanodots trap more light and prevent charge recombination at the interfaces. • Their multifunctionality improves DSSC performance for both Ru-based and organic dyes. - Abstract: In this study, we develop a novel phosphor, Yb{sub 2}O{sub 3}, to be used as the spectral converter in dye-sensitized solar cells (DSSCs) for the efficient capture of ultraviolet light via down-conversion. These zero-dimensional nanodots with a high refractive index also allow more light to be trapped and can prevent charge recombination at the interfaces in the DSSCs. Compared to DSSCs without the nanodots, the DSSCs fabricated with the Yb{sub 2}O{sub 3} nanodots exhibits higher power-conversion efficiencies for both the N719 (10.5%) and CSD-01 (20.5%) dyes. The multifunctionality of the Yb{sub 2}O{sub 3} nanodots provides a new route for improving the performance of DSSCs.

  2. Enhanced photovoltaic performance of dye-sensitized solar cells based on nickel oxide supported on nitrogen-doped graphene nanocomposite as a photoanode.

    Science.gov (United States)

    Ranganathan, Palraj; Sasikumar, Ragu; Chen, Shen-Ming; Rwei, Syang-Peng; Sireesha, Pedaballi

    2017-10-15

    We applied the nitrogen-doped graphene@nickel oxide (NGE/NiO) nanocomposite doped TiO 2 as a photo-anode for dye-sensitized solar cells (DSSCs) on fluorine-doped tin oxide (FTO) substrates by screen printing method. Power conversion efficiency (PCE) of 9.75% was achieved for this DSSCs device, which is greater than that of DSSCs devices using GO/TiO 2 , and NiO/TiO 2 based photo-anodes (PCE=8.55, and 9.11%). Also, the fill factor (FF) of the DSSCs devices using the NGE/NiO/TiO 2 nanocomposite photo-anode was better than that of other photo-anodes. The NGE/NiO/TiO 2 short-circuit photocurrent density (J sc ) of 19.04mAcm -2 , open circuit voltage (V oc ) of 0.76V, fill factor (FF) of 0.67 and dye absorption rate 0.21×10 -6 molcm -2 . The obtained results suggest that as-prepared NGE/NiO/TiO 2 nanocomposite is suitable photo-anode for DSSCs application. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway.

    Science.gov (United States)

    Rajoriya, Sunil; Bargole, Swapnil; Saharan, Virendra Kumar

    2017-01-01

    In the present study, decolorization and mineralization of a cationic dye, Rhodamine 6G (Rh6G), has been carried out using hydrodynamic cavitation (HC). Two cavitating devices such as slit and circular venturi were used to generate cavitation in HC reactor. The process parameters such as initial dye concentration, solution pH, operating inlet pressure, and cavitation number were investigated in detail to evaluate their effects on the decolorization efficiency of Rh6G. Decolorization of Rh6G was marginally higher in the case of slit venturi as compared to circular venturi. The kinetic study showed that decolorization and mineralization of the dye fitted first-order kinetics. The loadings of H 2 O 2 and ozone have been optimized to intensify the decolorization and mineralization efficiency of Rh6G using HC. Nearly 54% decolorization of Rh6G was obtained using a combination of HC and H 2 O 2 at a dye to H 2 O 2 molar ratio of 1:30. The combination of HC with ozone resulted in 100% decolorization in almost 5-10min of processing time depending upon the initial dye concentration. To quantify the extent of mineralization, total organic carbon (TOC) analysis was also performed using various processes and almost 84% TOC removal was obtained using HC coupled with 3g/h of ozone. The degradation by-products formed during the complete degradation process were qualitatively identified by liquid chromatography-mass spectrometry (LC-MS) and a detailed degradation pathway has been proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Dual functional reduced graphene oxide as photoanode and counter electrode in dye-sensitized solar cells and its exceptional efficiency enhancement

    Science.gov (United States)

    Jumeri, F. A.; Lim, H. N.; Zainal, Z.; Huang, N. M.; Pandikumar, A.; Lim, S. P.

    2015-10-01

    The dual functionalities of reduced graphene oxide (rGO) as photoanode and counter electrode in dye-sensitized solar cells (DSSCs) is explored. A titanium dioxide (TiO2) film is deposited on an indium tin oxide (ITO) glass using an in-house aerosol-assisted chemical vapor deposition method. Graphene oxide (GO) is then introduced onto the TiO2-ITO substrate, and the GO layer is successively thermally treated to rGO. The TiO2-rGO film is used as a compact layer for the photoanode of the DSSC. A layer of zinc oxide-silver (ZnO-Ag) is introduced on top of the compact layer as an active material. Its highly porous flower-shaped morphology is advantageous for the adsorption of dye. The in-situ electrochemical polymerization method used for the fabrication of polypyrrole incorporated with rGO and p-toluenesulfonate (pTS) (Ppy-rGO-pTS) on an ITO glass is used as a counter electrode for the DSSC. The DSSC assembled with the Ppy-rGO-1.0pTS counter electrode exhibites an enhanced conversion efficiency of 1.99% under solar illumination, which is better than that using conventional Pt as a counter electrode (0.08%). This is attributed to the increased contact area between the Ppy-rGO-pTS counter electrode and electrolyte, which subsequently improves the conductivity and high electrocatalytic activities of the Ppy-rGO-pTS counter electrode.

  5. Impacts of operating parameters on oxidation-reduction potential and pretreatment efficacy in the pretreatment of printing and dyeing wastewater by Fenton process

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huifang, E-mail: whfkhl@sina.com [College of Environment, Jiangsu Key Laboratory of Industrial Water-Conservation and Emission Reduction, Nanjing University of Technology, Nanjing 210009 (China); Wang, Shihe [Department of Municipal Engineering, Southeast University, Nanjing 210096 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A real printing and dyeing wastewater was pretreated by Fenton process. Black-Right-Pointing-Pointer We investigated impacts of operating parameters on ORP and pretreatment efficacy. Black-Right-Pointing-Pointer Relationship among ORP, operating parameters and treatment efficacy was established. Black-Right-Pointing-Pointer Pretreatment efficacy was in proportion to the exponent of temperature reciprocal. Black-Right-Pointing-Pointer We investigated kinetics of color and COD removal and BOD{sub 5}/COD ratio in solution. - Abstract: An experiment was conducted in a batch reactor for a real printing and dyeing wastewater pretreatment using Fenton process in this study. The results showed that original pH, hydrogen peroxide concentration and ferrous sulfate concentration affected ORP value and pretreatment efficacy greatly. Under experimental conditions, the optimal original pH was 6.61, and the optimal hydrogen peroxide and ferrous sulfate concentrations were 1.50 and 0.75 g L{sup -1}, respectively. The relationship among ORP, original pH, hydrogen peroxide concentration, ferrous sulfate concentration, and color (COD or BOD{sub 5}/COD) was established, which would be instructive in on-line monitoring and control of Fenton process using ORP. In addition, the effects of wastewater temperature and oxidation time on pretreatment efficacy were also investigated. With an increase of temperature, color and COD removal efficiencies and BOD{sub 5}/COD ratio increased, and they were in proportion to the exponent of temperature reciprocal. Similarly, color and COD removal efficiencies increased with increasing oxidation time, and both color and COD removal obeyed the first-order kinetics. The BOD{sub 5}/COD ratio could be expressed by a second-degree polynomial with respect to oxidation time, and the best biodegradability of wastewater was present at the oxidation time of 6.10 h.

  6. Comparative use of anodic oxidation, electro-Fenton and photoelectro-Fenton with Pt or boron-doped diamond anode to decolorize and mineralize Malachite Green oxalate dye

    International Nuclear Information System (INIS)

    El-Ghenymy, Abdellatif; Centellas, Francesc; Rodríguez, Rosa María; Cabot, Pere Lluís; Garrido, José Antonio; Sirés, Ignasi; Brillas, Enric

    2015-01-01

    Highlights: • Degradation of Malachite Green oxalate solutions at pH 3.0 by AO, AO-H 2 O 2 , EF and PEF. • A Pt anode leads to slower decolorization and mineralization than BDD. • Up to 97% mineralization by the most powerful PEF process with BDD at 100 mA cm −2 . • Study of the evolution of seven final short-chain aliphatic carboxylic acids. • Conversion of the initial N atoms of the dye mainly into NH 4 + , along with small amounts of NO 3 − . - Abstract: The degradation of 100 cm 3 of 177 mg dm −3 of the triphenylmethane dye Malachite Green oxalate at pH 3.0 was studied by anodic oxidation with stainless steel cathode (AO-SS), AO with air-diffusion cathode (AO-H 2 O 2 ), electro-Fenton (EF) and photoelectro-Fenton (PEF) with UVA light. The main oxidizing species were hydroxyl radicals formed from either water oxidation at the anode surface or in the bulk between added Fe 2+ and H 2 O 2 generated at the air-diffusion cathode. The use of a Pt anode led to slower decolorization and mineralization than BDD in all treatments because of the higher oxidation power of the latter. The decolorization was much faster for EF and PEF compared to AO-SS and AO-H 2 O 2 due to the contribution of hydroxyl radicals in the bulk. PEF allowed the quickest color removal by the rapid Fe 2+ regeneration from the photolysis of Fe(III) complexes with oxalate. The most powerful process was PEF with BDD, which yielded total decolorization in 6 min and 97% mineralization at 240 min operating at 100 mA cm −2 , thanks to hydroxyl radicals formed at the anode surface and in the bulk along with the photolytic action of UVA radiation. The evolution of final carboxylic acids like maleic, fumaric, succinic, acetic, oxalic, formic and oxamic was followed by ion-exclusion HPLC. All these acids and their Fe(III) complexes were removed more slowly with Pt anode. The initial N atoms of the dye were pre-eminently accumulated as NH 4 + ion, along with small amounts of NO 3 − ion.

  7. Patch testing with hair cosmetic series in Europe

    DEFF Research Database (Denmark)

    Uter, Wolfgang; Bensefa-Colas, Lynda; Frosch, Peter

    2015-01-01

    Many key ingredients of hair cosmetics (in particular, dyes, bleaches, and hair-styling agents) are potent (strong to extreme) contact allergens. Some heterogeneity is apparent from published results concerning the range of allergens for which patch testing is important. The objective...... of the present review was to collect information on the current practice of using 'hair cosmetic series', and discuss this against the background of evidence concerning consumer/professional exposure and regulatory aspects to finally derive a recommendation for a 'European hair cosmetic series'. The methods...... (Annex II of the Cosmetics Regulation). An up-to-date 'European hair cosmetics series', as recommended in the present article, should (i) include broadly used and/or potent contact allergens, (ii) eliminate substances of only historical concern, and (iii) be continually updated as new evidence emerges....

  8. Multivariate curve resolution applied to kinetic-spectroscopic data matrices: Dye determination in foods by means of enzymatic oxidation.

    Science.gov (United States)

    Boeris, Valeria; Arancibia, Juan A; Olivieri, Alejandro C

    2017-07-01

    In this work, the combination of chemometric techniques with kinetic-spectroscopic data allowed quantifying two dyes (tartrazine and carminic acid) in complex matrices as mustard, ketchup, asparagus soup powder, pumpkin soup powder, plum jam and orange-strawberry juice. Quantitative analysis was performed without the use of tedious sample pretreatment, due to the achievement of the second-order advantage. The results obtained showed an improvement in simplicity, speed and cost with respect to usual separation techniques, allowing to properly quantifying these dyes obtaining limits of detection below 0.6mgL -1 . In addition, to the best of our knowledge, is the first time that kinetic-spectroscopic data are obtained from the action of laccase for analytical purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Dye-sensitized PS-b-P2VP-templated nickel oxide films for photoelectrochemical applications.

    Science.gov (United States)

    Massin, Julien; Bräutigam, Maximilian; Kaeffer, Nicolas; Queyriaux, Nicolas; Field, Martin J; Schacher, Felix H; Popp, Jürgen; Chavarot-Kerlidou, Murielle; Dietzek, Benjamin; Artero, Vincent

    2015-06-06

    Moving from homogeneous water-splitting photocatalytic systems to photoelectrochemical devices requires the preparation and evaluation of novel p-type transparent conductive photoelectrode substrates. We report here on the sensitization of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) diblock copolymer-templated NiO films with an organic push-pull dye. The potential of these new templated NiO film preparations for photoelectrochemical applications is compared with NiO material templated by F108 triblock copolymers. We conclude that NiO films are promising materials for the construction of dye-sensitized photocathodes to be inserted into photoelectrochemical (PEC) cells. However, a combined effort at the interface between materials science and molecular chemistry, ideally funded within a Global Artificial Photosynthesis Project, is still needed to improve the overall performance of the photoelectrodes and progress towards economically viable PEC devices.

  10. Metabolism in the Uncultivated Giant Sulfide-Oxidizing Bacterium Thiomargarita Namibiensis Assayed Using a Redox-Sensitive Dye

    Science.gov (United States)

    Bailey, J.; Flood, B.; Ricci, E.

    2014-12-01

    The colorless sulfur bacteria are non-photosynthetic chemolithotrophs that live at interfaces between nitrate, or oxygen, and hydrogen sulfide. In sulfidic settings such as cold seeps and oxygen minimum zones, these bacteria are thought to constitute a critical node in the geochemical cycling of carbon, sulfur, nitrogen, and phosphorous. Many of these bacteria remain uncultivated and their metabolisms and physiologies are incompletely understood. Thiomargarita namibiensis is the largest of these sulfur bacteria, with individual cells reaching millimetric diameters. Despite the current inability to maintain a Thiomargarita culture in the lab, their large size allows for individual cells to be followed in time course experiments. Here we report on the novel use of a tetrazolium-based dye that measures the flux of NADH production from catabolic pathways via a colorimetric response. Staining with this dye allows for metabolism to be detected, even in the absence of observable cell division. When coupled to microscopy, this approach also allows for metabolism in Thiomargaritato be differentiated from that of epibionts or contaminants in xenic samples. The results of our tetrazolium dye-based assay suggests that Thiomargarita is the most metabolically versatile under anoxic conditions where it appears capable of using acetate, succinate, formate, thiosulfate, citrate, thiotaurine, hydrogen sulfide, and perhaps hydrogen as electron donors. Under hypoxic conditions, staining results suggest the utilization of acetate, citrate, and hydrogen sulfide. Cells incubated under oxic conditions showed the weakest tetrazolium staining response, and then only to hydrogen sulfide and questionably succinate. These initial results using a redox sensitive dye suggest that Thiomargarita is most metabolically versatile under anaerobic and hypoxic conditions. The results of this assay can be further evaluated using molecular approaches such as transcriptomics, as well as provide cultivation

  11. Dye-sensitized PS-b-P2VP-templated nickel oxide films for photoelectrochemical applications

    OpenAIRE

    Massin, Julien; Bräutigam, Maximilian; Kaeffer, Nicolas; Queyriaux, Nicolas; Field, Martin J.; Schacher, Felix H.; Popp, Jürgen; Chavarot-Kerlidou, Murielle; Dietzek, Benjamin; Artero, Vincent

    2015-01-01

    Moving from homogeneous water-splitting photocatalytic systems to photoelectrochemical devices requires the preparation and evaluation of novel p-type transparent conductive photoelectrode substrates. We report here on the sensitization of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) diblock copolymer-templated NiO films with an organic push–pull dye. The potential of these new templated NiO film preparations for photoelectrochemical applications is compared with NiO material template...

  12. Graphene oxide based CdSe photocatalysts: Synthesis, characterization and comparative photocatalytic efficiency of rhodamine B and industrial dye

    International Nuclear Information System (INIS)

    Ghosh, Trisha; Lee, Jeong-Ho; Meng, Ze-Da; Ullah, Kefayat; Park, Chong-Yeon; Nikam, Vikram; Oh, Won-Chun

    2013-01-01

    Highlights: ► CdSe–graphene is synthesized by hydrothermal method. ► Three molar solutions of CdSe were used making three different composites. ► RhB and Texbrite MST-L were used as sample dye solutions. ► Texbrite MST-L is photo degraded in visible light. ► UV-spectroscopic analysis was done to measure degradation. - Abstract: CdSe–graphene composites were prepared using simple “hydrothermal method” where the graphene surface was modified using different molar solutions of cadmium selenide (CdSe) in aqueous media. The characterization of CdSe–graphene composites were studied by X-ray diffraction (XRD), energy dispersive X-ray (EDX), scanning electron microscope (SEM), and with transmission electron microscope (TEM). The catalytic activities of CdSe-composites were evaluated by degradation of rhodamine B (RhB) and commercial industrial dye “Texbrite MST-L (TXT-MST)” with fixed concentration. The degradation was observed by the decrease in the absorbance peak studied by UV spectrophotometer. The decrease in the dye concentration indicated catalytic degradation effect by CdSe–graphene composites

  13. Taking Care of Your Hair

    Science.gov (United States)

    ... Educators Search English Español Taking Care of Your Hair KidsHealth / For Teens / Taking Care of Your Hair ... role in how healthy it looks. Caring for Hair How you take care of your hair depends ...

  14. Iron promotion of the TiO2 photosensitization process towards the photocatalytic oxidation of azo dyes under solar-simulated light irradiation

    International Nuclear Information System (INIS)

    Castro, Camilo A.; Centeno, Aristobulo; Giraldo, Sonia A.

    2011-01-01

    Highlights: → Azo dye photooxidation occurs under strict combination of ultraviolet and visible irradiation of Fe-TiO 2 . → Fe 3+ enhances the TiO 2 photooxidation of azo dyes while decreases that of phenol. → UV irradiation leads to a decrease in photooxidation activity of Fe-TiO 2 photocatalysts. - Abstract: The photocatalytic oxidation of the azo dye Orange-II (Or-II) using Fe loaded TiO 2 (Fe-TiO 2 ) was studied under ultraviolet (UV), visible (vis) and simultaneous UV-vis irradiations using a solar light simulator. Photocatalysts were characterized by means of XRD, SEM-EDX, FTIR and DRS. Fe 3+ species, identified in XPS analyses, were responsible of the increased absorption of visible light. Moreover, DRS analyses showed a decrease in the bandgap due to Fe 3+ loading. Photocatalystic tests proved that Fe modification enhanced the TiO 2 photocatalytic activity towards Or-II photodegradation under simultaneous UV-vis irradiation. Even so, the performance of the Fe-TiO 2 samples towards the photodegradation of phenol, under UV irradiation, was lower than TiO 2 suggesting the recombination of the UV photogenerated electron-hole pair. Therefore, results evidence a Fe 3+ promotion of the electron caption in the photosensitization process of TiO 2 by Or-II acting as a sensitizer. Such process leads to the Or-II photooxidation under UV-vis irradiation by losing energy in electron transferring processes to sensitize TiO 2 , and, the formation of reactive oxygen species promoted by the injected electron to the TiO 2 conduction band.

  15. Impacts of operating parameters on oxidation-reduction potential and pretreatment efficacy in the pretreatment of printing and dyeing wastewater by Fenton process.

    Science.gov (United States)

    Wu, Huifang; Wang, Shihe

    2012-12-01

    An experiment was conducted in a batch reactor for a real printing and dyeing wastewater pretreatment using Fenton process in this study. The results showed that original pH, hydrogen peroxide concentration and ferrous sulfate concentration affected ORP value and pretreatment efficacy greatly. Under experimental conditions, the optimal original pH was 6.61, and the optimal hydrogen peroxide and ferrous sulfate concentrations were 1.50 and 0.75 gL(-1), respectively. The relationship among ORP, original pH, hydrogen peroxide concentration, ferrous sulfate concentration, and color (COD or BOD(5)/COD) was established, which would be instructive in on-line monitoring and control of Fenton process using ORP. In addition, the effects of wastewater temperature and oxidation time on pretreatment efficacy were also investigated. With an increase of temperature, color and COD removal efficiencies and BOD(5)/COD ratio increased, and they were in proportion to the exponent of temperature reciprocal. Similarly, color and COD removal efficiencies increased with increasing oxidation time, and both color and COD removal obeyed the first-order kinetics. The BOD(5)/COD ratio could be expressed by a second-degree polynomial with respect to oxidation time, and the best biodegradability of wastewater was present at the oxidation time of 6.10h. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Synthesis of Metal-Oxide/Carbon-Fiber Heterostructures and Their Properties for Organic Dye Removal and High-Temperature CO2 Adsorption

    Science.gov (United States)

    Shao, Liangzhi; Nie, Shibin; Shao, Xiankun; Zhang, LinLin; Li, Benxia

    2018-03-01

    One-dimensional metal-oxide/carbon-fiber (MO/CF) heterostructures were prepared by a facile two-step method using the natural cotton as a carbon source the low-cost commercial metal salts as precursors. The metal oxide nanostructures were first grown on the cotton fibers by a solution chemical deposition, and the metal-oxide/cotton heterostructures were then calcined and carbonized in nitrogen atmosphere. Three typical MO/CF heterostructures of TiO2/CF, ZnO/CF, and Fe2O3/CF were prepared and characterized. The loading amount of the metal oxide nanostructures on carbon fibers can be tuned by controlling the concentration of metal salt in the chemical deposition process. Finally, the performance of the as-obtained MO/CF heterostructures for organic dye removal from water was tested by the photocatalytic degradation under a simulated sunlight, and their properties of high-temperature CO2 adsorption were predicted by the temperature programmed desorption. The present study would provide a desirable strategy for the synthesis of MO/CF heterostructures for various applications.

  17. Medicinal Herbs Affecting Gray Hair in Iranian Traditional Medicine.

    Science.gov (United States)

    Rameshk, Maryam; Khandani, Shahram Kalantari; Raeiszadeh, Mahboobeh

    2016-05-01

    The presence of hair plays an important role in people's overall physical appearance and self-perception. As a result of increased life expectancy, the desire to look youthful plays a bigger role than ever.The use of medicinal plants is as old as mankind and the market will face many new products containing natural oils and herbs in coming years. In traditional Iranian medicine, many plants and herbal formulations are reported for hair growth as well as the improvement in hair quality. The aim of this article is to introduce effective medicinal plants in traditional Iranian medicine to prevent gray hair and advocate them as the new products. The present investigation is an overview study and has been codified by library search in the main sources of traditional Iranian medicine. In traditional Iranian medicine, three types of formulations are proposed to prevent gray hair, namely (i) treatment compounds, (ii) preventive compounds, and (iii) hair dyes to color gray hairs. Our search showed that the main parts of a plant that is used in the treatment and preventive compounds are seeds and fruits. These are primarily in the form of topical oil or oral compound (electuary). The majority of plant parts used in hair dyes is from the fruit and/or leaves. Natural products are highly popular and the use of plant extracts in formulations is on the rise. This is because synthetic based product may cause health hazards with several side effects. Considering the increased popularity of herbal drugs in hair care, it is worthwhile to conduct systemic investigation on the production and efficacy of these drugs. We trust that our investigation would encourage the use of traditional Iranian medicine in future hair care products.

  18. Enhanced performance of dye-sensitized solar cells with layered structure graphitic carbon nitride and reduced graphene oxide modified TiO2 photoanodes

    Science.gov (United States)

    Lv, Huiru; Hu, Haihua; Cui, Can; Lin, Ping; Wang, Peng; Wang, Hao; Xu, Lingbo; Pan, Jiaqi; Li, Chaorong

    2017-11-01

    TiO2/reduced graphene oxide (TiO2/rGO) composite has been widely exploited as the photoanode material for high efficient dye-sensitized solar cells (DSSCs). However, the power conversion efficiency (PCE) is limited due to the charge recombination between the rGO and electrolyte. In this paper, we incorporate 5.5 wt% layered structure graphitic carbon nitride (g-C3N4) and 0.25 wt% rGO into TiO2 nanoparticle (NP) film to form a triple-component TiO2/rGO/g-C3N4 (TGC) photoanode for DSSCs. The TGC photoanode significantly increased the dye absorption and thus to improve the light harvesting efficiency. Furthermore, the electrochemical impedance spectroscopy (EIS) analysis of the DSSCs based on TGC photoanode demonstrates that the incorporation of the rGO and g-C3N4 into TiO2 effectively accelerates the electron transfer and reduces the charge recombination. As a result, the DSSCs based on TGC film show PCE of 5.83%, enhanced by 50.1% compared with that of pure TiO2 photoanodes. This result strongly suggests a facile strategy to improve the photovoltaic performance of DSSCs.

  19. Development of an auto-phase separable and reusable graphene oxide-potato starch based cross-linked bio-composite adsorbent for removal of methylene blue dye.

    Science.gov (United States)

    Bhattacharyya, Amartya; Banerjee, Bhaskar; Ghorai, Soumitra; Rana, Dipak; Roy, Indranil; Sarkar, Gunjan; Saha, Nayan Ranjan; De, Sriparna; Ghosh, Tapas Kumar; Sadhukhan, Sourav; Chattopadhyay, Dipankar

    2018-05-14

    In this work, we report the development of a cross-linked bio-composite consisting of graphene oxide, potato starch, cross-linker glutaraldehyde and its application to adsorption of the industrial dye, methylene blue, from aqueous solution. The inexpensiveness, non-hazardous nature and easy bio-degradability are the major reasons for the selection of starch material as one of the components of the bio-composite. The bio-composite has been characterized by FTIR, SEM, XRD, particle size and zeta potential analysis. The FTIR analysis reveals the nature of the binding sites and surface morphology of the bio-composite can be understood through SEM. The auto-phase separability of the adsorbent i.e., the precipitation of the adsorbent without any mechanical means is another factor which makes this particular material very attractive as an adsorbent. Parameters like adsorbent dosage, pH, temperature, rotation speed and salt concentration have been varied to find out the suitable dye adsorption conditions. Furthermore, the time dependence of adsorption process has been analyzed using pseudo-first and pseudo-second order kinetics. The adsorption isotherms have been constructed to suggest convincing mechanistic pathway for this adsorption process. Finally, desorption studies have been successfully performed in 3 cycles, establishing the reusability of the material, which should allow the adsorbent to be economically promising for practical application in wastewater treatment. Copyright © 2017. Published by Elsevier B.V.

  20. Multifunctional stannum oxide compact bilayer modified by europium and erbium respectively doped ytterbium fluoride for high-performance dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Yue, Jingyi; Xiao, Yaoming; Li, Yanping; Han, Gaoyi

    2017-01-01

    Graphical abstract: Multifunctional SnO 2 compact bilayer respectively modified by YbF 3 :Eu 3+ (SYEu) and YbF 3 :Er 3+ (SYEr) demonstrates three functions: 1) reducing the recombination rate of electron-hole pairs, 2) improving the utilization of sunlight, and 3) enhancing the long-term stability of the photovoltaic device. Display Omitted -- Highlights: •Multifunctional SYEu/SYEr compact bilayer is designed and fabricated. •The compact bilayer exhibits a reduced electron recombination rate. •The compact bilayer shows enhanced UV and IR light response via light-conversions. •The double layer has no significant influence on arising quenching effect. -- Abstract: Multifunctional stannum oxide compact bilayer modified by europium and erbium respectively doped ytterbium fluoride (SYEu/SYEr) is designed and prepared by a convenient and low-cost spin-coating approach for dye-sensitized solar cell. The most important three functions of the compact bilayer are reducing the recombination rate of electrons as a barrier layer, enlarging the utilization of sunlight as a luminescence material both with down- and up- conversions, and enhancing the long-term stability of the device as a defender of the dye. Besides, the construction of double layer with down- and up- conversion functions has no significant influence on giving rise to quenching effect. Furthermore, these findings offer potential applications for photovoltaic device with a wide range response of sunlight via the variation in rare-earth species and cell structures.

  1. Enhanced degradation of azo dye alizarin yellow R in a combined process of iron-carbon microelectrolysis and aerobic bio-contact oxidation.

    Science.gov (United States)

    Liang, Bin; Yao, Qian; Cheng, Haoyi; Gao, Shuhong; Kong, Fanying; Cui, Dan; Guo, Yuqi; Ren, Nanqi; Lee, Duu-Jong; Wang, Aijie

    2012-06-01

    With the aim of enhanced degradation of azo dye alizarin yellow R (AY) and further removal of the low-strength recalcitrant matter (LsRM) of the secondary effluent as much as possible, our research focused on the combination of aerobic bio-contact oxidation (ABO) with iron/carbon microelectrolysis (ICME) process. The combined ABO (with effective volume of 2.4 l) and ICME (with effectively volume of 0.4 l) process were studied with relatively short hydraulic retention time (HRT) of 4 or 6 h. At the HRT of 6 h with the reflux ratio of 1 and 2, the AY degradation efficiency in the final effluent was >96.5%, and the total organic carbon (TOC) removal efficiency were 69.86% and 79.44%, respectively. At the HRT of 4 h and the reflux ratio of 2, TOC removal efficiency and AY degradation efficiency were 73.94% and 94.89%, respectively. The ICME process obviously enhanced the total AY removal and the generated micromolecule acids and aldehydes then that wastewater backflow to the ABO where they were further biodegraded. The present research might provide the potential options for the advanced treatment azo dyes wastewater with short HRT and acceptable running costs.

  2. Hair removal in adolescence

    Directory of Open Access Journals (Sweden)

    Sandra Pereira

    2015-06-01

    Full Text Available Introduction: Due to hormonal stimulation during puberty, changes occur in hair type and distribution. In both sexes, body and facial unwanted hair may have a negative psychological impact on the teenager. There are several available methods of hair removal, but the choice of the most suitable one for each individual can raise doubts. Objective: To review the main methods of hair removal and clarify their indications, advantages and disadvantages. Development: There are several removal methods currently available. Shaving and depilation with chemicals products are temporary methods, that need frequent repetition, because hair removal is next to the cutaneous surface. The epilating methods in which there is full hair extraction include: epilation with wax, thread, tweezers, epilating machines, laser, intense pulsed light, and electrolysis. Conclusions: The age of beginning hair removal and the method choice must be individualized and take into consideration the skin and hair type, location, dermatological and endocrine problems, removal frequency, cost and personal preferences.

  3. Hair straightener poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002706.htm Hair straightener poisoning To use the sharing features on this page, please enable JavaScript. Hair straightener poisoning occurs when someone swallows products that ...

  4. Hair spray poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) ...

  5. Viking Age Hair

    Directory of Open Access Journals (Sweden)

    Elisabeth Arwill-Nordbladh

    2016-11-01

    Full Text Available A study of hair in the Viking Age. The article draws on medieval Icelandic and Scandinavian texts for interpretation. Further information is taken from pictoral representations of viking hair styles and decoration, hairdressing artefacts, figurines and actual remains of hair.

  6. Help! It's Hair Loss!

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Hair Loss KidsHealth / For Kids / Hair Loss What's in this ... head are in the resting phase. What Causes Hair Loss? Men, especially older men, are the ones who ...

  7. Skin, Hair, and Nails

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Skin, Hair, and Nails KidsHealth / For Parents / Skin, Hair, and ... piel, el cabello y las uñas About Skin, Hair and Nails Skin is our largest organ. If ...

  8. One-pot green synthesis of zinc oxide nano rice and its application as sonocatalyst for degradation of organic dye and synthesis of 2-benzimidazole derivatives

    Science.gov (United States)

    Paul, Bappi; Vadivel, Sethumathavan; Dhar, Siddhartha Sankar; Debbarma, Shyama; Kumaravel, M.

    2017-05-01

    In this paper, we report novel and green approach for one-pot biosynthesis of zinc oxide (ZnO) nanoparticles (NPs). Highly stable and hexagonal phase ZnO nanoparticles were synthesized using seeds extract from the tender pods of Parkia roxburghii and characterized by XRD, FT-IR, EDX, TEM, and N2 adsorption-desorption (BET) studies. The present method of synthesis of ZnO NPs is very efficient and cost effective. The powder XRD pattern furnished evidence for the formation of hexagonal close packing structure of ZnO NPs having average crystallite size 25.6 nm. The TEM image reveals rice shapes ZnO NPs are with an average diameter of 40-60 nm. The as-synthesized ZnO NPs has proved to be an excellent sonocatalysts for degradation of organic dye and synthesis of 2-benzimidazole derivatives.

  9. Structure and dye-sensitized solar cell application of TiO{sub 2} nanotube arrays fabricated by the anodic oxidation method

    Energy Technology Data Exchange (ETDEWEB)

    Ok, Seon-Yeong; Cho, Kwon-Koo; Kim, Ki-Won [School of Material Science and Engineering, ERI and i-cube center, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of); Ryu, Kwang-Sun, E-mail: kkcho66@gnu.ac.k [Department of Chemistry, University of Ulsan, Ulsan, 680-749 (Korea, Republic of)

    2010-05-01

    Well-ordered TiO{sub 2} nanotube arrays were fabricated by the potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as an electrolyte with the small addition of NH{sub 4}F and H{sub 2}O. The influence of anodization temperature and time on the morphology and formation of TiO{sub 2} nanotube arrays was examined. The TiO{sub 2} nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of TiO{sub 2} nanotube arrays show a similar value, whereas the length increases with decreasing reaction temperature. The conversion efficiency is very low, which is due to a morphology breaking of the TiO{sub 2} nanotube arrays in the manufacturing process of a photoelectrode.

  10. Structure and dye-sensitized solar cell application of TiO2 nanotube arrays fabricated by the anodic oxidation method

    Science.gov (United States)

    Ok, Seon-Yeong; Cho, Kwon-Koo; Kim, Ki-Won; Ryu, Kwang-Sun

    2010-05-01

    Well-ordered TiO2 nanotube arrays were fabricated by the potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as an electrolyte with the small addition of NH4F and H2O. The influence of anodization temperature and time on the morphology and formation of TiO2 nanotube arrays was examined. The TiO2 nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of TiO2 nanotube arrays show a similar value, whereas the length increases with decreasing reaction temperature. The conversion efficiency is very low, which is due to a morphology breaking of the TiO2 nanotube arrays in the manufacturing process of a photoelectrode.

  11. Hydrothermally synthesized reduced graphene oxide/nickel hydroxide (rGO/Ni(OH)2) nanocomposite: A promising material in dye removal

    Science.gov (United States)

    Debata, Suryakanti; Das, Trupti R.; Madhuri, Rashmi; Sharma, Prashant K.

    2017-05-01

    In order to fulfill the unquenchable demand of this expanded human society, a large number of industries have grown up resulting in a severe pollution in air, soil and water as well. Industrial dye is one of the most abundant contaminant in fresh water. Here we have prepared reduced graphene oxide/nickel hydroxide nanocomposite (rGo/Ni(OH)2) by a facile hydrothermal method, aiming for the treatment of water disposed by the textile industries. The characteristic properties of the prepared sample was observed by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR). The effect of rGo/Ni(OH)2 on the adsorption of Rhodamine B (Rh-B) in aqueous solution was investigated, mainly focusing on the removal time. It was found that, at 45 min, the composite shows a complete disappearance of the initial concentration of Rhodamine B (RhB).

  12. Increased charge transfer of Poly (ethylene oxide) based electrolyte by addition of small molecule and its application in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Muthuraaman, B.; Will, Geoffrey; Wang, Hongxia; Moonie, Paul; Bell, John

    2013-01-01

    A Poly (ethylene oxide) based polymer electrolyte impregnated with 2-Mercapto benzimidazole was comprehensively characterized by XRD, UV–visible spectroscopy, FTIR as well as electrochemical impedance spectroscopy. It was found that the crystallization of PEO was dramatically reduced and the ionic conductivity of the electrolyte was increased 4.5 fold by addition of 2-Mercapto benzimidazole. UV–visible and FTIR spectroscopes indicated the formation of charge transfer complex between 2-Mercapto benzimidazole and iodine of the electrolyte. Dye-sensitized solar cells with the polymer electrolytes were assembled. It was found that both the photocurrent density and photovoltage were enhanced with respect to the DSC without 2-Mercapto benzimidazole, leading to a 60% increase of the performance of the cell.

  13. From Hair in India to Hair India.

    Science.gov (United States)

    Trüeb, Ralph M

    2017-01-01

    In all cultures, human hair and hairdo have been a powerful metaphor. Tracing back the importance and significance of human hair to the dawn of civilization on the Indian subcontinent, we find that all the Vedic gods are depicted as having uncut hair in mythological stories as well as in legendary pictures. The same is true of the Hindu avatars, and the epic heroes of the Ramayana, and the Mahabharata. Finally, there are a number of hair peculiarities in India pertinent to the creed and religious practices of the Hindu, the Jain, and the Sikh. Shiva Nataraja is a depiction of the Hindu God Shiva as the cosmic dancer who performs his divine dance as creator, preserver, and destroyer of the universe and conveys the Indian conception of the never-ending cycle of time. The same principle manifests in the hair cycle, in which perpetual cycles of growth, regression, and resting underly the growth and shedding of hair. Finally, The Hair Research Society of India was founded as a nonprofit organisation dedicated to research and education in the science of hair. Notably, the HRSI reached milestones in the journey of academic pursuit with the launch of the International Journal of Trichology, and with the establishment of the Hair India conference. Ultimately, the society aims at saving the public from being taken for a ride by quackery, and at creating the awareness that the science of hair represents a subspecialty of Dermatology. In analogy again, the dwarf on which the Nataraja dances represents the demon of egotism, and thus symbolizes Shiva's, respectively, the HRSI's victory over ignorance.

  14. Green synthesis of AgI-reduced graphene oxide nanocomposites: Toward enhanced visible-light photocatalytic activity for organic dye removal

    International Nuclear Information System (INIS)

    Reddy, D. Amaranatha; Lee, Seunghee; Choi, Jiha; Park, Seonhwa; Ma, Rory; Yang, Haesik; Kim, Tae Kyu

    2015-01-01

    Graphical abstract: - Highlights: • A novel green synthesis of AgI-RGO nanocomposites. • Significant improvement of the photocatalytic activity in RGO wrapped composites. • Additive promoted photocatalytic performance in AgI-RGO composites. • AgI-RGO nanocomposites may find applications in luminescent and catalytic devices. - Abstract: Novel reduced graphene oxide (RGO) enwrapped AgI nanocomposites were successfully fabricated by a facile template-free ultrasound-assisted method at room temperature. The structural, morphological, and optical studies demonstrate that the obtained nanostructures have good crystallinity and that the graphene nanosheets are decorated densely with AgI nanostructures. The photocatalytic activity of the composite was evaluated by the degradation of an organic dye, Rhodamine B (RhB), under visible-light irradiation. The results indicate that AgI with incorporated graphene exhibited much higher photocatalytic activity than the pure AgI due to the improved separation efficiency of the photogenerated carriers and that it prolonged the lifetime of the electron–hole pairs due to the chemical bonding between AgI and graphene. AgI (0.4 mg mL −1 of graphene oxide) nanocomposites displayed the highest photocatalytic degradation efficiency and the corresponding catalytic efficiencies within 70 min were ∼96%. Moreover, with the assistance of H 2 O 2 the photocatalytic ability of the as-obtained AgI-RGO nanocomposites was enhanced. The corresponding catalytic efficiencies within 30 min were ∼96.8% (for 1 mL H 2 O 2 ) under the same irradiation conditions. The excellent visible-light photocatalytic efficiency and luminescence properties make the AgI-RGO nanocomposites promising candidates for the removal of organic dyes for water purification and enable their application in near-UV white LEDs

  15. New composites of nanoparticle Cu (I) oxide and titania in a novel inorganic polymer (geopolymer) matrix for destruction of dyes and hazardous organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Falah, Mahroo [MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington (New Zealand); MacKenzie, Kenneth J.D., E-mail: Kenneth.mackenzie@vuw.ac.nz [MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington (New Zealand); Knibbe, Ruth [Robinson Research Institute, Victoria University of Wellington (New Zealand); Page, Samuel J.; Hanna, John V. [Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom)

    2016-11-15

    Highlights: • Synthesis reported of new photoactive nano-oxide composites in a geopolymer matrix. • The novel aluminosilicate matrix is expanded with cetyltrimethylammonium bromide. • The photoactive component consists of a Cu(I) oxide and titania heterostructure. • Composites remove the model pollutant by both adsorption and photodegradation. • These new photocatalysts are extremely efficient and ecologically friendly. - Abstract: New photoactive composites to efficiently remove organic dyes from water are reported. These consist of Cu{sub 2}O/TiO{sub 2} nanoparticles in a novel inorganic geopolymer matrix modified by a large tertiary ammonium species (cetyltrimethylammonium bromide, CTAB) whose presence in the matrix is demonstrated by FTIR spectroscopy. The CTAB does not disrupt the tetrahedral geopolymer structural silica and alumina units as demonstrated by {sup 29}Si and {sup 27}Al MAS NMR spectroscopy. SEM/EDS, TEM and BET measurements suggest that the Cu{sub 2}O/TiO{sub 2} nanoparticles are homogenously distributed on the surface and within the geopolymer pores. The mechanism of removal of methylene blue (MB) dye from solution consists of a combination of adsorption (under dark conditions) and photodegradation (under UV radiation). MB adsorption in the dark follows pseudo second-order kinetics and is described by Freundlich-Langmuir type isotherms. The performance of the CTAB-modified geopolymer based composites is superior to composites based on unmodified geopolymer hosts, the most effective composite containing 5 wt% Cu{sub 2}O/TiO{sub 2} in a CTAB-modified geopolymer host. These composites constitute a new class of materials with excellent potential in environmental protection applications.

  16. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Jang, Haeyun; Lee, Chaedong; Nam, Gi-Eun; Quan, Bo; Choi, Hyuck Jae; Yoo, Jung Sun; Piao, Yuanzhe

    2016-01-01

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core–shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals (∼11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core–shell nanoparticles (∼54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core–shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex ® with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  17. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Haeyun; Lee, Chaedong [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of); Nam, Gi-Eun [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center (Korea, Republic of); Quan, Bo [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of); Choi, Hyuck Jae [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center (Korea, Republic of); Yoo, Jung Sun [Seoul National University, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Smart Humanity Convergence Center (Korea, Republic of); Piao, Yuanzhe, E-mail: parkat9@snu.ac.kr [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of)

    2016-02-15

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core–shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals (∼11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core–shell nanoparticles (∼54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core–shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex{sup ®} with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  18. On the behavior of reduced graphene oxide based electrodes coated with dispersed platinum by alternate current methods in the electrochemical degradation of reactive dyes.

    Science.gov (United States)

    Del Río, A I; García, C; Molina, J; Fernández, J; Bonastre, J; Cases, F

    2017-09-01

    The electrochemical behavior of different carbon-based electrodes with and without nanoparticles of platinum electrochemically dispersed on their surface has been studied. Among others, reduced graphene oxide based electrodes was used to determine the best conditions for the decolorization/degradation of the reactive dye C.I. Reactive Orange 4 in sulfuric medium. Firstly, the electrochemical behavior was evaluated by cyclic voltammetry. Secondly, different electrolyses were performed using two cell configurations: cell with anodic and cathodic compartments separated (divided configuration) and without any separation (undivided configuration). The best results were obtained when reduced graphene oxide based anodes were used. The degree of decolorization was monitored by spectroscopic methods and high performance liquid chromatography. It was found that all of them followed pseudo-first order kinetics. When reduced graphene oxide-based electrodes coated with dispersed platinum by alternate current methods electrodes were used, the lowest energy consumption and the higher decolorization kinetics rate were obtained. Scanning Electronic Microscopy was used to observe the morphological surface differences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Poly(3,4-ethylenedioxythiophene)/reduced graphene oxide composites as counter electrodes for high efficiency dye-sensitized solar cells

    Science.gov (United States)

    Ma, Jinfu; Yuan, Shenghua; Yang, Shaolin; Lu, Hui; Li, Yingtao

    2018-05-01

    A facile, low cost, easy-controllable method to prepare Poly(3,4-ethylenedioxythiophene) (PEDOT)/reduced graphene oxide (rGO) composites by electrochemical deposition onto fluorinated tin oxide (FTO) as counter electrodes (CEs) in high performance dye-sensitized solar cells (DSSCs) is reported. The electro-deposition process was accomplished by electro-polymerization of graphene oxide (GO)/PEDOT composites onto FTO substrates followed by electrochemical reduction of the GO component. Electrochemical measurements show that the I-/I3- catalytic activity of the as-prepared PEDOT/rGO CE is improved compared with that of the pure PEDOT and PEDOT/GO electrode. Through the analysis of photoelectric properties, the performance of the electrodes fabricated with different polymerization times are compared, and the optimal preparation condition is determined. The photoelectric conversion efficiency (PCE) of the DSSC assembled with PEDOT/rGO electrode reaches 7.79%, close to 8.33% of the cell with Platinum (Pt) electrode, and increases by 13.2% compared with 6.88% of the device with the PEDOT electrode.

  20. Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton

    International Nuclear Information System (INIS)

    Huang Yaohui; Huang Yifong; Chang Poshun; Chen Chuhyung

    2008-01-01

    This study makes a comparison between photo-Fenton and a novel electro-Fenton called Fered-Fenton to study the mineralization of 10,000 mg/L of dye-Reactive Black B (RBB) aqueous solution, which was chosen as the model dye contaminant. Results indicate that the traditional Fenton process only yields 70% mineralization. This result can be improved by using Fered-Fenton to yield 93% mineralization resulting from the action of ferrous ion regenerated on the cathode. Furthermore, photo-Fenton allows a fast and more complete destruction of dye solutions and as a result of the action of ferrous ion regenerated by UV irradiation yields more than 98% mineralization. In all treatments, the RBB is rapidly decayed to some carboxylic acid intermediates. The major intermediates found are formic acid and oxalic acid. This study finds that formic acid can be completely mineralized by photo-Fenton, but its destruction is problematic using the Fenton method. Oxalic acid is much more difficult to treat than other organic acids. It could get further mineralization with the use of the Fered-Fenton process

  1. Performance of Dye-Sensitized Solar Cells (DSSCs) Fabricated with Zinc Oxide (ZnO) Nanpowders and Nanorods

    Science.gov (United States)

    Chatterjee, Suman

    2018-03-01

    Due to their high efficiencies, along with lower production costs, many researchers are working on dye-sensitized solar cells (DSSCs) over last few decades as a substitute technology for nonconventional energy. Nanostructured ZnO has got many interesting properties such as wide band gap, large exciton binding energy, good exciton stability, and high breakdown strength, which are applicable as DSSC electrodes. This present work compares the device properties of DSSC fabricated using ZnO nanorods on a ZnO film and ZnO nanopowders. Different types of ZnO photoanode and dye combinations are used to study the stability and photovoltaic properties of the DSSC cell. The photovoltaic properties of the ZnO-based DSSC samples were systematically investigated. The photovoltaic properties of fabricated cell obtained are discussed in the light of band structure and density of states of different types of ZnO nanolayers. The ZnO nanorods fabricated through the sol-gel route have more uniform thickness resulting in enhanced photovoltaic properties of the fabricated device.

  2. Enhancement of zinc oxide-mediated solar light decoloration of Acid Yellow 99 dye by addition of β-CD

    Science.gov (United States)

    Pitchaimuthu, Sakthivel; Rajalakshmi, Subramanian; Kannan, Nagarathinam; Velusamy, Ponnusamy

    2015-06-01

    In the current work, the commercially available ZnO photocatalyst was used to investigate the photodecoloration of Acid yellow 99 (AY99) dye under solar light radiation. Promising enhancement of photodecoloration of AY99 dye was also achieved by the addition of β-cyclodextrin (β-CD) with the ZnO (ZnO-β-CD). The effects of process parameters such as initial concentration, pH, catalyst loading, and illumination time on the extent of decoloration were investigated. The optimum catalyst loading was observed at 2.0 g/L. The higher photoactivity of ZnO-β-CD/solar light system than ZnO/solar light system can be ascribed due to the ligand to metal charge transfer (LMCT) from β-CD to ZnII. The complexation patterns have been confirmed with UV-visible and FT-IR spectroscopy and the interaction between ZnO and β-CD has been characterized by FE-SEM, powder XRD analysis, and UV-visible diffuse reflectance spectroscopy.

  3. The charge-transfer property and the performance of dye-sensitized solar cells of nitrogen doped zinc oxide

    International Nuclear Information System (INIS)

    Zhang Lingyun; Yang Yulin; Fan Ruiqing; Chen Haiyan; Jia Ruokun; Wang Yonghui; Ma Liqun; Wang Yazhen

    2012-01-01

    Highlights: ► Two methods (the solution and annealing methods) are used to prepare nitrogen-doped ZnO. ► The charge-transfer properties of N-doping ZnO are investigated. ► The overall conversion efficiency of N-doped ZnO-based dye-sensitized solar cells is successfully improved by N doping. - Abstract: In this study two methods, namely the solution and annealing methods, were used to prepare nitrogen-doped ZnO. The X-ray photoelectron spectroscopy (XPS) was performed to identify the composition and chemical states of N-doped ZnO. The N doping by the solution method was found to effectively decrease the acceptor effects. Surface photovoltage measurements (SPS) revealed a redshift of the threshold wavelength for the N-doped ZnO. And the recombination of photoinduced electron–hole pairs in this semiconductor material was obviously suppressed. The N-doped ZnO (solution method) exhibits the best performances among all the materials, even superior to N-doped ZnO (annealing method). Its J sc and η values (9.35 mA/cm 2 and 2.64%) have enhanced by several times compared with un-doped ZnO (J sc , 2.85 mA/cm 2 ; η, 0.67%). The overall conversion efficiency of ZnO-based dye-sensitized solar cells was successfully improved by the N doping.

  4. Age-related hair pigment loss.

    Science.gov (United States)

    Tobin, Desmond J

    2015-01-01

    Humans are social animals that communicate disproportionately via potent genetic signals imbued in the skin and hair, including racial, ethnic, health, gender, and age status. For the vast majority of us, age-related hair pigment loss becomes the inescapable signal of our disappearing youth. The hair follicle (HF) pigmentary unit is a wonderful tissue for studying mechanisms generally regulating aging, often before this becomes evident elsewhere in the body. Given that follicular melanocytes (unlike those in the epidermis) are regulated by the hair growth cycle, this cycle is likely to impact the process of aging in the HF pigmentary unit. The formal identification of melanocyte stem cells in the mouse skin has spurred a flurry of reports on the potential involvement of melanocyte stem cell depletion in hair graying (i.e., canities). Caution is recommended, however, against simple extrapolation of murine data to humans. Regardless, hair graying in both species is likely to involve an age-related imbalance in the tissue's oxidative stress handling that will impact not only melanogenesis but also melanocyte stem cell and melanocyte homeostasis and survival. There is some emerging evidence that the HF pigmentary unit may have regenerative potential, even after it has begun to produce white hair fibers. It may therefore be feasible to develop strategies to modulate some aging-associated changes to maintain melanin production for longer. © 2015 S. Karger AG, Basel.

  5. [Hormones and hair growth].

    Science.gov (United States)

    Trüeb, R M

    2010-06-01

    With respect to the relationship between hormones and hair growth, the role of androgens for androgenetic alopecia (AGA) and hirsutism is best acknowledged. Accordingly, therapeutic strategies that intervene in androgen metabolism have been successfully developed for treatment of these conditions. Clinical observations of hair conditions involving hormones beyond the androgen horizon have determined their role in regulation of hair growth: estrogens, prolactin, thyroid hormone, cortisone, growth hormone (GH), and melatonin. Primary GH resistance is characterized by thin hair, while acromegaly may cause hypertrichosis. Hyperprolactinemia may cause hair loss and hirsutism. Partial synchronization of the hair cycle in anagen during late pregnancy points to an estrogen effect, while aromatase inhibitors cause hair loss. Hair loss in a causal relationship to thyroid disorders is well documented. In contrast to AGA, senescent alopecia affects the hair in a diffuse manner. The question arises, whether the hypothesis that a causal relationship exists between the age-related reduction of circulating hormones and organ function also applies to hair and the aging of hair.

  6. Preparation of Activated Carbon/N-doped Titania Composite for Synergistic Adsorption-photocatalytic Oxidation of Batik Dye

    Science.gov (United States)

    Aziz, A. A.; Ibrahim, S.

    2018-05-01

    A synergetic improved composite TiO2 photocatalysts was successfully synthesized by using nitrogen (N) as a dopant and activated carbon (AC) as synergetic compound. Two different types of AC prepared from Garcinia mangostana shell and commercial AC obtained from palm shell were chosen as synergetic compound. Thus synthesized composites was further characterized by Brunauer-Emmett-Teller (BET) surface analyzer and UV-visible light spectroscope. The doping of N resulted in a better solar light utilization potential. Furthermore, synergizing with AC contributed for the improved BET surface area and pore size distribution. The synergetic adsorption-photocatalytic activity was investigated by removing a commercial batik dye namely Remazol Brilliant Blue (RBB) under direct solar irradiation. The synergetic experiments showed that commercial AC synergized with N-TiO2 resulted with a maximum removal efficiency of ∼80% in 6 h.

  7. Rapid isolation of a facultative anaerobic electrochemically active bacterium capable of oxidizing acetate for electrogenesis and azo dyes reduction.

    Science.gov (United States)

    Shen, Nan; Yuan, Shi-Jie; Wu, Chao; Cheng, Yuan-Yuan; Song, Xiang-Ning; Li, Wen-Wei; Tong, Zhong-Hua; Yu, Han-Qing

    2014-05-01

    In this study, 27 strains of electrochemically active bacteria (EAB) were rapidly isolated and their capabilities of extracellular electron transfer were identified using a photometric method based on WO3 nanoclusters. These strains caused color change of WO3 from white to blue in a 24-well agar plate within 40 h. Most of the isolated EAB strains belonged to the genera of Aeromonas and Shewanella. One isolate, Pantoea agglomerans S5-44, was identified as an EAB that can utilize acetate as the carbon source to produce electricity and reduce azo dyes under anaerobic conditions. The results confirmed the capability of P. agglomerans S5-44 for extracellular electron transfer. The isolation of this acetate-utilizing, facultative EBA reveals the metabolic diversity of environmental bacteria. Such strains have great potential for environmental applications, especially at interfaces of aerobic and anaerobic environments, where acetate is the main available carbon source.

  8. The charge-transfer property and the performance of dye-sensitized solar cells of nitrogen doped zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lingyun [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); School of Chemical Engineering, Northeast Dianli University, Jilin 132012 (China); Yang Yulin, E-mail: ylyang@hit.edu.cn [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Fan Ruiqing, E-mail: fanruiqing@hit.edu.cn [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Chen Haiyan [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Jia Ruokun [School of Chemical Engineering, Northeast Dianli University, Jilin 132012 (China); Wang Yonghui [Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (China); Ma Liqun; Wang Yazhen [School of Material Science of Engineering, Qiqihar University, Qiqihar 161006 (China)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Two methods (the solution and annealing methods) are used to prepare nitrogen-doped ZnO. Black-Right-Pointing-Pointer The charge-transfer properties of N-doping ZnO are investigated. Black-Right-Pointing-Pointer The overall conversion efficiency of N-doped ZnO-based dye-sensitized solar cells is successfully improved by N doping. - Abstract: In this study two methods, namely the solution and annealing methods, were used to prepare nitrogen-doped ZnO. The X-ray photoelectron spectroscopy (XPS) was performed to identify the composition and chemical states of N-doped ZnO. The N doping by the solution method was found to effectively decrease the acceptor effects. Surface photovoltage measurements (SPS) revealed a redshift of the threshold wavelength for the N-doped ZnO. And the recombination of photoinduced electron-hole pairs in this semiconductor material was obviously suppressed. The N-doped ZnO (solution method) exhibits the best performances among all the materials, even superior to N-doped ZnO (annealing method). Its J{sub sc} and {eta} values (9.35 mA/cm{sup 2} and 2.64%) have enhanced by several times compared with un-doped ZnO (J{sub sc}, 2.85 mA/cm{sup 2}; {eta}, 0.67%). The overall conversion efficiency of ZnO-based dye-sensitized solar cells was successfully improved by the N doping.

  9. Influence of styryl dyes on blood erythrocytes

    Science.gov (United States)

    Nizomov, Negmat; Barakaeva, Mubaro; Kurtaliev, Eldar N.; Rahimov, Sherzod I.; Khakimova, Dilorom P.; Khodjayev, Gayrat; Yashchuk, Valeriy N.

    2008-08-01

    It was studied the influence of F, Sbt, Sil, Sbo monomer and homodimer Dst-5, Dst-10, Dbt-5, Dbt-10, Dil-10, Dbo-10 styryl dyes on blood erythrocytes of white rats. It was shown that the homodimer styryl dyes Dst-5, Dbt-5 and Dbo-10 decrease the erythrocytes quantity by 1.5-2 times more as compared with monomer dyes Sbt and Sbo. The main cause of dyes different action is the different oxidation degree of intracellular hemoglobin evoked by these dyes. It was established that the observed effects was connected with different penetration of these dyes through membrane of erythrocytes and with interaction of these dyes with albumin localized in membranes of cells.

  10. Hair loss in infancy.

    Science.gov (United States)

    Moreno-Romero, J A; Grimalt, R

    2014-02-01

    Hair diseases represent a significant portion of cases seen by pediatric dermatologists although hair has always been a secondary aspect in pediatricians and dermatologists training, on the erroneous basis that there is not much information extractable from it. Dermatologists are in the enviable situation of being able to study many disorders with simple diagnostic techniques. The hair is easily accessible to examination but, paradoxically, this approach is often disregarded by non-dermatologist. This paper has been written on the purpose of trying to serve in the diagnostic process of daily practice, and trying to help, for example, to distinguish between certain acquired and some genetically determined hair diseases. We will focus on all the data that can be obtained from our patients' hair and try to help on using the messages given by hair for each patient. Quite often it is extremely hard to distinguish between abnormality and normality in neonatal hair aspects. We will specially focus in the most common physiological changes that may mislead to an incorrect diagnosis. Specific treatment for those hair diseases that do have one, and basic general approach to improve the cosmetic appearance of hair, will be also be discussed for those hair disturbances that do not have a specific treatment.

  11. Developing the photovoltaic performance of dye-sensitized solar cells (DSSCs) using a SnO2-doped graphene oxide hybrid nanocomposite as a photo-anode

    Science.gov (United States)

    Sasikumar, Ragu; Chen, Tse-Wei; Chen, Shen-Ming; Rwei, Syang-Peng; Ramaraj, Sayee Kannan

    2018-05-01

    Tin(IV) oxide nanoparticles (SnO2 NPs) doped on the surface of graphene oxide (GO) sheets for application in Dye-Sensitized Solar Cells (DSSCs). The effective incorporation of SnO2 on the surface of GO sheets were confirmed by powder X-ray diffraction (PXRD), Fourier transform infra-red spectroscopy (FT-IR), thermogravimetric analysis (TGA), electrochemical impedance spectroscopy (EIS), and Raman spectroscopy. The morphology of the GO/SnO2 hybrid nanocomposite was confirmed by field emission scanning electron microscopy (FE-SEM) analysis. This current study involvement with the effect of different photo-anodes such as GO, SnO2, and GO/SnO2 hybrid nanocomposite on the power conversion efficiency (PCE) of the triiodide electrolyte based DSSCs. Remarkably, GO/SnO2 hybrid nanocomposite based photo-anode for DSSC observed PCE of 8.3% and it is about 12% higher than that of un-doped TiO2 photo-anode. The equivalent short-circuit photocurrent density (Jsc) of 16.67 mA cm-2, open circuit voltage (Voc) of 0.77 V, and fill factor (FF) of 0.65 respectively. The achieved results propose that the hybrid nanocomposite is an appropriate photo-anodic material for DSSCs applications.

  12. Thickness-self-controlled synthesis of porous transparent polyaniline-reduced graphene oxide composites towards advanced bifacial dye-sensitized solar cells

    Science.gov (United States)

    Wang, Yu-Sheng; Li, Shin-Ming; Hsiao, Sheng-Tsung; Liao, Wei-Hao; Yang, Shin-Yi; Tien, Hsi-Wen; Ma, Chen-Chi M.; Hu, Chi-Chang

    2014-08-01

    A powerful synthesis strategy is proposed for fabricating porous polyaniline-reduced graphene oxide (PANI-RGO) composites with transparency up to 80% and thickness from 300 to 1000 nm for the counter electrode (CE) of bifacial dye-sensitizing solar cells (DSSCs). The first step is to combine the in-situ positive charge transformation of graphene oxide (GO) through aniline (ANI) prepolymerization and the electrostatic adsorption of ANI oligomer-GO to effectively control the thickness of ultrathin PANI-GO films by adjusting pH of the polymerization media. In the second step, PANI-GO films are reduced with hydroiodic acid to simultaneously enhance the apparent redox activity for the I3-/I- couple and their electronic conductivity. Incorporating the RGO increases the transparency of PANI and facilitates the light-harvesting from the rear side. A DSSC assembled with such a transparent PANI-RGO CE exhibits an excellent efficiency of 7.84%, comparable to 8.19% for a semi-transparent Pt-based DSSC. The high light-harvesting ability of PANI-RGO enhances the efficiency retention between rear- and front-illumination modes to 76.7%, compared with 69.1% for a PANI-based DSSC. The higher retention reduces the power-to-weight ratio and the total cost of bifacial DSSCs, which is also promising in other applications, such as windows, power generators, and panel screens.

  13. Fabrication of reduced graphene oxide/macrocyclic cobalt complex nanocomposites as counter electrodes for Pt-free dye-sensitized solar cells

    Science.gov (United States)

    Tsai, Chih-Hung; Shih, Chun-Jyun; Wang, Wun-Shiuan; Chi, Wen-Feng; Huang, Wei-Chih; Hu, Yu-Chung; Yu, Yuan-Hsiang

    2018-03-01

    In this study, macrocyclic Co complexes were successfully grafted onto graphene oxide (GO) to produce GO/Co nanocomposites with a large surface area, high electrical conductivity, and excellent catalytic properties. The novel GO/Co nanocomposites were applied as counter electrodes for Pt-free dye-sensitized solar cells (DSSCs). Various ratios of macrocyclic Co complexes were used as the reductant to react with the GO, with which the surface functional groups of the GO were reduced and the macrocyclic ligand of the Co complexes underwent oxidative dehydrogenation, after which the conjugated macrocyclic Co systems were grafted onto the surface of the reduced GO to form GO/Co nanocomposites. The surface morphology, material structure, and composition of the GO/Co composites and their influences on the power-conversion efficiency of DSSC devices were comprehensively investigated. The results showed that the GO/Co (1:10) counter electrode (CE) exhibited an optimal power conversion efficiency of 7.48%, which was higher than that of the Pt CE. The GO/Co (1:10) CE exhibited superior electric conductivity, catalytic capacity, and redox capacity. Because GO/Co (1:10) CEs are more efficient and cheaper than Pt CEs, they could potentially be used as a replacement for Pt electrodes.

  14. High performance dye-sensitized solar cells using graphene modified fluorine-doped tin oxide glass by Langmuir–Blodgett technique

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Ki-Min [Rare Metals Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Jo, Eun-Hee; Chang, Hankwon [Rare Metals Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Nanomaterials Science and Engineering Major, University of Science and Technology, Daejeon 305-350 (Korea, Republic of); Han, Tae Hee [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jang, Hee Dong, E-mail: hdjang@kigam.re.kr [Rare Metals Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Nanomaterials Science and Engineering Major, University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

    2015-04-15

    Since the introduction of dye-sensitized solar cells (DSSCs) with low fabrication cost and high power conversion efficiency, extensive studies have been carried out to improve the charge transfer rate and performance of DSSCs. In this paper, we present DSSCs that use surface modified fluorine-doped tin oxide (FTO) substrates with reduced graphene oxide (r-GO) sheets prepared using the Langmuir–Blodgett (LB) technique to decrease the charge recombination at the TiO{sub 2}/FTO interface. R-GO sheets were excellently attached on FTO surface without physical deformations such as wrinkles; effects of the surface coverage of r-GO on the DSSC performance were also investigated. By using graphene modified FTO substrates, the resistance at the interface of TiO{sub 2}/FTO was reduced and the power conversion efficiency was increased to 8.44%. - Graphical abstract: DSSCs with graphene modified FTO glass were fabricated with the Langmuir Blodgett technique. GO sheets were transferred to FTO at various surface pressures in order to change the surface density of graphene and the highest power conversion efficiency of the DSSC was 8.44%. - Highlights: • By LB technique, r-GO sheets were coated on FTO without physical deformation. • DSSCs were fabricated with, r-GO modified FTO substrates. • With surface modification by r-GO, the interface resistance of DSSC decreased. • Maximum PCE of the DSSC was increased up to 8.44%.

  15. Hair cosmetics and camouflage technics

    Directory of Open Access Journals (Sweden)

    Zahide Eriş Eken

    2014-06-01

    Full Text Available Hair is composed of a mixture of trace elements in small quantities, proteins, lipids and water. Proteins consist of helical polypeptide amino acid molecules. In the hair cells; polypeptide chains of keratin protein would be organized in filaments. In recent years, hair cosmetics showed a significant change and development. The content of shampoos which is used to cleanse the hair has enhanced significantly. Hair conditioner, hair styling products, pomades, brilliantine, and gloss sprays, hair protective products, camouflage products are most commonly used hair cosmetics. Hair shaping procedures are frequently applied.

  16. Layer-by-layer films and colloidal dispersions of graphene oxide nanosheets for efficient control of the fluorescence and aggregation properties of the cationic dye acridine orange.

    Science.gov (United States)

    Hansda, Chaitali; Chakraborty, Utsav; Hussain, Syed Arshad; Bhattacharjee, Debajyoti; Paul, Pabitra Kumar

    2016-03-15

    Chemically derived graphene oxide (GO) nanosheets have received great deal of interest for technological application such as optoelectronic and biosensors. Aqueous dispersions of GO become an efficient template to induce the association of cationic dye namely Acridine Orange (AO). Interactions of AO with colloidal GO was governed by both electrostatic and π-π stacking cooperative interactions. The type of dye aggregations was found to depend on the concentration of GO in the mixed ensemble. Spectroscopic calculations revealed the formation of both H and J-type dimers, but H-type aggregations were predominant. Preparation of layer-by-layer (LbL) electrostatic self-assembled films of AO and GO onto poly (allylamine hydrochloride) (PAH) coated quartz substrate is also reported in this article. UV-Vis absorption, steady state and time resolve fluorescence and Raman spectroscopic techniques have been employed to explore the detail photophysical properties of pure AO, AO/GO mixed solution and AO/GO LbL films. Scanning electron microscopy was also used for visual evidence of the synthesized nanodimensional GO sheets. The fluorescence quenching of AO in the presence of GO in aqueous solution was due to the interfacial photoinduced electron transfer (PET) from photoexcited AO to GO i.e. GO acts as an efficient quenching agent for the fluorescence emission of AO. The quenching is found to be static in nature. Raman spectroscopic results also confirmed the interaction of AO with GO and the electron transfer. The formation of AO/GO complex via very fast excited state electron transfer mechanism may be proposed as to prepare GO-based fluorescence sensor for biomolecular detection without direct labeling the biomolecules by fluorescent probe. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Electrochemical oxidation of bio-refractory dye in a simulated textile industry effluent using DSA electrodes in a filter-press type FM01-LC reactor.

    Science.gov (United States)

    Rodríguez, Francisca A; Mateo, María N; Aceves, Juan M; Rivero, Eligio P; González, Ignacio

    2013-01-01

    This work presents a study on degradation of indigo carmine dye in a filter-press type FM01-LC reactor using Sb2O5-doped Ti/IrO2-SnO2 dimensionally stable anode (DSA) electrodes. Micro- and macroelectrolysis studies were carried out using solutions of 0.8 mM indigo carmine in 0.05 M NaCl, which resemble blue denim laundry industrial wastewater. Microelectrolysis results show the behaviour of DSA electrodes in comparison with the behaviour of boron-doped diamond (BDD) electrodes. In general, dye degradation reactions are carried out indirectly through active chlorine generated on DSA, whereas in the case of BDD electrodes more oxidizing species are formed, mainly OH radicals, on the electrode surface. The well-characterized geometry, flow pattern and mass transport of the FM01-LC reactor used in macroelectrolysis experiments allowed the evaluation of the effect of hydrodynamic conditions on the chlorine-mediated degradation rate. Four values of Reynolds number (Re) (93, 371, 464 and 557) at four current densities (50, 100, 150 and 200 A/m2) were tested. The results show that the degradation rate is independent of Re at low current density (50 A/m2) but becomes dependent on the Re at high current density (200 A/m2). This behaviour shows the central role of mass transport and the reactor parameters and design. The low energy consumption (2.02 and 9.04 kWh/m3 for complete discolouration and chemical oxygen demand elimination at 50 A/m2, respectively) and the low cost of DSA electrodes compared to BDD make DSA electrodes promising for practical application in treating industrial textile effluents. In the present study, chlorinated organic compounds were not detected.

  18. Drugs and hair loss.

    Science.gov (United States)

    Patel, Mansi; Harrison, Shannon; Sinclair, Rodney

    2013-01-01

    Hair loss is a common complaint, both in men and women, and use of prescription medications is widespread. When there is a temporal association between the onset of hair loss and commencement of a medication, the medication is commonly thought to have caused the hair loss. However, hair loss and in particular telogen effluvium may occur in response to a number of triggers including fever, hemorrhage, severe illness, stress, and childbirth, and a thorough exclusion of these potential confounders is necessary before the hair loss can be blamed on the medication. Certain medications are known to cause hair loss by a variety of mechanisms including anagen arrest, telogen effluvium, or accentuation of androgenetic alopecia by androgens. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  19. Mercury in human hair

    International Nuclear Information System (INIS)

    Kapauan, P.A.; Cruz, C.C.; Verceluz, F.P.

    1980-10-01

    The analysis of mercury (Hg) in scalp hair obtained from individuals residing in five different localities in the Philippines - Metro Manila, Naga City in Bicol, Bataan, Oriental Mindoro, and Palawan is presented. An overall mean of 1.46 ug/g of hair was obtained for all samples excluding those from Palawan and represents a baseline value.'' In terms of the mercury levels found in hair, the Honda Bay area in Palawan is, relatively, a ''contaminated area.'' (author)

  20. Female pattern hair loss

    Directory of Open Access Journals (Sweden)

    İdil Ünal

    2014-06-01

    Full Text Available Female androgenetic alopecia is the commonest cause of hair loss in women. It is characterized by a diffuse reduction in hair density over the crown and frontal scalp with retention of the frontal hairline and a characteristic pattern distribution in genetically predisposed women. Because of the uncertain relationship with the androgens Female Pattern Hair Loss (FPHL is the most preferred definition of the condition. This review has been focused on the clinical features, diagnosis and treatment alternatives of FPHL.

  1. Thinning Hair and Hair Loss: Could it be Female Pattern Hair Loss?

    Science.gov (United States)

    ... mcat1=de12", ]; for (var c = 0; c Thinning hair and hair loss: Could it be female pattern hair loss? Female pattern hair loss: Without treatment, female ... can I tell if I have female pattern hair loss? It’s best to make an appointment to ...

  2. Effects of Titanium Oxide Nanotube Arrays with Different Lengths on the Characteristics of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2013-01-01

    Full Text Available The self-aligned highly ordered TiO2 nanotube (TNT arrays were fabricated by potentiostatic anodization of Ti foil, and we found that the TNT-array length and diameter were dependent on the electrolyte (NH4F concentration in ethylene glycol and anodization time. The characteristics of the fabricated TNT arrays were characterized by XRD pattern, FESEM, and absorption spectrum. As the electrolyte NH4F concentration in the presence of H2O (2 vol% with anodization was changed from 0.25 to 0.75 wt% and the anodization period was increased from 1 to 5 h, the TNT-array length was changed from 9.55 to 30.2 μm and the TNT-array diameter also increased. As NH4F concentration was 0.5 wt%, the prepared TNT arrays were also used to fabricate the dye-sensitized solar cells (DSSCs. We would show that the measured photovoltaic performance of the DSSCs was dependent on the TNT-array length.

  3. Toxicity Induced after Subchronic Administration of the Synthetic Food Dye Tartrazine in Adult Rats, Role of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Narges El Golli

    2016-04-01

    Full Text Available The present study was conducted to evaluate the toxic potential of tartrazine, a food color, in different tissues in adult rat: blood, liver, kidneys, and spleen. Tartrazine was administered orally at a dose of 300 mg/kg of body weight to adult male Wistar rats during a period of 30 days. Tartrazine treatment led to an increase in platelets count, a reduction in peripheral lymphocytes and in spleen T CD8-lymphocytes. Furthermore, tartrazine increased the activities of hepatocellular enzymes and promoted changes in kidney biomarkers. In order to explore the possible mechanism involved, oxidative-stress assessment was performed. Results identified critical oxidative alterations in all tested organs, as shown by the promotion of lipid peroxidation and the modification of endogenous antioxidant-defense enzymes. Thus, tartrazine is able to induce in adult rats’ hematotoxicity, immunotoxicity, and liver and kidney injuries by changing the whole balance between oxidants and antioxidants.

  4. Side Effects: Hair Loss (Alopecia)

    Science.gov (United States)

    Hair loss, also called alopecia, is a side effect of cancer treatments, such as chemotherapy and radiation therapy. Learn how to cope with and manage hair loss. Listen to tips from others who have experienced hair loss.

  5. Selective hair therapy: bringing science to the fiction.

    Science.gov (United States)

    Vogt, Annika; Blume-Peytavi, Ulrike

    2014-02-01

    Investigations on carrier-based drug delivery systems for higher selectivity in hair therapy have clearly evolved from dye release and model studies to highly sophisticated approaches, many of which specifically tackle hair indications and the delivery of hair-relevant molecules. Here, we group recent hair disease-oriented work into efforts towards (i) improved delivery of conventional drugs, (ii) delivery of novel drug classes, for example biomolecules and (iii) targeted delivery on the cellular/molecular level. Considering the solid foundation of experimental work, it does not take a large step outside the current box of thinking to follow the idea of using large carriers (>500 nm, unlikely to penetrate as a whole) for follicular penetration, retention and protection of sensitive compounds. Yet, reports on particles <200 nm being internalized by keratinocytes and dendritic cells at sites of barrier disruption (e.g., hair follicles) combined with recent advances in nanodermatology add interesting new facets to the possibilities carrier technologies could offer, for example, unprecedented levels of selectivity. The authors provide thought-provoking ideas on how smart delivery technologies and advances in our molecular understanding of hair pathophysiology could result in a whole new era of hair therapeutics. As the field still largely remains in preclinical investigation, determined efforts towards production of medical grade material and truly translational work are needed to demonstrate surplus value of carrier systems for clinical applications. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. XPS Spectra Analysis of Ti2+, Ti3+ Ions and Dye Photodegradation Evaluation of Titania-Silica Mixed Oxide Nanoparticles

    Science.gov (United States)

    Chinh, Vu Duc; Broggi, Alessandra; Di Palma, Luca; Scarsella, Marco; Speranza, Giorgio; Vilardi, Giorgio; Thang, Pham Nam

    2018-04-01

    TiO2-SiO2 mixed oxides have been prepared by the sol-gel technique from tetrabutyl orthotitanate and tetraethyl orthosilicate. The prepared materials were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, nitrogen physisorption, Fourier-transform infrared spectroscopy (FT-IR) and x-ray photoelectron spectroscopy (XPS). The results indicate that the TiO2-SiO2 mixed oxides have a large surface area and a nanoscale size. FT-IR spectra show that Ti atoms are bonded to silica by oxygen bridging atoms in Ti-O-Si bonds. The titanium valence states in TiO2-SiO2 mixed oxides were investigated by XPS, and their spectra report the presence of Ti2+ and Ti3+ cations for high silica concentration, suggesting the formation of oxygen vacancies. The photocatalytic activity of the prepared materials has been evaluated for the photodegradation of methylene blue (MB). The mixed oxides were activated by means of a UV light source, and the concentration of MB was monitored by UV-Vis spectroscopy. The synthesized TiO2-SiO2 shows significantly higher MB removal efficiency in comparison with that of the commercial TiO2 Degussa, P25.

  7. Identification of Surface-Exposed Protein Radicals and A Substrate Oxidation Site in A-Class Dye-Decolorizing Peroxidase from Thermomonospora curvata

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Ruben; Chen, Xuejie; Ramyar, Kasra X.; Hayati, Zahra; Carlson, Eric A.; Bossmann, Stefan H.; Song, Likai; Geisbrecht, Brian V.; Li, Ping (FSU); (KSU)

    2016-12-12

    Dye-decolorizing peroxidases (DyPs) are a family of heme peroxidases in which a catalytic distal aspartate is involved in H2O2 activation to catalyze oxidations under acidic conditions. They have received much attention due to their potential applications in lignin compound degradation and biofuel production from biomass. However, the mode of oxidation in bacterial DyPs remains unknown. We have recently reported that the bacterial TcDyP from Thermomonospora curvata is among the most active DyPs and shows activity toward phenolic lignin model compounds. On the basis of the X-ray crystal structure solved at 1.75 Å, sigmoidal steady-state kinetics with Reactive Blue 19 (RB19), and formation of compound II like product in the absence of reducing substrates observed with stopped-flow spectroscopy and electron paramagnetic resonance (EPR), we hypothesized that the TcDyP catalyzes oxidation of large-size substrates via multiple surface-exposed protein radicals. Among 7 tryptophans and 3 tyrosines in TcDyP consisting of 376 residues for the matured protein, W263, W376, and Y332 were identified as surface-exposed protein radicals. Only the W263 was also characterized as one of the surface-exposed oxidation sites. SDS-PAGE and size-exclusion chromatography demonstrated that W376 represents an off-pathway destination for electron transfer, resulting in the cross-linking of proteins in the absence of substrates. Mutation of W376 improved compound I stability and overall catalytic efficiency toward RB19. While Y332 is highly conserved across all four classes of DyPs, its catalytic function in A-class TcDyP is minimal, possibly due to its extremely small solvent-accessible areas. Identification of surface-exposed protein radicals and substrate oxidation sites is important for understanding the DyP mechanism and modulating its catalytic functions for improved activity on phenolic lignin.

  8. Increased Zn/Glutathione Levels and Higher Superoxide Dismutase-1 Activity as Biomarkers of Oxidative Stress in Women with Long-Term Dental Amalgam Fillings: Correlation between Mercury/Aluminium Levels (in Hair) and Antioxidant Systems in Plasma

    Science.gov (United States)

    Cabaña-Muñoz, María Eugenia; Parmigiani-Izquierdo, José María; Bravo-González, Luis Alberto; Kyung, Hee-Moon; Merino, José Joaquín

    2015-01-01

    Background The induction of oxidative stress by Hg can affect antioxidant enzymes. However, epidemiological studies have failed to establish clear association between dental fillings presence and health problems. Objectives To determine whether heavy metals (in hair), antioxidant enzymes (SOD-1) and glutathione levels could be affected by the chronic presence of heavy metals in women who had dental amalgam fillings. Materials and Methods 55 hair samples (42 females with amalgam fillings and 13 female control subjects) were obtained. All subjects (mean age 44 years) who had dental amalgam filling for more than 10 years (average 15 years). Certain metals were quantified by ICP-MS (Mass Spectrophotometry) in hair (μg/g: Al, Hg, Ba, Ag, Sb, As, Be, Bi, Cd, Pb, Pt, Tl, Th, U, Ni, Sn, Ti) and SOD-1 and Glutathione (reduced form) levels in plasma. Data were compared with controls without amalgams, and analyzed to identify any significant relation between metals and the total number of amalgam fillings, comparing those with four or less (n = 27) with those with more than four (n = 15). As no significant differences were detected, the two groups were pooled (Amlgam; n = 42). Findings Hg, Ag, Al and Ba were higher in the amalgam group but without significant differences for most of the heavy metals analyzed. Increased SOD-1 activity and glutathione levels (reduced form) were observed in the amalgam group. Aluminum (Al) correlated with glutathione levels while Hg levels correlated with SOD-1. The observed Al/glutathione and Hg/SOD-1 correlation could be adaptive responses against the chronic presence of mercury. Conclusions Hg, Ag, Al and Ba levels increased in women who had dental amalgam fillings for long periods. Al correlated with glutathione, and Hg with SOD-1. SOD-1 may be a possible biomarker for assessing chronic Hg toxicity. PMID:26076368

  9. Graphene Oxide/Silver Nanohybrid as Multi-functional Material for Highly Efficient Bacterial Disinfection and Detection of Organic Dye

    DEFF Research Database (Denmark)

    Tam, L.T.; Dinh, N. X.; Cuong, N. V.

    2016-01-01

    In this work, a multi-functional hybrid system consisting of graphene oxide and silver nanoparticles (GO-Ag NPs) was successfully synthesized by using a two-step chemical process. We firstly demonstrated noticeable bactericidal ability of the GO-Ag hybrid system. We provide more chemo-physical ev......In this work, a multi-functional hybrid system consisting of graphene oxide and silver nanoparticles (GO-Ag NPs) was successfully synthesized by using a two-step chemical process. We firstly demonstrated noticeable bactericidal ability of the GO-Ag hybrid system. We provide more chemo...... media. With the aforementioned properties, the GO-Ag hybrid system is found to be very promising as a multi-functional material for advanced biomedicine and environmental monitoring applications....

  10. Hair Loss Myths.

    Science.gov (United States)

    DiMarco, Gabriella; McMichael, Amy

    2017-07-01

    INTRODUCTION: Hair loss is a common complaint seen in dermatology clinics. From frustration and attempts at self-help, patients with hair loss may present to the dermatologist with false beliefs, or myths, about the causes of their condition and what treatments are effective. METHODS: We identified 12 common myths about hair loss, categorized as myths about minoxidil treatment, vitamin and mineral supplements, natural topical treatments, and hair care practices. We performed a PubMed search to find evidence to support or refute each myth. RESULTS: We found that there is little evidence to support many of these common hair loss myths. In some cases, randomized controlled trials have investigated the effects of particular therapies and point to the effectiveness of certain hair loss treatments. DISCUSSION: In many cases, there have not been sufficient randomized controlled trials to evaluate the effect of different therapies and hair care practices on hair loss. It is best to guide patients toward treatments with a long track record of efficacy and away from those where little is known scientifically. J Drugs Dermatol. 2017;16(7):690-694..

  11. Reduction of graphene oxide at room temperature with vitamin C for RGO–TiO{sub 2} photoanodes in dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hui [Research Institute of Functional Materials, Central Iron and Steel Research Institute, No. 76 Xueyuan Nanlu, Haidian, Beijing 100081 (China); Zhang, Sam, E-mail: MSYZhang@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Chen, Ji-Tao [College of Chemistry and Molecular Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871 (China); Hu, Xiao-Ping [Research & Development Center, Advanced Technology & Materials Co., Ltd., No. 76 Xueyuan Nanlu, Haidian, Beijing 100081 (China); Du, Zhao-Fu; Qiu, Yue-Xiu; Zhao, Dong-Liang [Research Institute of Functional Materials, Central Iron and Steel Research Institute, No. 76 Xueyuan Nanlu, Haidian, Beijing 100081 (China)

    2015-06-01

    Graphene has been used to enhance conversion efficiency in dye-sensitized solar cell (DSSC) through increased electronic transportation. Introduction of graphene into DSSC is realized through reduction of graphene oxide (GO) to reduced graphene or RGO in TiO{sub 2} nanoparticles in solution. Chemical and hydrothermal reactions are two commonly used avenues. In the chemical route, toxic hydrazine and its derivatives are the typical reducing agent. Hydrothermal process is not toxic but requires prolonged heating. In this study, we mix flakes of GO with TiO{sub 2} nanoparticles and use vitamin C to realize the reduction at room temperature. The RGO–TiO{sub 2} composite films are then used as photoanode in DSSC. A conversion efficiency of 30% increase (to 7.89%) is obtained as compared to that of the pure TiO{sub 2} photoanode. - Highlights: • We produce reduced graphene (RGO)–TiO{sub 2} nanocomposite at room temperature. • The reduction is realized by vitamin C in a simple and environment-friendly way. • Reduced graphene provides a highway for electron transportation. • The RGO–P25 composite films are used as photoanode for DSSC. • Conversion efficiency of 30% increase (to 7.89%) is obtained by RGO–P25 photoanode.

  12. Laser welding of nanoparticulate TiO2 and transparent conducting oxide electrodes for highly efficient dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Kim, Jinsoo; Kim, Jonghyun; Lee, Myeongkyu

    2010-01-01

    Poor interfacial contact is often encountered in nanoparticulate film-based devices. The dye-sensitized solar cell (DSSC) is a representative case in which a nanoporous TiO 2 electrode needs to be prepared on the transparent conducting oxide (TCO)-coated glass substrate. In this study, we demonstrate that the inter-electrode contact resistance accounts for a considerable portion of the total resistance of a DSSC and its efficiency can be greatly enhanced by welding the interface with a laser. TiO 2 films formed on the TCO-coated glass substrate were irradiated with a pulsed ultraviolet laser beam at 355 nm; this transmits through the TCO and glass but is strongly absorbed by TiO 2 . Electron microscopy analysis and impedance measurements showed that a thin continuous TiO 2 layer is formed at the interface as a result of the local melting of TiO 2 nanoparticles and this layer completely bridges the gap between the two electrodes, improving the current flow with a reduced contact resistance. We were able to improve the efficiency by 35-65% with this process. DSSCs fabricated using a homemade TiO 2 paste revealed an efficiency improvement from η = 3.3% to 5.4%, and an increase from 8.2% to 11.2% was achieved with the TiO 2 electrodes made from a commercial paste.

  13. The preparation and characterization of nanostructured TiO2-ZrO2 mixed oxide electrode for efficient dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kitiyanan, Athapol; Ngamsinlapasathian, Supachai; Pavasupree, Soropong; Yoshikawa, Susumu

    2005-01-01

    The preparation of nanostructured mixed metal oxide based on a sol-gel method with surfactant-assisted mechanism, and its application for dye-sensitized solar cell (DSSC) are reported. The mixed zirconia (ZrO 2 ) and titania (TiO 2 ) mesoporous powder possessed larger surface area than the corresponding titania. For the UV action spectra of unsensitized photochemical cell, the mixed zirconia/titania electrode can absorb UV light below 380nm, corresponding to band gap (E g ) around 3.27eV, which is higher than that of pure component of titania (E g =3.2eV). Both of these improved properties, i.e., BET surface area and band gap, contributed to the improvement on a short-circuit photocurrent up to 11%, an open-circuit voltage up to 4%, and a solar energy conversion efficiency up to 17%, for the DSSC fabricated by mesoporous zirconia/titania mixed system when compared to the cell that was fabricated only by nanostructured TiO 2 . The cell fabricated by 5μm thick mixed TiO 2 -ZrO 2 electrode gave the short-circuit photocurrent about 13mA/cm 2 , open-circuit voltage about 600 mV and the conversion efficiency 5.4%

  14. Laser welding of nanoparticulate TiO{sub 2} and transparent conducting oxide electrodes for highly efficient dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinsoo; Kim, Jonghyun; Lee, Myeongkyu, E-mail: myeong@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2010-08-27

    Poor interfacial contact is often encountered in nanoparticulate film-based devices. The dye-sensitized solar cell (DSSC) is a representative case in which a nanoporous TiO{sub 2} electrode needs to be prepared on the transparent conducting oxide (TCO)-coated glass substrate. In this study, we demonstrate that the inter-electrode contact resistance accounts for a considerable portion of the total resistance of a DSSC and its efficiency can be greatly enhanced by welding the interface with a laser. TiO{sub 2} films formed on the TCO-coated glass substrate were irradiated with a pulsed ultraviolet laser beam at 355 nm; this transmits through the TCO and glass but is strongly absorbed by TiO{sub 2}. Electron microscopy analysis and impedance measurements showed that a thin continuous TiO{sub 2} layer is formed at the interface as a result of the local melting of TiO{sub 2} nanoparticles and this layer completely bridges the gap between the two electrodes, improving the current flow with a reduced contact resistance. We were able to improve the efficiency by 35-65% with this process. DSSCs fabricated using a homemade TiO{sub 2} paste revealed an efficiency improvement from {eta} = 3.3% to 5.4%, and an increase from 8.2% to 11.2% was achieved with the TiO{sub 2} electrodes made from a commercial paste.

  15. Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats.

    Science.gov (United States)

    Amin, K A; Abdel Hameid, H; Abd Elsttar, A H

    2010-10-01

    Tartrazine and carmoisine are an organic azo dyes widely used in food products, drugs and cosmetics. The present study conducted to evaluate the toxic effect of these coloring food additives; on renal, hepatic function, lipid profile, blood glucose, body-weight gain and biomarkers of oxidative stress in tissue. Tartrazine and carmoisine were administered orally in two doses, one low and the other high dose for 30 days followed by serum and tissue sample collection for determination of ALT, AST, ALP, urea, creatinine, total protein, albumin, lipid profile, fasting blood glucose in serum and estimation of GSH, catalase, SOD and MDA in liver tissue in male albino rat. Our data showed a significant increase in ALT, AST, ALP, urea, creatinine total protein and albumin in serum of rats dosed with tartrazine and carmoisine compared to control rats and these significant change were more apparent in high doses than low, GSH, SOD and Catalase were decreased and MDA increased in tissue homogenate in rats consumed high tartrazine and both doses of carmoisine. We concluded that tartrazine and carmoisine affect adversely and alter biochemical markers in vital organs e.g. liver and kidney not only at higher doses but also at low doses. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Reduction of graphene oxide at room temperature with vitamin C for RGO–TiO2 photoanodes in dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Ding, Hui; Zhang, Sam; Chen, Ji-Tao; Hu, Xiao-Ping; Du, Zhao-Fu; Qiu, Yue-Xiu; Zhao, Dong-Liang

    2015-01-01

    Graphene has been used to enhance conversion efficiency in dye-sensitized solar cell (DSSC) through increased electronic transportation. Introduction of graphene into DSSC is realized through reduction of graphene oxide (GO) to reduced graphene or RGO in TiO 2 nanoparticles in solution. Chemical and hydrothermal reactions are two commonly used avenues. In the chemical route, toxic hydrazine and its derivatives are the typical reducing agent. Hydrothermal process is not toxic but requires prolonged heating. In this study, we mix flakes of GO with TiO 2 nanoparticles and use vitamin C to realize the reduction at room temperature. The RGO–TiO 2 composite films are then used as photoanode in DSSC. A conversion efficiency of 30% increase (to 7.89%) is obtained as compared to that of the pure TiO 2 photoanode. - Highlights: • We produce reduced graphene (RGO)–TiO 2 nanocomposite at room temperature. • The reduction is realized by vitamin C in a simple and environment-friendly way. • Reduced graphene provides a highway for electron transportation. • The RGO–P25 composite films are used as photoanode for DSSC. • Conversion efficiency of 30% increase (to 7.89%) is obtained by RGO–P25 photoanode

  17. Optical hair removal.

    Science.gov (United States)

    Ort, R J; Anderson, R R

    1999-06-01

    Traditional methods of hair removal have proven unsatisfactory for many individuals with excessive or unwanted hair. In the last few years, several lasers and xenon flashlamps have been developed that promise to fulfill the need for a practical, safe, and long-lasting method of hair removal. Aggressive marketing of these has contributed to their popularity among patients and physicians. However, significant controversy and confusion surrounds this field. This article provides a detailed explanation of the scientific underpinnings for optical hair removal and explores the advantages and disadvantages of the various devices currently available (Nd:YAG, ruby, alexandrite, diode lasers, and xenon flashlamp). Treatment and safety guidelines are provided to assist the practitioner in the use of these devices. Although the field of optical hair removal is still in its infancy, initial reports of long-term efficacy are encouraging.

  18. Synthesis of ZnO nanowire arrays on ZnO−TiO{sub 2} mixed oxide seed layer for dye sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, T. [Advanced Materials and Thin Film Physics Lab, Department of Physics, Alagappa University, Karaikudi (India); Anandhan, N., E-mail: anandhan_kn@rediffmail.com [Advanced Materials and Thin Film Physics Lab, Department of Physics, Alagappa University, Karaikudi (India); Thangamuthu, R. [Electrochemical Materials Science Division, CSIR-Central Electrochemical Research Institute, Karaikudi (India); Mummoorthi, M. [Advanced Materials and Thin Film Physics Lab, Department of Physics, Alagappa University, Karaikudi (India); Ravi, G. [Photonic Crystal Lab, Department of Physics, Alagappa University, Karaikudi (India)

    2016-08-25

    ZnO nanowire arrays (NWAs) were synthesized on ZnO−TiO{sub 2} mixed oxide seeded FTO conducting glass plate by two-step sol-gel and hydrothermal method, respectively. X-ray diffraction patterns reveal the presence of mixed and hexagonal phases in seed layer and NWAs, respectively. Scanning electron microscope images showed that the FTO glass plate is uniformly covered with grains and a few nanorods in seed layer and dense NWAs are vertically grown on the seed layer. The hexagonal structure and high crystal quality have been confirmed by micro Raman spectra. Photoluminescence spectra also present that NWAs have high crystal quality and less atomic defects. UV spectra indicate that NWAs are absorbed more dye molecules and it has the band gap equal to bulk material. The efficiency of ZnO−TiO{sub 2} mixed oxide seed layer and ZnO NWAs is found to be 0.56 and 0.84% respectively. Electrochemical impedance spectra reveal that NWAs DSSC has high charge transfer recombination resistance than the seed layer DSSC. - Highlights: • ZnO nanowire arrays were synthesized by two-step sol-gel and hydrothermal method. • The crystal structure and crystalline quality of films are confirmed by Raman spectra. • The emission properties of films are investigated by photoluminescence spectra. • ZnO nanowire arrays (NWAs) have higher charge transfer recombination resistance. • The conversion efficiency of the seed layer and NWAs is to be 0.56 and 0.84%.

  19. Graphene-based copper oxide thin film nanostructures as high-efficiency photocathode for p-type dye-sensitized solar cells

    Science.gov (United States)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Baran, Sümeyra Seniha; Asgin, Mansur; Cebeci, Hulya; Urk, Deniz

    2017-10-01

    Graphene-based p-type dye-sensitized solar cells (p-DSSCs) have been proposed and fabricated using copper oxide urchin-like nanostructures (COUN) as photocathode with an FeS2 counter electrode (CE). COUN composed of Cu2O core sphere and CuO shell nanorods with overall diameters of 2 to 4 μm were grown by a simple hydrothermal method with self-assemble nucleation. It was figured out that the formation of copper oxide core/shell structures could be adjusted by an ammonia additive leading to pH change of the precursor solution. In addition to a photocathode, we also demonstrated FeS2 thin films as an efficient CE material alternative to the conventional Pt CEs in DSSCs. FeS2 nanostructures, with diameters of 50 to 80 nm, were synthesized by a similar hydrothermal approach. FeS2 nanostructures are demonstrated to be an outstanding CE material in p-DSSCs. We report graphene/COUN as photocathode and Pt/FeS2 as CE in p-DSSCs, and results show that the synergetic combination of electrodes in each side (increased interconnectivity between COUN and graphene layer, high surface area, and high catalytic activity of FeS2) increased the power conversion efficiency from 1.56% to 3.14%. The excellent performances of COUN and FeS2 thin film in working and CEs, respectively, make them unique choices among the various photocathode and CE materials studied.

  20. Theoretical study of indoline dyes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ham, Ho Wan; Kim, Young Sik

    2010-01-01

    Indoline dye sensitizers were designed and studied theoretically to increase molar extinction coefficients in the visible to near infrared region for solar-cell devices. To gain insight into dye sensitizers' structural, electronic, and optical properties, DFT/TDDFT calculations were performed on a series of dye sensitizers derived from the D149. The good agreement between the experimental and TDDFT calculated absorption spectra of the D149 sensitizer allowed us to provide a detailed assessment of the main spectral features of a series of dye sensitizers. Increase in the conjugation length resulted in a more red-shifted spectral response and less positive oxidation potential than that of the D149. The dye with the dimethylfluorene group showed stronger absorption bands due to a large dipole moment. The calculated dipoles for the dye series correlate well with the observed strong absorption bands of the electronic spectra. These results provided useful clues for the molecular engineering of efficient organic dye sensitizers.

  1. Nano-dyeing

    Directory of Open Access Journals (Sweden)

    Ning Cui-Juan

    2016-01-01

    Full Text Available Dyeing nanofibers is a frontier of both modern textile engineering and nanotechnology. This paper suggest a feasible method for dyeing nanofibers with a natural red (Roselle Calyx by bubble electrospinning. Reactive dye (Red S3B and acid dye (Red 2B were also used in the experiment for comparison. The dyeing process was finished during the spinning process.

  2. Numerical simulation of the hair formation -modeling of hair cycle

    Science.gov (United States)

    Kajihara, Narumichi; Nagayama, Katsuya

    2018-01-01

    In the recent years, the fields of study of anti-aging, health and beauty, cosmetics, and hair diseases have attracted significant attention. In particular, human hair is considered to be an important aspect with regard to an attractive appearance. To this end, many workers have sought to understand the formation mechanism of the hair root. However, observing growth in the hair root is difficult, and a detailed mechanism of the process has not yet been elucidated. Hair repeats growth, retraction, and pause cycles (hair cycle) in a repetitive process. In the growth phase, hair is formed through processes of cell proliferation and differentiation (keratinization). During the retraction phase, hair growth stops, and during the resting period, hair fall occurs and new hair grows. This hair cycle is believed to affect the elongation rate, thickness, strength, and shape of hair. Therefore, in this study, we introduce a particle model as a new method to elucidate the unknown process of hair formation, and to model the hair formation process accompanying the proliferation and differentiation of the hair root cells in all three dimensions. In addition, to the growth period, the retraction and the resting periods are introduced to realize the hair cycle using this model.

  3. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to capsaicin and maintenance of body weight after weight loss (ID 2039, 2041, 2042), increase in carbohydrate oxidation (ID 2040), and contribution to normal hair growth

    DEFF Research Database (Denmark)

    Tetens, Inge

    claims in relation to capsaicin and contribution to the maintenance or achievement of a normal body weight, increase in carbohydrate oxidation, and contribution to normal hair growth. The scientific substantiation is based on the information provided by the Member States in the consolidated list...

  4. Hair camouflage: A comprehensive review.

    Science.gov (United States)

    Saed, Stephanie; Ibrahim, Omer; Bergfeld, Wilma F

    2017-03-01

    Hair is venerated, cherished, and desired in societies throughout the world. Both women and men express their individual identities through their hairstyles. Healthy hair contributes to successful social assimilation, employment, and overall quality of life. Therefore, hair loss can have detrimental effects on almost every aspect of a person's life. In this review, we discuss the myriad of options that aid in concealing and camouflaging hair loss to facilitate a healthier-appearing scalp. Camouflage options for patients who suffer from hair loss include full or partial wigs, hair extensions, concealing powders and sprays, surgical tattoos, and hair transplants. We describe these modalities in detail and discuss their respective advantages and disadvantages.

  5. Characteristics of dye Rhoeo spathacea in dye sensitizer solar cell (DSSC)

    Science.gov (United States)

    Sumardiasih, Sri; Obina, Wilfrida M.; Cari; Supriyanto, Agus; Septiawan, Trio Y.; Khairuddin

    2017-01-01

    Dye-sensitized solar cell (DSSC) is a device that converts solar energy into electrical energy. The magnitude of the efficiency of DSSC is mainly based on the amount of dye absorbed by the surface of TiO2. In this work, used natural dye extracted from leaves Rhoeo spathacea. The dye partially used to immerse of TiO2 as working electrodes, and the rest are directly mixed TiO2 paste to obtain dye titanium dioxide.The paste TiO2 and dye titanium dioxide coated onto the fluorine-doped tin oxide (FTO) glass plate by spin coating method. The absorbance spectra of the dye, dye titanium dioxide and TiO2 were obtained by UV-Vis spectroscopy. The conductivity of the dye, dye titanium dioxide, and TiO2 was measured by two point probe El-Kahfi 100. The DSSC based on dye titanium dioxide that stirring for 5 hours the highest efficiency of 0,0520 % whereas those based on TiO2 immersed for 36 hours showed achieved 0,0501 % obtained from I-V characterization.

  6. Characteristics of dye Rhoeo spathacea in dye sensitizer solar cell (DSSC)

    International Nuclear Information System (INIS)

    Sumardiasih, Sri; Obina, Wilfrida M.; Cari; Supriyanto, Agus; Septiawan, Trio Y.; Khairuddin

    2017-01-01

    Dye-sensitized solar cell (DSSC) is a device that converts solar energy into electrical energy. The magnitude of the efficiency of DSSC is mainly based on the amount of dye absorbed by the surface of TiO 2 . In this work, used natural dye extracted from leaves Rhoeo spathacea. The dye partially used to immerse of TiO 2 as working electrodes, and the rest are directly mixed TiO 2 paste to obtain dye titanium dioxide.The paste TiO 2 and dye titanium dioxide coated onto the fluorine-doped tin oxide (FTO) glass plate by spin coating method. The absorbance spectra of the dye, dye titanium dioxide and TiO 2 were obtained by UV-Vis spectroscopy. The conductivity of the dye, dye titanium dioxide, and TiO 2 was measured by two point probe El-Kahfi 100. The DSSC based on dye titanium dioxide that stirring for 5 hours the highest efficiency of 0,0520 % whereas those based on TiO 2 immersed for 36 hours showed achieved 0,0501 % obtained from I-V characterization. (paper)

  7. Adsorptive removal of an anionic dye Congo red by flower-like hierarchical magnesium oxide (MgO)-graphene oxide composite microspheres

    Science.gov (United States)

    Xu, Jing; Xu, Difa; Zhu, Bicheng; Cheng, Bei; Jiang, Chuanjia

    2018-03-01

    Flower-like magnesium oxide (MgO) microspheres and MgO-graphene oxide (GO) composites with an average diameter of 500 nm and hierarchical structure were synthesized through an ethylene glycol-mediated self-assembly process. The adsorption of Congo red (CR) by the prepared samples was evaluated in water under ambient conditions. The equilibrium adsorption isotherms of CR on the as-prepared samples could be described by the Langmuir model. The MgO-GO microspheres prepared with 0.5 wt% GO showed higher adsorption capacity (237.0 mg/g) than the MgO microspheres (227.7 mg/g). Adsorption kinetics results of CR indicated that pseudo-second-order kinetic equation could well explain the adsorption kinetics behaviors of CR. These findings indicate that the MgO-GO composite microspheres are potential adsorbents for effective removal of Congo red from wastewater.

  8. Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide

    International Nuclear Information System (INIS)

    Cheng, Hui-Pin; Huang, Yao-Hui; Lee, Changha

    2011-01-01

    The photocatalytic activity of a brick grain-supported iron oxide (denoted as B1) was tested for its activity to degrade Reactive Black 5 (RB5) in the presence of oxalic acid. B1 was obtained as a solid waste from a wastewater treatment plant, and characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and N 2 adsorption/desorption isotherm analyses. The decolorization experiments were performed in a fluidized bed reactor with aeration under UV-A irradiation (λ = 365 nm). The effects of various factors such as solution pH, concentration of oxalic acid and dissolved oxygen on the decolorization of RB5 were evaluated considering the contributions of adsorption and photo-catalytic degradation. The role of dissolved iron in the removal of RB5 and the stability of B1 were also examined. In addition, the removal of TOC during the photo-catalytic reaction was monitored.

  9. Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide.

    Science.gov (United States)

    Cheng, Hui-Pin; Huang, Yao-Hui; Lee, Changha

    2011-04-15

    The photocatalytic activity of a brick grain-supported iron oxide (denoted as B1) was tested for its activity to degrade Reactive Black 5 (RB5) in the presence of oxalic acid. B1 was obtained as a solid waste from a wastewater treatment plant, and characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and N(2) adsorption/desorption isotherm analyses. The decolorization experiments were performed in a fluidized bed reactor with aeration under UV-A irradiation (λ = 365 nm). The effects of various factors such as solution pH, concentration of oxalic acid and dissolved oxygen on the decolorization of RB5 were evaluated considering the contributions of adsorption and photo-catalytic degradation. The role of dissolved iron in the removal of RB5 and the stability of B1 were also examined. In addition, the removal of TOC during the photo-catalytic reaction was monitored. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hui-Pin [Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan (China); Huang, Yao-Hui, E-mail: yhhuang@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan (China); Lee, Changha, E-mail: clee@unist.ac.kr [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 698-805 (Korea, Republic of)

    2011-04-15

    The photocatalytic activity of a brick grain-supported iron oxide (denoted as B1) was tested for its activity to degrade Reactive Black 5 (RB5) in the presence of oxalic acid. B1 was obtained as a solid waste from a wastewater treatment plant, and characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and N{sub 2} adsorption/desorption isotherm analyses. The decolorization experiments were performed in a fluidized bed reactor with aeration under UV-A irradiation ({lambda} = 365 nm). The effects of various factors such as solution pH, concentration of oxalic acid and dissolved oxygen on the decolorization of RB5 were evaluated considering the contributions of adsorption and photo-catalytic degradation. The role of dissolved iron in the removal of RB5 and the stability of B1 were also examined. In addition, the removal of TOC during the photo-catalytic reaction was monitored.

  11. The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study

    International Nuclear Information System (INIS)

    Hsing, H.-J.; Chiang, P.-C.; Chang, E.-E.; Chen, M.-Y.

    2007-01-01

    The comparison of different advanced oxidation processes (AOPs), i.e. ultraviolet (UV)/TiO 2 , O 3 , O 3 /UV, O 3 /UV/TiO 2 , Fenton and electrocoagulation (EC), is of interest to determine the best removal performance for the destruction of the target compound in an Acid Orange 6 (AO6) solution, exploring the most efficient experimental conditions as well; on the other hand, the results may provide baseline information of the combination of different AOPs in treating industrial wastewater. The following conclusions can be drawn: (1) in the effects of individual and combined ozonation and photocatalytic UV irradiation, both O 3 /UV and O 3 /UV/TiO 2 processes exhibit remarkable TOC removal capability that can achieve a 65% removal efficiency at pH 7 and O 3 dose = 45 mg/L; (2) the optimum pH and ratio of [H 2 O 2 ]/[Fe 2+ ] found for the Fenton process, are pH 4 and [H 2 O 2 ]/[Fe 2+ ] = 6.58. The optimum [H 2 O 2 ] and [Fe 2+ ] under the same HF value are 58.82 and 8.93 mM, respectively; (3) the optimum applied voltage found in the EC experiment is 80 V, and the initial pH will affect the AO6 and TOC removal rates in that acidic conditions may be favorable for a higher removal rate; (4) the AO6 decolorization rate ranking was obtained in the order of O 3 3 /UV = O 3 /UV/TiO 2 3 = Fenton 3 /UV 3 /UV/TiO 2 for 30 min of reaction time

  12. Electrochemical oxidation of acid black 210 dye on the boron-doped diamond electrode in the presence of phosphate ions: Effect of current density, pH, and chloride ions

    International Nuclear Information System (INIS)

    Costa, Carla Regina; Montilla, Francisco; Morallon, Emilia; Olivi, Paulo

    2009-01-01

    The electrochemical oxidation of acid black 210 dye (AB-210) on the boron-doped diamond (BDD) was investigated under different pH conditions. The best performance for the AB-210 oxidation occurred in alkaline phosphate solution. This is probably due to oxidizing agents such as phosphate radicals and peroxodiphosphate ions, which can be electrochemically produced with good yields on the BDD anode, mainly in alkaline solution. Under this condition, the COD (chemical oxygen demand) removal was higher than that obtained from the model proposed by Comninellis. Electrolyses performed in phosphate buffer and in the presence of chloride ions resulted in faster COD and color removals in acid and neutral solutions, but in alkaline phosphate solution, a better performance in terms of TOC removal was obtained in the absence of chloride. Moreover, organochloride compounds were detected in all electrolyses performed in the presence of chloride. The AB-210 electrooxidation on BDD using phosphate as supporting electrolyte proved to be interesting since oxidizing species generated from phosphate ions were able to completely degrade the dye without producing organochloride compounds.

  13. The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Hsing, H.-J. [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan (China); Chiang, P.-C. [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan (China)]. E-mail: pcchiang@ntu.edu.tw; Chang, E.-E. [Department of Biochemistry, Taipei Medical University, 25 Wu-Shin Street, Taipei 106, Taiwan (China); Chen, M.-Y. [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan (China)

    2007-03-06

    The comparison of different advanced oxidation processes (AOPs), i.e. ultraviolet (UV)/TiO{sub 2}, O{sub 3}, O{sub 3}/UV, O{sub 3}/UV/TiO{sub 2}, Fenton and electrocoagulation (EC), is of interest to determine the best removal performance for the destruction of the target compound in an Acid Orange 6 (AO6) solution, exploring the most efficient experimental conditions as well; on the other hand, the results may provide baseline information of the combination of different AOPs in treating industrial wastewater. The following conclusions can be drawn: (1) in the effects of individual and combined ozonation and photocatalytic UV irradiation, both O{sub 3}/UV and O{sub 3}/UV/TiO{sub 2} processes exhibit remarkable TOC removal capability that can achieve a 65% removal efficiency at pH 7 and O{sub 3} dose = 45 mg/L; (2) the optimum pH and ratio of [H{sub 2}O{sub 2}]/[Fe{sup 2+}] found for the Fenton process, are pH 4 and [H{sub 2}O{sub 2}]/[Fe{sup 2+}] = 6.58. The optimum [H{sub 2}O{sub 2}] and [Fe{sup 2+}] under the same HF value are 58.82 and 8.93 mM, respectively; (3) the optimum applied voltage found in the EC experiment is 80 V, and the initial pH will affect the AO6 and TOC removal rates in that acidic conditions may be favorable for a higher removal rate; (4) the AO6 decolorization rate ranking was obtained in the order of O{sub 3} < O{sub 3}/UV = O{sub 3}/UV/TiO{sub 2} < EC < Fenton; (5) the ranking of TOC removal efficiency of selected AOPs was in the order of O{sub 3} = Fenton < EC < O{sub 3}/UV < O{sub 3}/UV/TiO{sub 2} for 30 min of reaction time.

  14. Essential of Hair Care Cosmetics

    Directory of Open Access Journals (Sweden)

    Aurora Alessandrini

    2016-09-01

    Full Text Available Nowadays, hair care and style play a very important role in people’s physical aspect and self-perception. Hair cosmetics can be distinguished into two main categories: cosmetics with temporary effect on the hair, for example shampoos, conditioners, sprays, and temporary colors; and cosmetics with permanent effect on the hair, such as permanent waves, relaxers, bleaches and permanent colors. These cosmetic procedures may induce hair abnormalities. We provide an overview on the most important characteristics of these procedures, analyzing components and effects on the hair. Finally, we evaluated new camouflage techniques and tattoo scalp.

  15. Radiation Degradation of some Commercial Dyes in Wastewater

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Abdel-Aal, S.E.

    1999-01-01

    The degradation Kinetic due to irradiation of aqueous solutions of some commercial dyes, (Reactive Blue Brilliant, Reactive Yellow and Basic Blue 9 Dye (Methylene Blue 2 B), was studied. Factors affecting radiolysis of the dye such as dye concentration, irradiation dose, dose rate and ph of the solutions were studied. The effects of different additives such as nitrogen oxygen, hydrogen peroxide and sodium hypochlorite on the degradation process were investigated. The effect of irradiation dose on the different dye solutions at various concentrations, showed that the Reactive Yellow G. was very sensitive to gamma radiation. The effect of the ph of the dye solutions proved to very according type of the dye. Synergistic treatment of the dye solutions by irradiation and conventional method showed that saturation of the dye solutions with nitrogen did not enhance the radiation degradation of the dyes, while addition of oxygen resulted in a remarkable enhancement of the degradation of the dyes. Also, the addition of sodium hypochlorite (5%) and the oxidation by hydrogen peroxide resulted in more radiation degradation, Also, adsorption of the dyes onto Ga and some ion exchangers showed that Ga has the highest adsorption capacity. Radiation degradation of the toxic dye pollutants and their removal from wastewater down to concentrations not exceeding the maximum permissible concentration (Mpc) according to international standards, proved to be better than conventional methods of purification alone

  16. Application of natural dyes in textile industry and the treatment of dye solutions using electrolytic techniques

    OpenAIRE

    Abouamer, Karima Massaud

    2008-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 25/02/2008. Anodic oxidation of a commercial dye, methylene blue (MB), from aqueous solutions using an electrochemical cell is reported. Data are provided on the effects of eight different types of supporting electrolytes, concentration of electrolytes, initial dye concentration, current and electrolytic time on the percentage removal of methylene blue. Anodic oxidation was found to be effect...

  17. Anaerobic azo dye reduction

    OpenAIRE

    Zee, van der, F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also because many azo dyes and their breakdown products are toxic and/or mutagenic to life. To remove azo dyes from wastewater, a biological treatment strategy based on anaerobic reduction of the azo dye...

  18. Managing Chemotherapy Side Effects: Hair Loss (Alopecia)

    Science.gov (United States)

    ... C ancer I nstitute Managing Chemotherapy Side Effects Hair Loss (Alopecia) “Losing my hair was hard at first. ... and anywhere on your body may fall out. Hair loss is called alopecia. When will my hair start ...

  19. Effective extraction and simultaneous determination of Sudan dyes from tomato sauce and chili-containing foods using magnetite/reduced graphene oxide nanoparticles coupled with high-performance liquid chromatography.

    Science.gov (United States)

    Zhang, Ming-Yue; Wang, Man-Man; Hao, Yu-Lan; Shi, Xin-Ran; Wang, Xue-Sheng

    2016-05-01

    A simple, effective, and robust magnetic solid-phase extraction method was developed using magnetite/reduced graphene oxide nanoparticles as the adsorbent for the simultaneous determination of Sudan dyes (I, II, III, and IV) in foodstuffs. The magnetite/reduced graphene oxide nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometry. The extraction parameters including extraction time, elution solution, and elution time and volume were investigated in detail. Such magnetite/reduced graphene oxide nanoparticles based magnetic solid-phase extraction in combination with high-performance liquid chromatography and variable wavelength detection gave the detection limits of 3-6 μg/kg for Sudan I-IV in chili sauce, tomato sauce, chili powder, and chili flake samples. The recoveries were 79.6-108% at three spiked levels with the intra- and inter-day relative standard deviations of 1.2-8.6 and 4.5-9.6%, respectively. The feasibility was further performed by a comparison with commercial alumina-N. This method is suitable for the routine analysis of Sudan dyes due to its sensitivity, simplicity, and low cost. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hair analysis using PIXE

    International Nuclear Information System (INIS)

    Li Hongkou.

    1983-10-01

    A simple new technique for examining single hair strands to obtain linear mass densities, longitudinal profiles and transverse distribution of each trace element is described. It is primarily based upon the PIXE technique, in combination with proton back- scattering. The three main components of this technique are: 1) An accurate way of using an interpolation method to evaluate the magnitude of the correction factor accounting for the proton energy loss and X-ray absorption in the bulk of the hair is formulated; 2) A simple method to qualitatively determine the transverse distribution of each trace element in a hair is in- troduced and proved to be effective; 3) Proton back-scattering is proved to be capable of providing an ideal linear measure of the geometric hair diameter, one of the most important parameters in quantifying the results of PIXE measurements in mass concentrations. Using the technique, a PIXE system designed and constructed for routine longitudinal scanning of single hair strands is also described. (Author)

  1. Body hair transplant: An additional source of donor hair in hair restoration surgery

    Directory of Open Access Journals (Sweden)

    Poswal Arvind

    2007-01-01

    Full Text Available Androgenic alopecia (pattern baldness is a condition in which there is androgen mediated progressive miniaturization and loss of hair follicles in a genetically susceptible individual. A 47-year-old male patient with advanced degree of hair loss (Norwood 6 category wanted to go for full hair restoration surgery. Due to the limited availability of donor hair in the scalp, a small session with 700-chest hair was performed. On follow-up at eight months it was observed that chest hair grew and formed a cosmetically acceptable forelock.

  2. Trichotillomania (Hair-Pulling Disorder)

    Science.gov (United States)

    ... pulling Biting, chewing or eating pulled-out hair Playing with pulled-out hair or rubbing it across ... of trichotillomania: Family history. Genetics may play a role in the development of trichotillomania, and the disorder ...

  3. Hair follicle proteoglycans

    DEFF Research Database (Denmark)

    Couchman, J R

    1993-01-01

    that are present in the epithelial and stromal compartments of hair follicles. However, the transmembrane proteoglycan syndecan may be important in follicle morphogenesis, both with respect to the epithelium and dermal papilla cells. Syndecan may possess both heparan and chondroitin sulfate chains, interacts...... basement membranes, including those surrounding the epithelial compartment of hair follicles. Additionally, and quite unlike the dermis, the dermal papilla is enriched in basement-membrane components, especially a chondroitin 6-sulfate-containing proteoglycan, BM-CSPG. The function of this proteoglycan...... is not known, but developmental studies indicate that it may have a role in stabilizing basement membranes. In the hair cycle, BM-CSPG decreases through catagen and is virtually absent from the telogen papilla. One or more heparan sulfate proteoglycans, including perlecan, are also present in papilla...

  4. Mercury analysis in hair

    DEFF Research Database (Denmark)

    Esteban, Marta; Schindler, Birgit K; Jiménez-Guerrero, José A

    2015-01-01

    Human biomonitoring (HBM) is an effective tool for assessing actual exposure to chemicals that takes into account all routes of intake. Although hair analysis is considered to be an optimal biomarker for assessing mercury exposure, the lack of harmonization as regards sampling and analytical...... assurance program (QAP) for assessing mercury levels in hair samples from more than 1800 mother-child pairs recruited in 17 European countries. To ensure the comparability of the results, standard operating procedures (SOPs) for sampling and for mercury analysis were drafted and distributed to participating...... laboratories. Training sessions were organized for field workers and four external quality-assessment exercises (ICI/EQUAS), followed by the corresponding web conferences, were organized between March 2011 and February 2012. ICI/EQUAS used native hair samples at two mercury concentration ranges (0...

  5. Why Does Hair Turn Gray?

    Science.gov (United States)

    ... out, but people with naturally lighter hair are just as likely to go gray. From the time a person notices a few gray hairs, it may take more than 10 years for all of that person's hair to turn ... really believe that this happens. Just in case, try not to freak out your ...

  6. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  7. Effect of Mixing Dyes and Solvent in Electrolyte Toward Characterization of Dye Sensitized Solar Cell Using Natural Dyes as The Sensitizer

    Science.gov (United States)

    Puspitasari, Nurrisma; Nurul Amalia, Silviyanti S.; Yudoyono, Gatut; Endarko

    2017-07-01

    Dye Sensitized Solar Cell (DSSC) using natural dyes (chlorophyll, curcumin from turmeric extract, and anthocyanin from mangosteen extract) have been successfully fabricated for determining the effect of variation natural dyes, mixing dyes and acetonitrile in electrolyte toward characterization of DSSC. DSSC consists of five parts namely ITO (Indium Tin Oxide) as a substrate; TiO2 as semiconductor materials; natural dyes as an electron donor; electrolyte as electron transfer; and carbon as a catalyst that can convert light energy into electric energy. Two types of gel electrolyte based on PEG that mixed with liquid electrolyte have utilized for analyzing the lifetime of DSSC. Type I used distilled water as a solvent whilst type II used acetonitrile as a solvent with addition of concentration of KI and iodine. The main purpose of study was to investigate influence of solvent in electrolyte, variation of natural dyes and mixing dyes toward an efficiency that resulted by DSSC. The result showed that electrolyte type II is generally better than type I with efficiency 0,0556 and 0,0456 %, respectively. An efficiency values which resulted from a variation of mixed three natural dyes showed the greatest efficiency compared to mixed two natural dyes and one dye, with an efficiency value can be achieved at 0,0194 % for chlorophyll; 0,111 % for turmeric; 0,0105 % for mangosteen; 0,0244% (mangosteen and chlorophyll); 0,0117 % (turmeric and mangosteen); 0,0158 % (turmeric and chlorophyll); and 0.0566 % (mixed three natural dyes).

  8. Hybrid Monolith of Graphene/TEMPO-Oxidized Cellulose Nanofiber as Mechanically Robust, Highly Functional, and Recyclable Adsorbent of Methylene Blue Dye

    Directory of Open Access Journals (Sweden)

    Asif Hussain

    2018-01-01

    Full Text Available Herein we demonstrate first report on fabrication, characterization, and adsorptive appraisal of graphene/cellulose nanofibers (GO/CNFs monolith for methylene blue (MB dye. Series of hybrid monolith (GO/CNFs were assembled via urea assisted self-assembly method. Hybrid materials were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction patterns, Raman spectroscopy, elemental analysis, thermogravimetric curve analysis, specific surface area, surface charge density measurement, and compressional mechanical analysis. It was proposed that strong chemical interaction (mainly hydrogen bonding was responsible for the formation of hybrid assembly. GO/CNFs monolith showed mechanically robust architecture with tunable pore structure and surface properties. GO/CNFs adsorbent could completely remove trace to moderate concentrations of MB dye and follow pseudo-second-order kinetics model. Adsorption isotherm behaviors were found in the following order: Langmuir isotherm > Freundlich isotherm > Temkin isotherm model. Maximum adsorption capacity of 227.27 mg g−1 was achieved which is much higher than reported graphene based monoliths and magnetic adsorbent. Incorporation of nanocellulose follows exponential relationship with dye uptake capacities. High surface charge density and specific surface area were main dye adsorptive mechanism. Regeneration and recycling efficiency was achieved up to four consecutive cycles with cost-effective recollection and zero recontamination of treated water.

  9. Review: Paraphenylene Diamine (Hair Dye) Poisoning in Children ...

    African Journals Online (AJOL)

    Review: PPD intoxication is a major health problem in eastern Africa, particularly Sudan, and in Morocco. It is also common in the Indian subcontinent. In two large series from Morocco and Sudan, Children constituted 11.5% and 18% of affected individuals respectively. Acute poisoning by PPD causes characteristic severe ...

  10. Hair Cortisol in Twins

    DEFF Research Database (Denmark)

    Rietschel, Liz; Streit, Fabian; Zhu, Gu

    2017-01-01

    Hair cortisol concentration (HCC) is a promising measure of long-term hypothalamus-pituitary-adrenal (HPA) axis activity. Previous research has suggested an association between HCC and psychological variables, and initial studies of inter-individual variance in HCC have implicated genetic factors...

  11. Drug-induced hair loss.

    Science.gov (United States)

    2016-05-01

    Hair loss can have major psychological consequences. It can be due to a wide variety of causes, including hormonal disorders, dietary factors, infections, inflammation, trauma, emotional factors, and cancer. Drugs can also induce hair loss, by interacting with the hair growth cycle. Drug-induced hair loss may be immediate or delayed, sudden or gradual, and diffuse or localised. It is usually reversible after drug discontinuation. The drugs most often implicated in hair loss are anticancer agents, interferon, azole antifungals, lithium, immunosuppressants, and many other drugs belonging to a variety of pharmacological classes.

  12. A simple method for purification of vestibular hair cells and non-sensory cells, and application for proteomic analysis.

    Science.gov (United States)

    Herget, Meike; Scheibinger, Mirko; Guo, Zhaohua; Jan, Taha A; Adams, Christopher M; Cheng, Alan G; Heller, Stefan

    2013-01-01

    Mechanosensitive hair cells and supporting cells comprise the sensory epithelia of the inner ear. The paucity of both cell types has hampered molecular and cell biological studies, which often require large quantities of purified cells. Here, we report a strategy allowing the enrichment of relatively pure populations of vestibular hair cells and non-sensory cells including supporting cells. We utilized specific uptake of fluorescent styryl dyes for labeling of hair cells. Enzymatic isolation and flow cytometry was used to generate pure populations of sensory hair cells and non-sensory cells. We applied mass spectrometry to perform a qualitative high-resolution analysis of the proteomic makeup of both the hair cell and non-sensory cell populations. Our conservative analysis identified more than 600 proteins with a false discovery rate of Analysis of proteins exclusively detected in either population revealed 64 proteins that were specific to hair cells and 103 proteins that were only detectable in non-sensory cells. Statistical analyses extended these groups by 53 proteins that are strongly upregulated in hair cells versus non-sensory cells and vice versa by 68 proteins. Our results demonstrate that enzymatic dissociation of styryl dye-labeled sensory hair cells and non-sensory cells is a valid method to generate pure enough cell populations for flow cytometry and subsequent molecular analyses.

  13. Preparation and photocatalytic performance of Fe (III)-amidoximated PAN fiber complex for oxidative degradation of azo dye under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yongchun, E-mail: dye@tjpu.edu.cn [Division of Textile Chemistry and Ecology, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou, 350002 (China); Han, Zhenbang [Division of Textile Chemistry and Ecology, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Liu, Chunyan [Division of Textile Chemistry and Ecology, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou, 350002 (China); Du, Fang [Division of Textile Chemistry and Ecology, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China)

    2010-04-15

    Polyacrylonitrile (PAN) fiber was modified with hydroxylamine hydrochloride to introduce amidoxime groups onto the fiber surface. These amidoxime groups were used to react with Fe (III) ions to prepare Fe (III)-amidoximated PAN fiber complex, which was characterized using SEM, XRD, FTIR, XPS, DMA, and DRS respectively. Then the photocatalytic activity of Fe-AO-PAN was evaluated in the degradation of a typical azo dye, C. I. Reactive Red 195 in the presence of H{sub 2}O{sub 2} under visible light irradiation. Moreover, the effect of the Fe content of Fe-AO-PAN on dye degradation was also investigated. The results indicated that Fe (III) ions can crosslink between the modified PAN fiber chains by the coordination of Fe (III) ions with the amino nitrogen atoms and hydroxyl oxygen atoms of the amidoximation groups to form Fe (III)-amidoximated PAN fiber complex, and the Fe content of which is mainly determined by Fe (III) ions and amidoximation groups. Fe (III)-amidoximated PAN fiber complex is found to be activated in the visible light region. Moreover, Fe (III)-amidoximated PAN fiber complex shows the catalytic activity for dye degradation by H{sub 2}O{sub 2} at pH = 6.0 in the dark, and can be significantly enhanced by increasing light irradiation and Fe content, therefore, it can be used as a new heterogeneous Fenton photocatalyst for the effective decomposition of the dye in water. In addition, ESR spectra confirm that Fe (III)-amidoximated PAN fiber complex can generate more {center_dot}OH radicals from H{sub 2}O{sub 2} under visible light irradiation, leading to dye degradation. A possible mechanism of photocatalysis is proposed.

  14. Female pattern hair loss

    Directory of Open Access Journals (Sweden)

    Archana Singal

    2013-01-01

    Full Text Available Female pattern hair loss (FPHL is a common cause of hair loss in women characterized by diffuse reduction in hair density over the crown and frontal scalp with retention of the frontal hairline. Its prevalence increases with advancing age and is associated with significant psychological morbidity. The pathophysiology of FPHL is still not completely understood and seems to be multifactorial. Although androgens have been implicated, the involvement of androgen-independent mechanisms is evident from frequent lack of clinical or biochemical markers of hyperandrogenism in affected women. The role of genetic polymorphisms involving the androgen and estrogen receptors is being increasingly recognized in its causation and predicting treatment response to anti-androgens. There are different clinical patterns and classifications of FPHL, knowledge of which facilitates patient management and research. Chronic telogen effluvium remains as the most important differential diagnosis. Thorough history, clinical examination, and evaluation are essential to confirm diagnosis. Patients with clinical signs of androgen excess require assessment of biochemical parameters and imaging studies. It is prudent to screen the patients for metabolic syndrome and cardiovascular risk factors. The treatment comprises medical and/or surgical modalities. Medical treatment should be initiated early as it effectively arrests hair loss progression rather than stimulating regrowth. Minoxidil continues to be the first line therapy whereas anti-androgens form the second line of treatment. The progressive nature of FPHL mandates long-term treatment for sustained effect. Medical therapy may be supplemented with cosmetic concealment in those desirous of greater hair density. Surgery may be worthwhile in some carefully selected patients.

  15. Chemistry of Natural Dyes

    Indian Academy of Sciences (India)

    scientific principles, and the interaction between the dye and the dyed material is ... Dyes are classified based on their structure, source, method of application .... the right source that gives not only beautiful tones, but colourfast shades as well.

  16. Black Hole's 1/N Hair

    CERN Document Server

    Dvali, Gia

    2013-01-01

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

  17. uv dye lasers

    International Nuclear Information System (INIS)

    Abakumov, G.A.; Fadeev, V.V.; Khokhlov, R.V.; Simonov, A.P.

    1975-01-01

    The most important property of visible dye lasers, that is, continuous wavelength tuning, stimulated the search for dyes capable to lase in uv. They were found in 1968. Now the need for tunable uv lasers for applications in spectroscopy, photochemistry, isotope separation, remote air and sea probing, etc. is clearly seen. A review of some recent advances in uv dye lasers is reviewed

  18. Degradation of the azo dye Acid Red 1 by anodic oxidation and indirect electrochemical processes based on Fenton's reaction chemistry. Relationship between decolorization, mineralization and products

    International Nuclear Information System (INIS)

    Florenza, Xavier; Solano, Aline Maria Sales; Centellas, Francesc; Martínez-Huitle, Carlos Alberto

    2014-01-01

    Highlights: • Degradation of Acid Red 1 by anodic oxidation, electro-Fenton and photoelectro-Fenton • Quicker and similar decolorization by electro-Fenton and photoelectro-Fenton due to oxidation with ● OH in the bulk • Almost total mineralization by photoelectro-Fenton with Pt or BDD due to fast photolysis of products by UVA light • Detection of 11 aromatic products, 15 hydroxylated compounds, 13 desulfonated derivatives and 7 carboxylic acids • Release of NH 4 + , NO 3 − and SO 4 2− ions, and generation of persistent N-products of low molecular mass - Abstract: Solutions of 236 mg dm −3 Acid Red 1 (AR1), an azo dye widely used in textile dying industries, at pH 3.0 have been comparatively treated by anodic oxidation with electrogenerated H 2 O 2 (AO-H 2 O 2 ), electro-Fenton (EF) and photoelectro-Fenton (PEF) at constant current density (j). Assays were performed with a stirred tank reactor equipped with a Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H 2 O 2 generation from O 2 reduction. The main oxidizing agents were hydroxyl radicals produced at the anode from water oxidation in all methods and in the bulk from Fenton's reaction between generated H 2 O 2 and 0.5 mmol dm −3 Fe 2+ in EF and PEF. For each anode, higher oxidation power was found in the sequence AO-H 2 O 2 < EF < PEF. The oxidation ability of the BDD anode was always superior to that of Pt. Faster and similar decolorization efficiency was achieved in EF and PEF owing to the quicker destruction of aromatics with hydroxyl radicals produced in the bulk. The PEF process with BDD was the most potent method yielding almost total mineralization due to the additional rapid photolysis of recalcitrant intermediates like Fe(III)-carboxylate complexes under UVA irradiation. The increase in j always enhanced the decolorization and mineralization processes because of the greater production of hydroxyl radicals, but decreases the mineralization current efficiency

  19. A multi-institutional joint study of contact dermatitis related to hair colouring and perming agents in Japan.

    Science.gov (United States)

    Ito, Akiko; Nishioka, Kazue; Kanto, Hiromi; Yagami, Akiko; Yamada, Shigeki; Sugiura, Mariko; Yasunaga, Chihiro; Yoshii, Keiko; Kobayashi, Hiromi; Adachi, Atsuko; Ikezawa, Yuko; Washizaki, Kumiko; Inui, Shigeki; Miyazawa, Hitoshi; Oiso, Naoki; Nakata, Tokio; Matsunaga, Kayoko

    2017-07-01

    In Japan, allergic contact dermatitis caused by hair colouring agents is a considerable problem for those occupationally exposed and also for consumers. Over the last 20 years, p-phenylenediamine (PPD) has been a common allergen, with ∼7% positive patch test reactions. To investigate which ingredients caused allergic contact dermatitis related to hair dye and perming solutions in Japan, to assess whether PPD is suitable for screening for hair dye allergy, and to propose allergens for a Japanese hairdresser series. We selected 19 hair cosmetic allergens, including PPD, Bandrowski's base, cysteamine HCl, and ammonium thioglycolate. Altogether 203 patients (26 males and 177 females) with suspected contact allergy to hair colouring or perming solutions at 14 hospitals in Japan were included. The highest prevalence of positive reactions (35.1%) was for PPD. p-Methylaminophenol and o-aminophenol were often positive, both in the PPD-positive and in the PPD-negative patients. Moreover, cysteamine HCl often yielded positive test reactions. PPD is insufficient to diagnose contact allergy caused by to hair dyes. We recommend 13 allergens to be included in a Japanese hairdresser series. © 2017 The Authors. Contact Dermatitis published by John Wiley & Sons Ltd.

  20. Mechanism of azo dye degradation in Advanced Oxidation Processes: Degradation of Sulfanilic Acid Azochromotrop and its parent compounds in aqueous solution by ionizing radiation

    International Nuclear Information System (INIS)

    Palfi, Tamas; Wojnarovits, Laszlo; Takacs, Erzsebet

    2011-01-01

    Mechanistic studies were made on hydroxyl radical and hydrated electron reaction with Sulfanilic Acid Azochromotrop (SPADNS) as model azo dye in dilute aqueous solution. SPADNS contains 4,5-dihydroxynaphthalene-2,7-disulfonic acid part and 4-sulfophenylazo group. To establish the details of the reaction mechanism the reactions of two simpler molecules without 4-sulfophenylazo part were also studied: one of them contained one (in position 4, II), the other two (in positions 4 and 5, III) -OH groups. Hydroxyl radicals react with these molecules with radical addition to the naphthalene-2,7-disulfonic acid part. The adduct hydroxycyclohexadienyl type radical decays in radical-radical reactions, or undergoes a (pH dependent) water elimination to yield naphthoxy radical. The radical decay takes place on the ms timescale. Degradation efficiencies are 0.6-0.8. Hydrated electron in the case of the two simpler molecules reacts with the rings, while in the case of dye with the azo bond. Electron scavenging is followed by protonation, this reaction in the case of II and III yields cyclohexadienyl, while with the dye hydrazo radical. The efficiency of degradation with II and III is 0.2-0.6, while for SPADNS it is close to 1.

  1. Microscopy of the hair and trichogram

    Directory of Open Access Journals (Sweden)

    Özlem Dicle

    2014-06-01

    Full Text Available Hair microscopy is a fast and simple method for the diagnosis of various disorders affecting the hair in daily practice. For the microscopy of the hair, samples are collected by either clipping or plucking. The trichogram technique which the hair sample is collected by a standardized plucking method is used for the diagnosis of hair shedding and of alopecia via hair root pattern. In this review, the examination techniques and details are discussed and the most common indications for the hair microscopy including hair abnormalities as a part of genodermatosis and, infections and infestations affecting the hair are highlighted.

  2. Female Pattern Hair Loss

    Science.gov (United States)

    Herskovitz, Ingrid; Tosti, Antonella

    2013-01-01

    Context: Female pattern hair loss (FPHL) also known as female androgenetic alopecia is a common condition afflicting millions of women that can be cosmetically disrupting. Prompt diagnosis and treatment are essential for obtaining optimal outcome. This review addresses the clinical presentation of female pattern hair loss, its differential diagnosis and treatment modalities. Evidence Acquisition: A) Diffuse thinning of the crown region with preservation of the frontal hairline (Ludwig’s type) B) The “Christmas tree pattern” where the thinning is wider in the frontal scalp giving the alopecic area a triangular shaped figure resembling a christmas tree. C) Thinning associated with bitemporal recession (Hamilton type). Generally, FPHL is not associated with elevated androgens. Less commonly females with FPHL may have other skin or general signs of hyperandrogenism such as hirsutism, acne, irregular menses, infertility, galactorrhea and insulin resistance. The most common endocrinological abnormality associated with FPHL is polycystic ovarian syndrome (PCOS). Results: The most important diseases to consider in the differential diagnosis of FPHL include Chronic Telogen Effluvium (CTE), Permanent Alopecia after Chemotherapy (PAC), Alopecia Areata Incognito (AAI) and Frontal Fibrosing Alopecia (FFA). This review describes criteria for distinguishing these conditions from FPHL. Conclusions: The only approved treatment for FPHL, which is 2% topical Minoxidil, should be applied at the dosage of 1ml twice day for a minimum period of 12 months. This review will discuss off-label alternative modalities of treatment including 5-alfa reductase inhibitors, antiandrogens, estrogens, prostaglandin analogs, lasers, light treatments and hair transplantation. PMID:24719635

  3. Female pattern hair loss.

    Science.gov (United States)

    Herskovitz, Ingrid; Tosti, Antonella

    2013-10-01

    Female pattern hair loss (FPHL) also known as female androgenetic alopecia is a common condition afflicting millions of women that can be cosmetically disrupting. Prompt diagnosis and treatment are essential for obtaining optimal outcome. This review addresses the clinical presentation of female pattern hair loss, its differential diagnosis and treatment modalities. A) Diffuse thinning of the crown region with preservation of the frontal hairline (Ludwig's type) B) The "Christmas tree pattern" where the thinning is wider in the frontal scalp giving the alopecic area a triangular shaped figure resembling a christmas tree. C) Thinning associated with bitemporal recession (Hamilton type). Generally, FPHL is not associated with elevated androgens. Less commonly females with FPHL may have other skin or general signs of hyperandrogenism such as hirsutism, acne, irregular menses, infertility, galactorrhea and insulin resistance. The most common endocrinological abnormality associated with FPHL is polycystic ovarian syndrome (PCOS). The most important diseases to consider in the differential diagnosis of FPHL include Chronic Telogen Effluvium (CTE), Permanent Alopecia after Chemotherapy (PAC), Alopecia Areata Incognito (AAI) and Frontal Fibrosing Alopecia (FFA). This review describes criteria for distinguishing these conditions from FPHL. The only approved treatment for FPHL, which is 2% topical Minoxidil, should be applied at the dosage of 1ml twice day for a minimum period of 12 months. This review will discuss off-label alternative modalities of treatment including 5-alfa reductase inhibitors, antiandrogens, estrogens, prostaglandin analogs, lasers, light treatments and hair transplantation.

  4. Syntheses, structures, electrochemistry and catalytic oxidation degradation of organic dyes of two new coordination polymers derived from Cu(II) and Mn(II) and 1-(tetrazo-5-yl)-4-(triazo-1-yl)benzene

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ming; Mu, Bao; Huang, Ru-Dan, E-mail: huangrd@bit.edu.cn

    2017-02-15

    Two new coordination polymers (CPs), namely, [Cu{sub 2}(ttbz)(H{sub 2}btc){sub 2}(OH)]{sub n} (1) and [Mn(ttbz){sub 2}(H{sub 2}O){sub 2}]{sub n} (2) (Httbz =1-(tetrazo-5-yl)-4-(triazo-1-yl)benzene, H{sub 3}btc =1,3,5-benzenetricarboxylic acid), have been hydrothermally synthesized and structurally characterized. Complex 1 exhibits a (3,5,5,5)-connected 2D layer with a Schläfli symbol of (3·4{sup 2})(3·4{sup 4}0.5{sup 2}0.6{sup 3})(3{sup 2}0.4{sup 4}0.5{sup 2}0.6{sup 2})(3{sup 2}0.4{sup 4}0.5{sup 3}0.6), in which the ttbz{sup -} ligand can be described as μ{sub 5}-bridge, linking Cu(II) ions into a 2D layer and H{sub 2}btc{sup -} ions play a supporting role in complex 1. The ttbz{sup -} ligand in complex 2 represents the bridging coordination mode, connecting two Mn(II) ions to form the infinite 1D zigzag chains, respectively, which are further connected by two different types of hydrogen bonds to form a 3D supramolecular. Furthermore, catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated at room temperature in aqueous solutions, indicating these complexes may be applicable to color removal in a textile wastewater stream and practical applications in areas of electrocatalytic reduction toward nitrite, respectively. - Graphical abstract: Two new coordination polymers based on different structural characteristics have been hydrothermally synthesized by the mixed ligands. The catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated. - Highlights: • The organic ligand containing the tetrazolyl group and triazolyl group with some advantages has been used. • Two new coordination polymers with different structural characteristics has been discussed in detail. • Catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated.

  5. Trace element determination study in human hair by neutron activation analysis

    International Nuclear Information System (INIS)

    Frazao, Selma Violato

    2008-01-01

    showed that element adsorption or desorption occurs due to the dye. Analysis of hair samples collected from different regions of the head presented significant differences for the elements Fe, Sc, Se and Cr, indicating the importance of defining head regions for hair sample collection. Results of hair analysis from individuals residing in Sao Paulo metropolitan area showed individual differences for age, gender and natural hair color. Results obtained in this population also showed, that the mean element concentrations found are within the literature values. (author)

  6. Systemic causes of hair loss.

    Science.gov (United States)

    Lin, Richard L; Garibyan, Lilit; Kimball, Alexandra B; Drake, Lynn A

    2016-09-01

    Hair loss is both a common chief complaint by patients and a clinical challenge for physicians, especially general practitioners, yet few dermatological problems yield as much patient satisfaction when resolved as hair loss. The diagnosis is often attributed to androgen-related hair loss, while other causes, some of which are life-threatening but treatable, are overlooked. We searched for relevant literature on hair loss and supported these findings with our clinical experience to identify seven major systemic etiologies of hair loss, ranging from infectious agents to consumption of unsafe supplements. Many causes are only described in the literature through case studies, though some original articles and meta-analyses are available. Careful history taking, proper examination techniques, and judicious use of laboratory tests are essential to reach at the correct diagnosis in a cost-effective manner when performing patient work-up. Such methodical evaluation of hair loss can result in the appropriate treatment plan and provide significant patient satisfaction. Key messages Hair loss is a common chief complaint and a difficult challenge for both general practitioners and dermatology consultants. We identified seven major categories of systemic hair loss etiology and present a framework for their clinical evaluation. A methodical approach to hair loss can result in the appropriate treatment plan and provide significant patient satisfaction.

  7. The amazing miniorgan: Hair follicle

    Directory of Open Access Journals (Sweden)

    Çiler Çelik Özenci

    2014-06-01

    Full Text Available Hair is a primary characteristic of mammals, and exerts a wide range of functions including thermoregulation, physical protection, sensory activity, and social interactions. The hair shaft consists of terminally differentiated keratinocytes that are produced by the hair follicle. Hair follicle development takes place during fetal skin development and relies on tightly regulated ectodermal–mesodermal interactions. Hair follicles form during embryonic development and, after birth, undergo recurrent cycling of growth (anagen, apoptosis-driven regression (catagen, and relative quiescence (telogen. As a functional mini-organ, the hair follicle develops in an environment with dynamic and alternating changes of diverse molecular signals. Our molecular understanding of hair follicle biology relies heavily on genetically engineered mouse models with abnormalities in hair structure, growth, and/or pigmentation and significant advances have been made toward the identification of key signaling pathways and the regulatory genes involved. In this review, the basic concepts of hair follicle, a mini-complex organ, biology will be presented and its importance in clinical applications will be summarized.

  8. Excessive or unwanted hair in women

    Science.gov (United States)

    Hypertrichosis; Hirsutism; Hair - excessive (women); Excessive hair in women; Hair - women - excessive or unwanted ... Women normally produce low levels of male hormones (androgens). If your body makes too much of this ...

  9. Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: Kinetic and isotherm study

    Science.gov (United States)

    Maghsoudi, M.; Ghaedi, M.; Zinali, A.; Ghaedi, A. M.; Habibi, M. H.

    2015-01-01

    In this research, ZnO nanoparticle loaded on activated carbon (ZnO-NPs-AC) was synthesized simply by a low cost and nontoxic procedure. The characterization and identification have been completed by different techniques such as SEM and XRD analysis. A three layer artificial neural network (ANN) model is applicable for accurate prediction of dye removal percentage from aqueous solution by ZnO-NRs-AC following conduction of 270 experimental data. The network was trained using the obtained experimental data at optimum pH with different ZnO-NRs-AC amount (0.005-0.015 g) and 5-40 mg/L of sunset yellow dye over contact time of 0.5-30 min. The ANN model was applied for prediction of the removal percentage of present systems with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) in the hidden layer with 6 neurons. The minimum mean squared error (MSE) of 0.0008 and coefficient of determination (R2) of 0.998 were found for prediction and modeling of SY removal. The influence of parameters including adsorbent amount, initial dye concentration, pH and contact time on sunset yellow (SY) removal percentage were investigated and optimal experimental conditions were ascertained. Optimal conditions were set as follows: pH, 2.0; 10 min contact time; an adsorbent dose of 0.015 g. Equilibrium data fitted truly with the Langmuir model with maximum adsorption capacity of 142.85 mg/g for 0.005 g adsorbent. The adsorption of sunset yellow followed the pseudo-second-order rate equation.

  10. The Potential of Fe-exchanged Y Zeolite as a Heterogeneous Fenton-type Catalyst for Oxidative Degradation of Reactive Dye in Water

    OpenAIRE

    Aleksić, M.; Koprivanac, N.; Lončarić Božić, A.; Kušić, H.

    2010-01-01

    The study aimed to investigate the potential of Fe-exchanged zeolites of Y-type as a catalyst in heterogeneous Fenton-type processes for the degradation of model organic pollutant, reactive azo dye C.I. Reactive Blue 137, in water. The research work was directed to investigate the influence of process variables, such as FeY catalyst dosage, Fenton reagent ratio, and initial operating pH on the efficiency of the treatment process. The performance of the studied heterogeneous process was compar...

  11. Adsorptive removal of cationic dye from aqueous solution using ...

    African Journals Online (AJOL)

    PROF HORSFALL

    Received 15 October 2017, received in revised form 03 December 2017, accepted 31 December 2017. Keywords: African Border Tree, ... to remove dyes include flocculation, oxidation, ..... estuarine algae, crustaceans and fishes. Environ.

  12. Anaphylaxis, contact urticaria, and allergic asthma caused by persulfates in hair bleaching products

    NARCIS (Netherlands)

    Hoekstra, Miriam; Schuttelaar, M.L.; Coenraads, P.J.

    2010-01-01

    Background: Persulfate salts are potent oxidizing agents in hair bleach products that accelerate the bleaching process. Ammonium and potassium persulfates may cause delayedtype and immediate skin reactions. Also allergic asthma and rhinitis have been described. Objectives: Ammonium and potassium

  13. Dye Sensitized Solar Cell with Conventionally Annealed and Post-Hydrothermally Treated Nanocrystalline Semiconductor Oxide TiO2 Derived from Sol-Gel Process

    Directory of Open Access Journals (Sweden)

    Akhmad Yuwono

    2011-05-01

    Full Text Available Dye-sensitized solar cell (DSSC is one of the very promising alternative renewable energy sources to anticipate the declination in the fossil fuel reserves in the next few decades and to make use of the abundance of intensive sunlight energy in tropical countries like Indonesia. In the present study, TiO2 nanoparticles of different nanocrystallinity was synthesized via sol−gel process with various water to inorganic precursor ratio (Rw of 0.85, 2.00 and 3.50 upon sol preparation, followed with subsequent drying, conventional annealing and post-hydrothermal treatments. The resulting nanoparticles were integrated into the DSSC prototype and sensitized with an organic dye made of the extract of red onion. The basic performance of the fabricated DSSC has been examined and correlated to the crystallite size and band gap energy of TiO2 nanoparticles. It was found that post-hydrothermally treated TiO2 nanoparticles derived from sol of 2.00 Rw, with the most enhanced nanocrystalline size of 12.46 nm and the lowest band gap energy of 3.48 eV, showed the highest open circuit voltage (Voc of 69.33 mV.

  14. Radiolysis of organic triphenylmethane, anthraquinone, xanthene, oxazine, thiazine, and azo dyes in polymers films

    International Nuclear Information System (INIS)

    Khabarov, V.N.; Kozlov, L.L.; Molin, A.A.; Mekhanik, T.V.

    1989-01-01

    The effect of the oxygen in the air and the temperature on radiochemical processes of decolorization of triphenylmethane, anthraquinone, xanthene, oxazine, thiazine, and azo dyes in polymer matrices of different chemical natures was studied. The rate of radiation decolorization for most of the dyes increases in irradiation in the presence of O 2 , which is hypothetically due to oxidation of the dye by singlet oxygen. The organic dyes exhibit the highest radiation stability in polyethylene terephthalate and polystyrene films

  15. Radiolysis of organic triphenylmethane, anthraquinone, xanthene, oxazine, thiazine and azo dyes in polymeric films

    International Nuclear Information System (INIS)

    Khabarov, V.N.; Kozlov, L.L.; Molin, A.A.; Mekhanic, T.V.

    1988-01-01

    Effect of air oxygen and temperature (77 - 323 K) on decolorization radiation-chemical processes of triphenylmethane, anthraquinone, xanthene, oxazine, thiazine and azo dyes in different polymeric matrices is investigated. Radiation decolorization rate for the majority of dyes increases at the irradiation in O 2 presence, which is, presumably, connected with the dye oxidation by the singlet oxygen. The organic dyes manifest the most radiation resistance in polyethyleneterephthalate and polystyrene films

  16. WATERLESS DYEING [REVIEW

    Directory of Open Access Journals (Sweden)

    DEVRENT Nalan

    2015-05-01

    Full Text Available The textile industry is believed to be one of the biggest consumers of water. Water consumption and exhaustion in dyeing textile materials in conventional methods is an important environmental problem. The cost of waste water treatment will cause a prominent problem in the future as it does today. Increasing consideration of ecologic consequences of industrial processes as well as legislation enforcing the avoidance of environmental problems have caused a reorientation of thinking and promoted projects for replacement of conventional technologies. One of these new technologies is dyeing in supercritical fluids. Dyeing with supercritical carbon dioxide is a favourable concept considering the value of water as a natural resource and the cost of waste water treatment. This dyeing method offers many advantages over conventional aqueous dyeing: During this dyeing process no water is used, therefore there is no waste water problem, no other chemicals are required; the carbon dioxide can be recycled; the dystuff which is not adsorbed on the substrate can be collected and reused; The necessary energy consumption in this process is relatively lower than is needed to heat water in conventional methods of dyeing. Due to unnecessary of drying process, it helps to save both energy and time; and dyeing cycle is shorter compared with traditional methods. In addition carbon dioxide is non-toxic and non-flammable. Supercritical fluid, supercritical dyeing, disperse dyestuffs, solid-fluid equilibrium

  17. Hair dosimetry following neutron irradiation.

    Science.gov (United States)

    Lebaron-Jacobs, L; Gaillard-Lecanu, E; Briot, F; Distinguin, S; Boisson, P; Exmelin, L; Racine, Y; Berard, P; Flüry-Herard, A; Miele, A; Fottorino, R

    2007-05-01

    Use of hair as a biological dosimeter of neutron exposure was proposed a few years ago. To date, the (32)S(n,p)(32)P reaction in hair with a threshold of 2.5 MeV is the best choice to determine the fast neutron dose using body activation. This information is essential with regards to the heterogeneity of the neutron transfer to the organism. This is a very important parameter for individual dose reconstruction from the surface to the deeper tissues. This evaluation is essential to the adapted management of irradiated victims by specialized medical staff. Comparison exercises between clinical biochemistry laboratories from French sites (the CEA and COGEMA) and from the IRSN were carried out to validate the measurement of (32)P activity in hair and to improve the techniques used to perform this examination. Hair was placed on a phantom and was irradiated at different doses in the SILENE reactor (Valduc, France). Different parameters were tested: variation of hair type, minimum weight of hair sample, hair wash before measurement, delivery period of results, and different irradiation configurations. The results obtained in these comparison exercises by the different laboratories showed an excellent correlation. This allowed the assessment of a dose-activity relationship and confirmed the feasibility and the interest of (32)P measurement in hair following fast neutron irradiation.

  18. Dye Sensitized Solar Cell, DSSC

    Directory of Open Access Journals (Sweden)

    Pongsatorn Amornpitoksuk

    2003-07-01

    Full Text Available A dye sensitized solar cell is a new type of solar cell. The operating system of this solar cell type is similar to plant’s photosynthesis process. The sensitizer is available for absorption light and transfer electrons to nanocrystalline metal oxide semiconductor. The ruthenium(II complexes with polypyridyl ligands are usually used as the sensitizers in solar cell. At the present time, the complex of [Ru(2,2',2'’-(COOH3- terpy(NCS3] is the most efficient sensitizer. The total photon to current conversion efficiency was approximately 10% at AM = 1.5.

  19. A toddler with hair fascination.

    Science.gov (United States)

    Kao, Patricia; Needlman, Robert D; Stein, Martin T

    2010-04-01

    Joseph is a 24-months old boy referred by his pediatrician because of an "obsession" with pulling and eating hair. When Joseph was 14 months old, he enjoyed touching and twirling his mother's long hair. She observed that it seemed to provide comfort to him. At 18 months, he initiated pulling out and eating his own hair, twirling his mother's hair around his thumb and then sucking on it. Currently, he searches the carpet or a hard floor and looks for hair to eat. The identical behavior is observed at daycare. Joseph's teacher commented, "He pulled hair from a girl who has the longest hair of all the children. We try to distract him from this habit, but he is not distracted for long." Less frequently, Joseph has also eaten sand, chalk, and crayons at daycare. Joseph's mother describes him as a "happy and outgoing" child who interacts with his peers and has a best friend at the daycare. There have not been recent changes or stressful events in his life. Joseph separates from his mother with ease and he sleeps comfortably through the night in his own bed. There have been no episodes of nausea, vomiting, abdominal pain, or constipation. Strands of hair are occasionally seen in the stool. Prenatal and perinatal history was unremarkable. Joseph was breast-fed for 11 months, described as an "easy" baby, achieved motor, social, and language developmental milestones at the usual time, and has been in excellent health. He lives with his mother and maternal grandparents; the biological father has never been involved in his care. At 20 months, Joseph's pediatrician suggested cutting his hair. After several haircuts, Joseph stopped pulling his own hair. However, he continued to search the floor for hair. Hemoglobin and a blood lead level were normal. Joseph appeared pleasant and friendly with normal growth parameters and facial features. He was sitting comfortably on his mother's lap, sucking on his thumb. Social interactions with his mother were appropriate and reciprocal. He

  20. Photodynamic therapy for hair removal

    Directory of Open Access Journals (Sweden)

    Mohamed H. M. Ali

    2013-05-01

    Full Text Available Background: Unwanted hair is one of the most common medical problems affecting women of reproductive age inducing a lot of psychological stress and threatening their femininity and self-esteem. Old methods of removing unwanted hair include shaving, waxing, chemical depilation, and electrolysis, all of which have temporary results. However laser-assisted hair removal is the most efficient method of long-term hair removal currently available. It is desirable to develop a reduced cost photodynamic therapy (PDT system whose properties should include high efficiency and low side-effects. Method: Mice skin tissues were used in this study and divided into six groups such as controls, free methylene blue (MB incubation, liposome methylene blue (MB incubation, laser without methylene blue (MB, free methylene blue (MB for 3 and 4 hrs and laser, liposome methylene blue (MB for 3 hrs and laser. Methylene blue (MBwas applied to wax epilated areas. The areas were irradiated with CW He-Ne laser system that emits orange-red light with wavelength 632.8 nm and 10 mW at energy density of 5 J/ cm2 for 10 minutes. The UV-visible absorption spectrum was collected by Cary spectrophotometer. Results: Methylene blue (MB is selectively absorbed by actively growing hair follicles due to its cationic property. Methylene blue (MBuntreated sections showed that hair follicle and sebaceous gland are intact and there is no change due to the laser exposure. Free methylene blue (MB sections incubated for 3 hrs showed that He:Ne laser induced destruction in hair follicles, leaving an intact epidermis. Treated section with free methylene blue (MB for 4 hrs showed degeneration and necrosis in hair follicle, leaving an intact epidermis. Liposomal methylene blue (MB sections incubated for 3 hrs showed He:Ne laser induced destruction in hair follicles with intradermal leucocytic infiltration. Conclusions: Low power CW He:Ne laser and methylene blue (MB offered a successful PDT system

  1. HCN channels are not required for mechanotransduction in sensory hair cells of the mouse inner ear.

    Directory of Open Access Journals (Sweden)

    Geoffrey C Horwitz

    Full Text Available The molecular composition of the hair cell transduction channel has not been identified. Here we explore the novel hypothesis that hair cell transduction channels include HCN subunits. The HCN family of ion channels includes four members, HCN1-4. They were originally identified as the molecular correlates of the hyperpolarization-activated, cyclic nucleotide gated ion channels that carry currents known as If, IQ or Ih. However, based on recent evidence it has been suggested that HCN subunits may also be components of the elusive hair cell transduction channel. To investigate this hypothesis we examined expression of mRNA that encodes HCN1-4 in sensory epithelia of the mouse inner ear, immunolocalization of HCN subunits 1, 2 and 4, uptake of the transduction channel permeable dye, FM1-43 and electrophysiological measurement of mechanotransduction current. Dye uptake and transduction current were assayed in cochlear and vestibular hair cells of wildtype mice exposed to HCN channel blockers or a dominant-negative form of HCN2 that contained a pore mutation and in mutant mice that lacked HCN1, HCN2 or both. We found robust expression of HCNs 1, 2 and 4 but little evidence that localized HCN subunits in hair bundles, the site of mechanotransduction. Although high concentrations of the HCN antagonist, ZD7288, blocked 50-70% of the transduction current, we found no reduction of transduction current in either cochlear or vestibular hair cells of HCN1- or HCN2- deficient mice relative to wild-type mice. Furthermore, mice that lacked both HCN1 and HCN2 also had normal transduction currents. Lastly, we found that mice exposed to the dominant-negative mutant form of HCN2 had normal transduction currents as well. Taken together, the evidence suggests that HCN subunits are not required for mechanotransduction in hair cells of the mouse inner ear.

  2. Anaerobic azo dye reduction

    NARCIS (Netherlands)

    Zee, van der F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also

  3. for aqueous dye lasers

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... inclusion complex of RhB with the container molecule cucurbit[7]uril (CB[7]). Keywords. Temperature-dependent fluorescence; Rhodamine B; cucurbit[7]uril; host–guest complex; dye laser. PACS Nos 36.20.kd; 83.60.pq; 87.64.kv. 1. Introduction. Rhodamine B (RhB) is an efficient and photostable laser dye ...

  4. Extraction of dye

    African Journals Online (AJOL)

    Dyes of natural origins are great for color appreciation as any variation in the concentration of dye, mordant, type of water, soil and climate give variations in ... Grey scale and blue dyed silk were used for color fastness rating. ..... Down to Earth.

  5. Effectiveness of dye sensitised solar cell under low light condition using wide band dye

    Energy Technology Data Exchange (ETDEWEB)

    Sahmer, Ahmad Zahrin, E-mail: ahmadzsahmer@gmail.com; Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my; Zaine, Siti Nur Azella, E-mail: ct.azella@gmail.com [Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Dye sensistised solar cell (DSC) based on nanocrystalline TiO{sub 2} has the potential to be used in indoor consumer power application. In realizing this, the DSC must be optimized to generate power under low lighting condition and under wider visible light range. The use of wide band dye N749 which has a wider spectrum sensitivity increases the photon conversion to electron between the visible light spectrums of 390nm to 700nm. This paper reports the study on the effectiveness of the dye solar cell with N749 dye under low light condition in generating usable power which can be used for indoor consumer application. The DSC was fabricated using fluorine doped tin oxide (FTO) glass with screen printing method and the deposited TiO{sub 2} film was sintered at 500°C. The TiO{sub 2} coated FTO glass was then soaked in the N749 dye, assembled into test cell, and tested under the standard test condition at irradiance of 1000 W/m{sup 2} with AM1.5 solar soaker. The use of the 43T mesh for the dual pass screen printing TiO{sub 2} paste gives a uniform TiO{sub 2} film layer of 16 µm. The low light condition was simulated using 1/3 filtered irradiance with the solar soaker. The fabricated DSC test cell with the N749 dye was found to have a higher efficiency of 6.491% under low light condition compared to the N719 dye. Under the standard test condition at 1 sun the N749 test cell efficiency is 4.55%. The increases in efficiency is attributed to the wider spectral capture of photon of the DSC with N749 dye. Furthermore, the use of N749 dye is more effective under low light condition as the V{sub OC} decrement is less significant compared to the latter.

  6. Facile fabrication of hollow mesosphere of crystalline SnO2 nanoparticles and synthesis of SnO2@SWCNTs@Reduced Graphene Oxide nanocomposite as efficient Pt-Free counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Khan, Muhammad Wasim; Yao, Jixin; Zhang, Kang; Zuo, Xueqin; Yang, Qun; Tang, Huaibao; Ur Rehman, Khalid Mehmood; Li, Guang; Wu, Mingzai; Zhu, Kerong; Zhang, Haijun

    2018-06-01

    In this research, SnO2@SWCNTs@Reduced Graphene Oxide based nanocomposite was synthesized by a one step hydrothermal method and reported new cost effective platinum-free counter-electrodes (CEs) in dye-sensitized solar cells (DSSCs). The CEs were formed by using the nanocomposites with the help of a pipette using a doctor-blade technique. The efficiency of this nanocomposite revealed significant elctrocatalytic properties upon falling the triiodide, possessing to synergistic effect of SnO2 nano particles and improved conductivity when SWCNTs dispersed on graphene sheet. Therefore, the power conversion efficiency (PCE) of prepared SnO2@SWCNTs@RGO nanocomposite CE attained of (6.1%) in DSSCs which is equivalent to the value (6.2%) which attained to the value (6.2%) with pure Pt CE as a reference. SnO2@SWCNTs@RGO nanocomposite CEs give more stable catalytic activities for triiodide reduction than SnO2 and SWCNTs CEs in the cyclic voltammetry (CV) analysis. Furthermore, to the subsistence of graphene oxide, the nanocomposite acquired both higher stability and efficiency in the nanocomposite.

  7. Missing Strands? Dealing with Hair Loss

    Science.gov (United States)

    ... 2017 Print this issue Missing Strands? Dealing with Hair Loss En español Send us your comments Hair loss is often associated with men and aging, but ... or their treatments, and many other things cause hair loss. The most common type of hair loss is ...

  8. Black hole hair removal

    International Nuclear Information System (INIS)

    Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke

    2009-01-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair - degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  9. Stimulation of hair cells with ultraviolet light

    Science.gov (United States)

    Azimzadeh, Julien B.; Fabella, Brian A.; Hudspeth, A. J.

    2018-05-01

    Hair bundles are specialized organelles that transduce mechanical inputs into electrical outputs. To activate hair cells, physiologists have resorted to mechanical methods of hair-bundle stimulation. Here we describe a new method of hair-bundle stimulation, irradiation with ultraviolet light. A hair bundle illuminated by ultraviolet light rapidly moves towards its tall edge, a motion typically associated with excitatory stimulation. The motion disappears upon tip-link rupture and is associated with the opening of mechanotransduction channels. Hair bundles can be induced to move sinusoidally with oscillatory modulation of the stimulation power. We discuss the implications of ultraviolet stimulation as a novel hair-bundle stimulus.

  10. Practical experiences in application of hair fatty acid ethyl esters and ethyl glucuronide for detection of chronic alcohol abuse in forensic cases.

    Science.gov (United States)

    Suesse, S; Pragst, F; Mieczkowski, T; Selavka, C M; Elian, A; Sachs, H; Hastedt, M; Rothe, M; Campbell, J

    2012-05-10

    This article presents results from 1872 hair samples, which were analyzed for fatty acid ethyl esters (FAEEs) and ethyl glucuronide (EtG). The results were evaluated in the context of self-reported drinking behavior, the use of hair cosmetics, the gender of the sample donors and hair sample length. For comparison, CDT and GGT in serum were available in 477 and 454 cases, respectively. A number of alcohol abstainers or low moderate drinkers and excessive drinkers were selected for assessment of cut-offs for FAEEs in the proximal 6cm hair segments and for EtG in the proximal 3cm hair segments. Cut-off values were assessed by ROC analysis. It was found that the cut-offs of 1.0ng/mg FAEE and 30pg/mg EtG presently used for excessive drinking lead to a low portion of false positives (4% and 3% respectively) but to a higher portion of false negatives (23% and 25% respectively). Comparison of the mean and medium concentrations in samples without any reported hair cosmetics (N=1079) and in samples with reported use of hair spray (N=79) showed an increase by the factor of about two for FAEE but no significant difference for EtG. Mean values of EtG were decreased by 80% in bleached samples (N=164) and by 63% in dyed samples (N=96). There was no significant effect of bleaching and dyeing on FAEE. Hair gel and hair wax, oil or grease showed no significant effect on both FAEE and EtG. With respect to gender and investigated hair length ambiguous results were obtained because of major differences in the compared subpopulations of male with higher alcohol consumption and mainly shorter hair, and less drinking female with longer hair. For excessive drinkers FAEEs in the 0-6cm hair segment and EtG in the 0-3cm segment decreased with increasing time of reported abstinence before sample collection. These drinkers attain the level of teetotalers only after more than 10 months of abstinence. In comparison to scalp hair, FAEEs recovered from armpit hair and leg hair were lower and from

  11. Direct thermal dyes

    Science.gov (United States)

    Ehlinger, Edward

    1990-07-01

    Direct thermal dyes are members of a class of compounds referred to in the imaging industry as color formers or leuco dyes. The oldest members of that class have simple triarylmethane structures, and have been employed for years in various dyeing applications. More complex triarylmethane compounds, such as phthalides and fluorans, are now used in various imaging systems to produce color. Color is derived from all of these compounds via the same mechanism, on a molecular level. That is, an event of activation produces a highly resonating cationic system whose interaction with incident light produces reflected light of a specific color. The activation event in the case of a direct thermal system is the creation of a melt on the paper involving dye and an acidic developer. The three major performance parameters in a thermal system are background color, image density, and image stability. The three major dye physical parameters affecting thermal performance are chemical constituency, purity, and particle size. Those dyes having the best combination of characteristics which can also be manufactured economically dominate the marketplace. Manufacturing high performance dyes for the thermal market involves multi-step, convergent reaction sequences performed on large scale. Intermediates must be manufactured at the right time, and at the right quality to be useful.

  12. Dyes for displays

    Science.gov (United States)

    Claussen, U.

    1984-01-01

    The improvement of contrast and visibility of LCD by two different means was undertaken. The two methods are: (1) development of fluorescent dyes to increase the visibility of fluorescent activated displays (FLAD); and (2) development of dichroic dyes to increase the contrast of displays. This work was done in close cooperation with the electronic industry, where the newly synthesized dyes were tested. The targets for the chemical synthesis were selected with the help of computer model calculations. A marketable range of dyes was developed. Since the interest of the electronic industries concerning FLAD was low, the investigations were stopped. Dichroic dyes, especially black mixtures with good light fastness, order parameter, and solubility in nematic phases were developed. The application of these dyes is restricted to indoor use because of an increase of viscosity below -10 C. Applications on a technical scale, e.g., for the automotive industry, will be possible if the displays work at temperatures down to -40 C. This problem requires a complex optimization of the dye/nematic phase system.

  13. Degradation of Synthetic Dyes by Laccases – A Mini-Review

    Directory of Open Access Journals (Sweden)

    Legerská Barbora

    2016-06-01

    Full Text Available Laccases provide a promising future as a tool to be used in the field of biodegradation of synthetic dyes with different chemical structures. These enzymes are able to oxidize a wide range of phenolic substrates without the presence of additional co-factors. Laccases have been confirmed for their potential of synthetic dye degradation from wastewater and degradation products of these enzymatic reactions become less toxic than selected dyes. This study discusses the potential of laccase enzymes as agents for laccase-catalyzed degradation in terms of biodegradation efficiency of synthetic dyes, specifically: azo dyes, triphenylmethane, indigo and anthraquinone dyes. Review also summarizes the laccase-catalyzed degradation mechanisms of the selected synthetic dyes, as well as the degradation products and the toxicity of the dyes and their degradation products.

  14. Enhanced electrochemical oxidation of synthetic dyeing wastewater using SnO2-Sb-doped TiO2-coated granular activated carbon electrodes with high hydroxyl radical yields

    International Nuclear Information System (INIS)

    Li, Xinyang; Wu, Yue; Zhu, Wei; Xue, Fangqing; Qian, Yi; Wang, Chengwen

    2016-01-01

    Highlights: • We study granular activated carbon (GAC) electrodes coated with catalysts. • GAC coated with ATOT demonstrates an impressive ·OH yield. • This electrode can be used in continuous-flow three-dimensional electrode reactors. • We use Rhodamine B as a model organic compound for removal. • The GAC/ATOT performs better than all other electrodes examined. - Abstract: In this study, granular activated carbon (GAC) coated with SnO 2 -Sb doped TiO 2 (GAC/ATOT) with a high hydroxyl radical (·OH) yield is prepared via the sol-gel method. This material is utilized as a granular electrode in a continuous-flow three-dimensional electrode reactor (CTDER) for the enhanced treatment of synthetic dyeing wastewater containing Rhodamine B (RhB). We then characterize the physical properties, electrochemical properties, and electrochemical oxidation performance of the granular electrode. The results show that using the GAC/ATOT electrode in a CTDER significantly enhances the chemical oxygen demand (COD) removal, decreases the energy consumption, and improves the current efficiency of the wastewater. This is primarily attributed to the higher catalytic activity of GAC/ATOT for ·OH production compared to that of other candidates, such as TiO 2 coated GAC (GAC/T), Sb doped SnO 2 coated GAC (GAC/ATO), and pure GAC. The mechanism of the enhanced electrochemical oxidation afforded by using GAC/ATOT indicates that the high ·OH yield in the reactor packed with GAC/ATOT electrodes contributes to the enhanced electrochemical oxidation performance with respect to organic compounds.

  15. Vanadium oxides (V{sub 2}O{sub 5}) prepared with different methods for application as counter electrodes in dye-sensitized solar cells (DSCs)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kezhong; Sun, Xiaolong; Duan, Chongyuan; Gao, Jing; Wu, Mingxing [Hebei Normal University, College of Chemistry and Material Science, Key Laboratory of Inorganic Nano-materials of Hebei Province, Shijiazhuang City, Hebei Province (China)

    2016-09-15

    V{sub 2}O{sub 5} was synthesized by four different procedures employing thermal decomposition, sol-gel, and hydrothermal methods which were subsequently introduced into dye-sensitized solar cells (DSCs) as counter electrode (CE) catalysts for the regeneration of traditional iodide/triiodide (I{sup -}/I{sub 3} {sup -}) redox couple. The catalytic activities of as-prepared V{sub 2}O{sub 5} were significantly affected by the synthetic routes as evidenced by cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel polarization curve. Power conversion efficiency (PCE) of the DSCs employing V{sub 2}O{sub 5} CE, fabricated by thermal decomposition method, was observed to be 3.80 % by using citric acid as an additive, while the PCE of the DSCs using V{sub 2}O{sub 5} CE prepared by hydrothermal and thermal decomposition methods without additive, as well as by a sol-gel procedure, was determined to be 2.13, 2.08, and 2.04 %, respectively. (orig.)

  16. Horse Shampoo for Human Hair?

    Directory of Open Access Journals (Sweden)

    Chiriac Anca

    2016-12-01

    Full Text Available Introduction: Lately, a new idea has caught the attention of young people of both genders, being debated in consultation rooms, during classes, and especially on social media: is using horse shampoo for human hair wrong or not?

  17. Growing hairs in shorn cattle

    Directory of Open Access Journals (Sweden)

    Cecília José Veríssimo

    2013-12-01

    Full Text Available The shearing operation can provide double benefits to the cattle: they can become more heat tolerant and the tick infestation decreases. The cattle tick Rhipicephalus (Boophilus microplus causes great losses to dairy cattle, especially to the Holstein cattle because they are very susceptible to this tick. Its control is becoming each day more difficult, owing to the increasing resistance to acaricides they are acquiring. The objective of this work was to study the growing of haircoat following shearing. We made our experiment with 17 animals, 7 females and 10 males. They were shaved on the anterior third (head, neck, dewlap, scapula and arm of one side, at random. The work was performed in two steps: they were shorn for the first time on August 2nd 2012, with a size 10 blade in a clipper Oster model GoldenA5, which left the fur coat 2 mm long. Then we evaluated the hair length growing by collecting fortnightly three sample of hairs in the middle of the scapula, with  electric pliers, modified for this purpose, in both sides of the animals, sheared and non-sheared, until 30 days after this shearing. The three hair samples were put inside a little plastic bag per animal. Meanwhile, as we thought that the animals shearing had to be done closer to the skin, we decided to shear them again (in the same side shorn before, on October 2nd 2012. We changed our procedure using the same machine, but now with a blade size 30, which left the fur coat 1mm thick. After that, we collected again, fortnightly, samples of hairs on both sides during 2 months. The 10 longest hairs in the plastig bag were measured using a graph paper and the average per animal was calculated in each data and blade. A random design was applied for statistical analysis, the hair length of both sides, sheared and non sheared were compared by a two related samples tests – Wilcoxon, in a non parametric test, using the SPSSP 12.0 program, in each data within each blade. Using blade size

  18. Hair-Thread Tourniquet Syndrome

    Directory of Open Access Journals (Sweden)

    Emre Gokcen

    2016-01-01

    Two month-old male infant was brought to the emergency service with the complaint of fever, uneasiness, and swelling on 4th-5th toes of right foot.  Apparent swelling, rubescence and increase in heat were seen and a constrictive band was observed to surround proximal phalanges of both toes in the physical examination of the patient (Figure 1.  A hair was found on the constrictive band surrounding both toes. The hair was removed by means of forceps. Oral antibiotic was administered to the patient. The patient was treated successfully by not letting a necrosis develop on the toes. It should be remembered that hair-thread tourniquet syndrome may be observed in the infant patients applying to the hospital with the complaints of unexplained fever and uneasiness. Figure 1: Appearance of the toes right after the hair was removed. Arrows show the constrictive band. 

  19. Dyeing of Polyester with Disperse Dyes: Part 2. Synthesis and Dyeing Characteristics of Some Azo Disperse Dyes for Polyester Fabrics

    Directory of Open Access Journals (Sweden)

    Alya M. Al-Etaibi

    2016-06-01

    Full Text Available The goal of this study was to utilize carrier for accelerating the rate of dyeing not only to enhance dyeing of polyester fabrics dyed with disperse dyes 3a,b, but also to save energy. Both the color strength expressed as dye uptake and the fastness properties of the dyed fabrics were evaluated.

  20. Root hair mutants of barley

    International Nuclear Information System (INIS)

    Engvild, K.C.; Rasmussen, K.

    2005-01-01

    Barley mutants without root hairs or with short or reduced root hairs were isolated among M 2 seeds of 'Lux' barley (Hordeum vulgare L.) after acidified sodium azide mutagenesis. Root hair mutants are investigated intensively in Arabidopsis where about 40 genes are known. A few root hair mutants are known in maize, rice, barley and tomato. Many plants without root hairs grow quite well with good plant nutrition, and mutants have been used for investigations of uptake of strongly bound nutrients like phosphorus, iron, zinc and silicon. Seed of 'Lux' barley (Sejet Plant Breeding, Denmark) were soaked overnight, and then treated with 1.5-millimolarsodium azide in 0.1 molar sodium phosphate buffer, pH 3, for 2.5 hours according to the IAEA Manual on Mutation Breeding (2nd Ed.). After rinsing in tap water and air-drying, the M 2 seeds were sown in the field the same day. Spikes, 4-6 per M 1 plant, were harvested. The mutation frequency was similar to that obtained with other barley cultivars from which low-phytate mutants were isolated [5]. Seeds were germinated on black filter paper in tap water for 3 or 4 days before scoring for root hair mutants

  1. Triphenylamine based organic dyes for dye sensitized solar cells: A theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Mohankumar, V.; Pandian, Muthu Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in [SSN Research Centre, SSN College of Engineering, Chennai-603110, Tamilnadu (India)

    2016-05-23

    The geometry, electronic structure and absorption spectra for newly designed triphenylamine based organic dyes were investigated by density functional theory (DFT) and time dependent density functional theory (TD-DFT) with the Becke 3-Parameter-Lee-Yang-parr(B3LYP) functional, where the 6-31G(d,p) basis set was employed. All calculations were performed using the Gaussian 09 software package. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule. Ultraviolet–visible (UV–vis) spectrum was simulated by TD-DFT in gas phase. The calculation shows that all of the dyes can potentially be good sensitizers for DSSC. The LUMOs are just above the conduction band of TiO{sub 2} and their HOMOs are under the reduction potential energy of the electrolytes (I{sup −}/I{sub 3}{sup −}) which can facilitate electron transfer from the excited dye to TiO{sub 2} and charge regeneration process after photo oxidation respectively. The simulated absorption spectrum of dyes match with solar spectrum. Frontier molecular orbital results show that among all the three dyes, the “dye 3” can be used as potential sensitizer for DSSC.

  2. Mediator-assisted decolorization and detoxification of textile dyes/dye mixture by Cyathus bulleri laccase.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, T R

    2008-12-01

    Laccase from basidiomycete fungus Cyathus bulleri was evaluated for its ability to decolorize a number of reactive and acidic dyes in the presence of natural and synthetic mediators. The extent of decolorization was monitored at different mediator/dye concentrations and incubation time. Among the synthetic mediators, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was effective at low mediator/dye ratios and resulted in 80-95% decolorization at rates that varied from 226 +/- 4 nmol min(-1) mg(-1) for Reactive Orange 1 to 1,333 +/- 15 nmol min(-1) mg(-1) for Reactive Red 198. Other synthetic mediators like 1-hydroxybenzotriazole and violuric acid showed both concentration- and time-dependent increases in percent decolorization. Natural mediators like vanillin, on the other hand, were found to be less effective on all the dyes except Reactive Orange 1. Computed rates of decolorization were about twofold lower than that with ABTS. The laccase-ABTS system also led to nearly 80% decolorization for the simulated dye mixture. No clear correlation between laccase activity on the mediator and its ability to decolorize dyes was found, but pH had a significant effect: Optimum pH for decolorization coincided with the optimum pH for mediator oxidation. The treated samples were also evaluated for toxicity in model microbial systems. The laccase-mediator system appears promising for treatment of textile wastewaters.

  3. Sequence analysis of the canine mitochondrial DNA control region from shed hair samples in criminal investigations.

    Science.gov (United States)

    Berger, C; Berger, B; Parson, W

    2012-01-01

    In recent years, evidence from domestic dogs has increasingly been analyzed by forensic DNA testing. Especially, canine hairs have proved most suitable and practical due to the high rate of hair transfer occurring between dogs and humans. Starting with the description of a contamination-free sample handling procedure, we give a detailed workflow for sequencing hypervariable segments (HVS) of the mtDNA control region from canine evidence. After the hair material is lysed and the DNA extracted by Phenol/Chloroform, the amplification and sequencing strategy comprises the HVS I and II of the canine control region and is optimized for DNA of medium-to-low quality and quantity. The sequencing procedure is based on the Sanger Big-dye deoxy-terminator method and the separation of the sequencing reaction products is performed on a conventional multicolor fluorescence detection capillary electrophoresis platform. Finally, software-aided base calling and sequence interpretation are addressed exemplarily.

  4. Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor.

    Science.gov (United States)

    Esteves, Bruno M; Rodrigues, Carmen S D; Boaventura, Rui A R; Maldonado-Hódar, F J; Madeira, Luís M

    2016-01-15

    This work deals with the treatment of a recalcitrant effluent, from the dyeing stage of acrylic fibres, by combination of the heterogeneous Fenton's process in a continuous stirred tank reactor (CSTR) with biological degradation in a sequential batch reactor (SBR). Three different catalysts (a commercial Fe/ZSM-5 zeolite and two distinct Fe-containing activated carbons - ACs - prepared by wet impregnation of iron acetate and iron nitrate) were employed on the Fenton's process, and afterwards a parametric study was carried out to determine the effect of the main operating conditions, namely the hydrogen peroxide feed concentration, temperature and contact time. Under the best operating conditions found, using the activated carbon impregnated with iron nitrate, 62.7% of discolouration and 39.9% of total organic carbon (TOC) reduction were achieved, at steady-state. Furthermore, a considerable increase in the effluent's biodegradability was attained (BOD5:COD ratio increased from <0.001 to 0.27 and SOUR - specific oxygen uptake rate - from <0.2 to 11.1 mg O2/(gVSS·h)), alongside a major decrease in its toxicity (from 92.1 to 94.0% of Vibrio fischeri inhibition down to 6.9-9.9%). This allowed the application of the subsequent biological degradation stage. The combination of the two processes provided a treated effluent that clearly complies with the legislated discharge limits. It was also found that the iron leaching from the three catalysts tested was very small in all runs, a crucial factor for the stability and long-term use of such materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H., E-mail: f10381@ntut.edu.t [Department of Mechanical Engineering, National Taipei University of Technology, No. 1. Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China); Wu, H.M. [Department of Materials Engineering, Tatung University, No. 40, Sec. 3, Jhongshan N. Rd. Jhongshan District, Taipei City 104, Taiwan (China); Chen, T.L. [Department of Industrial Design, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China); Huang, K.D. [Department of Vehicle Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China); Jwo, C.S. [Department of Energy and Air-Conditioning Refrigeration Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China); Lo, Y.J. [Department of Mechanical Engineering, National Taipei University of Technology, No. 1. Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China)

    2010-04-16

    This study used spinach extract, ipomoea leaf extract and their mixed extracts as the natural dyes for a dye-sensitized solar cell (DSSC). Spinach and ipomoea leaves were first placed separately in ethanol and the chlorophyll of these two kinds of plants was extracted to serve as the natural dyes for using in DSSCs. In addition, the self-developed nanofluid synthesis system prepared a TiO{sub 2} nanofluid with an average particle size of 50 nm. Electrophoresis deposition was performed to let the TiO{sub 2} deposit nanoparticles on the indium tin oxide (ITO) conductive glass, forming a TiO{sub 2} thin film with the thickness of 11.61 {mu}m. This TiO{sub 2} thin film underwent sintering at 450 {sup o}C to enhance the compactness of thin film. Finally, the sintered TiO{sub 2} thin film was immersed in the natural dye solutions extracted from spinach and ipomoea leaves, completing the production of the anode of DSSC. This study then further inspected the fill factor, photoelectric conversion efficiency and incident photon current efficiency of the encapsulated DSSC. According to the experimental results of current-voltage curve, the photoelectric conversion efficiency of the DSSCs prepared by natural dyes from ipomoea leaf extract is 0.318% under extraction temperature of 50 {sup o}C and pH value of extraction fluid at 1.0. This paper also investigated the influence of the temperature in the extraction process of this kind of natural dye and the influence of pH value of the dye solution on the UV-VIS patterns absorption spectra of the prepared natural dye solutions, and the influence of these two factors on the photoelectric conversion efficiency of DSSC.

  6. Dye sensitized solar cells. How do they work?

    International Nuclear Information System (INIS)

    Laurie M, Peter

    2008-01-01

    Dye sensitized solar cells (DSC), also known as Gratzel cells, harvest sunlight using a dye adsorbed onto the high surface area of a porous nanocrystalline titanium dioxide film. Photoexcitation of the dye results in the injection of electrons into the conduction band of the oxide. The dye is regenerated in its original state by donation of electrons from iodide ions presenting an electrolyte that permeates the porous oxide film. The regeneration cycle is completed at a platinum coated cathode at which tri-iodide ions are reduced to iodide ions. DSC has achieved solar conversion efficiencies of over 10% in the laboratory, with best module efficiencies of around 8%. This lecture will describe the fabrication of the basic DSC and discuss the basic Physics and Chemistry of the cell. (Full text)

  7. One electron oxidation of triphenyl methane dyes, crystal violet and malachite green by N{sub 3}{sup .} and Br{sub 2}{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Bhasikuttan, A C; Sapre, A V; Shastri, L V; Rama Rao, K V.S. [Bhabha Atomic Research Centre, Bombay (India). Chemistry Div.

    1994-12-31

    The kinetics of formation and the transient spectra of the species arising due to the oxidation of CV{sup +} and MG{sup +} by N{sub 3}{sup .} and Br{sub 2}{sup -} have been determined. The time resolved spectra indicate intermediate adduct formation between N{sub 3}{sup .}/Br{sub 2}{sup -} and CV{sup +}. (author). 1 ref., 2 figs.

  8. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition

    International Nuclear Information System (INIS)

    Wang, H-W; Ting, C-F; Hung, M-K; Chiou, C-H; Liu, Y-L; Liu Zongwen; Ratinac, Kyle R; Ringer, Simon P

    2009-01-01

    Dye-sensitized solar cells (DSSCs) show promise as a cheaper alternative to silicon-based photovoltaics for specialized applications, provided conversion efficiency can be maximized and production costs minimized. This study demonstrates that arrays of nanowires can be formed by wet-chemical methods for use as three-dimensional (3D) electrodes in DSSCs, thereby improving photoelectric conversion efficiency. Two approaches were employed to create the arrays of ITO (indium-tin-oxide) nanowires or arrays of ITO/TiO 2 core-shell nanowires; both methods were based on electrophoretic deposition (EPD) within a polycarbonate template. The 3D electrodes for solar cells were constructed by using a doctor-blade for coating TiO 2 layers onto the ITO or ITO/TiO 2 nanowire arrays. A photoelectric conversion efficiency as high as 4.3% was achieved in the DSSCs made from ITO nanowires; this performance was better than that of ITO/TiO 2 core-shell nanowires or pristine TiO 2 films. Cyclic voltammetry confirmed that the reaction current was significantly enhanced when a 3D ITO-nanowire electrode was used. Better separation of charge carriers and improved charge transport, due to the enlarged interfacial area, are thought to be the major advantages of using 3D nanowire electrodes for the optimization of DSSCs.

  9. Automatic hair detection in the wild

    DEFF Research Database (Denmark)

    Julian, Pauline; Dehais, Christophe; Lauze, Francois Bernard

    2010-01-01

    This paper presents an algorithm for segmenting the hair region in uncontrolled, real life conditions images. Our method is based on a simple statistical hair shape model representing the upper hair part. We detect this region by minimizing an energy which uses active shape and active contour....... The upper hair region then allows us to learn the hair appearance parameters (color and texture) for the image considered. Finally, those parameters drive a pixel-wise segmentation technique that yields the desired (complete) hair region. We demonstrate the applicability of our method on several real images....

  10. Implementation of a biotechnological process for vat dyeing with woad.

    Science.gov (United States)

    Osimani, Andrea; Aquilanti, Lucia; Baldini, Gessica; Silvestri, Gloria; Butta, Alessandro; Clementi, Francesca

    2012-09-01

    The traditional process for vat dyeing with woad (Isatis tinctoria L.) basically relies on microbial reduction of indigo to its soluble form, leucoindigo, through a complex fermentative process. In the 19th century, cultivation of woad went into decline and use of synthetic indigo dye and chemical reduction agents was established, with a consequent negative impact on the environment due to the release of polluting wastewaters by the synthetic dyeing industry. Recently, the ever-growing demand for environmentally friendly dyeing technologies has led to renewed interest in ecological textile traditions. In this context, this study aims at developing an environmentally friendly biotechnological process for vat dyeing with woad to replace use of polluting chemical reduction agents. Two simple broth media, containing yeast extract or corn steep liquor (CSL), were comparatively evaluated for their capacity to sustain the growth and reducing activity of the strain Clostridium isatidis DSM 15098(T). Subsequently, the dyeing capacity of the CSL medium added with 140 g L⁻¹ of woad powder, providing 2.4 g L⁻¹ of indigo dye, was evaluated after fermentation in laboratory bioreactors under anaerobic or microaerophilic conditions. In all fermentations, a sufficiently negative oxidation/reduction potential for reduction of indigo was reached as early as 24 h and maintained up to the end of the monitoring period. However, clearly faster indigo dye reduction was seen in the broth cultures fermented under strict anaerobiosis, thus suggesting the suitability of the N₂ flushing strategy for enhancement of bacterial-driven indigo reduction.

  11. Soft Hair on Black Holes

    Science.gov (United States)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2016-06-01

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  12. Soft Hair on Black Holes.

    Science.gov (United States)

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  13. Fluorine-induced apoptosis and lipid peroxidation in human hair follicles in vitro.

    Science.gov (United States)

    Wang, Zheng-hui; Li, Xiao-li; Yang, Zhuang-qun; Xu, Min

    2010-12-01

    Fluoride is an essential trace element for human body; however, exposure to high amounts of fluoride has been documented to be correlated with an increasing risk of hair loss. To date, little is known about the mechanism(s) of how fluoride affects hair follicles. Here, we demonstrated that middle (1.0 mmol/L) and high (10.0 mmol/L) concentrations of sodium fluoride (NaF) significantly inhibited hair follicle elongation in vitro, but low NaF (0.1 mmol/L) showed little influence. Moreover, treatment with high levels of NaF resulted in a marked increase in terminal dUTP nick end labeling-positive cells in the outer layer of the outer root sheath, the dermal sheath, and the lower bulb matrix surrounding dermal papilla. Furthermore, the enhanced apoptosis was coupled with an increased oxidative stress manifested as higher malondialdehyde content. Additionally, the presence of selenium considerably antagonized the effects of middle NaF on hair follicles, with regard to either the suppression of hair growth or the induction of oxidative stress and apoptosis. In conclusion, exposure to high levels of fluoride compromises hair follicle growth and accelerate cell apoptosis in vitro. The toxicity of fluoride can be reduced by selenium, at least partially via the suppression of intracellular oxidative stress.

  14. Removing Pubic Hair (For Young Men)

    Science.gov (United States)

    ... who has experience with performing laser hair removal. Electrolysis: Electrolysis is the only hair removal method that permanently ... using slow strokes. Rinse your skin with warm water after you are done shaving and then pat ...

  15. Hair Transplantation in Migraine Headache Patients

    Directory of Open Access Journals (Sweden)

    Safvet Ors, MD

    2017-09-01

    Conclusions:. This report details 6 patients who experienced abatement of migraine headache symptoms following hair transplantation. The positive effects of hair transplantation on migraine headache and potential mechanisms of action are also discussed.

  16. Hierarchical capillary adhesion of microcantilevers or hairs

    International Nuclear Information System (INIS)

    Liu Jianlin; Feng Xiqiao; Xia Re; Zhao Hongping

    2007-01-01

    As a result of capillary forces, animal hairs, carbon nanotubes or nanowires of a periodically or randomly distributed array often assemble into hierarchical structures. In this paper, the energy method is adopted to analyse the capillary adhesion of microsized hairs, which are modelled as clamped microcantilevers wetted by liquids. The critical conditions for capillary adhesion of two hairs, three hairs or two bundles of hairs are derived in terms of Young's contact angle, elastic modulus and geometric sizes of the beams. Then, the hierarchical capillary adhesion of hairs is addressed. It is found that for multiple hairs or microcantilevers, the system tends to take a hierarchical structure as a result of the minimization of the total potential energy of the system. The level number of structural hierarchy increases with the increase in the number of hairs if they are sufficiently long. Additionally, we performed experiments to verify our theoretical solutions for the adhesion of microbeams

  17. Pollution Damage and Protection of Asian Hair

    Directory of Open Access Journals (Sweden)

    Xin Qu

    2018-02-01

    Full Text Available Cigarette smoke was used to simulate a polluted environment and an experiment was performed to reveal how virgin and bleached hair are damaged by a polluted environment. The dry/wet combability, surface contact angle, tryptophan content, and cuticle morphology of the smoke exposed hair were evaluated, and compared to unexposed virgin hair. The results showed that pollution exposure can cause significant chemical damage to hair. In particular, virgin hair exposure to pollution can cause damage to the hair cuticles (higher wet/dry combing, protein degradation, and a more hydrophilic hair surface. The experiment also demonstrated that the styling polymer, polyimide-1 (isobutylene/dimethyl amino propyl maleimide/ethoxylated maleimide/maleic acid copolymer, can provide effective protection against such hair damage.

  18. Elution behaviors of elements from the hair

    International Nuclear Information System (INIS)

    Akashi, Junko; Fukushima, Ichiro; Imahori, Akira

    1981-01-01

    The elution of the neutron activated elements out of hair soaked in some organic solvents and EDTA solution was studied. Soakage of the hair sample, which was washed with water and acetone in advance as IAEA's proposal, in ether and acetone for 30 minutes each resulted in no elution of Hg, Zn, Co and Se. Elution of Zn and Co from the powdered hair sample soaked in 0.1 M EDTA solution was rapid, while Zn did not elute out from the cut hair (2 -- 3 mm length) on the same condition. Hg, Se and Au were not eluted out by 0.1 M EDTA solution in the both case of cut hair and of powdered hair. Br was removed by 0.1 M EDTA solution from the cut hair and from the powdered hair with equal ease. (author)

  19. Artificial sensory hairs based on the flow sensitive receptor hairs of crickets

    NARCIS (Netherlands)

    Dijkstra, Marcel; van Baar, J.J.J.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; de Boer, J.H.; Krijnen, Gijsbertus J.M.

    2005-01-01

    This paper presents the modelling, design, fabrication and characterization of flow sensors based on the wind-receptor hairs of crickets. Cricket sensory hairs are highly sensitive to drag-forces exerted on the hair shaft. Artificial sensory hairs have been realized in SU-8 on suspended SixNy

  20. Hair transplantation in alopecia androgenetica

    Directory of Open Access Journals (Sweden)

    Singh Gurinderjit

    1992-01-01

    Full Text Available One hundred patients suffering from male pattern baldness were given 3 to 4 sittings of hair transplantation at an interval of about 4 to 6 weeks each. They included 46 patients of type III baldness, 23 patients of type III (vertex baldness, and 31 patients of type IV baldness. It needed 3 sittings in type III as well as type III (vertex patients, whereas type IV patients needed 4 sittings for cosmetically acceptable results. Sixty percent patients of type III (including type III vertex showed excellent results; whereas 24 percent patients showed good response. Thirty-four percent patients of type IV got excellent cosmetic appearance; whereas, good results could be obtained in 17 percent patients. The reasons for poor results in certain patients were poor density of hair at donor sites and poor growth of hair in some of the transplanted plugs.

  1. Management of hair loss diseases

    Directory of Open Access Journals (Sweden)

    Manabu Ohyama

    2010-12-01

    Full Text Available The treatment of hair loss diseases is sometimes difficult because of insufficient efficacy and limited options. However, recent advances in understanding of the pathophysiology and development of new remedies have improved the treatment of refractory hair loss conditions. In this article, an update on the management of hair loss diseases is provided, especially focusing on recently reported therapeutic approaches for alopecia areata (AA. An accurate diagnosis is indispensable to optimize treatment. Dry dermoscopy represents new diagnostic techniques, which could enable the differentiation of barely indistinguishable alopecias, e.g. AA and trichotillomania. An organized scalp biopsy adopting both vertical and transverse sectioning approaches also provides a deep insight into the pathophysiology of ongoing alopecias. Among various treatments for AA, intraregional corticosteroid and contact immunotherapy have been recognized as first-line therapies. However, some AA cases are refractory to both treatments. Recent studies have demonstrated the efficacy of pulse corticosteroid therapy or the combination of oral psoralen ultraviolet A therapy and systemic corticosteroids for severe AA. Previous clinical observations have suggested the potential role of antihistamines as supportive medications for AA. Experimental evaluation using AA model mice further supports their effectiveness in AA treatment. Finasteride opens up new possibilities for the treatment of androgenetic alopecia. For androgenetic alopecia patients refractory to finasteride, the combination of finasteride with topical minoxidil or the administration of dutasteride, another 5 alpha-reductase inhibitor, may provide better outcomes. Scarring alopecia is the most difficult form of hair loss disorder to treat. The bulge stem cell area is destroyed by unnecessary immune reactions with resultant permanent loss of hair follicle structures in scarring alopecia. Currently, treatment options for

  2. Ethnic hair care products may increase false positives in hair drug testing.

    Science.gov (United States)

    Kidwell, David A; Smith, Frederick P; Shepherd, Arica R

    2015-12-01

    The question of why different races appear more susceptible to hair contamination by external drugs remains controversial. This research studied susceptibility of head hair to external cocaine and methamphetamine when hair products have been applied. Three different chemical classes of ethnic hair products were applied to Caucasian, Asian, and African hair. Some products increased the methamphetamine and cocaine concentrations in all hair types. A unique finding of this research is that certain ethnic hair products can replace moisture as a diffusion medium, thereby increasing the susceptibility to contamination over 100-fold compared to petroleum-based products. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Is TrichoScan a new diagnostic method for diffuse hair loss?

    Science.gov (United States)

    Uce Özkol, Hatice; Çalka, Ömer; Akdeniz, Necmettin

    2014-01-01

    In this study, we investigated the sensitivity of TrichoScan, a computer-based phototrichogram, in the evaluation of diffuse hair loss in women and the relationship between iron deficiency anemia and hair loss. We recruited 100 female patients with diffuse hair loss. In all of the patients, a 1-cm2 area of hair located in a temporoparietal region was shortened to 0.5 mm. The shaved scalp regions were stained with black dye. The subject then waited for 12 min. Subsequently, pictures of these regions were taken with a videodermoscope and analyzed with the TrichoScan software program. The ferritin levels were markedly low in these groups. The ratio of anagen was highest in the telogen effluvium (TE) mild group, followed by the TE severe group, and was lowest in the androgenetic alopecia (AGA) group (P hair analysis results with the TrichoScan software were satisfactory and the results were consistent with the clinical diagnosis. In particular, the use of TrichoScan was very successful in the differentiation between AGA and TE.

  4. Statistical Hair on Black Holes

    International Nuclear Information System (INIS)

    Strominger, A.

    1996-01-01

    The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory. copyright 1996 The American Physical Society

  5. The hair of the Prophet

    DEFF Research Database (Denmark)

    Rytter, Mikkel

    2017-01-01

    This paper explore the politics of (in)visibility in Islam by discussing the affective presence and agency of relics - in this case a single hair of the Prophet Muhammad. The relic is obviously not the Prophet, but it is also not-not the Prophet, as the hair is filled with the baraka (blessings......) of the Prophet and thereby seems to confirm Sir James Frazer’s thesis of ‘sympathetic magic’ where part and wholes are forever connected. Based on a study of the Naqshbandi Mujaddidi Saifi tariqa, this paper set out to ‘follow the hair’ in different settings in Denmark, Norway and Pakistan in order to discuss...

  6. Treatment of dyeing wastewater including reactive dyes (Reactive ...

    African Journals Online (AJOL)

    Fungal growth was not observed at pH 2. Maximum fungal decolourisation ocurred at pH 3 for anionic reactive dyes (RR, RBB, RB) and pH 6 for cationic MB dye. The fungal dye bioremoval was associated with the surface charge of the fungus due to electrostatic interactions. Growing R. arrhizus strain decolourised 100% of ...

  7. Diseases that turn African hair silky.

    Science.gov (United States)

    Ajose, Frances O A

    2012-11-01

    African hair in its natural state poses tenacious grooming challenges; consequently a large portion of the African cosmetic industry is focused on means to relax the tight curls of African hair to make the hair more manageable. In malnourished and hypoproteinemic states, African hair straightens in an uncomplimentary manner. Recently, we observed that in certain diseases African hair changes to a desirable silky wavy texture. To identify the diseases that turn African hair silky and their parameters we examined 5612 dermatology patients at a tertiary hospital in Nigeria. We then studied the clinical and basic laboratory parameters of those patients whose diseases were accompanied by the silky hair change. Silky hair change similar to the hair of the African neonatal child was observed in five diseases, namely AIDS, rheumatoid arthritis, systemic lupus erythematosus, pulmonary tuberculosis with cachexia, and Behçet's disease. Our study identified retrogression of African hair to the neonatal structure in five diseases. Anemia of chronic illness, high erythrocyte sedimentation rate, and mild hypocalcemia were significant laboratory parameters. This is an important observation, which should excite and advance research into the nature and structure of African hair. The causes of structural hair changes should include these five diseases. © 2012 The International Society of Dermatology.

  8. Analysis of in vivo penetration of textile dyes causing allergic reactions

    International Nuclear Information System (INIS)

    Lademann, J; Patzelt, A; Worm, M; Richter, H; Sterry, W; Meinke, M

    2009-01-01

    Contact allergies to textile dyes are common and can cause severe eczema. In the present study, we investigated the penetration of a fluorescent textile dye, dissolved from a black pullover, into the skin of one volunteer during perspiration and nonperspiration. Previously, wearing this pullover had induced a severe contact dermatitis in an 82-year old woman, who was not aware of her sensitization to textile dyes. The investigations were carried out by in vivo laser scanning microscopy. It could be demonstrated that the dye was eluted from the textile material by sweat. Afterwards, the dye penetrated into the stratum corneum and into the hair follicles. Inside the hair follicles, the fluorescent signal was still detectable after 24 h, whereas it was not verifiable anymore in the stratum corneum, Laser scanning microscopy represents an efficient tool for in vivo investigation of the penetration and storage of topically applied substances and allergens into the human skin and reveals useful hints for the development and optimization of protection strategies

  9. Dye filled security seal

    International Nuclear Information System (INIS)

    Wilson, D.C.

    1982-01-01

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member

  10. Influence of mass transfer and chemical reaction on ozonation of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, I.S.; Wiesmann, U. [Dept. of Environmental Engineering, Technical Univ. of Berlin, Berlin (Germany)

    2003-07-01

    Azo dyes can be only mineralised by chemical oxidation. In this paper the oxidation of reactive black 5 (RB 5) and reactive orange 96 (RO 96) with concentrations between 35 and 5700 mgL{sup -1} (RB 5) and between 20 and 2050 mgL{sup -1} (RO 96) is investigated. A lab scale bubble column was used, which was gassed by a mixture of O{sub 2} and O{sub 3}. The oxidation rate was influenced by mass transfer for all dye concentrations used. For lower dye concentrations mass transfer alone was decisive for reaction rate showing an enhancement factor of E {approx} 1. However, in the region of higher dye concentrations, the slope of the decreasing ozone concentration inside the liquid boundary layer increases more and more with increasing dye concentration as a result of a chemical oxidation. Therefore, the enhancement factor depends on the kind and concentration of the azo dyes. For RB 5 as an diazo dye an enhancement factor of E = 9 was observed for 3800 mgL{sup -1}, RO 96 as a mono azo dye with a remarkable higher chemical oxidation rate shows an E = 17 already for 2050 mgL{sup -1}. (orig.)

  11. The Current Status of Microscopical Hair Comparisons

    Directory of Open Access Journals (Sweden)

    Walter F. Rowe

    2001-01-01

    Full Text Available Although the microscopical comparison of human hairs has been accepted in courts of law for over a century, recent advances in DNA technology have called this type of forensic examination into question. In a number of cases, post-conviction DNA testing has exonerated defendants who were convicted in part on the results of microscopical hair comparisons. A federal judge has held a Daubert hearing on the microscopical comparison of human hairs and has concluded that this type of examination does not meet the criteria for admission of scientific evidence in federal courts. A review of the available scientific literature on microscopical hair comparisons (including studies conducted by the Royal Canadian Mounted Police and the Federal Bureau of Investigation leads to three conclusions: (1 microscopical comparisons of human hairs can yield scientifically defensible conclusions that can contribute to criminal investigations and criminal prosecutions, (2 the reliability of microscopical hair comparisons is strongly affected by the training of the forensic hair examiner, (3 forensic hair examiners cannot offer estimates of the probability of a match of a questioned hair with a hair from a randomly selected person. In order for microscopical hair examinations to survive challenges under the U.S. Supreme Court’s Daubert decision, hair microscopists must be better trained and undergo frequent proficiency testing. More research on the error rates of microscopical hair comparisons should be undertaken, and guidelines for the permissible interpretations of such comparisons should be established. Until these issues have been addressed and satisfactorily resolved, microscopical hair comparisons should be regarded by law enforcement agencies and courts of law as merely presumptive in nature, and all microscopical hair comparisons should be confirmed by nuclear DNA profiling or mitochondrial DNA sequencing.

  12. Biomimetic aquatic hair sensors design

    NARCIS (Netherlands)

    Izadi, N.; Krijnen, Gijsbertus J.M.; Wiegerink, Remco J.

    2008-01-01

    “Touch in distance��? is a term that has been used to describe function of lateral line of the fish as well as other aquatic animals that use mechanoreceptor hairs to discern spatial information about their immediate environment. In this work we address the requirements for fabrication technology of

  13. Parietal scalp is another affected area in female pattern hair loss: an analysis of hair density and hair diameter

    Directory of Open Access Journals (Sweden)

    Rojhirunsakool S

    2017-12-01

    Full Text Available Salinee Rojhirunsakool, Poonkiat Suchonwanit Department of Medicine, Division of Dermatology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand Purpose: Female pattern hair loss (FPHL is a common hair disease. However, studies of the quantitative measurement of FPHL are still limited. The aim of this study was to investigate the characteristics of hair density and hair diameter in normal women and FPHL patients, and further correlate the quantitative measurement with the clinical presentation of FPHL.Patients and methods: An evaluation of 471 FPHL patients and 236 normal women was carried out according to the Ludwig classification, and analysis was performed by using a computerized handheld USB camera with computer-assisted software. Various areas of the scalp, including frontal, parietal, midscalp, and occipital, were analyzed for hair density, non-vellus hair diameter, and percentage of miniaturized hair.Results: The hair density in normal women was the highest and the lowest in the midscalp and parietal areas, respectively. The FPHL group revealed the lowest hair density in the parietal area. Significant differences in hair density, non-vellus hair diameter, and percentage of miniaturized hair between the normal and FPHL groups were observed, especially in the midscalp and parietal areas.Conclusion: The parietal area is another important affected area in FPHL in addition to the midscalp area. This finding provides novel important information of FPHL and will be useful for hair transplant surgeons choosing the optimal donor sites for hair transplantation in women. Keywords: androgenetic alopecia, alopecia, phototrichogram, miniaturization

  14. A precise automatic system for the hair assessment in hair-care diagnosis applications.

    Science.gov (United States)

    Shih, H

    2015-11-01

    One emerging subject in medical image processing is to quantitatively assess the health and the properties of cranial hairs, including density, diameter, length, level of oiliness, and others. This information helps hair specialists with making a more accurate diagnosis and the therapy required. We develop a practical hair counting algorithm. This analytic system calculates the number of hairs on a scalp using a digital microscope camera, providing accurate information for both the hair specialist and the patient. Our proposed hair counting algorithm is substantially more accurate than the Hough-based one, and is robust to curls, oily scalp, noise-corruption, and overlapping hairs, under various levels of illumination. Rather than manually counting the hairs on a person's scalp, the proposed system determines the density, diameter, length, and level of oiliness of the hairs. We propose an automated system for counting the amount of hairs in the microscopy images. To reduce the effect of bright spots, we develop a robust morphological algorithm for color to smooth out the color and preserve the fidelity of the hair. Then, we utilize a modified Hough transform algorithm to detect the different hair lengths and to reduce any false detection due to noise. Our proposed system enables us to look at curved hairs as multiple pieces of straight lines. To avoid missing hairs when the thinning process is applied, we use edge information to discover any hidden or overlapping hairs. Finally, we employ a mutually associative regression method to label a group of line segments into a meaningful 'hair'. We demonstrated a novel approach for accurately computing the number of hairs, and successfully solved the three main obstacles in automated hair counting, including (i) oily and moist hairs, (ii) wavy and curly hairs, and (iii) under-estimation of the number of hairs occurs when hairs cross and occlude each other. The framework of this paper can be seen as the first step toward

  15. Nanotechnology-Based Cosmetics for Hair Care

    Directory of Open Access Journals (Sweden)

    Jamie Rosen

    2015-07-01

    Full Text Available Hair is a significant indicator of health and can have a major impact on an individual’s cosmetic appearance. Research within the cosmetics industry has revealed that when nanomaterials are engineered into hair care, they can enhance the benefits of active ingredients in order to improve hair cosmesis. Within the cosmetics arena, the unique size and intrinsic properties of nanoparticles can be tailored to target the hair follicle and shaft. This review aims to provide an overview of cosmetic nanocarriers that can be employed to improve the appearance of hair.

  16. Optical properties of anthocyanin dyes on TiO2 as photosensitizers for application of dye-sensitized solar cell (DSSC)

    Science.gov (United States)

    Ahliha, A. H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T.

    2018-03-01

    Dye-sensitized solar cell (DSSC) is one of the alternative energy that can convert light energy into electrical energy. The component of DSSC consists of FTO substrates, TiO2, electrolyte, dye sensitizer, and counter electrode. This study aim was to determine the effect of optical properties of anthocyanin dyes on efficiency of DSSC. The dye sensitizer used can be extracted from anthocyanin pigments such as dragon fruit, black rice, and red cabbage. The red cabbage sensitizer shows lower absorbance value in the visible range (450-580 nm), than dragon fruit and black rice. The chemical structure of each dye molecules has an R group (carbonyl and hydroxyl) that forms a bond with the oxide layer. Red cabbage dye cell has the highest efficiency, 0.06% then dragon fruit and black rice, 0.02% and 0.03%.

  17. OPTIMIZATION OF DYEING PARAMETERS TO DYE COTTON WITH CARROT EXTRACTION

    Directory of Open Access Journals (Sweden)

    MIRALLES Verónica

    2017-05-01

    Full Text Available Natural dyes derived from flora and fauna are believed to be safe because of non-toxic, non-carcinogenic and biodegradable nature. Furthermore, natural dyes do not cause pollution and waste water problems. Natural dyes as well as synthetic dyes need the optimum parameters to get a good dyeing. On some occasions, It is necessary the use of mordants to increase the affinity between cellulose fiber and natural dye, but there are other conditions to optimize in the dyeing process, like time, temperature, auxiliary porducts, etc. In addition, the optimum conditions are different depends on the type of dye and the fiber nature. The aim of this work is the use of carrot extract to dye cotton fabric by exhaustion at diverse dyeing conditions. Diffferent dyeing processes were carried out to study the effect of pH condition and the temperature, using 7, 6 and 4 pH values and 95 ºC and 130ºC for an hour. As a result some images of dyed samples are shown. Moreover, to evaluate the colour of each sample CIELAB parameters are analysed obtained by reflexion spectrophotometre. The results showed that the temperature used has an important influence on the colour of the dyed sample.

  18. Radiation induced degradation of dyes-An overview

    International Nuclear Information System (INIS)

    Rauf, M.A.; Ashraf, S. Salman

    2009-01-01

    Synthetic dyes are a major part of our life. Products ranging from clothes to leather accessories to furniture all depend on extensive use of organic dyes. An unfortunate side effect of extensive use of these chemicals is that huge amounts of these potentially carcinogenic compounds enter our water supplies. Various advanced oxidation processes (AOPs) including the use of high-energy radiation have been developed to degrade these compounds. In this review, dye decoloration and degradation as a result of its exposure to high energy radiation such as gamma radiation and pulsed electron beam are discussed in detail. The role of various transient species such as ·H, ·OH and e aq - are taken into account as reported by various researchers. Literature citations in this area show that e aq - is very effective in decolorization but is less active in the further degradation of the products formed. The degradation of the dyes is initiated exclusively by ·OH attack on electron-rich sites of the dye molecules. Additionally, various parameters that affect the efficiency of radiation induced degradation of dyes, such as effect of radiation dose, oxygen, pH, hydrogen peroxide, added ions and dye classes are also reviewed and summarized. Lastly, pilot plant application of radiation for wastewater treatment is briefly discussed.

  19. Hair loss in women: medical and cosmetic approaches to increase scalp hair fullness.

    Science.gov (United States)

    Sinclair, R; Patel, M; Dawson, T L; Yazdabadi, A; Yip, L; Perez, A; Rufaut, N W

    2011-12-01

    Androgenetic alopecia affects both men and women. In men it produces male pattern hair loss with bitemporal recession and vertex baldness. In women it produces female pattern hair loss (FPHL) with diffuse alopecia over the mid-frontal scalp. FPHL occurs as a result of nonuniform hair follicle miniaturization within follicular units. Diffuse alopecia is produced by a reduction in the number of terminal fibres per follicular unit. Baldness occurs only when all hairs within the follicular units are miniaturized and is a relatively late event in women. The concepts of follicular units and primary and secondary hair follicles within follicular units are well established in comparative mammalian studies, particularly in sheep. However, discovery of these structures in the human scalp hair and investigation of the changes in follicular unit anatomy during the development of androgenetic alopecia have provided a clearer understanding of the early stages of androgenetic alopecia and how the male and female patterns of hair loss are related. FPHL is the most common cause of alopecia in women and approximately one-third of adult caucasian women experience hair loss. The impact of FPHL is predominantly psychological. While men anticipate age-related hair loss, hair loss in women is usually unexpected and unwelcome at any age. Treatment options to arrest hair loss progression and stimulate partial hair regrowth for FPHL include the androgen receptor antagonists spironolactone and cyproterone acetate, the 5α-reductase inhibitor finasteride and the androgen-independent hair growth stimulator minoxidil. These treatments appear to work best when initiated early. Hair transplantation should be considered in advanced FPHL that is resistant to medical treatments. Hair transplantation requires well-preserved hair growth over the occipital donor area. The psychological impact of FPHL may also be reduced by cosmetic products that improve the appearance of the hair. These agents work to

  20. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...