WorldWideScience

Sample records for oxidation state compound

  1. Solid-state ionics: Studies of lithium-conducting sulfide glasses and a superconducting oxide compound

    International Nuclear Information System (INIS)

    Ahn, Byung Tae.

    1989-01-01

    The first part of this work studies lithium-conducting sulfide glasses for battery applications, while the second part studies the thermodynamic properties of a superconducting oxide compound by using an oxide electrolyte. Lithium conducting glasses based on the SiS 2 -Li 2 S system are possible solid electrolytes for high-energy-density lithium batteries. The foremost requirement for solid electrolytes is that they should have high ionic conductivities. Unfortunately, most crystalline lithium conductors have low ionic conductivities at room temperature. However, glass ionic conductors show higher ionic conductivities than do crystalline forms of the same material. In addition to higher ionic conductivities, glasses appear to have several advantages over crystalline materials. These advantages include isotropic conductivity, absence of grain boundary effects, ease of glass forming, and the potential for a wide range of stability to oxidizing and reducing conditions. Using pyrolitic graphite-coated quartz ampoules, new ternary compounds and glasses in the SiS 2 -Li 2 S system were prepared. Several techniques were used to characterize the materials: powder x-ray diffraction, differential thermal analysis, differential scanning calorimetry, and AC impedance spectroscopy. The measured lithium conductivity of the sulfide glasses was one of the highest among the known solid lithium conductors. Measuring the equilibrium open circuit voltages assisted in determining the electrochemical stabilities of the ternary compounds and glasses with respect to pure Li. A solid-state ionic technique called oxygen coulometric titration was used to measure the thermodynamic stability, the oxygen stoichiometry, and the effects of the oxygen stoichiometry, and the effects of the oxygen stoichiometry and the cooling rate on superconductivity of the YBa 2 Cu 3 O 7-x compound were investigated

  2. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States

    Directory of Open Access Journals (Sweden)

    Elixabet Díaz-de-Cerio

    2016-05-01

    Full Text Available Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high. The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production.

  3. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States.

    Science.gov (United States)

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-05-11

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production.

  4. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States

    Science.gov (United States)

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production. PMID:27187352

  5. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    International Nuclear Information System (INIS)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment

  6. Approaches to Determining the Oxidation State of Nitrogen and Carbon Atoms in Organic Compounds for High School Students

    Science.gov (United States)

    Jurowski, Kamil; Krzeczkowska, Malgorzata Krystyna; Jurowska, Anna

    2015-01-01

    The concept of oxidation state (or oxidation number) and related issues have always been difficult for students. In addition, there are misunderstandings and obscurities, which can cause improper balancing of the chemical equations (mostly in organic reactions). In particular, these problems are related to determination of the oxidation state of…

  7. The Transition Metal-Like Reactivity of Low Oxidation State s- and p-Block Compounds

    Science.gov (United States)

    2017-10-20

    suggestions for reducing the burden, to Department of Defense, Executive Services, Directorate (0704-0188).   Respondents should be aware that...amide ligands. These compounds were used as reagents for catalytic transformation of small molecules. The PI was able to publish 19 papers in...Significant Collaborations that resulted from your AOARD supported project (see attachments): a) papers published in, or submitted to, peer-reviewed

  8. Oxidation of methyl heterocyclic compounds on vanadium oxide catalysts

    International Nuclear Information System (INIS)

    Shimanskaya, M.V.; Lejtis, L.A.; Iovel', I.G.; Gol'dberg, Yu.Sh.; Skolmejstere, R.A.; Golender, L.O.

    1985-01-01

    Data on vapor-phase oxidation of methyl derivatives of thiophene, Δ 2 - thiazo line, pyridine, pyrazine and pyramidine on oxide vanadium-molybdenum catalysts to corresponding heterylaldehydes are generalized. The dependence of catalytic properties of oxide vanadium-molybdenum systems in oxidation reactions of methylheterocyclic compounds on V:Mo ratio in the catalyst is revealed. It is shown that heterocyclic compounds are coordinated by a heteroatom on Lewis centres of V-Mo-O-catalyst primarily with partially reduced vanadium ions

  9. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States

    OpenAIRE

    D?az-de-Cerio, Elixabet; Verardo, Vito; G?mez-Caravaca, Ana Mar?a; Fern?ndez-Guti?rrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds ...

  10. Bioavailability of Compounds Susceptible to Enzymatic Oxidation Enhances Growth of Shiitake Medicinal Mushroom (Lentinus edodes) in Solid-State Fermentation with Vineyard Prunings.

    Science.gov (United States)

    Cabrera, Rosina; López-Peña, Damian; Asaff, Ali; Esqueda, Martín; Valenzuela-Soto, Elisa M

    2018-01-01

    Grapes are widely produced in northwestern Mexico, generating many wood trimmings (vineyard prunings) that have no further local use. This makes vineyard prunings a very attractive alternative for the cultivation of white-rot medicinal mushrooms such as Lentinus edodes. This type of wood can also offer a model for the evaluation of oxidative enzyme production during the fermentation process. We tested the effect of wood from vineyard prunings on the vegetative growth of and production of ligninolytic enzymes in L. edodes in solid-state fermentation and with wheat straw as the control substrate. The specific growth rate of the fungus was 2-fold higher on vineyard pruning culture (μM = 0.95 day-1) than on wheat straw culture (μM = 0.47 day-1). Laccase-specific production was 4 times higher in the vineyard prunings culture than on wheat straw (0.34 and 0.08 mU · mg protein-1 · ppm CO2-1, respectively), and manganese peroxidase production was 3.7 times higher on wheat straw culture than on vineyard prunings (2.21 and 0.60 mU · mg protein-1 · ppm CO2-1, respectively). To explain accurately these differences in growth and ligninolytic enzyme activity, methanol extracts were obtained from each substrate and characterized. Resveratrol and catechins were the main compounds identified in vineyard prunings, whereas epigallocatechin was the only one detected in wheat straw. Compounds susceptible to enzymatic oxidation are more bioavailable in vineyard prunings than in wheat straw, and thus the highest L. edodes growth rate is associated with the presence of these compounds.

  11. Assigning Oxidation States to Organic Compounds via Predictions from X-Ray Photoelectron Spectroscopy: A Discussion of Approaches and Recommended Improvements

    Science.gov (United States)

    Gupta, Vipul; Ganegoda, Hasitha; Engelhard, Mark H.; Terry, Jeff; Linford, Matthew R.

    2014-01-01

    The traditional assignment of oxidation states to organic molecules is problematic. Accordingly, in 1999, Calzaferri proposed a simple and elegant solution that is based on the similar electronegativities of carbon and hydrogen: hydrogen would be assigned an oxidation state of zero when bonded to carbon. Here, we show that X-ray photoelectron…

  12. Selective Oxidation of Lignin Model Compounds.

    Science.gov (United States)

    Gao, Ruili; Li, Yanding; Kim, Hoon; Mobley, Justin K; Ralph, John

    2018-05-02

    Lignin, the planet's most abundant renewable source of aromatic compounds, is difficult to degrade efficiently to welldefined aromatics. We developed a microwave-assisted catalytic Swern oxidation system using an easily prepared catalyst, MoO 2 Cl 2 (DMSO) 2 , and DMSO as the solvent and oxidant. It demonstrated high efficiency in transforming lignin model compounds containing the units and functional groups found in native lignins. The aromatic ring substituents strongly influenced the selectivity of β-ether phenolic dimer cleavage to generate sinapaldehyde and coniferaldehyde, monomers not usually produced by oxidative methods. Time-course studies on two key intermediates provided insight into the reaction pathway. Owing to the broad scope of this oxidation system and the insight gleaned with regard to its mechanism, this strategy could be adapted and applied in a general sense to the production of useful aromatic chemicals from phenolics and lignin. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Thermal oxidation of III-V compounds

    International Nuclear Information System (INIS)

    Monteiro, O.R.; Evans, J.W.

    1988-01-01

    The thermal oxidation of two important III-V compound semiconductor materials, namely GaAs and InP, has been studied between 300 and 600 0 C. In-situ TEM, cross-sectional TEM (XTEM) and SIMS analyses were used to characterize the reaction products. The first technique allows us to access the reactions at the very moment they are occurring. XTEM provides a clearer picture of the distribution of phases in the oxidized samples. SIMS gives us information on the dopant redistribution after oxidation as well as enrichment of group V element at the oxide semiconductor interface. Based on those results, the reaction products were characterized and reaction mechanisms proposed

  14. Mechanism of the oxidation of diphenylamine compounds

    International Nuclear Information System (INIS)

    Pankratov, A.N.; Shmakov, S.L.; Mushtakova, S.P.; Gribov, L.A.

    1986-01-01

    A spectrophotometric, radiospectroscopic, and quantum chemical study of the oxidation of compounds of the diphenylamine series in acid medium has made it possible to establish a common reaction scheme for amines with different types of substituents and to determine certain details of the reaction mechanism: the participation of protonated amine molecules in the interaction with the oxidizing agent; intermediate formation of radical cations of the type of diphenylamine and N,N'-diarylbenzidine; the concrete directions of the dimerization of radical cations of diarylamines with the participation of the para-carbon atoms of the aromatic rings

  15. Assigning Oxidation States to Organic Compounds via Predictions from X-ray Photoelectron Spectroscopy: A Discussion of Approaches and Recommended Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vipul; Ganegoda, Hasitha; Engelhard, Mark H.; Terry, Jeff H.; Linford, Matthew R.

    2014-02-11

    The traditional assignment of oxidation numbers to organic molecules is problematic. Accordingly, in 1999, Calzaferri proposed a simple and elegant solution that is based on the similar electronegativities of carbon and hydrogen: hydrogen would be assigned an oxidation number of zero when bonded to carbon. Here we show that X-ray photoelectron spectroscopy (XPS), a core electron spectroscopy that is sensitive to oxidation states of elements, confirms his suggestion. In particular, in this work we: (i) list the typical rules for assigning oxidation numbers, (ii) discuss the traditional assignment of oxidation numbers to organic molecules, (iii) review Calzaferri’s solution, (iv) introduce X-ray photoelectron spectroscopy (XPS), (v) show the consistency of Calzaferri’s suggestion with XPS results, (vi) provide supporting examples from the literature, (vii) provide examples from our own research, and (viii) further confirm the Calzaferri suggestion/photoelectron spectroscopy results by discussing two organic well-known reactions. We end by reechoing Calzaferri’s suggestion that the traditional rules for assigning oxidation numbers to organic molecules be modified.

  16. Insertion compounds of transition-metal and uranium oxides

    International Nuclear Information System (INIS)

    Chippindale, A.M.; Dickens, P.G.; Powell, A.V.

    1991-01-01

    Several transition-metal and actinide oxides, in which the metal occurs in a high oxidation state, have open covalent structures and are capable of incorporating alkali and other electropositive metals under mild conditions to form insertion compounds A x MO n . These are solids which have several features in common: Over a range of compositions, A x MO n exists as one or more stable or metastable phases in which the structure of the parent oxide MO n is largely retained and the insertion element A is accommodated interstitially. Insertion is accompanied by a redox process A=A i . + e - M in which M is reduced and the electronic properties of the parent oxide change to those typical of a mixed-valence compound. The insertion process xA + MO n = A x MO n can be reversed, at least to some extent, by chemical or electrochemical reaction, with retention of structure (topotactic reaction). This review concentrates on methods of synthesis, characterisation, crystal structure and thermochemistry of these insertion compounds. It updates and extends previous work. (author)

  17. Catalytic oxidant scavenging by selenium-containing compounds

    DEFF Research Database (Denmark)

    Carroll, Luke; Pattison, David I; Fu, Shanlin

    2017-01-01

    Myeloperoxidase produces strong oxidants during the immune response to destroy invading pathogens. However, these oxidants can also cause tissue damage, which contributes to the development of numerous inflammatory diseases. Selenium containing compounds, including selenomethionine (SeMet) and 1,...

  18. Rapid Deposition of Oxidized Biogenic Compounds to a Temperate Forest

    Science.gov (United States)

    Nguyen, Tran B.; Crounse, John D.; Teng, Alex P.; St. Clair, Jason M.; Paulot, Fabien; Wolfe, Glenn M.; Wennberg, Paul O.

    2015-01-01

    We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (approx. 1 nmol m(exp.-2)·s(exp.-1)). GEOS-Chem, awidely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS-Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases.

  19. The role of MgCl2 compounds in preparation of Tin oxide micro particles by one-step solid - state chemical reaction method and characterization of microstructure

    International Nuclear Information System (INIS)

    Hojabry, A.; Rezainik, Y.; Abdoljavad, N.; Moghimi, N.; Shakib, M.

    2007-01-01

    In this paper, Tin oxide (SnO 2 ) nano crystals have been synthesized by one-step solid-state chemical reactions method. In the first step, the powder of SnCl 4 . 5H 2 O was mixed with MgCl 2 and Mg(OH) 2 with a weight ratio of Sn to Mg (2:1) in the air atmosphere at room, and then annealed at 200 d egree C , 400 d egree C and 600 d egree C in air for 4 h to give different size of nanoparticles. This method is a simple, efficient and economic preparation for SnO 2 nanoparticles with adjustable grain sizes in the range of 7-32 nm in high yield. The microstructure and morphology of SnO 2 nanoparticles have been studied by X-ray diffraction (XRD), scanning electron microscopy and thermal analysis (thermogravimetric analysis -differential thermal analysis).

  20. Dual passivation of intrinsic defects at the compound semiconductor/oxide interface using an oxidant and a reductant.

    Science.gov (United States)

    Kent, Tyler; Chagarov, Evgeniy; Edmonds, Mary; Droopad, Ravi; Kummel, Andrew C

    2015-05-26

    Studies have shown that metal oxide semiconductor field-effect transistors fabricated utilizing compound semiconductors as the channel are limited in their electrical performance. This is attributed to imperfections at the semiconductor/oxide interface which cause electronic trap states, resulting in inefficient modulation of the Fermi level. The physical origin of these states is still debated mainly because of the difficulty in assigning a particular electronic state to a specific physical defect. To gain insight into the exact source of the electronic trap states, density functional theory was employed to model the intrinsic physical defects on the InGaAs (2 × 4) surface and to model the effective passivation of these defects by utilizing both an oxidant and a reductant to eliminate metallic bonds and dangling-bond-induced strain at the interface. Scanning tunneling microscopy and spectroscopy were employed to experimentally determine the physical and electronic defects and to verify the effectiveness of dual passivation with an oxidant and a reductant. While subsurface chemisorption of oxidants on compound semiconductor substrates can be detrimental, it has been shown theoretically and experimentally that oxidants are critical to removing metallic defects at oxide/compound semiconductor interfaces present in nanoscale channels, oxides, and other nanostructures.

  1. Aerobic Oxidation of Alcohols to Carbonyl Compounds Catalyzed by ...

    Indian Academy of Sciences (India)

    Hydrotalcite-like compounds; cobalt porphyrin; alcohol oxidation; ... cient catalytic method for the low temperature oxy- ... nitrate,8 acetaldehyde,9 ammonium salts10 and NO2,11 ..... N, Sakurai H and Tsukuda T 2009 Effect of electronic.

  2. Transitions between compound states of spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskii, S.G.; Markushev, V.P.; Furman, V.I.

    1980-01-01

    Wigner's statistical matrices are used to study the average reduced g widths and their dispersion for g transitions from a compound state c to another state f, with a lower excitation energy but of arbitrary complexity, for spherical nuclei. It is found that the Porter--Thomas distribution holds for the g widths for all cases of practical interest. In g transitions between compound states c and c' with E/sub g/< or =2 MeV, the most important transitions are M1 transitions involving the major many-quasiparticle components of state c and E1 transitions involving the minor components of state c. It is shown that the strength functions predicted by the various theories for M1 and E1 transitions between compound states with E/sub g/< or =2 MeV are similar. Preference is assigned to the M1-transition version because of experimental results on (n,ga) reactions with thermal and resonance neutrons

  3. An eco-friendly oxidation of sulfide compounds

    Indian Academy of Sciences (India)

    An improved green route has been developed for the oxidation of sulfide compounds. Albendazole is converted to ricobendazole or albendazole sulfone using H₂O₂ as an oxidant and H₂O as the solvent. High yields of the corresponding products were obtained by carrying out the reaction at room temperature.

  4. Structure and oxidation states of giant unit cell compound Dy{sub 117+x}Fe{sub 57-y}Sn{sub 112-z}

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Alexander T.; Barron, Keaton G.; Salazar, Bryan G.; Kirby, Parker; McCandless, Gregory T. [Department of Chemistry and Biochemistry, University of Texas, Dallas, Richardson, TX (United States); Walker, Amy V.; Chan, Julia Y. [Department of Chemistry and Biochemistry, University of Texas, Dallas, Richardson, TX (United States); Department of Materials Science and Engineering, University of Texas, Dallas, Richardson, TX (United States)

    2017-12-13

    Motivated by the complex structure and properties of giant unit cell intermetallic compounds, a new isostructural Fe analogue of the Dy{sub 117}Co{sub 57}Sn{sub 112} structure type was synthesized. Single crystals of Dy{sub 122}Fe{sub 55}Sn{sub 101} were grown at 1260 C via a Dy-Fe eutectoid flux. The Fe analogue also adopts the space group Fm anti 3m with lattice parameters a = 29.914(9) Aa, V = 26769(23) Aa{sup 3}, and Z = 4. Dy{sub 122}Fe{sub 55}Sn{sub 101} has a large cell volume, structural complexity, and consists of seven Dy, eight Fe, and ten Sn unique crystallographic sites. There are fifteen fully occupied atomic positions, three unique pairs of alternating atomic positions with positional disorder, and seven partially occupied atomic sites. Within this complex unit cell, only approximately half the unique atomic positions are fully occupied with the remainder of the atoms either positionally or occupationally disordered. X-ray photoelectron spectroscopy indicates that the compound contains Dy{sup 3+}, Fe{sup 0}, Fe{sup 2+}, Sn{sup 0}, and Sn{sup 4+}. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Selective catalytic oxidations of alkylaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, R.W. [Celanese GmbH, Oberhausen (Germany); Roehrscheid, F. [Hoechst AG, Frankfurt am Main (Germany). Zentralforschung und Technologie

    1998-12-31

    Focused to the guidelines of `Sustainable Development` `Responsible Care` and `Customer Satisfaction`, modern production processes are critically assessed on their balance between their ecological benefits and their economical parameters as well as their value to the community. Also in the area of fine chemicals, it is obvious that more and more processes are devolved which save feedstock, reduce emissions and minimize the potential for safety hazards: Less additive but more integrated protection of the environment yielding ecologically highly valuable processes. The described production of aromatic carboxylic acids is an ideal example for such a modern process. Nowadays the synthesis of derivatives of benzoic acid utilizes air as Ideal oxidant and acetic acid as environmental unquestionable solvent. The major byproduct of the oxidation reaction is water in some cases, dependend on the substrate also carbon dioxide. (orig.)

  6. Anti-Oxidative Polyphenolic Compounds of Cocoa.

    Science.gov (United States)

    Nabavi, Seyed F; Sureda, Antoni; Daglia, Maria; Rezaei, Parizad; Nabavi, Seyed M

    2015-01-01

    Oxidative stress plays a key role in the pathogenesis of different serious chronic diseases such as cancer, diabetes, cardiovascular and neurodegenerative disorders, etc. Recent research has been focused on the beneficial role of dietary antioxidants against oxidative stress both under in vitro and in vivo conditions. Theobroma cacao L. (cacao tree) is an evergreen tree which is native to South America. It is a plant of great economic importance and its seeds are commonly used to produce cocoa powder and chocolate. In addition to its uses in food industry, cocoa is a rich source of polyphenolic antioxidants. There is a plethora of in vitro and in vivo studies that report cocoa antioxidant capacity. The protective activity of cocoa seems to be due to its phytochemical constituents, especially catechins. However, bioavailability of cocoa polyphenolic constituents following oral administration is very low (nanomolar concentrations). In the present paper, we critically reviewed the available literature on the antioxidant and free radical scavenging activities of cocoa and its polyphenolic constituents. In addition to these, we provide brief information about cultivation, phytochemistry, bioavailability and clinical impacts of cocoa.

  7. Simulation of uranium and plutonium oxides compounds obtained in plasma

    Science.gov (United States)

    Novoselov, Ivan Yu.; Karengin, Alexander G.; Babaev, Renat G.

    2018-03-01

    The aim of this paper is to carry out thermodynamic simulation of mixed plutonium and uranium oxides compounds obtained after plasma treatment of plutonium and uranium nitrates and to determine optimal water-salt-organic mixture composition as well as conditions for their plasma treatment (temperature, air mass fraction). Authors conclude that it needs to complete the treatment of nitric solutions in form of water-salt-organic mixtures to guarantee energy saving obtainment of oxide compounds for mixed-oxide fuel and explain the choice of chemical composition of water-salt-organic mixture. It has been confirmed that temperature of 1200 °C is optimal to practice the process. Authors have demonstrated that condensed products after plasma treatment of water-salt-organic mixture contains targeted products (uranium and plutonium oxides) and gaseous products are environmental friendly. In conclusion basic operational modes for practicing the process are showed.

  8. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H [comp.

    1997-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  9. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H. [comp.

    1996-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  10. Relationships among oxidation-reduction and acid-base properties of the actinides in high oxidation states

    International Nuclear Information System (INIS)

    Morss, L.R.

    1992-01-01

    The first chemical identification of plutonium, its subsequent isolation on the macroscopic scale, and more recent chemical separation schemes were achieved by taking advantage of the differences among the oxidation states of uranium, neptunium, and plutonium. Many acid-base properties modify the relative stabilities of oxidation states of the actinides. In the solid state, strongly basic compounds such as Cs 2 O yield complex oxides with oxidation states of Np(VII), Pu(VI), and Am(VI) whereas more acidic compounds such as CsF yield complex fluorides with lower oxidation states. In aqueous solution, high basicity and strongly covalent complexes favor high oxidation states. In nonaqueous solvent systems, high acidity generally favors low oxidation states. This paper elucidates and attempts to interpret the effects of these acid-base properties in a systematic fashion

  11. Nitration of phenolic compounds and oxidation of hydroquinones ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we have reported a mild, efficient and selective method for the mononitration of phenolic compounds using sodium nitrite in the presence of tetrabutylammonium dichromate (TBAD) and oxidation of hydroquinones to quinones with TBAD in CH2Cl2. Using this method, high yields of nitrophenols and ...

  12. Effects of trace volatile organic compounds on methane oxidation

    Directory of Open Access Journals (Sweden)

    Chiemchaisri Wilai

    2001-01-01

    Full Text Available The effects of volatile organic compounds (VOCs on methane oxidation in landfill cover soils were examined. The batch experiments were conducted using single and mixed VOCs, such as, dichloromethane (DCM, trichloroethylene (TCE, tetrachloroethylene (PCE, and benzene. The results from all combinations showed a decrease in methane oxidation rate with increase in VOC concentrations. Moreover, inhibition effects of TCE and DCM were found higher than benzene and PCE. The reduction of methane oxidation by benzene and PCE could be attributed to the toxicity effect, whereas TCE and DCM were found to exhibit the competitive-inhibition effect. When the soil was mixed with DCM, no methane oxidation was found. Damage to the cell's internal membrane was found in a methanotrophic culture exposed to VOC gases which is the attachment site of a key enzyme needed for methane oxidation

  13. Electrolytic photodissociation of chemical compounds by iron oxide electrodes

    Science.gov (United States)

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1984-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor diode having visible light as its sole source of energy. The diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  14. Synthesis of trialkyloboron from boric oxide and organoaluminium compounds

    International Nuclear Information System (INIS)

    Synoradzki, L.; Boleslawski, M.; Pasynkiewicz, S.; Zawada, T.

    1981-01-01

    The reaction of organoaluminium compounds with boric oxide has been studied. The facility of forming trialkyloboron decreases corresponding to the sequence: RAlCl 2 >R 3 Al 2 Cl 3 >R 2 AlCl>R 3 Al. The best yields have been obtained at the temperature of the boiling point of the reaction mixture and at a vigorous mixing. The new method of simultaneous obtaining of trialkyloboron and alkylaluminium chloride having an industrial significance has been proposed. (author)

  15. Determination of an Effective Perfluorinated Compounds (PFCs) Oxidation Method

    Science.gov (United States)

    Siriwardena, D. P.; Crimi, M.; Holsen, T.; Bellona, C.

    2014-12-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a stable synthetic class of chemicals ubiquitously spread in environmental media (i.e. air, soil, biota, surface water and groundwater). The substances' strong polar carbon-fluorine bonds and their high thermal and chemical stability make them resistant to biological, chemical, and physical degradation. The purpose of this research is to identify the most effective oxidation method to treat perfluorinated compounds (PFCs) and their by-products that is suitable for in situ application. The laboratory oxidation study focuses on the more commonly detected and studied long-chain (C-8) PFAS; perfluorooctanoic acids (PFOA) and perfluorooctane sulfonic acid (PFOS). Existing research evaluating oxidizing treatment effectiveness on perfluoroalkyl sulfoinoic acids (PFSAs) is limited. A review of the literature and results from preliminary studies indicate that activated persulfate and catalyzed hydrogen peroxide propagation (CHP) reactions appear to be promising oxidants for PFOA. It has been demonstrated that the reactivity of superoxide in water increases in the presence of hydrogen peroxide (H2O2) and solids. Superoxide generated in CHP reactions degrades PFOA seemingly similar to superoxide-mediated destruction of the perhalogenated compounds.The goal of this study is to look at conditions that promote generation of superoxide and look at PFASs treatment effectiveness and byproduct generation. CHP reactions are conducted with varying amount of H2O2 and Fe(III) to determine the optimum conditions for PFC degradation. Results will be compared to those of another experiment using manganese dioxide as a CHP catalyst with varied H2O2 concentration to generate superoxide to degrade PFASs. Activated persulfate conditions to be compared include alkaline pH activation, heat activation, and dual oxidation (combined H2O2 and persulfate ). This presentation will focus on a comparison of oxidation effectiveness under the

  16. Oxidation of inorganic sulfur compounds in acidophilic prokaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Rohwerder, T.; Sand, W. [Universitaet Duisburg-Essen, Biofilm Centre, Aquatic Biotechnology, Duisburg (Germany)

    2007-07-15

    The oxidation of reduced inorganic sulfur compounds to sulfuric acid is of great importance for biohydrometallurgical technologies as well as the formation of acidic (below pH 3) and often heavy metal-contaminated environments. The use of elemental sulfur as an electron donor is the predominant energy-yielding process in acidic natural sulfur-rich biotopes but also at mining sites containing sulfidic ores. Contrary to its significant role in the global sulfur cycle and its biotechnological importance, the microbial fundamentals of acidophilic sulfur oxidation are only incompletely understood. Besides giving an overview of sulfur-oxidizing acidophiles, this review describes the so far known enzymatic reactions related to elemental sulfur oxidation in acidophilic bacteria and archaea. Although generally similar reactions are employed in both prokaryotic groups, the stoichiometry of the key enzymes is different. Bacteria oxidize elemental sulfur by a sulfur dioxygenase to sulfite whereas in archaea, a sulfur oxygenase reductase is used forming equal amounts of sulfide and sulfite. In both cases, the activation mechanism of elemental sulfur is not known but highly reactive linear sulfur forms are assumed to be the actual substrate. Inhibition as well as promotion of these biochemical steps is highly relevant in bioleaching operations. An efficient oxidation can prevent the formation of passivating sulfur layers. In other cases, a specific inhibition of sulfur biooxidation may be beneficial for reducing cooling and neutralization costs. In conclusion, the demand for a better knowledge of the biochemistry of sulfur-oxidizing acidophiles is underlined. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  17. Preparation and capacitive properties of lithium manganese oxide intercalation compound

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Fang; Xie, Yibing, E-mail: ybxie@seu.edu.cn [Southeast University, School of Chemistry and Chemical Engineering (China)

    2015-12-15

    Lithium manganese oxide intercalation compound (Li{sub 0.7}MnO{sub 2}) supported on titanium nitride nanotube array (TiN NTA) was applied as cathode electrode material for lithium-ion supercapacitor application. Li{sub 0.7}MnO{sub 2}/TiN NTA was fabricated through electrochemical deposition and simultaneous intercalation process using TiN NTA as a substrate, Mn(CH{sub 3}COO){sub 2} as manganese source, and Li{sub 2}SO{sub 4} as lithium source. The morphology and microstructure of the Li{sub 0.7}MnO{sub 2}/TiN NTA were characterized by scanning electron microscopy and X-ray diffraction analysis. The electrochemical performance of the Li{sub 0.7}MnO{sub 2}/TiN NTA was investigated by electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge measurements. Li{sub 0.7}MnO{sub 2}/TiN NTA exhibited higher capacitive performance in Li{sub 2}SO{sub 4} electrolyte solution rather than that in Na{sub 2}SO{sub 4} electrolyte solution, which was due to the different intercalation effects of lithium-ion and sodium-ion. The specific capacitance was improved from 503.3 F g{sup −1} for MnO{sub 2}/TiN NTA to 595.0 F g{sup −1} for Li{sub 0.7}MnO{sub 2}/TiN NTA at a current density of 2 A g{sup −1} in 1.0 M Li{sub 2}SO{sub 4} electrolyte solution, which was due to the intercalation of lithium-ion for Li{sub 0.7}MnO{sub 2}. Li{sub 0.7}MnO{sub 2}/TiN NTA also kept 90.4 % capacity retention after 1000 cycles, presenting a good cycling stability. An all-solid-state lithium-ion supercapacitor was fabricated and showed an energy density of 82.5 Wh kg{sup −1} and a power density of 10.0 kW kg{sup −1}.

  18. Changes in volatile compound composition of Antrodia camphorata during solid state fermentation.

    Science.gov (United States)

    Xia, Yongjun; Zhang, Baorong; Li, Weijiang; Xu, Ganrong

    2011-10-01

    Although the volatiles present in mushrooms and fungi have been investigated by many researchers, including Antrodia camphorata in submerged fermentation, there are few data available regarding changes in volatile compounds during fermentation. Our research has revealed that solid state fermentation of A. camphorata is highly odiferous compared with submerged cultures and the odor changed with increasing culture time. Therefore the aim of this study was to investigate the changes in volatile compound composition of A. camphorata during solid state fermentation. Altogether, 124 major volatile compounds were identified. The volatile compounds produced by A. camphorata during growth in solid state fermentation were quite different. Oct-1-en-3-ol, octan-3-one and methyl 2-phenylacetate were predominant in exponential growth phase production, while the dominant volatiles produced in stationary phase were octan-3-one and methyl 2-phenylacetate. In stationary phase, lactone compounds in A. camphorata, such as 5-butyloxolan-2-one, 5-heptyloxolan-2-one, 6-heptyloxan-2-one, contributed greatly to peach and fruit-like flavor. Terpene and terpene alcohol compounds, such as 1-terpineol, L-linalool, T-cadinol, (E, E)-farnesol, β-elemene, cis-α-bisabolene and α-muurolene, made different contributions to herbal fresh aroma in A. camphorata. Nineteen volatile sesquiterpenes were detected from solid state fermentation of A. camphorata. The compounds 5-n-butyl-5H-furan-2-one, β-ionone, (-)-caryophyllene oxide, aromadendrene oxide, diepi-α-cedrene epoxide, β-elemene, α-selinene, α-muurolene, azulene, germacrene D, γ-cadinene and 2-methylpyrazine have not hitherto been reported in A. camphorata. The preliminary results suggest that the aroma-active compounds produced by A camphorata in solid state fermentation might serve as an important source of natural aroma compounds for the food and cosmetic industries or antibiotic activity compounds. The sesquiterpenes could be

  19. Role of Oxidative Stress in Male Reproductive Dysfunctions with Reference to Phthalate Compounds.

    Science.gov (United States)

    Sedha, Sapna; Kumar, Sunil; Shukla, Shruti

    2015-11-14

    A wide variety of environmental chemicals/xenobiotics including phthalates have been shown to cause oxidative stress targeting the endocrine system and cause reproductive anomalies. The present review describes various issues by oxidative stress causing male reproductive dysfunctions. Here in this review, the importance and role of phthalate compounds in male reproductive dysfunction has been well documented. One class of environmental endocrine disruptors is phthalates. Phthalate compounds are mostly used as plasticizers, which increase the flexibility, durability, longevity, and etc. of the plastics. Large-scale use of plastic products in our daily life as well as thousands of workers engaged in the manufacture of plastic and plastic products and recycling plastic industry are potentially exposed to these chemicals. Further, general population as well as vulnerable groups i.e. children and pregnant women are also exposed to these chemicals. Phthalates are among wide variety of environmental toxicants capable of compromising male fertility by inducing a state of oxidative stress in the testes. They may also generate reactive oxygen species (ROS) that may affect various physiological and reproductive functions. The available data points out that phthalate compounds may also induce oxidative stress in the male reproductive organs mainly testis and epididymis. They impair spermatogenic process by inducing oxidative stress and apoptosis in germ cells or target sertoli cells and thereby hamper spermatogenesis. They also impair the Leydig cell function by inducing ROS, thereby decreasing the levels of steroidogenic enzymes. Thus in utero and postnatal exposure to phthalate compounds might lead to decreased sperm count and various other reproductive anomalies in the young male.

  20. Oxidation of refractory sulfur compounds over Ti-containing mesoporous molecular sieves prepared by using a fluorosilicon compound.

    Science.gov (United States)

    Jeong, Kwang-Eun; Cho, Chin-Soo; Chae, Ho-Jeong; Kim, Chul-Ung; Jeong, Soon-Yong

    2010-05-01

    Titanium containing mesoporous molecular sieve (Ti-MMS) catalysts were studied for the oxidative desulfurization of refractory sulfur compounds. Ti-MMS catalysts were synthesized from fluorosilicon compounds and Ti with the hydrolysis reaction of H2SiF6 in an ammonia-surfactant mixed solution. The solid products were characterized by XRD, XRF, nitrogen adsorption, and diffuse reflectance UV-vis spectroscopy. Effects of Ti loading and oxidant/sulfur mole ratio, and sulfur species on ODS activity were investigated.

  1. Oxidation-state maxima in plutonium chemistry

    International Nuclear Information System (INIS)

    Silver, G.L.

    2013-01-01

    Maxima in the fractions of the trivalent and hexavalent oxidation states of plutonium are inherent in the algebra of its disproportionation reactions. The maxima do not support overall disproportionation equations as satisfactory representations of aqueous plutonium. (author)

  2. Garlic Sulfur Compounds Suppress Cancerogenesis and Oxidative Stress: a Review

    Directory of Open Access Journals (Sweden)

    Dvořáková M.

    2015-06-01

    Full Text Available Garlic has long been considered a food with many health benefits. Several studies have confirmed that sulfur compounds are responsible for the positive effects of garlic on organisms. Garlic acts as an antioxidant by increasing antioxidant enzyme activity, reducing reactive oxygen species generation, and protecting proteins and lipids from oxidation. Garlic suppresses carcinogenesis through several mechanisms: (1 it reduces oxidative stress, and therefore, prevents damage to DNA; (2 it induces apoptosis or cell cycle arrest in cancer cells; and (3 it modifies gene expression through histon acetylation. The positive effects of garlic could be mediated by several mechanisms. It influences signalling pathways of gasotransmitters such as hydrogen sulfide. Garlic enhances hydrogen sulfide production both through its direct release and through an increase in activity of enzymes which produce hydrogen sulfide. Hydrogen sulfide acts as a signalling molecule in various tissues and participates in the regulation of many physiological processes. We can presume that garlic, which is able to release hydrogen sulfide, exhibits effects similar to those of this gasotransmitter.

  3. Phenolic compounds of Triplaris gardneriana can protect cells against oxidative stress and restore oxidative balance.

    Science.gov (United States)

    de Almeida, Thiago Silva; Neto, José Joaquim Lopes; de Sousa, Nathanna Mateus; Pessoa, Igor Parra; Vieira, Leonardo Rogério; de Medeiros, Jackeline Lima; Boligon, Aline Augusti; Hamers, Astrid R M; Farias, Davi Felipe; Peijnenburg, Ad; Carvalho, Ana Fontenele Urano

    2017-09-01

    This work aimed to add value to an underexploited plant species from Brazil, Triplaris gardneriana. To that, the phenolic compounds profile of its seed ethanolic extract and fractions was examined by HPLC and the antioxidant capacity assessed using chemical assays as well as in vitro cell imaging. Twelve compounds were quantified and classified as either phenolic acids or flavonoids. The fractionation process did not generate fractions with different compositions except for chloroformic fraction, which showed only 6 out of 12 standard compounds used. DPPH assay revealed samples with a concentration-dependent radical scavenging activity, being methanolic fraction the one with the largest activity (SC 50 11.45±0.02μg/mL). Lipid peroxidation assessment, in the presence and absence of stress inducer, showed that particularly the ethanol extract (IC 50 26.75±0.08μg/mL) and the ethyl acetate fraction (IC 50 6.14±0.03μg/mL) could inhibit lipid peroxidation. The ethyl acetate fraction performed best in chelating iron (48% complexation at 1000μg/mL). Cell imaging experiments showed that the ethanolic extract could protect cells against oxidative stress as well as restore the oxidative balance upon stress induction. In conclusion, T. gardneriana seeds showed a promising phenolic compounds profile and antioxidant activity that may be further exploited. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Mixed valence transition metal 2D-oxides: Comparison between delafossite and crednerite compounds

    Science.gov (United States)

    Martin, Christine; Poienar, Maria

    2017-08-01

    Transition metal oxides offer large opportunities to study relationships between structures and properties. Indeed these compounds crystallize in numerous frameworks corresponding to different dimensionalities and, accordingly, show a huge variety of properties (as high Tc superconductivity, colossal magnetoresistivity, multiferroicity..). The control of the oxidation state of the transition metal, via the monitoring of the oxygen content, is of prime importance to understand and optimize the properties, due to the strong coupling that exists between the lattice and the charges and spins of the transition metals. In this large playground for chemists, we reinvestigated several 2D-compounds derived from delafossite structure. Considering this paper as a very short review, we report here the results obtained on CuMO2 compounds (with M = Cr, Mn or Mn+Cu) by using a combination of techniques, as X-ray, neutrons and/or electrons diffraction on poly-crystals for structural characterisations that are correlated with electrical and/or magnetic properties. The complementarity of studies is also addressed by the synthesis and characterization of single crystals in addition to poly-crystals. Moreover the comparison of the structures of similar Cr and Mn based oxides highlights the crucial role of the Jahn-Teller effect of trivalent manganese to lift the degeneracy, which is responsible of the magnetic frustration in CuCrO2.

  5. [Stability of physical state on compound hawthorn dropping pills].

    Science.gov (United States)

    Zhang, Wei; Chen, Hong-Yan; Jiang, Jian-Lan

    2008-11-01

    To evaluate the stability of physical state with accelerate test and dropping in process before and after on compound hawthorn dropping pills. Scanning electron microscope, TG-DTA, FT-IR and XRD were used. The active components presented amorphous, tiny crystal and molecular state in dropping pills, and it had no obvious reaction between PEG 4000 and active components. With time prolonging, a little of active components changed from amorphous state to tiny crystal or molecular state. Solid dispersion improved the stability and dissolution of compound hawthorn dropping pills.

  6. [Protective effect and mechanism of compound Ginkgo biloba granules on oxidative stress injury of HUVEC].

    Science.gov (United States)

    Li, Qi; Chen, Xi; Kan, Xiao-Xi; Li, Yu-Jie; Yang, Qing; Wang, Ya-Jie; Chen, Ying; Weng, Xiao-Gang; Cai, Wei-Yan; Huang, He-Fei; Zhu, Xiao-Xin

    2016-02-01

    To reveal the protective and anti-apoptosis effect of compound Ginkgo biloba granules on oxidative stress injury of human umbilical vein endothelial cells (HUVEC). Negative control group, H2O2 model group and 4 drug pretreatment groups (80, 160, 320, 640 mg• L⁻¹) were established. The cell proliferation, morphological changes in each group after oxidative stress injury was detected by MTT assay and through microscope observation respectively. The content of LDH, MDA, SOD and NO and SOD activity in supernatant were detected to judge the protection effect of the drugs on endothelial cells. The protective effect on HUVEC apoptosis was analyzed by Caspase-3 activity test and Annexin V-FITC/PI staining. Western blot was used to observe the expression of apoptosis-related proteins Bcl-2 and Bax. Results showed that 1 200 μmol• L⁻¹ H2O2 can induce oxidative stress injury in endothelial cells and reduce the cell survival rate; cell proliferation inhibition degree is positively correlated with the effect time of H2O2. Besides, 80, 160, 320 640 mg•L⁻¹ compound Ginkgo biloba granules can protect HUVEC from oxidative stress injury, recover the normal proliferation level of cells, improve their state, prohibit cell apoptosis, and can up-regulate and down-regulate the expression level of Bcl-2 and Bax respectively. In conclusion, compound G. biloba granules can protect HUVEC from the oxidative stress injury induced by H2O2, its mechanism may be correlated with inhibition of the mitochondrial apoptotic pathway in HUVEC. Copyright© by the Chinese Pharmaceutical Association.

  7. The Thermodynamic Properties of the f-Elements and their Compounds. Part 2. The Lanthanide and Actinide Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Konings, Rudy J. M., E-mail: rudy.konings@ec.europa.eu; Beneš, Ondrej; Kovács, Attila; Manara, Dario; Sedmidubský, David [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Gorokhov, Lev; Iorish, Vladimir S.; Yungman, Vladimir; Shenyavskaya, E.; Osina, E. [Joint Institute for High Temperatures, Russian Academy of Sciences, 13-2 Izhorskaya Street, Moscow 125412 (Russian Federation)

    2014-03-15

    A comprehensive review of the thermodynamic properties of the oxide compounds of the lanthanide and actinide elements is presented. The available literature data for the solid, liquid, and gaseous state have been analysed and recommended values are presented. In case experimental data are missing, estimates have been made based on the trends in the two series, which are extensively discussed.

  8. Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest

    Energy Technology Data Exchange (ETDEWEB)

    Abedinzadeh, Z. [Lab. de Chimie Physique, UMR, Univ. Rene Descartes, Paris (France)

    2001-02-01

    Sulphur compounds play a central role in the structure and activity of many vital systems. In the living cell, sulfur constitutes an essential part of the defense against oxidative damage and is transformed into a variety of sulfur free radical species. Many studies of the chemistry of sulfur-centered radicals using pulse radiolysis and photolysis techniques to detect and measure the kinetics of these radicals have been published and reviewed. This paper discusses the present state of research on the formation and reactivity of certain sulfur-centered radicals [RS{sup .}, RSS{sup .}, RS{sup .+}, (RSSR){sup .+}] and their implications for biological systems. (author)

  9. Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest

    International Nuclear Information System (INIS)

    Abedinzadeh, Z.

    2001-01-01

    Sulphur compounds play a central role in the structure and activity of many vital systems. In the living cell, sulfur constitutes an essential part of the defense against oxidative damage and is transformed into a variety of sulfur free radical species. Many studies of the chemistry of sulfur-centered radicals using pulse radiolysis and photolysis techniques to detect and measure the kinetics of these radicals have been published and reviewed. This paper discusses the present state of research on the formation and reactivity of certain sulfur-centered radicals [RS . , RSS . , RS .+ , (RSSR) .+ ] and their implications for biological systems. (author)

  10. Influence of stoichiometry on electrochromic cerium-titanium oxide compounds

    International Nuclear Information System (INIS)

    Kullman, L.; Richardson, T.; Rubin, M.; Slack, J.; Rottkay, K. von

    1997-01-01

    CeO 2 -TiO 2 finds use as passive counter-electrode in electrochromic devices. Thin films were produced by de-sputtering in a wide range of compositions. Influence of total pressure and oxygen partial pressure on the optical constants of TiO 2 was investigated. Slightly substoichiometric Ti0 2 films exhibit a red-shift of the bandgap. The Ti0 2 content in the compound essentially determines the degree of cathodical coloring upon Li + intercalation [1]. However, pure TiO 2 films with comparable visible transmittance in the clear state behave differently during electrochemical cycling depending on oxygen stoichiometry. Films that are deposited at higher total pressure are more oxygen rich and require initial formatting until current voltage cycles become stable. CeO 2 -Ti0 2 films of intermediate compositions have the relatively highest charge capacity. Comparison with atomic force microscopy indicates a correlation of small grain size with high charge capacity

  11. The problem of oxidation state stabilisation and some regularities of a Periodic system of the elements

    International Nuclear Information System (INIS)

    Kiselev, Yurii M; Tretyakov, Yuri D

    1999-01-01

    The general principles of the concept of oxidation state stabilisation are formulated. Problems associated with the preparation and provision of the highest valent forms of transition elements are considered. The empirical data concerning the synthesis of new compounds of rare-earth elements and d elements in unusually high oxidation states are analysed. The possibility of occurrence of the oxidation states + 9 and + 10 for some elements (for example, for iridium and platinum in tetraoxo ions) are discussed. Approaches to the realisation of these states are outlined and it is demonstrated that solid phases or matrices containing alkali metal cations are the most promising systems for the stabilisation of these high oxidation states. Selected thermodynamic features typical of metal halides and oxides and the regularities of the changes in the extreme oxidation states of d elements are considered. The bibliography includes 266 references.

  12. Magnetic and structural properties of yellow europium oxide compound and Eu(OH)3

    International Nuclear Information System (INIS)

    Lee, Dongwook; Seo, Jiwon; Valladares, Luis de los Santos; Avalos Quispe, O.; Barnes, Crispin H.W.

    2015-01-01

    A new material based on a yellow europium oxide compound was prepared from europium oxide in a high vacuum environment. The structural and magnetic properties of the material were investigated. Owing to the absence of a crystal structure, the material exhibited a disordered magnetic behavior. In a reaction with deionized (DI) water without applied heat, the compound assumed a white color as soon as the DI water reached the powder, and the structure became polycrystalline Eu(OH) 3 . The magnetic properties, such as the thermal hysteresis, disappeared after the reaction with DI water, and the magnetic susceptibility of the yellow oxide compound weakened. The magnetic properties of Eu(OH) 3 were also examined. Although Eu 3+ is present in Eu(OH) 3 , a high magnetic moment due to the crystal field effect was observed. - Graphical abstract: (top left) Optical image of the yellow europium oxide compound. (top right) Optical image of the product of DI water and yellow europium oxide. (bottom) Magnetization curves as a function of temperature measured in various magnetic field. - Highlights: • We prepared a new material based on a yellow europium oxide compound from europium oxide. • We characterized the magnetic properties of the material which exhibits a disordered magnetic behavior such as thermal hysteresis. • The compound turned white (Eu(OH) 3 ) as soon as the DI water reached the powder. • The thermal hysteresis disappeared after the reaction with DI water and the magnetic susceptibility of the yellow oxide compound weakened

  13. Thermodynamic behavior of glassy state of structurally related compounds.

    Science.gov (United States)

    Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-08-01

    Thermodynamic properties of amorphous pharmaceutical forms are responsible for enhanced solubility as well as poor physical stability. The present study was designed to investigate the differences in thermodynamic parameters arising out of disparate molecular structures and associations for four structurally related pharmaceutical compounds--celecoxib, valdecoxib, rofecoxib, and etoricoxib. Conventional and modulated temperature differential scanning calorimetry were employed to study glass forming ability and thermodynamic behavior of the glassy state of model compounds. Glass transition temperature of four glassy compounds was in a close range of 327.6-331.8 K, however, other thermodynamic parameters varied considerably. Kauzmann temperature, strength parameter and fragility parameter showed rofecoxib glass to be most fragile of the four compounds. Glass forming ability of the compounds fared similar in the critical cooling rate experiments, suggesting that different factors were determining the glass forming ability and subsequent behavior of the compounds in glassy state. A comprehensive understanding of such thermodynamic facets of amorphous form would help in rationalizing the approaches towards development of stable glassy pharmaceuticals.

  14. Thermodynamic Ground States of Complex Oxide Heterointerfaces

    DEFF Research Database (Denmark)

    Gunkel, F.; Hoffmann-Eifert, S.; Heinen, R. A.

    2017-01-01

    The formation mechanism of 2-dimensional electron gases (2DEGs) at heterointerfaces between nominally insulating oxides is addressed with a thermodynamical approach. We provide a comprehensive analysis of the thermodynamic ground states of various 2DEG systems directly probed in high temperature...

  15. Higher Americium Oxidation State Research Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Mincher, Bruce J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Law, Jack D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Goff, George S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burns, Jon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lumetta, Gregg J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sinkov, Sergey I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shehee, Thomas C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hobbs, David T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-18

    The partitioning of hexavalent Am from dissolved nuclear fuel requires the ability to efficiently oxidize Am(III) to Am(VI) and to maintain that oxidation state for a length of time sufficient to perform the separation. Several oxidants have been, or are being developed. Chemical oxidants include Ag-catalyzed ozone, Ag-catalyzed peroxydisulfate, Cu(III) periodate, and sodium bismuthate. Hexavalent americium has also now successfully been prepared by electrolysis, using functionalized electrodes. So-called auto-reduction rates of Am(VI) are sufficiently slow to allow for separations. However, for separations based on solvent extraction or ion exchange using organic resins, the high valence state must be maintained under the reducing conditions of the organic phase contact, and a holding oxidant is probably necessary. Until now, only Cu(III) periodate and sodium bismuthate oxidation have been successfully combined with solvent extraction separations. Bismuthate oxidation provided the higher DAm, since it acts as its own holding oxidant, and a successful hot test using centrifugal contactors was performed. For the other oxidants, Ag-catalyzed peroxydisulfate will not oxidize americium in nitric acid concentrations above 0.3 M, and it is not being further investigated. Peroxydisulfate in the absence of Ag catalysis is being used to prepare Am(V) in ion exchange work, discussed below. Preliminary work with Ag-catalyzed ozone has been unsuccessful for extractions of Am(VI) from 6.5 M HNO3, and only one attempt at extraction, also from 6.5 M HNO3, using the electrolytic oxidation has been attempted. However, this high acid concentration was based on the highest Am extraction efficiency using the bismuthate oxidant; which is only sparingly soluble, and thus the oxidation yield is based on bismuthate solubility. Lower acid concentrations may be sufficient with alternative oxidants and work with Ag-ozone, Cu(III) and electrolysis is on-going. Two non

  16. End States, Ladder Compounds, and Domain-Wall Fermions

    International Nuclear Information System (INIS)

    Creutz, M.

    1999-01-01

    A magnetic field applied to a cross-linked ladder compound can generate isolated electronic states bound to the ends of the chain. After exploring the interference phenomena responsible, I discuss a connection to the domain-wall approach to chiral fermions in lattice gauge theory. The robust nature of the states under small variations of the bond strengths is tied to chiral symmetry and the multiplicative renormalization of fermion masses. copyright 1999 The American Physical Society

  17. Gamma transitions between compound states in spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, S.G.; Markushev, V.P.; Furman, V.I.

    1980-01-01

    Average values of the reduced γ widths and their dispersions are investigated, basing on the Wigner statistical matrix method, for γ transitions from a compound state c into a less-energy excited state f of an arbitrary complexity in spherical nuclei. It is shown that in all the cases of practical interest the Porter-Thomas distribution is valid for the γ widths. It is found that in the γ transitions between compound states c and c' with Esub(γ) <= 2 MeV the dominating role is played by the M1 transitions due to the main multiquasiparticle states of c, and by the E1 transitions, due to small components of the state c. In framework of the existent theoretical schemes it is shown that the strength functions of the M1 and E1 transitions between the compound states with Esub(γ) <2 MeV are close. It is deduced thet the variant of the M1 transitions is preferable in view of the experimental results on the (n, γα) reactions induced by thermal and resonance neutrons

  18. Evidences for the Formation of Chromium in the Unusual Oxidation State Cr(IV). I. Chemical Reactivity, Microhomogeneity, and Crystal Structures of the Nonstoichiometric Channel Compounds Tl xCr 5Se 8(0 ≤ x≤ 1)

    Science.gov (United States)

    Bensch, W.; Helmer, O.; Näther, C.

    1996-11-01

    are only slightly affected. These results suggest an oxidation of the formally trivalent Cr to the unusual tetravalent state Cr(IV), rather than the formation of valence band holes.

  19. Synthesis and characterization of ruthenium fluorides and oxide fluorides with high oxidation states

    International Nuclear Information System (INIS)

    Meublat, L.

    1989-10-01

    The synthesis of ruthenium fluorides and oxide fluorides with high oxidation states was attempted from dioxide RuO 2 and tetroxide RuO 4 . Three fluorinating agents were used: fluorine, chlorine trifluoride and krypton difluoride. The reactions were achieved in anhydrous hydrogen fluoride at room temperature. Thus, the reaction of RuO 4 with CIF 3 enabled us to prepare chloryl hexafluororuthenate (V), CIO 2 + RuF 6 - , a new compound well identified by vibrational spectroscopy (infra-red and Raman), the structure of which was determined. The reaction of KrF 2 with RuO 4 gave the oxide tetrafluoride RuOF 4 , the previously published syntheses and properties of which were not in agreement with each other. This compound was definitely characterized here by chemical analysis, infra-red spectroscopy and X-ray powder diffraction. The product of thermal decomposition (70 0 C) of RuOF 4 is presumably RuF 4 since only oxygen is liberated during this decomposition. At last, the reaction of KrF 2 with RuO 2 probably leads to the formation of the new oxide fluoride RuO 2 F 4 . Indeed, no oxygen is given off during this reaction, the chemical analysis of the red-orange coloured solid residue is almost in agreement with the one proposed and its infra-red absorption spectrum indicates the presence of ruthenium-oxygen and ruthenium-terminal and bridging fluorine bonds [fr

  20. Synthesis and characterization of ruthenium fluorides and oxide fluorides with high oxidation states

    International Nuclear Information System (INIS)

    Meublat, L.

    1989-01-01

    The synthesis of ruthenium fluorides and oxide fluorides with high oxidation states was attempted from dioxide RuO 2 and tetroxide RuO 4 . Three fluorinating agents were used: fluorine, chlorine trifluoride and krypton difluoride. The reactions were achieved in anhydrous hydrogen fluoride at room temperature. Thus, the reaction of RuO 4 with CIF 3 enabled us to prepare chloryl hexafluororuthenate (V), ClO 2 + RuF 6 - , a new compound well idendified by vibrational spectroscopy (infra-red and Raman), the structure of which was determined. The reaction of KrF 2 with RuO 4 gave the oxide tetrafluoride RuOF 4 , the previously published syntheses and properties of which were not in agreement with each other. This compound was definitely characterized here by chemical analysis, infra-red spectroscopy and X-ray powder diffraction. The product of thermal decomposition (70 0 C) of RuOF 4 is presumably RuF 4 since only oxygen is liberated during this decomposition. At last, the reaction of KrF 2 with RuO 2 probably leads to the formation of the new oxide fluoride RuO 2 F 4 . Indeed, no oxygen is given off during this reaction, the chemical analysis of the red-orange coloured solid residue is almost in agreement with the one proposed and its infra-red absorption spectrum indicates the presence of ruthenium-oxygen and ruthenium-terminal and bridging fluorine bonds [fr

  1. Internal Displacement Reactions in Multicomponent Oxides: Part I. Line Compounds with Narrow Homogeneity Range

    OpenAIRE

    Reddy, SNS; Leonard, DN; Wiggins, LB; Jacob, KT

    2005-01-01

    As a model of an internal displacement reaction involving a ternary oxide line compound, the following reaction was studied at 1273 K as a function of time, t: $Fe+NiTiO_3 = Ni + FeTiO_3$ Both polycrystalline and single-crystal materials were used as the starting $NiTiO_3$ oxide. During the reaction, the Ni in the oxide compound is displaced by Fe and it precipitates as a \\gamma -(Ni-Fe) alloy. The reaction preserves the starting ilmenite structure. The product oxide has a consta...

  2. High Temperature Oxidation of Superalloys and Intermetallic Compounds

    Science.gov (United States)

    2010-02-28

    Oxid. Met. Vol.14, pp. 217-234. 1980. 20. T.A. Rannanarayanan, M. Raghavan and R. Petrovic-Luton. Metallic Yttrium Additions to High Temperatura ... Temperatura Alloys: Influence of AI2O3 Scale Properties. Oxid. Met. Vol.22, pp. 83-100. 1984. 21. High-temperature characterization of reactively

  3. Chelation and stabilization of berkelium in oxidation state +IV

    Science.gov (United States)

    Deblonde, Gauthier J.-P.; Sturzbecher-Hoehne, Manuel; Rupert, Peter B.; An, Dahlia D.; Illy, Marie-Claire; Ralston, Corie Y.; Brabec, Jiri; de Jong, Wibe A.; Strong, Roland K.; Abergel, Rebecca J.

    2017-09-01

    Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin—a mammalian metal transporter—in contrast to the negatively charged species obtained with neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.

  4. Oxidation of inorganic compounds of sulphur by various sulphur bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Parker, C D; Prisk, J

    1953-01-01

    Cultures of thiobacillus thiooxidans, Th. thioparus, Th. novellus, Thiobacillus b strains t and kand Th. concretivorus, Thiobacillus x and the m strains, organisms isolated from concrete were examined to elucidate the mode of oxidation and to establish the identity of the organisms recently isolated from corroded concrete. Thiosulphate was oxidized by all these bacteria. Th. thiooxidans, Th. concretivorus and Thiobacillus x first converted it to tetrathionate and sulphate and then oxidized the tetrathionate to sulphate and free sulphuric acid. Thiobaciullus x differed from the other two in that, owing to a lesser acid tolerance, some tetrathionate was found in the final products of oxidation. Th. Thioparus converted thiosulphate to sulphate and sulphur, followed by partial oxidation of the sulphur to sulphuric acid. Th. novellus produced sulphate and sulphuric acid. Thiobacillus b, the t and k strains and the m strains formed sulphate and tetrathionate with temporary increase in pH value; only Thiobacillus x oxidized tetrationate, yielding sulphate and sulphuric acid. Elementary sulphur was oxidized by Th. thiooxidans, th. Concretivorus, thiobacillus x and Th. thioparus; the rates of oxidation decreased in that order, and the only product was sulphuric acid. Hydrogen sulphide was oxidized only at low concentrations and only by th. Concretivorus and Thiobacillus x; sulphuric acid was the end-product, and elementary sulphur may have been an intermediate. Thiobacillus x differed from Th. thiooxidans in pH range for growth and from Th. thioparus in its method of oxidation of thiosulphate, tetrathionate and H/sub 2/S. The m strains were similar to thiobacillus b and the t and k strains of trautwein.

  5. The Study and Development of Metal Oxide Reactive Adsorbents for the Destruction of Toxic Organic Compounds

    National Research Council Canada - National Science Library

    Mitchell, Mark B

    2008-01-01

    ... and other toxic organic compounds. The research program that was developed built upon earlier results achieved in the room temperature oxidative decomposition of a chemical warfare agent simulant, dimethyl methylphosphonate (DMMP...

  6. Reaction mechanisms of ruthenium tetroxide mediated oxidations of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Froehaug, Astrid Elisabeth

    1995-12-31

    This thesis reports a study of the mechanism of ruthenium tetroxide mediated oxidations of saturated hydrocarbons, ethers, alkenes and alcohols. Several methods were used. The RuO{sub 4}-mediated oxidations of adamantane and cis-decalin were studied in CCl{sub 4}-CH{sub 3}CN-H{sub 2}O and in acetone-water. The rate of reaction was found to be moderately influenced by the polarity of the solvent. Solvent properties other than the polarity were also found to influence the reaction rates. From the oxidations of adamantane and adamantane-1,3,5,7-d{sub 4} two primary kinetic deuterium isotope effects were found. These were comparable with the deuterium isotope effects found for the analogous oxidations of cis-decalin and cis-decalin-d{sub 18}. The results seem to exclude both a one step hydride abstraction reaction mechanism and a one step concerted mechanism, as well as a scheme where two such mechanisms compete. The observations may be explained by a two step reaction mechanism consisting of a pre-equilibrium with formation of a substrate-RuO{sub 4} complex followed by a concerted rate determining reaction. The RuO{sub 4}-mediated oxidation of ethers was of kinetic second order with a small enthalpy of activation and a large negative entropy of activation. Oxidation of cyclopropylmethyl methyl ether gave methyl cyclopropanecarboxylate, no rearranged products were observed. On RuO{sub 4} oxidations in CCl{sub 4} with NaIO{sub 4} as stoichiometric oxidant, no chlorinated products were observed. Several observations not in agreement with a hydride or a hydrogen abstraction mechanism may be explained by assuming that the reaction proceeds by either a concerted reaction or by a reversible oxidative addition of the ether to RuO{sub 4} followed by a slow concerted step. 228 refs., 9 figs., 27 tabs.

  7. Studies On An Aerobic Oxidation Of Dibenzothiophene And Related Compounds Using Ruthenium Catalyst

    Directory of Open Access Journals (Sweden)

    Morishita Y.

    2015-06-01

    Full Text Available An aerobic oxidation of dibenzothiophene and related compounds using a catalytic amount of ruthenium chloride in hydrocarbon solvents at 80°C for 20 h gave the corresponding sulfones in almost quantitative yields. The reaction might proceed via autoxidation of solvents to hydroperoxides and the reaction of sulfur compounds with the resulting hydroperoxides.

  8. Various ways to reduce zinc oxide levels in S-SBR rubber compounds

    NARCIS (Netherlands)

    Heideman, G.; Noordermeer, Jacobus W.M.; Datta, Rabin; van Baarle, Ben

    2007-01-01

    Because of environmental concerns, the zinc content in rubber compounds has come under scrutiny. The research described in this article encompasses zinc-oxide, various zinc-complexes and alternative metal oxides as activators for sulphur vulcanisation. Regarding zinc complexes, it can be concluded

  9. Magnetic and structural properties of yellow europium oxide compound and Eu(OH){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongwook, E-mail: dongwookleedl324@gmail.com [Cavendish Laboratory, University of Cambridge, J. J Thomson Av., Cambridge CB3 0HE (United Kingdom); Seo, Jiwon, E-mail: jiwonseo@yonsei.ac.kr [Department of Physics and IPAP, Yonsei University, Seoul 120-749 (Korea, Republic of); Valladares, Luis de los Santos [Cavendish Laboratory, University of Cambridge, J. J Thomson Av., Cambridge CB3 0HE (United Kingdom); Avalos Quispe, O. [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima, Perú (Peru); Barnes, Crispin H.W. [Cavendish Laboratory, University of Cambridge, J. J Thomson Av., Cambridge CB3 0HE (United Kingdom)

    2015-08-15

    A new material based on a yellow europium oxide compound was prepared from europium oxide in a high vacuum environment. The structural and magnetic properties of the material were investigated. Owing to the absence of a crystal structure, the material exhibited a disordered magnetic behavior. In a reaction with deionized (DI) water without applied heat, the compound assumed a white color as soon as the DI water reached the powder, and the structure became polycrystalline Eu(OH){sub 3}. The magnetic properties, such as the thermal hysteresis, disappeared after the reaction with DI water, and the magnetic susceptibility of the yellow oxide compound weakened. The magnetic properties of Eu(OH){sub 3} were also examined. Although Eu{sup 3+} is present in Eu(OH){sub 3}, a high magnetic moment due to the crystal field effect was observed. - Graphical abstract: (top left) Optical image of the yellow europium oxide compound. (top right) Optical image of the product of DI water and yellow europium oxide. (bottom) Magnetization curves as a function of temperature measured in various magnetic field. - Highlights: • We prepared a new material based on a yellow europium oxide compound from europium oxide. • We characterized the magnetic properties of the material which exhibits a disordered magnetic behavior such as thermal hysteresis. • The compound turned white (Eu(OH){sub 3}) as soon as the DI water reached the powder. • The thermal hysteresis disappeared after the reaction with DI water and the magnetic susceptibility of the yellow oxide compound weakened.

  10. The Atmospheric Oxidation of Volatile Organic Compounds Through Hydrogen Shift Reactions

    DEFF Research Database (Denmark)

    Knap, Hasse Christian

    a radical is denoted as a H-shift reaction. Quantum chemical calculations were carried out to investigate the potential energy surface of the H-shift reactions and the subsequent decomposition pathways. The transition state theory including the Eckart quantum tunneling correction have been used to calculate...... the reaction rate constants of the H-shift reactions. The autoxidation of volatile organic compounds is an important oxidation mechanism that produces secondary organic aerosols (SOA) and recycles hydroxyl (OH) radicals. The autoxidation cycle produces a second generation peroxy radical (OOQOOH) through...... a series of H-shift reactions and O2 attachments. I have investigated the H-shift reactions in two OOQOOH radicals (hydroperoxy peroxy radicals and hydroperoxy acyl peroxy radicals). The H-shift reaction rate constants have been compared with the bimolecular reaction rate constants of the peroxy radicals...

  11. Chemical interaction in resistors based on lead ruthenite with additions of niobium(5) oxide compounds

    International Nuclear Information System (INIS)

    Lozinskij, N.S.; Shevtsova, N.A.; Gruba, A.I.; Volkov, V.I.

    1986-01-01

    The method of X-ray phase analysis was used to study chemical interaction in isothermal cross-section of Pb 2 RU 2 O 6 -Nb 2 O 5 , Rbsub(2)Rusub(2)Osub(6)-NbWOsub(5.5) and Rb 2 Ru 2 O 6 -Pb 2 Nb 2 O 7 systems at 850 deg C as well as in models of real ruthenium resistors. Chemical interaction is stated to take place in systems with niobium (5) oxide and NbWOsub(5.5). Niobium (5) and tungsten (6) displace ruthenium (4) from its compounds with formation of their lead salts. Similar chemical interactions between current-carrying phase of the resistor and modifiers representing niobium-containing take place in models of components of the studied systems take place in models of resistors

  12. Oxidation behavior of U-Si compounds in air from 25 to 1000 C

    Science.gov (United States)

    Sooby Wood, E.; White, J. T.; Nelson, A. T.

    2017-02-01

    The air oxidation behavior of U3Si2, USi, and U3Si5 is studied from room temperature to 1000 C. The onsets of breakaway oxidation for each compound are identified during synthetic air ramps to 1000 C using thermogravimetric analysis. Isothermal air oxidation tests are performed below and above the breakaway oxidation onset to discern the oxidation kinetic behavior of these candidate accident tolerant fuel forms. Uranium metal is tested in the same manner to provide a reference for the oxidation behavior. Thermogravimetric, x-ray diffraction, and scanning electron microscopy analysis are presented here along with a discussion of the oxidation behavior of these materials and the impact of the lack of oxidation resistance to their deployment as accident tolerant nuclear fuels.

  13. Oxidation behavior of U-Si compounds in air from 25 to 1000 C

    Energy Technology Data Exchange (ETDEWEB)

    Sooby Wood, E., E-mail: sooby@lanl.gov; White, J.T.; Nelson, A.T.

    2017-02-15

    The air oxidation behavior of U{sub 3}Si{sub 2}, USi, and U{sub 3}Si{sub 5} is studied from room temperature to 1000 C. The onsets of breakaway oxidation for each compound are identified during synthetic air ramps to 1000 C using thermogravimetric analysis. Isothermal air oxidation tests are performed below and above the breakaway oxidation onset to discern the oxidation kinetic behavior of these candidate accident tolerant fuel forms. Uranium metal is tested in the same manner to provide a reference for the oxidation behavior. Thermogravimetric, x-ray diffraction, and scanning electron microscopy analysis are presented here along with a discussion of the oxidation behavior of these materials and the impact of the lack of oxidation resistance to their deployment as accident tolerant nuclear fuels.

  14. Organocatalyzed Asymmetric α-Oxidation, α-Aminoxylation and α-Amination of Carbonyl Compounds

    Directory of Open Access Journals (Sweden)

    Worawan Bhanthumnavin

    2010-02-01

    Full Text Available Organocatalytic asymmetric α-oxidation and amination reactions of carbonyl compounds are highly useful synthetic methodologies, especially in generating chiral building blocks that previously have not been easily accessible by traditional methods. The concept is relatively new and therefore the list of new catalysts, oxidizing and aminating reagents, as well as new substrates, are expanding at an amazing rate. The scope of this review includes new reactions and catalysts, mechanistic aspects and synthetic applications of α-oxidation, hydroxylation, aminoxylation, amination, hydrazination, hydroxyamination and related α-heteroatom functionalization of aldehydes, ketones and related active methylene compounds published during 2005–2009.

  15. Flavoenzyme-catalyzed oxygenations and oxidations of phenolic compounds

    NARCIS (Netherlands)

    Moonen, MJH; Fraaije, MW; Rietjens, IMCM; Laane, C; van Berkel, WJH

    2002-01-01

    Flavin-dependent monooxygenases and oxidases play an important role in the mineralization of phenolic compounds. Because of their exquisite regioselectivity and stereoselectivity, these enzymes are of interest for the biocatalytic production of fine chemicals and food ingredients. In our group, we

  16. Persistence of oxidation state III of gold in thione coordination

    Science.gov (United States)

    Jääskeläinen, Sirpa; Koskinen, Laura; Kultamaa, Matti; Haukka, Matti; Hirva, Pipsa

    2017-05-01

    Ligands N,N'-tetramethylthiourea and 2-mercapto-1-methyl-imidazole form stable Au(III) complexes [AuCl3(N,N'-tetramethylthiourea)] (1) and [AuCl3(2-mercapto-1-methyl-imidazole)] (2) instead of reducing the Au(III) metal center into Au(I), which would be typical for the attachment of sulfur donors. Compounds 1 and 2 were characterized by spectroscopic methods and by X-ray crystallography. The spectroscopic details were explained by simulation of the UV-Vis spectra via the TD-DFT method. Additionally, computational DFT studies were performed in order to find the reason for the unusual oxidation state in the crystalline materials. The preference for Au(III) can be explained via various weak intra- and intermolecular interactions present in the solid state structures. The nature of the interactions was further investigated by topological charge density analysis via the QTAIM method.

  17. Reactivity of selenium-containing compounds with myeloperoxidase-derived chlorinating oxidants

    DEFF Research Database (Denmark)

    Carroll, Luke; Pattison, David I.; Fu, Shanlin

    2015-01-01

    and N-chloramines, causes damage to host tissue. Low molecular mass thiol compounds, including glutathione (GSH) and methionine (Met), have demonstrated efficacy in scavenging MPO-derived oxidants, which prevents oxidative damage in vitro and ex vivo. Selenium species typically have greater reactivity...... compounds (selenomethionine, methylselenocysteine, 1,4-anhydro-4-seleno-L-talitol, 1,5-anhydro-5-selenogulitol) studied. In general, selenomethionine was the most reactive with N-chloramines (k2 0.8-3.4×10(3)M(-1) s(-1)) with 1,5-anhydro-5-selenogulitol and 1,4-anhydro-4-seleno-L-talitol (k2 1.1-6.8×10(2)M......(-1) s(-1)) showing lower reactivity. This resulted in the formation of the respective selenoxides as the primary oxidation products. The selenium compounds demonstrated greater ability to remove protein N-chloramines compared to the analogous sulfur compounds. These reactions may have implications...

  18. Intestinal Oxidative State Can Alter Nutrient and Drug Bioavailability

    Directory of Open Access Journals (Sweden)

    Faria Ana

    2009-01-01

    Full Text Available Organic cations (OCs are substances of endogenous (e.g., dopamine, choline or exogenous (e.g., drugs like cimetidine origin that are positively charged at physiological ph. since many of these compounds can not pass the cell membrane freely, their transport in or out of cells must be mediated by specific transport systems. Transport by organic cation transporters (OCTs can be regulated rapidly by altering their trafficking and/or affinities in response to stimuli. However, for example, a specific disease could lead to modifications in the expression of OCTs. Chronic exposure to oxidative stress has been suggested to alter regulation and functional activity of proteins through several pathways. According to results from a previous work, oxidation-reduction pathways were thought to be involved in intestinal organic cation uptake modulation. The present work was performed in order to evaluate the influence of oxidative stressors, especially glutathione, on the intestinal organic cation absorption. For this purpose, the effect of compounds with different redox potential (glutathione, an endogenous antioxidant, and procyanidins, diet antioxidants was assessed on MPP+ (1-methyl-4-phenylpyridinium iodide uptake in an enterocyte cell line (Caco-2. Caco-2 cells were subcultured with two different media conditions (physiological: 5 mM glucose, referred as control cells; and high-glucose: 25 mM glucose, referred as HG cells. In HG cells, the uptake was significantly lower than in control cells. Redox changing interventions affected Mpp+ uptake, both in control and in high-glucose Caco-2 cells. Cellular glutathione levels could have an important impact on membrane transporter activity. The results indicate that modifications in the cellular oxidative state modulate MPP+ uptake by Caco-2 cells. Such modifications may reflect in changes of nutrient and drug bioavailability.

  19. Theoretical calculations of valence states in Fe-Mo compounds

    International Nuclear Information System (INIS)

    Estrada, F; Navarro, O; Noverola, H; Suárez, J R; Avignon, M

    2014-01-01

    The half-metallic ferromagnetic double perovskite compound Sr 2 FeMoO 6 is considered as an important material for spintronic applications. It appears to be fundamental to understand the role of electronic parameters controlling the half-metallic ground state. Fe-Mo double perovskites usually present some degree of Fe/Mo disorder which generally increases with doping. In this work, we study the valence states of Fe-Mo cations in the off-stoichiometric system Sr 2 Fe 1+x Mo 1−x O 6 (−1 ≤ x ≤ 1/3) with disorder. Our results for Fe and Mo valence states are obtained using the Green functions and the renormalization perturbation expansion method. The model is based on a correlated electron picture with localized Fe-spins and conduction Mo-electrons interacting with the local spins via a double-exchange-type mechanism

  20. Copper-catalyzed oxidative desulfurization-oxygenation of thiocarbonyl compounds using molecular oxygen: an efficient method for the preparation of oxygen isotopically labeled carbonyl compounds.

    Science.gov (United States)

    Shibahara, Fumitoshi; Suenami, Aiko; Yoshida, Atsunori; Murai, Toshiaki

    2007-06-21

    A novel copper-catalyzed oxidative desulfurization reaction of thiocarbonyl compounds, using molecular oxygen as an oxidant and leading to formation of carbonyl compounds, has been developed, and the utility of the process is demonstrated by its application to the preparation of a carbonyl-18O labeled sialic acid derivative.

  1. Nitric oxide synthesis and biological functions of nitric oxide released from ruthenium compounds

    Directory of Open Access Journals (Sweden)

    A.C. Pereira

    2011-09-01

    Full Text Available During three decades, an enormous number of studies have demonstrated the critical role of nitric oxide (NO as a second messenger engaged in the activation of many systems including vascular smooth muscle relaxation. The underlying cellular mechanisms involved in vasodilatation are essentially due to soluble guanylyl-cyclase (sGC modulation in the cytoplasm of vascular smooth cells. sGC activation culminates in cyclic GMP (cGMP production, which in turn leads to protein kinase G (PKG activation. NO binds to the sGC heme moiety, thereby activating this enzyme. Activation of the NO-sGC-cGMP-PKG pathway entails Ca2+ signaling reduction and vasodilatation. Endothelium dysfunction leads to decreased production or bioavailability of endogenous NO that could contribute to vascular diseases. Nitrosyl ruthenium complexes have been studied as a new class of NO donors with potential therapeutic use in order to supply the NO deficiency. In this context, this article shall provide a brief review of the effects exerted by the NO that is enzymatically produced via endothelial NO-synthase (eNOS activation and by the NO released from NO donor compounds in the vascular smooth muscle cells on both conduit and resistance arteries, as well as veins. In addition, the involvement of the nitrite molecule as an endogenous NO reservoir engaged in vasodilatation will be described.

  2. Photochemical oxidants: state of the science.

    Science.gov (United States)

    Kley, D; Kleinmann, M; Sanderman, H; Krupa, S

    1999-01-01

    Atmospheric photochemical processes resulting in the production of tropospheric ozone (O(3)) and other oxidants are described. The spatial and temporal variabilities in the occurrence of surface level oxidants and their relationships to air pollution meteorology are discussed. Models of photooxidant formation are reviewed in the context of control strategies and comparisons are provided of the air concentrations of O(3) at select geographic locations around the world. This overall oxidant (O(3)) climatology is coupled to human health and ecological effects. The discussion of the effects includes both acute and chronic responses, mechanisms of action, human epidemiological and plant population studies and briefly, efforts to establish cause-effect relationships through numerical modeling. A short synopsis is provided of the interactive effects of O(3) with other abiotic and biotic factors. The overall emphasis of the paper is on identifying the current uncertainties and gaps in our understanding of the state of the science and some suggestions as to how they may be addressed.

  3. Plutonium disproportionation. Hydrolysis and local oxidation-state maxima

    International Nuclear Information System (INIS)

    Silver, G.L.

    2014-01-01

    Local maxima in the fractions of the trivalent and hexavalent oxidation states are inherent in the algebra of Pu disproportionation reactions. A new method predicts the pH and the oxidation-state fractions at maximum. Tabulated results illustrate the effects of the Pu oxidation number and Pu(IV) hydrolysis on the maxima. This method suggests a new laboratory approach for discovering Pu oxidation-state maxima. (author)

  4. The oxidative decomposition of natural bioactive compound rhamnetin

    Czech Academy of Sciences Publication Activity Database

    Ramešová, Šárka; Degano, I.; Sokolová, Romana

    2017-01-01

    Roč. 788, MAR 2017 (2017), s. 125-130 ISSN 1572-6657 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR M200401201 Program:M Institutional support: RVO:61388955 Keywords : oxidation * flavonoids * cyclic voltammetry Subject RIV: CG - Electrochemistry OBOR OECD: Analytical chemistry Impact factor: 3.012, year: 2016

  5. Synthesis of Graphene Oxide by Oxidation of Graphite with Ferrate(VI) Compounds: Myth or Reality?

    Science.gov (United States)

    Sofer, Zdeněk; Luxa, Jan; Jankovský, Ondřej; Sedmidubský, David; Bystroň, Tomáš; Pumera, Martin

    2016-09-19

    It is well established that graphene oxide can be prepared by the oxidation of graphite using permanganate or chlorate in an acidic environment. Recently, however, the synthesis of graphene oxide using potassium ferrate(VI) ions has been reported. Herein, we critically replicate and evaluate this new ferrate(VI) oxidation method. In addition, we test the use of potassium ferrate(VI) for the synthesis of graphene oxide under various experimental routes. The synthesized materials are analyzed by a number of analytical methods in order to confirm or disprove the possibility of synthesizing graphene oxide by the ferrate(VI) oxidation route. Our results confirm the unsuitability of using ferrate(VI) for the oxidation of graphite on graphene oxide because of its high instability in an acidic environment and low oxidation power in neutral and alkaline environments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Lipid oxidation in baked products: impact of formula and process on the generation of volatile compounds.

    Science.gov (United States)

    Maire, Murielle; Rega, Barbara; Cuvelier, Marie-Elisabeth; Soto, Paola; Giampaoli, Pierre

    2013-12-15

    This paper investigates the effect of ingredients on the reactions occurring during the making of sponge cake and leading to the generation of volatile compounds related to flavour quality. To obtain systems sensitive to lipid oxidation (LO), a formulation design was applied varying the composition of fatty matter and eggs. Oxidation of polyunsaturated fatty acids (PUFA) and formation of related volatile compounds were followed at the different steps of cake-making. Optimised dynamic Solid Phase Micro Extraction was applied to selectively extract either volatile or semi-volatile compounds directly from the baking vapours. We show for the first time that in the case of alveolar baked products, lipid oxidation occurs very early during the step of dough preparation and to a minor extent during the baking process. The generation of lipid oxidation compounds depends on PUFA content and on the presence of endogenous antioxidants in the raw matter. Egg yolk seemed to play a double role on reactivity: protecting unsaturated lipids from oxidation and being necessary to generate a broad class of compounds of the Maillard reaction during baking and linked to the typical flavour of sponge cake. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Nd2(SeO3)2(SeO4) . 2H2O - a mixed-valence compound containing selenium in the oxidation states +IV and +VI

    International Nuclear Information System (INIS)

    Berdonosov, P.S.; Dityat'yev, O.A.; Dolgikh, V.A.; Schmidt, P.; Ruck, Michael; Lightfoot, P.

    2004-01-01

    Pale pink crystals of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O were synthesized under hydrothermal conditions from H 2 SeO 3 and Nd 2 O 3 at about 200 C. X-ray diffraction on powder and single-crystals revealed that the compound crystallizes with the monoclinic space group C 2/c (a = 12.276(1) A, b = 7.0783(5) A, c = 13.329(1) A, β = 104.276(7) ). The crystal structure of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O is an ordered variant of the corresponding erbium compound. Eight oxygen atoms coordinate the Nd III atom in the shape of a bi-capped trigonal prism. The oxygen atoms are part of pyramidal (Se IV O 3 ) 2- groups, (Se VI O 4 ) 2- tetrahedra and water molecules. The [NdO 8 ] polyhedra share edges to form chains oriented along [010]. The selenate ions link these chains into layers parallel to (001). The layers are interconnected by the selenite ions into a three-dimensional framework. The dehydration of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O starts at 260 C. The thermal decomposition into Nd 2 SeO 5 , SeO 2 and O 2 at 680 C is followed by further loss of SeO 2 leaving cubic Nd 2 O 3 . (Abstract Copyright [2004], Wiley Periodicals, Inc.) [de

  8. Rare oxidation states of group V metal compounds generated by radiolysis in non aqueous solvents: experimental and theoretical study. Attempts for synthesis of heterometallic complexes containing niobium and uranium or thorium

    International Nuclear Information System (INIS)

    Le Motais, B.

    1986-02-01

    Mononuclear and binuclear complexes of group V trivalent metals (V, Nb, Ta), coordinated with γ-picolin molecules and chlorine atoms, have been oxidized or reduced, respectively by the radical-ions CH 2 Cl 2 + or CH 3 CN - radiolytically generated in free-oxygen dichloromethane or acetonitrile. The mechanism of these reactions have been established from kinetic, spectroscopic data and in some cases, from EPR measurements and theoretical SWXα calculations. Some preliminary results about the reaction occurring between Cp 2 Nb-(CO)H and Cp 2 'M(CH 3 ) 2 (M=U or Th) (Cp = eta 5 - C 5 H 5 ; Cp = eta 5 - (C 5 (CH 3 ) 5 ) are also reported [fr

  9. Degradation of phenolic compounds by using advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M. [Univ. de los Andes, Escuela Basica de Ingenieria, La Hechicera, Merida (Venezuela); Hincapie, M. [Dept. de Ingenieria Sanitaria y Ambiental, Univ. de Antioquia, Medellin (Colombia); Curco, D.; Contreras, S.; Gimenez, J.; Esplugas, S. [Dept. de Ingenieria Quimica, Facultad de Quimica, Univ. de Barcelona, Barcelona (Spain)

    2003-07-01

    A new empirical kinetic equation [r = k{sub 1}c - k{sub 2} (c{sub 0} - c)] is proposed for the photocatalytic degradation of phenolic compounds. This equation considers the influence of the intermediates in the degradation of the pollutant. The correct formulation of the contaminant mass balance in the experimental device that operates in recycle mode was done. The proposed empirical kinetic equation fitted quite well with the experimental results obtained in the TiO{sub 2}-photocatalytic degradation of phenol. (orig.)

  10. From iron coordination compounds to metal oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Mihail Iacob

    2016-12-01

    Full Text Available Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2IIIFeIIO(CH3COO6(H2O3]·2H2O (FeAc1, μ3-oxo trinuclear iron(III acetate, [Fe3O(CH3COO6(H2O3]NO3∙4H2O (FeAc2, iron furoate, [Fe3O(C4H3OCOO6(CH3OH3]NO3∙2CH3OH (FeF, iron chromium furoate, FeCr2O(C4H3OCOO6(CH3OH3]NO3∙2CH3OH (FeCrF, and an iron complex with an original macromolecular ligand (FePAZ were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination or using a nonconventional energy source (i.e., microwave or ultrasonic treatment to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  11. From iron coordination compounds to metal oxide nanoparticles.

    Science.gov (United States)

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel; Cazacu, Maria

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe 2 III Fe II O(CH 3 COO) 6 (H 2 O) 3 ]·2H 2 O (FeAc1), μ 3 -oxo trinuclear iron(III) acetate, [Fe 3 O(CH 3 COO) 6 (H 2 O) 3 ]NO 3 ∙4H 2 O (FeAc2), iron furoate, [Fe 3 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeF), iron chromium furoate, FeCr 2 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  12. A gravimetric method for the determination of oxygen in uranium oxides and ternary uranium oxides by addition of alkaline earth compounds

    International Nuclear Information System (INIS)

    Fujino, Takeo; Tagawa, Hiroaki; Adachi, Takeo; Hashitani, Hiroshi

    1978-01-01

    A simple gravimetric determination of oxygen in uranium oxides and ternary uranium oxides is described. In alkaline earth uranates which are formed by heating in air at 800-1100 0 C, uranium is in the hexavalent state over certain continuous ranges of alkaline earth-to-uranium ratios. Thus, if an alkaline earth uranate or a compound containing an alkaline earth element, e.g. MgO, is mixed with the oxide sample and heated in air under suitable conditions, oxygen can be determined from the weight change before and after the reaction. The standard deviation of the O:U ratio for a UOsub(2+x) test sample is +-0.0008-0.001, if a correction is applied for atmospheric moisture absorbed during mixing. (Auth.)

  13. Study of compounds emitted during thermo-oxidative decomposition of polyester fabrics

    Directory of Open Access Journals (Sweden)

    Dzięcioł Małgorzata

    2016-03-01

    Full Text Available Compounds emitted during thermo-oxidative decomposition of three commercial polyester fabrics for indoor outfit and decorations (upholstery, curtains were studied. The experiments were carried out in a flow tubular furnace at 600°C in an air atmosphere. During decomposition process the complex mixtures of volatile and solid compounds were emitted. The main volatile products were carbon oxides, benzene, acetaldehyde, vinyl benzoate and acetophe-none. The emitted solid compounds consisted mainly of aromatic carboxylic acids and its derivatives, among which the greatest part took terephthalic acid, monovinyl terephthalate and benzoic acid. The small amounts of polycyclic aromatic hydrocarbons were also emitted. The emission profiles of the tested polyester fabrics were similar. The presence of toxic compounds indicates the possibility of serious hazard for people during fire.

  14. Oxidation of organic compounds in wastewater from the humid processing of coffee berries

    International Nuclear Information System (INIS)

    Goncalves, Maraisa; Guerreiro, Mario Cesar; Oliveira, Luiz Carlos Alves; Rocha, Cristian Luciana da

    2008-01-01

    Materials based on pure iron oxide and impregnated with niobia (Nb 2 O 5 ) were prepared. Their catalytic activities were tested on the oxidation of compounds present in the wastewater from the processing of coffee berries. Particularly caffeine and catechol were tested. The oxidation reactions were carried out with the following systems: UV/H 2 O 2 ; photo-Fenton and heterogeneous Fenton. All materials were characterized with X-ray diffraction, Moessbauer and infrared spectroscopy. Iron was mainly in the forms of goethite and maghemite. The oxidation kinetics were monitored by UV-vis and the oxidation products were monitored by mass spectrometry. The photo-Fenton reaction presented highest oxidation efficiency, removing 98% of all caffeine and catechol contents. (author)

  15. Heterogeneous inhibition of the liquid phase oxidation of hydrocarbons by molybdenum compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tavadyan, L.A.; Karapetyan, A.P.; Madatovyan, V.M.

    1988-05-01

    The heterogeneous action of molybdenum compounds: MoB, MoSe/sub 2/, MoSi/sub 2/, Mo/sub 2/C, MoO/sub 3/, Mo on the oxidation of n-decane, ethylbenzene, and nonene-1 has been investigated. A parameter representing the inhibiting effect of the heterogeneous catalyst was calculated theoretically. It was found that NoB, MoSe/sub 2/, and MoSi/sub 2/ inhibited the oxidation of n-decane at 408 K while the remaining heterogeneous contacts catalyzed it. A critical phenomenon was detected in the inhibition by MoSi/sub 2/. All the molybdenum compounds investigated inhibited the oxidation of ethylbenzene at 393 K owing to the formation of phenol by catalytic decomposition of the hydroperoxide. The liquid phase oxidation autoinhibited by phenol is described theoretically.

  16. Synthesis of Heteroaromatic Compounds by Oxidative Aromatization Using an Activated Carbon/Molecular Oxygen System

    Directory of Open Access Journals (Sweden)

    Masahiko Hayashi

    2009-08-01

    Full Text Available A variety of heteroaromatic compounds, such as substituted pyridines, pyrazoles, indoles, 2-substituted imidazoles, 2-substituted imidazoles, 2-arylbenzazoles and pyrimidin-2(1H-ones are synthesized by oxidative aromatization using the activated carbon and molecular oxygen system. Mechanistic study focused on the role of activated carbon in the synthesis of 2-arylbenzazoles is also discussed. In the final section, we will disclose the efficient synthesis of substituted 9,10-anthracenes via oxidative aromatization.

  17. Organocatalyzed Asymmetric α-Oxidation, α-Aminoxylation and α-Amination of Carbonyl Compounds

    OpenAIRE

    Worawan Bhanthumnavin; Tirayut Vilaivan

    2010-01-01

    Organocatalytic asymmetric α-oxidation and amination reactions of carbonyl compounds are highly useful synthetic methodologies, especially in generating chiral building blocks that previously have not been easily accessible by traditional methods. The concept is relatively new and therefore the list of new catalysts, oxidizing and aminating reagents, as well as new substrates, are expanding at an amazing rate. The scope of this review includes new reactions and catalysts, mechanistic aspects ...

  18. Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds.

    Science.gov (United States)

    McCurry, Daniel L; Quay, Amanda N; Mitch, William A

    2016-02-02

    Chloropicrin formation has been associated with ozonation followed by chlorination, but the reaction pathway and precursors have been poorly characterized. Experiments with methylamine demonstrated that ozonation converts methylamine to nitromethane at ∼100% yield. Subsequent chlorination converts nitromethane to chloropicrin at ∼50% yield under the conditions evaluated. Similarly high yields from other primary amines were limited to those with functional groups on the β-carbon (e.g., the carboxylic acid in glycine) that facilitate carbon-carbon bond cleavage to release nitromethyl anion. Secondary amines featuring these reactive primary amines as functional groups (e.g., secondary N-methylamines) formed chloropicrin at high yields, likely by facile dealkylation to release the primary nitro compound. Chloropicrin yields from tertiary amines were low. Natural water experiments, including derivatization to transform primary and secondary amines to less reactive carbamate functional groups, indicated that primary and secondary amines were the dominant chloropicrin precursors during ozonation/chlorination. Ozonation followed by chlorination of the primary amine side chain of lysine demonstrated low yields (∼0.2%) of chloropicrin, but high yields (∼17%) of dichloronitrolysine, a halonitroalkane structural analogue to chloropicrin. However, chloropicrin yields increased and dichloronitrolysine yields decreased in the absence of hydroxyl radical scavengers, suggesting that future research should characterize the potential occurrence of such halonitroalkane analogues relative to natural radical scavenger (e.g., carbonate) concentrations.

  19. Selective cleavage of the C(α)-C(β) linkage in lignin model compounds via Baeyer-Villiger oxidation.

    Science.gov (United States)

    Patil, Nikhil D; Yao, Soledad G; Meier, Mark S; Mobley, Justin K; Crocker, Mark

    2015-03-21

    Lignin is an amorphous aromatic polymer derived from plants and is a potential source of fuels and bulk chemicals. Herein, we present a survey of reagents for selective stepwise oxidation of lignin model compounds. Specifically, we have targeted the oxidative cleavage of Cα-Cβ bonds as a means to depolymerize lignin and obtain useful aromatic compounds. In this work, we prepared several lignin model compounds that possess structures, characteristic reactivity, and linkages closely related to the parent lignin polymer. We observed that selective oxidation of benzylic hydroxyl groups, followed by Baeyer-Villiger oxidation of the resulting ketones, successfully cleaves the Cα-Cβ linkage in these model compounds.

  20. Electrochemical reduction of nitroaromatic compounds by single sheet iron oxide coated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Zhi, E-mail: lizhi@plen.ku.dk [Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK–1871 Frederiksberg C (Denmark); Hansen, Hans Christian B. [Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK–1871 Frederiksberg C (Denmark); Bjerrum, Morten Jannik [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK–2100 København Ø (Denmark)

    2016-04-05

    Highlights: • Composite layers of single sheet iron oxides were coated on indium tin oxide electrodes. • Single sheet iron oxide is an electro-catalyst for reduction of nitroaromatic compounds in aqueous solution. • The reduction is well explained by a diffusion layer model. • The charge properties of the nitrophenols have an important influence on reduction. • Low-cost iron oxide based materials are promising electro-catalyst for water treatment. - Abstract: Nitroaromatic compounds are substantial hazard to the environment and to the supply of clean drinking water. We report here the successful reduction of nitroaromatic compounds by use of iron oxide coated electrodes, and demonstrate that single sheet iron oxides formed from layered iron(II)-iron(III) hydroxides have unusual electrocatalytic reactivity. Electrodes were produced by coating of single sheet iron oxides on indium tin oxide electrodes. A reduction current density of 10 to 30 μA cm{sup −2} was observed in stirred aqueous solution at pH 7 with concentrations of 25 to 400 μM of the nitroaromatic compound at a potential of −0.7 V vs. SHE. Fast mass transfer favors the initial reduction of the nitroaromatic compound which is well explained by a diffusion layer model. Reduction was found to comprise two consecutive reactions: a fast four-electron first-order reduction of the nitro-group to the hydroxylamine-intermediate (rate constant = 0.28 h{sup −1}) followed by a slower two-electron zero-order reduction resulting in the final amino product (rate constant = 6.9 μM h{sup −1}). The zero-order of the latter reduction was attributed to saturation of the electrode surface with hydroxylamine-intermediates which have a more negative half-wave potential than the parent compound. For reduction of nitroaromatic compounds, the SSI electrode is found superior to metal electrodes due to low cost and high stability, and superior to carbon-based electrodes in terms of high coulombic efficiency and

  1. THE DIMINISHING OF THE CONTENT OF TEXTILE DIRECT DYES AND AUXILIARY COMPOUNDS DURING THEIR CATALYTIC OXIDATION

    Directory of Open Access Journals (Sweden)

    Maria Gonta

    2014-06-01

    Full Text Available Advanced oxidation methods of organic compounds lead to their partial mineralization and increase of the adsorption process efficiency on the surface of oxidized activated carbon. We have studied the oxidation process using model solutions containing mixture of dye direct brown (DB, ethylene glycol (EGL and sodium lauryl sulfate (SLS under the action of Fenton reagent, in the presence and absence of UV irradiation or under the action of electric current (in the electrochemical cell. The same studies were performed by replacing the iron (II ion with titanium dioxide.

  2. Advances in Base-Free Oxidation of Bio-Based Compounds on Supported Gold Catalysts

    Directory of Open Access Journals (Sweden)

    Robert Wojcieszak

    2017-11-01

    Full Text Available The oxidation of bio-based molecules in general, and of carbohydrates and furanics in particular, is a highly attractive process. The catalytic conversion of renewable compounds is of high importance. Acids and other chemical intermediates issued from oxidation processes have many applications related, especially, to food and detergents, as well as to pharmaceutics, cosmetics, and the chemical industry. Until now, the oxidation of sugars, furfural, or 5-hydroxymethylfurfural has been mainly conducted through biochemical processes or with strong inorganic oxidants. The use of these processes very often presents many disadvantages, especially regarding products separation and selectivity control. Generally, the oxidation is performed in batch conditions using an appropriate catalyst and a basic aqueous solution (pH 7–9, while bubbling oxygen or air through the slurry. However, there is a renewed interest in working in base-free conditions to avoid the production of salts. Actually, this gives direct access to different acids or diacids without laborious product purification steps. This review focuses on processes applying gold-based catalysts, and on the catalytic properties of these systems in the base-free oxidation of important compounds: C5–C6 sugars, furfural, and 5-hydroxymethylfurfural. A better understanding of the chemical and physical properties of the catalysts and of the operating conditions applied in the oxidation reactions is essential. For this reason, in this review we put emphasis on these most impacting factors.

  3. Study of bismuth oxide compounds as cathodic materials in lithium accumulators

    International Nuclear Information System (INIS)

    Apostolova, R.D.; Shembel', E.M.

    1999-01-01

    Two groups of bismuth oxide base compounds: rare earth bismuthides - SmBiO 3 and EuBiO 3 , as well as the Aurivillius phase - Bi 4 V 2 O 11 , were synthesized and electrochemically studied as novel cathodic materials for high-energy lithium current sources [ru

  4. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

    Science.gov (United States)

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 d...

  5. Inhibitory effect of organotin compounds on rat neuronal nitric oxide synthase through interaction with calmodulin

    International Nuclear Information System (INIS)

    Ohashi, Koji; Kominami, Shiro; Yamazaki, Takeshi; Ohta, Shigeru; Kitamura, Shigeyuki

    2004-01-01

    Organotin compounds, triphenyltin (TPT), tributyltin, dibutyltin, and monobutyltin (MBT), showed potent inhibitory effects on both L-arginine oxidation to nitric oxide and L-citrulline, and cytochrome c reduction catalyzed by recombinant rat neuronal nitric oxide synthase (nNOS). The two inhibitory effects were almost parallel. MBT and TPT showed the highest inhibitory effects, followed by tributyltin and dibutyltin; TPT and MBT showed inhibition constant (IC 50 ) values of around 10 μM. Cytochrome c reduction activity was markedly decreased by removal of calmodulin (CaM) from the complete mixture, and the decrease was similar to the extent of inhibition by TPT and MBT. The inhibitory effect of MBT on the cytochrome c reducing activity was rapidly attenuated upon dilution of the inhibitor, and addition of a high concentration of CaM reactivated the cytochrome c reduction activity inhibited by MBT. However, other cofactors such as FAD, FMN or tetrahydrobiopterin had no such ability. The inhibitory effect of organotin compounds (100 μM) on L-arginine oxidation of nNOS almost vanished when the amount of CaM was sufficiently increased (150-300 μM). It was confirmed by CaM-agarose column chromatography that the dissociation of nNOS-CaM complex was induced by organotin compounds. These results indicate that organotin compounds disturb the interaction between CaM and nNOS, thereby inhibiting electron transfer from the reductase domain to cytochrome c and the oxygenase domain

  6. Aerosol generation by oxidation and combustion of plutonium and its compounds: literature survey

    International Nuclear Information System (INIS)

    Ballereau, P.

    1987-09-01

    Generation of aerosols by oxidation or combustion is one of the greatest risks due to plutonium. A review is made of the most interesting documents available on this topic. Following a brief study of plutonium oxydation conditions, characteristics of aerosols generated by accidents of fires involving metallic Pu and some of its compounds are assessed. Nuclear weapons are not included in this review [fr

  7. A method for nitric oxide radical scavenging properties of sulfur containing compounds.

    NARCIS (Netherlands)

    Vriesman, M.F.; Haenen, G.R.M.M.; Westerveld, G.J.; Paquay, J.B.G.; Voss, H.P.; Bast, A.

    1997-01-01

    A new method for the quantification of the nitric oxide (NO) scavenging activity of compounds in aqueous solutions is described using an amperometric NO sensor. After correction for the spontaneous degradation of NO, second-order rate kinetics of the scavenging reaction are observed.

  8. Total Oxidation of Model Volatile Organic Compounds over Some Commercial Catalysts

    Czech Academy of Sciences Publication Activity Database

    Matějová, Lenka; Topka, Pavel; Jirátová, Květa; Šolcová, Olga

    2012-01-01

    Roč. 443, NOV 7 (2012), s. 40-49 ISSN 0926-860X R&D Projects: GA MPO FR-TI1/059 Institutional support: RVO:67985858 Keywords : volatile organic compounds * oxidation * ethanol Subject RIV: DM - Solid Waste and Recycling Impact factor: 3.410, year: 2012

  9. Pressure effect on magnetic and magnetotransport properties of intermetallic and colossal magnetoresistance oxide compounds

    Czech Academy of Sciences Publication Activity Database

    Arnold, Zdeněk; Ibarra, M. R.; Algarabel, P. A.; Marquina, C.; De Teresa, J. M.; Morellon, L.; Blasco, J.; Magen, C.; Prokhnenko, Olexandr; Kamarád, Jiří; Ritter, C.

    2005-01-01

    Roč. 17, - (2005), S3035-S3055 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100521 Keywords : pressure effect * intermetallic compounds * magnetic properties * magnetic phase transitions * magnetotransport properties * oxides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.145, year: 2005

  10. Study of the emission oxidative reactions of ruthenium (II) complex by cationic compounds in anionic micelles

    International Nuclear Information System (INIS)

    Bonilha, J.B.S.

    1985-01-01

    The oxidative quenching of the emission of the tetraanionic complex tris (4,4' dicarboxylate - 2,2' - bipyridine ruthenium (II) in aqueous solution, by both organic and inorganic compounds in presence of anionic detergents, above and below the critical micelle concentration is studied. The organic cations, the inorganic ion and detergents used are shown. (M.J.C.) [pt

  11. Screening SIRT1 Activators from Medicinal Plants as Bioactive Compounds against Oxidative Damage in Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-01-01

    Full Text Available Sirtuin type 1 (SIRT1 belongs to the family of NAD+ dependent histone deacetylases and plays a critical role in cellular metabolism and response to oxidative stress. Traditional Chinese medicines (TCMs, as an important part of natural products, have been reported to exert protective effect against oxidative stress in mitochondria. In this study, we screened SIRT1 activators from TCMs and investigated their activities against mitochondrial damage. 19 activators were found in total by in vitro SIRT1 activity assay. Among those active compounds, four compounds, ginsenoside Rb2, ginsenoside F1, ginsenoside Rc, and schisandrin A, were further studied to validate the SIRT1-activation effects by liquid chromatography-mass spectrometry and confirm their activities against oxidative damage in H9c2 cardiomyocytes exposed to tert-butyl hydroperoxide (t-BHP. The results showed that those compounds enhanced the deacetylated activity of SIRT1, increased ATP content, and inhibited intracellular ROS formation as well as regulating the activity of Mn-SOD. These SIRT1 activators also showed moderate protective effects on mitochondrial function in t-BHP cells by recovering oxygen consumption and increasing mitochondrial DNA content. Our results suggested that those compounds from TCMs attenuated oxidative stress-induced mitochondrial damage in cardiomyocytes through activation of SIRT1.

  12. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Nga Lee; Brown, Steven S.; Archibald, Alexander T.; Atlas, Elliot; Cohen, Ronald C.; Crowley, John N.; Day, Douglas A.; Donahue, Neil M.; Fry, Juliane L.; Fuchs, Hendrik; Griffin, Robert J.; Guzman, Marcelo I.; Herrmann, Hartmut; Hodzic, Alma; Iinuma, Yoshiteru; Jimenez, José L.; Kiendler-Scharr, Astrid; Lee, Ben H.; Luecken, Deborah J.; Mao, Jingqiu; McLaren, Robert; Mutzel, Anke; Osthoff, Hans D.; Ouyang, Bin; Picquet-Varrault, Benedicte; Platt, Ulrich; Pye, Havala O. T.; Rudich, Yinon; Schwantes, Rebecca H.; Shiraiwa, Manabu; Stutz, Jochen; Thornton, Joel A.; Tilgner, Andreas; Williams, Brent J.; Zaveri, Rahul A.

    2017-01-01

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models.

    This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.

  13. Theoretical study of ionization and one-electron oxidation potentials of N-heterocyclic compounds.

    Science.gov (United States)

    Sviatenko, Liudmyla K; Gorb, Leonid; Hill, Frances C; Leszczynski, Jerzy

    2013-05-15

    A number of density functionals was utilized to predict gas-phase adiabatic ionization potentials (IPs) for nitrogen-rich heterocyclic compounds. Various solvation models were applied to the calculation of difference in free energies of solvation of oxidized and reduced forms of heterocyclic compounds in acetonitrile (AN) for correct reproduction of their standard oxidation potentials. We developed generally applicable protocols that could successfully predict the gas-phase adiabatic ionization potentials of nitrogen-rich heterocyclic compounds and their standard oxidation potentials in AN. This approach is supported by a MPW1K/6-31+G(d) level of theory which uses SMD(UA0) approximation for estimation of solvation energy of neutral molecules and PCM(UA0) model for ionized ones. The mean absolute derivation (MAD) and root mean square error (RMSE) of the current theoretical models for IP are equal to 0.22 V and 0.26, respectively, and for oxidation potentials MAD = 0.13 V and RMSE = 0.17. Copyright © 2013 Wiley Periodicals, Inc.

  14. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection

    Science.gov (United States)

    Hall, Alex; Troupin, Andrea; Londono-Renteria, Berlin; Colpitts, Tonya M.

    2017-01-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development. PMID:28644404

  15. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection.

    Science.gov (United States)

    Hall, Alex; Troupin, Andrea; Londono-Renteria, Berlin; Colpitts, Tonya M

    2017-06-23

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development.

  16. Tantalum oxide-based compounds as new non-noble cathodes for polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Ishihara, Akimitsu; Tamura, Motoko; Matsuzawa, Koichi; Mitsushima, Shigenori; Ota, Ken-ichiro

    2010-01-01

    Tantalum oxide-based compounds were examined as new non-noble cathodes for polymer electrolyte fuel cell. Tantalum carbonitride powder was partially oxidized under a trace amount of oxygen gas at 900 o C for 4 or 8 h. Onset potential for oxygen reduction reaction (ORR) of the specimen heat-treated for 8 h was 0.94 V vs. reversible hydrogen electrode in 0.1 mol dm -3 sulfuric acid at 30 o C. The partial oxidation of tantalum carboniride was effective to enhance the catalytic activity for the ORR. The partially oxidized specimen with highest catalytic activity had ca. 5.25 eV of ionization potential, indicating that there was most suitable strength of the interaction of oxygen and tantalum on the catalyst surface.

  17. Treatment of reduced sulphur compounds and SO2 by Gas Phase Advanced Oxidation

    DEFF Research Database (Denmark)

    Meusinger, Carl; Bluhme, Anders Brostrøm; Ingemar, Jonas L.

    2017-01-01

    Reduced sulphur compounds (RSCs) emitted from pig farms are a major problem for agriculture, due to their health and environmental impacts and foul odour. This study investigates the removal of RSCs, including H2S, and their oxidation product SO2 using Gas Phase Advanced Oxidation (GPAO). GPAO...... is a novel air cleaning technique which utilises accelerated atmospheric chemistry to oxidise pollutants before removing their oxidation products as particles. Removal efficiencies of 24.5% and 3.9% were found for 461 ppb of H2S and 714 ppb of SO2 in a laboratory system (volumetric flow Q = 75 m3/h......). A numerical model of the reactor system was developed to explore the basic features of the system; its output was in fair agreement with the experiment. The model verified the role of OH radicals in initiating the oxidation chemistry. All sulphur removed from the gas phase was detected as particulate matter...

  18. Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jernigan, Glenn Geoffrey [California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1994-10-01

    Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu2O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu2O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/mol < Cu2O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N2 and CO2. At the end of each reaction, the catalyst was found to be Cu2O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.

  19. Understanding the role of manganese dioxide in the oxidation of phenolic compounds by aqueous permanganate.

    Science.gov (United States)

    Jiang, Jin; Gao, Yuan; Pang, Su-Yan; Lu, Xue-Ting; Zhou, Yang; Ma, Jun; Wang, Qiang

    2015-01-06

    Recent studies have shown that manganese dioxide (MnO2) can significantly accelerate the oxidation kinetics of phenolic compounds such as triclosan and chlorophenols by potassium permanganate (Mn(VII)) in slightly acidic solutions. However, the role of MnO2 (i.e., as an oxidant vs catalyst) is still unclear. In this work, it was demonstrated that Mn(VII) oxidized triclosan (i.e., trichloro-2-phenoxyphenol) and its analogue 2-phenoxyphenol, mainly generating ether bond cleavage products (i.e., 2,4-dichlorophenol and phenol, respectively), while MnO2 reacted with them producing appreciable dimers as well as hydroxylated and quinone-like products. Using these two phenoxyphenols as mechanistic probes, it was interestingly found that MnO2 formed in situ or prepared ex situ greatly accelerated the kinetics but negligibly affected the pathways of their oxidation by Mn(VII) at acidic pH 5. The yields (R) of indicative products 2,4-dichlorophenol and phenol from their respective probes (i.e., molar ratios of product formed to probe lost) under various experimental conditions were quantified. Comparable R values were obtained during the treatment by Mn(VII) in the absence vs presence of MnO2. Meanwhile, it was confirmed that MnO2 could accelerate the kinetics of Mn(VII) oxidation of refractory nitrophenols (i.e., 2-nitrophenol and 4-nitrophenol), which otherwise showed negligible reactivity toward Mn(VII) and MnO2 individually, and the effect of MnO2 was strongly dependent upon its concentration as well as solution pH. These results clearly rule out the role of MnO2 as a mild co-oxidant and suggest a potential catalytic effect on Mn(VII) oxidation of phenolic compounds regardless of their susceptibility to oxidation by MnO2.

  20. Method of making metal oxide ceramic powders by using a combustible amino acid compound

    Science.gov (United States)

    Pederson, Larry R.; Chick, Lawrence A.; Exarhos, Gregory J.

    1992-01-01

    This invention is directed to the formation of homogeneous, aqueous precursor mixtures of at least one substantially soluble metal salt and a substantially soluble, combustible co-reactant compound, typically an amino acid. This produces, upon evaporation, a substantially homogeneous intermediate material having a total solids level which would support combustion. The homogeneous intermediate material essentially comprises highly dispersed or solvated metal constituents and the co-reactant compound. The intermediate material is quite flammable. A metal oxide powder results on ignition of the intermediate product which combusts same to produce the product powder.

  1. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  2. Phenolic compounds of Triplaris gardneriana can protect cells against oxidative stress and restore oxidative balance

    NARCIS (Netherlands)

    Almeida, de Thiago Silva; Neto, José Joaquim Lopes; Sousa, de Nathanna Mateus; Pessoa, Igor Parra; Vieira, Leonardo Rogério; Medeiros, De Jackeline Lima; Boligon, Aline Augusti; Hamers, Astrid R.M.; Farias, Davi Felipe; Peijnenburg, Ad; Carvalho, Ana Fontenele Urano

    2017-01-01

    This work aimed to add value to an underexploited plant species from Brazil, Triplaris gardneriana. To that, the phenolic compounds profile of its seed ethanolic extract and fractions was examined by HPLC and the antioxidant capacity assessed using chemical assays as well as in vitro cell imaging.

  3. Supported Mixed Oxide Catalysts for the Total Oxidation of Volatile Organic Compounds

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Jirátová, Květa

    2011-01-01

    Roč. 176, č. 1 (2011), s. 110-115 ISSN 0920-5861. [International Symposium on Air Pollution Abatement Catalysis (APAC) /2./. Cracow, 08.09.2010-10.09.2010] R&D Projects: GA ČR GAP106/10/1762; GA ČR GA106/09/1664 Institutional research plan: CEZ:AV0Z40720504 Keywords : layered double hydroxides * mixed oxides * ethanol total oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.407, year: 2011

  4. Electrocatalytic Materials and Techniques for the Anodic Oxidation of Various Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Treimer, Stephen Everett [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The focus of this thesis was first to characterize and improve the applicability of Fe(III) and Bi(V) doped PbO2 film electrodes for use in anodic O-transfer reactions of toxic and waste organic compounds, e.g. phenol, aniline, benzene, and naphthalene. Further, they investigated the use of alternative solution/electrode interfacial excitation techniques to enhance the performance of these electrodes for remediation and electrosynthetic applications. Finally, they have attempted to identify a less toxic metal oxide film that may hold promise for future studies in the electrocatalysis and photoelectrocatalysis of O-transfer reactions using metal oxide film electrodes.

  5. Solidification of aqueous radioactive waste using insoluble compounds of magnesium oxide

    International Nuclear Information System (INIS)

    Carlson, J.E.

    1986-01-01

    A process is described for the treatment of radioactive waste which comprises: (a) first adding, under continuous agitation, a sufficient amount of a powdered magnesium oxide or magnesium hydroxide to an aqueous radioactive waste solution containing boric acid, the temperature of the water solution being 55-95 degrees C. to produce a magnesium borate derivative; (b) adding cement, under continuous agitation, to the magnesium borate derivative; and (c) then adding, under continuous agitation, after the cement has been dispersed, a sufficient amount of a compound selected from the group consisting of calcium oxide and calcium hydroxide to (b) to produce a gel matrix structure

  6. Evaluating Acidithiobacillus ferrooxidans bacterial oxidation of sulphur compounds using FTIR and X-ray diffraction assays

    Directory of Open Access Journals (Sweden)

    Alexandra Muñoz

    2003-01-01

    Full Text Available A native bacterial strain capable of oxidising ferrous iron and sulphur compounds was isolated from effluent and material from the La Maruja gold mine in the municipality of Marmato (Caldas; this was biochemically identified as being Acidithiobacillus ferrooxidans. This strain's ability to oxidise metallic sulphide concentrates having two differ-ent pulp proportions and two particle sizes was evaluated. Sulphide bio-oxidation was observed after 15 days showing this strain's catalytic action on the mineral break-down process. Key words: bio-oxidation; bio-leaching; A. ferrooxidans; sulphides

  7. Kinetics of aerobic oxidation of volatile sulfur compounds in wastewater and biofilm from sewers

    DEFF Research Database (Denmark)

    Rudelle, Elise Alice; Vollertsen, Jes; Hvitved-Jacobsen, Thorkild

    2013-01-01

    Laboratory experiments were conducted to investigate the kinetics of aerobic chemical and biological oxidation of selected odorous volatile sulfur compounds (VSCs) by wastewater and biofilm from sewers. The VSCs included methyl mercaptan (MeSH), ethyl mercaptan (EtSH), dimethyl sulfide (DMS......-spot downstream of a force main and the other was a gravity sewer transporting young aerobic wastewater. The kinetics of VSC oxidation for both wastewater and suspended biofilm samples followed a first-order rate equation. The average values of the reaction rate constants demonstrated the following order...... in the aerobic wastewater....

  8. Comparative study of the addition compounds between lanthanides methane sulfonates (III) and aromatic amino-oxides as ligands

    International Nuclear Information System (INIS)

    Rosario Matos, J. do.

    1989-01-01

    The main goal of this thesis is to further develop the studies on the preparation and characterization of addition compounds obtained from the reaction of lanthanide methane sulfonates and aromatic amino oxides as ligands, pyridine-N-oxides as the picoline-N-oxides (2-pic NO, 3-pic NO and 4-picNO) in order to make a comparative study. (author)

  9. Fracton pairing mechanism for unconventional superconductors: Self-assembling organic polymers and copper-oxide compounds

    DEFF Research Database (Denmark)

    Milovanov, A.V.; Juul Rasmussen, J.

    2002-01-01

    Self-assembling organic polymers and copper-oxide compounds are two classes of unconventional superconductors, whose challenging behavior does not comply with the traditional picture of Bardeen-Cooper-Schrieffer (BCS) superconductivity in regular crystals. In this paper, we propose a theoretical...... or holes) exchange fracton excitations, quantum oscillations of fractal lattices that mimic the complex microscopic organization of the unconventional superconductors. For the copper oxides, the superconducting transition temperature T-c as predicted by the fracton mechanism is of the order of similar to......150 K. We suggest that the marginal ingredient of the high-temperature superconducting phase is provided by fracton coupled holes that condensate in the conducting copper-oxygen planes owing to the intrinsic field-effect-transistor configuration of the cuprate compounds. For the gate...

  10. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    Science.gov (United States)

    Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  11. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  12. Synthesis and characterization of porous metal oxides and desulfurization studies of sulfur containing compounds

    Science.gov (United States)

    Garces Trujillo, Hector Fabian

    This thesis contains two parts: 1) synthesis and characterization of porous metal oxides that include zinc oxide and a porous mixed-valent manganese oxide with an amorphous structure (AMO) 2) the desulfurization studies for the removal of sulfur compounds. Zinc oxide with different nano-scale morphologies may result in various porosities with different adsorption capabilities. A tunable shape microwave synthesis of ZnO nano-spheres in a co-solvent mixture is presented. The ZnO nano-sphere material is investigated as a desulfurizing sorbent in a fixed bed reactor in the temperature range 200 to 400 °C and compared with ZnO nanorods and platelet-like morphologies. Fresh and sulfided materials were characterized by X-ray diffraction (XRD), BET specific surface area, pore volume, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (SEM/EDX), Raman spectroscopy, and thermogravimetric analysis (TGA). The tunable shape microwave synthesis of ZnO presents a high sulfur sorption capacity at temperatures as low as 200 °C which accounts for a three and four fold enhancement over the other preparations presented in this work, and reached 76 % of the theoretical sulfur capacity (TSC) at 300 °C. Another ZnO material with a bimodal micro- and mesopore size distribution investigated as a desulfurizing sorbent presents a sorption capacity that reaches 87% of the theoretical value for desulfurization at 400 °C at breakthrough time. A deactivation model that considers the activity of the solid reactant was used to fit the experimental data. Good agreement between the experimental breakthrough curves and the model predictions are obtained. Manganese oxides are a type of metal oxide materials commonly used in catalytic applications. Little is known about the adsorption capabilities for the removal of sulfur compounds. One of these manganese oxides; amorphous manganese oxide (AMO) is highly promising material for low temperature sorption processes. Amorphous

  13. Developments in Synthetic Application of Selenium(IV Oxide and Organoselenium Compounds as Oxygen Donors and Oxygen-Transfer Agents

    Directory of Open Access Journals (Sweden)

    Jacek Młochowski

    2015-06-01

    Full Text Available A variety of selenium compounds were proven to be useful reagents and catalysts for organic synthesis over the past several decades. The most interesting aspect, which emerged in recent years, concerns application of hydroperoxide/selenium(IV oxide and hydroperoxide/organoselenium catalyst systems, as “green reagents” for the oxidation of different organic functional groups. The topic of oxidations catalyzed by organoselenium derivatives has rapidly expanded in the last fifteen years This paper is devoted to the synthetic applications of the oxidation reactions mediated by selenium compounds such as selenium(IV oxide, areneseleninic acids, their anhydrides, selenides, diselenides, benzisoselenazol-3(2H-ones and other less often used other organoselenium compounds. All these compounds have been successfully applied for various oxidations useful in practical organic syntheses such as epoxidation, 1,2-dihydroxylation, and α-oxyfunctionalization of alkenes, as well as for ring contraction of cycloalkanones, conversion of halomethyl, hydroxymethyl or active methylene groups into formyl groups, oxidation of carbonyl compounds into carboxylic acids and/or lactones, sulfides into sulfoxides, and secondary amines into nitrones and regeneration of parent carbonyl compounds from their azomethine derivatives. Other reactions such as dehydrogenation and aromatization, active carbon-carbon bond cleavage, oxidative amidation, bromolactonization and oxidation of bromide for subsequent reactions with alkenes are also successfully mediated by selenium (IV oxide or organoselenium compounds. The oxidation mechanisms of ionic or free radical character depending on the substrate and oxidant are discussed. Coverage of the literature up to early 2015 is provided. Links have been made to reviews that summarize earlier literature and to the methods of preparation of organoselenium reagents and catalysts.

  14. Oxidative stress protection by newly synthesized nitrogen compounds with pharmacological potential.

    Science.gov (United States)

    Silva, João P; Areias, Filipe M; Proença, Fernanda M; Coutinho, Olga P

    2006-02-09

    In this study we used new nitrogen compounds obtained by organic synthesis whose structure predicted an antioxidant potential and then an eventual development as molecules of pharmacological interest in diseases involving oxidative stress. The compounds, identified as FMA4, FMA5, FMA7 and FMA8 differ in the presence of hydroxyl groups located in the C-3 and/or C-4 position of a phenolic unit, which is possibly responsible for their free radicals' buffering capacity. Data from the DPPH discoloration method confirm the high antiradical efficiency of the compounds. The results obtained with cellular models (L929 and PC12) show that they are not toxic and really protect from membrane lipid peroxidation induced by the ascorbate-iron oxidant pair. The level of protection correlates with the drug's lipophilic profile and is sometimes superior to trolox and equivalent to that observed for alpha-tocopherol. The compounds FMA4 and FMA7 present also a high protection from cell death evaluated in the presence of a staurosporine apoptotic stimulus. That protection results in a significant reduction of caspase-3 activity induced by staurosporine which by its turn seems to result from a protection observed in the membrane receptor pathway (caspase-8) together with a protection observed in the mitochondrial pathway (caspase-9). Taken together the results obtained with the new compounds, with linear chains, open up perspectives for their use as therapeutical agents, namely as antioxidants and protectors of apoptotic pathways. On the other hand the slight pro-oxidant profile obtained with the cyclic structures suggests a different therapeutic potential that is under current investigation.

  15. Pressure effect on magnetic and magnetotransport properties of intermetallic and colossal magnetoresistance oxide compounds

    International Nuclear Information System (INIS)

    Arnold, Z; Ibarra, M R; Algarabel, P A; Marquina, C; Teresa, Jose MarIa de; Morellon, L; Blasco, J; Magen, C; Prokhnenko, O; Kamarad, J; Ritter, C

    2005-01-01

    The joint power of neutron diffraction and pressure techniques allows us to characterize under unique conditions the nature and different role of basic interactions in solids. We have covered a broad phenomenology in archetypical compounds: intermetallics and magnetic oxides. We have selected compounds in which the effect of moderate pressure is able to modify the electronic structure and bond angles that in turn are in the bases of magnetic and structural transitions. Complex magnetic and structural phase diagrams are reported for compounds with magnetic (Tb 1-X Y X Mn 2 ) and structural (RE 5 Si 4-X Ge X ) instabilities. Pressure-induced change of the magnetic structure in (R 2 Fe 17 ) intermetallics and the effect on the colossal magnetoresistance manganites are described

  16. Protective effects of sweet orange (Citrus sinensis) peel and their bioactive compounds on oxidative stress.

    Science.gov (United States)

    Chen, Zong-Tsi; Chu, Heuy-Ling; Chyau, Charng-Cherng; Chu, Chin-Chen; Duh, Pin-Der

    2012-12-15

    Protective effects of sweet orange (Citrus sinensis) peel and their bioactive compounds on oxidative stress were investigated. According to HPLC-DAD and HPLC-MS/MS analysis, hesperidin (HD), hesperetin (HT), nobiletin (NT), and tangeretin (TT) were present in water extracts of sweet orange peel (WESP). The cytotoxic effect in 0.2mM t-BHP-induced HepG2 cells was inhibited by WESP and their bioactive compounds. The protective effect of WESP and their bioactive compounds in 0.2mM t-BHP-induced HepG2 cells may be associated with positive regulation of GSH levels and antioxidant enzymes, decrease in ROS formation and TBARS generation, increase in the mitochondria membrane potential and Bcl-2/Bax ratio, as well as decrease in caspase-3 activation. Overall, WESP displayed a significant cytoprotective effect against oxidative stress, which may be most likely because of the phenolics-related bioactive compounds in WESP, leading to maintenance of the normal redox status of cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Effect of different cooking methods on lipid oxidation and formation of volatile compounds in foal meat.

    Science.gov (United States)

    Domínguez, Rubén; Gómez, María; Fonseca, Sonia; Lorenzo, José M

    2014-06-01

    The influence of four different cooking methods (roasting, grilling, microwaving and frying) on cooking loss, lipid oxidation and volatile profile of foal meat was studied. Cooking loss were significantly (Pcooking methods increased TBARs content, since high temperature during cooking causes increased oxidation in foal steaks, this increase was significantly (Pcooking methods led to increased total volatile compounds (between 366.7 and 633.1AU×10(6)/g dry matter) compared to raw steaks (216.4AU×10(6)/g dry matter). The roasted steaks showed the highest volatile content, indicating that increased cooking temperature increases the formation of volatile compounds. Aldehydes were the most abundant compounds in cooked samples, with amounts of 217.2, 364.5, 283.5 and 409.1AU×10(6)/g dry matter in grilled, microwaved, fried and roasted samples, respectively, whereas esters were the most abundant compounds in raw samples, with mean amounts of 98.8AU×10(6)/g dry matter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. On the formation of molecules and solid-state compounds from the AGB to the PN phases

    Science.gov (United States)

    García-Hernández, D. A.; Manchado, A.

    2016-07-01

    During the asymptoyic giant branch (AGB) phase, different elements are dredge- up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.

  19. A study on the alkali leaching of complex compound for molybdenum trioxide and ferric oxide

    International Nuclear Information System (INIS)

    Kim, C.G.; Whang, Y.K.

    1981-01-01

    This study is to determine the alkali-leaching meachanism by which complex compound by the reaction made between molybdenite (MoS 2 ) and ferric oxide (Fe 2 O 3 ) in the roasted are when molybdenum trioxide (MoO 3 ) is formed by the roasting reaction of molybdenite concentrate. The results obtained from this experiment are summarized as follows: The heating reaction analysis shows that the complex compound of iron molybdates (Fe 2 O 3 .3-4 MoO 3 ) is formed by the reaction of molybdenum trioxide and ferric oxide at temperatures of above 500 0 C. It is shown that at various reaction temperature below 400 0 C molybdenum trioxide is almost completely leached by caustic soda irrespective of the mole ratio of two chemical samples used for the experiment, whereas at temperature above 400 0 C the leaching rate of molybdenum trioxide decreases except that it varies from 70.77% at a temperature of 900 0 C at which the mole ratio is 1 to 1 to 84.08% at a temperature of 1000 0 C. The x-ray diffraction analysis has shown that the complex compound reacted at a temperature of 1000 0 C produces a complex compound with the crystal structure of iron molybdates, and the alkali-leached residues even with 19.0% of molybdenum trioxide, however, contain only α-Fe 2 O 3 , without showing iron molybdates. The crystalline compound of iron molybdates obtained as a result of heating reaction was leached by using caustic soda, while MoO 3 and Fe 2 O 3 in the leaching residue was found to contain other compounds unable to be leached by caustic soda. (author)

  20. Effect of antioxidant properties of lecithin emulsifier on oxidative stability of encapsulated bioactive compounds.

    Science.gov (United States)

    Pan, Yuanjie; Tikekar, Rohan V; Nitin, N

    2013-06-25

    Oxidation of encapsulated bioactive compounds in emulsions is one of the key challenges that limit shelf life of emulsion containing products. Oxidation in these emulsions is triggered by permeation of free radicals generated at the emulsion interface. The objective of this study was to evaluate the role of antioxidant properties of common emulsifiers (lecithin and Tween 20) in reducing permeation of free radicals across the emulsion interface. Radical permeation rates were correlated with oxidative stability of a model bioactive compound (curcumin) encapsulated in these emulsions. Rate of permeation of peroxyl radicals from the aqueous phase to the oil phase of emulsion was inversely proportional to the antioxidant properties of emulsifiers. The rate of radical permeation was significantly higher (plecithin compared to native lecithin that showed higher antioxidant activity. Free radical permeation rate correlated with stability of curcumin in emulsions and was significantly higher (plecithin stabilized emulsions as compared to Tween 20 emulsions. Overall, this study demonstrates that antioxidant activity of emulsifiers significantly influences permeation of free radicals across the emulsion interface and the rate of oxidation of bioactive encapsulant. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Removal of nitrogen compounds from Brazilian petroleum samples by oxidation followed by liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, L.; Pergher, S.B.C. [Universidade Regional Integrada do Alto Uruguai e das Misses (URI), Erechim, RS (Brazil). Dept. de Quimica], E-mail: pergher@uricer.edu.br; Oliveira, J.V. [Universidade Regional Integrada do Alto Uruguai e das Misses (URI), Erechim, RS (Brazil). Dept. de Engenharia dos Alimentos; Souza, W.F. [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2009-10-15

    This work reports liquid-liquid extraction of nitrogen compounds from oxidized and non-oxidized Brazilian petroleum samples. The experiments were accomplished in a laboratory-scale liquid-liquid apparatus in the temperature range of 303 K-323 K, using methanol, n-methyl-2-pyrrolidone (NMP) and N,Ndimethylformamide (DMF), and their mixtures as extraction solvents, employing solvent to sample volume ratios of 1:2, 1:1 and 2:1, exploring up to three separation stages. Results show that an increase in temperature, solvent to oil ratio, and number of equilibrium stages greatly improves the nitrogen removal from the oxidized sample (from 2600 to 200 ppm). The employed oxidation scheme is thus demonstrated to be an essential and efficient step of sample preparation for the selective liquid-liquid removal of nitrogen compounds. It is shown that the use of mixtures of DMF and NMP as well their use as co-solvents with methanol did not prove to be useful for selective nitrogen extraction since great oil losses were observed in the final process. (author)

  2. Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds

    Directory of Open Access Journals (Sweden)

    R. Holzinger

    2005-01-01

    Full Text Available Vertical gradients of mixing ratios of volatile organic compounds have been measured in a Ponderosa pine forest in Central California (38.90° N, 120.63° W, 1315m. These measurements reveal large quantities of previously unreported oxidation products of short lived biogenic precursors. The emission of biogenic precursors must be in the range of 13-66µmol m-2h-1 to produce the observed oxidation products. That is 6-30 times the emissions of total monoterpenes observed above the forest canopy on a molar basis. These reactive precursors constitute a large fraction of biogenic emissions at this site, and are not included in current emission inventories. When oxidized by ozone they should efficiently produce secondary aerosol and hydroxyl radicals.

  3. Friction behaviour of anodic oxide film on aluminum impregnated with molybdenum sulfide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maejima, M.; Saruwatari, K. [Fujikura Ltd., Tokyo (Japan); Takaya, M. [Faculty of Engineering, Chiba Institute of Technology 17-1, Tsudanuma 2-Chome, 275-0016, Narasino-shi Chiba (Japan)

    2000-10-23

    In order to improve the lubricity and wear resistance of aluminum anodic oxide films, it is necessary to ensure the film layers are dense to prevent cracking, and to harden the films as well as reduce the shear stress of the film surfaces. From this view point, lubricious, hard anodic oxide films have been studied in the past, but fully satisfactory results have yet to be realized. In this paper, we report on our study of the re-anodizing of anodic oxide film in an aqueous solution of (NH)MoS. Molybdenum sulfide and compounds filled the 20-nm diameter pores of the film, creating internal stress which compressed the film, suppressing the occurrence of cracks and reducing the friction coefficient. (orig.)

  4. Lipid and cholesterol oxidation, color changes, and volatile compounds production in irradiated raw pork batters with different fat content

    International Nuclear Information System (INIS)

    Jo, Cheo Run; Byun, Myung Woo

    2000-01-01

    An emulsion-type product was prepared to determine the effect of irradiation on lipid and cholesterol oxidation, color change, and volatile production in raw pork with different fat content. Lipid oxidation increased with an increase in fat content or irradiation dose. Irradiated batters had higher cholesterol oxides than did non-irradiated batters, and the major cholesterol oxides formed in irradiated pork batters were 7α- and 7β- hydroxycholesterol. Hunter color a- and b-values of raw pork batters were decreased by irradiation regardless of fat content. Irradiation significantly increased the amount of volatile compounds. Although lipid oxidation of high fat products (10 and 15% fat) was higher than that of low fat products (4%), high fat products did not always produce greater amount of volatile compounds in raw pork batters. In summary, irradiation increased lipid and cholesterol oxidation, and volatile compounds production, and had detrimental effects on the color of raw pork batter under aerobic conditions

  5. Solid state solubility of copper oxides in hydroxyapatite

    Science.gov (United States)

    Zykin, Mikhail A.; Vasiliev, Alexander V.; Trusov, Lev A.; Dinnebier, Robert E.; Jansen, Martin; Kazin, Pavel E.

    2018-06-01

    Samples containing copper oxide doped hydroxyapatite with the composition Ca10(PO4)6(CuxOH1-x-δ)2, x = 0.054 - 0.582, in the mixture with CuO/Cu2O were prepared by a solid-state high-temperature treatment at varying annealing temperatures and at different partial water vapor and oxygen pressures. The crystal structures of the apatite compounds were refined using powder X-ray diffraction patterns and the content of copper ions x in the apatite was determined. Copper ions enter exclusively into the apatite trigonal channels formally substituting protons of OH-groups and the hexagonal cell parameters grow approximately linearly with x, the channel volume mostly expanding while the remaining volume of the crystal lattice changing only slightly. The equilibrium copper content in the apatite increases drastically, by almost a factor of 10 with the annealing temperature rising from 800° to 1200°C. The reduction of the water partial pressure leads to a further increase of x, while the dependence of x on the oxygen partial pressure exhibits a maximum. The observed relations are consistent with the proposed chemical reactions implying the copper introduction is followed by the release of a considerable quantity of gaseous products - water and oxygen. The analysis of interatomic distances suggests that the maximum content of copper ions in the channel cannot exceed 2/3.

  6. Stabilization of actinides and lanthanides in unusually high oxidation states

    International Nuclear Information System (INIS)

    Eller, P.G.; Penneman, R.A.

    1986-01-01

    Chemical environments can be chosen which stabilize actinides and lanthanides in unusually high or low oxidation states and in unusual coordination. In many cases, one can rationalize the observed species as resulting from strong charge/size influences provided by specific sites in host lattices (e.g., Tb(IV) in BaTbO 3 or Am(IV) in polytungstate anions). In other cases, the unusual species can be considered from an acid-base viewpoint (e.g., U(III) in AsF 5 /HF solution or Pu(VII) in Li 5 PuO 6 ). In still other cases, an interplay of steric and redox effects can lead to interesting comparisons (e.g., instability of double fluoride salts of Pu(V) and Pu(VI) relative to U, Np, and Am analogues). Generalized ways to rationalize compounds containing actinides and lanthanides in unusual valences (particularly high valences), including the above and numerous other examples, will form the focus of this paper. Recently developed methods for synthesizing high valent f-element fluorides using superoxidizers and superacids at low temperatures will also be described. 65 refs., 8 figs., 9 tabs

  7. Characterization of Volatile Compounds with HS-SPME from Oxidized n-3 PUFA Rich Oils via Rancimat Tests.

    Science.gov (United States)

    Yang, Kai-Min; Cheng, Ming-Ching; Chen, Chih-Wei; Tseng, Chin-Yin; Lin, Li-Yun; Chiang, Po-Yuan

    2017-02-01

    Algae oil and fish oil are n-3 PUFA mainstream commercial products. The various sources for the stability of n-3 PUFA oxidation are influenced by the fatty acid composition, extraction and refined processing. In this study, the oil stability index (OSI) occurs within 2.3 to 7.6 hours with three different n-3 PUFA rich oil. To set the OSI in the Rancimat test as the oil stability limit and observed various degrees of oxidation (0, 25, 50, 75, 100 and 125%). The volatile oxidation compounds were analyzed via headspace-solid phase microextraction (HS-SPME) and GC/MS. We detected 51 volatile compound variations during the oxidation, which were composed of aldehydes, hydrocarbons, cyclic compounds, alcohols, benzene compounds, ketones, furans, ester and pyrrolidine. The off-flavor characteristics can be strongly influenced by the synergy effects of volatile oxidation compounds. Chemometric analysis (PCA and AHC) was applied to identify the sensitive oxidation marker compounds, which included a (E,E)-2,4-heptadienal appropriate marker, via lipid oxidation in the n-3 PUFA rich oil.

  8. Hydrogen charging/discharging system with liquid organic compounds: a lacunar oxide catalyst to hydrogenate the unsaturated organic compound

    International Nuclear Information System (INIS)

    Jalowiecki-Duhamel, L.; Carpentier, J.; Payen, E.; Heurtaux, F.

    2006-01-01

    Lacunar mixed oxides based on cerium nickel and aluminium or zirconium CeM 0.5 Ni x O y s (M = Zr or Al), able to store high quantities of hydrogen, have been analysed in the hydrogenation of toluene into methyl-cyclohexane (MCH). When these solids present very good toluene hydrogenation activity and selectivity towards MCH in presence of H 2 , in absence of gaseous hydrogen, the reactive hydrogen species stored in the solid can hydrogenate toluene into MCH. The hydrogenation activity under helium + toluene flow decreases as a function of time and becomes nil. The integration of the curve obtained allows to determine the extractable hydrogen content of the solid used, and a value of 1.2 wt % is obtained at 80 C on a CeAl 0.5 Ni 3 O y compound pre-treated in H 2 at 300 C. To optimise the system, different parameters have been analysed, such as the catalyst formulation, the metal content, the pre-reducing conditions as well as the reaction conditions under helium + toluene. (authors)

  9. Anti-oxidant activity and attenuation of bladder hyperactivity by the flavonoid compound kaempferol.

    Science.gov (United States)

    Huang, Yaw-Bin; Lin, Ming-Wei; Chao, Yun; Huang, Chi-Te; Tsai, Yi-Hung; Wu, Pao-Chu

    2014-01-01

    To evaluate the anti-oxidant activity of the flavonoid compound, kaempferol, and to examine its role in the suppression of oxidative stress and attenuation of bladder hyperactivity in a rat model of bladder injury. The anti-oxidative activity of kaempferol was examined in lipopolysaccharide-treated RAW264.7 macrophages by using flow cytometry. For in vivo studies, rats were pretreated with kaempferol or vehicle for 24 h. The rat urothelium was injured by the administration of protamine sulfate for 1.5 h and irritated by the subsequent infusion of potassium chloride for 4 h. Oxidative stress in the bladder tissue was assessed using chemiluminescence assay, and the bladder pressure was determination by cystomertrogram. Kaempferol significantly suppressed lipopolysaccharide-induced reactive oxygen species production in RAW264.7 rat macrophages. Exposure of the rat bladder to sequential infusion of protamine sulfate and potassium chloride induced bladder hyperactivity. Pretreatment with kaempferol, prevented the formation of reactive oxygen species and prolonged the intercontraction interval. Kaempferol suppresses oxidative stress and attenuates bladder hyperactivity caused by potassium chloride after protamine sulfate-induced bladder injury. © 2013 The Japanese Urological Association.

  10. Oxidation state analyses of uranium with emphasis on chemical speciation in geological media

    International Nuclear Information System (INIS)

    Ervanne, H.

    2004-01-01

    This thesis focuses on chemical methods suitable for the determination of uranium redox species in geological materials. Nd-coprecipitation method was studied for the determination of uranium oxidation states in ground waters. This method is ideally suited for the separation of uranium oxidation states in the field, which means that problems associated with the instability of U(IV) during transport are avoided. An alternative method, such as ion exchange, is recommended for the analysis of high saline and calcium- and iron-rich ground waters. U(IV)/Utot was 2.8-7.2% in ground waters in oxidizing conditions and 60-93% in anoxic conditions. From thermodynamic model calculations applied to results from anoxic ground waters it was concluded that uranium can act as redox buffer in granitic ground waters. An ion exchange method was developed for the analysis of uranium oxidation states in different solid materials of geological origin. These included uranium minerals, uraniumbearing minerals, fracture coatings and bulk rock. U(IV)/Utot was 50-70% in uraninites, 5.8-8.7% in secondary uranium minerals, 15-49% in different fracture coatings and 64- 77% in samples from deep bedrock. In the uranium-bearing minerals, U(IV)/Utot was 33-43% (allanites), 5.9% (fergusonite) and 93% (monazite). Although the ion exchange method gave reliable results, there is a risk for the conversion of uranium oxidation states during analysis of heterogeneous samples due to the redox reactions that take place in the presence of some iron compounds. This risk was investigated in a study of several common iron-bearing minerals. The risk for conversion of uranium oxidation states can be screened by sample selection and minimized with use of a redox buffer compound such as polyacrylic acid (PAA). In studies of several carboxylic acids, PAA was found to be the most suitable for extending the application of the method. The stability of uranium oxidation states during analysis and the selectivity

  11. Thermodynamic properties of compounds of Na2O with the oxides of chromium, nickel, and iron

    International Nuclear Information System (INIS)

    Shaiu, B.J.

    1976-10-01

    Results of emf measurements on Na 2 O solid electrolytes in binary compounds with Cr 2 O 3 , FeO, and NiO are presented along with thermodynamic properties of these compounds. It was found that reliable thermodynamic data for compounds of NaCrO 2 , Na 2 FeO 2 , NaFeO 2 , Na 2 NiO 2 , and NaNiO 2 at 500 to 800 0 can be obtained by using emf measurements with solid electrolyte cells. The pretreatment of heating the cells in a vacuum of 10 -2 torr at 500 0 C or above for about 12 hours causes the emf dependence on temperature to be very small. The measurements were carried out over the temperature range in which no phase transformations occurred, the ΔC/sub p/ for the compounds involved was reasonably considered as approximately zero. Linear emf-temperature plots were therefore expected for these cells and the equation of ΔG 0 /sub f/ was indeed valid for constant values of ΔH 0 /sub f/ and ΔS 0 /sub f/. The formation of compound NaCrO 2 is thermodynamically favorable in a sodium loop made of austenic stainless steels. The critical oxygen concentration for the formation of NaCrO 2 shows that it is stable in liquid sodium in temperature range from 400 to 1100 0 C and Cr 2 O 3 does not exist with the double oxide in liquid sodium. The existence temperature for (Na 2 O) 2 .FeO in equilibrium with oxygen saturated liquid sodium is 693 0 K or above, for Na 2 FeO 2 it is 1141 0 K or above and for NaFeO 2 it is greater than or equal to 1173 0 K. The double oxides of nickel with sodium oxide are much less stable than the iron double oxides and do therefore not exist in liquid sodium. The nickel in austenitic stainless steel shows the least attack by oxygen saturated liquid sodium

  12. Protective effects of novel organic selenium compounds against oxidative stress in the nematode Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Sílvio Terra Stefanello

    2015-01-01

    Full Text Available Organic selenium compounds possess numerous biological properties, including antioxidant activity. Yet, the high toxicity of some of them, such as diphenyl diselenide (DPDS, is a limiting factor in their current usage. Accordingly, we tested four novel organic selenium compounds in the non-parasite nematode Caenorhabditis elegans and compared their efficacy to DPDS. The novel organic selenium compounds are β-selenoamines 1-phenyl-3-(p-tolylselanylpropan-2-amine (C1 and 1-(2-methoxyphenylselanyl-3-phenylpropan-2-amine (C2 and analogs of DPDS 1,2-bis(2-methoxyphenyldiselenide (C3 and 1,2-bisp-tolyldiselenide (C4. Synchronized worms at the L4 larval stage were exposed for one hour in M9 buffer to these compounds. Oxidative stress conditions were induced by juglone (200 μM and heat shock (35 °C. Moreover, we evaluated C. elegans behavior, GST-4::GFP (glutathione S-transferase expression and the activity of acetylcholinesterase (AChE. All tested compounds efficiently restored viability in juglone stressed worms. However, DPDS, C2, C3 and C4 significantly decreased the defecation cycle time. Juglone-induced GST-4::GFP expression was not attenuated in worms pretreated with the novel compounds, except with C2. Finally, AChE activity was reduced by DPDS, C2, C3 and C4. To our knowledge, this is study firstly showed the effects of C1, C2, C3 and C4 selenium-derived compounds in C. elegans. Low toxic effects were noted, except for reduction in the defecation cycle, which is likely associated with AChE inhibition. The juglone-induced stress (reduced viability was fully reversed by compounds to control animal levels. C2 was also efficient in reducing the juglone-induced GST-4::GFP expression, suggesting the latter may mediate the stress induced by this compound. Future studies could be profitably directed at addressing additional molecular mechanisms that mediate the protective effects of these novel organic selenium compounds.

  13. Datasets used in the manuscript titled "Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms and organic aerosol"

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset documents that all of the data used in the manuscript "Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic...

  14. 1,3-Dipolar cycloaddition reactions of nitrile oxides in the synthesis of natural compounds and their analogues

    International Nuclear Information System (INIS)

    Kotyatkina, Anna I; Zhabinsky, Vladimir N; Khripach, Vladimir A

    2001-01-01

    The published data on the use of 1,3-dipolar cycloaddition reactions of nitrile oxides in the synthesis of natural compounds and their analogues are systematised and reviewed. The bibliography includes 145 references.

  15. Block of the Mevalonate Pathway Triggers Oxidative and Inflammatory Molecular Mechanisms Modulated by Exogenous Isoprenoid Compounds

    Directory of Open Access Journals (Sweden)

    Paola Maura Tricarico

    2014-04-01

    Full Text Available Deregulation of the mevalonate pathway is known to be involved in a number of diseases that exhibit a systemic inflammatory phenotype and often neurological involvements, as seen in patients suffering from a rare disease called mevalonate kinase deficiency (MKD. One of the molecular mechanisms underlying this pathology could depend on the shortage of isoprenoid compounds and the subsequent mitochondrial damage, leading to oxidative stress and pro-inflammatory cytokines’ release. Moreover, it has been demonstrated that cellular death results from the balance between apoptosis and pyroptosis, both driven by mitochondrial damage and the molecular platform inflammasome. In order to rescue the deregulated pathway and decrease inflammatory markers, exogenous isoprenoid compounds were administered to a biochemical model of MKD obtained treating a murine monocytic cell line with a compound able to block the mevalonate pathway, plus an inflammatory stimulus. Our results show that isoprenoids acted in different ways, mainly increasing the expression of the evaluated markers [apoptosis, mitochondrial dysfunction, nucleotide-binding oligomerization-domain protein-like receptors 3 (NALP3, cytokines and nitric oxide (NO]. Our findings confirm the hypothesis that inflammation is triggered, at least partially, by the shortage of isoprenoids. Moreover, although further studies are necessary, the achieved results suggest a possible role for exogenous isoprenoids in the treatment of MKD.

  16. Isotopic exchange in mixed valence compounds in the solid state

    International Nuclear Information System (INIS)

    Fernandez Valverde, S.M.

    1986-01-01

    This work aims at the determination of isotopic exchange kinetics and mechanism in two mixed valence compounds: Cs 10 (Sbsup(V)Cl 6 ) (Sbsup(III)Cl 6 ) 3 and Tl 3 sup(I)(Tlsup(III)Cl 6 ). The synthesis of the first compound is very difficult because in most of the cases mixtures of chloroantimoniates are obtained. Exchange in Tl 4 Cl 6 labelled on Tlsup(III) is studied in detail by radiochemical analysis and physical techniques: ionic conductivity and positon annihilation. Cation vacancies are easily created in the lattice with formation enthalpy of 0.35 eV and migration enthalpy of 0.52 eV. Isochronic and isothermal exchange curves are described by a kinetic based on species diffusion. Models are given. Exchange is increased by grinding probably because extrinseque defects are introduced [fr

  17. In situ oxidation state profiling of nickel hexacyanoferrate derivatized electrodes using line-imaging Raman spectroscopy and multivariate calibration

    International Nuclear Information System (INIS)

    Haight, S.M.; Schwartz, D.T.

    1999-01-01

    Metal hexacyanoferrate compounds show promise as electrochemically switchable ion exchange materials for use in the cleanup of radioactive wastes such as those found in storage basins and underground tanks at the Department of Energy's Hanford Nuclear Reservation. Reported is the use of line-imaging Raman spectroscopy for the in situ determination of oxidation state profiles in nickel hexacyanoferrate derivatized electrodes under potential control in an electrochemical cell. Line-imaging Raman spectroscopy is used to collect 256 contiguous Raman spectra every ∼5 microm from thin films (ca. 80 nm) formed by electrochemical derivatization of nickel electrodes. The cyanide stretching region of the Raman spectrum of the film is shown to be sensitive to iron oxidation state and is modeled by both univariate and multivariate correlations. Although both correlations fit the calibration set well, the multivariate (principle component regression or PCR) model's predictions of oxidation state are less sensitive to noise in the spectrum, yielding a much smoother oxidation state profile than the univariate model. Oxidation state profiles with spatial resolution of approximately 5 microm are shown for a nickel hexacyanoferrate derivatized electrode in reduced, intermediate, and oxidized states. In situ oxidation state profiles indicate that the 647.1 nm laser illumination photo-oxidizes the derivatized electrodes. This observation is confirmed using photoelectrochemical methods

  18. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

    International Nuclear Information System (INIS)

    Ma, Wen; Yildiz, Bilge; Herbert, F. William; Senanayake, Sanjaya D.

    2015-01-01

    The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr 1+ , Zr 2+ , and Zr 3+ as non-equilibrium oxidation states, in addition to Zr 4+ in the stoichiometric ZrO 2 . This finding resolves the long-debated question of whether it is possible to form any valence states between Zr 0 and Zr 4+ at the metal-oxide interface. The presence of local strong electric fields and the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr

  19. Stripping of organic compounds from wastewater as an auxiliary fuel of regenerative thermal oxidizer

    International Nuclear Information System (INIS)

    Chang, Meng-Wen; Chern, Jia-Ming

    2009-01-01

    Organic solvents with different volatilities are widely used in various processes and generate air and water pollution problems. In the cleaning processes of electronics industries, most volatile organic compounds (VOCs) are vented to air pollution control devices while most non-volatile organic solvents dissolve in the cleaning water and become the major sources of COD in wastewater. Discharging a high-COD wastewater stream to wastewater treatment facility often disturbs the treatment performance. A pretreatment of the high-COD wastewater is therefore highly desirable. This study used a packed-bed stripping tower in combination with a regenerative thermal oxidizer to remove the COD in the wastewater from a printed circuit board manufacturing process and to utilize the stripped organic compounds as the auxiliary fuel of the RTO. The experimental results showed that up to 45% of the COD could be removed and 66% of the RTO fuel could be saved by the combined treatment system.

  20. Formation of nitrogen-containing compounds during slow pyrolysis and oxidation of petroleum coke

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Ohtsuka, Y. [IMAF Group, Ottawa, ON (Canada)

    1997-09-01

    The petroleum coke from a fluid coking process was pyrolyzed in helium and oxidized in 1% and 4% O{sub 2} and in air, with the aim to determine N-containing compounds such as HCN, NH{sub 3}, NO, and N{sub 2}O. The experiments were performed with and without limestone. NO was the major product during all oxidation runs. N{sub 2}O was formed only in air. In this case, N{sub 2}O formation was delayed when compared with that of NO. The addition of limestone decreased formation of HCN and increased that of NH{sub 3}, whereas NO formation was least affected. 36 refs., 8 figs., 6 tabs.

  1. Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds

    Science.gov (United States)

    Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

    2008-01-01

    Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

  2. Quantitative and qualitative sensing techniques for biogenic volatile organic compounds and their oxidation products.

    Science.gov (United States)

    Kim, Saewung; Guenther, Alex; Apel, Eric

    2013-07-01

    The physiological production mechanisms of some of the organics in plants, commonly known as biogenic volatile organic compounds (BVOCs), have been known for more than a century. Some BVOCs are emitted to the atmosphere and play a significant role in tropospheric photochemistry especially in ozone and secondary organic aerosol (SOA) productions as a result of interplays between BVOCs and atmospheric radicals such as hydroxyl radical (OH), ozone (O3) and NOX (NO + NO2). These findings have been drawn from comprehensive analysis of numerous field and laboratory studies that have characterized the ambient distribution of BVOCs and their oxidation products, and reaction kinetics between BVOCs and atmospheric oxidants. These investigations are limited by the capacity for identifying and quantifying these compounds. This review highlights the major analytical techniques that have been used to observe BVOCs and their oxidation products such as gas chromatography, mass spectrometry with hard and soft ionization methods, and optical techniques from laser induced fluorescence (LIF) to remote sensing. In addition, we discuss how new analytical techniques can advance our understanding of BVOC photochemical processes. The principles, advantages, and drawbacks of the analytical techniques are discussed along with specific examples of how the techniques were applied in field and laboratory measurements. Since a number of thorough review papers for each specific analytical technique are available, readers are referred to these publications rather than providing thorough descriptions of each technique. Therefore, the aim of this review is for readers to grasp the advantages and disadvantages of various sensing techniques for BVOCs and their oxidation products and to provide guidance for choosing the optimal technique for a specific research task.

  3. Phenolic Compounds Protect Cultured Hippocampal Neurons against Ethanol-Withdrawal Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Marianna E. Jung

    2009-04-01

    Full Text Available Ethanol withdrawal is linked to elevated oxidative damage to neurons. Here we report our findings on the contribution of phenolic antioxidants (17β-estradiol, p-octyl-phenol and 2,6-di-tert-butyl-4-methylphenol to counterbalance sudden ethanol withdrawal-initiated oxidative events in hippocampus-derived cultured HT-22 cells. We showed that ethanol withdrawal for 4 h after 24-h ethanol treatment provoked greater levels of oxidative damage than the preceding ethanol exposure. Phenolic antioxidant treatment either during ethanol exposure or ethanol withdrawal only, however, dose-dependently reversed cellular oxidative damage, as demonstrated by the significantly enhanced cell viability, reduced malondialdehyde production and protein carbonylation, compared to untreated cells. Interestingly, the antioxidant treatment schedule had no significant impact on the observed neuroprotection. In addition, the efficacy of the three phenolic compounds was practically equipotent in protecting HT-22 cells in spite of predictions based on an in silico study and a cell free assay of lipid peroxidation. This finding implies that free-radical scavenging may not be the sole factor responsible for the observed neuroprotection and warrants further studies to establish, whether the HT-22 line is indeed a suitable model for in vitro screening of antioxidants against EW-related neuronal damage.

  4. Photocatalytic oxidation of organic compounds via waveguide-supported titanium dioxide films

    Science.gov (United States)

    Miller, Lawrence W.

    A photochemical reactor based on titanium dioxide (TiO2)-coated silica optical fibers was constructed to explore the use of waveguide-supported TiO2 films for photocatalytic oxidation of organic compounds. The reactor was used for the photocatalytic oxidation of 4-chlorophenol in water. It was confirmed that TiO2 films could be securely attached to silica optical fibers. The 4-chlorophenol (100 mumol/L in water) was successfully oxidized on the TiO2 surface when UV light (310 nm--380 nm) was propagated through the fibers to the films. Rates of 4-chlorophenol oxidation and UV light flux to the fibers were measured. The quantum efficiency of 4-chlorophenol oxidation [defined as the change in 4-chlorophenol concentration divided by the UV light absorbed by the catalyst] was determined as a function of TiO2 catalyst film thickness and internal incident angle of propagating UV light. A maximum quantum efficiency of 2.8% was measured when TiO2 film thickness was ca. 80 nm and the maximum internal incident angle of propagating light was 84°. Quantum efficiency increased with increasing internal angle of incidence of propagating light and decreased with TiO2 film thickness. UV-Visible internal reflection spectroscopy was used to determine whether UV light propagated through TiO2-coated silica waveguides in an ATR mode. Propagation of UV light in an ATR mode was confirmed by the similarities between internal reflection spectra of phenolphthalein obtained with uncoated and TiO2-coated silica crystals. Planar silica waveguides coated with TiO2 were employed in a photocatalytic reactor for the oxidation of formic acid (833 mumol/L in water). It was shown that the quantum yield of formic acid oxidation [defined as the moles of formic acid oxidized divided by the moles of UV photons absorbed by the catalyst] on the waveguide-supported TiO2 surface is enhanced when UV light propagates through the waveguides in an ATR mode. A maximum quantum yield of 3.9% was found for formic

  5. Photocatalytic oxidation of organic compounds in a hybrid system composed of a molecular catalyst and visible light-absorbing semiconductor.

    Science.gov (United States)

    Zhou, Xu; Li, Fei; Li, Xiaona; Li, Hua; Wang, Yong; Sun, Licheng

    2015-01-14

    Photocatalytic oxidation of organic compounds proceeded efficiently in a hybrid system with ruthenium aqua complexes as catalysts, BiVO4 as a light absorber, [Co(NH3)5Cl](2+) as a sacrificial electron acceptor and water as an oxygen source. The photogenerated holes in the semiconductor are used to oxidize molecular catalysts into the high-valent Ru(IV)=O intermediates for 2e(-) oxidation.

  6. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased......Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...

  7. Charge state of oxide layer of SIMOX-structures

    CERN Document Server

    Askinazi, A Y; Dmitriev, V A; Miloglyadova, L V

    2001-01-01

    The charge state of the oxide layer of the SIMOX-structures, obtained in the course of forming the oxide layers, bricked up in the silicon volume, through the oxygen ions implantation into the Si, is studied. The charge state of the given structures is studied through the method of the layer-by-layer profiling, which makes it possible to obtain the dependence of the plane zones potential on the oxide layer thickness. It is established, that during the process of the SIMOX-structures formation in the oxide layer near the boundary with the Si there appear defects, responsible for the charge. The radiation from the near-the-ultraviolet (NUV) area without the applied electric field neutralizes the given charge. The simultaneous impact of the NUV-radiation and electric field leads to the formation of significantly positive charge

  8. Ruthenium(III) diphenyldithiocarbamate as mediator for the electrocatalytic oxidation of sulfhydryl compounds at graphite electrode

    International Nuclear Information System (INIS)

    Nalini, B.; Sriman Narayanan, S.

    1998-01-01

    Ruthenium(III) diphenyldithiocarbamate was used as mediator to modify graphite electrode by abrasive method. The modified electrode was characterized electrochemically by cyclic voltammetry. The electrode was scanned between 0.0 V to +0.8 V. An anodic peak at + 0.39 V and a cathodic peak at +0.24 V have been observed for a scan rate of 100 mV/s. The electrode has been characterized at various scan rate and pHs in 0.1 M KNO 3 solution. Sulfhydryl compounds, cysteine and glutathione, were electro catalytically oxidised at the modified electrode. pH variation was studied to optimize the conditions for their estimation. Linear response for cysteine is in the range of 0.00-15.20 ppm, with a correlation coefficient (r), of 0.9993. The linear range for glutathione is 0.00-30.40 ppm, with a value of 0.999 for r. The electrocatalytic oxidation of both cysteine and glutathione gave reproducible current values with a standard deviation of 0.1686 for 10 repetitive determinations. The stability and reproducibility of the electrode for the determination of cysteine and glutathione were also discussed. The electrocatalytic oxidation of the sulfhydryl compounds were also studied in hydrodynamic environment. (author)

  9. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv.

    Science.gov (United States)

    Fuente, V; Rufo, L; Juárez, B H; Menéndez, N; García-Hernández, M; Salas-Colera, E; Espinosa, A

    2016-01-01

    We report a detailed work of composition and location of naturally formed iron biominerals in plant cells tissues grown in iron rich environments as Imperata cylindrica. This perennial grass grows on the Tinto River banks (Iberian Pyritic Belt) in an extreme acidic ecosystem (pH∼2.3) with high concentration of dissolved iron, sulphate and heavy metals. Iron biominerals were found at the cellular level in tissues of root, stem and leaf both in collected and laboratory-cultivated plants. Iron accumulated in this plant as a mix of iron compounds (mainly as jarosite, ferrihydrite, hematite and spinel phases) was characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy (MS), magnetometry (SQUID), electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX; TEM-EDX; HRSTEM). A low fraction of phosphorous was detected in this iron hyperaccumulator plant. Root and rhizomes tissues present a high proportion of ferromagnetic iron oxide compounds. Iron oxides-rich zones are localized in electron dense intra and inter-cellular aggregates that appear as dark deposits covering the inner membrane and organelles of the cell. This study aims to contribute to a better understanding of the mechanisms of accumulation, transport, distribution of iron in Imperata cylindrica. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Self-association and infrared spectres of some heterocyclic compounds based on pyrrol in solid state

    International Nuclear Information System (INIS)

    Mulloev, N.; Nurulloev, M.; Narziev, B.N.

    1993-01-01

    Present article is devoted to self-association and infrared spectres of some heterocyclic compounds based on pyrrol in solid state. The study results of self-association specified by molecular hydrogen bonds of some heterocyclic compounds based on pyrrol on spectres of infrared absorption of stretching vibrations of N-H group were considered.

  11. Effect of microorganisms on the plutonium oxidation states

    International Nuclear Information System (INIS)

    Lukšienė, Benedikta; Druteikienė, Rūta; Pečiulytė, Dalia; Baltrūnas, Dalis; Remeikis, Vidmantas; Paškevičius, Algimantas

    2012-01-01

    Particular microbes from substrates at the low-level radioactive waste repository in the Ignalina NPP territory were exposed to 239 Pu (IV) at low pH under aerobic conditions. Pu(III) and Pu(IV) were separated and quantitatively evaluated using the modified anion exchange method and alpha spectrometry. Tested bacteria Bacillus mycoides and Serratia marcescens were more effective in Pu reduction than Rhodococcus fascians. Fungi Paecillomyces lilacinus and Absidia spinosa var. spinosa as well as bacterium Rhodococcus fascians did not alter the plutonium oxidation state. - Highlights: ► Particular microbes from low-level radioactive waste repository were exposed to Pu (IV). ► Some tested bacteria induced slight Pu (IV) reduction at low pH under aerobic conditions. ► Tested fungi did not show peculiarities to alter Pu oxidation state. ► The modified radiochemical method was applied to differentiate Pu oxidation states.

  12. Effect of microorganisms on the plutonium oxidation states

    Energy Technology Data Exchange (ETDEWEB)

    Luksiene, Benedikta, E-mail: bena@ar.fi.lt [Center for Physical Sciences and Technology, Savanoriu ave 231, LT-02300 Vilnius (Lithuania); Druteikiene, Ruta [Center for Physical Sciences and Technology, Savanoriu ave 231, LT-02300 Vilnius (Lithuania); Peciulyte, Dalia [Nature Research Centre, Akademijos street 2, LT-08412 Vilnius (Lithuania); Baltrunas, Dalis; Remeikis, Vidmantas [Center for Physical Sciences and Technology, Savanoriu ave 231, LT-02300 Vilnius (Lithuania); Paskevicius, Algimantas [Nature Research Centre, Akademijos street 2, LT-08412 Vilnius (Lithuania)

    2012-03-15

    Particular microbes from substrates at the low-level radioactive waste repository in the Ignalina NPP territory were exposed to {sup 239}Pu (IV) at low pH under aerobic conditions. Pu(III) and Pu(IV) were separated and quantitatively evaluated using the modified anion exchange method and alpha spectrometry. Tested bacteria Bacillus mycoides and Serratia marcescens were more effective in Pu reduction than Rhodococcus fascians. Fungi Paecillomyces lilacinus and Absidia spinosa var. spinosa as well as bacterium Rhodococcus fascians did not alter the plutonium oxidation state. - Highlights: Black-Right-Pointing-Pointer Particular microbes from low-level radioactive waste repository were exposed to Pu (IV). Black-Right-Pointing-Pointer Some tested bacteria induced slight Pu (IV) reduction at low pH under aerobic conditions. Black-Right-Pointing-Pointer Tested fungi did not show peculiarities to alter Pu oxidation state. Black-Right-Pointing-Pointer The modified radiochemical method was applied to differentiate Pu oxidation states.

  13. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

    KAUST Repository

    Wang, Zhandong

    2017-11-28

    Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.

  14. Electrochemical oxidation of nitrogen-heterocyclic compounds at boron-doped diamond electrode.

    Science.gov (United States)

    Xing, Xuan; Zhu, Xiuping; Li, Hongna; Jiang, Yi; Ni, Jinren

    2012-01-01

    Nitrogen-heterocyclic compounds (NHCs) are toxic and bio-refractory contaminants widely spread in environment. This study investigated electrochemical degradation of NHCs at boron-doped diamond (BDD) anode with particular attention to the effect of different number and position of nitrogen atoms in molecular structure. Five classical NHCs with similar structures including indole (ID), quinoline (QL), isoquinoline (IQL), benzotriazole (BT) and benzimidazole (BM) were selected as the target compounds. Results of bulk electrolysis showed that degradation of all NHCs was fit to a pseudo first-order equation. The five compounds were degraded with the following sequence: ID>QL>IQL>BT>BM in terms of their rates of oxidation. Quantum chemical calculation was combined with experimental results to describe the degradation character of NHCs at BDD anode. A linear relationship between degradation rate and delocalization energy was observed, which demonstrated that electronic charge was redistributed through the conjugation system and accumulated at the active sites under the attack of hydroxyl radicals produced at BDD anode. Moreover, atom charge was calculated by semi empirical PM3 method and active sites of NHCs were identified respectively. Analysis of intermediates by GC-MS showed agreement with calculation results. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

    KAUST Repository

    Wang, Zhandong; Popolan-Vaida, Denisia M.; Chen, Bingjie; Moshammer, Kai; Mohamed, Samah; Wang, Heng; Sioud, Salim; Raji, Misjudeen; Kohse-Hö inghaus, Katharina; Hansen, Nils; Dagaut, Philippe; Leone, Stephen R.; Sarathy, Mani

    2017-01-01

    Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.

  16. Radiation-induced destruction of organic compounds in aqueous solutions by dual oxidation/reduction mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Chaychiana, M.; Silverman, J.; Al-Sheikhly, M. [Department of Materials Science and Engineering, University of Maryland (United States); Poster, D.; Neta, P.; Huie, R. [Chemical Science and Technology Laboratory, National Institute of Standard and Technology (United States)

    2011-07-01

    This research presents the feasibility and mechanisms of using high energy electrons for the dechlorination of polychlorinated biphenyls (PCBs) in marine sediment, and hazardous organic compounds in waste water. The remediation of the organic contaminants by ionizing radiation is achieved by means of both reduction and oxidation processes. PCBs in marine sediment can be effectively dechlorinated by reduction, while toxic organic compounds in water are removed mainly by oxidation. Radiolytic degradation of aqueous suspensions of PCBs in marine sediments in the presence of isopropanol was also studied. Addition of isopropanol was necessary to enhance the radiolytic yield and the dechlorination of PCBs. Also presented are results from an examination of the oxidative and reductive effects of electron-beam irradiation on the concentrations of six organic solvents in water. The organic solvents in water were prepared to mimic a pharmaceutical waste stream. Radiation-induced destruction of benzene was also investigated using pulse radiolysis technique. Pulse radiolysis with spectrophotometric and conductometric detection was utilized to study the formation and reactions of radicals from benzene and dienes in aqueous solutions. The benzene OH adduct, {sup ●}C{sub 6}H{sub 6}OH, reacts with O{sub 2} (k = 3x10{sup 8} L mol{sup -1} s{sup -1}) in a reversible reaction. The peroxyl radical, HOC{sub 6}H{sub 6}O{sub 2}{sup ●}, undergoes O{sub 2}●- elimination, bimolecular decay, and reaction with benzene to initiate a chain reaction, depending on the dose rate, benzene concentration, and pH. The occurrence of the chain reaction is demonstrated in low-dose-rate gamma radiolysis experiments where the consumption of O{sub 2} was monitored. (author)

  17. Evaluation of derived compounds from sponges against induced oxidative stress in cortical neurons

    Directory of Open Access Journals (Sweden)

    Marta Leirós

    2014-06-01

    stress condition, we conclude that all of them afford some protection against oxidation, which is consistent with the already published about MKs H, L and G (Utkina, 2013. Once again compound H was the less active in our cellular model and MKs L and G denoted some antioxidant protection. Above all the MKs tested, the no-previously tested MK J at 0.1 µM highlights with a complete neuroprotection, reducing oxidation consequences, such as mitochondrial dysfunction and ROS generation, and increasing antioxidant defenses by maintaining GSH basal levels and CAT activity. All these antioxidant effects might be explained for an activation of the nuclear factor erythroid 2-related factor 2 (Nrf2 antioxidant response element (ARE pathway, the main sensor and modulator of oxidative stress, that trigger the transcription of genes like superoxide dismutase 1, CAT, sulforedoxin, thioredoxin, peroxiredoxin and proteins responsible for the synthesis and metabolism of GSH. It has been reported that Nrf2-ARE pathway activation ameliorates the animal symptoms in research models for neurodegenerative diseases (Gan and Johnson, 2013 and numerous scientists of this area are focusing their experiments on the modulation of enzymatic regulatory components, that protect against oxidative stress, to emulate their restorative effects and consequently slow down the illness progression (Andersen, 2004. The results presented in this work elucidate that makaluvamine J is a potent molecule for neuroprotection against oxidative stress. Nevertheless, the precise mechanism by which MK J activates the antioxidant cell defenses is still unknown. For that reason, further studies about the MK J activity over the Nrf2-ARE pathway and its possible implications in neurodegenerative disorders will be required.

  18. Readily-accessible oxidation of d0 organozirconium compounds: The electronic structure of (η5-C5H5)3ZrX compounds

    International Nuclear Information System (INIS)

    Strittmatter, R.J.; Bursten, B.E.; Rhodes, L.F.; Morris, D.E.; Rogers, R.D.

    1990-01-01

    In an effort to obtain a comparison between organotransition metal and organoactinide complexes, a series of Cp 3 ZrX compounds have been synthesized. A single crystal X-ray crystallographic study of Cp 3 ZrCl reveals that all three Cp ligands are bound in an η 5 fashion. Electrochemical investigations of this series show a first oxidation of these d 0 compounds approximately one volt less positive than the d 0 Cp 2 ZrX 2 compounds and approximately one-half volt less positive than the d 0 f 0 Cp 3 ThCl compound. These results will be presented along with a discussion of the electronic structure of this series, as determined by Xα-SW and Fenske-Hall calculations

  19. Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. 1998 annual progress report

    International Nuclear Information System (INIS)

    Blake, D.M.

    1998-01-01

    'This report summarizes the results of work done during the first 1.3 years of a three year project. During the first nine months effort focussed on the design, construction and testing of a closed recirculating system that can be used to study photochemistry in supercritical carbon dioxide at pressures up to 5,000 psi and temperatures up to about 50 C. This was followed by a period of work in which the photocatalytic oxidation of benzene and acetone in supercritical, liquid, and gaseous carbon dioxide containing dissolved oxygen was demonstrated. The photocatalyst was titanium dioxide supported on glass spheres. This was the first time it was possible to observe photocatalytic oxidation in a supercritical fluid and to compare reaction in the three fluid phases of a solvent. This also demonstrated that it is possible to purify supercritical and liquid carbon dioxide using photochemical oxidation with no chemical additions other than oxygen. The oxidation of benzene produced no intermediates detectable using on line spectroscopic analysis or by gas chromatographic analysis of samples taken from the flow system. The catalyst surface did darken as the reaction proceeded indicating that oxidation products were accumulating on the surface. This is analogous to the behavior of aromatic compounds in air phase photocatalytic oxidation. The reaction of acetone under similar conditions resulted in the formation of low levels of by-products. Two were identified as products of the reaction of acetone with itself (4-methyl-3-penten-2-one and 4-hydroxy-4-methyl-2-pentanone) using gas chromatography with a mass spectrometer detector. Two other by-products also appear to be from the self-reaction of acetone. By-products of this type had not been observed in prior studies of the gas-phase photocatalytic oxidation of acetone. The by-products that have been observed can also be oxidized under the treatment conditions. The above results establish that photocatalytic oxidation of

  20. Study of burahol (Stelechocarpus burahol (Blume Hook & Thomson as an anti-oxidative compounds containing fruit

    Directory of Open Access Journals (Sweden)

    DJADJAT TISNADJAJA

    2006-04-01

    Full Text Available Burahol (Stelechocarpus burahol (Blume Hook & Thomson is one of fruit tree that originally was founded in Indonesia. Traditionally burahol is used as natural deodorance, but due to low economic value, the cultivation program of this plant species is almost abandoned. Regarding to this situation, currently this plant species could be categorized as one of endangered species. At present, economic value of this fruit is almost neglected and this is the main reason why not many people interested to cultivate this plant. In order to change the people opinion on this plant and to improve it economic value, study on the chemical content of this plant had been carried out. From the research work, it was founded that burahol fruit have a significant content of anti-oxidative compound. From the anti-oxidative analysis using DPPH (1,1-diphinil pycril hidrazil method, the lowest IC50 was showed by n-buthanol extract of flower (22.44 ppm and ethyl acetate extract of fruit (29.12 ppm. Flower part also showed low IC50 of ethyl acetate extract (35.07 ppm. Further purification through fractionation process of the plant extract was surprisingly followed by the decrease of anti-oxidative activity.

  1. The electronic density of states of disordered compounds

    International Nuclear Information System (INIS)

    Geertsma, W.; Dijkstra, J.

    1984-11-01

    Recently, the electronic properties of liquid alkali (Li, Na, K, Rb, Cs)-group IV (Si, Ge, Sn, Pb) alloys have been discussed by the present authors using a tight-binding model. Only anion orbitals (= group IV) are taken into account. Disorder is described by a pseudo lattice, which takes into account local coordination in one of the sublattices (cation or anion) only. In the first part of this paper it is shown that this approximation is consistent with the usual valence rules used by structural chemists for crystalline structures. In the second part of the paper the solutions for the density of states of the tight-binding Hamiltonian are studied for a number of pseudolattices. The infinite set of Green function equations is solved by using the effective transfer method, which replaces the famous Block condition. It is shown that such a model can explain the formation of bandgaps in disordered systems. By choosing the proper smallest cluster(s) of transfer loops to model the real structure by a pseudolattice, a density of states is obtained which represents properly that of the corresponding crystalline structure. Structures reminiscent to those caused by van Hove singularities already appear in the electronic density of states when relatively small cluster(s) of transfer loops are used. The approach outlined in this paper is capable of describing the electronic density of states due to various degrees of local order in a sublattice. Some of the peculiarities occurring in the solution of the density of states of certain pseudolattices, such as poles outside the band, are discussed in an appendix. (author)

  2. Evaluation of the kinetic oxidation of aqueous volatile organic compounds by permanganate.

    Science.gov (United States)

    Mahmoodlu, Mojtaba G; Hassanizadeh, S Majid; Hartog, Niels

    2014-07-01

    The use of permanganate solutions for in-situ chemical oxidation (ISCO) is a well-established groundwater remediation technology, particularly for targeting chlorinated ethenes. The kinetics of oxidation reactions is an important ISCO remediation design aspect that affects the efficiency and oxidant persistence. The overall rate of the ISCO reaction between oxidant and contaminant is typically described using a second-order kinetic model while the second-order rate constant is determined experimentally by means of a pseudo first order approach. However, earlier studies of chlorinated hydrocarbons have yielded a wide range of values for the second-order rate constants. Also, there is limited insight in the kinetics of permanganate reactions with fuel-derived groundwater contaminants such as toluene and ethanol. In this study, batch experiments were carried out to investigate and compare the oxidation kinetics of aqueous trichloroethylene (TCE), ethanol, and toluene in an aqueous potassium permanganate solution. The overall second-order rate constants were determined directly by fitting a second-order model to the data, instead of typically using the pseudo-first-order approach. The second-order reaction rate constants (M(-1) s(-1)) for TCE, toluene, and ethanol were 8.0×10(-1), 2.5×10(-4), and 6.5×10(-4), respectively. Results showed that the inappropriate use of the pseudo-first-order approach in several previous studies produced biased estimates of the second-order rate constants. In our study, this error was expressed as a function of the extent (P/N) in which the reactant concentrations deviated from the stoichiometric ratio of each oxidation reaction. The error associated with the inappropriate use of the pseudo-first-order approach is negatively correlated with the P/N ratio and reached up to 25% of the estimated second-order rate constant in some previous studies of TCE oxidation. Based on our results, a similar relation is valid for the other volatile

  3. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono

    2012-10-01

    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to the formation and early growth of nucleated particles. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two chemical ionization mass spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a condensation particle counter battery and a scanning mobility particle sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is already dominated by organic compounds at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size, supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particle growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. Finally, the size resolved growth analysis indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.

  4. Compound specific radiocarbon content of lignin oxidation products from the Altamaha river and Coastal Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Randy, E-mail: rculp@uga.edu [Center for Applied Isotope Studies, University of Georgia, Athens, Georgia (United States)

    2013-01-15

    Compound-specific isotope analysis (CSIA) is a powerful tool in organic geochemistry by providing detailed information about an individual organic compound's history with regard to its source and process of formation. Most CSIA involves measurement of the stable isotope ratio of carbon ({sup 13}C/{sup 12}C) and hydrogen (D/H) following separation by gas or liquid chromatography. New applications are being developed using compound-specific radiocarbon ({sup 14}C) content for delineating age of materials, rates of decomposition and residence time in various environments. This paper details the isotopic work on specific lignin monomers derived from terrestrial plants transported and deposited within the Altamaha River, estuary and off-shore Georgia in the Atlantic Ocean. By using gas chromatographic separation and identification of selected lignin oxidation products (LOP), the harvesting of these compounds using preparative fraction collection, and measurement of their {sup 14}C content using accelerator mass spectrometry, details of the age and presence of specific biomarkers unique to a given terrestrial source are revealed. Radiocarbon ages determined from water-column particulate organic carbon and sediment LOPs indicate a range of ages from modern to well over 5,000 years for the former and latter respectively. Transport mechanisms and particle size associations on mineral grains may play a significant role in {sup 14}C distribution in estuary and near-shore coastal environments. This data indicates higher than modern {sup 14}C activities in large particle-size sediment fractions in contrast to older LOP {sup 14}C ages found associated with the same coarse grain sediments. Individual LOP ages substantiate older terrestrial materials persist in the off-shore environment even though in the presence of modern marine {sup 14}C sources.

  5. Influence of iron solubility and charged surface-active compounds on lipid oxidation in fatty acid ethyl esters containing association colloids.

    Science.gov (United States)

    Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A

    2016-05-15

    The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. High-Pressure Reactivity of Kr and F2—Stabilization of Krypton in the +4 Oxidation State

    Directory of Open Access Journals (Sweden)

    Dominik Kurzydłowski

    2017-10-01

    Full Text Available Since the synthesis of the first krypton compound, several other Kr-bearing connections have been obtained. However, in all of them krypton adopts the +2 oxidation state, in contrast to xenon which forms numerous compounds with an oxidation state as high as +8. Motivated by the possibility of thermodynamic stabilization of exotic compounds with the use of high pressure (exceeding 1 GPa = 10 kbar, we present here theoretical investigations into the chemistry of krypton and fluorine at such large compression. In particular we focus on krypton tetrafluoride, KrF4, a molecular crystal in which krypton forms short covalent bonds with neighboring fluorine atoms thus adopting the +4 oxidation state. We find that this hitherto unknown compound can be stabilized at pressures below 50 GPa. Our results indicate also that, at larger compressions, a multitude of other KrmFn fluorides should be stable, among them KrF which exhibits covalent Kr–Kr bonds. Our results set the stage for future high-pressure synthesis of novel krypton compounds.

  7. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    Science.gov (United States)

    Razavi, Behnaz; Song, Weihua; Santoke, Hanoz; Cooper, William J.

    2011-03-01

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ( rad OH) and reducing aqueous electron (e -aq), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with rad OH determined, (6.96±0.16)×10 9, (2.92±0.06)×10 9, (4.16±0.13)×10 9, and (3.13±0.15)×10 9 M -1 s -1, and for e -aq (2.31±0.06)×10 9, (0.45±0.01)×10 9, (1.26±0.01)×10 9, and (0.69±0.02)×10 9 M -1 s -1, respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using 137Cs γ-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  8. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    International Nuclear Information System (INIS)

    Razavi, Behnaz; Song Weihua; Santoke, Hanoz; Cooper, William J.

    2011-01-01

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ( · OH) and reducing aqueous electron (e - aq ), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with · OH determined, (6.96±0.16)x10 9 , (2.92±0.06)x10 9 , (4.16±0.13)x10 9 , and (3.13±0.15)x10 9 M -1 s -1 , and for e - aq (2.31±0.06)x10 9 , (0.45±0.01)x10 9 , (1.26±0.01)x10 9 , and (0.69±0.02)x10 9 M -1 s -1 , respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using 137 Cs γ-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  9. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Behnaz, E-mail: brazavi@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Song Weihua, E-mail: wsong@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Santoke, Hanoz, E-mail: hsantoke@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Cooper, William J., E-mail: wcooper@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States)

    2011-03-15

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ({sup {center_dot}O}H) and reducing aqueous electron (e{sup -}{sub aq}), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with {sup {center_dot}O}H determined, (6.96{+-}0.16)x10{sup 9}, (2.92{+-}0.06)x10{sup 9}, (4.16{+-}0.13)x10{sup 9}, and (3.13{+-}0.15)x10{sup 9} M{sup -1} s{sup -1}, and for e{sup -}{sub aq} (2.31{+-}0.06)x10{sup 9}, (0.45{+-}0.01)x10{sup 9}, (1.26{+-}0.01)x10{sup 9}, and (0.69{+-}0.02)x10{sup 9} M{sup -1} s{sup -1}, respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using {sup 137}Cs {gamma}-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  10. Some reduced ternary and quaternary oxides of molybdenum. A family of compounds with strong metal-metal bonds

    International Nuclear Information System (INIS)

    Torardi, C.C.; McCarley, R.E.

    1981-01-01

    Several new, reduced ternary and quaternary oxides of molybdenum are reported, each containing molybdenum in an average oxidation state 2 sealed in Mo tubes held at 1100 0 C for ca. 7 days. Refinement of the substructure of the new compound Ba 0 62 Mo 4 O 6 was based on an orthorhombic cells, with a = 9.509(2), b = 9.825(2), c = 2.853(1) A, Z = 2 in space group Pbam; weak supercell reflections indicate the true structure has c = 8(2.853) A. The chief structural feature is closely related to that of NaMo 4 O 6 which consists of infinite chains of Mo 6 octahedral clusters fused on opposite edges, bridged on the outer edges by O atoms and crosslinked by Mo-O-Mo bonding to create four-sided tunnels in which the Ba 2+ ions are located. The structure of Ba 1 13 Mo 8 O 16 is triclinic, a = 7.311(1), b = 7.453(1), c = 5.726(1) A, α = 101.49(2), β = 99.60(2), γ = 89.31(2) 0 , Z = 1, space group P1. It is a low-symmetry, metal-metal bonded variant of the hollandite structure, in which two different infinite chains, built up from Mo 4 O 8 2- and Mo 4 O 8 0 26- cluster units, respectively, are interlinked via Mo-O-Mo bridge bonding to create again four-sided tunnels in which the Ba 2+ ions reside. Other compounds prepared and characterized by analyses and x-ray powder diffraction data are Pb/sub x/Mo 4 O 6 (x approx. 0.6), LiZn 2 Mo 3 O 8 , , CaMo 5 O 8 , K 2 Mo 12 O 19 , and Na 2 Mo 12 O 19

  11. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds.

    Science.gov (United States)

    Lipton, S A; Choi, Y B; Pan, Z H; Lei, S Z; Chen, H S; Sucher, N J; Loscalzo, J; Singel, D J; Stamler, J S

    1993-08-12

    Congeners of nitrogen monoxide (NO) are neuroprotective and neurodestructive. To address this apparent paradox, we considered the effects on neurons of compounds characterized by alternative redox states of NO: nitric oxide (NO.) and nitrosonium ion (NO+). Nitric oxide, generated from NO. donors or synthesized endogenously after NMDA (N-methyl-D-aspartate) receptor activation, can lead to neurotoxicity. Here, we report that NO.- mediated neurotoxicity is engendered, at least in part, by reaction with superoxide anion (O2.-), apparently leading to formation of peroxynitrite (ONOO-), and not by NO. alone. In contrast, the neuroprotective effects of NO result from downregulation of NMDA-receptor activity by reaction with thiol group(s) of the receptor's redox modulatory site. This reaction is not mediated by NO. itself, but occurs under conditions supporting S-nitrosylation of NMDA receptor thiol (reaction or transfer of NO+). Moreover, the redox versatility of NO allows for its interconversion from neuroprotective to neurotoxic species by a change in the ambient redox milieu. The details of this complex redox chemistry of NO may provide a mechanism for harnessing neuroprotective effects and avoiding neurotoxicity in the central nervous system.

  12. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Marry K.; Tyliszczak, T.; Thevuthasan, Suntharampillai; Baer, Donald R.; Orr, Galya

    2015-09-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells.

  13. Inhibitory mechanism of chroman compound on LPS-induced nitric oxide production and nuclear factor-κB activation

    International Nuclear Information System (INIS)

    Kim, Byung Hak; Reddy, Alavala Matta; Lee, Kum-Ho; Chung, Eun Yong; Cho, Sung Min; Lee, Heesoon; Min, Kyung Rak; Kim, Youngsoo

    2004-01-01

    6-Hydroxy-7-methoxychroman-2-carboxylic acid phenylamide (KL-1156) is a novel chemically synthetic compound. In the present study, the chroman KL-1156 compound was found to inhibit lipopolysaccharide (LPS)-induced nitric oxide production in macrophages RAW 264.7. KL-1156 compound attenuated LPS-induced synthesis of both mRNA and protein of inducible nitric oxide synthase (iNOS), in parallel, and inhibited LPS-induced iNOS promoter activity, indicating that the chroman compound down-regulated iNOS expression at transcription level. As a mechanism of the anti-inflammatory action shown by KL-1156 compound, suppression of nuclear factor (NF)-κB has been documented. KL-1156 compound exhibited a dose-dependent inhibitory effect on LPS-induced NF-κB transcriptional activity in macrophages RAW 264.7. Furthermore, the compound inhibited LPS-induced nuclear translocation of NF-κB p65 and DNA binding activity of NF-κB complex, in parallel, but did not affect IκBα degradation. Taken together, this study demonstrated that chroman KL-1156 compound interfered with nuclear translocation step of NF-κB p65, which was attributable to its anti-inflammatory action

  14. Excretion of organic and inorganic tritiated compounds in cow's milk after ingestion of tritium oxide

    International Nuclear Information System (INIS)

    Van den Hoek, J.; Gerber, G.B.; Kirchmann, R.

    1980-01-01

    The secretion of tritium in milk as water, casein and lipids was studied in cows given tritiated water to drink for 25 days. The parameters of the exponential functions describing the secretion of tritium as water, casein and lipid are determined during this 'loading phase' and also for a 'decay period' of 75 days after the tritiated water administration had been terminated. Secretion started after a short delay (0.5 day). Turnover of all three compounds was short (half time of about 5 days). Calculations of the dilution of the ingested water during metabolism showed that about 83% of the milk water secreted is found to originate from drinking water; the rest comes from water in food and from that formed in metabolism. The parameters of the decay phase indicated that the principle components of water, casein and lipids had about the same turnover rates as during the loading phase. Using the loading and decay phase data, calculations were performed to determine how much activity in each compound and in each metabolic component would be excreted after a single and after a continuous application of tritium oxide when integrated over infinite times. (UK)

  15. Effects of iron-oxide nanoparticles on compound biofilms of streptococcus gordonii and fusobacterium nucleatum

    Science.gov (United States)

    Nguyen, Jane Q.; Withers, Nathan J.; Alas, Gema; Senthil, Arjun; Minetos, Christina; Jaiswal, Nikita; Ivanov, Sergei A.; Huber, Dale L.; Smolyakov, Gennady A.; Osiński, Marek

    2018-02-01

    The human mouth is a host of a large gamut of bacteria species, with over 700 of different bacteria strains identified. Most of these bacterial species are harmless, some are beneficial (such as probiotics assisting in food digestion), but some are responsible for various diseases, primarily tooth decay and gum diseases such as gingivitis and periodontitis. Dental plaque has a complicated structure that varies from patient to patient, but a common factor in most cases is the single species of bacterium acting as a secondary colonizer, namely Fusobacterium nucleatum, while the actual disease is caused by a variety of tertiary colonizers. We hypothesize that destruction of a compound biofilm containing Fusobacterium nucleatum will prevent tertiary colonizers (oral pathogens) from establishing a biofilm, and thus will protect the patient from developing gingivitis and periodontitis. In this paper, we report on the effects of exposure of compound biofilms of a primary colonizer Streptococcus gordonii combined with Fusobacterium nucleatum to iron oxide nanoparticles as possible bactericidal agent.

  16. UV spectra and OH-oxidation kinetics of gaseous phase morpholinic compounds

    KAUST Repository

    Rachidi, Mariam El

    2014-05-01

    This paper presents an experimental study of the UV spectra as well as the kinetics of gaseous phase OH-oxidation of morpholine, N-formylmorpholine (NFM) and N-acetlymorpholine (NAM). The spectra recorded using a UV spectrometer in the spectral range 200-280nm show that the analytes mainly absorb at wavelengths less than 280nm. This indicates that their photolysis potential in the troposphere is insignificant. Meanwhile, the OH-reactivity of these analytes was studied using a triple-jacket 2m long reactor equipped with a multi-reflection system and coupled to an FTIR spectrometer. The experiments were carried out at 295 and 313K for the amine and amides, respectively. The study was conducted in the relative mode using isoprene and benzaldehyde as reference compounds. The rate constants obtained are 14.0±1.9, 4.0±1.1 and 3.8±1.0 (in units of 10-11cm3molecule-1s-1) for morpholine, NFM and NAM respectively. These results are discussed in terms of reactivity and compared to those obtained for other oxy-nitrogenated species. In addition, the determined rate constants are used to estimate effective atmospheric lifetimes of the investigated morpholinic compounds with respect to reaction with OH radicals. © 2014 Elsevier Ltd.

  17. UV spectra and OH-oxidation kinetics of gaseous phase morpholinic compounds

    KAUST Repository

    Rachidi, Mariam El; El Masri, A.; Roth, E.; Chakir, A.

    2014-01-01

    This paper presents an experimental study of the UV spectra as well as the kinetics of gaseous phase OH-oxidation of morpholine, N-formylmorpholine (NFM) and N-acetlymorpholine (NAM). The spectra recorded using a UV spectrometer in the spectral range 200-280nm show that the analytes mainly absorb at wavelengths less than 280nm. This indicates that their photolysis potential in the troposphere is insignificant. Meanwhile, the OH-reactivity of these analytes was studied using a triple-jacket 2m long reactor equipped with a multi-reflection system and coupled to an FTIR spectrometer. The experiments were carried out at 295 and 313K for the amine and amides, respectively. The study was conducted in the relative mode using isoprene and benzaldehyde as reference compounds. The rate constants obtained are 14.0±1.9, 4.0±1.1 and 3.8±1.0 (in units of 10-11cm3molecule-1s-1) for morpholine, NFM and NAM respectively. These results are discussed in terms of reactivity and compared to those obtained for other oxy-nitrogenated species. In addition, the determined rate constants are used to estimate effective atmospheric lifetimes of the investigated morpholinic compounds with respect to reaction with OH radicals. © 2014 Elsevier Ltd.

  18. Addition compounds between lanthanide (III) and yttrium (III) and methanesulfonates (MS) and 3-picoline-N-oxide (3-pic NO)

    International Nuclear Information System (INIS)

    Zinner, L.B.

    1984-01-01

    The preparation and characterization of addition compounds between lanthanide methanesulfonates and 3-picoline-N-oxide of general formula Ln (MS) 3 .2(3-pic No), Ln being La, Yb and Y, were carried out. The techniques employed for characterization were: elemental analysis, X-ray diffraction, infrared absorption spectroscopy, electrolytic conductance in methanol, melting ranges and emission spectrum of the Eu (III) compound. (Author) [pt

  19. Reaction of low-molecular-mass organoselenium compounds (and their sulphur analogues) with inflammation-associated oxidants

    DEFF Research Database (Denmark)

    Carroll, L.; Davies, Michael J.; Pattison, D. I.

    2015-01-01

    Selenium is an essential trace element in mammals, with the majority specifically encoded as seleno-L-cysteine into a range of selenoproteins. Many of these proteins play a key role in modulating oxidative stress, via either direct detoxification of biological oxidants, or repair of oxidised...... the chemistry of low-molecular-mass organoselenium compounds (e.g. selenoethers, diselenides and selenols) with inflammatory oxidants, with a particular focus on the reaction kinetics and product studies, with the differences in reactivity between selenium and sulphur analogues described in the selected...... examples. These data provide insight into the therapeutic potential of low-molecular-mass selenium-containing compounds to modulate the activity of both radical and molecular oxidants and provide protection against inflammation-induced damage. Progress in their therapeutic development (including modulation...

  20. Compound specific radiocarbon content of lignin oxidation products from the Altamaha river and Coastal Georgia

    International Nuclear Information System (INIS)

    Culp, Randy

    2013-01-01

    Compound-specific isotope analysis (CSIA) is a powerful tool in organic geochemistry by providing detailed information about an individual organic compound’s history with regard to its source and process of formation. Most CSIA involves measurement of the stable isotope ratio of carbon ( 13 C/ 12 C) and hydrogen (D/H) following separation by gas or liquid chromatography. New applications are being developed using compound-specific radiocarbon ( 14 C) content for delineating age of materials, rates of decomposition and residence time in various environments. This paper details the isotopic work on specific lignin monomers derived from terrestrial plants transported and deposited within the Altamaha River, estuary and off-shore Georgia in the Atlantic Ocean. By using gas chromatographic separation and identification of selected lignin oxidation products (LOP), the harvesting of these compounds using preparative fraction collection, and measurement of their 14 C content using accelerator mass spectrometry, details of the age and presence of specific biomarkers unique to a given terrestrial source are revealed. Radiocarbon ages determined from water-column particulate organic carbon and sediment LOPs indicate a range of ages from modern to well over 5,000 years for the former and latter respectively. Transport mechanisms and particle size associations on mineral grains may play a significant role in 14 C distribution in estuary and near-shore coastal environments. This data indicates higher than modern 14 C activities in large particle-size sediment fractions in contrast to older LOP 14 C ages found associated with the same coarse grain sediments. Individual LOP ages substantiate older terrestrial materials persist in the off-shore environment even though in the presence of modern marine 14 C sources.

  1. Permanganate oxidation of sulfur compounds to prevent poisoning of Pd catalysts in water treatment processes.

    Science.gov (United States)

    Angeles-Wedler, Dalia; Mackenzie, Katrin; Kopinke, Frank-Dieter

    2008-08-01

    The practical application of Pd-catalyzed water treatment processes is impeded by catalyst poisoning by reduced sulfur compounds (RSCs). In this study, the potential of permanganate as a selective oxidant for the removal of microbially generated RSCs in water and as a regeneration agent for S-poisoned catalysts was evaluated. Hydrodechlorination using Pd/Al2O3 was carried out as a probe reaction in permanganate-pretreated water. The activity of the Pd catalysts in the successfully pretreated reaction medium was similar to that in deionized water. The catalyst showed no deactivation behavior in the presence of permanganate at a concentration level or = 0.08 mM, a significant but temporary inhibition of the catalytic dechlorination was observed. Unprotected Pd/Al2O3, which had been completely poisoned by sulfide, was reactivated by a combined treatment with permanganate and hydrazine. However, the anthropogenic water pollutants thiophene and carbon disulfide were resistant against permanganate. Together with the preoxidation of catalyst poisons, hydrophobic protection of the catalysts was studied. Pd/zeolite and various hydrophobically coated catalysts showed a higher stability against ionic poisons and permanganate than the uncoated catalyst. By means of a combination of oxidative water pretreatment and hydrophobic catalyst protection, we provide a new tool to harness the potential of Pd-catalyzed hydrodehalogenation for the treatment of real waters.

  2. Identification of Oxide Compound in Dolomite Mineral from Aceh Tamiang Region

    Directory of Open Access Journals (Sweden)

    Nirmala Sari

    2013-08-01

    Full Text Available Indonesia has abundant mineral especially carbonate-based mineral, ike dolomite. Particularly in Aceh province's, the largest dolomite deposits is available in Aceh Tamiang district around 1.9 billion tons. Unfortunately, current use of dolomite in the industry and other applications is still limited. In this work we report the advanced preparation of dolomite using calcinations method. Whereas, with this method, the dolomite mineral can be processed into calcium and magnesium oxide which has a very wide field of application and higher values. To obtain optimal results, we also identify the effect of temperature on the formation of oxide compounds. Preliminary study using XRF founded that dolomite in village Selamat is known as the highest concentration of CaO (61.20% followed by MgO (25.28%. It is also showed that the main phase obtained by XRD is dolomite (CaMg(CO32. Furthermore, after the calcinations process at 700 °C, it was founded that the formation of dolomite were CaCO3 and MgO, whereas at temperatures of 900 °C mostly the CaCO3 has decomposed into CaO. SEM observations showed that dolomite has the composition of particles distributed homogeneously along the particle agglomerate when it calcinations.

  3. Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds

    International Nuclear Information System (INIS)

    Hutchings, G.; Heneghan, C.S.; Taylor, S.H.

    1996-01-01

    The industrial release of hydrocarbons and chlorine-containing organic molecules into the environment continues to attract considerable public concern, which in turn has led to governmental attempts to control such emissions. The challenge is to reduce pollution without stifling economic growth. Chlorine-containing pollutants are known to be particularly stable, and at present the main industrial process for their destruction involves thermal oxidation at 1,000 o C, an expensive process that can lead to the formation of highly toxic by-products such as dioxins and dibenzofurans. Catalytic combustion at lower temperatures could potentially destroy pollutants more efficiently (in terms of energy requirements) and without forming toxic by-products. Current industrial catalysts are based on precious metals that are deactivated rapidly by organochlorine compounds. Here we report that catalysts based on uranium oxide efficiently destroy a range of hydrocarbon and chlorine-containing pollutants, and that these catalysts are resistant to deactivation. We show that benzene, toluene, chlorobutane and chlorobenzene can be destroyed at moderate temperatures ( o C) and industrially relevant flow rates. (Author)

  4. Reduced graphene oxide/δ-WO{sub 3} composites for volatile organic compounds sensing

    Energy Technology Data Exchange (ETDEWEB)

    Perfecto, Tarcisio Micheli; Zito, Cecilia de Almeida; Volanti, Diogo Paschoalini, E-mail: tarcisio93@hotmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: Metal oxide semiconductors (MOS) is a simple and low-cost alternative to detect volatile organic compounds (VOCs) with fast response and recovery time [1]. In this context, reduced graphene oxide (RGO) is used in order to achieve a superior metal oxides gas sensing performance [2]. Thus, we report the synthesis of RGO/δ-WO{sub 3} composites by microwave-assisted hydrothermal method and its application in VOCs detection. The composites were prepared in a single-step using a graphene oxide dispersion, tungsten salt, ammonium oxalate hydrate as morphological control agent, and HCl in aqueous medium. The mixture was sealed in an autoclave and irradiated by microwave (800W) at 140 °C for 10 minutes. Then the sample was heating treatment at 400 °C for 1 hour. δ-WO{sub 3} single phase was also prepared by the same process without graphene oxide. The XRD results indicated the successful formation of triclinic phase of WO{sub 3} for both samples. FEG-SEM images showed the δ-WO{sub 3} nanoplates formation that are agglomerated and become more disperse and with irregular shape in RGO/δ-WO{sub 3} composite. TEM analysis revealed the interaction between RGO and δ-WO{sub 3} particles. The preliminary gas sensing results showed that increasing the operation temperature, more sensitive the composite RGO/δ-WO{sub 3} was toward the ethanol, methanol, acetone, toluene and benzene. So far, the highest response observed was to acetone at 300 °C. The response of RGO/δ-WO{sub 3} to 5, 10, 50, 100 and 200 ppm of acetone was 1.08, 1.12, 1.42, 1.75, and 1.99, respectively. We expect that increasing the operating temperature, more sensitive the material will become, since reports shows that WO{sub 3} sensors exhibit higher responses at higher temperatures [3]. Acknowledgments: The authors acknowledge FAPESP grants: 16/04371-1, 15/04306-2 and 14/17343-0. Refs.: [1] Jiang, D.;et al. RSC Adv. 2015, 5 (49), 39442-39448. [2] Jie, X.; et al. Sensors Actuators B Chem. 2015, 220

  5. 77 FR 71009 - Framework for Pharmacy Compounding: State and Federal Roles

    Science.gov (United States)

    2012-11-28

    ...] Framework for Pharmacy Compounding: State and Federal Roles AGENCY: Food and Drug Administration, HHS... Federal Roles.'' At this public meeting, FDA and State representatives will share their perspectives. Date... would require compliance with Federal standards. In addition, there are open questions about whether...

  6. Protective effects of organoselenium compounds against methylmercury-induced oxidative stress in mouse brain mitochondrial-enriched fractions

    Directory of Open Access Journals (Sweden)

    D.F. Meinerz

    2011-11-01

    Full Text Available We evaluated the potential neuroprotective effect of 1-100 µM of four organoselenium compounds: diphenyl diselenide, 3’3-ditri-fluoromethyldiphenyl diselenide, p-methoxy-diphenyl diselenide, and p-chloro-diphenyl diselenide, against methylmercury-induced mitochondrial dysfunction and oxidative stress in mitochondrial-enriched fractions from adult Swiss mouse brain. Methylmercury (10-100 µM significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, which occurred in parallel with increased glutathione oxidation, hydroperoxide formation (xylenol orange assay and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS. The co-incubation with diphenyl diselenide (100 µM completely prevented the disruption of mitochondrial activity as well as the increase in TBARS levels caused by methylmercury. The compound 3’3-ditrifluoromethyldiphenyl diselenide provided a partial but significant protection against methylmercury-induced mitochondrial dysfunction (45.4 ± 5.8% inhibition of the methylmercury effect. Diphenyl diselenide showed a higher thiol peroxidase activity compared to the other three compounds. Catalase blocked methylmercury-induced TBARS, pointing to hydrogen peroxide as a vector during methylmercury toxicity in this model. This result also suggests that thiol peroxidase activity of organoselenium compounds accounts for their protective actions against methylmercury-induced oxidative stress. Our results show that diphenyl diselenide and potentially other organoselenium compounds may represent important molecules in the search for an improved therapy against the deleterious effects of methylmercury as well as other mercury compounds.

  7. The chalcone compound isosalipurposide (ISPP) exerts a cytoprotective effect against oxidative injury via Nrf2 activation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jae Yun [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of); Cho, Seung Sik [College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729 (Korea, Republic of); Yang, Ji Hye; Kim, Kyu Min; Jang, Chang Ho [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of); Park, Da Eon [College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729 (Korea, Republic of); Bang, Joon Seok [Graduate School of Clinical Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of); Jung, Young Suk [College of Pharmacy, Pusan National University, Busan (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of)

    2015-08-15

    The chalcone compound isosalipurposide (ISPP) has been successfully isolated from the native Korean plant species Corylopsis coreana Uyeki (Korean winter hazel). However, the therapeutic efficacy of ISPP remains poorly understood. This study investigated whether ISPP has the capacity to activate NF-E2-related factor (Nrf2)-antioxidant response element (ARE) signaling and induce its target gene expression, and to determined the protective role of ISPP against oxidative injury of hepatocytes. In HepG2 cells, nuclear translocation of Nrf2 is augmented by ISPP treatment. Consistently, ISPP increased ARE reporter gene activity and the protein levels of glutamate cysteine ligase (GCL) and hemeoxygenase (HO-1), resulting in increased intracellular glutathione levels. Cells pretreated with ISPP were rescued from tert-butylhydroperoxide-induced reactive oxygen species (ROS) production and glutathione depletion and consequently, apoptotic cell death. Moreover, ISPP ameliorated the mitochondrial dysfunction and apoptosis induced by rotenone which is an inhibitor of complex 1 of the mitochondrial respiratory chain. The specific role of Nrf2 activation by ISPP was demonstrated using an ARE-deletion mutant plasmid and Nrf2-knockout cells. Finally, we observed that extracellular signal-regulated kinase (ERK) and AMP-activated protein kinase (AMPK), but not protein kinase C (PKC)-δ or other mitogen-activated protein kinases (MAPKs), are involved in the activation of Nrf2 by ISPP. Taken together, our results demonstrate that ISPP has a cytoprotective effect against oxidative damage mediated through Nrf2 activation and induction of its target gene expression in hepatocytes. - Highlights: • We investigated the effect of ISPP on Nrf2 activation. • ISPP increased Nrf2 activity and its target gene expression. • ISPP inhibited the mitochondrial dysfunction and ROS production. • Nrf2 activation by ISPP is dependent on ERK1/2 and AMPK phosphorylation. • ISPP may be a promising

  8. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase

    Science.gov (United States)

    Rajfer, R. A.; Kilic, A.; Neviaser, A. S.; Schulte, L. M.; Hlaing, S. M.; Landeros, J.; Ferrini, M. G.; Ebramzadeh, E.

    2017-01-01

    Objectives We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days. Materials and Methods Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression nail. Rats were treated daily either with vehicle, tadalafil or COMB-4. Biomechanical testing of the healed fracture was performed on day 42. The volume, mineral content and bone density of the callus were measured by quantitative CT on days 14 and 42. Expression of iNOS was measured by immunohistochemistry. Results When compared with the control group, the COMB-4 group exhibited 46% higher maximum strength (t-test, p = 0.029) and 92% higher stiffness (t-test, p = 0.023), but no significant changes were observed in the tadalafil group. At days 14 and 42, there was no significant difference between the three groups with respect to callus volume, mineral content and bone density. Expression of iNOS at day 14 was significantly higher in the COMB-4 group which, as expected, had returned to baseline levels at day 42. Conclusion This study demonstrates an enhancement in fracture healing by an oral natural product known to augment iNOS expression. Cite this article: R. A. Rajfer, A. Kilic, A. S. Neviaser, L. M. Schulte, S. M. Hlaing, J. Landeros, M. G. Ferrini, E. Ebramzadeh, S-H. Park. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase: Acceleration of fracture healing via inducible nitric oxide synthase. Bone Joint Res 2017:6:–97. DOI: 10.1302/2046-3758.62.BJR-2016-0164.R2. PMID:28188129

  9. The chalcone compound isosalipurposide (ISPP) exerts a cytoprotective effect against oxidative injury via Nrf2 activation

    International Nuclear Information System (INIS)

    Han, Jae Yun; Cho, Seung Sik; Yang, Ji Hye; Kim, Kyu Min; Jang, Chang Ho; Park, Da Eon; Bang, Joon Seok; Jung, Young Suk; Ki, Sung Hwan

    2015-01-01

    The chalcone compound isosalipurposide (ISPP) has been successfully isolated from the native Korean plant species Corylopsis coreana Uyeki (Korean winter hazel). However, the therapeutic efficacy of ISPP remains poorly understood. This study investigated whether ISPP has the capacity to activate NF-E2-related factor (Nrf2)-antioxidant response element (ARE) signaling and induce its target gene expression, and to determined the protective role of ISPP against oxidative injury of hepatocytes. In HepG2 cells, nuclear translocation of Nrf2 is augmented by ISPP treatment. Consistently, ISPP increased ARE reporter gene activity and the protein levels of glutamate cysteine ligase (GCL) and hemeoxygenase (HO-1), resulting in increased intracellular glutathione levels. Cells pretreated with ISPP were rescued from tert-butylhydroperoxide-induced reactive oxygen species (ROS) production and glutathione depletion and consequently, apoptotic cell death. Moreover, ISPP ameliorated the mitochondrial dysfunction and apoptosis induced by rotenone which is an inhibitor of complex 1 of the mitochondrial respiratory chain. The specific role of Nrf2 activation by ISPP was demonstrated using an ARE-deletion mutant plasmid and Nrf2-knockout cells. Finally, we observed that extracellular signal-regulated kinase (ERK) and AMP-activated protein kinase (AMPK), but not protein kinase C (PKC)-δ or other mitogen-activated protein kinases (MAPKs), are involved in the activation of Nrf2 by ISPP. Taken together, our results demonstrate that ISPP has a cytoprotective effect against oxidative damage mediated through Nrf2 activation and induction of its target gene expression in hepatocytes. - Highlights: • We investigated the effect of ISPP on Nrf2 activation. • ISPP increased Nrf2 activity and its target gene expression. • ISPP inhibited the mitochondrial dysfunction and ROS production. • Nrf2 activation by ISPP is dependent on ERK1/2 and AMPK phosphorylation. • ISPP may be a promising

  10. Radiolysis study of the oxidation of a vitamin K model compound in ethanolic solution

    International Nuclear Information System (INIS)

    Fackir, L.; Jore, D.; Gardes-Albert, M.; Ferradini, C.; Acher, F.; Azerad, R.

    1993-01-01

    It seems that the biological action of vitamin K (with its important role in carboxylating processes) may involve monoelectronic exchanges. Therefore radical mechanisms of a vitamin K model molecule KHp have been studied in ethanolic solution by mean of steady state radiolysis method. The oxidation of KHp by H 3 C-CH(OH)OO . model peroxyl radicals leads to the formation of a 'dimeric' form of vitamin K. The superoxide anions seem not to be reactive towards KHp in the chosen irradiation conditions

  11. Oxidative Stress and Heart Failure in Altered Thyroid States

    Directory of Open Access Journals (Sweden)

    Pallavi Mishra

    2012-01-01

    Full Text Available Increased or reduced action of thyroid hormone on certain molecular pathways in the heart and vasculature causes relevant cardiovascular derangements. It is well established that hyperthyroidism induces a hyperdynamic cardiovascular state, which is associated with a faster heart rate, enhanced left ventricular systolic and diastolic function whereas hypothyroidism is characterized by the opposite changes. Hyperthyroidism and hypothyroidism represent opposite clinical conditions, albeit not mirror images. Recent experimental and clinical studies have suggested the involvement of ROS tissue damage under altered thyroid status. Altered-thyroid state-linked changes in heart modify their susceptibility to oxidants and the extent of the oxidative damage they suffer following oxidative challenge. Chronic increase in the cellular levels of ROS can lead to a catastrophic cycle of DNA damage, mitochondrial dysfunction, further ROS generation and cellular injury. Thus, these cellular events might play an important role in the development and progression of myocardial remodeling and heart failure in altered thyroid states (hypo- and hyper-thyroidism. The present review aims at elucidating the various signaling pathways mediated via ROS and their modulation under altered thyroid state and the possibility of antioxidant therapy.

  12. Oxidation using quaternary ammonium polyhalides VII. Oxidation of primary amines and hydrazo compounds by use of benzyltrimethylammonium tribromide

    OpenAIRE

    Nishida, Akiko; Kohro, Noriaki; Fujisaki, Shizuo; Kajigaeshi, Shoji

    1990-01-01

    The reactions of primary amines and hydrazo compounds with benzyltrimethylammonium tribromide in aqueous sodium hydroxide or in water gave the corresponding nitriles and azo compounds in satisfactory yields, respectively.

  13. Evolution of the Oxidation State of the Earth's Mantle

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, E.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3(+) at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. In our previous experiments on shergottite compositions, variable fO2, T, and P less than 4 GPa, Fe3(+)/sigma Fe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3(+)/sigma Fe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3(+). Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Preliminary multi-anvil experiments with Knippa basalt as the starting composition were conducted at 5-7 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal to Fe3(+)/2(+). Experiments are underway to produce glassy samples that can be measured by EELS and XANES, and are conducted at higher pressures.

  14. Recent advances in the 5f-relevant electronic states and unconventional superconductivity of actinide compounds

    International Nuclear Information System (INIS)

    Haga, Yoshinori; Sakai, Hironori; Kambe, Shinsaku

    2007-01-01

    Recent advances in the understanding of the 5f-relevant electronic states and unconventional superconducting properties are reviewed in actinide compounds of UPd 2 Al 3 . UPt 3 , URu 2 Si 2 , UGe 2 , and PuRhGa 5 . These are based on the experimental results carried out on high-quality single crystal samples, including transuranium compounds, which were grown by using combined techniques. The paring state and the gap structure of these superconductors are discussed, especially for the corresponding Fermi surfaces which were clarified by the de Haas-van Alphen experiment and the energy band calculations. A detailed systematic study using the NQR/NMR spectroscopy reveals the d-wave superconductivity in PuRhGa 5 and the difference of magnetic excitations due to the difference of ground states in U-, Np-, and Pu-based AnTGa 5 (T: transition metal) compounds. (author)

  15. Corrosion-product transport, oxidation state and remedial measures

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brett, M.E.; Tapping, R.L.

    1998-10-01

    The issues associated with monitoring and controlling corrosion-product transport (CPT) in the balance-of-plant (BOP) and steam generators (SG) of CANDU stations are briefly reviewed. Efforts are focused on minimizing corrosion of carbon steel, which is used extensively in the CANDU primary and secondary systems. Emphasis is placed on the corrosion-product oxidation state as a monitor of water chemistry effectiveness and as a monitor of system corrosion effects. The discussion is based mostly on the results of observations from Ontario Hydro plants, and their comparisons with pressurized-water reactors. The effects of low oxygen and elevated hydrazine chemistry are reviewed, as well as the effects of layup and various startup conditions. Progress in monitoring electrochemical potential (ECP) at Ontario Hydro plants and its relationship to the oxidation state of corrosion products is reviewed. Observations on CPT on the primary side of SGs are also discussed. (author)

  16. Corrosion-product transport, oxidation state and remedial measures

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brett, M.E.; Tapping, R.L.

    1998-01-01

    The issues associated with monitoring and controlling corrosion-product transport (CPT) in the balance-of-plant (BOP) and steam generators (SG) of CANDU stations are briefly reviewed. The efforts are focused on minimizing corrosion of carbon steel, which is used extensively in the CANDU primary and secondary systems. Emphasis is placed on the corrosion-product oxidation state as a monitor of water chemistry effectiveness, and as a monitor of system corrosion effects. The discussion is based mostly on the results and observations from Ontario Hydro plants, and their comparisons with PWRs. The effects of low oxygen and elevated hydrazine chemistry are reviewed, as well as the effects of lay-up and various start-up conditions. Progress in monitoring electrochemical potential (ECP) at Ontario Hydro plants and its relationship to the oxidation state of corrosion products is reviewed. Observations on corrosion-product transport on the primary side of steam generators are also discussed. (author)

  17. Thiophene Conversion and Ethanol Oxidation on SiO2-Supported 12-PMoV-Mixed Heteropoly Compounds

    Czech Academy of Sciences Publication Activity Database

    Spojakina, A. A.; Kostova, N. G.; Sow, Bineta; Stamenova, M. W.; Jirátová, Květa

    2001-01-01

    Roč. 65, 2-4 (2001), s. 315-321 ISSN 0920-5861 Institutional research plan: CEZ:AV0Z4072921 Keywords : thiophene conversion * ethanol oxidation * mixed heteropoly compounds Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.333, year: 2001

  18. In situ spectroscopic investigation of the cobalt-catalyzed oxidation of lignin model compounds in ionic liquids

    NARCIS (Netherlands)

    Zakzeski, J.|info:eu-repo/dai/nl/326160256; Bruijnincx, P.C.A.|info:eu-repo/dai/nl/33799529X; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2011-01-01

    The cobalt-catalyzed oxidation of lignin and lignin model compounds using molecular oxygen in ionic liquids proceeds readily under mild conditions, but mechanistic insight and evidence for the species involved in the catalytic cycle is lacking. In this study, a spectroscopic investigation of the

  19. Influence of oxidation state on the pH dependence of hydrous iridium oxide films

    International Nuclear Information System (INIS)

    Steegstra, Patrick; Ahlberg, Elisabet

    2012-01-01

    Many electrochemical reactions taking place in aqueous solution consume or produce protons. The pH in the diffusion layer can therefore be significantly altered during the reaction and there is a need for in situ pH measurements tracing this near surface pH. In the present paper the rotating ring disc technique was used to measure near surface pH changes during oxygen reduction, utilising hydrous iridium oxide as the pH sensing probe. Before such experiments a good understanding of the pH sensing properties of these films is required and the impact of the oxidation state of the film on the pH sensing properties was investigated as well as the influence of solution redox species. The pH sensitivity (depicted by dE/dpH) was found to depend on the average oxidation state of the film in a manner resembling the cyclic voltammetry response. In all cases the pH response is “supernernstian” with more than one proton per electron. The origin of this behaviour is discussed in the context of acid-base properties of the film and the existence of both hydrous and anhydrous oxide phases. The pH response depends also on the redox properties of the solution but can be optimised for various purposes by conditioning the film at different potentials. This was clearly illustrated by adding hydrogen peroxide, an intermediate in the oxygen reduction reaction, to the solution. It was shown that hydrous iridium oxide can be used as a reliable in situ pH sensor provided that care is taken to optimise the oxidation state of the film.

  20. Pentavalent Uranium Chemistry - Synthetic Pursuit Of A Rare Oxidation State

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Christopher R [Los Alamos National Laboratory; Kiplinger, Jaqueline L [Los Alamos National Laboratory

    2009-01-01

    This feature article presents a comprehensive overview of pentavalent uranium systems in non-aqueous solution with a focus on the various synthetic avenues employed to access this unusual and very important oxidation state. Selected characterization data and theoretical aspects are also included. The purpose is to provide a perspective on this rapidly evolving field and identify new possibilities for future developments in pentavalent uranium chemistry.

  1. Study of uranium oxidation states in geological material.

    Science.gov (United States)

    Pidchenko, I; Salminen-Paatero, S; Rothe, J; Suksi, J

    2013-10-01

    A wet chemical method to determine uranium (U) oxidation states in geological material has been developed and tested. The problem faced in oxidation state determinations with wet chemical methods is that U redox state may change when extracted from the sample material, thereby leading to erroneous results. In order to quantify and monitor U redox behavior during the acidic extraction in the procedure, an analysis of added isotopic redox tracers, (236)U(VI) and (232)U(IV), and of variations in natural uranium isotope ratio ((234)U/(238)U) of indigenous U(IV) and U(VI) fractions was performed. Two sample materials with varying redox activity, U bearing rock and U-rich clayey lignite sediment, were used for the tests. The Fe(II)/Fe(III) redox-pair of the mineral phases was postulated as a potentially disturbing redox agent. The impact of Fe(III) on U was studied by reducing Fe(III) with ascorbic acid, which was added to the extraction solution. We observed that ascorbic acid protected most of the U from oxidation. The measured (234)U/(238)U ratio in U(IV) and U(VI) fractions in the sediment samples provided a unique tool to quantify U oxidation caused by Fe(III). Annealing (sample heating) to temperatures above 500 °C was supposed to heal ionizing radiation induced defects in the material that can disturb U redox state during extraction. Good agreement between two independent methods was obtained for DL-1a material: an average 38% of U(IV) determined by redox tracer corrected wet chemistry and 45% for XANES. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    International Nuclear Information System (INIS)

    Li Jiaxin; Waters, Stephen B.; Drobna, Zuzana; Devesa, Vicenta; Styblo, Miroslav; Thomas, David J.

    2005-01-01

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  3. Protective Effects of Alkaloid Compounds from Nelumbinis Plumula on tert-Butyl Hydroperoxide-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Ze-Bin Guo

    2013-08-01

    Full Text Available This study was conducted to investigate the effect of Nelumbinis Plumula total alkaloid (NPA and its main alkaloid components on oxidative stress induced by tert-butyl hydroperoxide (t-BHP in the human hepatocellular HepG2 cell line. According to HPLC analysis, several major alkaloid compounds such as liensinine, isoliensinine and neferine were present in NPA. The cytotoxic effects in 0.55 mM t-BHP-induced HepG2 cells were significantly inhibited by NPA and the major compound in NPA, neferine, showed the strongest activities. The protective effect of neferine against oxidative stress induced by t-BHP may be associated with decreased ROS formation, TBARS generation, LDH release and increased GSH levels, suggesting their involvement of the cytoprotective on oxidative stress. The effects were comparable with quercetin, which was used as positive control. Overall, total alkaloid and alkaloid compounds from Nelumbinis Plumula displayed a significant cytoprotective effect against oxidative stress. Further study is needed to elucidate the relationship between the chemical structures of the components in NPA and their protective effect on oxidative stress.

  4. Synthesis of Complex-Alloyed Nickel Aluminides from Oxide Compounds by Aluminothermic Method

    Directory of Open Access Journals (Sweden)

    Victor Gostishchev

    2018-06-01

    Full Text Available This paper deals with the investigation of complex-alloyed nickel aluminides obtained from oxide compounds by aluminothermic reduction. The aim of the work was to study and develop the physicochemical basis for obtaining complex-alloyed nickel aluminides and their application for enhancing the properties of coatings made by electrospark deposition (ESD on steel castings, as well as their use as grain refiners for tin bronze. The peculiarities of microstructure formation of master alloys based on the Al–TM (transition metal system were studied using optical, electronic scanning microscopy and X-ray spectral microanalysis. There were regularities found in the formation of structural components of aluminum alloys (Ni–Al, Ni-Al-Cr, Ni-Al-Mo, Ni-Al-W, Ni-Al-Ti, Ni-Cr-Mo-W, Ni-Al-Cr-Mo-W-Ti, Ni-Al-Cr-V, Ni-Al-Cr-V-Mo and changes in their microhardness, depending on the composition of the charge, which consisted of oxide compounds, and on the amount of reducing agent (aluminum powder. It is shown that all the alloys obtained are formed on the basis of the β phase (solid solution of alloying elements in nickel aluminide and quasi-eutectic, consisting of the β′ phase and intermetallics of the alloying elements. The most effective alloys, in terms of increasing microhardness, were Al-Ni-Cr-Mo-W (7007 MPa and Al-Ni-Cr-V-Mo (7914 MPa. The perspective is shown for applying the synthesized intermetallic master alloys as anode materials for producing coatings by electrospark deposition on steel of C1030 grade. The obtained coatings increase the heat resistance of steel samples by 7.5 times, while the coating from NiAl-Cr-Mo-W alloy remains practically nonoxidized under the selected test conditions. The use of NiAl intermetallics as a modifying additive (0.15 wt. % in tin bronze allows increasing the microhardness of the α-solid solution by 1.9 times and the microhardness of the eutectic (α + β phase by 2.7 times.

  5. Oxidation of the odorous compound 2,4,6-trichloroanisole by UV activated persulfate: Kinetics, products, and pathways.

    Science.gov (United States)

    Luo, Congwei; Jiang, Jin; Ma, Jun; Pang, Suyan; Liu, Yongze; Song, Yang; Guan, Chaoting; Li, Juan; Jin, Yixin; Wu, Daoji

    2016-06-01

    The transformation efficiency and products of an odorous compound 2,4,6-trichloroanisole (TCA) at the wavelength of 254 nm in the presence of persulfate were investigated for the first time. The effects of water matrix (i.e., natural organic matter (NOM), pH, carbonate/bicarbonate (HCO3(-)/CO3(2-)), and chloride ions (Cl(-))) were evaluated. The second order rate constant of TCA reacting with sulfate radical (SO4(-)) was determined to be (3.72 ± 0.10) × 10(9) M(-1) s(-1). Increasing dosage of persulfate increased the observed pseudo-first-order rate constant for TCA degradation (kobs), and the contribution of SO4(-) to TCA degradation was much higher than that of HO at each experimental condition. Degradation rate of TCA decreased with pH increasing from 4.0 to 9.0, which could be explained by the lower radical scavenging effect of dihydrogen phosphate than hydrogen phosphate in acidic condition (pH kinetic results could be described by a steady-state kinetic model. Furthermore, liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry at powerful precursor ion scan approach was used to selectively detect oxidation products of TCA. It was found that 2,4,6-trichorophenol (TCP) was the major oxidation product (i.e., the initial yield of TCP was above 90%). The second order rate constant between TCP and SO4(-) was estimated to be (4.16 ± 0.20) × 10(9) M(-1) s(-1). In addition, three products (i.e., 2,6-dichloro-1,4-benzoquinone and two aromatic ring-opening products) were detected in the reaction of TCP with SO4(-), which also appeared in the oxidation of TCA in the UV/persulfate process. A tentative pathway was proposed, where the initial one-electron oxidation of TCA by SO4(-) and further reactions (e.g., ipso-hydroxylation and aromatic ring-cleavage) of the formed cation intermediate TCA were involved. Copyright © 2016. Published by Elsevier Ltd.

  6. Methane oxidation and attenuation of sulphur compounds in landfill top cover systems: Lab-scale tests.

    Science.gov (United States)

    Raga, Roberto; Pivato, Alberto; Lavagnolo, Maria Cristina; Megido, Laura; Cossu, Raffaello

    2018-03-01

    In this study, a top cover system is investigated as a control for emissions during the aftercare of new landfills and for old landfills where biogas energy production might not be profitable. Different materials were studied as landfill cover system in lab-scale columns: mechanical-biological pretreated municipal solid waste (MBP); mechanical-biological pretreated biowaste (PB); fine (PBS f ) and coarse (PBS c ) mechanical-biological pretreated mixtures of biowaste and sewage sludge, and natural soil (NS). The effectiveness of these materials in removing methane and sulphur compounds from a gas stream was tested, even coupled with activated carbon membranes. Concentrations of CO 2 , CH 4 , O 2 , N 2 , H 2 S and mercaptans were analysed at different depths along the columns. Methane degradation was assessed using mass balance and the results were expressed in terms of methane oxidation rate (MOR). The highest maximum and mean MOR were observed for MBP (17.2gCH 4 /m 2 /hr and 10.3gCH 4 /m 2 /hr, respectively). Similar values were obtained with PB and PBS c . The lowest values of MOR were obtained for NS (6.7gCH 4 /m 2 /hr) and PBS f (3.6gCH 4 /m 2 /hr), which may be due to their low organic content and void index, respectively. Activated membranes with high load capacity did not seem to have an influence on the methane oxidation process: MBP coupled with 220g/m 2 and 360g/m 2 membranes gave maximum MOR of 16.5gCH 4 /m 2 /hr and 17.4gCH 4 /m 2 /hr, respectively. Activated carbon membranes proved to be very effective on H 2 S adsorption. Furthermore, carbonyl sulphide, ethyl mercaptan and isopropyl mercaptan seemed to be easily absorbed by the filling materials. Copyright © 2017. Published by Elsevier B.V.

  7. Review of different methods for developing nanoelectrocatalysts for the oxidation of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Coutanceau, C.; Brimaud, S.; Lamy, C.; Leger, J.-M.; Dubau, L.; Rousseau, S.; Vigier, F. [Laboratoire de Catalyse en Chimie Organique, Equipe Electrocatalyse, UMR 6503 CNRS, 40 avenue du recteur Pineau, F-86022 Poitiers Cedex (France)

    2008-10-01

    Most of the electrochemical reactions involved in fuel cell are structure sensitive. Moreover, for the electrooxidation of small organic molecules catalysts have to be multifunctional. For these reasons, the development of various synthesis methods of multimetallic electrocatalysts allowing to control the atomic composition and the microstructure is needed in order to improve the electrocatalytic activity. For this purpose, several methods for the preparation of nanostructured catalysts have been developed in our laboratory (impregnation-reduction method, colloidal route, carbonyl route, microemulsion and electrochemical methods), which allow to prepare multimetallic particles. These catalysts were characterized using physical and physico-chemical methods (XRD, TEM, EDX, electrochemical methods, etc.) in order to check their composition, structure, dispersion, active surface area, etc. Amongst the developed methods, some of them can lead to the formation of alloyed or non-alloyed multimetallic compounds depending on the synthesis procedure. XRD analysis allows us to discriminate the catalyst structures. The influence of the atomic composition and of the nature of foreign metals added to platinum is discussed in terms of electrochemical activity towards oxidation of small organic molecules of interest in energy storage and production. In particular, it appears that non-alloyed Pt-Ru catalysts display higher electroactivity towards methanol oxidation. Electrochemical and DEMS measurements were used to study and to evaluate the influence of the electrocatalyst structure on its electroactivity. The effect of the composition in terms of foreign metal atoms and atomic content of platinum based and platinum-tin based catalysts towards the electrooxidation of ethanol is also discussed from electrochemical experiments and fuel cell test results. (author)

  8. Production and Recovery of Aroma Compounds Produced by Solid-State Fermentation Using Different Adsorbents

    Directory of Open Access Journals (Sweden)

    Adriane B. P. Medeiros

    2006-01-01

    Full Text Available Volatile compounds with fruity characteristics were produced by Ceratocystis fimbriata in two different bioreactors: columns (laboratory scale and horizontal drum (semi-pilot scale. Coffee husk was used as substrate for the production of volatile compounds by solid-state fermentation. The production of volatile compounds was significantly higher when horizontal drum bioreactor was used than when column bioreactors were used. These results showed that this model of bioreactor presents good perspectives for scale-up and application in an industrial production. Headspace analysis of the solid-state culture detected twelve compounds, among them: ethanol, acetaldehyde, ethyl acetate, ethyl propionate, and isoamyl acetate. Ethyl acetate was the predominant product in the headspace (28.55 µmol/L/g of initial dry matter. Activated carbon, Tenax-TA, and Amberlite XAD-2 were tested to perform the recovery of the compounds. The adsorbent columns were connected to the column-type bioreactor. All compounds present in the headspace of the columns were adsorbed in Amberlite XAD-2. With Tenax-TA, acetaldehyde was adsorbed in higher concentrations. However, the recovery found by using the activated carbon was very low.

  9. Chemical state analysis of oxidation products on steel surface by conversion electron Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Ujihira, Yusuke; Nomura, Kiyoshi

    1978-01-01

    The polished NT-70H steel (Fe: 95.97%, C: 0.56%, diameter: 5 cm, thickness: 0.5 cm) was immersed in deionized water or in solutions containing (0.25 -- 0.5) M of chloride, sulfate and nitrate ions. The chemical states of oxidation products of iron on the surface were identified through the analysis of conversion electron Moessbauer spectra (CEMS). CEMS of the steel surface, which had been dipped in deionized water, revealed that γ-FeOOH was formed on the surface. The thickness of γ-FeOOH layer increased with the increase of the duration of dipping. Dissolved oxygen in the solution played an essential role in the oxidation of iron to γ-FeOOH. Oxidation product of iron dipped in the 0.5 M sodium chloride solution was identified as γ-FeOOH. Amorphous paramagnetic iron (III) compound tended to form in the presence of hydrogen peroxide or ammonium ions in the solutions. The increase of alkalinity of the solution up to pH 12 suppressed the oxidation rate and assisted the formation of green rust, which was confirmed by the appearance of the quadrupole splitting peaks of the green rust. In the 0.25 M sodium sulfate solution, oxidation of the steel surface proceeded slowly and the quadrupole splitting peaks of Fe(OH) 2 were seen in the CEMS. The peak intensity of Fe(OH) 2 gradually decreased and that of γ-FeOOH increased by the extension of immersion of steel in the solution. Magnetite (Fe 3 O 4 ) layer was developed beneath the γ-FeOOH layer, when steel was dipped in 0.5 M sodium nitrate solution. However, the peaks of Fe 3 O 4 were not seen on CEMS of steel surface immersed in 0.5 M ammonium nitrate solution. Thus, applying the feasibility of CEMS for the characterization of oxidated compounds of iron on the steel surface formed by the immersion in solutions, the oxidation mechanism of the steel surface was discussed based upon the results of chemical state analyses. (author)

  10. Solid-to-solid oxidation of a vanadium(IV) to a vanadium(V) compound: chemisty of a sulfur-containing siderophore.

    Science.gov (United States)

    Chatterjee, Pabitra B; Crans, Debbie C

    2012-09-03

    Visible light facilitates a solid-to-solid photochemical aerobic oxidation of a hunter-green microcrystalline oxidovanadium(IV) compound (1) to form a black powder of cis-dioxidovanadium(V) (2) at ambient temperature. The siderophore ligand pyridine-2,6-bis(thiocarboxylic acid), H(2)L, is secreted by a microorganism from the Pseudomonas genus. This irreversible transformation of a metal monooxo to a metal dioxo complex in the solid state in the absence of solvent is unprecedented. It serves as a proof-of-concept reaction for green chemistry occurring in solid matrixes.

  11. Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds

    Directory of Open Access Journals (Sweden)

    V. Varutbangkul

    2006-01-01

    Full Text Available A series of experiments has been conducted in the Caltech indoor smog chamber facility to investigate the water uptake properties of aerosol formed by oxidation of various organic precursors. Secondary organic aerosol (SOA from simple and substituted cycloalkenes (C5-C8 is produced in dark ozonolysis experiments in a dry chamber (RH~5%. Biogenic SOA from monoterpenes, sesquiterpenes, and oxygenated terpenes is formed by photooxidation in a humid chamber (~50% RH. Using the hygroscopicity tandem differential mobility analyzer (HTDMA, we measure the diameter-based hygroscopic growth factor (GF of the SOA as a function of time and relative humidity. All SOA studied is found to be slightly hygroscopic, with smaller water uptake than that of typical inorganic aerosol substances. The aerosol water uptake increases with time early in the experiments for the cycloalkene SOA, but decreases with time for the sesquiterpene SOA. This behavior could indicate competing effects between the formation of more highly oxidized polar compounds (more hygroscopic, and formation of longer-chained oligomers (less hygroscopic. All SOA also exhibit a smooth water uptake with RH with no deliquescence or efflorescence. The water uptake curves are found to be fitted well with an empirical three-parameter functional form. The measured pure organic GF values at 85% RH are between 1.09–1.16 for SOA from ozonolysis of cycloalkenes, 1.01–1.04 for sesquiterpene photooxidation SOA, and 1.06–1.10 for the monoterpene and oxygenated terpene SOA. The GF of pure SOA (GForg in experiments in which inorganic seed aerosol is used is determined by assuming volume-weighted water uptake (Zdanovskii-Stokes-Robinson or 'ZSR' approach and using the size-resolved organic mass fraction measured by the Aerodyne Aerosol Mass Spectrometer. Knowing the water content associated with the inorganic fraction yields GForg values. However, for each precursor, the GForg values computed from different

  12. Application of powerful oxidizers in the synthesis of new high-oxidation state actinide and related species

    International Nuclear Information System (INIS)

    Yeh, S.M.

    1984-11-01

    The fluorinating and oxide scavenging ability of XeF 6 have been studied by bringing XeF 6 into interaction with oxide-fluoride compounds of the third-transition-series elements (W, Re and Os) and uranium, in their highest oxidation states. A + MOF 5 - and A + M 2 O 2 F 9 - (A = K or Cs, M = W or U) were converted to A + MF 7 - by XeF 6 , but the rhenium and osmium compounds, K + ReO 2 F 4 - and XeF 5 + OsO 3 F 3 - , resisted interaction with XeF 6 . Strong interactions between XeF 2 or KrF 2 and the solvent have been observed for their solutions in anhydrous HF. Both XeF 2 and KrF 2 are seen to be effective in breaking up the polymeric (HF)/sub n/ chains. Only weak interactions occur between cations and anions of KrF + AuF 6 - and Kr 2 F 3 + AuF 6 - in HF. The AuF 6 - anions are slightly distorted from O/sub h/ symmetry. Kr 2 F 3 + cations in HF have the same dissymmetric V-shape which occurs in crystalline salts. A low-temperature orthorhombic form, β-ReF 6 + SbF 6 - , a high-temperature rhombohedral form, α-ReF 6 + SbF 6 - , and a ReF 6 + AuF 6 - have been prepared. These compounds possess only kinetic stability at ambient temperature and at approx. 20 0 C are best represented as ReF 6 + ReF 7 MF 6 - MF 5 . Thermochemical energy evaluations indicate that the ionization potential of ReF 6 is 261 kcal mole -1 and that the fluoride-ion affinity of ReF 6 + is -214 kcal mole -1 . This is more exothermal than the corresponding process for IF 6 + (-208 kcal mole -1 ). In contrast, ReOF 5 is shown to be a better fluoro-base than IOF 5 and also is a better base than ReF 7 . ReOF 4 + MF 6 - (M = Sb, Au and As) salts are of higher thermal stability than their ReF 6 + MF 6 - analogues

  13. Simulation study of ballistic spin-MOSFET devices with ferromagnetic channels based on some Heusler and oxide compounds

    Science.gov (United States)

    Graziosi, Patrizio; Neophytou, Neophytos

    2018-02-01

    Newly emerged materials from the family of Heuslers and complex oxides exhibit finite bandgaps and ferromagnetic behavior with Curie temperatures much higher than even room temperature. In this work, using the semiclassical top-of-the-barrier FET model, we explore the operation of a spin-MOSFET that utilizes such ferromagnetic semiconductors as channel materials, in addition to ferromagnetic source/drain contacts. Such a device could retain the spin polarization of injected electrons in the channel, the loss of which limits the operation of traditional spin transistors with non-ferromagnetic channels. We examine the operation of four material systems that are currently considered some of the most prominent known ferromagnetic semiconductors: three Heusler-type alloys (Mn2CoAl, CrVZrAl, and CoVZrAl) and one from the oxide family (NiFe2O4). We describe their band structures by using data from DFT (Density Functional Theory) calculations. We investigate under which conditions high spin polarization and significant ION/IOFF ratio, two essential requirements for the spin-MOSFET operation, are both achieved. We show that these particular Heusler channels, in their bulk form, do not have adequate bandgap to provide high ION/IOFF ratios and have small magnetoconductance compared to state-of-the-art devices. However, with confinement into ultra-narrow sizes down to a few nanometers, and by engineering their spin dependent contact resistances, they could prove promising channel materials for the realization of spin-MOSFET transistor devices that offer combined logic and memory functionalities. Although the main compounds of interest in this paper are Mn2CoAl, CrVZrAl, CoVZrAl, and NiFe2O4 alone, we expect that the insight we provide is relevant to other classes of such materials as well.

  14. Studies of the Tc oxidation states in humic acid solutions

    International Nuclear Information System (INIS)

    Wang Bo; Liu Dejun; Yao Jun

    2010-01-01

    The oxidation state is an important aspect of the speciation of Tc in groundwater that contained organic substances due to it control the precipitation, complexation, sorption and colloid formation behavior of the Tc under HWL geological disposal conditions. In present work, the oxidation states of Tc were investigated using the LaCl 3 coagulation method and solution extraction method in aqueous solutions in which the humic acid concentration range is from 0 to 20 mg L -1 and the Tc (Ⅶ) concentration range is about 10 -8 mol l -1 . The radiocounting of 99 Tc was determined using liquid scintillation spectrometry. The humic acid will influence the radiocounting ratio of 99 Tc apparently, however, the quenching effect can be restrained once keep the volume of the cocktail to about twenty times of the sample volume. The LaCl 3 coagulation methods were carried out for the investigation of Tc oxidation states in humic acid aqueous systems at about pH 8. The tetraphenylarsonium chloride (IPA)-chloroform extraction method was used also simultaneously to investigation the concentrations of Tc (Ⅳ) and Tc (Ⅶ) for the availability of the LaCl 3 precipitation method, and the experimental results demonstrate that tetravalent technetium and pertechnetate concentrations are well agreement with the LaCl 3 precipitation method. These two experimental results demonstrated that Tc (Ⅶ) is very stable in the Tc (Ⅶ)-humic acid system during a 350 days experimental period, and the Tc (Ⅳ) concentrations are very lower, that is indicate that there didn't oxidizing reactions between the Fluka humic acid and Tc (Ⅶ) in aqueous solutions under anaerobic conditions. That is means the presence of humic acids even in anaerobic groundwater is disadvantage for the retardance of radionuclides. (authors)

  15. Studies of Tc oxidation states in humic acid solutions

    International Nuclear Information System (INIS)

    Wang Bo; Liu Dejun; Yao Jun

    2011-01-01

    The oxidation state of Tc is an important aspect of the speciation in groundwater which contained organic substances due to it control the precipitation, complexation, sorption and colloid formation behavior of the Tc under HWL geological disposal conditions. In present work, the oxidation states of Tc were investigated using the LaCl 3 coagulation method and solution extraction method in aqueous solutions in which the humic acid concentration range is from 0 to 20 mg/L and the Tc (VII) concentration is about 10 -8 mol/L. The radiocounting of 99 Tc was determined using liquid scintillation spectrometry. The humic acid will influence the radiocounting ratio of 99 Tc apparently, however, the quenching effect can be restrained once keep the volume of the cocktail to about twenty times of the sample volume. The LaCl 3 coagulation method was carried out for the investigation of Tc oxidation states in humic acid aqueous systems at about pH 8. The tetraphenylarsonium chloride (TPA)-chloroform extraction method was used also simultaneously to investigation the concentrations of Tc (IV) and Tc (VII) for the availability of the LaCl 3 precipitation method, and the experimental results demonstrate that tetravalent technetium and pertechnetate concentration are well agreement with the LaCl 3 precipitation method. These two experimental results demonstrated that Tc (VII) is very stable in the Tc (VII)-humic acid system during a 350 days experimental period, and the Tc (IV) concentrations are very lower, that is indicate that there didn't oxidizing reactions between the Fluka humic acid and Tc (VII) in aqueous solutions under anaerobic conditions. That means the presence of humic acids even in anaerobic groundwater is disadvantage for the retardance of radionuclides. (authors)

  16. Gas-phase fragmentation of coordination compounds: loss of CO(2) from inorganic carbonato complexes to give metal oxide ions

    Science.gov (United States)

    Dalgaard; McKenzie

    1999-10-01

    Using electrospray ionization mass spectrometry, novel transition metal oxide coordination complex ions are proposed as the products of the collision-induced dissociation (CID) of some carbonato complex ions through the loss of a mass equivalent to CO(2). CID spectra of [(tpa)CoCO(3)](+) (tpa = tris(2-pyridylmethyl)methylamine), [(bispicMe(2)en)Fe(&mgr;-O)(&mgr;-CO(3))Fe(bispicMe(2)en)]2+ (bispicMe(2)en = N,N'-dimethyl-N,N'-bis(2-pyridylmethy)eth- ane-1, 2-diamine) and [(bpbp)Cu(2)CO(3)](+) (bpbp(-) = bis[(bis-(2-pyridylmethyl)amino)methyl]-4-tertbutylpheno-lato(1-)), show peaks assigned to the mono- and dinuclear oxide cations, [(tpa)CoO](+), [(bispicMe(2)en)(2)Fe(2)(O)(2)]2+ and [(bpbp)Cu(2)O](+), as the dominant species. These results can be likened to the reverse of typical synthetic reactions in which metal hydroxide compounds react with CO(2) to give metal carbonato compounds. Because of the lack of available protons in the gas phase, novel oxide species rather than the more common hydroxide ions are generated. These oxide ions are relevant to the highly oxidizing species proposed in oxygenation reactions catalysed by metal oxides and metalloenzymes. Copyright 1999 John Wiley & Sons, Ltd.

  17. Novel nitric oxide generating compound glycidyl nitrate enhances the therapeutic efficacy of chemotherapy and radiotherapy.

    Science.gov (United States)

    Ning, Shoucheng; Bednarski, Mark; Oronsky, Bryan; Scicinski, Jan; Knox, Susan J

    2014-05-09

    Selective release of nitric oxide (NO) in tumors could improve the tumor blood flow and drug delivery for chemotherapeutic agents and radiotherapy, thereby increasing the therapeutic index. Glycidyl nitrate (GLYN) is a NO generating small molecule, and has ability to release NO on bioactivation in SCC VII tumor cells. GLYN-induced intracellular NO generation was significantly attenuated by NO scavenger carboxy-PTIO (cPTIO) and NAC. GLYN significantly increases tumor blood flow, but has no effect on the blood flow of normal tissues in tumor-bearing mice. When used with cisplatin, GLYN significantly increased the tumor growth inhibition effect of cisplatin. GLYN also had a modest radiosensitizing effect in vitro and in vivo. GLYN was well tolerated and there were no acute toxicities found at its effective therapeutic doses in preclinical studies. These results suggest that GLYN is a promising new drug for use with chemotherapy and radiotherapy, and provide a compelling rationale for future studies of GLYN and related compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Biomimetic Catalysts for Oxidation of Veratryl Alcohol, a Lignin Model Compound

    Directory of Open Access Journals (Sweden)

    Marcelino Maneiro

    2013-03-01

    Full Text Available Kraft pulp has to be bleached to eliminate the chromophoric structures, which cause a darkening of the pulp. In Nature, an equivalent role is assumed by ligninolytic enzymes such as lignin peroxidases, manganese peroxidases and laccases. The development of low molecular weight manganese peroxidase mimics may achieve environmentally-safe bleaching catalysts for the industry. Herein we report the synthesis and characterization of six manganese(III complexes 1–6, incorporating dianionic hexadentate Schiff base ligands (H2L1-H2L4 and different anions. Complex 4, Mn2L22(H2O2(DCA2 was crystallographically characterized. Complexes 1–4 behave as more efficient mimics of peroxidase in contrast to 5–6. We have studied the use of these complexes as catalysts for the degradation of the lignin model compound veratryl alcohol. The biomimetic catalysts were used in conjunction with chlorine-free inexpensive co-oxidants as dioxygen or hydrogen peroxide. Yields up to 30% of veratryl alcohol conversion to veratraldehyde have been achieved at room temperature in presence of air flow using 0.5% of catalyst.

  19. On the valence state of Yb and Ce in transition metal intermetallic compounds

    International Nuclear Information System (INIS)

    Boer, F.R. de; Dijkman, W.H.; Mattens, W.C.M.

    1979-01-01

    In the pure state Yb is a divalent metal, similar to Ca; in alloys it can become trivalent like the majority of the rare earth metals. Using a value of 38 kJ (mol Yb) -1 for the energy difference between divalent and trivalent Yb metal and using model calculations for the heat of formation of intermetallic compounds, the authors are able to account for the existing information on the valence state of Yb in transition metal compounds. A similar analysis of compounds of Ce with transition metals shows that a model in which the 4f electron is treated as a core electron, i.e. being absent in the tetravalent modification of Ce and present as a fully localized electron in trivalent Ce, does not apply. (Auth.)

  20. Study on the solid state chemistry of ternary uranium oxides

    International Nuclear Information System (INIS)

    Yamashita, Toshiyuki

    1988-03-01

    With the increase of burnup of uranium oxide fuels, various kinds of fission products are formed, and the oxygen atoms combined with the consumed heavy atoms are freed. The solid state chemical and/or thermodynamic properties of these elements at high temperatures are complex, and have not been well clarified. In the present report, an approach was taken that the chemical interactions between UO 2 and these fission products can be regarded as causing overlapped effects of composing ternary uranium oxides, and formation reactions and phase behavior were studied for several ternary uranium oxides with typical fission product elements such as alkaline earth metals and rare earth elements. Precise determination methods for the composition of ternary uranium oxides were developed. The estimated accuracies for x and y values in M y U 1-y O 2+x were ± 0.006 and ± 0.004, respectively. The thermodynamic properties and the lattice parameters of the phases in the Ca-U-O and Pr-U-O systems were discussed in relation to the composition determined by the methods. Crystal structure analyses of cadmium monouranates were made with X-ray diffraction method. (author) 197 refs

  1. Facilitated and selective oxidation of thiophenic sulfur compounds using MoOx/Al₂O₃-H₂O₂ system under ultrasonic irradiation.

    Science.gov (United States)

    Akbari, Azam; Omidkhah, Mohammadreza; Towfighi Darian, Jafar

    2015-03-01

    Oxidative desulfurization of thiophenic sulfur compounds of benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) with MoOx/Al₂O₃ catalyst and H₂O₂ oxidant has been facilitated and more selective under ultrasonic irradiation. The catalyst with the optimum 10% of Mo loading consisted of isolated tetrahedral molybdenum oxide species based on FTIR analysis. The increase of Mo loading to 15% and 20% caused to generation of polymolybdate and MoO₃ crystals which decreased desulfurization activity. Sonication enhanced the apparent reaction rate constants in oxidation of all three sulfur compounds. An increase in the Arrhenius factor (A0), which is the total number of collisions per second, could explain the acceleration in the rate constants by sonication. The apparent activated energy (Ea) of BT oxidation was reduced from 96.6 to 75.3 kJ/mol by using ultrasound. This indicated that ultrasound had also a chemical effect, like a catalytic influence, in the acceleration of BT removal. DBT oxidation was reduced when investigated in the presence of tetralin, naphthalene and 2-methyl naphthalene as the model aromatic compounds of actual light oils. A higher selectivity toward DBT elimination in the presence of aromatics was obtained by sonication when compared with the silent treatment. Ultrasound cleaned the catalyst surface from adsorbed aromatics. On the basis of the obtained results, a mechanistic proposal for this desulfurization was explained. Oxidation was performed by nucleophilic attack of sulfur atom to the molybdenum peroxide species of tetrahedral molybdates, which was more advanced by sonication. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Removal of nitrogen compounds from gasification gas by selective catalytic or non-catalytic oxidation; Typpiyhdisteiden poisto kaasutuskaasusta selektiivisellae katalyyttisellae ja ei-katalyyttisellae hapetuksella

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-01

    In gasification reactive nitrogenous compounds are formed from fuel nitrogen, which may form nitrogen oxides in gas combustion. In fluidized bed gasification the most important nitrogenous compound is ammonia (NH{sub 3}). If ammonia could be decomposed to N{sub 2} already before combustion, the emissions if nitrogen oxides could be reduced significantly. One way of increasing the decomposition rate of NH{sub 3} could be the addition of suitable reactants to the gas, which would react with NH{sub 3} and produce N{sub 2}. The aim of this research is to create basic information, which can be used to develop a new method for removal of nitrogen compounds from gasification gas. The reactions of nitrogen compounds and added reactants are studied in reductive atmosphere in order to find conditions, in which nitrogen compounds can be oxidized selectively to N{sub 2}. The project consists of following subtasks: (1) Selective non-catalytic oxidation (SNCO): Reactions of nitrogen compounds and oxidizers in the gas phase, (2) Selective catalytic oxidation (SCO): Reactions of nitrogen compounds and oxidizers on catalytically active surfaces, (3) Kinetic modelling of experimental results in co-operation with the Combustion Chemistry Research Group of Aabo Akademi University. The most important finding has been that NH{sub 3} can be made to react selectively with the oxidizers even in the presence of large amounts of CO and H{sub 2}. Aluminium oxides were found to be the most effective materials promoting selectivity. (author)

  3. Solid-state quantum chemistry and materials science: Solid compounds of the d and f elements

    International Nuclear Information System (INIS)

    Gubanov, V.A.

    1989-01-01

    Methods have been developed for calculating electron structures for solid compounds of d and f elements and for simulating physicochemical properties of materials based on them. Cluster and band calculations are considered for refractory compounds of d metals formed with light elements. There are bond and property regularities in doping by meals and metalloids, and defects and impurities have certain effects, where studies have been made on the electron structures for disordered phases and solid solutions in relation to sublattice compositions. Quantum-chemical simulation methods have been developed for optically active and fluorescent materials based on d and f metal oxides, fluorides, and chalcogenides, and compositions have been proposed for new optically active composites and protective coatings. New approaches have been defined to the magnetic parameters of metals, alloys, and compounds; these can be applied in simulating new magnetic materials. Calculations are given on energy spectra for high-temperature oxide superconductors. There is interesting scope for quantum-chemical methods in application to many topics in materials science

  4. Optoelectronic properties of valence-state-controlled amorphous niobium oxide

    Science.gov (United States)

    Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi

    2016-06-01

    In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications.

  5. Equation of state for neutron matter in the Quark Compound Bag model

    Science.gov (United States)

    Krivoruchenko, M. I.

    2017-11-01

    The equation of state for neutron matter is derived in the framework of the Quark Compound Bag model, in which the nucleon-nucleon interaction is generated by the s-channel exchange of six-quark Jaffe-Low primitives.

  6. Densities of accessible final states for multi-step compound reactions

    International Nuclear Information System (INIS)

    Maoming De; Guo Hua

    1993-01-01

    The densities of accessible final states for calculations of multi-step compound reactions are derived. The Pauli exclusion principle is taken into account in the calculations. The results are compared with a previous author's results and the effect of the Pauli exclusion principle is investigated. (Author)

  7. Predicting spent fuel oxidation states in a tuff repository

    International Nuclear Information System (INIS)

    Einziger, R.E.; Woodley, R.E.

    1987-01-01

    Nevada Nuclear Waste Storage Investigations Project (NNWSI) is studying the suitability of the tuffaceous rocks at Yucca Mountain as a waste repository for spent fuel disposal. The oxidation state of the LWR spent fuel in the moist air environment of a tuff repository could be a significant factor in determining its leaching and dissolution characteristics. Predictions as to which oxidation states would be present are important in analyzing such a repository and thus the present study was undertaken. A set of TGA (thermogravimetric analysis) tests were conducted on well-controlled samples of irradiated PWR fuel with time and temperature as the only variables. The tests were conducted between 140 and 225 0 C for a duration up to 2200 hours. The weight gain curves were analyzed in terms of diffusion through a layer of U 3 O 7 , diffusion into the grains to form a solid solution, a simplified empirical representation of a combination of grain boundary diffusion and bulk grain oxidation. Reaction rate constants were determined in each case, but analysis of these data could not establish a definitive mechanism. 21 refs., 10 figs., 3 tabs

  8. Structural instability and ground state of the U{sub 2}Mo compound

    Energy Technology Data Exchange (ETDEWEB)

    Losada, E.L., E-mail: losada@cab.cnea.gov.ar [SIM" 3, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (Argentina); Garcés, J.E. [Gerencia de Investigación y Aplicaciones Nucleares, Comisión Nacional de Energía Atómica (Argentina)

    2015-11-15

    This work reports on the structural instability at T = 0 °K of the U{sub 2}Mo compound in the C11{sub b} structure under the distortion related to the C{sub 66} elastic constant. The electronic properties of U{sub 2}Mo such as density of states (DOS), bands and Fermi surface (FS) are studied to understand the source of the instability. The C11{sub b} structure can be interpreted as formed by parallel linear chains along the z-directions each one composed of successive U–Mo–U blocks. Hybridization due to electronic interactions inside the U–Mo–U blocks is slightly modified under the D{sub 6} distortion. The change in distance between chains modifies the U–U interaction and produces a split of f-states. The distorted structure is stabilized by a decrease in energy of the hybridized states, mainly between d-Mo and f-U states, together with the f-band split. Consequently, an induced Peierls distortion is produced in U{sub 2}Mo due to the D{sub 6} distortion. It is important to note that the results of this work indicate that the structure of the ground state of the U{sub 2}Mo compound is not the assumed C11{sub b} structure. It is suggested for the ground state a structure with hexagonal symmetry (P6 #168), ∼0.1 mRy below the energy of the recently proposed Pmmn structure. - Highlights: • Structural instability of the C11b compound due to the D6 deformation. • Induced Peierls distortion due to the D6 deformation. • Distorted structure is stabilized by hybridization and split of f-Uranium state. • P6 (#168) suggested ground state for the U{sub 2}Mo compound.

  9. Particle-hole state densities for statistical multi-step compound reactions

    International Nuclear Information System (INIS)

    Oblozinsky, P.

    1986-01-01

    An analytical relation is derived for the density of particle-hole bound states applying the equidistant-spacing approximation and the Darwin-Fowler statistical method. The Pauli exclusion principle as well as the finite depth of the potential well are taken into account. The set of densities needed for calculations of multi-step compound reactions is completed by deriving the densities of accessible final states for escape and damping. (orig.)

  10. Structural instability and ground state of the U_2Mo compound

    International Nuclear Information System (INIS)

    Losada, E.L.; Garcés, J.E.

    2015-01-01

    This work reports on the structural instability at T = 0 °K of the U_2Mo compound in the C11_b structure under the distortion related to the C_6_6 elastic constant. The electronic properties of U_2Mo such as density of states (DOS), bands and Fermi surface (FS) are studied to understand the source of the instability. The C11_b structure can be interpreted as formed by parallel linear chains along the z-directions each one composed of successive U–Mo–U blocks. Hybridization due to electronic interactions inside the U–Mo–U blocks is slightly modified under the D_6 distortion. The change in distance between chains modifies the U–U interaction and produces a split of f-states. The distorted structure is stabilized by a decrease in energy of the hybridized states, mainly between d-Mo and f-U states, together with the f-band split. Consequently, an induced Peierls distortion is produced in U_2Mo due to the D_6 distortion. It is important to note that the results of this work indicate that the structure of the ground state of the U_2Mo compound is not the assumed C11_b structure. It is suggested for the ground state a structure with hexagonal symmetry (P6 #168), ∼0.1 mRy below the energy of the recently proposed Pmmn structure. - Highlights: • Structural instability of the C11b compound due to the D6 deformation. • Induced Peierls distortion due to the D6 deformation. • Distorted structure is stabilized by hybridization and split of f-Uranium state. • P6 (#168) suggested ground state for the U_2Mo compound.

  11. Cascade γ-decay of a heavy nucleus compound state: the experimental picture

    International Nuclear Information System (INIS)

    Sukhovoj, A.M.; Khitrov, V.A.

    1997-01-01

    Peculiarities of excitation and decay (for assigned final state of excited levels of 35 nuclei from 114 Cd to 200 Hg in energy range, equal approximately to the neutron binding energy, were studied in experiments with the use of the method of summation of amplitudes of coinciding pulses from Ge-detectors. Main features of the process of cascade γ-decay of compound states (neutron resonances) of the most complex nuclei were revealed in the whole range of levels dictating this process

  12. Perturbation of pharmacologically relevant polyphenolic compounds in Moringa oleifera against photo-oxidative damages imposed by gamma radiation

    CSIR Research Space (South Africa)

    Ramabulana, T

    2016-03-01

    Full Text Available Oxidative stress is a physiological state associated with almost all biotic and abiotic stresses in plants. This phenomenon occurs due to imbalances which result from the overproduction of reactive oxygen species (ROS). Plants, however, have...

  13. Paracetamol: overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro.

    Science.gov (United States)

    Wang, Xu; Wu, Qinghua; Liu, Aimei; Anadón, Arturo; Rodríguez, José-Luis; Martínez-Larrañaga, María-Rosa; Yuan, Zonghui; Martínez, María-Aránzazu

    2017-11-01

    Paracetamol (APAP) is one of the most widely used and popular over-the-counter analgesic and antipyretic drugs in the world when used at therapeutic doses. APAP overdose can cause severe liver injury, liver necrosis and kidney damage in human beings and animals. Many studies indicate that oxidative stress is involved in the various toxicities associated with APAP, and various antioxidants were evaluated to investigate their protective roles against APAP-induced liver and kidney toxicities. To date, almost no review has addressed the APAP toxicity in relation to oxidative stress. This review updates the research conducted over the past decades into the production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and oxidative stress as a result of APAP treatments, and ultimately their correlation with the toxicity and metabolism of APAP. The metabolism of APAP involves various CYP450 enzymes, through which oxidative stress might occur, and such metabolic factors are reviewed within. The therapeutics of a variety of compounds against APAP-induced organ damage based on their anti-oxidative effects is also discussed, in order to further understand the role of oxidative stress in APAP-induced toxicity. This review will throw new light on the critical roles of oxidative stress in APAP-induced toxicity, as well as on the contradictions and blind spots that still exist in the understanding of APAP toxicity, the cellular effects in terms of organ injury and cell signaling pathways, and finally strategies to help remedy such against oxidative damage.

  14. The oxidation state of sulfur in apatite: A new oxybarometer?

    Science.gov (United States)

    Fiege, A.; Konecke, B.; Kim, Y.; Simon, A. C.; Becker, U.; Parat, F.

    2016-12-01

    Oxygen fugacity (fO2) of magmatic and hydrothermal systems influences, for instance, crystallization and degassing processes as well as metal solubilities in melts and fluids. Apatite is a ubiquitous mineral in magmatic and hydrothermal environments that can record and preserve volatile zonation. It can contain several thousand μg/g of the redox sensitive element sulfur (S), making S-in-apatite a potential fO2 sensor. Despite the polyvalent properties of S (e.g., S2-, S4+, S6+), the oxidation state and incorporation mechanisms of S in the apatite structure are poorly understood. In this study, the oxidation state of S-in-apatite as a function of fO2 is investigated using X-ray absorption near-edge structures (XANES) spectroscopy at the S K-edge. Apatites crystallized from lamproitic melts at 1000°C, 300 MPa and over a broad range of fO2 and sulfur fugacities (fS2) were measured. Peaks corresponding to S6+ ( 2482 eV), S4+ ( 2478 eV) and S2- ( 2470 eV) were identified in apatite. The integrated S6+/STotal (STotal = S6+ + S4+ + S2-) peak area ratios show a distinct positive correlation with fO2, increasing from 0.17 at FMQ+0 to 0.96 at FMQ+3. Ab-initio calculations were performed to further understand the energetics and geometry of incorporation of S6+, S4+ and S2- into the apatite (F-, Cl-, OH-) end-members. The results confirm that apatite can contain three different oxidations states of S (S6+, S4+, S2-) as a function of fO2. This makes apatite probably the first geologically relevant mineral to incorporate reduced (S2-), intermediate (S4+), and oxidized (S6+) S in variable proportions. We emphasize that the strong dependence of the S oxidation state in apatite as a function of fO2 is also coupled with changing S content of apatite and co-existing melt (i.e., with changing fS2), resulting in a complex correlation between [1] apatite-melt (or fluid) partitioning, [2] redox conditions and [3] the melt and/or fluid composition, making the application of previously

  15. Plasmachemical synthesis and evaluation of the thermal conductivity of metal-oxide compounds "Molybdenum-uranium dioxide"

    Science.gov (United States)

    Kotelnikova, Alexandra A.; Karengin, Alexander G.; Mendoza, Orlando

    2018-03-01

    The article represents possibility to apply oxidative and reducing plasma for plasma-chemical synthesis of metal-oxide compounds «Mo‒UO2» from water-salt mixtures «molybdic acid‒uranyl nitrate» and «molybdic acid‒ uranyl acetate». The composition of water-salt mixture was calculated and the conditions ensuring plasma-chemical synthesis of «Mo‒UO2» compounds were determined. Calculations were carried out at atmospheric pressure over a wide range of temperatures (300-4000 K), with the use of various plasma coolants (air, hydrogen). The heat conductivity coefficients of metal-oxide compounds «Mo‒UO2» consisting of continuous component (molybdenum matrix) are calculated. Inclusions from ceramics in the form of uranium dioxide were ordered in the matrix. Particular attention is paid to methods for calculating the coefficients of thermal conductivity of these compounds with the use of different models. Calculated results were compared with the experimental data.

  16. Effects of Post-Pyrolysis Air Oxidation of Biomass Chars on Adsorption of Neutral and Ionizable Compounds.

    Science.gov (United States)

    Xiao, Feng; Pignatello, Joseph J

    2016-06-21

    This study was conducted to understand the effects of thermal air oxidation of biomass chars experienced during formation or production on their adsorptive properties toward various compounds, including five neutral nonpolar and polar compounds and seven weak acids and bases (pKa = 3-5.2) selected from among industrial chemicals and the triazine and phenoxyacetic acid herbicide classes. Post-pyrolysis air oxidation (PPAO) at 400 °C of anoxically prepared wood and pecan shell chars for up to 40 min enhanced the mass-normalized adsorption at pH ∼ 7.4 of all test compounds, especially the weak acids and bases, by up to 100-fold. Both general and specific effects were identified. The general effect results from "reaming" of pores by the oxidative removal of pore wall matter and/or tarry deposits generated during the pyrolysis step. Reaming creates new surface area and enlarges nanopores, which helps relieve steric hindrance to adsorption. The specific effect results from creation of new acidic functionality that provides sites for the formation of very strong, charge-assisted hydrogen bonds (CAHB) with solutes having comparable pKa. The CAHB hypothesis was supported by competition experiments and the finding that weak acid anion adsorption increased with surface carboxyl content, despite electrostatic repulsion from the growing negative charge. The results provide insight into the effects of air oxidation on pollutant retention.

  17. Characterization of Interface State in Silicon Carbide Metal Oxide Semiconductor Capacitors

    Science.gov (United States)

    Kao, Wei-Chieh

    Silicon carbide (SiC) has always been considered as an excellent material for high temperature and high power devices. Since SiC is the only compound semiconductor whose native oxide is silicon dioxide (SiO2), it puts SiC in a unique position. Although SiC metal oxide semiconductor (MOS) technology has made significant progress in recent years, there are still a number of issues to be overcome before more commercial SiC devices can enter the market. The prevailing issues surrounding SiC MOSFET devices are the low channel mobility, the low quality of the oxide layer and the high interface state density at the SiC/SiO2 interface. Consequently, there is a need for research to be performed in order to have a better understanding of the factors causing the poor SiC/SiO2 interface properties. In this work, we investigated the generation lifetime in SiC materials by using the pulsed metal oxide semiconductor (MOS) capacitor method and measured the interface state density distribution at the SiC/SiO2 interface by using the conductance measurement and the high-low frequency capacitance technique. These measurement techniques have been performed on n-type and p-type SiC MOS capacitors. In the course of our investigation, we observed fast interface states at semiconductor-dielectric interfaces in SiC MOS capacitors that underwent three different interface passivation processes, such states were detected in the nitrided samples but not observed in PSG-passivated samples. This result indicate that the lack of fast states at PSG-passivated interface is one of the main reasons for higher channel mobility in PSG MOSFETs. In addition, the effect of mobile ions in the oxide on the response time of interface states has been investigated. In the last chapter we propose additional methods of investigation that can help elucidate the origin of the particular interface states, enabling a more complete understanding of the SiC/SiO2 material system.

  18. The state of itinerant charge carriers and thermoelectric effects in correlated oxide metals

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.; Abdus Salam International Centre for Theoretical Physics, Trieste

    2000-10-01

    We analyzed the physics of transport processes and, in particular, the thermoelectric power in the mercurocuprates and other cuprates to get a better insight into the state of the carriers in these compounds. The actual problems related to the complicated mechanisms of carriers scattering above Tc are discussed. The experimental studies of thermoelectric power showed that the state of carriers in cuprates can be influenced by many complicated scattering processes, however the underlying mechanism for the linear decreasing of the TEP with increasing the temperature for most hole-doped HTSC cuprates is still not yet known. The actual problems related to the complicated mechanisms of carriers scattering above Tc are discussed for a few models of charge transport. A comparison between the analytical and experimental results is also made. It is concluded that the crucial factor for the understanding of the transport properties of correlated oxide metals is the nature of itinerant charge carriers, i.e. renormalized quasiparticles. (author)

  19. Reactivity Of Radiolytically-Produced Nitrogen Oxide Radicals Toward Aromatic Compounds

    International Nuclear Information System (INIS)

    Elias, Gracy

    2010-01-01

    The nitration of aromatic compounds in the gas phase is an important source of toxic, carcinogenic, and mutagenic species in the atmosphere and has therefore received much attention. Gas phase nitration typically occurs by free-radical reactions. Condensed-phase free-radical reactions, and in particular nitrite and nitrate radical chemistry, have been studied far less. These condensed-phase free-radical reactions may be relevant in fog and cloud water in polluted areas, in urban aerosols with low pH, in water treatment using advanced oxidation processes such as electron beam (e-beam) irradiation, and in nuclear waste treatment applications. This study discusses research toward an improved understanding of nitration of aromatic compounds in the condensed phase under conditions conducive to free-radical formation. The results are of benefit in several areas of environmental chemistry, in particular nuclear waste treatment applications. The nitration reactions of anisole and toluene as model compounds were investigated in γ-irradiated acidic nitrate, neutral nitrate, and neutral nitrite solutions. Cs-7SB, 1-(2,2,3,3,-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol, is used as a solvent modifier in the fission product extraction (FPEX) formulation for the extraction of Cs and Sr from dissolved nuclear fuel. The formulation also contains the ligands calix(4)arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6) for Cs extraction and 4,4(prime),(5(prime))-di-(t-butyldicyclohexano)-18-crown-6 (DtBuCH18C6) for Sr extraction, all in Isopar L, a branched-chain alkane diluent. FPEX solvent has favorable extraction efficiency for Cs and Sr from acidic solution and was investigated at the Idaho National Laboratory (INL) for changes in extraction efficiency after γ-irradiation. Extraction efficiency decreased after irradiation. The decrease in solvent extraction efficiency was identical for Cs and Sr, even though they are complexed by different ligands. This suggests that

  20. Formation of chemical compounds from irradiated mixtures of aromatic hydrocarbons and nitrogen oxides

    NARCIS (Netherlands)

    Besemer, A.C.

    1982-01-01

    The paper describes the analysis of products of the photochemical degradation of toluene and toluene-14C in smog chamber experiments. Compounds identified included methylglyoxal, possibly the recently postulated butenedial and other carbonyl compounds. The main product of photochemical degradation

  1. A comparative study of Cu, Ag and Au doped CeO{sub 2} in the total oxidation of volatile organic compounds (VOCs)

    Energy Technology Data Exchange (ETDEWEB)

    Aboukaïs, Antoine, E-mail: aboukais@univ-littoral.fr [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France); Skaf, Mira, E-mail: miraskaf@hotmail.com [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France); Department of Chemistry, Faculty of Sciences, University of Balamand, P.O. Box 100, Deir El Balamand, Kelhat-Tripoli (Lebanon); Hany, Sara, E-mail: sarahani@hotmail.com [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France); Cousin, Renaud, E-mail: Renaud.Cousin@univ-littoral.fr [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France); Aouad, Samer, E-mail: Samer.Aouad@balamand.edu.lb [Department of Chemistry, Faculty of Sciences, University of Balamand, P.O. Box 100, Deir El Balamand, Kelhat-Tripoli (Lebanon); Labaki, Madona, E-mail: mlabaki@ul.edu.lb [Laboratory of Physical Chemistry of Materials (LCPM)/PR2N, Faculty of Sciences, Lebanese University, Fanar, PO Box 90656, Jdeidet El Metn (Lebanon); Abi-Aad, Edmond, E-mail: abiaad@univ-littoral.fr [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France)

    2016-07-01

    Total oxidation of two Volatile Organic Compounds (VOCs), propylene and toluene, was investigated over M/CeO{sub 2} catalysts, where M is a metal from IB group (i.e. Au, Ag, Cu), prepared by two different methods: the conventional wet impregnation and the deposition-precipitation. The catalysts have been characterized by means of total surface area (BET), X-ray diffraction (XRD), electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), diffuse reflectance ultra-violet-visible spectroscopy (DR-UV/Vis), and temperature-programmed reduction (TPR), in order to explain the differences observed in their catalytic activity towards the studied reactions. By comparing the two different preparation methods, the presence of metal in high oxidation state for gold and silver, and the presence of clusters for copper were the main factors responsible for the high catalytic activity. This latter was also found to be related, when comparing the different IB metals, to the values of the oxidation/reduction potential of the redox couples of the different metals. - Highlights: • IB metals (Au, Ag and Cu) were supported on ceria (CeO{sub 2}) by two different methods. • The solids were tested as catalysts for total oxidation of propylene and toluene. • The deposition-precipitation is better for Au whereas for Ag and Cu it is the impregnation. • High oxidation states of gold and silver and clusters of copper enhanced catalytic behavior. • Catalytic activity is linked to the oxidation/reduction potential of the redox IB couples.

  2. A comparative study of Cu, Ag and Au doped CeO_2 in the total oxidation of volatile organic compounds (VOCs)

    International Nuclear Information System (INIS)

    Aboukaïs, Antoine; Skaf, Mira; Hany, Sara; Cousin, Renaud; Aouad, Samer; Labaki, Madona; Abi-Aad, Edmond

    2016-01-01

    Total oxidation of two Volatile Organic Compounds (VOCs), propylene and toluene, was investigated over M/CeO_2 catalysts, where M is a metal from IB group (i.e. Au, Ag, Cu), prepared by two different methods: the conventional wet impregnation and the deposition-precipitation. The catalysts have been characterized by means of total surface area (BET), X-ray diffraction (XRD), electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), diffuse reflectance ultra-violet-visible spectroscopy (DR-UV/Vis), and temperature-programmed reduction (TPR), in order to explain the differences observed in their catalytic activity towards the studied reactions. By comparing the two different preparation methods, the presence of metal in high oxidation state for gold and silver, and the presence of clusters for copper were the main factors responsible for the high catalytic activity. This latter was also found to be related, when comparing the different IB metals, to the values of the oxidation/reduction potential of the redox couples of the different metals. - Highlights: • IB metals (Au, Ag and Cu) were supported on ceria (CeO_2) by two different methods. • The solids were tested as catalysts for total oxidation of propylene and toluene. • The deposition-precipitation is better for Au whereas for Ag and Cu it is the impregnation. • High oxidation states of gold and silver and clusters of copper enhanced catalytic behavior. • Catalytic activity is linked to the oxidation/reduction potential of the redox IB couples.

  3. Mixing-assisted oxidative desulfurization of model sulfur compounds using polyoxometalate/H2O2 catalytic system

    OpenAIRE

    Angelo Earvin Sy Choi; Susan Roces; Nathaniel Dugos; Meng-Wei Wan

    2016-01-01

    Desulfurization of fossil fuel derived oil is needed in order to comply with environmental regulations. Dibenzothiophene and benzothiophene are among the predominant sulfur compound present in raw diesel oil. In this study, mixing-assisted oxidative desulfurization of dibenzothiophene and benzothiophene were carried out using polyoxometalate/H2O2 systems and a phase transfer agent. The effects of reaction time (2–30 min) and temperature (30–70 °C) were examined in the oxidation of model sulfu...

  4. Microwave-Accelerated Iodination of Some Aromatic Amines, Using Urea-Hydrogen Peroxide Addition Compound (UHP as the Oxidant

    Directory of Open Access Journals (Sweden)

    Lech Skulski

    2002-12-01

    Full Text Available A fast and simple method for the oxidative iodination of some aromatic amines, under microwave irradiation, is reported, using diiodine and the the strongly Hbonded urea-hydrogen peroxide addition compound (H2NCONH2···H2O2, UHP as the oxidant. The reactions were carried out in boiling CHCl3 under a reflux condenser to afford, within 10 minutes, the purified monoiodinated products in 40-80% yields.

  5. Simple ortho- and para-hydroquinones as compounds neuroprotective against oxidative stress in a manner associated with specific transcriptional activation

    International Nuclear Information System (INIS)

    Satoh, Takumi; Saitoh, Sachie; Hosaka, Manami; Kosaka, Kunio

    2009-01-01

    Electrophilic compounds protect neurons through the activation of the Keap1/Nrf2 pathway and the induction of phase-2 enzymes [T. Satoh, S.A. Lipton, Redox regulation of neuronal survival by electrophilic compounds, Trends Neurosci. 30 (2007) 38-45; T. Satoh, S. Okamoto, J. Cui, Y. Watanabe, K. Furuta, M. Suzuki, K. Tohyama, S.A. Lipton, Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophilic phase II inducers. Proc. Natl. Acad. Sci. USA 103 (2006) 768-773]. Hydroquinone-type electrophilic compounds such as tert-butyl hydroquinone (TBHQ) and carnosic acid (CA) have attracted special attention, because the oxidative conversion of 'hydroquinone' to 'quinone' is essential for the transcriptional activation of the above-mentioned enzymes [T. Satoh, K. Kosaka, K. Itoh, A. Kobayashi, M. Yamamoto, Y. Shimojo, C. Kitajima, J. Cui, J. Kamins, S. Okamoto, T. Shirasawa, S.A. Lipton, Carnosic acid, a catechol-type electrophilic compound, protect neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of specific cysteine, J. Neurochem. 104 (2008) 1161-1131; A.D. Kraft, D.A. Johnson, J.A. Johnson, Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult, J. Neurosci. 24 (2004) 1101-1112]. In the present study, we examined the relationship between electrophilicity and the protective effects afforded by electrophilic compounds. Electrophilicity was assessed in terms of the ability of a compound to bind to a cysteine on bovine serum albumin, by which we found that neuroprotective hydroquinones [TBHQ (para-) and CA (ortho-)] had distinctive patterns of cysteine binding compared with other electrophilic compounds. Further, we found that isomers of simple ortho- and para-hydroquinones such as 2-methylhydroquinone (para-) and 4-methyl-catechol (ortho-) [not in abstract] had

  6. Intramolecular charge separation in spirobifluorene-based donor–acceptor compounds adsorbed on Au and indium tin oxide electrodes

    International Nuclear Information System (INIS)

    Heredia, Daniel; Otero, Luis; Gervaldo, Miguel; Fungo, Fernando; Dittrich, Thomas; Lin, Chih-Yen; Chi, Liang-Chen; Fang, Fu-Chuan; Wong, Ken-Tsung

    2013-01-01

    Surface photovoltage (SPV) measurements were performed with a Kelvin-probe in spirobifluorene-based donor (diphenylamine)–acceptor (dicyano or cyanoacrylic acid moieties) compounds adsorbed from highly diluted solutions onto Au and indium tin oxide electrode surfaces. Strong intramolecular charge separation (negative SPV signals up to more than 0.1 V) due to directed molecule adsorption was observed only for spirobifluorene donor–acceptor compounds with carboxylic acid moiety. SPV signals and onset energies of electronic transitions depended on ambience conditions. - Highlights: ► Fluorene donor–acceptor derivatives were adsorbed at Au and indium tin oxide. ► Surface photovoltage measurements were performed with a Kelvin-probe. ► Strong intra-molecular charge separation was observed. ► SPV signals depended on ambience conditions

  7. Evaluation of the kinetic oxidation of aqueous volatile organic compounds by permanganate

    NARCIS (Netherlands)

    Mahmoodlu, M.G.; Hassanizadeh, S.M.; Hartog, Niels

    2014-01-01

    The use of permanganate solutions for in-situ chemical oxidation (ISCO) is a well-established groundwater remediation technology, particularly for targeting chlorinated ethenes. The kinetics of oxidation reactions is an important ISCO remediation design aspect that affects the efficiency and oxidant

  8. Modeling the oxidation of ebselen and other organoselenium compounds using explicit solvent networks.

    Science.gov (United States)

    Bayse, Craig A; Antony, Sonia

    2009-05-14

    The oxidation of dimethylselenide, dimethyldiselenide, S-methylselenenyl-methylmercaptan, and truncated and full models of ebselen (N-phenyl-1,2-benzisoselenazol-3(2H)-one) by methyl hydrogen peroxide has been modeled using density functional theory (DFT) and solvent-assisted proton exchange (SAPE), a method of microsolvation that employs explicit solvent networks to facilitate proton transfer reactions. The calculated activation barriers for these systems were substantially lower in energy (DeltaG(double dagger) + DeltaG(solv) = 13 to 26 kcal/mol) than models that neglect the participation of solvent in proton exchange. The comparison of two- and three-water SAPE networks showed a reduction in the strain in the model system but without a substantial reduction in the activation barriers. Truncating the ebselen model to N-methylisoselenazol-3(2H)-one gave a larger activation barrier than ebselen or N-methyl-1,2-benzisoselenazol-3(2H)-one but provided an efficient means of determining an initial guess for larger transition-state models. The similar barriers obtained for ebselen and Me(2)Se(2) (DeltaG(double dagger) + DeltaG(solv) = 20.65 and 20.40 kcal/mol, respectively) were consistent with experimentally determined rate constants. The activation barrier for MeSeSMe (DeltaG(double dagger) + DeltaG(solv) = 21.25 kcal/mol) was similar to that of ebselen and Me(2)Se(2) despite its significantly lower experimental rate for oxidation of an ebselen selenenyl sulfide by hydrogen peroxide relative to ebselen and ebselen diselenide. The disparity is attributed to intramolecular Se-O interactions, which decrease the nucleophilicity of the selenium center of the selenenyl sulfide.

  9. Catalytic Decomposition of Nitrous Oxide over Catalysts Prepared from Co/Mg-Mn/Al Hydrotalcite-like Compounds

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Jirátová, Květa; Kovanda, F.; Pacultová, K.; Lacný, Z.; Mikulová, Zuzana

    2005-01-01

    Roč. 60, 3-4 (2005), s. 289-297 ISSN 0926-3373 R&D Projects: GA ČR(CZ) GA106/05/0366; GA ČR(CZ) GA104/04/2116; GA ČR(CZ) GA106/02/0523 Institutional research plan: CEZ:AV0Z40720504 Keywords : decomposition of nitrous oxide * hydrotalcite-like compounds Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.809, year: 2005

  10. Study by vibration spectrometry of addition compounds of boron fluoride with some alkyl oxides, sulphides and selenides

    International Nuclear Information System (INIS)

    Le Calve, Jacques

    1966-01-01

    This research thesis reports the study of the vibration spectrum of some addition compounds of boron fluoride with alkyl oxides, sulphides and selenides. The objective was first the assignment of spectra, and then the study of the influence of the formation of a coordination bound on boron fluoride vibrations and on that of its donor. The author also tried to define correlations between spectrum and structures, and studied the effects of physical status and solvents [fr

  11. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation.

    Science.gov (United States)

    Criquet, Justine; Rodriguez, Eva M; Allard, Sebastien; Wellauer, Sven; Salhi, Elisabeth; Joll, Cynthia A; von Gunten, Urs

    2015-11-15

    Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution

  12. Proteomic indicators of oxidation and hydration state in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Dick

    2016-07-01

    Full Text Available New integrative approaches are needed to harness the potential of rapidly growing datasets of protein expression and microbial community composition in colorectal cancer. Chemical and thermodynamic models offer theoretical tools to describe populations of biomacromolecules and their relative potential for formation in different microenvironmental conditions. The average oxidation state of carbon (ZC can be calculated as an elemental ratio from the chemical formulas of proteins, and water demand per residue ( ${\\overline{n}}_{{\\mathrm{H}}_{2}\\mathrm{O}}$ n ¯ H 2 O is computed by writing the overall formation reactions of proteins from basis species. Using results reported in proteomic studies of clinical samples, many datasets exhibit higher mean ZC or ${\\overline{n}}_{{\\mathrm{H}}_{2}\\mathrm{O}}$ n ¯ H 2 O of proteins in carcinoma or adenoma compared to normal tissue. In contrast, average protein compositions in bacterial genomes often have lower ZC for bacteria enriched in fecal samples from cancer patients compared to healthy donors. In thermodynamic calculations, the potential for formation of the cancer-related proteins is energetically favored by changes in the chemical activity of H2O and fugacity of O2 that reflect the compositional differences. The compositional analysis suggests that a systematic change in chemical composition is an essential feature of cancer proteomes, and the thermodynamic descriptions show that the observed proteomic transformations in host tissue could be promoted by relatively high microenvironmental oxidation and hydration states.

  13. Composition and oxidation state of sulfur in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    A. F. Longo

    2016-10-01

    Full Text Available The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS and X-ray fluorescence (XRF microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  14. Kinetics of biological methane oxidation in the presence of non-methane organic compounds in landfill bio-covers

    International Nuclear Information System (INIS)

    Albanna, Muna; Warith, Mostafa; Fernandes, Leta

    2010-01-01

    In this experimental program, the effects of non-methane organic compounds (NMOCs) on the biological methane (CH 4 ) oxidation process were examined. The investigation was performed on compost experiments incubated with CH 4 and selected NMOCs under different environmental conditions. The selected NMOCs had different concentrations and their effects were tested as single compounds and mixtures of compounds. The results from all experimental sets showed a decrease in CH 4 oxidation capacity of the landfill bio-cover with the increase in NMOCs concentrations. For example, in the experiment using compost with 100% moisture content at 35 deg. C without any NMOCs the V max value was 35.0 μg CH 4 h -1 g wetwt -1 . This value was reduced to 19.1 μg CH 4 h -1 g wetwt -1 when mixed NMOCs were present in the batch reactors under the same environmental conditions. The experimental oxidation rates of CH 4 in the presence of single and mixed NMOCs were modeled using the uncompetitive inhibition model and kinetic parameters, including the dissociation constants, were obtained. Additionally, the degradation rates of the NMOCs and co-metabolic abilities of methanotrophic bacteria were estimated.

  15. Quantitative analysis by GC-MS/MS of 18 aroma compounds related to oxidative off-flavor in wines.

    Science.gov (United States)

    Mayr, Christine M; Capone, Dimitra L; Pardon, Kevin H; Black, Cory A; Pomeroy, Damian; Francis, I Leigh

    2015-04-08

    A quantitation method for 18 aroma compounds reported to contribute to "oxidative" flavor in wines was developed. The method allows quantitation of the (E)-2-alkenals ((E)-2-hexenal, (E)-2-heptenal, (E)-2-octenal, and (E)-2-nonenal), various Strecker aldehydes (methional, 2-phenylacetaldehyde, 3-methylbutanal, and 2-methylpropanal), aldehydes (furfural, 5-methylfurfural, hexanal, and benzaldehyde), furans (sotolon, furaneol, and homofuraneol), as well as alcohols (methionol, eugenol, and maltol) in the same analysis. The aldehydes were determined after derivatization directly in the wine with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride; the formed oximes along with the underivatized aroma compounds were isolated by solid-phase extraction and analyzed by means of GC-MS/MS. The method was used to investigate the effect of different closures (synthetic closures, natural corks, and screw cap) on the formation of oxidation-related compounds in 14 year old white wine. Results showed a significant increase in the concentration of some of the monitored compounds in the wine, particularly methional, 2-phenylacetaldehyde, and 3-methylbutanal.

  16. Oxidation of (Cr,Ti)_2AlC Compounds at 700-1000 °C for One Year in Air

    International Nuclear Information System (INIS)

    Lee, Jae Chun; Won, Sung Bin; Lee, Dong Bok; Park, Sang Whan

    2013-01-01

    (Cr,Ti)_2AlC compounds were synthesized by hot pressing, and oxidized at 700, 850, and 1000 °C in air for up to one year. They consisted of Ti-incorporated Cr_2AlC phase, Ti-rich phase, and Cr-rich phase. The formed scales divided into a uniform oxide layer and oxide nodules. The uniform oxide layer consisted primarily of a thin Al_2O_3 scale. The oxide nodules that originated from the Ti-rich phase consisted of TiO_2, which grew by both the outward diffusion of Ti"4+ ions and inward diffusion of O"2‒ ions. Chromium did not appreciably enter the oxide scale. Instead, it existed in the Ti-incorporated Cr_7C_3 sublayer after oxidation. (Cr,Ti)_2AlC compounds had good oxidation resistance, because of formation of the Al_2O_3 barrier layer.

  17. Example of uranium(IV) insertion within a macrocyclic crown ether with coexistence of the metal in two oxidation states

    Energy Technology Data Exchange (ETDEWEB)

    Bombieri, G; De Paoli, G [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi; Immirzi, A

    1978-01-01

    Reaction of UCl/sub 4/ with 18-crown-6 in tetrahydrofuran yields (UCl/sub 4/)/sub 3/ (18-crown-6)/sub 2/ which on recrystallization in nitromethane, gives a partially oxidized and hydrolyzed product whose structure has been investigated by X-ray diffraction. The compound crystallizes in the orthorhombic system. The cell contains eight UCl/sub 3//sup +/ cations each inserted within a crown molecule and four (UO/sub 2/Cl/sub 3/(OH)(H/sub 2/O))/sup 2 -/anions having a pentagonal bipyramidal structure. Four solvated nitromethane molecules are also present. The compound represents one of the very few examples in which uranium exists in two oxidation states, and the first example in which its insertion within a crown macrocycle has been proved by an X-ray diffraction study.

  18. Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States.

    Science.gov (United States)

    Halvorsen, Bente L; Carlsen, Monica H; Phillips, Katherine M; Bøhn, Siv K; Holte, Kari; Jacobs, David R; Blomhoff, Rune

    2006-07-01

    Supplements containing ascorbic acid, alpha-tocopherol, or beta-carotene do not protect against oxidative stress-related diseases in most randomized intervention trials. We suggest that other redox-active phytochemicals may be more effective and that a combination of different redox-active compounds (ie, antioxidants or reductants) may be needed for proper protection against oxidative damage. We aimed to generate a ranked food table with values for total content of redox-active compounds to test this alternative antioxidant hypothesis. An assay that measures the total concentration of redox-active compounds above a certain cutoff reduction potential was used to analyze 1113 food samples obtained from the US Department of Agriculture National Food and Nutrient Analysis Program. Large variations in the content of antioxidants were observed in different foods and food categories. The food groups spices and herbs, nuts and seeds, berries, and fruit and vegetables all contained foods with very high antioxidant contents. Most food categories also contained products almost devoid of antioxidants. Of the 50 food products highest in antioxidant concentrations, 13 were spices, 8 were in the fruit and vegetables category, 5 were berries, 5 were chocolate-based, 5 were breakfast cereals, and 4 were nuts or seeds. On the basis of typical serving sizes, blackberries, walnuts, strawberries, artichokes, cranberries, brewed coffee, raspberries, pecans, blueberries, ground cloves, grape juice, and unsweetened baking chocolate were at the top of the ranked list. This ranked antioxidant food table provides a useful tool for investigations into the possible health benefit of dietary antioxidants.

  19. The adsorption and reaction of halogenated volatile organic compounds (VOC's) on metal oxides. 1998 annual progress report

    International Nuclear Information System (INIS)

    Goodman, D.W.; Haw, J.F.; Lunsford, J.

    1998-01-01

    'The goal of the research is to elucidate the properties of the materials responsible for the activation of halocarbons and the nature of the intermediates formed in the dissociative adsorption of this class of compounds. This information is essential for interpreting and predicting stoichiometric and catalytic pathways for the safe destruction of halocarbon pollutants. The specific objectives are: (1) to study the adsorption and reactivity of chloromethanes and chloroethanes on metal oxides; (2) to identify the reaction intermediates using spectroscopic methods; and (3) to develop kinetic models for the reaction of these halocarbons with oxide surfaces. This report summarizes work after 20 months of a 36-month project. Emphasis has been placed understanding the surfaces phases, as well as the bulk phases that are present during the reactions of chlorinated hydrocarbons with strongly basic metal oxides. Most of the research has been carried out with carbon tetrachloride.'

  20. Equation of states and phonons at high pressure of intermediate valence compound TmTe

    International Nuclear Information System (INIS)

    Jha, Prafulla K.; Sanyal, Sankar P.

    1997-01-01

    The study of equation of states and pressure dependence of the phonon frequencies of the compound TmTe have been performed by using a simple interatomic potential approach in the frame work of rigid ion model. The compressibility study confirms that below 2 GPa the valence of the Tm is 2+ while there is a valence transition from Tm 2+ to Tm 3+ above 2 GPa. The phonon frequencies of TmTe increases as pressure is increased. (author)

  1. Oxidation states of Fe and Ti in blue sapphire

    International Nuclear Information System (INIS)

    Wongrawang, P; Wongkokua, W; Monarumit, N; Thammajak, N; Wathanakul, P

    2016-01-01

    X-ray absorption near-edge spectroscopy (XANES) can be used to study the oxidation state of a dilute system such as transition metal defects in solid-state samples. In blue sapphire, Fe and Ti are defects that cause the blue color. Inter-valence charge transfer (IVCT) between Fe 2+ and Ti 4+ has been proposed to describe the optical color’s origin. However, the existence of divalent iron cations has not been thoroughly investigated. Fluorescent XANES is therefore employed to study K-edge absorptions of Fe and Ti cations in various blue sapphire samples including natural, synthetic, diffused and heat-treated sapphires. All the samples showed an Fe absorption edge at 7124 eV, corresponding to the Fe 3+ state; and Ti at 4984 eV, corresponding to Ti 4+ . From these results, we propose Fe 3+ -Ti 4+ mixed acceptor states located at 1.75 eV and 2.14 eV above the valence band of corundum, that correspond to 710 nm and 580 nm bands of UV–vis absorption spectra, to describe the cause of the color of blue sapphire. (paper)

  2. Iron based superconductors and related compounds synthesized by solid state metathesis and high temperature reactions

    International Nuclear Information System (INIS)

    Frankovsky, Rainer

    2013-01-01

    The results of this thesis can be divided into three major topics, which can also be seen as different approaches of solid state chemistry to reveal interesting features of known and unknown compounds and to develop alternative synthesis routes. Firstly, known compounds with related structural motifs to the superconducting iron-arsenides were investigated regarding their structural and physical properties. In case of La 3 Pd 4 Ge 4 the influence of Fe doping on the properties was studied, whereas in the series ZrMAs (M=Ti,V) the physical properties have not yet been reported at all and were investigated for the first time. Secondly, an alternative synthesis route has been developed for the synthesis of superconducting LaFeAsO 1-x F x . This solid state metathesis reaction distinctly increased the quality of the samples compared to conventionally prepared products. Furthermore, the reaction pathway was investigated and clarified, which helps to understand the processes during high temperature solid state metathesis reactions in general. Thirdly, this alternative synthesis route was expanded to other systems and new compounds like co-substituted LaFe 1-x Mn x AsO 1-y F y were prepared and thoroughly investigated. This led to a complex study of the interplay of magnetism, electronic and structural conditions and the occurrence of superconducting properties. The investigation and understanding of such complex coherences will probably be decisive for the further understanding of the superconducting mechanism in iron based superconductors.

  3. Formation of chemical compounds from irradiated mixtures of aromatic hydrocarbons and nitrogen oxides

    International Nuclear Information System (INIS)

    Besemer, A.C.

    1982-01-01

    The analysis of products of the photochemical degradation of toluene and toluene- 14 C in smog chamber experiments is described. Compounds identified included methylglyoxal, possibly the recently postulated butenedial and other carbonyl compounds. The main product of photochemical degradation of methylglyoxal appeared to be acetaldehyde. (author)

  4. Methane oxidation and degradation of organic compounds in landfill soil covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2002-01-01

    High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero-order kin......High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero...

  5. Determination of the oxidation states of metals and metalloids: An analytical review

    Science.gov (United States)

    Vodyanitskii, Yu. N.

    2013-12-01

    The hazard of many heavy metals/metalloids in the soil depends on their oxidation state. The problem of determining the oxidation state has been solved due to the use of synchrotron radiation methods with the analysis of the X-ray absorption near-edge structure (XANES). The determination of the oxidation state is of special importance for some hazardous heavy elements (arsenic, antimony, selenium, chromium, uranium, and vanadium). The mobility and hazard of each of these elements depend on its oxidation state. The mobilities are higher at lower oxidation states of As, Cr, V, and Se and at higher oxidation states of Sb and U. The determination of the oxidation state of arsenic has allowed revealing its fixation features in the rhizosphere of hydrophytes. The known oxidation states of chromium and uranium are used for the retention of these elements on geochemical barriers. Different oxidation states have been established for vanadium displacing iron in goethite. The determination of the oxidation state of manganese in the rhizosphere and the photosynthetic apparatus of plants is of special importance for agricultural chemists.

  6. Application of advanced oxidation process by electron beam irradiation in the organic compounds degradation present in industrial effluents

    International Nuclear Information System (INIS)

    Duarte, Celina Lopes

    1999-01-01

    The inefficacy of conventional methods to destroy toxic organic compounds present in industrial effluent has taken the search for new technologies of treatment. he water irradiation is the most efficient process to generate radicals that mineralise these compounds. A study to evaluate the Advanced Oxidation Process by electron beam irradiation to treat industrial effluent with high toxic organic compounds concentration was carried out. Experiments were conducted using a Radiation Dynamics Electron Beam Accelerator with 1,5 MeV energy and 37 power. The effluent samples from a big industrial complex were irradiated using the IPEN's Liquid Effluent Irradiation Pilot Plant and the effluent samples from five steps of a Governmental Wastewater Treatment Plant from SABESP - ETE Suzano (industrial Receiver Unit, Coarse Bar Screens, Medium Bar Screens, Primary Sedimentation and Final Effluent), were irradiated in a batch system. The electron beam irradiation showed be efficient on destroying the organic compounds delivered in these effluents mainly chloroform, dichloroethane, methyl isobutyl ketone, benzene, toluene, xylene, phenol and in the decoloring of dyes present in some samples. To remove 90% of the most organic compounds was necessary a 20 kGy dose for industry's ETE, 20 kGy for IRU, CBS and MBS and 10 kGy to 20 kGy for PS and FE. (author)

  7. The Impact and Oxidation Survival of Selected Meteoritic Compounds: Signatures of Asteroid Organic Material on Planetary Surfaces

    Science.gov (United States)

    Cooper, George; Horz, Fred; Oleary, Alanna; Chang, Sherwood

    2013-01-01

    Polar, non-volatile organic compounds may be present on the surfaces (or near surfaces) of multiple Solar System bodies. If found, by current or future missions, it would be desirable to determine the origin(s) of such compounds, e.g., asteroidal or in situ. To test the possible survival of meteoritic compounds both during impacts with planetary surfaces and under subsequent (possibly) harsh ambient conditions, we subjected known meteoritic compounds to relatively high impact-shock pressures and/or to varying oxidizing/corrosive conditions. Tested compounds include sulfonic and phosphonic acids (S&P), polyaromatic hydrocarbons (PAHs) amino acids, keto acids, dicarboxylic acids, deoxy sugar acids, and hydroxy tricarboxylic acids (Table 1). Meteoritic sulfonic acids were found to be relatively abundant in the Murchison meteorite and to possess unusual S-33 isotope anomalies (non mass-dependent isotope fractionations). Combined with distinctive C-S and C-P bonds, the S&P are potential signatures of asteroidal organic material.

  8. Influence of vanadium oxidation states on the performance of V-Mg-Al mixed-oxide catalysts for the oxidative dehydrogenation of propane

    International Nuclear Information System (INIS)

    Schacht, L.; Navarrete, J.; Schacht, P.; Ramirez, M. A.

    2010-01-01

    V-Mg-Al mixed-oxide catalysts for oxidative dehydrogenation of propane were prepared by thermal decomposition of Mg-Al-layered double hydroxides with vanadium interlayer doping. The obtained catalysts were tested for the oxidative dehydrogenation of propane, obtaining good results in catalytic activity (conversion 16.55 % and selectivity 99.97 %) Results indicated that catalytic performance of these materials depends on how vanadium is integrated in the layered structure, which is determined by the Mg/Al ratio. Vanadium interlayer doping modifies the oxidation state of vanadium and consequently catalytic properties. Surface properties were studied by X-ray photoelectron spectroscopic and diffuse reflectance, UV-visible spectroscopy, and temperature programmed reduction. The analyses provided information about the oxidation state, before and after the reaction. From these results, it is suggested that selectivity to propylene and catalytic activity depend mainly of vanadium oxidation state. (Author)

  9. Influence of vanadium oxidation states on the performance of V-Mg-Al mixed-oxide catalysts for the oxidative dehydrogenation of propane

    Energy Technology Data Exchange (ETDEWEB)

    Schacht, L. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Ciencia de Materiales, Av. IPN s/n, Edificio 9, Col. Lindavista, 07738 Mexico D. F. (Mexico); Navarrete, J.; Schacht, P.; Ramirez, M. A., E-mail: pschacha@imp.m [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D. F. (Mexico)

    2010-07-01

    V-Mg-Al mixed-oxide catalysts for oxidative dehydrogenation of propane were prepared by thermal decomposition of Mg-Al-layered double hydroxides with vanadium interlayer doping. The obtained catalysts were tested for the oxidative dehydrogenation of propane, obtaining good results in catalytic activity (conversion 16.55 % and selectivity 99.97 %) Results indicated that catalytic performance of these materials depends on how vanadium is integrated in the layered structure, which is determined by the Mg/Al ratio. Vanadium interlayer doping modifies the oxidation state of vanadium and consequently catalytic properties. Surface properties were studied by X-ray photoelectron spectroscopic and diffuse reflectance, UV-visible spectroscopy, and temperature programmed reduction. The analyses provided information about the oxidation state, before and after the reaction. From these results, it is suggested that selectivity to propylene and catalytic activity depend mainly of vanadium oxidation state. (Author)

  10. Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the midwestern united states

    Science.gov (United States)

    Graham, J.L.; Loftin, K.A.; Meyer, M.T.; Ziegler, A.C.

    2010-01-01

    The mixtures of toxins and taste-and-odor compounds present during cyanobacterial blooms are not well characterized and of particular concern when evaluating potential human health risks. Cyanobacterial blooms were sampled in twenty-three Midwestern United States lakes and analyzed for community composition, thirteen cyanotoxins by liquid chromatography/mass spectrometry and immunoassay, and two taste-and-odor compounds by gas chromatography/mass spectrometry. Aphanizomenon, Cylindrospermopsis and/or Microcystis were dominant in most (96%) blooms, but community composition was not strongly correlated with toxin and taste-and-odor occurrence. Microcystins occurred in all blooms. Total microcystin concentrations measured by liquid chromatography/mass spectrometry and immunoassay were linearly related (rs = 0.76, p cyanotoxins occurred in 48% of blooms and 95% had multiple microcystin variants. Toxins and taste-and-odor compounds frequently co-occurred (91% of blooms), indicating odor may serve as a warning that cyanotoxins likely are present. However, toxins occurred more frequently than taste-and-odor compounds, so odor alone does not provide sufficient warning to ensure human-health protection. ?? This article not subject to U.S. Copyright. Published 2010 by the American Chemical Society.

  11. Catalytic oxidation of chlorinated volatile organic compounds, dichloromethane and perchloroethylene. New knowledge for the industrial CVOC emission abatement

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaeaho, S.

    2013-09-01

    The releases of chlorinated volatile organic compounds (CVOCs) are controlled by strict regulations setting high demands for the abatement systems. Low temperature catalytic oxidation is a viable technology to economically destroy these often refractory emissions. Catalysts applied in the oxidation of CVOCs should be highly active and selective but also maintain a high resistance towards deactivation. In this study, a total of 33 different {gamma}-Al{sub 2}O{sub 3} containing metallic monoliths were studied in dichloromethane (DCM) and 25 of them in perchloroethylene (PCE) oxidation. The active compounds used were Pt, Pd, Rh or V{sub 2}O{sub 5} alone or as mixtures. The catalysts were divided into three different testing sets: industrial, CVOC and research catalysts. ICP-OES, physisorption, chemisorption, XRD, UV-vis DRS, isotopic oxygen exchange, IC, NH{sub 3}-TPD, H{sub 2}-TPR and FESEM-EDS were used to characterise the catalysts. Screening of the industrial catalysts revealed that the addition of V{sub 2}O{sub 5} improved the performance of the catalyst. DCM abatement was easily affected by the addition of VOC or water, but the effect on the PCE oxidation was only minor. Based on these screening tests, a set of CVOC catalysts were developed and installed into an industrial incinerator. The comparison between the laboratory and industrial scale studies showed that DCM oxidation in an industrial incinerator could be predicted relatively well. Instead, PCE was always seen to be oxidised far better in an industrial unit indicating that the transient oxidation conditions are beneficial for the PCE oxidation. Before starting the experiments with research catalysts, the water feed was optimised to 1.5 wt.%. Besides enhancing the HCl yields, water improved the DCM and PCE conversions. In the absence of oxygen, i.e. during destructive adsorption, the presence of water was seen to have an even more pronounced effect on the HCl formation and on the catalysts

  12. Manganese oxidation state mediates toxicity in PC12 cells

    International Nuclear Information System (INIS)

    Reaney, S.H.; Smith, D.R.

    2005-01-01

    The role of the manganese (Mn) oxidation state on cellular Mn uptake and toxicity is not well understood. Therefore, undifferentiated PC12 cells were exposed to 0-200 μM Mn(II)-chloride or Mn(III)-pyrophosphate for 24 h, after which cellular manganese levels were measured along with measures of cell viability, function, and cytotoxicity (trypan blue exclusion, medium lactate dehydrogenase (LDH), 8-isoprostanes, cellular ATP, dopamine, serotonin, H-ferritin, transferrin receptor (TfR), Mn-superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (CuZnSOD) protein levels). Exposures to Mn(III) >10 μM produced 2- to 5-fold higher cellular manganese levels than equimolar exposures to Mn(II). Cell viability and ATP levels both decreased at the highest Mn(II) and Mn(III) exposures (150-200 μM), while Mn(III) exposures produced increases in LDH activity at lower exposures (≥50 μM) than did Mn(II) (200 μM only). Mn(II) reduced cellular dopamine levels more than Mn(III), especially at the highest exposures (50% reduced at 200 μM Mn(II)). In contrast, Mn(III) produced a >70% reduction in cellular serotonin at all exposures compared to Mn(II). Different cellular responses to Mn(II) exposures compared to Mn(III) were also observed for H-ferritin, TfR, and MnSOD protein levels. Notably, these differential effects of Mn(II) versus Mn(III) exposures on cellular toxicity could not simply be accounted for by the different cellular levels of manganese. These results suggest that the oxidation state of manganese exposures plays an important role in mediating manganese cytotoxicity

  13. Formation of low charge state ions of synthetic polymers using quaternary ammonium compounds.

    Science.gov (United States)

    Nasioudis, Andreas; Joyce, William F; van Velde, Jan W; Heeren, Ron M A; van den Brink, Oscar F

    2010-07-01

    Factors such as high polymer dispersity and variation in elemental composition (of copolymers) often complicate the electrospray ionization mass spectrometry (ESI-MS) analysis of synthetic polymers with high molar mass. In the experiments described in this study, quaternary ammonium compounds were observed to facilitate the production of low charge state pseudomolecular ions when added to the spray solution for ESI-MS. This approach was then used for the ESI time-of-flight mass spectrometry (TOF-MS) analysis of synthetic polymers. Hexadecyltrimethylammonium chloride permitted the successful analysis of poly(ethylene glycol) of 2-40 kDa, poly(propylene glycol) and poly(tetramethylene glycol) oligomers. Increasing the quaternary ammonium compounds' concentration results in the production of low charge state pseudomolecular ions. A comparison of structurally different quaternary ammonium compounds showed that the best performance is expected from large molecules with specific charge localization, which leaves the charge available for interactions. The applicability of the method for the MS analysis of other polymeric systems was also studied. In the case of poly(tetramethylene glycol), the method not only shifted the distributions to higher m/z values but also allowed the detection of high molecular weight material that was not observed without addition of the modifier to the spray solution.

  14. Protective effects of the compounds isolated from the seed of Psoralea corylifolia on oxidative stress-induced retinal damage

    International Nuclear Information System (INIS)

    Kim, Kyung-A; Shim, Sang Hee; Ahn, Hong Ryul; Jung, Sang Hoon

    2013-01-01

    The mechanism underlying glaucoma remains controversial, but apoptosis caused by increased levels of reactive oxygen species (ROS) is thought to play a role in its pathogenesis. We investigated the effects of compounds isolated from Psoralea corylifolia on oxidative stress-induced cell death in vitro and in vivo. Transformed retinal ganglion cells (RGC-5) were treated with L-buthione-(S,R)-sulfoximine (BSO) and glutamate in the presence or with pre-treatment with compound 6, bakuchiol isolated from P. corylifolia. We observed reduced cell death in cells pre-treated with bakuchiol. Moreover, bakuchiol inhibited the oxidative stress-induced decrease of mitochondrial membrane potential (MMP, ΔΨm). Furthermore, while intracellular Ca 2+ was high in RGC-5 cells after exposure to oxidative stress, bakuchiol reduced these levels. In an in vivo study, in which rat retinal damage was induced by intravitreal injection of N-methyl-D-aspartate (NMDA), bakuchiol markedly reduced translocation of AIF and release of cytochrome c, and inhibited up-regulation of cleaved caspase-3, cleaved caspase-9, and cleaved PARP. The survival rate of retinal ganglion cells (RGCs) 7 days after optic nerve crush (ONC) in mice was significantly decreased; however, bakuchiol attenuated the loss of RGCs. Moreover, bakuchiol attenuated ONC-induced up-regulation of apoptotic proteins, including cleaved PARP, cleaved caspase-3, and cleaved caspase-9. Bakuchiol also significantly inhibited translocation of mitochondrial AIF into the nuclear fraction and release of mitochondrial cytochrome c into the cytosol. These results demonstrate that bakuchiol isolated from P. corylifolia has protective effects against oxidative stress-induced retinal damage, and may be considered as an agent for treating or preventing retinal degeneration. - Highlights: • Psoralea corylifolia have neuroprotective effects in vitro and in vivo. • Bakuchiol attenuated the increase of apoptotic proteins induced by oxidative

  15. Protective effects of the compounds isolated from the seed of Psoralea corylifolia on oxidative stress-induced retinal damage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-A [Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 210-340 (Korea, Republic of); Shim, Sang Hee [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Ahn, Hong Ryul [Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 210-340 (Korea, Republic of); Jung, Sang Hoon, E-mail: shjung507@gmail.com [Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 210-340 (Korea, Republic of)

    2013-06-01

    The mechanism underlying glaucoma remains controversial, but apoptosis caused by increased levels of reactive oxygen species (ROS) is thought to play a role in its pathogenesis. We investigated the effects of compounds isolated from Psoralea corylifolia on oxidative stress-induced cell death in vitro and in vivo. Transformed retinal ganglion cells (RGC-5) were treated with L-buthione-(S,R)-sulfoximine (BSO) and glutamate in the presence or with pre-treatment with compound 6, bakuchiol isolated from P. corylifolia. We observed reduced cell death in cells pre-treated with bakuchiol. Moreover, bakuchiol inhibited the oxidative stress-induced decrease of mitochondrial membrane potential (MMP, ΔΨm). Furthermore, while intracellular Ca{sup 2+} was high in RGC-5 cells after exposure to oxidative stress, bakuchiol reduced these levels. In an in vivo study, in which rat retinal damage was induced by intravitreal injection of N-methyl-D-aspartate (NMDA), bakuchiol markedly reduced translocation of AIF and release of cytochrome c, and inhibited up-regulation of cleaved caspase-3, cleaved caspase-9, and cleaved PARP. The survival rate of retinal ganglion cells (RGCs) 7 days after optic nerve crush (ONC) in mice was significantly decreased; however, bakuchiol attenuated the loss of RGCs. Moreover, bakuchiol attenuated ONC-induced up-regulation of apoptotic proteins, including cleaved PARP, cleaved caspase-3, and cleaved caspase-9. Bakuchiol also significantly inhibited translocation of mitochondrial AIF into the nuclear fraction and release of mitochondrial cytochrome c into the cytosol. These results demonstrate that bakuchiol isolated from P. corylifolia has protective effects against oxidative stress-induced retinal damage, and may be considered as an agent for treating or preventing retinal degeneration. - Highlights: • Psoralea corylifolia have neuroprotective effects in vitro and in vivo. • Bakuchiol attenuated the increase of apoptotic proteins induced by oxidative

  16. General and Efficient a-Oxygenation of Carbonyl Compounds by TEMPO Induced by Single-Electron-Transfer Oxidation of Their Enolates

    Czech Academy of Sciences Publication Activity Database

    Dinca, E.; Hartmann, P.; Smrček, Jakub; Dix, I.; Jones, P. G.; Jahn, Ullrich

    -, č. 24 (2012), s. 4461-4482 ISSN 1434-193X Institutional support: RVO:61388963 Keywords : carbonyl compounds * oxidation * radicals * electron transfer * enolates Subject RIV: CC - Organic Chemistry Impact factor: 3.344, year: 2012

  17. Ionic liquid [OMIm][OAc] directly inducing oxidation cleavage of the β-O-4 bond of lignin model compounds.

    Science.gov (United States)

    Yang, Yingying; Fan, Honglei; Meng, Qinglei; Zhang, Zhaofu; Yang, Guanying; Han, Buxing

    2017-08-03

    We explored the oxidation reactions of lignin model compounds directly induced by ionic liquids under metal-free conditions. In this work, it was found that ionic liquid 1-octyl-3-methylimidazolium acetate as a solvent could promote the aerobic oxidation of lignin model compound 2-phenoxyacetophenone (1) and the yields of phenol and benzoic acid from 1 could be as high as 96% and 86%, respectively. A possible reaction pathway was proposed based on a series of control experiments. An acetate anion from the ionic liquid attacked the hydrogen from the β-carbon thereby inducing the cleavage of the C-O bond of the aromatic ether. Furthermore, it was found that 2-(2-methoxyphenoxy)-1-phenylethanone (4) with a methoxyl group could also be transformed into aromatic products in this simple reaction system and the yields of phenol and benzoic acid from 4 could be as high as 98% and 85%, respectively. This work provides a simple way for efficient transformation of lignin model compounds.

  18. Effects of soy sauce and packaging method on volatile compounds and lipid oxidation of cooked irradiated beef patties

    International Nuclear Information System (INIS)

    Kim, Hyun-Wook; Lee, Soo-Yeon; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Lee, Ju-Woon; Kim, Cheon-Jei

    2014-01-01

    The objective of this study is to determine the effect of soy sauce on volatile compounds and lipid oxidation of cooked irradiated beef patties. Sulfur-containing volatile components, which are produced by irradiation, were not found in all treatments. Volatile components derived from soy sauce, such as 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol and 2-methyl-1-butanol, were detected in beef patties containing soy sauce regardless of irradiation and packaging method. Volatile aldehydes, including hexanal, significantly decreased the irradiated beef patty prepared with soy sauce compared to those of irradiated beef patty made with NaCl at 1 day and 5 days after irradiation. In addition, combined use of vacuum packaging and soy sauce treatments could inhibit the formation of volatile compounds and 2-thiobarbituric acid reactive substances during chilled storage. Therefore, the use of soy sauce in cooked and irradiated beef could reduce the production of volatile components associated with the irradiation-induced off-flavor and lipid oxidation. - Highlights: • Soy sauce (SS) could inhibit volatiles cooked irradiated beef patties. • Vacuum packaging and SS treatment is effective to prevent lipid oxidation. • Hexanal content was highly correlated with TBA value of the irradiated beef patties

  19. Study of the oxidation process of disperse Fe-C containing waste in order to obtain graphite intercalation compounds

    Directory of Open Access Journals (Sweden)

    Володимир Олександрович Маслов

    2016-11-01

    Full Text Available Graphite processing into intercalation compounds followed by thermoshock heating is known in literature. The result is an ultra-light dispersed graphite (thermographenit used in lots of industries. Graphite intercalation compounds are formed as a result of the introduction of atomic and molecular layers of different chemical particles between the layers of graphite plates. The object of this work is to obtain a new material by intercalation of graphite followed by thermoshock heating, which could be used for products protecting biological and technical facilities from electromagnetic and thermal radiation. In the present work the parameters of oxidation and of graphite thermoshock expansion in order to obtain graphite intercalation compounds and thermographenit were investigated. The experiments were performed under laboratory non-isothermal conditions. Graphite GAK-2 obtained from metallurgical wastes was used. First the fraction of +0,16 mm with the ash content of 0,3% was extracted by scattering. The oxidation of graphite was carried out by potassium bichromate dissolved in concentrated sulphuric acid. The original sample of graphite was mixed with finely grounded potassium bichromate. Then this mass was poured over with 98% concentrated sulphuric acid when being actively stirred and kept. Then the capacitance for oxidation was filled with distilled water. Decantation was carried out until pH=7 in the waste water was got. Separation of the oxidized graphite from the main mass of water was carried out by means of a suction filter until pH=7 was got. Experiments were performed at different ratios of potassium bichromate, sulphuric acid and graphite. The optimum ratio of the components (sulphuric acid : (dichromate of potash : (graphite = 2,8 : 0,15 : 1 was found. The oxidation time was 4–5 minutes. The oxidized graphite turned into thermographenit with bulk density of 2,7–9,5 kg/m3.upon subsequent heating up to 1000oC within the regime of

  20. Supported Layered Double Hydroxide-Related Mixed Oxides and Their Application in the Total Oxidation of Volatile Organic Compounds

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Jirátová, Květa

    2011-01-01

    Roč. 53, č. 2 (2011), s. 305-316 ISSN 0169-1317 R&D Projects: GA ČR GAP106/10/1762; GA ČR GA106/09/1664 Institutional research plan: CEZ:AV0Z40720504 Keywords : layered double hydroxides * hydrothermal reaction * mixed oxides Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.474, year: 2011

  1. Selective aerobic alcohol oxidation method for conversion of lignin into simple aromatic compounds

    Science.gov (United States)

    Stahl, Shannon S; Rahimi, Alireza

    2015-03-03

    Described is a method to oxidize lignin or lignin sub-units. The method includes oxidation of secondary benzylic alcohol in the lignin or lignin sub-unit to a corresponding ketone in the presence of unprotected primarily aliphatic alcohol in the lignin or lignin sub-unit. The optimal catalyst system consists of HNO.sub.3 in combination with another Bronsted acid, in the absence of a metal-containing catalyst, thereby yielding a selectively oxidized lignin or lignin sub-unit. The method may be carried out in the presence or absence of additional reagents including TEMPO and TEMPO derivatives.

  2. Effect of particle size on iron nanoparticle oxidation state

    International Nuclear Information System (INIS)

    Lombardo, Jeffrey J.; Lysaght, Andrew C.; Goberman, Daniel G.; Chiu, Wilson K.S.

    2012-01-01

    Selecting catalyst particles is a very important part of carbon nanotube growth, although the properties of these nanoscale particles are unclear. In this article iron nanoparticles are analyzed through the use of atomic force microscopy and x-ray photoelectron spectroscopy in order to understand how the size affects the chemical composition of nanoparticles and thus their physical structure. Initially, atomic force microscopy was used to confirm the presence of iron particles, and to determine the average size of the particles. Next an analytical model was developed to estimate particle size as a function of deposition time using inputs from atomic force microscopy measurement. X-ray photoelectron spectroscopy analysis was then performed with a focus on the spectra relating to the 2p Fe electrons to study the chemical state of the particles as a function of time. It was shown that as the size of nanoparticles decreased, the oxidation state of the particles changed due to a high proportion of atoms on the surface.

  3. Hard X-ray PhotoElectron Spectroscopy of transition metal oxides: Bulk compounds and device-ready metal-oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Borgatti, F., E-mail: francesco.borgatti@cnr.it [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna I-40129 (Italy); Torelli, P.; Panaccione, G. [Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park, Trieste I-34149 (Italy)

    2016-04-15

    Highlights: • Hard X-ray PhotoElectron Spectroscopy (HAXPES) applied to buried interfaces of systems involving Transition Metal Oxides. • Enhanced contribution of the s states at high kinetic energies both for valence and core level spectra. • Sensitivity to chemical changes promoted by electric field across metal-oxide interfaces in resistive switching devices. - Abstract: Photoelectron spectroscopy is one of the most powerful tool to unravel the electronic structure of strongly correlated materials also thanks to the extremely large dynamic range in energy, coupled to high energy resolution that this form of spectroscopy covers. The kinetic energy range typically used for photoelectron experiments corresponds often to a strong surface sensitivity, and this turns out to be a disadvantage for the study of transition metal oxides, systems where structural and electronic reconstruction, different oxidation state, and electronic correlation may significantly vary at the surface. We report here selected Hard X-ray PhotoElectron Spectroscopy (HAXPES) results from transition metal oxides, and from buried interfaces, where we highlight some of the important features that such bulk sensitive technique brings in the analysis of electronic properties of the solids.

  4. Hard X-ray PhotoElectron Spectroscopy of transition metal oxides: Bulk compounds and device-ready metal-oxide interfaces

    International Nuclear Information System (INIS)

    Borgatti, F.; Torelli, P.; Panaccione, G.

    2016-01-01

    Highlights: • Hard X-ray PhotoElectron Spectroscopy (HAXPES) applied to buried interfaces of systems involving Transition Metal Oxides. • Enhanced contribution of the s states at high kinetic energies both for valence and core level spectra. • Sensitivity to chemical changes promoted by electric field across metal-oxide interfaces in resistive switching devices. - Abstract: Photoelectron spectroscopy is one of the most powerful tool to unravel the electronic structure of strongly correlated materials also thanks to the extremely large dynamic range in energy, coupled to high energy resolution that this form of spectroscopy covers. The kinetic energy range typically used for photoelectron experiments corresponds often to a strong surface sensitivity, and this turns out to be a disadvantage for the study of transition metal oxides, systems where structural and electronic reconstruction, different oxidation state, and electronic correlation may significantly vary at the surface. We report here selected Hard X-ray PhotoElectron Spectroscopy (HAXPES) results from transition metal oxides, and from buried interfaces, where we highlight some of the important features that such bulk sensitive technique brings in the analysis of electronic properties of the solids.

  5. Co-oxidation of carcinogenic polycyclic aromatic hydrocarbons with some biologically active compounds (BAC)

    Energy Technology Data Exchange (ETDEWEB)

    Gubergrits, M.Y.

    1978-09-01

    Oxidation of benzo(a)pyrene (BP) initiated by UV or gamma irradiation was promoted by benz(a)anthracene and 7,12-dimethylbenz(a)anthracene (DMBA) and inhibited by pyrene, dibenz(a,c)anthracene, and asymmetric benz(a)antharacene. The effects of these BAC commonly occurring together with BP in industrial wastes, increased with their concentrations. Phenol and 3-methylcholanthrene strongly promoted BP oxidation when present at low concentrations and inhibited it at high concentrations. Consistent promoting effect was also observed in BP co-oxidation with adipic acid, ..cap alpha..-naphthoflavon, and vitamin E, whereas succinic, azelaic, ferulic, gallic, and chlorogenic acids, rutin, and vitamin C acted as inhibitors. Most saturated dicarboxylic acids studied did not affect BP oxidation at 1:1 acid-BP molar ratio. The kinetics of 7,12-DMBA photooxidation inhibition by some metabolic intermediates, e.g., DMBA endo-peroxide, were also studied.

  6. Oxidation kinetics of model compounds of metabolic waste in supercritical water

    Science.gov (United States)

    Webley, Paul A.; Holgate, Henry R.; Stevenson, David M.; Tester, Jefferson W.

    1990-01-01

    In this NASA-funded study, the oxidation kinetics of methanol and ammonia in supercritical water have been experimentally determined in an isothermal plug flow reactor. Theoretical studies have also been carried out to characterize key reaction pathways. Methanol oxidation rates were found to be proportional to the first power of methanol concentration and independent of oxygen concentration and were highly activated with an activation energy of approximately 98 kcal/mole over the temperature range 480 to 540 C at 246 bar. The oxidation of ammonia was found to be catalytic with an activation energy of 38 kcal/mole over temperatures ranging from 640 to 700 C. An elementary reaction model for methanol oxidation was applied after correction for the effect of high pressure on the rate constants. The conversion of methanol predicted by the model was in good agreement with experimental data.

  7. Synthesis of Pyrroloquinones via a CAN Mediated Oxidative Free Radical Reaction of 1,3-Dicarbonyl Compounds with Aminoquinones

    Directory of Open Access Journals (Sweden)

    Thao Nguyen

    2013-01-01

    Full Text Available Pyrroloquinone ring systems are important structural units present in many biologically active molecules including a number of marine alkaloids. For example, they are found in a series of marine metabolites, such as tsitsikammamines, zyzzyanones, wakayin, and terreusinone. Several of these alkaloids have exhibited antimicrobial, antimalarial, antifungal, antitumor, and photoprotecting activities. Synthesis of pyrroloquinone unit is the key step in the synthesis of many of these important organic molecules. Here, we present a ceric (IV ammonium nitrate (CAN mediated oxidative free radical cyclization reaction of 1,3-dicarbonyl compounds with aminoquinones as a facile methodology for making various substituted pyrroloquinones. 1,3-dicarbonyl compounds used in this study are ethyl acetoacetate, acetylacetone, benzoyl acetone, and N,N-dimethyl acetoacetamide. The aminoquinones used in this study are 2-(benzylaminonaphthalene-1,4-dione and 6-(benzylamino-1-tosyl-1H-indole-4,7-dione. The yields of the synthesized pyrroloquinones ranged from 23–91%.

  8. Pressure-induced valence change and moderate heavy fermion state in Eu-compounds

    Science.gov (United States)

    Honda, Fuminori; Okauchi, Keigo; Sato, Yoshiki; Nakamura, Ai; Akamine, Hiromu; Ashitomi, Yosuke; Hedo, Masato; Nakama, Takao; Takeuchi, Tetsuya; Valenta, Jaroslav; Prchal, Jiri; Sechovský, Vladimir; Aoki, Dai; Ōnuki, Yoshichika

    2018-05-01

    A pressure-induced valence transition has attracted much attention in Eu-compounds. Among them, EuRh2Si2, EuNi2Ge2, and EuCo2Ge2 reveal the valence transition around 1, 2, and 3 GPa, respectively. We have succeeded in growing single crystals of EuT2X2 (T: transition metal, X: Si, Ge) and studied electronic properties under pressure. EuRh2Si2 indicates a first-order valence transition between 1 and 2 GPa, with a large and prominent hysteresis in the electrical resistivity. At higher pressures, the first-order valence transition changes to a cross-over regime with an intermediate valence state. Tuning of the valence state with pressure is reflected in a drastic change of the temperature dependence of the electrical resistivity in EuRh2Si2 single crystals. Effect of pressure on the valence states on EuRh2Si2, EuIr2Si2, EuNi2Ge2, and EuCo2Ge2, as well as an isostructural related compound EuGa4, are reviewed.

  9. Photo-oxidation of organic compounds in liquid low-level mixed wastes at the INEL

    International Nuclear Information System (INIS)

    Gering, K.L.; Schwendiman, G.L.

    1996-01-01

    A bench-scale oxidation apparatus is implemented to study the effectiveness of using an artificial ultraviolet source, a 175-watt medium pressure mercury vapor lamp, to enhance the destruction of organic contaminants in water with chemical oxidants. The waste streams used in this study are samples or surrogates of mixed wastes at the Idaho National Engineering Laboratory. The contaminants that are investigated include methylene chloride, 1,1,1-trichlorethane, 1, 1-dichlororethane, acetone, 2-propanol, and ethylenediamine tetraacetic acid. We focus on H 2 O 2 -based oxidizers for our treatment scheme, which include the UV/H 2 O 2 system, the dark Fenton system (H 2 O 2 /Fe 2+ ), and the photo- assisted Fenton system (UV/H 2 O 2 /Fe 3+ ) is used in particular. Variables include concentration of the chemical oxidizer, concentration of the organic contaminant, and the elapsed reaction time. Results indicate that the photo-assisted Fenton system provides the best overall performance of the oxidizing systems listed above, where decreases in concentrations of methylene chloride, 1,1,1- trichloroethane, 1,1-dichlororethane, 2-propanol, and ethylenediamine tetraacetic acid were seen. However, UV-oxidation treatment provided no measurable benefit for a mixed waste containing acetone in the presence of 2-propanol

  10. Protective Actions of 17β-Estradiol and Progesterone on Oxidative Neuronal Injury Induced by Organometallic Compounds

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ishihara

    2015-01-01

    Full Text Available Steroid hormones synthesized in and secreted from peripheral endocrine glands pass through the blood-brain barrier and play a role in the central nervous system. In addition, the brain possesses an inherent endocrine system and synthesizes steroid hormones known as neurosteroids. Increasing evidence shows that neuroactive steroids protect the central nervous system from various harmful stimuli. Reports show that the neuroprotective actions of steroid hormones attenuate oxidative stress. In this review, we summarize the antioxidative effects of neuroactive steroids, especially 17β-estradiol and progesterone, on neuronal injury in the central nervous system under various pathological conditions, and then describe our recent findings concerning the neuroprotective actions of 17β-estradiol and progesterone on oxidative neuronal injury induced by organometallic compounds, tributyltin, and methylmercury.

  11. Influence of Electrolyte Composition on the Calcium-Phosphorus compound Coating on Titanium Substrate by Micro-arc Oxidation

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiu-hong; WANG Cong-zeng; KOU Bin-da; SU Xue-kuan; ZHANG Wen-quan

    2004-01-01

    The compound bioceramic coating containing calcium (Ca) and phosphorus (P) on titanium alloy substrate was prepared by means of micro-arc oxidation (MAO) treatment. The results show that under the different electrolyte the coating with the color of gray or black and surface morphology of cauliflower or honeycomb, where Ca content and P contain can attain 30% and 20% respectively, can be obtained. Meanwhile, the influences of electrolyte temperature, current density and discharge time on morphology and thickness of coating are also discussed here.

  12. Excitation of compound states in the subsystems as indirect tool in nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    Tribble R.E.

    2010-03-01

    Full Text Available Astrophysical reactions proceeding through compound states represent one of the crucial part of nuclear astrophysics. However, due to the presence of the Coulomb barrier, it is often very difficult or even impossible to obtain the astrophysical S (E factor from measurements in the laboratory at astrophysically relevant energies. The Trojan Horse method (THM provides a unique tool to obtain the information about resonant astrophysical reactions at astrophysically relevant energies. Here the theory and application of the THM for the resonant reactions is addressed.

  13. Participation of oxidized sulfur center in intramolecular free radical processes in the model organic compounds of biological importance

    International Nuclear Information System (INIS)

    Pogocki, D.M.

    2004-01-01

    The pathogenesis of neurodegenerative diseases such as prion diseases (Creutzfeldt-Jacob disease) and Alzheimer's disease is strongly associated with the presence of β-amyloid peptide (βA) and prion protein (hPrP) in the brain tissue. Both macromolecules contain methionine (Met) residues. Their presence seems to be responsible for unique redox properties of βA and hPrP. These residues may undergo relatively easy autooxidation and/or metal-catalysed oxidation. The presented studies were focused on the potential function of Met residues as antioxidants or pro-oxidants and on their role in radical-mediated oxidation of peptides and proteins. The role of S-, O-, N- and C-centered radicals generated in various oligopeptides containing Met and relevant model compounds has been examined in detail with respect to formation of 2c-3e bonds, redox processes, fragmentation and their mutual interconversion. In order to achieve these goals several experimental radiation, photochemical, and molecular modelling methods were applied. The experimental and molecular modelling results show significant influence of functional neighbouring groups and conformational flexibility of a peptide backbone on the oxidative reduction pathway in oligopeptides containing single and multiple Met residues. The results presented here allow for better understanding of the known propensities of βA and hPrP to reduce transition metals and to form reactive oxygen species and free radicals. (author)

  14. Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. Progress report for FY97

    Energy Technology Data Exchange (ETDEWEB)

    Blake, D.M.; Bryant, D.L.; Reinsch, V.

    1997-09-30

    'The background for the project is briefly reviewed and the work done during the nine months since funding was received is documented. Work began in January, 1997. A post doctoral fellow joined the team in April. The major activities completed this fiscal year were: staffing the project, design of the experimental system, procurement of components, assembly of the system. preparation of the Safe Operating Procedure and ES and H compliance, pressure testing, establishing data collection and storage methodology, and catalyst preparation. Objective The objective of the project is to develop new chemistry for the removal of organic contaminants from supercritical carbon dioxide. This has application in processes used for continuous cleaning and extraction of parts and waste materials. A secondary objective is to increase the fundamental understanding of photocatalytic chemistry. Cleaning and extraction using supercritical carbon dioxide (scCO{sub 2}) can be applied to the solution of a wide range of environmental and pollution prevention problems in the DOE complex. Work is being done that explores scCO{sub 2} in applications ranging from cleaning contaminated soil to cleaning components constructed from plutonium. The rationale for use of scCO{sub 2} are based on the benign nature, availability and low cost, attractive solvent properties, and energy efficient separation of the extracted solute from the solvent by moderate temperature or pressure changes. To date, R and D has focussed on the methods and applications of the extraction steps of the process. Little has been done that addresses methods to polish the scCO{sub 2} for recycle in the cleaning or extraction operations. In many applications it will be desirable to reduce the level of contamination from that which would occur at steady state operation of a process. This proposal addresses chemistry to achieve that. This would be an alternative to removing a fraction of the contaminated scCO{sub 2} for

  15. Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. Progress report for FY97

    International Nuclear Information System (INIS)

    Blake, D.M.; Bryant, D.L.; Reinsch, V.

    1997-01-01

    'The background for the project is briefly reviewed and the work done during the nine months since funding was received is documented. Work began in January, 1997. A post doctoral fellow joined the team in April. The major activities completed this fiscal year were: staffing the project, design of the experimental system, procurement of components, assembly of the system. preparation of the Safe Operating Procedure and ES and H compliance, pressure testing, establishing data collection and storage methodology, and catalyst preparation. Objective The objective of the project is to develop new chemistry for the removal of organic contaminants from supercritical carbon dioxide. This has application in processes used for continuous cleaning and extraction of parts and waste materials. A secondary objective is to increase the fundamental understanding of photocatalytic chemistry. Cleaning and extraction using supercritical carbon dioxide (scCO 2 ) can be applied to the solution of a wide range of environmental and pollution prevention problems in the DOE complex. Work is being done that explores scCO 2 in applications ranging from cleaning contaminated soil to cleaning components constructed from plutonium. The rationale for use of scCO 2 are based on the benign nature, availability and low cost, attractive solvent properties, and energy efficient separation of the extracted solute from the solvent by moderate temperature or pressure changes. To date, R and D has focussed on the methods and applications of the extraction steps of the process. Little has been done that addresses methods to polish the scCO 2 for recycle in the cleaning or extraction operations. In many applications it will be desirable to reduce the level of contamination from that which would occur at steady state operation of a process. This proposal addresses chemistry to achieve that. This would be an alternative to removing a fraction of the contaminated scCO 2 for disposal and using makeup scCO 2

  16. Immunostimulatory effects of the phenolic compounds from lichens on nitric oxide and hydrogen peroxide production

    Directory of Open Access Journals (Sweden)

    Iracilda Z. Carlos

    Full Text Available The effects of isolated compounds from Brazilian lichens and their derivatives on H2O2 and NO production were studied using murine macrophages as a part of an attempt to understand their possible immunomodulatory properties. The compound cytotoxicity was studied using MTT assay. Macrophage stimulation was evaluated by the determination of NO (Griess assay and H2O2 (horseradish peroxidase/phenol red in supernatants of peritoneal macrophage cultures of Swiss mice. This research demonstrated stimulatory activities of some phenolic compounds isolated from lichens and their derivatives on H2O2 and NO production. Structure-activity relationships suggest several synthetic directions for further improvement of immunological activity.

  17. Quantum confinement-induced tunable exciton states in graphene oxide.

    Science.gov (United States)

    Lee, Dongwook; Seo, Jiwon; Zhu, Xi; Lee, Jiyoul; Shin, Hyeon-Jin; Cole, Jacqueline M; Shin, Taeho; Lee, Jaichan; Lee, Hangil; Su, Haibin

    2013-01-01

    Graphene oxide has recently been considered to be a potential replacement for cadmium-based quantum dots due to its expected high fluorescence. Although previously reported, the origin of the luminescence in graphene oxide is still controversial. Here, we report the presence of core/valence excitons in graphene-based materials, a basic ingredient for optical devices, induced by quantum confinement. Electron confinement in the unreacted graphitic regions of graphene oxide was probed by high resolution X-ray absorption near edge structure spectroscopy and first-principles calculations. Using experiments and simulations, we were able to tune the core/valence exciton energy by manipulating the size of graphitic regions through the degree of oxidation. The binding energy of an exciton in highly oxidized graphene oxide is similar to that in organic electroluminescent materials. These results open the possibility of graphene oxide-based optoelectronic device technology.

  18. Determination of oxidation state of iron in normal and pathologically altered human aortic valves

    Energy Technology Data Exchange (ETDEWEB)

    Czapla-Masztafiak, J. [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków (Poland); Lis, G.J.; Gajda, M.; Jasek, E. [Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków (Poland); Czubek, U. [Department of Coronary Disease, Jagiellonian University Medical College, John Paul II Hospital, Prądnicka 80, 31-202 Kraków (Poland); Bolechała, F. [Department of Forensic Medicine, Jagiellonian University Medical College, Grzegórzecka 16, 31-531 Kraków (Poland); Borca, C. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Kwiatek, W.M. [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków (Poland)

    2015-12-01

    In order to investigate changes in chemical state of iron in normal and pathologically altered human aortic valves X-ray absorption spectroscopy was applied. Since Fe is suspected to play detrimental role in aortic valve stenosis pathogenesis the oxidation state of this element has been determined. The experimental material consisted of 10 μm sections of valves excised during routine surgery and from autopsies. The experiment was performed at the MicroXAS beamline of the SLS synchrotron facility in Villigen (Switzerland). The Fe K-edge XANES spectra obtained from tissue samples were carefully analyzed and compared with the spectra of reference compounds containing iron in various chemical structures. The analysis of absorption edge position and shape of the spectra revealed that both chemical forms of iron are presented in valve tissue but Fe{sup 3+} is the predominant form. Small shift of the absorption edge toward higher energy in the spectra from stenotic valve samples indicates higher content of the Fe{sup 3+} form in pathological tissue. Such a phenomenon suggests the role of Fenton reaction and reactive oxygen species in the etiology of aortic valve stenosis. The comparison of pre-edge regions of XANES spectra for control and stenotic valve tissue confirmed no differences in local symmetry or spin state of iron in analyzed samples.

  19. Mew organometallic complexes of technetium in different oxidation states

    International Nuclear Information System (INIS)

    Joachim, J.E.

    1993-09-01

    New organometallic compounds of Tc(I), Tc(III) and Tc(VII) were synthesized and their properties examined. These compounds were correlated with their homologous compounds of manganese and rhenium, which were also synthesized by the same route. The molecular and crystal structures of most technetium complexes and of the homologous complexes of manganese and rhenium were determined by single crystal X-ray diffraction. (orig.) [de

  20. Density of states model for the lattice transformation in A-15 compounds

    International Nuclear Information System (INIS)

    Pietrass, B.; Handstein, A.; Behr, G.

    1980-01-01

    The cubic-tetragonal lattice transformation in A-15 compounds is described by an empirical model in which the density of states function near the Fermi energy is characterized by a two-parametric peak in addition to the constant part. Two types of peak splitting under tetragonal deformation are considered, leading to qualitatively different results about the phase transition. Results are given for the order parameter, the phase stability, the soft elastic modulus, and the paramagnetic spin susceptibility. Comparing with measurements of the magnetic susceptibility of V 3 Si single crystals near the phase transition a better agreement is obtained for a twofold degenerate density of states peak than for a threefold degenerate one. (author)

  1. EPR studies of excited state exchange and crystal-field effects in rare earth compounds

    International Nuclear Information System (INIS)

    Huang, C.Y.; Sugawara, K.; Cooper, B.R.

    1976-01-01

    EPR in excited crystal-field states of Tm 3+ , Pr 3+ , and Tb 3+ in singlet-ground-state systems and in the excited state of Ce 3+ in CeP are reviewed. Because one is looking at a crystal-field excited state resonance, the exchange, even if isotropic, does not act as a secular perturbation. This means that one obtains different effects and has access to more information about the dynamic effects of exchange than in conventional paramagnetic resonance experiments. The Tm and Pr monopnictides studied are paramagnetic at all temperatures. The most striking feature of the behavior of the GAMMA 5 /sup (2)/ EPR in the Tm compounds is the presence of an anomalous maximum in the temperature dependence of the g-factor. The relationship of this effect to anisotropic exchange is discussed. The results of the EPR of the excited GAMMA 5 /sup (2)/ level of Tb 3 + (g-factor becomes very large at T/sub N/ in antiferromagnetic TbX (X = P, As, Sb) and that of the excited GAMMA 8 level of Ce 3+ in antiferromagnetic CeP will also be reported. For sufficient dilution of the Tb 3+ in the terbium monopnictides, the systems become paramagnetic (Van Vleck paramagnets) down to 0 0 K. The Tb 3+ excited state resonance EPR in Tb/sub 0.1/ La/sub 0.9/P was studied as an example of behavior in such systems. 10 fig

  2. Group 11 Metal Compounds with Tripodal Bis(imidazole Thioether Ligands. Applications as Catalysts in the Oxidation of Alkenes and as Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Armando Varela-Ramírez

    2011-08-01

    Full Text Available New group 11 metal complexes have been prepared using the previously described tripodal bis(imidazole thioether ligand (N-methyl-4,5-diphenyl-2-imidazolyl2C(OMeC(CH32S(tert-Bu ({BITOMe,StBu}, 2. The pincer ligand offers a N2S donor atom set that can be used to coordinate the group 11 metals in different oxidation states [AuI, AuIII, AgI, CuI and CuII]. Thus the new compounds [Au{BITOMe,StBu}Cl][AuCl4]2 (3, [Au{BITOMe,StBu}Cl] (4, [Ag{BITOMe,StBu}X] (X = OSO2CF3- 5, PF6- 6 and [Cu{BITOMe,StBu}Cl2] (7 have been synthesized from reaction of 2 with the appropriate metal precursors, and characterized in solution. While attempting characterization in the solid state of 3, single crystals of the neutral dinuclear mixed AuIII-AuI species [Au2{BITOMe,S}Cl3] (8 were obtained and its crystal structure was determined by X-ray diffraction studies. The structure shows a AuIII center coordinated to the pincer ligand through one N and the S atom. The soft AuI center coordinates to the ligand through the same S atom that has lost the tert-butyl group, thus becoming a thiolate ligand. The short distance between the AuI-AuIII atoms (3.383 Å may indicate a weak metal-metal interaction. Complexes 2-7 and the previously described CuI compound [Cu{BITOMe,StBu}]PF6 (9 have been evaluated in the oxidation of biphenyl ethylene with tert-butyl hydrogen peroxide (TBHP as the oxidant. Results have shown that the AuI and AgI complexes 4 and 6 (at 10 mol % loading are the more active catalysts in this oxidative cleavage. The antimicrobial activity of compounds 2-5, 7 and 9 against Gram-positive and Gram-negative bacteria and yeast has also been evaluated. The new gold and silver compounds display moderate to high antibacterial activity, while the copper derivatives are mostly inactive. The gold and silver complexes were also potent against fungi. Their cytotoxic properties have been analyzed in vitro utilizing HeLa human cervical carcinoma cells. The compounds displayed a

  3. Degradation of halogenated aliphatic compounds by the ammonia- oxidizing bacterium Nitrosomonas europaea.

    OpenAIRE

    Vannelli, T; Logan, M; Arciero, D M; Hooper, A B

    1990-01-01

    Suspensions of Nitrosomonas europaea catalyzed the ammonia-stimulated aerobic transformation of the halogenated aliphatic compounds dichloromethane, dibromomethane, trichloromethane (chloroform), bromoethane, 1,2-dibromoethane (ethylene dibromide), 1,1,2-trichloroethane, 1,1,1-trichloroethane, monochloroethylene (vinyl chloride), gem-dichloroethylene, cis- and trans-dichloroethylene, cis-dibromoethylene, trichloroethylene, and 1,2,3-trichloropropane, Tetrachloromethane (carbon tetrachloride),...

  4. Characterization of intermetallic compounds in Cu-Al ball bonds: layer growth, mechanical properties and oxidation

    NARCIS (Netherlands)

    Kouters, M.H.M.; Gubbels, G.H.M.; O'Halloran, O.; Rongen, R.

    2011-01-01

    In high power automotive electronics copper wire bonding is regarded as most promising alternative for gold wire bonding in 1 st level interconnects and therefore subjected to severe functional requirements. In the Cu-Al ball bond interface the growth of intermetallic compounds may deteriorate the

  5. Influence of Gold on Hydrotalcite-like Compound Catalysts for Toluene and CO Total Oxidation

    Directory of Open Access Journals (Sweden)

    Eric Genty

    2013-12-01

    Full Text Available X6Al2HT500 hydrotalcites, where X represents Mg, Fe, Cu or Zn were synthetized and investigated before and after gold deposition for toluene and CO total oxidation reactions. The samples have been characterized by specific areas, XRD measurements and Temperature Programmed Reduction. Concerning the toluene total oxidation, the best activity was obtained with Au/Cu6Al2HT500 catalyst with T50 at 260 °C. However, catalytic behavior of Au/X6Al2HT500 sample in both reactions depends mainly on the nature of the support.

  6. Selective oxidation of refractory sulfur compounds for the production of low sulfur transportation fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang-Eun; Kim, Tae-Wan; Kim, Joo-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Jeong, Soon-Yong [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Park, Young-Kwon [University of Seoul, Seoul (Korea, Republic of)

    2013-03-15

    The current technologies for achieving low sulfur in diesel fuel are based on hydrotreating, which requires high temperature, high pressure and excessive supply of hydrogen. Oxidative desulfurization (ODS) is considered one of the promising new methods for super deep desulfurization, which could be carried out under very mild conditions (atmospheric pressure, <100 .deg.. C) without consumption of hydrogen. In this paper, development status of ODS process by major licensors are described as well as general concepts of ODS reaction. In addition, the ODS process has been categorized into single phasic and biphasic system according to the oxidants involved. Recent trends in both systems are reviewed in detail and future work is also proposed.

  7. Selective oxidation of refractory sulfur compounds for the production of low sulfur transportation fuel

    International Nuclear Information System (INIS)

    Jeong, Kwang-Eun; Kim, Tae-Wan; Kim, Joo-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Jeong, Soon-Yong; Park, Young-Kwon

    2013-01-01

    The current technologies for achieving low sulfur in diesel fuel are based on hydrotreating, which requires high temperature, high pressure and excessive supply of hydrogen. Oxidative desulfurization (ODS) is considered one of the promising new methods for super deep desulfurization, which could be carried out under very mild conditions (atmospheric pressure, <100 .deg.. C) without consumption of hydrogen. In this paper, development status of ODS process by major licensors are described as well as general concepts of ODS reaction. In addition, the ODS process has been categorized into single phasic and biphasic system according to the oxidants involved. Recent trends in both systems are reviewed in detail and future work is also proposed

  8. Effects of soy sauce and packaging method on volatile compounds and lipid oxidation of cooked irradiated beef patties

    Science.gov (United States)

    Kim, Hyun-Wook; Lee, Soo-Yeon; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Lee, Ju-Woon; Kim, Cheon-Jei

    2014-10-01

    The objective of this study is to determine the effect of soy sauce on volatile compounds and lipid oxidation of cooked irradiated beef patties. Sulfur-containing volatile components, which are produced by irradiation, were not found in all treatments. Volatile components derived from soy sauce, such as 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol and 2-methyl-1-butanol, were detected in beef patties containing soy sauce regardless of irradiation and packaging method. Volatile aldehydes, including hexanal, significantly decreased the irradiated beef patty prepared with soy sauce compared to those of irradiated beef patty made with NaCl at 1 day and 5 days after irradiation. In addition, combined use of vacuum packaging and soy sauce treatments could inhibit the formation of volatile compounds and 2-thiobarbituric acid reactive substances during chilled storage. Therefore, the use of soy sauce in cooked and irradiated beef could reduce the production of volatile components associated with the irradiation-induced off-flavor and lipid oxidation.

  9. Photo-oxidation of 6-thioguanine by UVA: the formation of addition products with low molecular weight thiol compounds.

    Science.gov (United States)

    Ren, Xiaolin; Xu, Yao-Zhong; Karran, Peter

    2010-01-01

    The thiopurine, 6-thioguanine (6-TG) is present in the DNA of patients treated with the immunosuppressant and anticancer drugs azathioprine or mercaptopurine. The skin of these patients is selectively sensitive to UVA radiation-which comprises >90% of the UV light in incident sunlight-and they suffer high rates of skin cancer. UVA irradiation of DNA 6-TG produces DNA lesions that may contribute to the development of cancer. Antioxidants can protect 6-TG against UVA but 6-TG oxidation products may undergo further reactions. We characterize some of these reactions and show that addition products are formed between UVA-irradiated 6-TG and N-acetylcysteine and other low molecular weight thiol compounds including β-mercaptoethanol, cysteine and the cysteine-containing tripeptide glutathione (GSH). GSH is also adducted to 6-TG-containing oligodeoxynucleotides in an oxygen- and UVA-dependent nucleophilic displacement reaction that involves an intermediate oxidized 6-TG, guanine sulfonate (G(SO3) ). These photochemical reactions of 6-TG, particularly the formation of a covalent oligodeoxynucleotide-GSH complex, suggest that crosslinking of proteins or low molecular weight thiol compounds to DNA may be a previously unrecognized hazard in sunlight-exposed cells of thiopurine-treated patients. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.

  10. Mixing-assisted oxidative desulfurization of model sulfur compounds using polyoxometalate/H2O2 catalytic system

    Directory of Open Access Journals (Sweden)

    Angelo Earvin Sy Choi

    2016-07-01

    Full Text Available Desulfurization of fossil fuel derived oil is needed in order to comply with environmental regulations. Dibenzothiophene and benzothiophene are among the predominant sulfur compound present in raw diesel oil. In this study, mixing-assisted oxidative desulfurization of dibenzothiophene and benzothiophene were carried out using polyoxometalate/H2O2 systems and a phase transfer agent. The effects of reaction time (2–30 min and temperature (30–70 °C were examined in the oxidation of model sulfur compounds mixed in toluene. A pseudo first-order reaction kinetic model and the Arrhenius equation were utilized in order to evaluate the kinetic rate constant and activation energy of each catalyst tested in the desulfurization process. Results showed the order of catalytic activity and activation energy of the different polyoxometalate catalysts to be H3PW12O40 > H3PM12O40 > H4SiW12O40 for both dibenzothiophene and benzothiophene.

  11. Deduction of the chemical state and the electronic structure of Nd{sub 2}Fe{sub 14}B compound from X-ray photoelectron spectroscopy core-level and valence-band spectra

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Liang, Le [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Lanting, E-mail: lantingzh@sjtu.edu.cn, E-mail: lmsun@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Hirano Institute for Materials Innovation, Shanghai Jiao Tong University, Shanghai 200240 (China); Sun, Limin, E-mail: lantingzh@sjtu.edu.cn, E-mail: lmsun@sjtu.edu.cn [Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Hirano, Shinichi [Hirano Institute for Materials Innovation, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-10-28

    Characterization of chemical state and electronic structure of the technologically important Nd{sub 2}Fe{sub 14}B compound is attractive for understanding the physical nature of its excellent magnetic properties. X-ray photoelectron spectroscopy (XPS) study of such rare-earth compound is important and also challenging due to the easy oxidation of surface and small photoelectron cross-sections of rare-earth 4f electrons and B 2p electrons, etc. Here, we reported an investigation based on XPS spectra of Nd{sub 2}Fe{sub 14}B compound as a function of Ar ion sputtering time. The chemical state of Fe and that of B in Nd{sub 2}Fe{sub 14}B compound can be clearly determined to be 0 and −3, respectively. The Nd in Nd{sub 2}Fe{sub 14}B compound is found to have the chemical state of close to +3 instead of +3 as compared with the Nd in Nd{sub 2}O{sub 3}. In addition, by comparing the valence-band spectrum of Nd{sub 2}Fe{sub 14}B compound to that of the pure Fe, the contributions from Nd, Fe, and B to the valence-band structure of Nd{sub 2}Fe{sub 14}B compound is made more clear. The B 2p states and B 2s states are identified to be at ∼11.2 eV and ∼24.6 eV, respectively, which is reported for the first time. The contribution from Nd 4f states can be identified both in XPS core-level spectrum and XPS valence-band spectrum. Although Nd 4f states partially hybridize with Fe 3d states, Nd 4f states are mainly localized in Nd{sub 2}Fe{sub 14}B compound.

  12. Influence of zinc oxide during different stages of sulfur vulcanization. Elucidated by model compound studies

    NARCIS (Netherlands)

    Heideman, G.; Datta, Rabin; Noordermeer, Jacobus W.M.; van Baarle, B.

    2005-01-01

    The addition of zinc oxide (ZnO) as an activator for the sulfur vulcanization of rubbers enhances the vulcanization efficiency and vulcanizate properties and reduces the vulcanization time. The first part of this article deals with the reduction and optimization of the amount of ZnO. Two different

  13. Natural thioallyl compounds increase oxidative stress resistance and lifespan in Caenorhabditis elegans by modulating SKN-1/Nrf.

    Science.gov (United States)

    Ogawa, Takahiro; Kodera, Yukihiro; Hirata, Dai; Blackwell, T Keith; Mizunuma, Masaki

    2016-02-22

    Identification of biologically active natural compounds that promote health and longevity, and understanding how they act, will provide insights into aging and metabolism, and strategies for developing agents that prevent chronic disease. The garlic-derived thioallyl compounds S-allylcysteine (SAC) and S-allylmercaptocysteine (SAMC) have been shown to have multiple biological activities. Here we show that SAC and SAMC increase lifespan and stress resistance in Caenorhabditis elegans and reduce accumulation of reactive oxygen species (ROS). These compounds do not appear to activate DAF-16 (FOXO orthologue) or mimic dietary restriction (DR) effects, but selectively induce SKN-1 (Nrf1/2/3 orthologue) targets involved in oxidative stress defense. Interestingly, their treatments do not facilitate SKN-1 nuclear accumulation, but slightly increased intracellular SKN-1 levels. Our data also indicate that thioallyl structure and the number of sulfur atoms are important for SKN-1 target induction. Our results indicate that SAC and SAMC may serve as potential agents that slow aging.

  14. Mechanisms of gastroprotection by lansoprazole pretreatment against experimentally induced injury in rats: role of mucosal oxidative damage and sulfhydryl compounds

    International Nuclear Information System (INIS)

    Natale, Gianfranco; Lazzeri, Gloria; Lubrano, Valter; Colucci, Rocchina; Vassalle, Cristina; Fornai, Matteo; Blandizzi, Corrado; Del Tacca, Mario

    2004-01-01

    This study investigated the mechanisms involved in the protective actions exerted by lansoprazole against experimental gastric injury. Following the intraluminal injection of ethanol-HCl, the histomorphometric analysis of rat gastric sections demonstrated a pattern of mucosal lesions associated with a significant increase in the mucosal contents of malondialdehyde and 8-iso-prostaglandin F 2α (indices of lipid peroxidation), as well as a decrease in the levels of mucosal sulfhydryl compounds, assayed as reduced glutathione (GSH). Pretreatment with lansoprazole 90 μmol/kg, given intraduodenally as single dose or once daily by intragastric route for 8 days, significantly prevented ethanol-HCl-induced gastric damage. The concomitant changes in the mucosal levels of malondialdehyde, 8-iso-prostaglandin F 2α and GSH elicited by ethanol-HCl were also counteracted by lansoprazole. In separate experiments, performed on animals undergoing 2-h pylorus ligation, lansoprazole did not enhance the concentration of prostaglandin E 2 , bicyclo-prostaglandin E 2 , or nitric oxide (NO) metabolites into gastric juice. Western blot analysis revealed the expression of both type 1 and 2 cyclooxygenase (COX) isoforms in the gastric mucosa of pylorus-ligated rats. These expression patterns were not significantly modified by single-dose or repeated treatment with lansoprazole. Lansoprazole also exhibited direct antioxidant properties by reducing 8-iso-prostaglandin F 2α generation in an in vitro system where human native low-density lipoproteins were subjected to oxidation upon exposure to CuSO 4 . The present results suggest that the protective effects of lansoprazole can be ascribed to a reduction of gastric oxidative injury, resulting in an increased bioavailability of mucosal sulfhydryl compounds. It is also proposed that lansoprazole does not exert modulator effects on the gastric expression of COX isoforms as well as on the activity of NO pathways

  15. Degradation of halogenated aliphatic compounds by the ammonia- oxidizing bacterium Nitrosomonas europaea.

    Science.gov (United States)

    Vannelli, T; Logan, M; Arciero, D M; Hooper, A B

    1990-01-01

    Suspensions of Nitrosomonas europaea catalyzed the ammonia-stimulated aerobic transformation of the halogenated aliphatic compounds dichloromethane, dibromomethane, trichloromethane (chloroform), bromoethane, 1,2-dibromoethane (ethylene dibromide), 1,1,2-trichloroethane, 1,1,1-trichloroethane, monochloroethylene (vinyl chloride), gem-dichloroethylene, cis- and trans-dichloroethylene, cis-dibromoethylene, trichloroethylene, and 1,2,3-trichloropropane, Tetrachloromethane (carbon tetrachloride), tetrachloroethylene (perchloroethylene), and trans-dibromoethylene were not degraded. PMID:2339874

  16. Kinetic analysis of polyoxometalate (POM) oxidation of non-phenolic lignin model compound

    Science.gov (United States)

    Tomoya Yokoyama; Hou-min Chang; Ira A. Weinstock; Richard S. Reiner; John F. Kadla

    2003-01-01

    Kinetic and reaction mechanism of non-phenolic lignin model compounds under anaerobic polyoxometalate (POM), Na5(+1.9)[SiV1(-0.1)MoW10(+0.1) 40], bleaching conditions were examined. Analyses using a syringyl type model, 1-(3,4,5-trimethoxyphenyl)ethanol (1), a guaiacyl type, 1-(3,4- imethoxyphenyl)ethanol (2), and 1- (4-ethoxy-3,5-dimethoxyphenyl)ethanol (3) suggest...

  17. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds.

    Science.gov (United States)

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul

    2016-06-29

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  18. Effects of Phenolic Compounds of Fermented Thai Indigenous Plants on Oxidative Stress in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Chaiyavat Chaiyasut

    2011-01-01

    Full Text Available We investigated the effects of antioxidant activity of fermentation product (FP of five Thai indigenous products on oxidative stress in Wistar rats with streptozotocin (STZ-induced diabetes type II. The rats were fed with placebo and with the FP (2 and 6 mL/kg body weight/day for 6 weeks. Rutin, pyrogallol and gallic acid were main compounds found in the FP. Plasma glucose levels in diabetic rats receiving the higher dose of the FP increased less when compared to the diabetic control group as well as the group receiving the lower FP dose (13.1%, 29%, and 21.1%, respectively. A significant dose-dependent decrease in plasma levels of thiobarbituric acid reactive substance (P<.05 was observed. In addition, the doses of 2 and 6 mL FP/kg/day decreased the levels of erythrocyte ROS in diabetic rats during the experiment, but no difference was observed when compared to the untreated diabetic rat group. Results imply that FP decreased the diabetes-associated oxidative stress to a large extent through the inhibition of lipid peroxidation. The FP also improved the abnormal glucose metabolism slightly but the difference was not statistically significant. Thus, FP may be a potential therapeutic agent by reducing injury caused by oxidative stress associated with diabetes.

  19. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Nor Monica Ahmad

    2016-06-01

    Full Text Available A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB, polyethylene glycol (PEG, and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE. Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM, Electrochemical Impedance Spectroscopy (EIS, and Cyclic voltamogram (CV. The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  20. The Behavior of the Ru-bda Water Oxidation Catalysts at Low Oxidation States.

    Science.gov (United States)

    Matheu, Roc; Ghaderian, Abolfazl; Francas, Laia; Chernev, Petko; Ertem, Mehmed; Benet-Buchholz, Jordi; Batista, Victor; Haumann, Michael; Gimbert-Suriñach, Carolina; Sala, Xavier; Llobet, Antoni

    2018-06-13

    The Ru complex [RuII(bda-κ-N2O2)(N-NH2)2], 1, (bda2- = (2,2'-bipyridine)-6,6'-dicarboxylate; N-NH2 = 4-(pyridin-4-yl)aniline) is used as a synthetic intermediate to prepare Ru-bda complexes that contain the NO+, acetonitrile (MeCN) or H2O ligands at oxidation states II and III. Complex 1 reacts with excess NO+ to form a Ru complex where the aryl amine ligands N-NH2 in 1 are transformed into diazonium salts (N-N2+ = 4-(pyridin-4-yl)benzenediazonium)) together with the formation of a new Ru-NO group at the equatorial zone, to generate [RuII(bda-κ-N2O)(NO)(N-N2)2]3+, 23+. Similarly, complex 1 can also react with a coordinating solvent, such as MeCN, at room temperature leading to complex [RuII(bda-κ-N2O)(MeCN)(N-NH2)2], 3. Finally in acidic aqueous solutions solvent water coordinates the Ru center forming {[RuII(bda-κ-(NO)3)(H2O)(N-NH3)2](H2O)n}2+, 42+, that is strongly hydrogen bonded with additional water molecules at the second coordination sphere. We have additionally characterized the one electron oxidized complex {[RuIII(bda-κ-(NO)3.5)(H2O)(N-NH3)2](H2O)n}3+, 53+. The coordination mode of the complexes has been studied both in the solid state and in solution through single-crystal XRD, X-ray absorption spectroscopy, variable-temperature NMR and DFT calculations. While the κ-N2O is the main coordination mode for 23+ and 3, an equilibrium that involves isomers with κ-N2O and κ-NO2 coordination modes and neighboring hydrogen bonded water molecules is observed for 42+ and 53+. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A microbial-mineralization-inspired approach for synthesis of manganese oxide nanostructures with controlled oxidation states and morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Oba, Manabu; Oaki, Yuya; Imai, Hiroaki [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-12-21

    Manganese oxide nanostructures are synthesized by a route inspired by microbial mineralization in nature. The combination of organic molecules, which include antioxidizing and chelating agents, facilitates the parallel control of oxidation states and morphologies in an aqueous solution at room temperature. Divalent manganese hydroxide (Mn(OH){sub 2}) is selectively obtained as a stable dried powder by using a combination of ascorbic acid as an antioxidizing agent and other organic molecules with the ability to chelate to manganese ions. The topotactic oxidation of the resultant Mn(OH){sub 2} leads to the selective formation of trivalent manganese oxyhydroxide ({beta}-MnOOH) and trivalent/tetravalent sodium manganese oxide (birnessite, Na{sub 0.55}Mn{sub 2}O{sub 4}.1.5H{sub 2}O). For microbial mineralization in nature, similar synthetic routes via intermediates have been proposed in earlier works. Therefore, these synthetic routes, which include in the present study the parallel control over oxidation states and morphologies of manganese oxides, can be regarded as new biomimetic routes for synthesis of transition metal oxide nanostructures. As a potential application, it is demonstrated that the resultant {beta}-MnOOH nanostructures perform as a cathode material for lithium ion batteries. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase

    OpenAIRE

    Rajfer, R. A.; Kilic, A.; Neviaser, A. S.; Schulte, L. M.; Hlaing, S. M.; Landeros, J.; Ferrini, M. G.; Ebramzadeh, E.; Park, S-H.

    2017-01-01

    Objectives We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days. Materials and Methods Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression na...

  3. Grafting of model primary amine compounds to cellulose nanowhiskers through periodate oxidation

    Science.gov (United States)

    Rajalaxmi Dash; Thomas Elder; Arthur Ragauskas

    2012-01-01

    This study demonstrates regioselective oxidation of cellulose nanowhiskers using 2.80–10.02 mmols of sodium periodate per 5 g of whiskers followed by grafting with methyl and butyl amines through a Schiff base reaction to obtain their amine derivatives in 80–90 % yield. We found a corresponding increase in carbonyl content (0.06–0.14 mmols/g) of the dialdehyde...

  4. Study of the behaviour of P-oxides produced in the combustion of phosphorus-bearing organic compounds and their absorption on suitable substances by means of compounds labelled with 32P. I

    International Nuclear Information System (INIS)

    Binkowski, J.; Gizinski, S.; Kaminski, R.; Reimschuessel, W.

    1976-01-01

    During the pyrolytic reaction of phosphorus-bearing compounds in an atmosphere of oxygen, there are produced P-oxides, which interfere in the determination of carbon and hydrogen. The behaviour of these P-oxides was studied intensively in the empty combustion tube in dependence on temperature, velocity of the carrier gas, the nature of the combustion and the positioning of the tube. The P-oxides were determined by the employment of 32 P-labelled aniline phosphate and by activation measurement of the 32 P directly through the tube walls as well as in the finely divided material. In conventional combustions the P-oxides separate abundantly on the walls of the tube provided that the gas velocity is low, especially in those zones of the tube where there is marked temperature lowering, or where very high temperature prevail. Deposited P-oxides are swept out of the tube only in the course of a very long time. Consequently a tube in which the P-bearing compounds have been burned will interfere because of the eluted P-oxides and hence will interfere also if P-free compounds are burned in this same tube

  5. Formation of nitrogen compounds from nitrogen-containing rings during oxidative regeneration of spent hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Nielsen, M.; Jurasek, P. [CANMET, Ottawa, ON (Canada). Energy Research Laboratories

    1995-05-01

    Commercial CoMo and NiMo catalysts in an oxidic and sulfided form and a {gamma}-alumina were deposited with pyrrole, pyridine, and quinoline. The deposited catalysts and two spent hydroprocessing catalysts were pyrolyzed and oxidized under conditions typical of regeneration of hydroprocessing catalysts. The formation of NH{sub 3} and HCN, as well as selected cases of N{sub 2}O and NO, was monitored during the experiments. NH{sub 3} and HCN were formed during pyrolysis of pyrrole-deposited catalysts whereas only NH{sub 3} was formed during that of pyridine-and quinoline-deposited catalysts. For all deposited catalysts, both NH{sub 3} and HCN were formed during temperature programmed oxidation in 2% O{sub 2}. For spent catalysts, a small amount of N{sub 2}O was formed in 2 and 4% O{sub 2}. For pyrrole-deposited catalysts, large yields of N{sub 2}O were formed in 4% O{sub 2}. Under the same conditions, N{sub 2}O yields for pyridine- and quinoline-deposited catalysts were very small. 13 refs., 12 figs., 6 tabs.

  6. Optical band-edge absorption of oxide compound SnO2

    International Nuclear Information System (INIS)

    Roman, L.S.; Valaski, R.; Canestraro, C.D.; Magalhaes, E.C.S.; Persson, C.; Ahuja, R.; Silva, E.F. da; Pepe, I.; Silva, A. Ferreira da

    2006-01-01

    Tin oxide (SnO 2 ) is an important oxide for efficient dielectrics, catalysis, sensor devices, electrodes and transparent conducting coating oxide technologies. SnO 2 thin film is widely used in glass applications due to its low infra-red heat emissivity. In this work, the SnO 2 electronic band-edge structure and optical properties are studied employing a first-principle and fully relativistic full-potential linearized augmented plane wave (FPLAPW) method within the local density approximation (LDA). The optical band-edge absorption α(ω) of intrinsic SnO 2 is investigated experimentally by transmission spectroscopy measurements and their roughness in the light of the atomic force microscopy (AFM) measurements. The sample films were prepared by spray pyrolysis deposition method onto glass substrate considering different thickness layers. We found for SnO 2 qualitatively good agreement of the calculated optical band-gap energy as well as the optical absorption with the experimental results

  7. Synthesis and oxidation of CpIrIII compounds: functionalization of a Cp methyl group.

    Science.gov (United States)

    Park-Gehrke, Lisa S; Freudenthal, John; Kaminsky, Werner; Dipasquale, Antonio G; Mayer, James M

    2009-03-21

    [CpIrCl(2)](2) () and new CpIr(III)(L-L)X complexes (L-L = N-O or C-N chelating ligands; X = Cl, I, Me) have been prepared and their reactivity with two-electron chemical oxidants explored. Reaction of with PhI(OAc)(2) in wet solvents yields a new chloro-bridged dimer in which each of the Cp ligands has been singly acetoxylated to form [Cp(OAc)Ir(III)Cl(2)](2) () (Cp(OAc) = eta(5)-C(5)Me(4)CH(2)OAc). Complex and related carboxy- and alkoxy-functionalized Cp(OR) complexes can also be prepared from plus (PhIO)(n) and ROH. [Cp(OAc)Ir(III)Cl(2)](2) () and the methoxy analogue [Cp(OMe)Ir(III)Cl(2)](2) () have been structurally characterized. Treatment of [CpIrCl(2)](2) () with 2-phenylpyridine yields CpIr(III)(ppy)Cl () (ppy = cyclometallated 2-phenylpyridyl) which is readily converted to its iodide and methyl analogues CpIr(III)(ppy)I and CpIr(III)(ppy)Me (). CpIr(III) complexes were also prepared with N-O chelating ligands derived from anthranilic acid (2-aminobenzoic acid) and alpha-aminoisobutyric acid (H(2)NCMe(2)COOH), ligands chosen to be relatively oxidation resistant. These complexes and were reacted with potential two-electron oxidants including PhI(OAc)(2), hexachlorocyclohexadienone (C(6)Cl(6)O), N-fluoro-2,4,6-trimethylpyridinium (Me(3)pyF(+)), [Me(3)O]BF(4) and MeOTf (OTf = triflate, CF(3)SO(3)). Iridium(V) complexes were not observed or implicated in these reactions, despite the similarity of the potential products to known CpIr(V) species. The carbon electrophiles [Me(3)O]BF(4) and MeOTf appear to react preferentially at the N-O ligands, to give methyl esters in some cases. Overall, the results indicate that Cp is not inert under oxidizing conditions and is therefore not a good supporting ligand for oxidizing organometallic complexes.

  8. State of the Art on Functional Virgin Olive Oils Enriched with Bioactive Compounds and Their Properties

    Directory of Open Access Journals (Sweden)

    Patricia Reboredo-Rodríguez

    2017-03-01

    Full Text Available Virgin olive oil, the main fat of the Mediterranean diet, is per se considered as a functional food—as stated by the European Food Safety Authority (EFSA—due to its content in healthy compounds. The daily intake of endogenous bioactive phenolics from virgin olive oil is variable due to the influence of multiple agronomic and technological factors. Thus, a good strategy to ensure an optimal intake of polyphenols through habitual diet would be to produce enriched virgin olive oil with well-known bioactive polyphenols. Different sources of natural biological active substances can be potentially used to enrich virgin olive oil (e.g., raw materials derived from the same olive tree, mainly olive leaves and pomaces, and/or other compounds from plants and vegetables, mainly herbs and spices. The development of these functional olive oils may help in prevention of chronic diseases (such as cardiovascular diseases, immune frailty, ageing disorders and degenerative diseases and improving the quality of life for many consumers reducing health care costs. In the present review, the most relevant scientific information related to the development of enriched virgin olive oil and their positive human health effects has been collected and discussed.

  9. Red blood cells sensitivity to oxidative stress in the presence of low concentrations of uranium compound

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, O.G. [Institute of Biology, Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 167982, Syktyvkar (Russian Federation)

    2014-07-01

    Uranium is a natural radioactive element widespread in biosphere. There are a few works that examined cellular and molecular mechanisms of uranium toxicity. Red blood cells are classical model to investigate toxicity mechanisms on cell membrane system. The aim of present work is to study the effect of uranyl ion in nano-molar concentrations on erythrocytes sensitivity (in vitro) to factors provoking acute oxidative stress. Uranyl ions were added to suspension of mice red blood cells in PBS as UO{sub 2}Cl{sub 2} solution. Samples were incubated in a thermostatic shaker at 37 deg. C during 3-5 hours. Than acute oxidative stress was induced by H{sub 2}O{sub 2} (0.9 mM) or AAPH (5 mM) solutions. Destabilization of the membrane was induced by nonionic detergent Triton X-100. The hemolysis degree and the content of LPO secondary products reacting with 2-thiobarbituric acid in the incubation mixture were determined spectrophotometrically. The ratio of hemoglobin various forms (oxyHb, metHb and ferrylHb) was calculated taking into account extinction coefficients. It was shown that uranyl chloride enhances cell sensitivity to nonionic detergent Triton X-100 effects, indicating alterations of membrane acyl chain order due to contact with the radionuclide ions. Uranium exposure also caused an increase in the cell sensitivity to the AAPH effects, resulted in a decrease in red cell survival rate, a sharp increase in accumulation of hemoglobin oxidation products and a slight increase in the concentration of LPO secondary products. Thus, uranyl ions change physicochemical properties of the erythrocyte membranes that resulted in increased sensitivity to effects of peroxyl radicals formed by thermal decomposition of AAPH. On the contrary, use of another source of free radicals - H{sub 2}O{sub 2} - after uranyl ions exposure resulted in marked decrease of oxidative hemolysis, inhibition of LPO and hemoglobin oxidation. Since the uranium chemical properties similar to properties of

  10. Tunable Weyl and Dirac states in the nonsymmorphic compound CeSbTe.

    Science.gov (United States)

    Schoop, Leslie M; Topp, Andreas; Lippmann, Judith; Orlandi, Fabio; Müchler, Lukas; Vergniory, Maia G; Sun, Yan; Rost, Andreas W; Duppel, Viola; Krivenkov, Maxim; Sheoran, Shweta; Manuel, Pascal; Varykhalov, Andrei; Yan, Binghai; Kremer, Reinhard K; Ast, Christian R; Lotsch, Bettina V

    2018-02-01

    Recent interest in topological semimetals has led to the proposal of many new topological phases that can be realized in real materials. Next to Dirac and Weyl systems, these include more exotic phases based on manifold band degeneracies in the bulk electronic structure. The exotic states in topological semimetals are usually protected by some sort of crystal symmetry, and the introduction of magnetic order can influence these states by breaking time-reversal symmetry. We show that we can realize a rich variety of different topological semimetal states in a single material, CeSbTe. This compound can exhibit different types of magnetic order that can be accessed easily by applying a small field. Therefore, it allows for tuning the electronic structure and can drive it through a manifold of topologically distinct phases, such as the first nonsymmorphic magnetic topological phase with an eightfold band crossing at a high-symmetry point. Our experimental results are backed by a full magnetic group theory analysis and ab initio calculations. This discovery introduces a realistic and promising platform for studying the interplay of magnetism and topology. We also show that we can generally expand the numbers of space groups that allow for high-order band degeneracies by introducing antiferromagnetic order.

  11. Structure and magnetic ground states of spin-orbit coupled compound alpha-RuCl3

    Science.gov (United States)

    Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Mandrus, David; Stone, Matthew; Aczel, Adam; Li, Ling; Yiu, Yuen; Lumsden, Mark; Chakoumakos, Bryan; Tennant, Alan; Nagler, Stephen

    2015-03-01

    The layered material alpha-RuCl3 is composed of stacks of weakly coupled honeycomb lattices of octahedrally coordinated Ru3 + ions. The Ru ion ground state has 5 d electrons in the low spin state, with spin-orbit coupling very strong compared to other terms in the single ion Hamiltonian. The material is therefore an excellent candidate for investigating possible Heisenberg-Kitaev physics. In addition, this compound is very amenable to investigation by neutron scattering to explore the magnetic ground state and excitations in detail. In this talk, we discuss the synthesis of phase-pure alpha-RuCl3 and the characterization of the magnetization, susceptibility, and heat-capacity. We also report neutron diffraction on both powder and single crystal alpha-RuCl3, identifying the low temperature magnetic order observed in the material. The results, when compared to theoretical calculations, shed light on the relative importance of Kitaev and Heisenberg terms in the Hamiltonian. The research is supported by the DOE BES Scientific User Facility Division.

  12. The Super-Radiant Mechanism and the Widths of Compound Nuclear States

    International Nuclear Information System (INIS)

    Auerbach, N

    2012-01-01

    In the introduction I will present the theory of the super-radiant mechanism as applied to various phenomena. I will then discuss the statistics of resonance widths in a many-body Fermi system with open decay channels. Depending on the strength of the coupling to the continuum such systems show deviations from the standard Porter-Thomas distribution. The deviations result from the process of increasing interaction of the intrinsic states through the common decay channels. In the limit of very strong coupling this leads to super-radiance. The results I will present are important for the understanding of recent experimental data concerning the width distribution of compound neutron resonances in nuclei.

  13. Towards semisynthetic natural compounds with a biaryl axis: Oxidative phenol coupling in Aspergillus niger.

    Science.gov (United States)

    Hugentobler, Katharina Gloria; Müller, Michael

    2018-04-01

    Regio- and stereoselective phenol coupling is difficult to achieve using synthetic strategies. However, in nature, cytochrome P450 enzyme-mediated routes are employed to achieve complete axial stereo- and regiocontrol in the biosynthesis of compounds with potent bioactivity. Here, we report a synthetic biology approach whereby the bicoumarin metabolic pathway in Aspergillus niger was specifically tailored towards the formation of new coupling products. This strategy represents a manipulation of the bicoumarin pathway in A. niger via interchange of the phenol-coupling biocatalyst and could be applied to other components of the pathway to access a variety of atropisomeric natural product derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. New quasibound states of the compound nucleus in α -particle capture by the nucleus

    Science.gov (United States)

    Maydanyuk, Sergei P.; Zhang, Peng-Ming; Zou, Li-Ping

    2017-07-01

    We generalize the theory of nuclear decay and capture of Gamow that is based on tunneling through the barrier and internal oscillations inside the nucleus. In our formalism an additional factor is obtained, which describes distribution of the wave function of the the α particle inside the nuclear region. We discover new most stable states (called quasibound states) of the compound nucleus (CN) formed during the capture of α particle by the nucleus. With a simple example, we explain why these states cannot appear in traditional calculations of the α capture cross sections based on monotonic penetrabilities of a barrier, but they appear in a complete description of the evolution of the CN. Our result is obtained by a complete description of the CN evolution, which has the advantages of (1) a clear picture of the formation of the CN and its disintegration, (2) a detailed quantum description of the CN, (3) tests of the calculated amplitudes based on quantum mechanics (not realized in other approaches), and (4) high accuracy of calculations (not achieved in other approaches). These peculiarities are shown with the capture reaction of α +44Ca . We predict quasibound energy levels and determine fusion probabilities for this reaction. The difference between our approach and theory of quasistationary states with complex energies applied for the α capture is also discussed. We show (1) that theory does not provide calculations for the cross section of α capture (according to modern models of the α capture), in contrast with our formalism, and (2) these two approaches describe different states of the α capture (for the same α -nucleus potential).

  15. Oxidation under electron bombardment. A tool for studying the initial states of silicon oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Carriere, B.; Deville, J.P.; El Maachi, A.

    1987-06-01

    The exciting beam of an Auger electron spectrometer has been used to monitor the oxidation of silicon single crystals at room temperature and very low pressures of oxygen (approx. 10/sup -7/ Torr). This process allows us to build ultra-thin layers of silica on silicon (down to 30 A) but it is mostly used to investigate the mechanisms of the initial stages of oxidation. Auger spectra recorded continuously during the oxidation process provide information on (1) the nature of the silicon-oxygen chemical bonds which are interpreted through fine structure in the Auger peak, and (2) the kinetics of oxide formation which are deduced from curves of Auger signal versus time. An account is given of the contribution of these Auger studies to the description of the intermediate oxide layer during the reaction between silicon and oxygen and the influence of surface structural disorder, induced mainly by argon-ion bombardment, is discussed in terms of reactivity and oxide coverage.

  16. Densification, characterization and oxidation studies of novel TiB{sub 2}+EuB{sub 6} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, T.S.R.Ch., E-mail: murthi@barc.gov.in [Materials Group, Bhabha Atomic Research Centre, Mumbai (India); Sonber, J.K.; Vishwanadh, B. [Materials Group, Bhabha Atomic Research Centre, Mumbai (India); Nagaraj, A. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai (India); Sairam, K.; Bedse, R.D.; Chakravartty, J.K. [Materials Group, Bhabha Atomic Research Centre, Mumbai (India)

    2016-06-15

    TiB{sub 2}+EuB{sub 6} ceramic samples with different EuB{sub 6} contents were fabricated using hot -pressing technique. The introduction of EuB{sub 6} promoted the sinterability, fracture toughness and oxidation resistance of TiB{sub 2}. 98.7% TD achieved by adding 2.5% EuB{sub 6} to TiB{sub 2} by hot pressing at a relatively low temperature of 1750 °C, 35 MPa, 1h. Formation of complete solid solution of TiB{sub 2}+EuB{sub 6} observed for all the samples by XRD, EDS and EBSD. Hardness of all samples is measured in the range of 24–27 GPa ∼50% higher fracture toughness value of 5.2 MPa m{sup 1/2} was obtained in the 2.5% EuB{sub 6} contained sample compared to monolithic TiB{sub 2}. Enhancement of oxidation resistance of TiB{sub 2} was observed by EuB{sub 6} addition due to the formation of EuBO{sub 3} and Eu{sub 2}O{sub 3}. Oxidized cross section of TiB{sub 2}+EuB{sub 6} sample was measured as 340 μm, which is ∼35% less than that of monolithic TiB{sub 2} (520 μm), after oxidation at 1400 °C for 8h. - Highlights: • 98.7% TD achieved by adding 2.5% EuB{sub 6} to TiB{sub 2}. • Formation of complete solid solution of TiB{sub 2}+EuB{sub 6} observed. • Fracture toughness value of 5.2 MPa m{sup 1/2} was obtained in the TiB{sub 2}+2.5% EuB{sub 6}. • EuBO{sub 3} and Eu{sub 2}O{sub 3} are enhanced the oxidation resistance of TiB{sub 2} + EuB{sub 6} compound. • Oxide layer thicknesses of TiB{sub 2} and TiB{sub 2}+EuB{sub 6} are 520 μm and 340 μm respectively.

  17. Oxidation Degradation Study And Use Of Phenol And Amina Antioxidant Compounds In Natural Rubber Cyclical

    Directory of Open Access Journals (Sweden)

    Arofah Megasari Siregar

    2015-08-01

    Full Text Available The research was conducted research into the use of commercial antioxidants Irganox 1010 wingstay to inhibit the oxidative degradation of cyclic polymers of natural rubber and polypropylene nanocomposite with commercial montmorillonite PP MMT-Clay. Proces mixing nanocomposit PPMMT using commercial compatibiliser PP-g-MA PB3200 made in an internal mixer at a temperature of 180 C for 10 minutes and 65 rpm rotor speed. Hyndered phenol antioxidant effectiveness was analyzed using Fourier Transform Infra Red FTIR. Analysis of infrared is done by measuring the broad index absorption of the carbonyl group CO at a wavelength of 1700 cm-1 and a broad index uptake hydroxyl group at a wavelength of 3400 cm-1 before and after heated in an oven temperature of 125oC with variations in exposure time. The results indicate the use of antioxidant Irganox 1010 in nanocomposite PP MMT with a stabilizing factor of 5.5. Further commercial antioxidants will be used to restrain the rate of oxidation degradation of the natural rubber products cyclical CNR.

  18. Analysis of a gas-liquid film plasma reactor for organic compound oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Kevin [Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310 (United States); Wang, Huijuan [School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Locke, Bruce R., E-mail: blocke@fsu.edu [Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310 (United States)

    2016-11-05

    Highlights: • Non-homogeneous filamentary plasma discharge formed along gas-liquid interface. • Hydrogen peroxide formed near interface favored over organic oxidation from liquid. • Post-plasma Fenton reactions lead to complete utilization of hydrogen peroxide. - Abstract: A pulsed electrical discharge plasma formed in a tubular reactor with flowing argon carrier gas and a liquid water film was analyzed using methylene blue as a liquid phase hydroxyl radical scavenger and simultaneous measurements of hydrogen peroxide formation. The effects of liquid flow rate, liquid conductivity, concentration of dye, and the addition of ferrous ion on dye decoloration and degradation were determined. Higher liquid flow rates and concentrations of dye resulted in less decoloration percentages and hydrogen peroxide formation due to initial liquid conductivity effects and lower residence times in the reactor. The highest decoloration energy yield of dye found in these studies was 5.2 g/kWh when using the higher liquid flow rate and adding the catalyst. The non-homogeneous nature of the plasma discharge favors the production of hydrogen peroxide in the plasma-liquid interface over the chemical oxidation of the organic in the bulk liquid phase and post-plasma reactions with the Fenton catalyst lead to complete utilization of the plasma-formed hydrogen peroxide.

  19. Electrochemistry and time dependent DFT study of a (vinylenedithio)-TTF derivative in different oxidation states

    NARCIS (Netherlands)

    Halpin, Yvonne; Schulz, Martin; Brooks, Andrew C.; Browne, Wesley R.; Wallis, John D.; Gonzalez, Leticia; Day, Peter; Vos, Johannes G.

    2013-01-01

    The electrochemical and spectroelectrochemical properties of a bis-pyrid-4-yl functionalised vinylenedithio-TFF derivative, 1, in solution are reported. The compound was immobilised on a Pt electrode and the resulting layers formed were investigated using electrochemical techniques. Two oxidation

  20. Oriented Decoration in Metal-Functionalized Ordered Mesoporous Silicas and Their Catalytic Applications in the Oxidation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Shijian Zhou

    2018-02-01

    Full Text Available Ordered mesoporous silicas (OMSs attract considerable attention due to their advanced structural properties. However, for the pristine silica materials, the inert property greatly inhibits their catalytic applications. Thus, to contribute to the versatile surface of OMSs, different metal active sites, including acidic/basic sites and redox sites, have been introduced into specific locations (mesoporous channels and framework of OMSs and the metal-functionalized ordered mesoporous silicas (MOMSs show great potential in the catalytic applications. In this review, we first present the categories of metal active sites. Then, the synthesized processes of MOMSs are thoroughly discussed, in which the metal active sites would be introduced with the assistance of organic groups into the specific locations of OMSs. In addition, the structural morphologies of OMSs are elaborated and the catalytic applications of MOMSs in the oxidation of aromatic compounds are illustrated in detail. Finally, the prospects for the future development in this field are proposed.

  1. Cubic rare-earth compounds: variants of the three-state Potts model

    International Nuclear Information System (INIS)

    Kim, D.; Levy, P.M.; Uffer, L.F.

    1975-01-01

    In appropriate cubic fields, rare-earth ions have sixfold degenerate ground states. When the angular momentum of the rare earth is large, the six levels are characterized by states that are directed along the cube edges. Within these states the angular momentum operators J/sub x/, J/sub y/, and J/sub z/ have particularly simple matrix representations. The projection of an isotropic pair coupling between the rare earths onto these sixfold degenerate states leads to an interaction Hamiltonian H = -I Σ/sub (ij)/ sigma/sub i/sigma/sub j/delta/sub l/sub i/sub l/sub j//, where sigma takes on the values +-1 and l the values x, y, and z. This interaction is a variant of the three-state Potts model. Magnetic and quadrupolar anisotropy field terms are added to the Hamiltonian and the symmetry properties of the phase diagram associated with this model are determined. For nonzero quadrupolar anisotropy fields, the model is shown to have the thermodynamic behavior of an Ising model. However, for zero fields a new symmetry appears and in the mean-field approximation the model has tricritical-like exponents. This simple model is able to account for the large specific-heat critical exponent α' = 1 / 2 which has been observed for holmium antimonide in zero external fields. To the extent that the mean-field approximation is an accurate guide, we predict there are many cubic rare-earth compounds which exhibit tricritical-like behavior in zero field. In addition, for pure quadrupole coupling between rare earths in the sixfold degenerate states, the interaction Hamiltonian is exactly the three-state Potts model. In the mean-field approximation this system has a first-order phase transition. However, a small quadrupolar anisotropy field is sufficient to drive the system to a wing critical point. The specific heat has a critical exponent of α = 2 / 3 or 1 depending on the path taken to approach this critical point. (auth)

  2. Optical properties of zinc oxide-based ternary compounds synthesized by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Cembrero, J. [Departament d' Enginyeria Mecanica i Materials, Universitat Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia (Spain); Mollar, M.; Tortosa, M. [Departament de Fisica Aplicada, Universitat Politecnica de Valencia, Cami de Vera s/n, 46022 Valencia (Spain); Mari, B.

    2008-07-01

    Structure, morphology and optical properties of ZnO thin films grown by electrodeposition under different conditions changing both solvent (water or dimethylsulfoxide) and substrate (polycrystalline FTO or monocrystalline GaN) are reported. The results point out the advantage of using dimethylsulfoxide when uniform, oriented and highly transparent films are required. On the other hand electrodeposition in aqueous bath produces perfectly defined hexagonal ZnO columns which can be fully oriented by chosing a suitable substrate. Photoluminescence has only been observed for ZnO films grown in aqueous bath. Ternary compounds as ZnMO (M=Cd,Co,Mn) with a controlled ratio between both cations, and morphology and structure like binary ZnO can be easily obtained from dimethylsulfoxide. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Catalytic oxidation of light alkanes (C1-C4) by heteropoly compounds

    KAUST Repository

    Sun, Miao; Zhang, Jizhe; Putaj, Piotr; Caps, Valerie; Lefè bvre, Fré dé ric; Pelletier, Jeremie; Basset, Jean-Marie

    2014-01-01

    Heteropoly compounds (HPC) have revealed their potential to generate catalyst for selectively converting light alkanes to oxygenated products. There are various structures in which they are active the primary structure being that of the heteropolyanion itself, the secondary structure is the three-dimensional arrangements of polyanions, and the tertiary structure representing the manner in which the secondary structure assembles into solid particles. There are also a huge variety of elements inside the HPA. The heteropoly acids can have acidity, which varies dramatically depending on composition. This complexity of situation makes it very difficult to really have a predictive vision of their ability to activate and functionalize alkanes. However, a large amount of data reported suggests that the initial formula of the precatalyst is pivotal to direct the selectivity of the reaction toward different oxygenates. Inclusion of alternative transition metal atoms as addenda is highly influential with iron, vanadium, and antimony being particularly outstanding.

  4. Catalytic oxidation of light alkanes (C1-C4) by heteropoly compounds

    KAUST Repository

    Sun, Miao

    2014-01-22

    Heteropoly compounds (HPC) have revealed their potential to generate catalyst for selectively converting light alkanes to oxygenated products. There are various structures in which they are active the primary structure being that of the heteropolyanion itself, the secondary structure is the three-dimensional arrangements of polyanions, and the tertiary structure representing the manner in which the secondary structure assembles into solid particles. There are also a huge variety of elements inside the HPA. The heteropoly acids can have acidity, which varies dramatically depending on composition. This complexity of situation makes it very difficult to really have a predictive vision of their ability to activate and functionalize alkanes. However, a large amount of data reported suggests that the initial formula of the precatalyst is pivotal to direct the selectivity of the reaction toward different oxygenates. Inclusion of alternative transition metal atoms as addenda is highly influential with iron, vanadium, and antimony being particularly outstanding.

  5. Interface Controlled Oxidation States in Layered Cobalt Oxide Nanoislands on Gold

    DEFF Research Database (Denmark)

    Walton, Alexander; Fester, Jakob; Bajdich, Michal

    2015-01-01

    Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER; half of the catalytic “water splitting” reaction), particularly when promoted with gold. However, the surface chemistry of cobalt oxides and in particular the nature of the synergistic effect...

  6. Quantitative production of compound I from a cytochrome P450 enzyme at low temperatures. Kinetics, activation parameters, and kinetic isotope effects for oxidation of benzyl alcohol.

    Science.gov (United States)

    Wang, Qin; Sheng, Xin; Horner, John H; Newcomb, Martin

    2009-08-05

    Cytochrome P450 enzymes are commonly thought to oxidize substrates via an iron(IV)-oxo porphyrin radical cation transient termed Compound I, but kinetic studies of P450 Compounds I are essentially nonexistent. We report production of Compound I from cytochrome P450 119 (CYP119) in high conversion from the corresponding Compound II species at low temperatures in buffer mixtures containing 50% glycerol by photolysis with 365 nm light from a pulsed lamp. Compound I was studied as a reagent in oxidations of benzyl alcohol and its benzylic mono- and dideuterio isotopomers. Pseudo-first-order rate constants obtained at -50 degrees C with concentrations of substrates between 1.0 and 6.0 mM displayed saturation kinetics that gave binding constants for the substrate in the Compound I species (K(bind)) and first-order rate constants for the oxidation reactions (k(ox)). Representative results are K(bind) = 214 M(-1) and k(ox) = 0.48 s(-1) for oxidation of benzyl alcohol. For the dideuterated substrate C(6)H(5)CD(2)OH, kinetics were studied between -50 and -25 degrees C, and a van't Hoff plot for complexation and an Arrhenius plot for the oxidation reaction were constructed. The H/D kinetic isotope effects (KIEs) at -50 degrees C were resolved into a large primary KIE (P = 11.9) and a small, inverse secondary KIE (S = 0.96). Comparison of values extrapolated to 22 degrees C of both the rate constant for oxidation of C(6)H(5)CD(2)OH and the KIE for the nondeuterated and dideuterated substrates to values obtained previously in laser flash photolysis experiments suggested that tunneling could be a significant component of the total rate constant at -50 degrees C.

  7. Separation of pure Cerium oxides from rare earth compounds. Homogeneous precipitation using Urea-Hydrogen Peroxide

    International Nuclear Information System (INIS)

    Umeda, K.; Abrao, E.

    1975-01-01

    The obtainment of ceric oxide (CeO 2 ) of purity higher than 97% by application of homogeneous precipitation technique is described. The selective separation of cerium was reached by hydrolysis of urea in the presence of hydrogen peroxide, using a rare earths concentrate named rare earths chloride, a natural mixture of all lanthanides provenient from the industrialization of monazite. The best conditions for the preparation of CeO 2 of 94% purity are: 35-70g R 2 O 3 /1 and pH2,0 hydrolysis temperature: 88-90 0 C, urea/R 2 O 3 ratio: 4, H 2 O 2 /Ce 2 O 3 ratio: 1,5-5,0 and hydrolysis duration: 4 hours. A leaching procedure of the precipitate with 0,25-0,75M NHO 3 leads to a product of 97-99,5% CeO 2

  8. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles

    Directory of Open Access Journals (Sweden)

    Jingga Morry

    2017-04-01

    Full Text Available Oxidative stress, mainly contributed by reactive oxygen species (ROS, has been implicated in pathogenesis of several diseases. We review two primary examples; fibrosis and cancer. In fibrosis, ROS promote activation and proliferation of fibroblasts and myofibroblasts, activating TGF-β pathway in an autocrine manner. In cancer, ROS account for its genomic instability, resistance to apoptosis, proliferation, and angiogenesis. Importantly, ROS trigger cancer cell invasion through invadopodia formation as well as extravasation into a distant metastasis site. Use of antioxidant supplements, enzymes, and inhibitors for ROS-generating NADPH oxidases (NOX is a logical therapeutic intervention for fibrosis and cancer. We review such attempts, progress, and challenges. Lastly, we review how nanoparticles with inherent antioxidant activity can also be a promising therapeutic option, considering their additional feature as a delivery platform for drugs, genes, and imaging agents.

  9. Molecular-level chemistry of model single-crystal oxide surfaces with model halogenated compounds

    Science.gov (United States)

    Adib, Kaveh

    Synchrotron-based X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption (TPD) and low energy electron diffraction (LEED) have been used to investigate, at a molecular level, the chemistry of different terminations of single crystal iron-oxide surfaces with probe molecules (CCl4 and D2O). Comparisons of the reactivity of these surfaces towards CCl4, indicate that the presence of an uncapped surface Fe cation (strong Lewis acid site) and an adjacent oxygen site capped by that cation can effect the C-Cl bond cleavage in CCl4, resulting in dissociatively adsorbed Cl-adatoms and carbon-containing fragments. If in addition to these sites, an uncapped surface oxygen (Lewis base) site is also available, the carbon-containing moiety can then move that site, coordinate itself with that uncapped oxygen, and stabilize itself. At a later step, the carbon-containing fragment may form a strong covalent bond with the uncapped oxygen and may even abstract that surface oxygen. On the other hand, if an uncapped oxygen is not available to stabilize the carbon-containing fragment, the surface coordination will not occur and upon the subsequent thermal annealing of the surface the Cl-adatoms and the carbon-containing fragments will recombine and desorb as CCl4. Finally, the presence of surface deuteroxyls blocking the strong Lewis acid and base sites of the reactive surface, passivates this surface. Such a deuteroxylated surface will be unreactive towards CCl 4. Such a molecular level understanding of the surface chemistry of metal-oxides will have applications in the areas of selective catalysis, including environmental catalysis, and chemical sensor technology.

  10. Origin of interface states and oxide charges generated by ionizing radiation

    International Nuclear Information System (INIS)

    Sah, C.T.

    1976-01-01

    The randomly located trivalent silicon atoms are shown to account for the thermally generated interface states at the SiO 2 -Si interface. The interface state density is greatly reduced in water containing ambients at low temperatures (450 0 C) by forming trivalent silicon hydroxide bonds. Interface states are regenerated when the /triple bond/Si-OH bonds are broken by ionizing radiation and the OH ions are drifted away. In the bulk of the oxide film, the trivalent silicon and the interstitial oxygen donor centers are shown to be responsible for the heat and radiation generated positive space charge build-up (oxide charge) in thermally grown silicon oxide

  11. THE COMBINED EFFECT OF SCUTELLARIA BAICALENSIS EXTRACT AND COENZYME Q10 IN OXIDATIVE STRESS INDUCED BY CHROMIUM COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Ewa Sawicka

    2010-03-01

    Full Text Available Background: The common use of antioxidants and its joint application brings the question whether they are useful in oxidative stress induced by the chemicals or whether they cause harmful interaction. Both Scutellaria baicalensis and CoQ10 are known as antioxidants, however one exogenous, the second endogenous. Chromium belongs equal to essential microelements and toxic factors. Therefore the aim of work was the evaluation joint effect of two examined antioxidants in exposure to chromium compounds.Materials and methods: The material was fresh blood obtained from healthy volunteers. The concentration of malondialdehyde (MDA in erythrocytes was evaluated using Stock’s method. The activity of mixture of Antoxyd and coenzyme Q10 was tested after exposure to chromium III and VI at concentrations: 0,05; 0,5 and 1,0 µg/ml. Antioxidants were used in concentrations : 8,0; 20; 60 and 100 µg/ml. Results: The influence of coenzyme Q10 in exposure to chromium III and chromium VI was statistically insignificant, but CoQ10 given together with Antoxyd in all used concentration statistically significant decreased the level of MDA in erythrocytes exposed to chromium compounds (p*0,001. Conclusions: Application of both antioxidants has exerted synergistic action lowering MDA level, which was elevated after chromium. No harmful interactions in the examined sample between antioxidants and chromium ions were noted.

  12. Genotoxicity assessment of propyl thiosulfinate oxide, an organosulfur compound from Allium extract, intended to food active packaging.

    Science.gov (United States)

    Mellado-García, P; Maisanaba, S; Puerto, M; Llana-Ruiz-Cabello, M; Prieto, A I; Marcos, R; Pichardo, S; Cameán, A M

    2015-12-01

    Essential oils from onion (Allium cepa L.), garlic (Allium sativum L.), and their main components, such as propyl thiosulfinate oxide (PTSO) are being intended for active packaging with the purpose of maintaining and extending food product quality and shelf life. The present work aims to assess for the first time the potential mutagenicity/genotoxicity of PTSO (0-50 µM) using the following battery of genotoxicity tests: (1) the bacterial reverse-mutation assay in Salmonella typhimurium (Ames test, OECD 471); (2) the micronucleus test (OECD 487) (MN) and (3) the mouse lymphoma thymidine-kinase assay (OECD 476) (MLA) on L5178YTk(+/-), cells; and (4) the comet assay (with and without Endo III and FPG enzymes) on Caco-2 cells. The results revealed that PTSO was not mutagenic in the Ames test, however it was mutagenic in the MLA assay after 24 h of treatment (2.5-20 µM). The parent compound did not induce MN on mammalian cells; however, its metabolites (in the presence S9) produced positive results (from 15 µM). Data from the comet assay indicated that PTSO did not induce DNA breaks or oxidative DNA damage. Further in vivo genotoxicity tests are needed to confirm its safety before it is used as active additive in food packaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Potassium N-Iodo p-Toluenesulfonamide (TsNIK, Iodamine-T): A New Reagent for the Oxidation of Hydrazones to Diazo Compounds

    Science.gov (United States)

    Nicolle, Simon M; Moody, Christopher J

    2014-01-01

    A new reagent for the oxidation of hydrazones to diazo compounds is described. N-Iodo p-toluenesulfonamide (TsNIK, iodamine-T) allows the preparation of α-diazoesters, α-diazoamides, α-diazoketones and α-diazophosphonates in good yield and in high purity after a simple extractive work-up. α-Diazoesters were also obtained in high yield from the corresponding ketones through a one-pot process of hydrazone formation/oxidation. PMID:24615944

  14. Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson’s disease models

    Science.gov (United States)

    Ganesan, Palanivel; Ko, Hyun-Myung; Kim, In-Su; Choi, Dong-Kug

    2015-01-01

    Oxidative stress plays a very critical role in neurodegenerative diseases, such as Parkinson’s disease (PD), which is the second most common neurodegenerative disease among elderly people worldwide. Increasing evidence has suggested that phytobioactive compounds show enhanced benefits in cell and animal models of PD. Curcumin, resveratrol, ginsenosides, quercetin, and catechin are phyto-derived bioactive compounds with important roles in the prevention and treatment of PD. However, in vivo studies suggest that their concentrations are very low to cross blood–brain barrier thereby it limits bioavailability, stability, and dissolution at target sites in the brain. To overcome these problems, nanophytomedicine with the controlled size of 1–100 nm is used to maximize efficiency in the treatment of PD. Nanosizing of phytobioactive compounds enhances the permeability into the brain with maximized efficiency and stability. Several nanodelivery techniques, including solid lipid nanoparticles, nanostructured lipid carriers, nanoliposomes, and nanoniosomes can be used for controlled delivery of nanobioactive compounds to brain. Nanocompounds, such as ginsenosides (19.9 nm) synthesized using a nanoemulsion technique, showed enhanced bioavailability in the rat brain. Here, we discuss the most recent trends and applications in PD, including 1) the role of phytobioactive compounds in reducing oxidative stress and their bioavailability; 2) the role of nanotechnology in reducing oxidative stress during PD; 3) nanodelivery systems; and 4) various nanophytobioactive compounds and their role in PD. PMID:26604750

  15. Serum metabolome biomarkers associate low-level environmental perfluorinated compound exposure with oxidative /nitrosative stress in humans.

    Science.gov (United States)

    Wang, Xiaofei; Liu, Liangpo; Zhang, Weibing; Zhang, Jie; Du, Xiaoyan; Huang, Qingyu; Tian, Meiping; Shen, Heqing

    2017-10-01

    Previous in vivo and in vitro studies have linked perfluorinated compound (PFC) exposure with metabolic interruption, but the inter-species difference and high treatment doses usually make the results difficult to be extrapolated to humans directly. The best strategy for identifying the metabolic interruption may be to establish the direct correlations between monitored PFCs data and metabolic data on human samples. In this study, serum metabolome data and PFC concentrations were acquired for a Chinese adult male cohort. The most abundant PFCs are PFOA and PFOS with concentration medians 7.56 and 12.78 nM, respectively; in together they count around 81.6% of the total PFCs. PFC concentration-related serum metabolic profile changes and the related metabolic biomarkers were explored by using partial least squares-discriminant analysis (PLS-DA). Respectively taking PFOS, PFOA and total PFC as the classifiers, serum metabolome can be differentiated between the lowest dose group (1st quartile PFCs) and the highest PFC dose group (4th quartile PFCs). Ten potential PFC biomarkers were identified, mainly involving in pollutant detoxification, antioxidation and nitric oxide (NO) signal pathways. These suggested that low-level environmental PFC exposure has significantly adverse impacts on glutathione (GSH) cycle, Krebs cycle, nitric oxide (NO) generation and purine oxidation in humans. To the best of our knowledge, this is the first report investigating the association of environmental PFC exposure with human serum metabolome alteration. Given the important biological functions of the identified biomarkers, we suggest that PFC could increase the metabolism syndromes risk including diabetes and cardiovascular diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Assessing the Renal Toxicity of Capstone Depleted Uranium Oxides and Other Uranium Compounds

    International Nuclear Information System (INIS)

    Roszell, Laurie E.; Hahn, Fletcher; Lee, Robyn B.; Parkhurst, MaryAnn

    2009-01-01

    The primary target for uranium toxicity is the kidney. The most frequently used guideline for uranium kidney burdens is the International Commission on Radiation Protection (ICRP) value of 3 (micro)g U/g kidney, a value that is based largely upon chronic studies in animals. In the present effort, we have developed a risk model equation to assess potential outcomes of acute uranium exposure. Twenty-seven previously published case studies in which workers were acutely exposed to soluble compounds of uranium (as a result of workplace accidents) were analyzed. Kidney burdens of uranium for these individuals were determined based on uranium in the urine, and correlated with health effects observed over a period of up to 38 years. Based upon the severity of health effects, each individual was assigned a score (- to +++) and then placed into an Effect Group. A discriminant analysis was used to build a model equation to predict the Effect Group based on the amount of uranium in the kidneys. The model equation was able to predict the Effect Group with 85% accuracy. The risk model was used to predict the Effect Group for Soldiers exposed to DU as a result of friendly fire incidents during the 1991 Gulf War. This model equation can also be used to predict the Effect Group of new cases in which acute exposures to uranium have occurred

  17. Towards a Predictive Thermodynamic Model of Oxidation States of Uranium Incorporated in Fe (hydr) oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bagus, Paul S. [Univ. of North Texas, Denton, TX (United States)

    2013-01-01

    -Level Excited States: Consequences For X-Ray Absorption Spectroscopy”, J. Elec. Spectros. and Related Phenom., 200, 174 (2015) describes our first application of these methods. As well as applications to problems and materials of direct interest for our PNNL colleagues, we have pursued applications of fundamental theoretical significance for the analysis and interpretation of XPS and XAS spectra. These studies are important for the development of the fields of core-level spectroscopies as well as to advance our capabilities for applications of interest to our PNNL colleagues. An excellent example is our study of the surface core-level shifts, SCLS, for the surface and bulk atoms of an oxide that provides a new approach to understanding how the surface electronic of oxides differs from that in the bulk of the material. This work has the potential to lead to a new key to understanding the reactivity of oxide surfaces. Our theoretical studies use cluster models with finite numbers of atoms to describe the properties of condensed phases and crystals. This approach has allowed us to focus on the local atomistic, chemical interactions. For these clusters, we obtain orbitals and spinors through the solution of the Hartree-Fock, HF, and the fully relativistic Dirac HF equations. These orbitals are used to form configuration mixing wavefunctions which treat the many-body effects responsible for the open shell angular momentum coupling and for the satellites of the core-level spectra. Our efforts have been in two complementary directions. As well as the applications described above, we have placed major emphasis on the enhancement and extension of our theoretical and computational capabilities so that we can treat complex systems with a greater range of many-body effects. Noteworthy accomplishments in terms of method development and enhancement have included: (1) An improvement in our treatment of the large matrices that must be handled when many-body effects are treated. (2

  18. Solid/liquid extraction equilibria of phenolic compounds with trioctylphosphine oxide impregnated in polymeric membranes.

    Science.gov (United States)

    Praveen, Prashant; Loh, Kai-Chee

    2016-06-01

    Trioctylphosphine oxide based extractant impregnated membranes (EIM) were used for extraction of phenol and its methyl, hydroxyl and chloride substituted derivatives. The distribution coefficients of the phenols varied from 2 to 234, in the order of 1-napthol > p-chlorophenol > m-cresol > p-cresol > o-cresol > phenol > catechol > pyrogallol > hydroquinone, when initial phenols loadings was varied in 100-2000 mg/L. An extraction model, based on the law of mass action, was formulated to predict the equilibrium distribution of the phenols. The model was in excellent agreement (R(2) > 0.97) with the experimental results at low phenols concentrations ( 0.95), which signified high mass transfer resistance in the EIMs. Examination of the effects of ring substitution on equilibrium, and bivariate statistical analysis between the amounts of phenols extracted into the EIMs and factors affecting phenols interaction with TOPO, indicated the dominant role of hydrophobicity in equilibrium determination. These results improve understanding of the solid/liquid equilibrium process between phenols and the EIMs, and these will be useful in designing phenol recovery process from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Interaction of Model Inhibitor Compounds with Minimalist Cluster Representations of Hydroxyl Terminated Metal Oxide Surfaces

    Directory of Open Access Journals (Sweden)

    Christopher D. Taylor

    2018-01-01

    Full Text Available The computational modeling of corrosion inhibitors at the level of molecular interactions has been pursued for decades, and recent developments are allowing increasingly realistic models to be developed for inhibitor–inhibitor, inhibitor–solvent and inhibitor–metal interactions. At the same time, there remains a need for simplistic models to be used for the purpose of screening molecules for proposed inhibitor performance. Herein, we apply a reductionist model for metal surfaces consisting of a metal cation with hydroxide ligands and use quantum chemical modeling to approximate the free energy of adsorption for several imidazoline class candidate corrosion inhibitors. The approximation is made using the binding energy and the partition coefficient. As in some previous work, we consider different methods for incorporating solvent and reference systems for the partition coefficient. We compare the findings from this short study with some previous theoretical work on similar systems. The binding energies for the inhibitors to the metal hydroxide clusters are found to be intermediate to the binding energies calculated in other work for bare metal vs. metal oxide surfaces. The method is applied to copper, iron, aluminum and nickel metal systems.

  20. Changes in color and odorant compounds during oxidative aging of Pedro Ximenez sweet wines.

    Science.gov (United States)

    Chaves, Margarita; Zea, Luis; Moyano, Lourdes; Medina, Manuel

    2007-05-02

    Pedro Ximenez sweet wines obtained following the typical criaderas and solera method for sherry wines and subjected to oxidative aging for 0, 1.3, 4.2, 7.0, or 11.5 years were studied in terms of color and aroma fraction by using the CIELab method and gas chromatography, respectively. The parameters defining the CIELab color space (a*, b*, and L*) were subjected to a multiple-range test (p 1 that enriched the wines with fruity, fatty, floral, and balsamic notes during the aging process. The changes in color parameters and active odorants were not linearly related to aging time, being especially marked during the first 1.3 years and then less substantial up to the 7 years, the oldest wines exhibiting sensorial properties markedly departing from all others. For the wines aged over 1.3 years (minimum aging), 2,3-butanedione, linalool, and decanal can be used as reliable fingerprints of the older wines' quality.

  1. Zinc oxide nanostructures and its nano-compounds for efficient visible light photo-catalytic processes

    Science.gov (United States)

    Adam, Rania E.; Alnoor, Hatim; Elhag, Sami; Nur, Omer; Willander, Magnus

    2017-02-01

    Zinc oxide (ZnO) in its nanostructure form is a promising material for visible light emission/absorption and utilization in different energy efficient photocatalytic processes. We will first present our recent results on the effect of varying the molar ratio of the synthesis nutrients on visible light emission. Further we will use the optimized conditions from the molar ration experiments to vary the synthesis processing parameters like stirring time etc. and the effect of all these parameters in order to optimize the efficiency and control the emission spectrum are investigated using different complementary techniques. Cathodoluminescence (CL) is combined with photoluminescence (PL) and electroluminescence (EL) as the techniques to investigate and optimizes visible light emission from ZnO/GaN light emitting diodes. We will then show and discuss our recent finding of the use of high quality ZnO nanoparticles (NPs) for efficient photo-degradation of toxic dyes using the visible spectra, namely with a wavelength up to 800 nm. In the end, we show how ZnO nanorods (NRs) are used as the first template to be transferred to bismuth zinc vanadate (BiZn2VO6). The BiZn2VO6 is then used to demonstrate efficient and cost effective hydrogen production through photoelectrochemical water splitting using solar radiation.

  2. Ion bombardment effects on surface states in selected oxide systems: rutile and alkaline earth titanates

    International Nuclear Information System (INIS)

    Gruen, D.M.

    1978-01-01

    In this paper, the nature of the surface states of n-type TiO 2 and SrTiO 3 is discussed and the role of ion bombardment in modifying the properties of these states is elucidated. Insofar as possible, the interrelationships between oxide nonstoichiometry, surface states, ion bombardment effects and photoelectrolysis are explored

  3. Studi On Oxidation State Of U In Ba2NdUO6

    International Nuclear Information System (INIS)

    Firman Windarto, Hendri

    1996-01-01

    Ba 2 NdUO 6 is not of the important compounds that is formed from a solidification process for high level liquid waste using super high temperature method Ba 2 NdUO 6 has ordered perovskite structure. The objective of this study is to investigate oxidation state of U in Ba 2 NdUO 6 . The properties of Ba 2 NdUO 6 were observed by using Faraday-type torsion magnetometer and X-ray Photoelectron Spectrometer (XPS). The magnetic susceptibility measured in the temperature range of 4K to room temperature showed that the Ba 2 NdUO 6 is paramagnetism that obeys the Curie-Weiss law. The effective moment of Ba 2 NdUO 6 is 3.04 μB. The results of xPs spectrum showed that the peaks of U4f for Ba 2 NdUO 6 appeared exactly between binding energy of UO 2 and UO 3 . It can be concluded that Ba 2 NdUO 6 has binding energy peaks corresponding to pentavalent uranium

  4. Oxidation Kinetics of Copper: An Experiment in Solid State Chemistry.

    Science.gov (United States)

    Ebisuzaki, Y.; Sanborn, W. B.

    1985-01-01

    Oxidation kinetics in metals and the role defects play in diffusion-controlled reactions are discussed as background for a junior/senior-level experiment in the physical or inorganic chemistry laboratory. Procedures used and typical data obtained are provided for the experiment. (JN)

  5. Detecting Organic Compounds Released from Iron Oxidizing Bacteria using Sample Analysis at Mars (SAM) Like Instrument Protocols

    Science.gov (United States)

    Glavin, D. P.; Popa, R.; Martin, M. G.; Freissinet, C.; Fisk, M. R.; Dworkin, J. P.; Mahaffy, P. R.

    2012-01-01

    Mars is a planet of great interest for Astrobiology since its past environmental conditions are thought to have been favourable for the emergence life. At present, the Red Planet is extremely cold and dry and the surface is exposed to intense UV and ionizing radiation, conditions generally considered to be incompatible with life as we know it on Earth. It was proposed that the shallow subsurface of Mars, where temperatures can be above freezing and liquid water can exist on rock surfaces, could harbor chemolithoautotrophic bacteria such as the iron oxidizing microorganism Pseudomonas sp. HerB. The Mars Science Laboratory (MSL) mission will provide the next opportunity to carry out in situ measurements for organic compounds of possible biological origin on Mars. One instrument onboard MSL, called the Sample Analysis at Mars (SAM) instrument suite, will carry out a broad and sensitive search for organic compounds in surface samples using either high temperature pyrolysis or chemical extraction followed by gas chromatography mass spectrometry. We present gas chromatograph mass spectrometer (GC/MS) data on crushed olivine rock powders that have been inoculated with Pseudomonas sp. HerB at different concentrations ranging from approx 10(exp 2) to 10(exp 7) cells per gram. The inoculated olivine samples were heated under helium carrier gas flow at 500 C and the pyrolysis products concentrated using a SAM-like hydrocarbon trap set at -20 C followed by trap heating and analysis by GC/Ms. In addition, the samples were also extracted using a low temperature "one-pot" chemical extraction technique using N-methyl, N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) as the silylating agent prior to GC/MS analysis. We identified several aldehydes, thiols, and alkene nitriles after pyrolysis GC/MS analysis of the bacteria that were not found in the olivine control samples that had not been inoculated with bacteria. The distribution of pyrolysis products extracted from the

  6. Transformation of polyfluorinated compounds in natural waters by advanced oxidation processes.

    Science.gov (United States)

    Anumol, Tarun; Dagnino, Sonia; Vandervort, Darcy R; Snyder, Shane A

    2016-02-01

    The presence of perfluorocarboxylic acids (PFCAs) in source and finished drinking waters is a concern with studies showing bioaccumulation and adverse toxicological effects in wildlife and potentially humans. Per/Polyfluoroalkyl substances (PFAS) such as fluorotelomer alcohols have been identified as precursors for PFCAs in biological pathways. In this study, we investigated the fate of 6:2 and 8:2 homologues of the fluorotelomer unsaturated carboxylic acids (FTUCAs) during advanced oxidation process (AOPs). Results showed 6:2 FTUCA and 8:2 FTUCA transformed into 6-C PFCA (PFHxA) and 8-C PFCA (PFOA) respectively with very little other PFCA formation for all AOPs. The degradation of 6:2 FTUCA and 8:2 FTUCA was greater in the GW compared to SW for the ozone processes but similar for UV/H2O2. The formation of n-C PFCA followed O3>O3/H2O2 at same dose and UV/H2O2 had much lower formation at the doses tested. Non-targeted analysis with the LC-MS-qTOF indicated the production of other PFCAs which contribute to the total mass balance, although no intermediate product was discovered indicating a rapid and direct transformation from the FTUCAs to the PFCAs and/or significant volatilization of intermediates. With the use of AOPs essential to water reuse treatment schemes, this work raises concerns over the risk of potential formation of PFCAs in the treatment and their adverse health effects in finished drinking water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Plutonium uptake by Scenedesmus obliquus as a function of isotope and oxidation state

    International Nuclear Information System (INIS)

    Tkacik, M.F.; Giesy, J.P.; Wilhite, E.L.; Corey, J.C.

    1979-01-01

    Uptake of 238 Pu 4+ , 238 Pu 6+ , 239 Pu 4+ and 239 Pu 6+ by the green alga Scenedesmus obliquus (Turp) Kutz was studied to determine whether isotope or oxidation state differences affect Pu uptake from aqueous medium by algal cells. At equivalent 238 Pu and 239 PU concentrations, even when initial oxidation states differed, accumulations of these isotopes by S.obliquus were not significantly (p>0.05) different. Plutonium accumulation by S.obliquus was log-linear. (author)

  8. Solid-state laser pumping with a planar compound parabolic concentrator.

    Science.gov (United States)

    Panteli, D V; Pani, B M; Beli, L Z

    1997-10-20

    A novel solid-state laser-pumping scheme is proposed that combines a reflective lamp chamber and a compound parabolic concentrator (CPC) as a light guide. The CPC is made of a transparent material of high refractive index, and light is guided by the total internal reflection, with drastically reduced reflection losses. Material is chosen so that the absorption losses are minimized in the pumping wavelength range. The lamp chamber is designed with the principles of nonimaging optics, which ensures that the radiation is efficiently transferred from the lamp to the input aperture of the CPC. The pumping efficiency was first estimated theoretically, which gave us enough justification for the more accurate calculations with ray tracing. Single as well as multiple pumping cavities are discussed. New pumping geometry results in significantly increased pumping efficiency compared with conventional geometries. Also the lamp and the laser rod are separated, leading to reduced thermal load. We found that the proposed pumping method is also applicable to diode-pumped lasers.

  9. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model

    Energy Technology Data Exchange (ETDEWEB)

    Baltrusaitis, Jonas, E-mail: job314@lehigh.edu [Department of Chemical Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 (United States); PhotoCatalytic Synthesis group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede (Netherlands); Mendoza-Sanchez, Beatriz [CRANN, Chemistry School, Trinity College Dublin, Dublin (Ireland); Fernandez, Vincent [Institut des Matériaux Jean Rouxel, 2 rue de la Houssinière, BP 32229, F-44322 Nantes Cedex 3 (France); Veenstra, Rick [PhotoCatalytic Synthesis group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede (Netherlands); Dukstiene, Nijole [Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas (Lithuania); Roberts, Adam [Kratos Analytical Ltd, Trafford Wharf Road, Wharfside, Manchester, M17 1GP (United Kingdom); Fairley, Neal [Casa Software Ltd, Bay House, 5 Grosvenor Terrace, Teignmouth, Devon TQ14 8NE (United Kingdom)

    2015-01-30

    Highlights: • We analyzed and modeled spectral envelopes of complex molybdenum oxides. • Molybdenum oxide films of varying valence and crystallinity were synthesized. • MoO{sub 3} and MoO{sub 2} line shapes from experimental data were created. • Informed amorphous sample model (IASM) developed. • Amorphous molybdenum oxide XPS envelopes were interpreted. - Abstract: Accurate elemental oxidation state determination for the outer surface of a complex material is of crucial importance in many science and engineering disciplines, including chemistry, fundamental and applied surface science, catalysis, semiconductors and many others. X-ray photoelectron spectroscopy (XPS) is the primary tool used for this purpose. The spectral data obtained, however, is often very complex and can be subject to incorrect interpretation. Unlike traditional XPS spectra fitting procedures using purely synthetic spectral components, here we develop and present an XPS data processing method based on vector analysis that allows creating XPS spectral components by incorporating key information, obtained experimentally. XPS spectral data, obtained from series of molybdenum oxide samples with varying oxidation states and degree of crystallinity, were processed using this method and the corresponding oxidation states present, as well as their relative distribution was elucidated. It was shown that monitoring the evolution of the chemistry and crystal structure of a molybdenum oxide sample due to an invasive X-ray probe could be used to infer solutions to complex spectral envelopes.

  10. Oxidation of styrene to benzaldehyde/benzoic acid

    Indian Academy of Sciences (India)

    For the first two catalysts (compounds 1 ... liquid phase reactions.7 H2O2 can oxidize the organic compounds with an efficiency of 47% (active oxidant= .... Solid state (diffuse reflectance) electronic absorption spectra of the parent compound 1 and regenerated 1, shown ... tion of the organic part (extraction with DCM layer).

  11. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    Energy Technology Data Exchange (ETDEWEB)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

    2003-12-08

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

  12. Escherichia coli as a potential hydrocarbon conversion microorganism. Oxidation of aliphatic and aromatic compounds by recombinant E. coli in two-liquid phase (aqueous-organic) systems

    NARCIS (Netherlands)

    Favre-Bulle, Olivier

    1992-01-01

    The increased interest in the study of hydrocarbon utilizing microorganisms in recent years has been stimulated by the possibility of using their monooxygenases in the selective oxidation of aliphatic and aromatic compounds. As an example, long chain (>C16) n-alkanes are converted to dicarboxylic

  13. Preparation of deuterated heterocyclic five-membered ring compounds (furan, thiophene, pyrrole, and derivatives) by base-catalyzed hydrogen isotope exchange with deuterium oxide

    International Nuclear Information System (INIS)

    Heinrich, K.H.; Herrmann, M.; Moebius, G.; Sprinz, H.

    1984-01-01

    Several deuterated heterocyclic compounds of the type of furan,thiophene and pyrrole were prepared by base-catalyzed proton exchange with deuterium oxide at temperatures above 423 K in a closed system. The determination of deuterium and its distribution within the molecules was carried out by mass spectrometry and 1 H nmr spectrometry. (author)

  14. Origin of the chemical shift in X-ray absorption near-edge spectroscopy at the Mn K-Edge in manganese oxide compounds

    NARCIS (Netherlands)

    de Vries, AH; Hozoi, L.; Broer, R.

    2003-01-01

    The absorption edge in Mn K-edge X-ray absorption spectra of manganese oxide compounds shows a shift of several electronvolts in going from MnO through LaMnO3 to CaMnO3. On the other hand, in X-ray photoelectron spectra much smaller shifts are observed. To identify the mechanisms that cause the

  15. Enhanced extraction of phenolic compounds from coffee industry’s residues through solid state fermentation by Penicillium purpurogenum

    Directory of Open Access Journals (Sweden)

    Lady Rossana PALOMINO García

    2015-01-01

    Full Text Available Abstract The use of agroindustrial residues is an economical solution to industrial biotechnology. Coffee husk and pulp are abounding residues from coffee industry which can be used as substrates in solid state fermentation process, thus allowing a liberation and increase in the phenolic compound content with high added value. By employing statistical design, initial moisture content, pH value in the medium, and the incubation temperature were evaluated, in order to increase the polyphenol content in a process of solid state fermentation by Penicillium purpurogenum. The main phenolic compounds identified through HPLC in fermented coffee residue were chlorogenic acid, caffeic acid, and rutin. Data obtained through HPLC with the radical absorbance capacity assay suggest the fermented coffee husk and pulp extracts potential as a source of phenolic acids and flavonoids. Results showed good perspectives when using P. purpurogenum strain to enhance the liberation of phenolic compounds in coffee residues.

  16. Development of corresponding states model for estimation of the surface tension of chemical compounds

    DEFF Research Database (Denmark)

    Gharagheizi, Farhad; Eslamimanesh, Ali; Sattari, Mehdi

    2013-01-01

    include critical temperature or temperature/critical volume/acentric factor/critical pressure/reduced temperature/reduced normal boiling point temperature/molecular weight of the compounds. Around 1,300 surface tension data of 118 random compounds are used for developing the first model (a four...

  17. Cooperation of CMEA member states in the field of the manufacture and use of stable isotopes and compounds thus labelled

    International Nuclear Information System (INIS)

    Ertel, G.; Ewald, G.

    1977-01-01

    The contribution presents a survey of scientific-technical cooperation of CMEA member states in the field of stable isotopes, it deals with the specialization of stable isotope production and compounds thus labelled, and gives the prospects for further development of this cooperation. (HK) [de

  18. Oxidation states by X-ray fluorescence and electron probe microanalysis techniques

    International Nuclear Information System (INIS)

    Vazquez, Cristina; Riveros, J.A.

    1987-01-01

    Many years ago, several studies showed the effect of a chemical state in X-ray spectra. The effect, however, has rarely been utilized in quantitative chemical analysis. The purpose of this work is to show observed shifts due to different chemical states in iron compounds. (Author) [es

  19. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    Science.gov (United States)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-05-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  20. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    Science.gov (United States)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-03-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  1. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    Energy Technology Data Exchange (ETDEWEB)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; Larry Chick

    2004-05-07

    The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.

  2. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Travis Shane [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mincher, Bruce Jay [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schmitt, Nicholas C [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show that the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.

  3. A chromatographic method to analyze products from photo-oxidation of anthropogenic and biogenic mixtures of volatile organic compounds in smog chambers.

    Science.gov (United States)

    Pindado Jiménez, Oscar; Pérez Pastor, Rosa M; Vivanco, Marta G; Santiago Aladro, Manuel

    2013-03-15

    A method for quantifying secondary organic aerosol compounds (SOA) and water soluble secondary organic aerosol compounds (WSOA) produced from photo-oxidation of complex mixtures of volatile organic compounds (VOCs) in smog chambers by gas chromatography/mass spectrometry (GC/MS) has been developed. This method employs a double extraction with water and methanol jointly to a double derivatization with N,O-bis (trimethylsilil) trifluoroacetamide (BSTFA) and O-(2,3,4,5,6)-pentafluorobenzyl-hydroxylamine hydrochloride (PFBHA) followed by an analysis performed by GC/MS. The analytical procedure complements other methodologies because it can analyze SOA and WSOA compounds simultaneously at trace levels. As application, the methodology was employed to quantify the organic composition of aerosols formed in a smog chamber as a result of photo-oxidation of two different mixtures of volatile organic compounds: an anthropogenic mixture and a biogenic mixture. The analytical method allowed us to quantify up to 17 SOA compounds at levels higher than 20 ng m(-3) with reasonable recovery and a precision below 11%. Values found for applicability, selectivity, linearity, precision, recovery, detection limit, quantification limit and sensitivity demonstrated that the methodology can be satisfactorily applied to quantify SOA and WSOA. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2014-03-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O : C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O : C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to depend on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O : C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  5. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy-phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2013-10-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy-phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O:C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O:C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to be dependent on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O:C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  6. Formation of polymerization compounds during thermal oxidation of cottonseed oil, partially hydrogenated cottonseed oil and their blends

    Directory of Open Access Journals (Sweden)

    Barrera-Arellano, D. Laboratório de Óleos e Gorduras, Departa

    2006-09-01

    Full Text Available Samples of cottonseed oil, partially hydrogenated cottonseed oil and their blends, with iodine values between 60 and 110, tocopherol-stripped or not by aluminium oxide treatment, were submitted to thermal oxidation, at 180 °C, for 10 hours. Samples were collected at 0, 2, 5, 8 and 10 hours, for the determination of dimers and polymers (degradation compounds and of tocopherols. The influence of the degree of hydrogenation on the formation of dimers and polymers and the role of originally present tocopherols in the protection of fats and oils against thermal degradation was verified. The degradation curves for tocopherols showed a fast destruction rate for the tocopherols present in cottonseed fats and oil (α and γ-tocopherols, with residual levels close to zero after 10 hours under thermal oxidation conditions. Nevertheless, samples with their natural tocopherols presented a slower rate of thermal degradation. The unsaturation degree was apparently more important in the protection against thermal degradation than the content of tocopherolsMuestras de aceite de algodón, aceite de algodón parcialmente hidrogenado y sus mezclas, con índices de yodo de 60 a 110, tratadas o no con óxido de aluminio, fueron sometidas a termoxidación, a 180 °C, durante 10 horas. Se retiraron muestras en los tiempos 0, 2, 5, 8 y 10 horas, para determinación de dímeros y polímeros (compuestos de degradación y de tocoferoles. Se verificó la influencia del grado de hidrogenación sobre la formación de dímeros y polímeros, y también el papel de los tocoferoles originalmente presentes en el aceite y en las grasas, en la protección contra la degradación térmica. Las curvas de degradación de los tocoferoles mostraron una destrucción bastante rápida de los tocoferoles presentes en el aceite y en las grasas de algodón (α y γ-tocoferoles, con niveles residuales próximos a cero después de 10 horas de termoxidación. Aún así, muestras con sus

  7. Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson’s disease models

    Directory of Open Access Journals (Sweden)

    Ganesan P

    2015-10-01

    Full Text Available Palanivel Ganesan,1,2 Hyun-Myung Ko,2 In-Su Kim,2 Dong-Kug Choi1,2 1Nanotechnology Research Center, Department of Applied Life Science, 2Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea Abstract: Oxidative stress plays a very critical role in neurodegenerative diseases, such as Parkinson’s disease (PD, which is the second most common neurodegenerative disease among elderly people worldwide. Increasing evidence has suggested that phytobioactive compounds show enhanced benefits in cell and animal models of PD. Curcumin, resveratrol, ginsenosides, quercetin, and catechin are phyto-derived bioactive compounds with important roles in the prevention and treatment of PD. However, in vivo studies suggest that their concentrations are very low to cross blood–brain barrier thereby it limits bioavailability, stability, and dissolution at target sites in the brain. To overcome these problems, nanophytomedicine with the controlled size of 1–100 nm is used to maximize efficiency in the treatment of PD. Nanosizing of phytobioactive compounds enhances the permeability into the brain with maximized efficiency and stability. Several nanodelivery techniques, including solid lipid nanoparticles, nanostructured lipid carriers, nanoliposomes, and nanoniosomes can be used for controlled delivery of nanobioactive compounds to brain. Nanocompounds, such as ginsenosides (19.9 nm synthesized using a nanoemulsion technique, showed enhanced bioavailability in the rat brain. Here, we discuss the most recent trends and applications in PD, including 1 the role of phytobioactive compounds in reducing oxidative stress and their bioavailability; 2 the role of nanotechnology in reducing oxidative stress during PD; 3 nanodelivery systems; and 4 various nanophytobioactive compounds and their role in PD. Keywords: Parkinson’s disease, phytobioactive compounds, nanotechnology delivery systems, nanocurcumin

  8. Spectroscopic studies of neutral and chemically oxidized species of β-carotene, lycopene and norbixin in CH2Cl2: Fluorescence from intermediate compounds

    International Nuclear Information System (INIS)

    Alwis, D.D.D.H; Chandrika, U.G.; Jayaweera, P.M.

    2015-01-01

    Radical cations, dications and oxidized intermediate species of three carotenoids, namely, β-carotene, lycopene and norbixin, were generated in CH 2 Cl 2 solutions via chemical oxidation using anhydrous FeCl 3 . UV–vis, fluorescence and fluorescence-excitation spectroscopic studies were performed to understand and compare the nature of intermediate species generated during the chemical oxidation process and subsequent degradation. The intense emission observed at 550 nm can be assigned to the S 2 →S 0 (1 1 B u →1 1 A g ) transition of the carotenoid molecules. The 350 nm excitation during the oxidation process for β-carotene, lycopene and norbixin exhibit intense fluorescence peaks at 492 nm, 493 nm and 500 nm, respectively. These peaks are assigned to intermediate peroxy/epoxy compounds of the three molecules that are formed with molecular oxygen prior to the formation of oxidized short-chain stable compounds. - Highlights: • Fluorescence and UV–vis studies on β-carotene, lycopene and norbixin. • Oxidation, induced by FeCl 3 in CH 2 Cl 2 shows blue shifted fluorescence peaks. • Fluorescence peaks were assigned to intermediate peroxy/epoxy forms of carotenoids. • The D0→D3 transition of radical cations are observed in the near IR region

  9. Spectroscopic studies of neutral and chemically oxidized species of β-carotene, lycopene and norbixin in CH{sub 2}Cl{sub 2}: Fluorescence from intermediate compounds

    Energy Technology Data Exchange (ETDEWEB)

    Alwis, D.D.D.H [Department of Chemistry, The Open University of Sri Lanka, Nawala (Sri Lanka); Department of Chemistry, University of Sri Jayewardenepura, Nugegoda (Sri Lanka); Chandrika, U.G. [Department of Biochemistry, University of Sri Jayewardenepura, Nugegoda (Sri Lanka); Jayaweera, P.M., E-mail: pradeep@sjp.ac.lk [Department of Chemistry, University of Sri Jayewardenepura, Nugegoda (Sri Lanka)

    2015-02-15

    Radical cations, dications and oxidized intermediate species of three carotenoids, namely, β-carotene, lycopene and norbixin, were generated in CH{sub 2}Cl{sub 2} solutions via chemical oxidation using anhydrous FeCl{sub 3}. UV–vis, fluorescence and fluorescence-excitation spectroscopic studies were performed to understand and compare the nature of intermediate species generated during the chemical oxidation process and subsequent degradation. The intense emission observed at 550 nm can be assigned to the S{sub 2}→S{sub 0} (1{sup 1}B{sub u}→1{sup 1}A{sub g}) transition of the carotenoid molecules. The 350 nm excitation during the oxidation process for β-carotene, lycopene and norbixin exhibit intense fluorescence peaks at 492 nm, 493 nm and 500 nm, respectively. These peaks are assigned to intermediate peroxy/epoxy compounds of the three molecules that are formed with molecular oxygen prior to the formation of oxidized short-chain stable compounds. - Highlights: • Fluorescence and UV–vis studies on β-carotene, lycopene and norbixin. • Oxidation, induced by FeCl{sub 3} in CH{sub 2}Cl{sub 2} shows blue shifted fluorescence peaks. • Fluorescence peaks were assigned to intermediate peroxy/epoxy forms of carotenoids. • The D0→D3 transition of radical cations are observed in the near IR region.

  10. Effect of pharmaceutical potential endocrine disruptor compounds on protein disulfide isomerase reductase activity using di-eosin-oxidized-glutathione.

    Directory of Open Access Journals (Sweden)

    Danièle Klett

    Full Text Available BACKGROUND: Protein Disulfide Isomerase (PDI in the endoplasmic reticulum of all cells catalyzes the rearrangement of disulfide bridges during folding of membrane and secreted proteins. As PDI is also known to bind various molecules including hormones such as estradiol and thyroxin, we considered the hypothesis that adverse effects of endocrine-disrupter compounds (EDC could be mediated through their interaction with PDI leading to defects in membrane or secreted proteins. METHODOLOGY/PRINCIPAL FINDINGS: Taking advantage of the recent description of the fluorescence self quenched substrate di-eosin-oxidized-glutathione (DiE-GSSG, we determined kinetically the effects of various potential pharmaceutical EDCs on the in-vitro reductase activity of bovine liver PDI by measuring the fluorescence of the reaction product (E-GSH. Our data show that estrogens (ethynylestradiol and bisphenol-A as well as indomethacin exert an inhibition whereas medroxyprogesteroneacetate and nortestosterone exert a potentiation of bovine PDI reductase activity. CONCLUSIONS: The present data indicate that the tested EDCs could not only affect endocrine target cells through nuclear receptors as previously shown, but could also affect these and all other cells by positively or negatively affecting PDI activity. The substrate DiE-GSSG has been demonstrated to be a convenient substrate to measure PDI reductase activity in the presence of various potential EDCs. It will certainly be usefull for the screening of potential effect of all kinds of chemicals on PDI reductase activity.

  11. Study on the state of a surface of compounds of vanadium with light elements

    International Nuclear Information System (INIS)

    Povstugar, V.I.; Mikhajlova, S.S.; Trapeznikov, V.A.

    1976-01-01

    Roentgenoelectron study of powderlike compounds of vanadium with light elements (C, N, O, S) was carried out. The study was made in the temperature range of 70-500 deg C. The results were obtained in an electron magnetic spectrometer. Spectra of inner levels O 1S and V 2p and valance bands are presented. The experimental results can be employed for the study of synthesis problems of the given class of compounds. Due to high surface activity the study of catalytic properties of finely dispersed vanadium compounds by roentgenoelectron spectroscopy method gives much information about surface processes

  12. Modern x-ray spectral methods in the study of the electronic structure of actinide compounds: Uranium oxide UO2 as an example

    Directory of Open Access Journals (Sweden)

    Teterin Yury A.

    2004-01-01

    Full Text Available Fine X-ray photo electron spectral (XPS structure of uranium dioxide UO2 in the binding energy (BE range 0-~č40 eV was associated mostly with the electrons of the outer (OVMO (0-15 eV BE and inner (IVMO (15-40 eV BE valence molecular orbitals formed from the incompletely U5f,6d,7s and O2p and completely filled U6p and O2s shells of neighboring uranium and oxygen ions. It agrees with the relativistic calculation results of the electronic structure for the UO812–(Oh cluster reflecting uranium close environment in UO2, and was confirmed by the X-ray (conversion electron, non-resonance and resonance O4,5(U emission, near O4,5(U edge absorption, resonance photoelectron, Auger spectroscopy data. The fine OVMO and IVMO related XPS structure was established to yield conclusions on the degree of participation of the U6p,5f electrons in the chemical bond, uranium close environment structure and interatomic distances in oxides. Total contribution of the IVMO electrons to the covalent part of the chemical bond can be comparable with that of the OVMO electrons. It has to be noted that the IVMO formation can take place in compounds of any elements from the periodic table. It is a novel scientific fact in solid-state chemistry and physics.

  13. Phase Behavior and Equations of State of the Actinide Oxides

    Science.gov (United States)

    Chidester, B.; Pardo, O. S.; Panero, W. R.; Fischer, R. A.; Thompson, E. C.; Heinz, D. L.; Prescher, C.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    The distribution of the long-lived heat-producing actinide elements U and Th in the deep Earth has important implications for the dynamics of the mantle and possibly the energy budget of Earth's core. The low shear velocities of the Large Low-Shear Velocity Provinces (LLSVPs) on the core-mantle boundary suggests that these regions are at least partially molten and may contain concentrated amounts of the radioactive elements, as well as other large cations such as the rare Earth elements. As such, by exploring the phase behavior of actinide-bearing minerals at extreme conditions, some insight into the mineralogy, formation, and geochemical and geodynamical effects of these regions can be gained. We have performed in situ high-pressure, high-temperature synchrotron X-ray diffraction experiments and calculations on two actinide oxide materials, UO2 and ThO2, to determine their phase behavior at the extreme conditions of the lower mantle. Experiments on ThO2 reached 60 GPa and 2500 K, and experiments on UO2 reached 95 GPa and 2500 K. We find that ThO2 exists in the fluorite-type structure to 20 GPa at high temperatures, at which point it transforms to the high-pressure cotunnite-type structure and remains thus up to 60 GPa. At room temperature, an anomalous expansion of the fluorite structure is observed prior to the transition, and may signal anion sub-lattice disorder. Similarly, UO2 exists in the fluorite-type structure at ambient conditions and up to 28 GPa at high temperatures. Above these pressures, we have observed a previously unidentified phase of UO2 with a tetragonal structure as the lower-temperature phase and the cotunnite-type phase at higher temperatures. Above 78 GPa, UO2 undergoes another transition or possible dissociation into two separate oxide phases. These phase diagrams suggest that the actinides could exist as oxides in solid solution with other analogous phases (e.g. ZrO2) in the cotunnite-type structure throughout much of Earth's lower mantle.

  14. On matrix stabilisation of d- and f-transition metal ions in unstable oxidation states

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, Yurii M [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2009-01-31

    The state-of-the-art in matrix stabilisation of d- and f-transition metal ions in unstable oxidation states is analysed. Main aspects of this problem concerning the genealogy of appropriate matrix systems are classified. Relevant examples are given and the data that contradict the scheme proposed are discussed. The thermodynamics of the matrix stabilisation effect is considered using the concept of isomorphic miscibility. The influence of defects and non-equilibrium on the matrix stabilisation effect is discussed. The problem of identification of the oxidation states in matrix systems is examined and various types of matrix systems are considered.

  15. On matrix stabilisation of d- and f-transition metal ions in unstable oxidation states

    International Nuclear Information System (INIS)

    Kiselev, Yurii M

    2009-01-01

    The state-of-the-art in matrix stabilisation of d- and f-transition metal ions in unstable oxidation states is analysed. Main aspects of this problem concerning the genealogy of appropriate matrix systems are classified. Relevant examples are given and the data that contradict the scheme proposed are discussed. The thermodynamics of the matrix stabilisation effect is considered using the concept of isomorphic miscibility. The influence of defects and non-equilibrium on the matrix stabilisation effect is discussed. The problem of identification of the oxidation states in matrix systems is examined and various types of matrix systems are considered.

  16. Adsorption properties versus oxidation states of rutile TiO2(110)

    DEFF Research Database (Denmark)

    Martinez, Umberto; Hammer, Bjørk

    2011-01-01

    Using density functional theory we have studied the adsorption properties of different atoms and molecules deposited on a stoichiometric, reduced, and oxidized rutile TiO2(110) surface. Depending on the oxidation state of the surface, electrons can flow from or to the substrate and, therefore...... of the charge flow depends on the oxidation state of the rutile surface and on the adsorption site. Generally, the charging effect leads to more stable complexes. However, the increase in the binding energy of the adsorbates is highly dependent on the electronic states of the surface prior to the adsorption...... event. In this work we have analyzed in details these mechanisms and we have also established a direct correlation between the enhanced binding energy of the adsorbates and the induced gap states...

  17. Vacuum energy referred Ti3+/4+ donor/acceptor states in insulating and semiconducting inorganic compounds

    International Nuclear Information System (INIS)

    Rogers, E.G.; Dorenbos, P.

    2014-01-01

    Optical spectroscopy data has been collected on the energy needed for electron transfer from the valence band to Ti 4+ in about 40 different insulating and II–VI and III–V semiconducting compounds. It provides a measure for the location of the Ti 3+ 3d 1 ground state level above the valence band. This is combined with the vacuum referred binding energy (VRBE) of valence band electrons as obtained with the chemical shift model based on lanthanide impurity spectroscopy. It provides the VRBE of an electron in the Ti 3+ ground state level. This work will first show that the energy of electron transfer to Ti 4+ is about the same as that to Eu 3+ irrespective of the type of compound. Next it will be shown that the VRBE of the Ti 3+ 3d 1 ground state is always near −4 eV. An approximately ±1 eV spread around that value is attributed to the crystal field splitting of the Ti 3+ 3d-levels. - Highlights: • Data on the energy of charge transfer (CT) to Ti 4+ in 38 compounds was collected. • A correlation between the Ti 4+ and Eu 3+ CT energies has been established. • The chemical shift model has been applied to Ti impurity states. • The Ti 3+ ground state binding energy is always around −4±1 eV

  18. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

    Science.gov (United States)

    Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

  19. Photoreceptor Redox State Monitored In Vivo by Transmission and Fluorescence Microspectrophotometry in Blowfly Compound Eyes

    NARCIS (Netherlands)

    Tinbergen, J.; Stavenga, D.G.

    1986-01-01

    The transmission and fluorescence of the compound eye of living, intact blowflies Calliphora erythrocephala, mutant chalky, were studied microspectrophotometrically. Transmission spectra were recorded under four conditions. The fly was either in the normal air environment or in a nitrogen

  20. Design of Novel Biosensors for Determination of Phenolic Compounds using Catalyst-Loaded Reduced Graphene Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Kathleen Morrisey

    2014-06-01

    Full Text Available Facile and inexpensive method for designing high performance sensors for H2O2 and polyphenols has been developed. The proposed sensors are based on high electrocatalytic activity of Prussian Blue (PB nanoparticles deposited in situ on high surface area graphene nanosheet-based thin films on a graphite electrode. The exfoliated graphene nanosheets were formed by attaching graphene oxide to the electrode surface followed by their electrochemical reduction to obtain the reduced graphene oxide (rGO, providing high surface area and excellent current-carrying capabilities to the sensory film. The PB catalyst nanoparticles were deposited electrochemically on rGO. This procedure is very time efficient as it reduces the time of sensor preparation from 3 days (according to recent literature to several hours. The proposed method provides simple means to obtain highly reliable and stable sensory films. The sensor shows a dynamic range of 1–500 µM H2O2 and a rapid response of 5 s to reach 95% of a steady-state response. When combined with immobilized enzymes (horseradish peroxidase or laccase oxidase, it can serve as a biosensor for polyphenols. As the proof of concept, the response of the enzymatic biosensors to polyphenol catechin has been presented delineating different mechanisms of horseradish peroxidase and laccase operation. The proposed sensors are low cost, reliable, and scalable.

  1. Solvent-free oxidation of secondary alcohols to carbonyl compounds by 1, 3-Dibromo-5, 5-Dimethylhydantoin (DBDMH) and 1, 3-Dichloro-5, 5-Dimethylhydantoin (DCDMH)

    Energy Technology Data Exchange (ETDEWEB)

    Khazaei, Ardeshir; Abbasi, Fatemeh, E-mail: Khazaei_1326@yahoo.com, E-mail: fatemehabbasi807@gmail.com [Faculty of Chemistry, Department of Organic Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Kianiborazjani, Maryam [Faculty of Science, Department of Chemistry, Bushehr Payame Noor University (PNU), Bushehr (Iran, Islamic Republic of); Saednia, Shahnaz [Young Researchers Club, Toyserkan Branch, Islamic Azad University, Toyserkan (Iran, Islamic Republic of)

    2014-02-15

    Aldehydes and ketones are important intermediates, especially for the construction of carbon-skeletons. The oxidation of alcohols is so important that a large number of methods and reagents have been reported for this purpose. N-halo reagents are widely used in organic synthesis and as a continuation of our interest in the application of N-halo compounds in organic synthesis, dibromo dimethylhydantoin (DBDMH) and dichloro dimethylhydantoin (DCDMH) were used for the oxidation of alcohols and our ongoing work on development of highly efficient oxidation protocols. We observed the oxidation of secondary alcohols with stoichiometric amounts of DBDMH and DCDMH under solvent-free conditions in the range of temperature 70-80 deg C. (author)

  2. Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag{sup +}/TiO{sub 2}: Influence of electron donating and withdrawing substituents

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jiadong [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xie, Yongbing, E-mail: ybxie@ipe.ac.cn [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Han, Qingzhen [State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Cao, Hongbin [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Wang, Yujiao [Department of Chemical and Biomedical Engineering, University of Science and Technology Beijing (China); Nawaz, Faheem; Duan, Feng [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-03-05

    Highlights: • A weak EWG benefited photocatalytic oxidation of phenols the most. • Phenolic compounds were dominantly oxidized by ·O{sub 2}{sup −}, rather than ·OH, {sup 1}O{sub 2} or h{sup +}. • ·O{sub 2}{sup −} preferred to nucleophilically attack EDG substituted phenols. • ·O{sub 2}{sup −} more likely electrophilically attacked EWG substituted phenols. • ·O{sub 2}{sup −} simultaneously nucleophilically and electrophilically assaulted p-chlorophenol. - Abstract: A comparative study was constructed to correlate the electronic property of the substituents with the degradation rates of phenolic compounds and their oxidation pathways under UV with Ag{sup +}/TiO{sub 2} suspensions. It was verified that a weak electron withdrawing substituent benefited photocatalytic oxidation the most, while an adverse impact appeared when a substituent was present with stronger electron donating or withdrawing ability. The addition of p-benzoquinone dramatically blocked the degradation, confirming superoxide radicals (·O{sub 2}{sup −}) as the dominant photooxidant, rather than hydroxyl radicals, singlet oxygen or positive holes, which was also independent of the substituent. Hammett relationship was established based on pseudo-first-order reaction kinetics, and it revealed two disparate reaction patterns between ·O{sub 2}{sup −} and phenolic compounds, which was further verified by the quantum chemical computation on the frontier molecular orbitals and Mulliken charge distributions of ·O{sub 2}{sup −} and phenolic compounds. It was found that electron donating group (EDG) substituted phenols were more likely nucleophilically attacked by ·O{sub 2}{sup −}, while ·O{sub 2}{sup −} preferred to electrophilically assault electron withdrawing group (EWG) substituted phenols. Exceptionally, electrophilic and nucleophilic attack by ·O{sub 2}{sup −} could simultaneously occur in p-chlorophenol degradation, consequently leading to its highest rate

  3. Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag"+/TiO_2: Influence of electron donating and withdrawing substituents

    International Nuclear Information System (INIS)

    Xiao, Jiadong; Xie, Yongbing; Han, Qingzhen; Cao, Hongbin; Wang, Yujiao; Nawaz, Faheem; Duan, Feng

    2016-01-01

    Highlights: • A weak EWG benefited photocatalytic oxidation of phenols the most. • Phenolic compounds were dominantly oxidized by ·O_2"−, rather than ·OH, "1O_2 or h"+. • ·O_2"− preferred to nucleophilically attack EDG substituted phenols. • ·O_2"− more likely electrophilically attacked EWG substituted phenols. • ·O_2"− simultaneously nucleophilically and electrophilically assaulted p-chlorophenol. - Abstract: A comparative study was constructed to correlate the electronic property of the substituents with the degradation rates of phenolic compounds and their oxidation pathways under UV with Ag"+/TiO_2 suspensions. It was verified that a weak electron withdrawing substituent benefited photocatalytic oxidation the most, while an adverse impact appeared when a substituent was present with stronger electron donating or withdrawing ability. The addition of p-benzoquinone dramatically blocked the degradation, confirming superoxide radicals (·O_2"−) as the dominant photooxidant, rather than hydroxyl radicals, singlet oxygen or positive holes, which was also independent of the substituent. Hammett relationship was established based on pseudo-first-order reaction kinetics, and it revealed two disparate reaction patterns between ·O_2"− and phenolic compounds, which was further verified by the quantum chemical computation on the frontier molecular orbitals and Mulliken charge distributions of ·O_2"− and phenolic compounds. It was found that electron donating group (EDG) substituted phenols were more likely nucleophilically attacked by ·O_2"−, while ·O_2"− preferred to electrophilically assault electron withdrawing group (EWG) substituted phenols. Exceptionally, electrophilic and nucleophilic attack by ·O_2"− could simultaneously occur in p-chlorophenol degradation, consequently leading to its highest rate constant. Possible reactive positions on the phenolic compounds were also detailedly uncovered.

  4. Modeling phase equilibria of alkanols with the simplified PC-SAFT equation of state and generalized pure compound parameters

    DEFF Research Database (Denmark)

    Grenner, Andreas; Kontogeorgis, Georgios; von Solms, Nicolas

    2007-01-01

    The simplified PC-SAFT equation of state has been applied to liquid-liquid, vapor-liquid and solid-liquid equilibria for mixtures containing 1-or 2-alkanols with alkanes, aromatic hydrocarbons, CO2 and water. For the alkanols we use generalized pure compound parameters. This means that two...... of the physical pure compound parameters, in (segment number) and or (segment diameter), are obtained from linear extrapolations, since m and m sigma(3), increase linearly with respect to the molar mass, and moreover, the two association parameters (association energy and association volume) were assumed...... to be constant for all alkanols. Only the dispersion energy is fitted to experimental data. Thus it is possible to estimate parameters for several 1-and 2-alkanols. The final aim is to develop a group contribution approach for PC-SAFT which is suitable for complex compounds, considering that the motivation...

  5. Combination of synchrotron radiation X-ray microprobe and nuclear microprobe for chromium and chromium oxidation states quantitative mapping in single cells

    International Nuclear Information System (INIS)

    Ortega, Richard; Deves, Guillaume; Fayard, Barbara; Salome, Murielle; Susini, Jean

    2003-01-01

    Hexavalent chromium compounds are established carcinogens but their mechanism of cell transformation has not been elucidated yet. In this study, chromium oxidation state distribution maps in cells exposed to soluble (Na 2 CrO 4 ), or insoluble (PbCrO 4 ), Cr(VI) compounds have been obtained by use of the ESRF ID-21 X-ray microscope. In addition, the quantitative maps of element distributions in cells have been determined using the nuclear microprobe of Bordeaux-Gradignan. Nuclear microprobe quantitative analysis revealed interesting features on chromium, and lead, cellular uptake. It is suggested that cells can enhance PbCrO 4 solubility, resulting in chromium, but not lead uptake. The differential carcinogenic potential of soluble and insoluble Cr(VI) compounds is discussed with regard to chromium intracellular quantitative distribution

  6. Resource cost results for one-way entanglement distillation and state merging of compound and arbitrarily varying quantum sources

    International Nuclear Information System (INIS)

    Boche, H.; Janßen, G.

    2014-01-01

    We consider one-way quantum state merging and entanglement distillation under compound and arbitrarily varying source models. Regarding quantum compound sources, where the source is memoryless, but the source state an unknown member of a certain set of density matrices, we continue investigations begun in the work of Bjelaković et al. [“Universal quantum state merging,” J. Math. Phys. 54, 032204 (2013)] and determine the classical as well as entanglement cost of state merging. We further investigate quantum state merging and entanglement distillation protocols for arbitrarily varying quantum sources (AVQS). In the AVQS model, the source state is assumed to vary in an arbitrary manner for each source output due to environmental fluctuations or adversarial manipulation. We determine the one-way entanglement distillation capacity for AVQS, where we invoke the famous robustification and elimination techniques introduced by Ahlswede. Regarding quantum state merging for AVQS we show by example that the robustification and elimination based approach generally leads to suboptimal entanglement as well as classical communication rates

  7. The oxidation states of elements in pure and Ca-doped BiCuSeO thermoelectric oxides

    International Nuclear Information System (INIS)

    Hsiao, Chun-Lung; Qi, Xiaoding

    2016-01-01

    Bi 1−x Ca x CuSeO (x = 0–0.3) was synthesized at 650 °C in an air-tight system flowing with pure argon. The Ca doping resulted in an increase in the thermoelectric figure of merit (ZT) as the consequence of increased carrier concentration. X-ray photoelectron spectroscopy (XPS) was carried out to check the oxidation states in Bi 1−x Ca x CuSeO. The results indicated that in addition to the expected Bi 3+ and Cu 1+ , there existed Bi 2+ and Cu 2+ in the undoped BiCuSeO, whereas in the Ca-doped BiCuSeO, Bi 4+ , Cu 3+ and Cu 2+ were observed. The Ca dopant was confirmed to be in the 2+ oxidation state. Two broad peaks centered at 54.22 and 58.59 eV were recorded in the vicinity around the binding energy of Se 3d. The former is often observed in the Se-containing intermetallics while the latter is often found in the Se-containing oxides, indicating that along with the expected Se–Cu bonding, a bonding between Se and O may also exist. Based on the XPS results, the charge compensation mechanisms were proposed for Bi 1−x Ca x CuSeO, which may shed some light on the origins of charge carriers. BiCuSeO based oxides have recently be discovered to have a large ZT comparable to the best alloys currently in use, because of the large Seebeck coefficient and small thermal conductivity. However, their electrical conductivity is lower compared to the best thermoelectrics. This work may provide some hints for the further improvement of ZT in BiCuSeO based oxides. - Graphical abstract: The oxidation states, charge compensation mechanisms, and origins of charge carriers in Bi 1−x Ca x CuSeO thermoelectrics. Display Omitted

  8. Role of vitamin C transporters and biliverdin reductase in the dual pro-oxidant and anti-oxidant effect of biliary compounds on the placental-fetal unit in cholestasis during pregnancy

    International Nuclear Information System (INIS)

    Perez, Maria J.; Castano, Beatriz; Jimenez, Silvia; Serrano, Maria A.; Gonzalez-Buitrago, Jose M.; Marin, Jose J.G.

    2008-01-01

    Maternal cholestasis causes oxidative damage to the placental-fetal unit that may challenge the outcome of pregnancy. This has been associated with the accumulation of biliary compounds able to induce oxidative stress. However, other cholephilic compounds such as ursodeoxycholic acid (UDCA) and bilirubin have direct anti-oxidant properties. In the present study we investigated whether these compounds exert a protective effect on cholestasis-induced oxidative stress in placenta as compared to maternal and fetal livers, and whether this is due in part to the activation of anti-oxidant mechanisms involving vitamin C uptake and biliverdin/bilirubin recycling. In human placenta (JAr) and liver (HepG2) cells, deoxycholic acid (DCA) similar rates of free radical generation. In JAr (not HepG2), the mitochondrial membrane potential and cell viability were impaired by low DCA concentrations; this was partly prevented by bilirubin and UDCA. In HepG2, taurocholic acid (TCA) and UDCA up-regulated biliverdin-IXα reductase (BVRα) and the vitamin C transporter SVCT2 (not SVCT1), whereas bilirubin up-regulated both SVCT1 and SVCT2. In JAr, TCA and UDCA up-regulated BVRα, SVCT1 and SVCT2, whereas bilirubin up-regulated only SVCT2. A differential response to these compounds of nuclear receptor expression (SXR, CAR, FXR and SHP) was found in both cell types. When cholestasis was induced in pregnant rats, BVRα, SVCT1 and SVCT2 expression in maternal and fetal livers was stimulated, and this was further enhanced by UDCA treatment. In placenta, only BVRα was up-regulated. In conclusion, bilirubin accumulation and UDCA administration may directly and indirectly protect the placental-fetal unit from maternal cholestasis-induced oxidative stress

  9. Oxidation of tertiary amines by cytochrome p450-kinetic isotope effect as a spin-state reactivity probe.

    Science.gov (United States)

    Li, Chunsen; Wu, Wei; Cho, Kyung-Bin; Shaik, Sason

    2009-08-24

    Two types of tertiary amine oxidation processes, namely, N-dealkylation and N-oxygenation, by compound I (Cpd I) of cytochrome P450 are studied theoretically using hybrid DFT calculations. All the calculations show that both N-dealkylation and N-oxygenation of trimethylamine (TMA) proceed preferentially from the low-spin (LS) state of Cpd I. Indeed, the computed kinetic isotope effects (KIEs) for the rate-controlling hydrogen abstraction step of dealkylation show that only the KIE(LS) fits the experimental datum, whereas the corresponding value for the high-spin (HS) process is much higher. These results second those published before for N,N-dimethylaniline (DMA), and as such, they further confirm the conclusion drawn then that KIEs can be a sensitive probe of spin state reactivity. The ferric-carbinolamine of TMA decomposes most likely in a non-enzymatic reaction since the Fe-O bond dissociation energy (BDE) is negative. The computational results reveal that in the reverse reaction of N-oxygenation, the N-oxide of aromatic amine can serve as a better oxygen donor than that of aliphatic amine to generate Cpd I. This capability of the N-oxo derivatives of aromatic amines to transfer oxygen to the heme, and thereby generate Cpd I, is in good accord with experimental data previously reported.

  10. The influence of the magnetic state on the thermal expansion in 1:2 rare earth intermetallic compounds

    International Nuclear Information System (INIS)

    Gratz, E.; Lindbaum, A.

    1994-01-01

    The attempt is made to demonstrate on some selected rare earth intermetallics the influence of the magnetic state on the thermal expansion. Using the X-ray powder diffraction method we investigated the thermal expansion of some selected nonmagnetic compounds (YAl 2 , YNi 2 and YCo 2 ) and some magnetic RE (rare earth) - cobalt compounds (RCo 2 ) in the temperature range from 4 up to 450 K. All these compounds crystallize in the C15-type structure (cubic Laves phase structure). By comparing the nonmagnetic Y-based compounds we could show that there is an enhanced contribution of the 3d electrons to the thermal expansion in YCo 2 . In the magnetic RCo 2 compounds the induced 3d magnetism gives rise to large volume anomalies at the magnetic ordering temperature T c . Below T c there is in addition a distortion of the cubic unit cell due to the interaction of the magnetically ordered RE ions with the anisotropic crystal field.The thermal expansion of the orthorhombic TmCu 2 , GdCu 2 and YCu 2 compounds has also been investigated for comparison. The influence of the crystal field on the thermal expansion in TmCu 2 in the paramagnetic range (TmCu 2 orders magnetically at T N =6.3 K) has been determined by comparing the thermal expansion of the nonmagnetic YCu 2 with that of TmCu 2 . The data thus obtained are compared with a theoretical model. GdCu 2 , for which the influence of the crystal field can be neglected, has been investigated in order to study the influence of the exchange interaction in the magnetically ordered state (below 42 K). ((orig.))

  11. Ab initio molecular dynamics simulation of aqueous solution of nitric oxide in different formal oxidation states

    Science.gov (United States)

    Venâncio, Mateus F.; Rocha, Willian R.

    2015-10-01

    Ab initio molecular dynamics simulations were used to investigate the early chemical events involved in the dynamics of nitric oxide (NOrad), nitrosonium cation (NO+) and nitroxide anion (NO-) in aqueous solution. The NO+ ion is very reactive in aqueous solution having a lifetime of ∼4 × 10-13 s, which is shorter than the value of 3 × 10-10 s predicted experimentally. The NO+ reacts generating the nitrous acid as an intermediate and the NO2- ion as the final product. The dynamics of NOrad revealed the reversibly formation of a transient anion radical species HONOrad -.

  12. Photo-Fenton oxidation of 3-amino-5-methylisoxazole: a by-product from biological breakdown of some pharmaceutical compounds.

    Science.gov (United States)

    Souza, Bianca M; Marinho, Belisa A; Moreira, Francisca C; Dezotti, Márcia W C; Boaventura, Rui A R; Vilar, Vítor J P

    2017-03-01

    The present study aims to assess the removal of 3-amino-5-methylisoxazole (AMI), a recalcitrant by-product resulting from the biological breakdown of some pharmaceuticals, applying a solar photo-Fenton process assisted by ferrioxalate complexes (SPFF) (Fe 3+ /H 2 O 2 /oxalic acid/UVA-Vis) and classical solar photo-Fenton process (SPF) (Fe 2+ /H 2 O 2 /UVA-Vis). The oxidation ability of SPFF was evaluated at different iron/oxalate molar ratios (1:3, 1:6, and 1:9, with [total iron] = 3.58 × 10 -2  mM and [oxalic acid] = 1.07 × 10 -1 , 2.14 × 10 -1 and 3.22 × 10 -1  mM, respectively) and pH values (3.5-6.5), using low iron contents (2.0 mg Fe 3+ L -1 ). Additionally, the use of other organic ligands such as citrate and ethylenediamine-N,N'-disuccinic acid (EDDS) was tested. The oxidation power of the classical SPF was assessed at different pH values (2.8-4.0) using 2.0 mg Fe 2+ per liter. Furthermore, the effect of AMI concentration (2-20 mg L -1 ), presence of inorganic ions (Cl - , SO 4 2- , NO 3 - , HCO 3 - , NH 4 + ), and radical scavengers (sodium azide and D-mannitol) on the SPF method at pH 3.5 was also assessed. Experiments were done using a lab-scale photoreactor with a compound parabolic collector (CPC) under simulated solar radiation. A pilot-scale assay was conducted using the best operation conditions. While at near neutral pH, an iron/oxalate molar ratio of 1:9 led to the removal of 72 % of AMI after 90 min of SPFF, at pH 3.5, an iron/oxalate molar ratio of 1:3 was enough to achieve complete AMI degradation (below the detection limit) after 30 min of reaction. The SPF process at pH 3.5 underwent a slower AMI degradation, reaching total AMI degradation after 40 min of reaction. The scale up of SPF process showed a good reproducibility. Oxalic and oxamic acids were identified as the main low-molecular-weight carboxylic acids detected during the pilot-scale SPF reaction. Graphical abstract ᅟ.

  13. Deep oxidative desulfurization of dibenzothiophene in simulated oil and real diesel using heteropolyanion-substituted hydrotalcite-like compounds as catalysts.

    Science.gov (United States)

    Yu, Fengli; Wang, Rui

    2013-11-05

    Three heteropolyanion substituted hydrotalcite-like compounds (HPA-HTLcs) including Mg₉Al₃(OH)₂₄[PW₁₂O₄₀](MgAl-PW₁₂), Mg₉Al₃(OH)₂₄[PMo₁₂O₄₀] (MgAl-PMo₁₂) and Mg₁₂Al₄(OH)₃₂[SiW₁₂O₄₀] (MgAl-SiW₁₂), were synthesized, characterized and used as catalysts for the oxidative desulfurization of simulated oil (dibenzothiophene, DBT, in n-octane). MgAl-PMo₁₂ was identified as an effective catalyst for the oxidative removal of DBT under very mild conditions of atmospheric pressure and 60 °C in a biphasic system using hydrogen peroxide as oxidant and acetonitrile as extractant. The conversion of DBT was nearly 100%. As a result, because of the influence of the electron density and the space steric hindrance, the oxidation reactivity of the different sulfur compounds in simulated oil followed the order DBT > 4,6-dimethyldibenzothiophene (4,6-DMDBT) > benzothiophene (BT) > thiophene (TH). When the reaction is finished, the catalysts can be recovered from the acetonitrile phase by filtration. The recovered MgAl-PMo₁₂ retains nearly the same catalytic activity as the fresh material. Moreover, MgAl-PMo₁₂ was found to exhibit an ideal catalytic activity in the oxidative desulfurization of real diesel resulting in a total remaining sulfur content of 9.12 ppm(w).

  14. Deep Oxidative Desulfurization of Dibenzothiophene in Simulated Oil and Real Diesel Using Heteropolyanion-Substituted Hydrotalcite-Like Compounds as Catalysts

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2013-11-01

    Full Text Available Three heteropolyanion substituted hydrotalcite-like compounds (HPA-HTLcs including Mg9Al3(OH24[PW12O40](MgAl-PW12, Mg9Al3(OH24[PMo12O40] (MgAl-PMo12 and Mg12Al4(OH32[SiW12O40] (MgAl-SiW12, were synthesized, characterized and used as catalysts for the oxidative desulfurization of simulated oil (dibenzothiophene, DBT, in n-octane. MgAl-PMo12 was identified as an effective catalyst for the oxidative removal of DBT under very mild conditions of atmospheric pressure and 60 °C in a biphasic system using hydrogen peroxide as oxidant and acetonitrile as extractant. The conversion of DBT was nearly 100%. As a result, because of the influence of the electron density and the space steric hindrance, the oxidation reactivity of the different sulfur compounds in simulated oil followed the order DBT > 4,6-dimethyldibenzothiophene (4,6-DMDBT > benzothiophene (BT > thiophene (TH. When the reaction is finished, the catalysts can be recovered from the acetonitrile phase by filtration. The recovered MgAl-PMo12 retains nearly the same catalytic activity as the fresh material. Moreover, MgAl-PMo12 was found to exhibit an ideal catalytic activity in the oxidative desulfurization of real diesel resulting in a total remaining sulfur content of 9.12 ppm(w.

  15. Final Report for research grant "Development of Methods for High Specific Activity Labeling of Biomolecules Using Astatine-211 in Different Oxidation States"

    Energy Technology Data Exchange (ETDEWEB)

    Wilbur, D. Scott [Univ. of Washington, Seattle, WA (United States)

    2011-12-14

    The overall objective of this research effort was to develop methods for labeling biomolecules with higher oxidation state species of At-211. This was to be done in an effort to develop reagents that had higher in vivo stability than the present carbon-bonded At-211-labeled compounds. We were unsuccessful in that effort, as none of the approaches studied provided reagents that were stable to in vivo deastatination. However, we gained a lot of information about At-211 in higher oxidation states. The studies proved to be very difficult as small changes in pH and other conditions appeared to change the nature of the species that obtained (by HPLC retention time analyses), with many of the species being unidentifiable. The fact that there are no stable isotopes of astatine, and the chemistry of the nearest halogen iodine is quite different, made it very difficult to interpret results of some experiments. With that said, we believe that a lot of valuable information was obtained from the studies. The research effort evaluated: (1) methods for chemical oxidation of At-211, (2) approaches to chelation of oxidized At-211, and (3) approaches to oxidation of astatophenyl compounds. A major hurdle that had to be surmounted to conduct the research was the development of HPLC conditions to separate and identify the various oxidized species formed. Attempts to develop conditions for separation of iodine and astatine species by normal and reversed-phase TLC and ITLC were not successful. However, we were successful in developing conditions (from a large number of attempts) to separate oxidized forms of iodine ([I-125]iodide, [I-125]iodate and [I-125]periodate) and astatine ([At-211]astatide, [At-211]astatate, [At-211]perastatate, and several unidentified At-211 species). Information on the basic oxidation and characterization of At-211 species is provided under Objective 1. Conditions were developed to obtain new At-211 labeling method where At-211 is chelated with the DOTA and

  16. 99Tc and Re incorporated into metal oxide polyoxometalates: oxidation state stability elucidated by electrochemistry and theory.

    Science.gov (United States)

    McGregor, Donna; Burton-Pye, Benjamin P; Mbomekalle, Israel M; Aparicio, Pablo A; Romo, Susanna; López, Xavier; Poblet, Josep M; Francesconi, Lynn C

    2012-08-20

    The radioactive element technetium-99 ((99)Tc, half-life = 2.1 × 10(5) years, β(-) of 253 keV), is a major byproduct of (235)U fission in the nuclear fuel cycle. (99)Tc is also found in radioactive waste tanks and in the environment at National Lab sites and fuel reprocessing centers. Separation and storage of the long-lived (99)Tc in an appropriate and stable waste-form is an important issue that needs to be addressed. Considering metal oxide solid-state materials as potential storage matrixes for Tc, we are examining the redox speciation of Tc on the molecular level using polyoxometalates (POMs) as models. In this study we investigate the electrochemistry of Tc complexes of the monovacant Wells-Dawson isomers, α(1)-P(2)W(17)O(61)(10-) (α1) and α(2)-P(2)W(17)O(61)(10-) (α2) to identify features of metal oxide materials that can stabilize the immobile Tc(IV) oxidation state accessed from the synthesized Tc(V)O species and to interrogate other possible oxidation states available to Tc within these materials. The experimental results are consistent with density functional theory (DFT) calculations. Electrochemistry of K(7-n)H(n)[Tc(V)O(α(1)-P(2)W(17)O(61))] (Tc(V)O-α1), K(7-n)H(n)[Tc(V)O(α(2)-P(2)W(17)O(61))] (Tc(V)O-α2) and their rhenium analogues as a function of pH show that the Tc-containing derivatives are always more readily reduced than their Re analogues. Both Tc and Re are reduced more readily in the lacunary α1 site as compared to the α2 site. The DFT calculations elucidate that the highest oxidation state attainable for Re is VII while, under the same electrochemistry conditions, the highest oxidation state for Tc is VI. The M(V)→ M(IV) reduction processes for Tc(V)O-α1 are not pH dependent or only slightly pH dependent suggesting that protonation does not accompany reduction of this species unlike the M(V)O-α2 (M = (99)Tc, Re) and Re(V)O-α1 where M(V/IV) reduction process must occur hand in hand with protonation of the terminal M═O to

  17. Deep Oxidative Desulfurization of Dibenzothiophene in Simulated Oil and Real Diesel Using Heteropolyanion-Substituted Hydrotalcite-Like Compounds as Catalysts

    OpenAIRE

    Yu, Fengli; Wang, Rui

    2013-01-01

    Three heteropolyanion substituted hydrotalcite-like compounds (HPA-HTLcs) including Mg9Al3(OH)24[PW12O40](MgAl-PW12), Mg9Al3(OH)24[PMo12O40] (MgAl-PMo12) and Mg12Al4(OH)32[SiW12O40] (MgAl-SiW12), were synthesized, characterized and used as catalysts for the oxidative desulfurization of simulated oil (dibenzothiophene, DBT, in n-octane). MgAl-PMo12 was identified as an effective catalyst for the oxidative removal of DBT under very mild conditions of atmospheric pressure and 60 °C in a biphasic...

  18. A three-electrode column for Pd-catalytic oxidation of TCE in groundwater with automatic pH-regulation and resistance to reduced sulfur compound foiling.

    Science.gov (United States)

    Yuan, Songhu; Chen, Mingjie; Mao, Xuhui; Alshawabkeh, Akram N

    2013-01-01

    A hybrid electrolysis and Pd-catalytic oxidation process is evaluated for degradation of trichloroethylene (TCE) in groundwater. A three-electrode, one anode and two cathodes, column is employed to automatically develop a low pH condition in the Pd vicinity and a neutral effluent. Simulated groundwater containing up to 5 mM bicarbonate can be acidified to below pH 4 in the Pd vicinity using a total of 60 mA with 20 mA passing through the third electrode. By packing 2 g of Pd/Al(2)O(3) pellets in the developed acidic region, the column efficiency for TCE oxidation in simulated groundwater (5.3 mg/L TCE) increases from 44 to 59 and 68% with increasing Fe(II) concentration from 0 to 5 and 10 mg/L, respectively. Different from Pd-catalytic hydrodechlorination under reducing conditions, this hybrid electrolysis and Pd-catalytic oxidation process is advantageous in controlling the fouling caused by reduced sulfur compounds (RSCs) because the in situ generated reactive oxidizing species, i.e., O(2), H(2)O(2) and OH, can oxidize RSCs to some extent. In particular, sulfite at concentrations less than 1 mM even greatly increases TCE oxidation by the production of SO(4)(•-), a strong oxidizing radical, and more OH. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC

    Directory of Open Access Journals (Sweden)

    Mojca Rangus

    2014-05-01

    Full Text Available Iron-functionalized disordered mesoporous silica (FeKIL-2 is a promising, environmentally friendly, cost-effective and highly efficient catalyst for the elimination of volatile organic compounds (VOCs from polluted air via catalytic oxidation. In this study, we investigated the type of catalytically active iron sites for different iron concentrations in FeKIL-2 catalysts using advanced characterization of the local environment of iron atoms by a combination of X-ray Absorption Spectroscopy Techniques (XANES, EXAFS and Atomic-Resolution Scanning Transmission Electron Microscopy (AR STEM. We found that the molar ratio Fe/Si ≤ 0.01 leads to the formation of stable, mostly isolated Fe3+ sites in the silica matrix, while higher iron content Fe/Si > 0.01 leads to the formation of oligonuclear iron clusters. STEM imaging and EELS techniques confirmed the existence of these clusters. Their size ranges from one to a few nanometers, and they are unevenly distributed throughout the material. The size of the clusters was also found to be similar, regardless of the nominal concentration of iron (Fe/Si = 0.02 and Fe/Si = 0.05. From the results obtained from sample characterization and model catalytic tests, we established that the enhanced activity of FeKIL-2 with the optimal Fe/Si = 0.01 ratio can be attributed to: (1 the optimal concentration of stable isolated Fe3+ in the silica support; and (2 accelerated diffusion of the reactants in disordered mesoporous silica (FeKIL-2 when compared to ordered mesoporous silica materials (FeSBA-15, FeMCM-41.

  20. Synthesis, microstructural and electrical characterization of ceramic compounds based on strontium and calcium titanates and iron-oxide

    International Nuclear Information System (INIS)

    Carmo, Joao Roberto do

    2011-01-01

    Ca x Sr 1-x Ti 1-y Fe y O 3- δ, X = 0, 0.5 and 1.0, y = 0 and 0.35, ceramic compounds were synthesized by reactive solid state synthesis of CaCO 3 , SrCO 3 , TiO 2 and Fe 2 O 3 , and by the polymeric precursor technique. The ceramic powders were evaluated by thermogravimetry and differential thermal analysis, X-ray diffraction and scanning electron microscopy. Sintered ceramic pellets were analyzed by X-ray diffraction, scanning electron microscopy, scanning probe microscopy and impedance spectroscopy. The electromotive force resulting from the exposing the pellets to partial pressure de oxygen in the ∼50 ppm in the 600-1100 ℃ range was monitored using an experimental setup consisting of an oxygen electrochemical pump with yttria-stabilized zirconia transducer and sensor. Rietveld analysis of the X-ray data allowed for determining the crystalline structures: cubic perovskite (y = 0) and orthorhombic perovskite (y ≠ 0). The electrical conductivity was determined by the two probe impedance spectroscopy measurements in the 5 Hz-13 MHz frequency range from room temperature to approximately 200 ℃. The deconvolution of the [-Z ( ω) x Z'(ω)] impedance diagrams in the 300 < T(K) < 500 range shows two semicircles due to intragranular (bulk) and intergranular (grain boundary) contributions to the electrical resistivity. Sintered pellets using powders prepared by the ceramic route present higher inter- and intragranular resistivity values than pellets prepared with chemically synthesized powders. The emf signal under exposure oxygen shows that these compounds may be used in oxygen sensing devices in the 600 - 1100 ℃ range. Scanning probe microscopy topographic analysis of the polished and thermally etched surfaces of the pellets gave details of grain morphology, showing that pellets prepared with powders synthesized by the chemical route are less porous than the ones obtained by the ceramic route. These results are in agreement with the impedance spectroscopy

  1. Chemical state analysis of iron(III) compounds precipitated homogeneously from solutions containing urea by means of Moessbauer spectrometry and x-ray diffractometry

    International Nuclear Information System (INIS)

    Ujihira, Yusuke; Ohyabu, Matashige; Murakami, Tetsuro; Horie, Tsuyoshi.

    1978-01-01

    Chemical states of iron(III) compounds, precipitated homogeneously by heating the iron(III) salt solution at 363 K in the presence of urea, was studied by means of Moessbauer spectrometry and X-ray diffractometry. The pH-time relation of urea hydrolysis revealed that the precipitation process from homogeneous solution is identical to the hydrolysis of iron(III) ion at pH around 2 under the homogeneous supply of OH - ion, which is generated by hydrolysis of urea. Accordingly, iron(III) oxide hydroxide or similar compounds to the hydrolysis products of iron(III) ion was precipitated by the precipitation from homogeneous solution methods. Akaganeite (β-FeOOH) was crystallized from 0.1 M iron(III) chloride solution. Goethite(α-FeOOH) and hematite(α-Fe 2 O 3 ) was precipitated from 0.1 M iron(III) nitrate solution, vigorous liberation of OH - ion favoring the crystallization of hematite. The addition of chloride ion to the solution resulted in the formation of akaganeite. Basic salt of iron sulfate[NH 4 Fe 3 (OH) 6 (SO 4 ) 2 ] and goethite were formed from 0.1 M iron(III) sulfate solution, the former being obtained in the more moderate condition of the urea hydrolysis ( 363 K). (author)

  2. Oxidation of extracellular cysteine/cystine redox state in bleomycin-induced lung fibrosis.

    Science.gov (United States)

    Iyer, Smita S; Ramirez, Allan M; Ritzenthaler, Jeffrey D; Torres-Gonzalez, Edilson; Roser-Page, Susanne; Mora, Ana L; Brigham, Kenneth L; Jones, Dean P; Roman, Jesse; Rojas, Mauricio

    2009-01-01

    Several lines of evidence indicate that depletion of glutathione (GSH), a critical thiol antioxidant, is associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, GSH synthesis depends on the amino acid cysteine (Cys), and relatively little is known about the regulation of Cys in fibrosis. Cys and its disulfide, cystine (CySS), constitute the most abundant low-molecular weight thiol/disulfide redox couple in the plasma, and the Cys/CySS redox state (E(h) Cys/CySS) is oxidized in association with age and smoking, known risk factors for IPF. Furthermore, oxidized E(h) Cys/CySS in the culture media of lung fibroblasts stimulates proliferation and expression of transitional matrix components. The present study was undertaken to determine whether bleomycin-induced lung fibrosis is associated with a decrease in Cys and/or an oxidation of the Cys/CySS redox state and to determine whether these changes were associated with changes in E(h) GSH/glutathione disulfide (GSSG). We observed distinct effects on plasma GSH and Cys redox systems during the progression of bleomycin-induced lung injury. Plasma E(h) GSH/GSSG was selectively oxidized during the proinflammatory phase, whereas oxidation of E(h) Cys/CySS occurred at the fibrotic phase. In the epithelial lining fluid, oxidation of E(h) Cys/CySS was due to decreased food intake. Thus the data show that decreased precursor availability and enhanced oxidation of Cys each contribute to the oxidation of extracellular Cys/CySS redox state in bleomycin-induced lung fibrosis.

  3. Anthropogenic organic compounds in source water of select community water systems in the United States, 2002-10

    Science.gov (United States)

    Valder, Joshua F.; Delzer, Gregory C.; Kingsbury, James A.; Hopple, Jessica A.; Price, Curtis V.; Bender, David A.

    2014-01-01

    Drinking water delivered by community water systems (CWSs) comes from one or both of two sources: surface water and groundwater. Source water is raw, untreated water used by CWSs and is usually treated before distribution to consumers. Beginning in 2002, the U.S. Geological Survey’s (USGS) National Water-Quality Assessment Program initiated Source Water-Quality Assessments (SWQAs) at select CWSs across the United States, primarily to characterize the occurrence of a large number of anthropogenic organic compounds that are predominantly unregulated by the U.S. Environmental Protection Agency. Source-water samples from CWSs were collected during 2002–10 from 20 surface-water sites (river intakes) and during 2002–09 from 448 groundwater sites (supply wells). River intakes were sampled approximately 16 times during a 1-year sampling period, and supply wells were sampled once. Samples were monitored for 265 anthropogenic organic compounds. An additional 3 herbicides and 16 herbicide degradates were monitored in samples collected from 8 river intakes and 118 supply wells in areas where these compounds likely have been used. Thirty-seven compounds have an established U.S. Environmental Protection Agency (EPA) Maximum Contaminant Level (MCL) for drinking water, 123 have USGS Health-Based Screening Levels (HBSLs), and 29 are included on the EPA Contaminant Candidate List 3. All compounds detected in source water were evaluated both with and without an assessment level and were grouped into 13 categories (hereafter termed as “use groups”) based on their primary use or source. The CWS sites were characterized in a national context using an extract of the EPA Safe Drinking Water Information System to develop spatially derived and system-specific ancillary data. Community water system information is contained in the EPA Public Supply Database, which includes 2,016 active river intakes and 112,099 active supply wells. Ancillary variables including population served

  4. DetOx: a program for determining anomalous scattering factors of mixed-oxidation-state species.

    Science.gov (United States)

    Sutton, Karim J; Barnett, Sarah A; Christensen, Kirsten E; Nowell, Harriott; Thompson, Amber L; Allan, David R; Cooper, Richard I

    2013-01-01

    Overlapping absorption edges will occur when an element is present in multiple oxidation states within a material. DetOx is a program for partitioning overlapping X-ray absorption spectra into contributions from individual atomic species and computing the dependence of the anomalous scattering factors on X-ray energy. It is demonstrated how these results can be used in combination with X-ray diffraction data to determine the oxidation state of ions at specific sites in a mixed-valance material, GaCl(2).

  5. Tuning the Colors of the Dark Isomers of Photochromic Boron Compounds with Fluoride Ions: Four-State Color Switching.

    Science.gov (United States)

    Mellerup, Soren K; Rao, Ying-Li; Amarne, Hazem; Wang, Suning

    2016-09-02

    Combining a three-coordinated boron (BMes2) moiety with a four-coordinated photochromic organoboron unit leads to a series of new diboron compounds that undergo four-state reversible color switching in response to stimuli of light, heat, and fluoride ions. Thus, these hybrid diboron systems allow both convenient color tuning/switching of such photochromic systems, as well as visual fluoride sensing by color or fluorescent emission color change.

  6. State-of-the-art Sn2+-based ternary oxides as photocatalysts for water splitting: electronic structures and optoelectronic properties

    KAUST Repository

    Noureldine, Dalal

    2016-09-19

    Developing visible light responsive metal oxide photocatalysts is a challenge that must be conquered to achieve high efficiency for water splitting or hydrogen evolution reactions. Valence band engineering is possible by forming ternary oxides using the combination of a metal cation with an s2d10 electronic configuration and a transition metal oxide with a d0 configuration. Many (Sn2+, Bi3+, Pb2+)-based ternary metal oxide photocatalysts have been reported for hydrogen and/or oxygen evolution under visible irradiation. Sn2+-based materials have attracted particular attention because tin is inexpensive, abundant and more environmentally friendly than lead or bismuth. In this review, we provide a fruitful library for Sn2+-based photocatalysts that have been reported to evolve hydrogen using sacrificial reagents, including SnNb2O6, Sn2Nb2O7, SnTaxNb2−xO6, SnTa2O6, Sn2Ta2O7, SnWO4 (α and β phases), SnSb2O6·nH2O, and Sn2TiO4. The synthesis method used in the literature and the resultant morphology and crystal structure of each compound are discussed. The density functional theory (DFT) calculations of the electronic structure and density of states are provided, and the consequent optoelectronic properties such as band gap, nature of the bandgap, dielectric constant, and effective masses are summarized. This review will help highlight the main challenges for Sn2+-based materials.

  7. State-of-the-art Sn2+-based ternary oxides as photocatalysts for water splitting: electronic structures and optoelectronic properties

    KAUST Repository

    Noureldine, Dalal; Takanabe, Kazuhiro

    2016-01-01

    Developing visible light responsive metal oxide photocatalysts is a challenge that must be conquered to achieve high efficiency for water splitting or hydrogen evolution reactions. Valence band engineering is possible by forming ternary oxides using the combination of a metal cation with an s2d10 electronic configuration and a transition metal oxide with a d0 configuration. Many (Sn2+, Bi3+, Pb2+)-based ternary metal oxide photocatalysts have been reported for hydrogen and/or oxygen evolution under visible irradiation. Sn2+-based materials have attracted particular attention because tin is inexpensive, abundant and more environmentally friendly than lead or bismuth. In this review, we provide a fruitful library for Sn2+-based photocatalysts that have been reported to evolve hydrogen using sacrificial reagents, including SnNb2O6, Sn2Nb2O7, SnTaxNb2−xO6, SnTa2O6, Sn2Ta2O7, SnWO4 (α and β phases), SnSb2O6·nH2O, and Sn2TiO4. The synthesis method used in the literature and the resultant morphology and crystal structure of each compound are discussed. The density functional theory (DFT) calculations of the electronic structure and density of states are provided, and the consequent optoelectronic properties such as band gap, nature of the bandgap, dielectric constant, and effective masses are summarized. This review will help highlight the main challenges for Sn2+-based materials.

  8. A steady-state study on the formation of Compounds II and III of myeloperoxidase

    NARCIS (Netherlands)

    Hoogland, H.; Dekker, H. L.; van Riel, C.; van Kuilenburg, A.; Muijsers, A. O.; Wever, R.

    1988-01-01

    The reaction between native myeloperoxidase and hydrogen peroxide, yielding Compound II, was investigated using the stopped-flow technique. The pH dependence of the apparent second-order rate constant showed the existence of a protonatable group on the enzyme with a pKa of 4.9. This group is

  9. Mechanism of forming interfacial intermetallic compounds at interface for solid state diffusion bonding of dissimilar materials

    International Nuclear Information System (INIS)

    He, P.; Liu, D.

    2006-01-01

    The formation of brittle intermetallic compounds at the interfaces of diffusion bonds is the main cause which leads to poor bond strength. Therefore, it is very important to study and establish the formation and growth model of intermetallic compounds at the interfaces for the control process of diffusion bonding. In this paper, according to the diffusion kinetics and the thermodynamics, the principle of formation of intermetallic compounds at interfaces in the multi-component diffusion couple, the flux-energy principle, is put forward. In the light of diffusion theory, the formation capacity of the phase at the interfaces is determined by specific properties of the composition in the diffusion couple and the composition ratio of the formed phase is in agreement with the diffusion flux. In accordance with the flux-energy principle, the microstructure of the Ni/TC4 interface is Ni/TiNi 3 /TiNi/Ti 2 Ni/TC4, the microstructure of the TC4/00Cr18Ni9Ti interface is 00Cr18Ni9Ti/TiFe 2 /TiFe/Ti 2 Fe/TC4, and the microstructure of the TiAl/40Cr interface is 40Cr/TiC/Ti 3 Al + FeAl + FeAl 2 /TiAl. Multi-intermetallic compounds with the equivalent flux-energy can be formed at the interfaces at the same time

  10. Atmospheric reactivity of hydroxyl radicals with guaiacol (2-methoxyphenol), a biomass burning emitted compound: Secondary organic aerosol formation and gas-phase oxidation products

    Science.gov (United States)

    Lauraguais, Amélie; Coeur-Tourneur, Cécile; Cassez, Andy; Deboudt, Karine; Fourmentin, Marc; Choël, Marie

    2014-04-01

    Methoxyphenols are low molecular weight semi-volatile polar aromatic compounds produced from the pyrolysis of wood lignin. The reaction of guaiacol (2-methoxyphenol) with hydroxyl radicals has been studied in the LPCA simulation chamber at (294 ± 2) K, atmospheric pressure, low relative humidity (RH reactivity of nitroguaiacols with atmospheric oxidants is probably low, we suggest using them as biomass burning emission gas tracers. The atmospheric implications of the guaiacol + OH reaction are also discussed.

  11. Transition metal-free oxidation of benzylic alcohols to carbonyl compounds by hydrogen peroxide in the presence of acidic silica gel

    Directory of Open Access Journals (Sweden)

    Hossein Ghafuri

    2015-01-01

    Full Text Available Oxidation of alcohols to carbonyl compounds has become an important issue in the process industry as well as many other applications. In this method, various benzylic alcohols were successfully converted to corresponding aldehydes and ketones under transition metal-free condition using hydrogen peroxide in the presence of some amount of catalytic acidic silica gel. Silica gel is inexpensive and available. One of the most important features of this method is its short reaction time.

  12. Studies of surface states in zinc oxide nanopowders

    Science.gov (United States)

    Peters, Raul Mugabe

    The surface of ZnO semiconductor nanosystems is a key performance-defining factor in numerous applications. In this work we present experimental results for the surface defect-related properties of ZnO nanoscale systems. Surface photovoltage spectroscopy was used to determine the defect level energies within the band gap, the conduction vs. valence band nature of the defect-related transitions, and to probe key dynamic parameters of the surface on a number of commercially available ZnO nanopowders. In our experimental setup, surface photovoltage characterization is conducted in high vacuum in tandem with in situ oxygen remote plasma treatments. Surface photovoltage investigations of the as-received and plasma-processed samples revealed a number of common spectral features related to surface states. Furthermore, we observed significant plasma-induced changes in the surface defect properties. Ex situ positron annihilation and photoluminescence measurements were performed on the studied samples and correlated with surface photovoltage results. The average positron lifetimes were found to be substantially longer than in a bulk single crystalline sample, which is consistent with the model of grains with defect-rich surface and subsurface layers. Compression of the powders into pellets yielded reduction of the average positron lifetimes. Surface photovoltage, positron annihilation, and photoluminescence spectra consistently showed sample-to-sample differences due to the variation in the overall quality of the nanopowders, which partially obscures observation of the scaling effects. However, the results demonstrated that our approach is efficient in detecting specific surface states in nanoscale ZnO specimens and in elucidating their nature.

  13. Identification of the iron oxidation state and coordination geometry in iron oxide- and zeolite-based catalysts using pre-edge XAS analysis.

    Science.gov (United States)

    Boubnov, Alexey; Lichtenberg, Henning; Mangold, Stefan; Grunwaldt, Jan Dierk

    2015-03-01

    Analysis of the oxidation state and coordination geometry using pre-edge analysis is attractive for heterogeneous catalysis and materials science, especially for in situ and time-resolved studies or highly diluted systems. In the present study, focus is laid on iron-based catalysts. First a systematic investigation of the pre-edge region of the Fe K-edge using staurolite, FePO4, FeO and α-Fe2O3 as reference compounds for tetrahedral Fe(2+), tetrahedral Fe(3+), octahedral Fe(2+) and octahedral Fe(3+), respectively, is reported. In particular, high-resolution and conventional X-ray absorption spectra are compared, considering that in heterogeneous catalysis and material science a compromise between high-quality spectroscopic data acquisition and simultaneous analysis of functional properties is required. Results, which were obtained from reference spectra acquired with different resolution and quality, demonstrate that this analysis is also applicable to conventionally recorded pre-edge data. For this purpose, subtraction of the edge onset is preferentially carried out using an arctangent and a first-degree polynomial, independent of the resolution and quality of the data. For both standard and high-resolution data, multiplet analysis of pre-edge features has limitations due to weak transitions that cannot be identified. On the other hand, an arbitrary empirical peak fitting assists the analysis in that non-local transitions can be isolated. The analysis of the oxidation state and coordination geometry of the Fe sites using a variogram-based method is shown to be effective for standard-resolution data and leads to the same results as for high-resolution spectra. This method, validated by analysing spectra of reference compounds and their well defined mixtures, is finally applied to track structural changes in a 1% Fe/Al2O3 and a 0.5% Fe/BEA zeolite catalyst during reduction in 5% H2/He. The results, hardly accessible by other techniques, show that Fe(3+) is

  14. Conformational Toggling of Yeast Iso-1-Cytochrome c in the Oxidized and Reduced States

    Science.gov (United States)

    Yang, Zhongzheng; Zhu, Jing; Ying, Tianlei; Jiang, Xianwang; Zhang, Xu; Wu, Houming; Liu, Maili; Tan, Xiangshi; Cao, Chunyang; Huang, Zhong-Xian

    2011-01-01

    To convert cyt c into a peroxidase-like metalloenzyme, the P71H mutant was designed to introduce a distal histidine. Unexpectedly, its peroxidase activity was found even lower than that of the native, and that the axial ligation of heme iron was changed to His71/His18 in the oxidized state, while to Met80/His18 in the reduced state, characterized by UV-visible, circular dichroism, and resonance Raman spectroscopy. To further probe the functional importance of Pro71 in oxidation state dependent conformational changes occurred in cyt c, the solution structures of P71H mutant in both oxidation states were determined. The structures indicate that the half molecule of cyt c (aa 50–102) presents a kind of “zigzag riveting ruler” structure, residues at certain positions of this region such as Pro71, Lys73 can move a big distance by altering the tertiary structure while maintaining the secondary structures. This finding provides a molecular insight into conformational toggling in different oxidation states of cyt c that is principle significance to its biological functions in electron transfer and apoptosis. Structural analysis also reveals that Pro71 functions as a key hydrophobic patch in the folding of the polypeptide of the region (aa 50–102), to prevent heme pocket from the solvent. PMID:22087268

  15. AUTOFLUORESCENCE IN PRIMARY RAINBOW TROUT HEPATOCYTES INTERFERES WITH MEASUREMENT OF OXIDATIVE ACTIVITY VIA THE EXOGENOUS PROBE, DCF, BUT PROVIDES INTRINSIC MEASURE OF CELLULAR OXIDATIVE STATE

    Science.gov (United States)

    The compound 2', 7'-dichlorodihydrofluoroscein diacetate is a probe commonly used to detect oxidative activity in live cells. Studies were undertaken to measure reactive oxygen species generated in freshly isolated rainbow trout hepatocytes exposed to a variety of redox cycling c...

  16. The Impact of Environmental Factors in Influencing Epigenetics Related to Oxidative States in the Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Francesco Angelini

    2017-01-01

    Full Text Available Oxidative states exert a significant influence on a wide range of biological and molecular processes and functions. When their balance is shifted towards enhanced amounts of free radicals, pathological phenomena can occur, as the generation of reactive oxygen species (ROS in tissue microenvironment or in the systemic circulation can be detrimental. Epidemic chronic diseases of western societies, such as cardiovascular disease, obesity, and diabetes correlate with the imbalance of redox homeostasis. Current advances in our understanding of epigenetics have revealed a parallel scenario showing the influence of oxidative stress as a major regulator of epigenetic gene regulation via modification of DNA methylation, histones, and microRNAs. This has provided both the biological link and a potential molecular explanation between oxidative stress and cardiovascular/metabolic phenomena. Accordingly, in this review, we will provide current insights on the physiological and pathological impact of changes in oxidative states on cardiovascular disorders, by specifically focusing on the influence of epigenetic regulation. A special emphasis will highlight the effect on epigenetic regulation of human’s current life habits, external and environmental factors, including food intake, tobacco, air pollution, and antioxidant-based approaches. Additionally, the strategy to quantify oxidative states in humans in order to determine which biological marker could best match a subject’s profile will be discussed.

  17. Oxidation states of Fe in LaNi1-xFexO3

    International Nuclear Information System (INIS)

    Goeta, A.E.; Falcon, H.; Carbonio, R.

    1994-01-01

    The distribution of oxidation states in perovskites of the type LaA 1-x B x O 3 (A and B transition metal ions) can be ''tailored'' by x variation. In particular, in LaNiO 3 it has been shown that Fe substitution for Ni foces some Ni 3+ into Ni 2+ , while some Fe 3+ changes into the unusual Fe 4+ state. In addition, the existence of mixed oxidation states of Fe and/or Ni in LaNi 1-x Fe x O 3 has been related to its catalytic activity in hydrogen peroxide decomposition. The Fe 4+ population, obtained using Moessbauer spectroscopy, was found to be constant for all the analyzed annealing temperatures for x = 0.25 concentration, where the isomer shift difference for both states is the highest and the catalytic activity is maximum. (orig.)

  18. Effect of Nb on plasticity and oxidation behavior of TiA1Nb intermetallic compound by density functional theory

    Institute of Scientific and Technical Information of China (English)

    LI Yan-feng; XU Hui; SONG Zhao-quan; MA Song-shan

    2010-01-01

    Based on the pseudo potential plane-wave method of density functional theory(DFT),Ti1-xNbxA1(x=0,0.062 5,0.083 3,0.125,0.250)crystals' geometry structure,elastic constants,electronic structure and Mulliken populations were calculated,and the effects of doping on the geometric structure,electronic structure and bond strength were systematically analyzed.The results show that the influence of Nb on the geometric structure is little in terms of the plasticity,and with the increase of Nb content,the covalent bond strength remarkably reduces,and Ti-A1,Nb-M(M=Ti,A1)and other hybrid bonds enhance; meanwhile,the peak district increases and the pseudo-energy gap first decreases and then increases,the overall band structure narrows,the covalent bond and direction of bonds reduce.The population analysis also shows that the results are consistent with the electronic structure analysis.The density of states of TiAlNb shows that Nb doping can enhance the activity of Al and benefit the form of Al2O3 film.All the calculations reveal that the room temperature plasticity and the antioxidation properties of the compounds can be improved with the Nb content of 8.33%-12.5%(mole fraction).

  19. Rationalization and in vitro modeling of the chemical mechanisms of the enzymatic oxidation of phenolic compounds in planta: from flavonols and stilbenoids to lignins.

    Science.gov (United States)

    Cottyn, Betty; Kollmann, Albert; Waffo-Teguo, Pierre; Ducrot, Paul-Henri

    2011-06-20

    Enzymatic oxidation of phenolic compounds is a widespread phenomenon in plants. It is responsible for the formation of many oligomers and polymers, which are generally described as the result of a combinatorial coupling of the different radicals formed through oxidation of the phenol group and delocalization of the radical. We focused our interest on several phenolic compounds that are present in plants and known to form, under enzymatic oxidation, oligomers with different type of linkages between monomers. To explain this diversity of inter-monomer linkages and their variation according to the experimental procedure used for the enzymatic oxidation, we report an alternative mechanistic pathway involving dismutation of the radicals, leading to the formation of carbocations which, thereafter, react with nucleophilic species present in the medium. This alternative pathway allows the understanding of peculiar linkages between monomeric units in the oligomer and offers new insights for understanding the formation of phenolic biopolymers in plants. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Facile solid-state synthesis of oxidation-resistant metal nanoparticles at ambient conditions

    Science.gov (United States)

    Lee, Kyu Hyung; Jung, Hyuk Joon; Lee, Ju Hee; Kim, Kyungtae; Lee, Byeongno; Nam, Dohyun; Kim, Chung Man; Jung, Myung-Hwa; Hur, Nam Hwi

    2018-05-01

    A simple and scalable method for the synthesis of metal nanoparticles in the solid-state was developed, which can produce nanoparticles in the absence of solvents. Nanoparticles of coinage metals were synthesized by grinding solid hydrazine and the metal precursors in their acetates and oxides at 25 °C. The silver and gold acetates converted completely within 6 min into Ag and Au nanoparticles, respectively, while complete conversion of the copper acetate to the Cu sub-micrometer particles took about 2 h. Metal oxide precursors were also converted into metal nanoparticles by grinding alone. The resulting particles exhibit distinctive crystalline lattice fringes, indicating the formation of highly crystalline phases. The Cu sub-micrometer particles are better resistant to oxidation and exhibit higher conductivity compared to conventional Cu nanoparticles. This solid-state method was also applied for the synthesis of platinum group metals and intermetallic Cu3Au, which can be further extended to synthesize other metal nanoparticles.

  1. Solid-state studies and antioxidant properties of the γ-cyclodextrin·fisetin inclusion compound.

    Science.gov (United States)

    Pais, Joana M; Barroca, Maria João; Marques, Maria Paula M; Almeida Paz, Filipe A; Braga, Susana S

    2017-01-01

    Fisetin is a natural antioxidant with a wide range of nutraceutical properties, including antidiabetic, neuroprotecting, and suppression or prevention of tumors. The present work describes the preparation of a water-soluble, solid inclusion compound of fisetin with gamma-cyclodextrin (γ-CD), a cyclic oligosaccharide approved for human consumption. A detailed physicochemical analysis of the product is carried out using elemental analysis, powder X-ray diffraction (PXRD), Raman, infrared and 13 C{ 1 H} CP-MAS NMR spectroscopies, and thermal analysis (TGA) to verify fisetin inclusion and to present a hypothetical structural arrangement for the host-guest units. The antioxidant activity of the γ-CD·fisetin inclusion compound is evaluated by the DPPH assay.

  2. Solid-state studies and antioxidant properties of the γ-cyclodextrin·fisetin inclusion compound

    Directory of Open Access Journals (Sweden)

    Joana M. Pais

    2017-10-01

    Full Text Available Fisetin is a natural antioxidant with a wide range of nutraceutical properties, including antidiabetic, neuroprotecting, and suppression or prevention of tumors. The present work describes the preparation of a water-soluble, solid inclusion compound of fisetin with gamma-cyclodextrin (γ-CD, a cyclic oligosaccharide approved for human consumption. A detailed physicochemical analysis of the product is carried out using elemental analysis, powder X-ray diffraction (PXRD, Raman, infrared and 13C{1H} CP-MAS NMR spectroscopies, and thermal analysis (TGA to verify fisetin inclusion and to present a hypothetical structural arrangement for the host–guest units. The antioxidant activity of the γ-CD·fisetin inclusion compound is evaluated by the DPPH assay.

  3. Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) forIndoor Air Applications: Conversion of Volatile Organic Compounds at LowPart-per-Billion Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

    2005-09-30

    Efficient removal of indoor generated airborne particles and volatile organic compounds (VOCs) in office buildings and other large buildings may allow for a reduction in outdoor air supply rates with concomitant energy savings while still maintaining acceptable indoor air quality in these buildings. Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaners have the potential to achieve the necessary reductions in indoor VOC concentrations at relatively low cost. In this study, laboratory experiments were conducted with a scaled, prototype UVPCO device designed for use in a duct system. The experimental UVPCO contained two 30 by 30-cm honeycomb monoliths coated with titanium dioxide and 3% by weight tungsten oxide. The monoliths were irradiated with 12 UVC lamps arranged in four banks. The UVPCO was challenged with four mixtures of VOCs typical of mixtures encountered in indoor air. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A cleaning product mixture contained three cleaning products with high market shares. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. A fourth mixture contained formaldehyde and acetaldehyde. Steady-state concentrations were produced in a classroom laboratory or a 20-m{sup 3} environmental chamber. Air was drawn through the UVPCO, and single pass conversion efficiencies were measured from replicate air samples collected upstream and downstream of the reactor section. Concentrations of the mixtures were manipulated, with concentrations of individual VOCs mostly maintained below 10 ppb. Device flow rates were varied between 165 and 580 m{sup 3}/h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were generated for 48 individual VOCs or groups of closely related compounds. Alcohols and glycol ethers were the

  4. How different oxidation states of crystalline myoglobin are influenced by X-rays.

    Science.gov (United States)

    Hersleth, Hans-Petter; Andersson, K Kristoffer

    2011-06-01

    X-ray induced radiation damage of protein crystals is well known to occur even at cryogenic temperatures. Redox active sites like metal sites seem especially vulnerable for these radiation-induced reductions. It is essential to know correctly the oxidation state of metal sites in protein crystal structures to be able to interpret the structure-function relation. Through previous structural studies, we have tried to characterise and understand the reactions between myoglobin and peroxides. These reaction intermediates are relevant because myoglobin is proposed to take part as scavenger of reactive oxygen species during oxidative stress, and because these intermediates are similar among the haem peroxidases and oxygenases. We have in our previous studies shown that these different myoglobin states are influenced by the X-rays used. In this study, we have in detail investigated the impact that X-rays have on these different oxidation states of myoglobin. An underlying goal has been to find a way to be able to determine mostly unreduced states. We have by using single-crystal light absorption spectroscopy found that the different oxidation states of myoglobin are to a different extent influenced by the X-rays (e.g. ferric Fe(III) myoglobin is faster reduced than ferryl Fe(IV)═O myoglobin). We observe that the higher oxidation states are not reduced to normal ferrous Fe(II) or ferric Fe(III) states, but end up in some intermediate and possibly artificial states. For ferric myoglobin, it seems that annealing of the radiation-induced/reduced state can reversibly more or less give the starting point (ferric myoglobin). Both scavengers and different dose-rates might influence to which extent the different states are affected by the X-rays. Our study shows that it is essential to do a time/dose monitoring of the influence X-rays have on each specific redox-state with spectroscopic techniques like single-crystal light absorption spectroscopy. This will determine to which

  5. Templated electrodeposition of Ag7NO11 nanowires with very high oxidation states of silver

    NARCIS (Netherlands)

    Rodijk, E.J.B.; Maijenburg, A.W.; Maas, M.G.; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    The templated electrodeposition of 200 nm diameter nanowires of the argentic oxynitrate Ag(Ag3O4)2NO3 phase is reported. Their high surface-to-volume ratio and the high average oxidation state of Ag make these wires promising candidates for nanoscale redox processes in which both a high volumetric

  6. Investigation of the oxidation states of Pu isotopes in a hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.H. [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, P. O. Box 105, Yuseong, Daejeon 305-353 (Korea, Republic of)], E-mail: mhlee@kaeri.re.kr; Kim, J.Y.; Kim, W.H.; Jung, E.C.; Jee, K.Y. [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, P. O. Box 105, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2008-12-15

    The characteristics of the oxidation states of Pu in a hydrochloric acid solution were investigated and the results were applied to a separating of Pu isotopes from IAEA reference soils. The oxidation states of Pu(III) and Pu(IV) were prepared by adding hydroxylamine hydrochloride and sodium nitrite to a Pu stock solution, respectively. Also, the oxidation state of Pu(VI) was adjusted with concentrated HNO{sub 3} and HClO{sub 4}. The stability of the various oxidation states of plutonium in a HCl solution with elapsed time after preparation were found to be in the following order: Pu(III){approx}Pu(VI)>Pu(IV)>Pu(V). The chemical recoveries of Pu(IV) in a 9 M HCl solution with an anion exchange resin were similar to those of Pu(VI). This method for the determination of Pu isotopes with an anion exchange resin in a 9 M HCl medium was applied to IAEA reference soils where the activity concentrations of {sup 239,240}Pu and {sup 238}Pu in IAEA-375 and IAEA-326 were consistent with the reference values reported by the IAEA.

  7. Teaching the Properties of Chromium's Oxidation States with a Case Study Method

    Science.gov (United States)

    Ozdilek, Zehra

    2015-01-01

    The purpose of this study was to investigate how a mixed-method case study affects pre-service science teachers' awareness of hexavalent chromium pollution and content knowledge about the properties of chromium's different oxidation states. The study was conducted in Turkey with 55 sophomores during the fall semester of 2013-2014. The students…

  8. The Effect of Precursor Ligands and Oxidation State in the Synthesis of Bimetallic Nano-Alloys

    KAUST Repository

    LaGrow, Alec P.; Knudsen, Kristian; AlYami, Noktan; Anjum, Dalaver H.; Bakr, Osman

    2015-01-01

    of variables on the characteristics of bimetallic nanomaterials are not completely understood. In this study, we used a continuous-flow synthetic strategy to explore the effects of the ligands and the oxidation state of a metal precursor in a shape

  9. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides

    Science.gov (United States)

    Lehninger, Albert L.; Vercesi, Anibal; Bababunmi, Enitan A.

    1978-01-01

    Mitochondria from normal rat liver and heart, and also Ehrlich tumor cells, respiring on succinate as energy source in the presence of rotenone (to prevent net electron flow to oxygen from the endogenous pyridine nucleotides), rapidly take up Ca2+ and retain it so long as the pyridine nucleotides are kept in the reduced state. When acetoacetate is added to bring the pyridine nucleotides into a more oxidized state, Ca2+ is released to the medium. A subsequent addition of a reductant of the pyridine nucleotides such as β-hydroxybutyrate, glutamate, or isocitrate causes reuptake of the released Ca2+. Successive cycles of Ca2+ release and uptake can be induced by shifting the redox state of the pyridine nucleotides to more oxidized and more reduced states, respectively. Similar observations were made when succinate oxidation was replaced as energy source by ascorbate oxidation or by the hydrolysis of ATP. These and other observations form the basis of a hypothesis for feedback regulation of Ca2+-dependent substrate- or energy-mobilizing enzymatic reactions by the uptake or release of mitochondrial Ca2+, mediated by the cytosolic phosphate potential and the ATP-dependent reduction of mitochondrial pyridine nucleotides by reversal of electron transport. Images PMID:25436

  10. Measurements of the oxidation state and concentration of plutonium in interstitial waters of the Irish Sea

    International Nuclear Information System (INIS)

    Nelson, D.M.; Lovett, M.B.

    1980-01-01

    The question of plutonium movement in interstitial waters resulting from diffusion along concentration gradients or from advective flow is addressed. The results of measurements of both the concentration and the oxidation state of plutonium in interstitial water collected from sediments near the Windscale discharge, in the solid phases of these sediments and in seawater and suspended solids collected at the coring locations are discussed

  11. Pretreatment of MQA, a caffeoylquinic acid derivative compound, protects against H2O2-induced oxidative stress in SH-SY5Y cells.

    Science.gov (United States)

    Tian, Xing; Gao, Lingyue; An, Li; Jiang, Xiaowen; Bai, Junpeng; Huang, Jian; Meng, Weihong; Zhao, Qingchun

    2016-12-01

    Compound MQA (1,5-O-dicaffeoyl-3-O-[4-malic acid methyl ester]-quinic acid) is a natural caffeoylquinic acid derivative isolated from Arctium lappa L. roots. This study aims to explore the neuroprotective effects of MQA against hydrogen peroxide (H 2 O 2 )-induced oxidative stress in SH-SY5Y neuroblastoma cells. The SH-SY5Y cells were divided into four groups, including control, 20 μM MQA, 200 μM H2O2, 200 μM H2O2 + 20 μM MQA groups. The effects of MQA on H 2 O 2 -induced cell death were measured by MTT and LDH assays. Hoechst 33342 and Annexin V-PI double staining were used to observed H2O2-induced apoptosis. Also, the effects of MQA on antioxidant system and mitochondrial pathway were explored. Further, steady-state phosphorylation levels of ERK1/2, Akt and GSK-3β were examined by Western blot analysis. Pretreatment with MQA prevented cell death in SH-SY5Y cells exposed to 200 μM H2O2 for 3 h. Meanwhile, Hoechst 33342 and Annexin V-PI double staining showed that MQA attenuated H 2 O 2 -induced apoptosis. These changes are related to elevation in SOD activity, reduction in MDA production and ROS formation, and increases in mitochondrial membrane potential (MMP). In addition, the potential mechanisms of MQA against H 2 O 2 -induced apoptosis are associated with increases in the Bcl-2/Bax ratio, decreases in cytochrome c release, caspase-3 and caspase-9 expressions, phosphorylation of ERK1/2, and dephosphorylation of AKT and GSK-3β. These findings suggest that protective effects of MQA against H 2 O 2 -induced apoptosis might be associated with mitochondrial apoptosis, ERK1/2 and AKT/GSK-3β pathway.

  12. Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon.

    Science.gov (United States)

    Kroll, Jesse H; Lim, Christopher Y; Kessler, Sean H; Wilson, Kevin R

    2015-11-05

    Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major

  13. Efficient oxidation of alcohols to carbonyl compounds with molecular oxygen catalyzed by N-hydroxyphthalimide combined with a Co species

    Science.gov (United States)

    Iwahama; Yoshino; Keitoku; Sakaguchi; Ishii

    2000-10-06

    Highly efficient catalytic oxidation of alcohols with molecular oxygen by N-hydroxyphthalimide (NHPI) combined with a Co species was developed. The oxidation of 2-octanol in the presence of catalytic amounts of NHPI and Co(OAc)2 under atmospheric dioxygen in AcOEt at 70 degrees C gave 2-octanone in 93% yield. The oxidation was significantly enhanced by adding a small amount of benzoic acid to proceed smoothly even at room temperature. Primary alcohols were oxidized by NHPI in the absence of any metal catalyst to form the corresponding carboxylic acids in good yields. In the oxidation of terminal vic-diols such as 1,2-butanediol, carbon-carbon bond cleavage was induced to give one carbon less carboxylic acids such as propionic acid, while internal vic-diols were selectively oxidized to 1,2-diketones.

  14. The state of permanganate with relation to in situ chemical oxidation

    International Nuclear Information System (INIS)

    Veronda, Brenda; Dingens, Matthew

    2007-01-01

    In Situ Chemical Oxidation (ISCO) with permanganate had its beginnings over 10 years ago. Since that time, many sites have been successfully treated for organic compounds including chlorinated ethenes (perchloroethylene, trichloroethylene, etc.) phenols, explosives such as RDX, and many other organics. The successful application of ISCO with permanganate requires the integration of many site-specific factors into the remedial design. ISCO with permanganate is an effective technology, not only for its oxidative properties and persistence, but also for its application flexibility to remediate soil and groundwater. The merits of any type of treatment technology can be assessed in terms of effectiveness, ease of use, reaction rate, and cost. The use of permanganate for in situ chemical oxidation results in the complete mineralization of TCE and PCE and can result in treatment levels below detection limits. Permanganate is a single component oxidizer, which is easily handled, mixed and distributed to the subsurface. Permanganate is also inexpensive to design and implement as compared to other technologies. This presentation will provide a general overview of the application and safety aspects of ISCO with permanganate. This paper will discuss the advantages and limitations of this technology, typical cost ranges, site evaluation and application technologies. (authors)

  15. Influence of microorganisms on the oxidation state distribution of multivalent actinides under anoxic conditions

    International Nuclear Information System (INIS)

    Reed, Donald Timothy; Borkowski, Marian; Lucchini, Jean-Francois; Ams, David; Richmann, M.K.; Khaing, H.; Swanson, J.S.

    2010-01-01

    The fate and potential mobility of multivalent actinides in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium, uranium and neptunium are the near-surface multivalent contaminants of concern and are also key contaminants for the deep geologic disposal of nuclear waste. Their mobility is highly dependent on their redox distribution at their contamination source as well as along their potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. Under anoxic conditions, indirect and direct bioreduction mechanisms exist that promote the prevalence of lower-valent species for multivalent actinides. Oxidation-state-specific biosorption is also an important consideration for long-term migration and can influence oxidation state distribution. Results of ongoing studies to explore and establish the oxidation-state specific interactions of soil bacteria (metal reducers and sulfate reducers) as well as halo-tolerant bacteria and Archaea for uranium, neptunium and plutonium will be presented. Enzymatic reduction is a key process in the bioreduction of plutonium and uranium, but co-enzymatic processes predominate in neptunium systems. Strong sorptive interactions can occur for most actinide oxidation states but are likely a factor in the stabilization of lower-valent species when more than one oxidation state can persist under anaerobic microbiologically-active conditions. These results for microbiologically active systems are interpreted in the context of their overall importance in defining the potential migration of multivalent actinides in the subsurface.

  16. Characterizing endogenous and oxidative low molecular weight flavor/aroma compounds in fresh squeezed/blended pomegranate juice.

    Science.gov (United States)

    Little published information exists regarding flavor and aroma compounds in pomegranate (Punica granatum) juices. Although, arils have fruity and sweet characteristics, we found no publications describing volatile and semi-volatile compounds responsible for their typical flavor. Only two reports w...

  17. Surface compounds and the routes of formation of the reaction products in the interaction of propylene with zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, A.A.; Yefremov, A.A.; Mikhalchenko, V.G.; Sokolovskii, V.D.

    1979-06-15

    Temperature programed desorption of propylene and allyl bromide from zinc oxide in the absence and presence of oxygen and an IR spectroscopic study of the adsorbed allyl bromide showed that propylene chemisorbed reversibly as a m-allyl species which may undergo dimerization at higher pressures or temperatures but does not form acrolein because the necessary electron transfer does not proceed on the n-type zinc oxide; that propylene also forms carbon dioxide and water via carbonate/carboxylate intermediates; and that the allyl bromide, which forms cations on the zinc oxide surface, is oxidized to acrolein.

  18. Interactive effects of aluminum and cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets cultivated in vitro.

    Science.gov (United States)

    Manquián-Cerda, K; Cruces, E; Escudey, M; Zúñiga, G; Calderón, R

    2018-04-15

    To evaluate the potential role of phenolic compounds in Al and Cd stress tolerance mechanisms, Vaccinium corymbosum cv. Legacy plantlets were exposed to different metal concentrations. The present study used an in vitro plant model to test the effects of the following treatments: 100μM Al; 100μMAl + 50μMCd; and 100μMAl + 100μMCd during periods of 7, 14, 21 and 30 days. The oxidative damage was determined by the accumulation of malondialdehyde (MDA) and hydrogen peroxide (H 2 O 2 ). The antioxidant activity values were determined using 1,1-diphenyl-2-picrylhydrazine (DPPH) and the ferric reducing antioxidant power test (FRAP). Additionally, the phenolic compound concentrations were determined using HPLC-DAD. The exposure to Al and Cd increased the MDA and H 2 O 2 contents differentially, while the antioxidant capacity values showed differences between DPPH and FRAP with the largest changes in FRAP relative to Cd. SOD had the highest activity in the first 7 days, leading to a significant increase in phenolic compounds observed after 14 days, and chlorogenic acid was the major compound identified. Our results revealed that phenolic compounds seem to play an important role in the response to ROS. Therefore, the mechanisms of tolerance to Al and Cd in V. corymbosum will be determined by the type of metal and time of exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. New evidence on the formation of oxidizing species in corona discharge in contact with liquid and their reactions with organic compounds.

    Science.gov (United States)

    Magureanu, M; Dobrin, D; Bradu, C; Gherendi, F; Mandache, N B; Parvulescu, V I

    2016-12-01

    The objective of these investigations is to understand in more detail how organic compounds in water are degraded during plasma treatment. The formation of oxidizing species (ozone (O 3 ), hydrogen peroxide (H 2 O 2 ) and hydroxyl radicals (OH)) in a pulsed corona discharge in contact with liquid is investigated. The degradation of a target organic compound (methylparaben) in aqueous solution was increased when combining plasma treatment with ozonation, using the O 3 generated in the discharge. Enhanced mass transfer of O 3 obtained in this plasma+O 3 configuration leads to a six fold increase of MeP oxidation rate. The evolution of oxidants concentration during treatment of MeP solutions provides information on their consumption in reactions with MeP and its oxidation products. The correlation of MeP degradation results (MeP removal and mineralization) with O 3 consumption and the identified reaction products confirms that although O 3 plays an important role in the degradation, for the mineralization OH radicals have an essential contribution. The concentration of OH radicals is diminished in the solutions containing MeP as compared to plasma-treated water, indicating OH consumption in reactions with the target compound and its degradation products. The concentration of H 2 O 2 in the liquid can be either increased or reduced in the presence of MeP, depending on its initial concentration. On the one hand, decomposition of H 2 O 2 by OH or O 3 is suppressed in the presence of MeP, but on the other hand less OH radicals are available for its formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Dirac cone and pseudogapped density of states in the topological half-Heusler compound YPtBi

    Science.gov (United States)

    Kronenberg, A.; Braun, J.; Minár, J.; Elmers, H.-J.; Kutnyakhov, D.; Zaporozhchenko, A. V.; Wallauer, R.; Chernov, S.; Medjanik, K.; Schönhense, G.; Kläui, M.; Chadov, S.; Ebert, H.; Jourdan, M.

    2016-10-01

    Topological insulators (TIs) are exciting materials, which exhibit unprecedented properties, such as helical spin-momentum locking, which leads to large torques for magnetic switching and highly efficient spin current detection. Here we explore the compound YPtBi, an example from the class of half-Heusler materials, for which the typical band inversion of topological insulators was predicted. We prepared this material as thin films by conventional cosputtering from elementary targets. By in situ time-of-flight momentum microscopy, a Dirac conelike surface state with a Dirac point ≃300 meV below the Fermi energy was observed, in agreement with electronic structure-photoemission calculations. Only little additional spectral weight due to other states was observed at EF, which corroborates the identification of the topologically protected surface state and is highly relevant for spintronics applications.

  1. Encapsulation of Active Compounds in Fruit and Vegetable Juice Processing: Current State and Perspectives.

    Science.gov (United States)

    Speranza, Barbara; Petruzzi, Leonardo; Bevilacqua, Antonio; Gallo, Mariangela; Campaniello, Daniela; Sinigaglia, Milena; Corbo, Maria Rosaria

    2017-06-01

    The production of value-added and/or functional juices has increased significantly in recent years, following an increased consumer demand to promote health and/or prevent disease through diet and nutrition. Micro and nano-encapsulation are promising technologies to protect and deliver sensitive compounds, allowing a controlled release in the target sites. This paper offers an overview of current applications, limits and challenges of encapsulation technologies in the production of fruit and vegetable juices, with a particular emphasis on products derived from different botanical sources. © 2017 Institute of Food Technologists®.

  2. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    International Nuclear Information System (INIS)

    Sallis, S.; Williams, D. S.; Butler, K. T.; Walsh, A.; Quackenbush, N. F.; Junda, M.; Podraza, N. J.; Fischer, D. A.; Woicik, J. C.; White, B. E.; Piper, L. F. J.

    2014-01-01

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  3. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, S.; Williams, D. S. [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Butler, K. T.; Walsh, A. [Center for Sustainable Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Quackenbush, N. F. [Department of Physics, Applied Physics, and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Junda, M.; Podraza, N. J. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States); Fischer, D. A.; Woicik, J. C. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); White, B. E.; Piper, L. F. J., E-mail: lpiper@binghamton.edu [Department of Physics, Applied Physics, and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2014-06-09

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  4. Structural oxidation state studies of the manganese cluster in the oxygen evolving complex of photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wenchuan [Univ. of California, Berkeley, CA (United States)

    1994-11-01

    X-ray absorption spectroscopy (XAS) was performed on Photosystem II (PSII)-enriched membranes prepared from spinach to explore: (1) the correlation between structure and magnetic spin state of the Mn cluster in the oxygen evolving complex (OEC) in the S2 state; and (2) the oxidation state changes of the Mn cluster in the flash-induced S-states. The structure of the Mn cluster in the S2 state with the g~4 electron paramagnetic resonance (EPR) signal (S2-g4 state) was compared with that in the S2 state with multiline signal (S2-MLS state) and the S1 state. The S2-g4 state has a higher XAS inflection point energy than that of the S1 state, indicating the oxidation of Mn in the advance from the S1 to the S2-g4 state. Differences in the edge shape and in the extended X-ray absorption fine structure (EXAFS) show that the structure of the Mn cluster in the S2-g4 state is different from that in the S2-MLS or the S1 state. In the S2-g4 state, the second shell of backscatterers from the Mn absorber contains two Mn-Mn distances of 2.73 Å and 2.85 Å. Very little distance disorder exists in the second shell of the S1 or S2-MLS states. The third shell of the S2-g4 state at about 3.3 Å also contains increased heterogeneity relative to that of the S2-MLS or the S1 state. Various S-states were prepared at room-temperature by saturating, single-turnover flashes. The flash-dependent oscillation in the amplitude of the MLS was used to characterize the S-state composition and to construct "pure" S-state Mn K-edge spectra. The edge position shifts to higher energy by 1.8 eV upon the S1 → S2 transition.

  5. Method of isolation of traces of americium by using the +6 oxidation state properties

    International Nuclear Information System (INIS)

    Kwinta, Jean; Michel, Jean-Jacques

    1969-05-01

    The authors present a method to separate traces of americium from a solution containing fission products and actinides. This method comprises the following steps: firstly, the oxidation of americium at the +6 state by ammonium persulfate and carrying over of actinides and III and IV lanthanides by lanthanum fluoride; secondly, the reduction by hydrazine of the oxidized americium and carrying over of the reduced americium by lutetium fluoride; and thirdly, the americium-lutetium separation by selective extractions either with di 2 ethyl hexyl phosphoric acid, or by fractionated elution on an anionic resin column by a mixture of nitric acid and methanol [fr

  6. Study of reactions between fuel (mixed oxide (UPu)Osub(2-x)) and cladding (stainless-steel) in reactors: influence of iodine compounds

    International Nuclear Information System (INIS)

    Aubert, Michel.

    1976-03-01

    The influence of iodine compounds on the development of the oxide-cladding reaction was examined. The action of iodine, cesium and cesium iodide on type 316 stainless was determined in the presence or absence of uranium oxide or mixed uranium-plutonium oxide type fuel in a closed system, isothermal or with a temperature gradient. The study of the stainless steel iodine reactions was developed in particular. These experiments showed that cesium combines with uranium oxide to give cesium uranate Cs 2 U 2 O 7 ; it is not unreasonable to suppose that cesium urano-plutonate Cs 2 (U,Pu) 2 O 7 could be formed inside the pile. It was then shown that cesium iodide in the presence of sufficiently non-stoichiometric mixed oxide could contribute towards the degradation of the stainless steel cladding. Under these conditions the reaction is accompained by a transport of manganese, chromium and iron into the hot parts of the fuel by a Van-Arkel type mechanism. This might explain the presence of metallic precipitates in the fuel, but the role assigned to molybdenum iodide in the same phenomenon is considered unlikely. Finally it is proposed to deposit a thin layer of manganese metal on the inner surface of the cladding in order to minimize the action of fission products (CsI, Te) [fr

  7. Single crystal structures and theoretical calculations of uranium endohedral metallofullerenes (U@C2n , 2n = 74, 82) show cage isomer dependent oxidation states for U.

    Science.gov (United States)

    Cai, Wenting; Morales-Martínez, Roser; Zhang, Xingxing; Najera, Daniel; Romero, Elkin L; Metta-Magaña, Alejandro; Rodríguez-Fortea, Antonio; Fortier, Skye; Chen, Ning; Poblet, Josep M; Echegoyen, Luis

    2017-08-01

    Charge transfer is a general phenomenon observed for all endohedral mono-metallofullerenes. Since the detection of the first endohedral metallofullerene (EMF), La@C 82 , in 1991, it has always been observed that the oxidation state of a given encapsulated metal is always the same, regardless of the cage size. No crystallographic data exist for any early actinide endohedrals and little is known about the oxidation states for the few compounds that have been reported. Here we report the X-ray structures of three uranium metallofullerenes, U@ D 3h -C 74 , U@ C 2 (5)-C 82 and U@ C 2v (9)-C 82 , and provide theoretical evidence for cage isomer dependent charge transfer states for U. Results from DFT calculations show that U@ D 3h -C 74 and U@ C 2 (5)-C 82 have tetravalent electronic configurations corresponding to U 4+ @ D 3h -C 74 4- and U 4+ @ C 2 (5)-C 82 4- . Surprisingly, the isomeric U@ C 2v (9)-C 82 has a trivalent electronic configuration corresponding to U 3+ @ C 2v (9)-C 82 3- . These are the first X-ray crystallographic structures of uranium EMFs and this is first observation of metal oxidation state dependence on carbon cage isomerism for mono-EMFs.

  8. Extracellular redox state: refining the definition of oxidative stress in aging.

    Science.gov (United States)

    Jones, Dean P

    2006-01-01

    Oxidative stress in aging can result from an imbalance of prooxidants and antioxidants with excessive, destructive free radical chemistry. Thiol systems are important in the control of these processes, both by protecting against damage and serving in redox signaling mechanisms to sense danger and repair the damage. Studies by a number of research groups in collaboration with the Emory Clinical Biomarkers Laboratory show that the redox state of the central tissue antioxidant, glutathione (GSH), can be measured in human plasma and provides a quantitative systemic indicator of oxidative stress. Plasma GSH/GSSG redox in humans becomes oxidized with age, in response to chemotherapy, as a consequence of cigarette smoking, and in association with common age-related diseases (e.g., type 2 diabetes, cardiovascular disease). However, the GSH/GSSG redox is not equilibrated with the larger plasma cysteine/cystine (Cys/CySS) pool, and the Cys/CySS redox varies with age in a pattern that is distinct from that of GSH/GSSG redox. Furthermore, in vitro studies show that variation in Cys/CySS redox over the range found in vivo affects signaling pathways, which control cell proliferation and oxidant-induced apoptosis. The results point to the conclusion that free radical scavenging antioxidants are of increased importance when thiol/disulfide redox states are oxidized. Because thiol/disulfide redox states, per se, function in redox signaling and control as well as antioxidant protection, GSH/GSSG and Cys/CySS redox states may provide central parameters to link environmental influences and progression of changes associated with aging.

  9. Kinetic and equilibrium studies of acrylonitrile binding to cytochrome c peroxidase and oxidation of acrylonitrile by cytochrome c peroxidase compound I.

    Science.gov (United States)

    Chinchilla, Diana; Kilheeney, Heather; Vitello, Lidia B; Erman, James E

    2014-01-03

    Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32±0.16 M(-1) s(-1) and 0.34±0.15 s(-1), respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1±0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a "peroxygenase"-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min(-1) at pH 6.0. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Influence of de-hulled rapeseed roasting on the physicochemical composition and oxidative state of oil

    International Nuclear Information System (INIS)

    Rękas, A.; Siger, A.; Wroniak, M.; Ścibisz, I.; Derewiaka, D.; Anders, A.

    2017-01-01

    The effect of roasting time on the contents of bioactive compounds (tocopherols, phytosterols, phenolic compounds), antioxidant capacity and physicochemical properties of rapeseed oil pressed from de-hulled seeds was investigated. The de-hulled seeds were roasted at a temperature of 165 °C for 20, 40, 60, 80, and 100 min. The results of this study show that a roasting pre-treatment led to a gradual increase in canolol content (from 1.34 to 117.33 mg/100 g), total phytosterols (from 573.51 to 609.86 mg/100 g) and total carotenoids (0.82 to 2.41 mg/100 g), while only slight changes in the contents of tocopherols were noted. With the increase in roasting time a gradual increase in oxidative stability (from 4.27 to 6.85 h), and antioxidant capacity, seen mainly in the hydrophilic fraction of oil (from 0.32 to 2.30 mmol TEAC/l) was found. Although roasting resulted in the formation of primary and secondary oxidation products, the quality parameters of oils were within Codex Alimentarius limits. [es

  11. Improvement of the thermal and thermo-oxidative stability of high-density polyethylene by free radical trapping of rare earth compound

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Shiya; Zhao, Li; Han, Ligang [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou, 310027 (China); Guo, Zhenghong, E-mail: guozhenghong@nit.zju.edu.cn [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); Fang, Zhengping [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou, 310027 (China)

    2015-07-20

    Highlights: • Polyethylene filled with ytterbium trifluoromethanesulfonate was prepared. • A low Yb loading improved thermal stability of PE obviously by radical trapping. • Yb(OTf){sub 3} is expected to be an efficient thermal stabilizer for the polymer. - Abstract: A kind of rare earth compound, ytterbium trifluoromethanesulfonate (Yb(OTf){sub 3}), was introduced into high-density polyethylene (HDPE) by melt compounding to investigate the effect of Yb(OTf){sub 3} on the thermal and thermo-oxidative stability of HDPE. The results of thermogravimetric (TG) and differential scanning calorimetry (DSC) showed that the addition of Yb(OTf){sub 3} made the thermal degradation temperatures dramatically increased, the oxidative induction time (OIT) extended, and the enthalpy (ΔH{sub d}) reduced. Very low Yb(OTf){sub 3} loading (0.5 wt%) in HDPE could increase the onset degradation temperature in air from 334 to 407 °C, delay the OIT from 11.0 to 24.3 min, and decrease the ΔH{sub d} from 61.0 to 13.0 J/g remarkably. Electron spin resonance spectra (ESR), thermogravimetric analysis coupled to Fourier transform infrared spectroscopy (TGA-FTIR), rheological investigation and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) indicated that the free radicals-trapping ability of Yb(OTf){sub 3} was responsible for the improved thermal and thermo-oxidative stability.

  12. Kinetic and equilibrium studies of acrylonitrile binding to cytochrome c peroxidase and oxidation of acrylonitrile by cytochrome c peroxidase compound I

    Energy Technology Data Exchange (ETDEWEB)

    Chinchilla, Diana, E-mail: Diana_Chinchilla@yahoo.com; Kilheeney, Heather, E-mail: raindropszoo@yahoo.com; Vitello, Lidia B., E-mail: lvitello@niu.edu; Erman, James E., E-mail: jerman@niu.edu

    2014-01-03

    Highlights: •Cytochrome c peroxidase (CcP) binds acrylonitrile in a pH-independent fashion. •The spectrum of the CcP/acrylonitrile complex is that of a 6c–ls ferric heme. •The acrylonitrile/CcP complex has a K{sub D} value of 1.1 ± 0.2 M. •CcP compound I oxidizes acrylonitrile with a maximum turnover rate of 0.61 min{sup −1}. -- Abstract: Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32 ± 0.16 M{sup −1} s{sup −1} and 0.34 ± 0.15 s{sup −1}, respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1 ± 0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a “peroxygenase”-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min{sup −1} at pH 6.0.

  13. General regularity of the oxidation potential variations and high oxidation states in the second half of the actinide series

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Vokhmin, V.G.; Ionova, G.V.; Pershina, V.G.

    1984-01-01

    Oxidation potentials (OP) PHI(4/3), PHI(5/3), PHI(6/3), PHI(5/4) and PHI(6/5) are calculated for the members of the actinide series. A semiemperic relation combining OP with explicit terms for ground level energies of actinide ions in Russell-Saunders approximation as well as known values of formal OP relative to the normal hydrogen electrode potential are used as an extrapolation function. It is shown that an increase of PHI(4/3) OP which occurs after Bsub(k) explains a low stability of the oxidation state 4 in solutions for actinides of the second half of the series. PHI(5/3) and PHI(5/4) OP in the section starting with Cm have the minimum at Cf. PHI(6/3) OP for Cm, Bk, Cf and Es are practically the same but for Cm, Bk and Es they are smaller than PHI(5/3) OP. A principle possibility of Bk(6), Cf(6) and Es(6) preparation is shown

  14. Oxidations of Organic and Inorganic Substrates by Superoxo-, hydroperoxo-, and oxo-compounds of the transition metals

    International Nuclear Information System (INIS)

    Michael John Vasbinder

    2006-01-01

    Chapters 1 and 2 dealt with the chemistry of superoxo-, hydroperoxo-, and oxo- complexes of chromium, rhodium and cobalt. Chapter 3 dealt with the mechanism of oxygen-atom transfer catalyzed by an oxo-complex of rhenium. In Chapter 1, it was shown that hydroperoxometal complexes of cobalt and rhodium react with superoxochromium and chromyl ions, generating reduced chromium species while oxidizing the hydroperoxometal ions to their corresponding superoxometal ions. It was shown that the chromyl and superoxochromium ions are the more powerful oxidants. Evidence supports hydrogen atom transfer from the hydroperoxometal ion to the oxidizing superoxochromium or chromyl ion as the reaction mechanism. There is a significant H/D kinetic isotope effect. Comparisons to the rate constants of other known hydrogen atom transfer reactions show the expected correlation with bond dissociation energies. In Chapter 2, it was found that the superoxometal complexes Cr aq OO 2+ and Rh(NH 3 ) 4 (H 2 O)OO 2+ oxidize stable nitroxyl radicals of the TEMPO series with rate constants that correlate with the redox potentials of both the oxidant and reductant. These reactions fit the Marcus equation for electron transfer near the theoretical value. Acid catalysis is important to the reaction, especially the thermodynamically limited cases involving Rh(NH 3 ) 4 (H 2 O)OO 2+ as the oxidant. The rate constants are notably less than those measured in the reaction between the same nitroxyl radicals and other strong free-radical oxidants, an illustration of the delocalized and stabilized nature of the superoxometal ions. Chapter 3 showed that oxo-rhenium catalysts needed a nucleophile to complete the catalytic oxygen-atom transfer from substituted pyridine-N-oxides to triphenylphosphine. The reaction was studied by introducing various pyridine-derived nucleophiles and monitoring their effect on the rate, then fitting the observed rate constants to the Hammett correlation. It was found that the

  15. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    Science.gov (United States)

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  16. Radiation oxidation of polypropylene: A solid-state 13C NMR study using selective isotopic labeling

    International Nuclear Information System (INIS)

    Mowery, Daniel M.; Assink, Roger A.; Derzon, Dora K.; Klamo, Sara B.; Bernstein, Robert; Clough, Roger L.

    2007-01-01

    Polypropylene samples, in which the three different carbon atoms along the chain were selectively labeled with carbon-13, were subjected to radiation under inert and air atmospheres, and to post-irradiation exposure in air at various temperatures. By using solid-state 13 C NMR measurements at room temperature, we have been able to identify and quantify the oxidation products. The isotopic labeling provides insight into chemical reaction mechanisms, since oxidation products can be traced back to their positions of origin on the macromolecule. The major products include peroxides and alcohols, both formed at tertiary carbon sites along the chain. Other products include methyl ketones, acids, esters, peresters, and hemiketals formed from reaction at the tertiary carbon, together with in-chain ketones and esters from reaction at the secondary chain carbon. No evidence is found of products arising from reactions at the methyl side chain. Significant temperature-dependent differences are apparent; for example much higher yields of chain-end methyl ketones, which are the indicator product of chain scission, are generated for both elevated temperature irradiation and for post-irradiation treatment at elevated temperatures. Time-dependent plots of yields of the various oxidation products have been obtained under a wide range of conditions, including the post-irradiation oxidation of a sample at room temperature in air that has been monitored for 2 years. Radiation-oxidation products of polypropylene are contrasted to products measured for 13 C-labeled polyethylene in an earlier investigation: the peroxides formed in irradiated polypropylene are remarkably longer liv