WorldWideScience

Sample records for oxalic acid solutions

  1. Vibrational studies in aqueous solutions. Part II. The acid oxalate ion and oxalic acid

    Shippey, T. A.

    1980-08-01

    Assignments for oxalic acid in solution are re-examined. A detailed assignment of the IR and Raman spectra of the acid oxalate ion is presented for the first time. Raman spectroscopy is used to study the first ionization of oxalic acid.

  2. Dissolution of oxalate precipitate and destruction of oxalate ion by hydrogen peroxide in nitric acid solution

    Kim, Eung-Ho; Chung, Dong-Yong; Park, Jin-Ho; Yoo, Jae-Hyung

    2000-01-01

    This study aims at developing an oxalate precipitation process, which is applicable to a partitioning of long-lived radionuclides from the high-level radioactive liquid waste. In order to achieve this, a study for decomposition-reaction of oxalic acid by hydrogen peroxide was first carried out. The decomposition rates of H 2 O 2 and oxalic acid increased with an increase of nitric acid concentration, and especially those decomposition rates steeply increased at more than 2 M HNO 3 . Based on this result, the decomposition kinetics of H 2 O 2 and oxalic acid were suggested in this work. Then, the dissolution of oxalate precipitate and the destruction of oxalate ion in the solution were examined. Oxalate precipitates were prepared by adding oxalic acid into a simulated radioactive waste containing 8 metallic elements. The precipitates obtained thereby were dissolved in various nitric acid concentrations and reacted with H 2 O 2 at 90degC. When the oxalates were completely dissolved, most of the oxalates were decomposed by adding H 2 O 2 , but in a slurry state the decomposition yield of the oxalate decreased with an increase of the slurry density in the solution. Such phenomenon was considered to be due to a catalytic decomposition of H 2 O 2 on a solid surface of oxalate and the decomposition mechanism was explained by a charge transfer from a surface of oxalate solid to H 2 O 2 , producing OH radicals which can destruct H 2 O 2 explosively. Accordingly, the experimental condition for the decomposition of the oxalate precipitates was found to be most favorable at 3 M HNO 3 under the initial concentrations of 0.2 M oxalate and 1 M H 2 O 2 . At 3M HNO 3 , oxalate precipitates could be safely and completely dissolved, and almost decomposed. Additionally, it was observed that the presence of ferric ion in the solution largely affects the decomposition rate of H 2 O 2 . This could be explained by a chain reaction of hydrogen peroxide with ferric ion in the solution

  3. Removal of plutonium from nitric acid-oxalic acid solutions using anion exchange method

    Kasar, U.M.; Pawar, S.M.; Joshi, A.R.

    1999-01-01

    An anion exchange method using Amberlyst A-26 (MP) resin was developed for removal of Pu from nitric acid-oxalic acid solutions without destroying oxalate. The method consists of sorption of Pu(IV) on Amberlyst A-26, a macroporous anion exchange resin, from nitric acid-oxalic acid medium in the presence of Al(NO 3 ) 3 . Pu(IV) breakthrough capacity of Amberlyst A-26 using synthetic feed solution was determined. (author)

  4. Precipitation behavior of uranium in multicomponent solution by oxalic acid

    Shin, Y.J.; Kim, I.S.; Lee, W.K.; Shin, H.S.; Ro, S.G.

    1996-01-01

    A study on the precipitation of uranium by oxalic acid was carried out in a multicomponent solution. The precipitation method is usually applied to the treatment of radioactive waste and the recovery of uranium from a uranium-scrap contaminated with impurities. In these cases, the problem is how to increase the precipitation yield of target element and to prevent impurities from coprecipitation. The multicomponent solution in the present experiment was prepared by dissolving U, Nd, Cs and Sr in nitric acid. The effects of concentrations of oxalic acid and ascorbic acid on the precipitation yield and purity of uranium were observed. As results of the study, the maximum precipitation yield of uranium is revealed to be about 96.5% and the relative precipitation ratio of Nd, Cs and Sr versus uranium are discussed at the condition of the maximum precipitation yield of uranium, respectively. (author). 11 refs., 5 figs., 1 tab

  5. Studies on removal of plutonium from oxalic acid containing hydrochloric acid solutions

    Ghadse, D R; Noronha, D M; Joshi, A R [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Solution containing hydrochloric acid, oxalic acid and considerable quantities of plutonium may be generated while recycling of scrap produced during the metallic fuel fabrication. Plutonium from such waste is normally recovered by anion exchange method after the destruction of oxalic acid using suitable oxidising agent. Solvent extraction and ion exchange methods are being explored in this laboratory for recovery of Pu from oxalic acid containing HCl solutions without prior destruction of oxalic acid. This paper describes the results on the determination of distribution ratios for extraction of Pu(IV) from hydrochloric acid using Aliquot-336 or HDEHP under varying experimental conditions. (author). 5 refs., 5 tabs.

  6. A Novel Method for Fabricating Double Layers Porous Anodic Alumina in Phosphoric/Oxalic Acid Solution and Oxalic Acid Solution

    Yanfang Xu

    2016-01-01

    Full Text Available A novel method for fabricating ordered double layers porous anodic alumina (DL-PAA with controllable nanopore size was presented. Highly ordered large pore layer with interpore distance of 480 nm was fabricated in phosphoric acid solution with oxalic acid addition at the potential of 195 V and the small pore layer was fabricated in oxalic acid solution at the potential from 60 to 100 V. Experimental results show that the thickness of large pore layer is linearly correlative with anodizing time, and pore diameter is linearly correlative with pore widening time. When the anodizing potential in oxalic acid solution was adjusted from 60 to 100 V, the small pore layers with continuously tunable interpore distance from 142 to 241 nm and pore density from 1.94×109 to 4.89×109 cm−2 were obtained. And the interpore distance and the pore density of small pore layers are closely correlative with the anodizing potential. The fabricated DL-PAA templates can be widely utilized for fabrication of ordered nanomaterials, such as superhydrophobic or gecko-inspired adhesive materials and metal or semiconductor nanowires.

  7. Behaviour of Pu-IV with various ion exchangers in solutions containing nitric acid and oxalates

    Walter, E.; Ali, S.A.

    1982-02-01

    The distribution of Pu-IV on the ion exchangers Dowex 50W-X8, Dowex 1-X8 und Dowex Chelating Resin Al-X8 in the presence of various concentrations of nitric acid and oxalate were investigated. The results indicate that nitric acid and oxalic acid influence each other during complexation of Pu-IV with oxalate ions solutions containing nitric acid it is not possible to neglect the formation of Pu-IV nitrate complexes. The complex Pu(IV) (C 2 O 4 ) 3 2 - only is formed in solutions containing low nitric acid and high oxalic acid concentrations. The separation of Pu-IV in Dowex Chelating Resin from nitric acid solution in the presence of higher oxalate concentrations is possible, provided that the nitric acid concentration is lower than 0.25 molar [fr

  8. Co-precipitation of plutonium(IV) and americium(III) from nitric acid-oxalic acid solutions with bismuth oxalate

    Pius, I.C.; Noronha, D.M.; Chaudhury, Satyajeet

    2017-01-01

    Co-precipitation of plutonium and americium from nitric acid-oxalic acid solutions with bismuth oxalate has been investigated for the removal of these long lived α-active nuclides from waste solutions. Effect of concentration of bismuth and oxalic acid on the co-precipitation of Pu(IV) from 3 M HNO_3 has been investigated. Similar experiments were also carried out from 3.75 M HNO_3 on co-precipitation of Am(III) to optimize the conditions of precipitation. Strong co-precipitation of Pu(IV) and Am(III) with bismuth oxalate indicate feasibility of treatment of plutonium and americium bearing waste solutions. (author)

  9. Savannah River Site Tank Cleaning: Corrosion Rate For One Versus Eight Percent Oxalic Acid Solution

    Ketusky, E.; Subramanian, K.

    2011-01-01

    Until recently, the use of oxalic acid for chemically cleaning the Savannah River Site (SRS) radioactive waste tanks focused on using concentrated 4 and 8-wt% solutions. Recent testing and research on applicable dissolution mechanisms have concluded that under appropriate conditions, dilute solutions of oxalic acid (i.e., 1-wt%) may be more effective. Based on the need to maximize cleaning effectiveness, coupled with the need to minimize downstream impacts, SRS is now developing plans for using a 1-wt% oxalic acid solution. A technology gap associated with using a 1-wt% oxalic acid solution was a dearth of suitable corrosion data. Assuming oxalic acid's passivation of carbon steel was proportional to the free oxalate concentration, the general corrosion rate (CR) from a 1-wt% solution may not be bound by those from 8-wt%. Therefore, after developing the test strategy and plan, the corrosion testing was performed. Starting with the envisioned process specific baseline solvent, a 1-wt% oxalic acid solution, with sludge (limited to Purex type sludge-simulant for this initial effort) at 75 C and agitated, the corrosion rate (CR) was determined from the measured weight loss of the exposed coupon. Environmental variations tested were: (a) Inclusion of sludge in the test vessel or assuming a pure oxalic acid solution; (b) acid solution temperature maintained at 75 or 45 C; and (c) agitation of the acid solution or stagnant. Application of select electrochemical testing (EC) explored the impact of each variation on the passivation mechanisms and confirmed the CR. The 1-wt% results were then compared to those from the 8-wt%. The immersion coupons showed that the maximum time averaged CR for a 1-wt% solution with sludge was less than 25-mils/yr for all conditions. For an agitated 8-wt% solution with sludge, the maximum time averaged CR was about 30-mils/yr at 50 C, and 86-mils/yr at 75 C. Both the 1-wt% and the 8-wt% testing demonstrated that if the sludge was removed from

  10. Precipitation stripping of neodymium from carboxylate extractant with aqueous oxalic acid solutions

    Konishi, Yasuhiro; Asai, Satoru; Murai, Tetuya

    1993-01-01

    This paper describes a precipitation stripping method in which neodymium ions are stripped from carboxylate extractant in organic solvent and simultaneously precipitated with aqueous oxalic acid solution. For the single-stage process, a quantitative criterion for precipitating oxalate powders was derived theoretically, and stripping experiments were done under the precipitation conditions. The resultant precipitates were neodymium oxalate, which is completely free from contamination by the carboxylate extractant and the organic solvent. The overall rate of stripping was controlled by the transfer of neodymium carboxylate in the organic solution, indicating that the presence of oxalic acid in the aqueous phase has no effect on the stripping rate. These findings demonstrate the feasibility of combining the conventional stripping and precipitation stages in a solvent extraction process for separation and purification of rare earths

  11. Oxalic acid complexes: Promising draw solutes for forward osmosis (FO) in protein enrichment

    Ge, Qingchun; Chung, Neal Tai-Shung

    2015-01-01

    Highly soluble oxalic acid complexes (OACs) were synthesized through a one-pot reaction. The OACs exhibit excellent performance as draw solutes in FO processes with high water fluxes and negligible reverse solute fluxes. Efficient protein enrichment was achieved. The diluted OACs can be recycled via nanofiltration and are promising as draw solutes.

  12. Impedance and hydrogen evolution studies on magnesium alloy in oxalic acid solution containing different anions

    Fekry, A.M. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2010-12-15

    The corrosion behavior of AZ31E alloy was investigated in oxalic acid solution using different electrochemical techniques. The effect of concentration was studied, where the corrosion rate was found to increase with increasing oxalic acid concentration and hydrogen evolution. The effect of adding Cl{sup -}, F{sup -} or PO{sub 4}{sup 3-} ions on the electrochemical behavior of AZ31E electrode was studied in 0.01 M oxalic acid solution at 298 K. It was found that the corrosion rate increases with increasing Cl{sup -} or F{sup -} ion concentration, however, it decreases with increasing PO{sub 4}{sup 3-} ion concentration. Good agreement was observed between the results obtained from electrochemical techniques and confirmed by Scanning electron micrographs. (author)

  13. Effect of Surface Precipitate on the Crevice Corrosion in HYBRID and Oxalic Acid Solution

    Park, S. Y.; Jung, J. Y.; Won, H. J.; Kim, S. B.; Choi, W. K.; Moon, J. K.; Park, S. J.

    2015-01-01

    In this study, we investigated the characteristics of the crevice corrosion for Inconel-600 and 304SS in OA solution according to the change in pH. The evaluation of the crevice corrosion with the chemical thermodynamic analysis identified the effect of the residual chemicals such as iron-oxalate and nickeloxalate to the crevice corrosion behavior. Test results were compared with those of HYBRID (HYdrizine Base Reductive metal Ion Decontamination). The crevice corrosion properties of 304 SS and Inconel-600 in HYBRID and oxalic acid solution were evaluated. In case of oxalic acid solution, the corrosion rate on 304SS was rapidly increased with a pH decrease of around 2, but there was no increase in the corrosion rate on Inconel-600

  14. Chemically modified carbon paste electrode for fast screening of oxalic acid levels in soil solutions

    Šestáková, Ivana; Jakl, M.; Jaklová Dytrtová, J.

    2008-01-01

    Roč. 102, - (2008), s. 140-140 E-ISSN 1213-7103. [International Conference on Electroanalysis /12./. 16.06.2008-19.06.2008, Prague] R&D Projects: GA ČR GA521/06/0496 Institutional research plan: CEZ:AV0Z40400503 Keywords : oxalic acid * carbon paste electrodes * soil solutions Subject RIV: CG - Electrochemistry

  15. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    STALLINGS, MARY

    2004-01-01

    This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalic acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated

  16. A new approach to study cadmium complexes with oxalic acid in soil solution.

    Dytrtová, Jana Jaklová; Jakl, Michal; Sestáková, Ivana; Zins, Emilie-Laure; Schröder, Detlef; Navrátil, Tomáš

    2011-05-05

    This study presents a new analytical approach for the determination of heavy metals complexed to low-molecular-weight-organic acids in soil solutions, which combines the sensitivity of differential pulse anodic stripping voltammetry (DPASV) with the molecular insight gained by electrospray ionization mass spectrometry (ESI-MS). The combination of these analytical methods allows the investigation of such complexes in complex matrixes. On the voltammograms of the soil solutions, in addition to the expected complexes of oxalic acid with cadmium and lead, respectively, also peaks belonging to mixed complexes of cadmium, lead, and oxalic acid (OAH(2)) were observed. In order to verify the possible formation of complexes with OAH(2), aqueous solutions of OAH(2) with traces of Cd(II) were investigated as model systems. Signals corresponding to several distinct molecular complexes between cadmium and oxalic acid were detected in the model solutions using negative-ion ESI-MS, which follow the general formula [Cd(n)(X,Y)((2n+1))](-), where n is the number of cadmium atoms, X=Cl(-), and Y=OAH(-). Some of these complexes were also identified in the ESI mass spectra taken from the soil solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. A new approach to study cadmium complexes with oxalic acid in soil solution

    Jaklova Dytrtova, Jana; Jakl, Michal; Sestakova, Ivana; Zins, Emilie-Laure; Schroeder, Detlef; Navratil, Tomas

    2011-01-01

    This study presents a new analytical approach for the determination of heavy metals complexed to low-molecular-weight-organic acids in soil solutions, which combines the sensitivity of differential pulse anodic stripping voltammetry (DPASV) with the molecular insight gained by electrospray ionization mass spectrometry (ESI-MS). The combination of these analytical methods allows the investigation of such complexes in complex matrixes. On the voltammograms of the soil solutions, in addition to the expected complexes of oxalic acid with cadmium and lead, respectively, also peaks belonging to mixed complexes of cadmium, lead, and oxalic acid (OAH 2 ) were observed. In order to verify the possible formation of complexes with OAH 2 , aqueous solutions of OAH 2 with traces of Cd(II) were investigated as model systems. Signals corresponding to several distinct molecular complexes between cadmium and oxalic acid were detected in the model solutions using negative-ion ESI-MS, which follow the general formula [Cd n (X,Y) (2n+1) ] - , where n is the number of cadmium atoms, X = Cl - , and Y = OAH - . Some of these complexes were also identified in the ESI mass spectra taken from the soil solutions.

  18. A new approach to study cadmium complexes with oxalic acid in soil solution

    Jaklova Dytrtova, Jana, E-mail: dytrtova@uochb.cas.cz [Institute of Organic Chemistry and Biochemistry of the AS CR, v.v.i., Flemingovo namesti 2, 16610 Prague 6 (Czech Republic); Jakl, Michal [Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 16521 Prague - Suchdol (Czech Republic); Sestakova, Ivana [J. Heyrovsky Institute of Physical Chemistry of the AS CR, v.v.i., Dolejskova 3, 182 23 Prague 8 (Czech Republic); Zins, Emilie-Laure; Schroeder, Detlef [Institute of Organic Chemistry and Biochemistry of the AS CR, v.v.i., Flemingovo namesti 2, 16610 Prague 6 (Czech Republic); Navratil, Tomas [J. Heyrovsky Institute of Physical Chemistry of the AS CR, v.v.i., Dolejskova 3, 182 23 Prague 8 (Czech Republic)

    2011-05-05

    This study presents a new analytical approach for the determination of heavy metals complexed to low-molecular-weight-organic acids in soil solutions, which combines the sensitivity of differential pulse anodic stripping voltammetry (DPASV) with the molecular insight gained by electrospray ionization mass spectrometry (ESI-MS). The combination of these analytical methods allows the investigation of such complexes in complex matrixes. On the voltammograms of the soil solutions, in addition to the expected complexes of oxalic acid with cadmium and lead, respectively, also peaks belonging to mixed complexes of cadmium, lead, and oxalic acid (OAH{sub 2}) were observed. In order to verify the possible formation of complexes with OAH{sub 2}, aqueous solutions of OAH{sub 2} with traces of Cd(II) were investigated as model systems. Signals corresponding to several distinct molecular complexes between cadmium and oxalic acid were detected in the model solutions using negative-ion ESI-MS, which follow the general formula [Cd{sub n}(X,Y){sub (2n+1)}]{sup -}, where n is the number of cadmium atoms, X = Cl{sup -}, and Y = OAH{sup -}. Some of these complexes were also identified in the ESI mass spectra taken from the soil solutions.

  19. Extraction of plutonium and uranium from oxalate bearing solutions using phosphonic acid

    Godbole, A.G.; Mapara, P.M.; Swarup, Rajendra

    1995-01-01

    A feasibility study on the solvent extraction of plutonium and uranium from solutions containing oxalic and nitric acids using a phosphonic acid extractant (PC88A) was made to explore the possibility of recovering Pu from these solutions. Batch experiments on the extraction of Pu(IV) and U(VI) under different parameters were carried out using PC88A in dodecane. The results indicated that Pu could be extracted quantitatively by PC88A from these solutions. A good separation of Pu from U could be achieved at higher temperatures. (author). 6 refs., 3 tabs

  20. Forward osmosis for oily wastewater reclamation: Multi-charged oxalic acid complexes as draw solutes

    Ge, Qingchun

    2017-06-11

    Forward osmosis (FO) has demonstrated its merits in hybrid FO seawater desalination. However, FO may have a potential for other applications if suitable draw solutes are available. In this study, a series of novel draw solutes based on oxalic acid (OA)-transitional metal complexes are presented. Influential factors of FO performance have been systematically investigated by varying the transitional metals, cations of the complex draw solutes as well as the experimental conditions. Compared to NaCl and other recently synthesized draw solutes, the OA complexes show superior FO performance in terms of high water fluxes up to 27.5 and 89.1 LMH under the respective FO and PRO (pressure retarded osmosis) modes, both with negligible reverse solute fluxes. The features of octahedral geometry, abundant hydrophilic groups and ionic species are crucial for the OA complexes as appropriate draw solutes with satisfactory FO performance. Among the synthesized OA complexes, the ammonium salt of chromic complex (NH4-Cr-OA) outperforms others due to the presence of more ionic species in its complex system. NH4-Cr-OA also performs better than the typical NaCl draw solute in FO oily wastewater treatment with higher water recovery and negligible reverse fluxes. Dilute solutions of OA complexes have been reconcentrated through membrane distillation (MD) and reused to new round of FO processes. The OA complexes have demonstrated their suitability and superiority as a novel class of draw solutes for the FO process in this study.

  1. Extraction of {sup 95}(Zr, Nb) from oxalic acid solutions by means of tri-iso-octyl amine, Annex 8

    Susic, M V; Maksimovic, Z B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1963-12-15

    The extractability of {sup 95}(Zr, Nb) with tri-iso-octyl amine in xylene from an oxalic acid solution has been investigated. The behaviour of uranium and other fission products has also been observed. The extraction of {sup 95}(Zr, Nb) has been studied as u function of oxalic acid and amine concentrations. Effects of the aqueous phase pH, uranium and the presence of other electrolytes have also been observed and the possibility of separating {sup 95}(Zr, Nb) from uranium and from other fission products considered (author)

  2. Precipitation of plutonium oxalate from homogeneous solutions

    Rao, V.K.; Pius, I.C.; Subbarao, M.; Chinnusamy, A.; Natarajan, P.R.

    1986-01-01

    A method for the precipitation of plutonium(IV) oxalate from homogeneous solutions using diethyl oxalate is reported. The precipitate obtained is crystalline and easily filterable with yields in the range of 92-98% for precipitations involving a few mg to g quantities of plutonium. Decontamination factors for common impurities such as U(VI), Am(III) and Fe(III) were determined. TGA and chemical analysis of the compound indicate its composition as Pu(Csub(2)Osub(4))sub(2).6Hsub(2)O. Data are obtained on the solubility of the oxalate in nitric acid and in mixtures of nitric acid and oxalic acid of varying concentrations. Green PuOsub(2) obtained by calcination of the oxalate has specifications within the recommended values for trace foreign substances such as chlorine, fluorine, carbon and nitrogen. (author)

  3. Forward osmosis for oily wastewater reclamation: Multi-charged oxalic acid complexes as draw solutes.

    Ge, Qingchun; Amy, Gary Lee; Chung, Tai-Shung

    2017-10-01

    Forward osmosis (FO) has demonstrated its merits in hybrid FO seawater desalination. However, FO may have a potential for other applications if suitable draw solutes are available. In this study, a series of novel draw solutes based on oxalic acid (OA)-transitional metal complexes are presented. Influential factors of FO performance have been systematically investigated by varying the transitional metals, cations of the complex draw solutes as well as the experimental conditions. Compared to NaCl and other recently synthesized draw solutes, the OA complexes show superior FO performance in terms of high water fluxes up to 27.5 and 89.1 LMH under the respective FO and PRO (pressure retarded osmosis) modes, both with negligible reverse solute fluxes. The features of octahedral geometry, abundant hydrophilic groups and ionic species are crucial for the OA complexes as appropriate draw solutes with satisfactory FO performance. Among the synthesized OA complexes, the ammonium salt of chromic complex (NH 4 -Cr-OA) outperforms others due to the presence of more ionic species in its complex system. NH 4 -Cr-OA also performs better than the typical NaCl draw solute in FO oily wastewater treatment with higher water recovery and negligible reverse fluxes. Dilute solutions of OA complexes have been reconcentrated through membrane distillation (MD) and reused to new round of FO processes. The OA complexes have demonstrated their suitability and superiority as a novel class of draw solutes for the FO process in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution

    Dhahri, S.; Fazio, E.; Barreca, F.; Neri, F.; Ezzaouia, H.

    2016-08-01

    Anodizing of aluminum is used for producing porous insulating films suitable for different applications in electronics and microelectronics. Porous-type aluminum films are most simply realized by galvanostatic anodizing in aqueous acidic solutions. The improvement in application of anodizing technique is associated with a substantial reduction of the anodizing voltage at appropriate current densities as well as to the possibility to carry out the synthesis process at room temperature in order to obtain a self-planarizing dielectric material incorporated in array of super-narrow metal lines. In this work, the anodizing of aluminum to obtain porous oxide was carried out, at room temperature, on three different substrates (glass, stainless steel and aluminum), using an oxalic acid-based electrolyte with the addition of a relatively low amount of 0.4 % of HF. Different surface morphologies, from nearly spherical to larger porous nanostructures with smooth edges, were observed by means of scanning electron microscopy. These evidences are explained by considering the formation, transport and adsorption of the fluorine species which react with the Al3+ ions. The behavior is also influenced by the nature of the original substrate.

  5. Optical constants of anodic aluminum oxide films formed in oxalic acid solution

    Wang Jian [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Chengwei [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: cwwang@nwnu.edu.cn; Li Yan [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Liu Weimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2008-09-01

    The anodic aluminum oxide (AAO) films with highly ordered nanopore arrays were prepared in oxalic acid solution under different anodizing voltage and time, its surface and cross section appearances were characterized by using field emission scanning electron microscopy, the transmission spectra with the interference fringes were measured at normal incidence over the wavelength range 200 to 2500 nm. Then the modified Swanepoel method was used for the determination of the optical constants and thickness of the free standing AAO films. The results indicate that the refractive index increases with the increase of anodizing voltage and the decrease of anodizing time, which is mainly due to the content of Al{sub 2}O{sub 3} with octahedron increases in the AAO films. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model, and the energy dependence of the absorption coefficient can be described using the direct transition model proposed by Tauc. Likewise, the optical energy gap E{sub g} is derived from Tauc's extrapolation, and E{sub g} increases from 4.178 to 4.256 eV with the anodizing voltage, but is weakly dependent on anodizing time. All the results are self-consistent in the paper.

  6. Composition, structure and electrical properties of alumina barrier layers grown in fluoride-containing oxalic acid solutions

    Jagminas, A. [Institute of Chemistry, A. Gostauto 9, LT-01108 Vilnius (Lithuania)], E-mail: jagmin@ktl.mii.lt; Vrublevsky, I. [Department of Microelectricals, Belarusian State University of Informatics and Radioelectricals, 6 Brovka Street, Minsk 220013 (Belarus); Kuzmarskyte, J.; Jasulaitiene, V. [Institute of Chemistry, A. Gostauto 9, LT-01108 Vilnius (Lithuania)

    2008-04-15

    The composition, structure and electrical properties of alumina barrier layers grown by anodic oxidation in F{sup -}-containing (FC) and F{sup -}-free (FF) oxalic acid solutions were studied using the re-anodizing/dissolution technique, Fourier-transformed infrared and X-ray photoelectron spectroscopy. These results confirmed formation in FC anodizing solutions of films structurally different from ones grown in FF oxalic acid baths. It was found that the barrier layer of FC alumina films is composed of two layers differing in the dissolution rate. These differences are related to the formation in the FC electrolyte of a barrier layer composed of a more microporous outer part and a thin, non-porous and non-scalloped inner part consisting of aluminum oxide and aluminum fluoride.

  7. Oxalic acid as a liquid dosimeter for absorbed dose measurement in large-scale of sample solution

    Biramontri, S.; Dechburam, S.; Vitittheeranon, A.; Wanitsuksombut, W.; Thongmitr, W.

    1999-01-01

    This study shows the feasibility for, applying 2.5 mM aqueous oxalic acid solution using spectrophotometric analysis method for absorbed dose measurement from 1 to 10 kGy in a large-scale of sample solution. The optimum wavelength of 220 nm was selected. The stability of the response of the dosimeter over 25 days was better than 1 % for unirradiated and ± 2% for irradiated solution. The reproducibility in the same batch was within 1%. The variation of the dosimeter response between batches was also studied. (author)

  8. Plasma oxalic acid and calcium levels in oxalate poisoning

    Zarembski, P. M.; Hodgkinson, A.

    1967-01-01

    Observations are reported on five cases of suicide or attempted suicide by poisoning with oxalic acid or ethylene glycol. Elevated oxalic acid levels were observed in the plasma, stomach contents, and a number of tissues. Raised oxalic acid levels in plasma were associated with reduced total and ultrafilterable calcium levels. It is suggested that the reduction in plasma total calcium level is due mainly to the deposition of calcium oxalate in the soft tissues, but inhibition of the parathyroid glands may be a contributory factor. Microscopic examination of various tissues indicated that oxalic acid is deposited in the tissues in two forms: (1) crystalline calcium oxalate dihydrate in the kidney and (2) a non-crystalline complex of calcium oxalate and lipid in liver and other tissues. PMID:5602563

  9. Interaction Studies of Dilute Aqueous Oxalic Acid

    Kiran Kandpal

    2007-01-01

    Full Text Available Molecular conductance λm, relative viscosity and density of oxalicacid at different concentration in dilute aqueous solution were measured at 293 K.The conductance data were used to calculate the value association constant.Viscosity and density data were used to calculate the A and B coefficient ofJone-Dole equation and apparent molar volume respectively. The viscosityresults were utilized for the applicability of Modified Jone-Dole equation andStaurdinger equations. Mono oxalate anion acts, as structure maker and thesolute-solvent interaction were present in the dilute aqueous oxalic acid.

  10. Kinetics of uranium (4) oxidation with nitrous acid in the presence of oxalate-ions in nitric and perchloric acid solutions

    Nikitenko, S.I.; Astafurova, L.N.

    1991-01-01

    Kinetics of uranium (4) oxidation with nitrous acid in the presence of oxalate-ions are studied spectrometrically. It is shown that even at small oxalate concentrations a notable effect of tetravalent uranium stabilization is observed relatively to the oxidation with nitrous acid. In case of a significant excess of oxalate-ions the oxidation rate will be considerably slower as a result of the formation of U(4) bisoxalate complex

  11. Studies on the decomposition of oxalic acid by nitric acid in presence of catalysts

    Noronha, D.M.; Pius, I.C.; Chaudhury, S.

    2015-01-01

    Impure Plutonium oxalate generated from the recovery of plutonium from waste solutions may require further purification via anion exchange. Conventionally, plutonium oxalate is converted to oxide in a furnace and the oxide is dissolved in Conc. HNO 3 containing HF and purified by anion exchange route. Studies initiated on the decomposition of oxalic acid with Conc. HNO 3 to facilitate direct dissolution of plutonium oxalate and quantitative destruction of oxalate are discussed in this paper. (author)

  12. Study of oxalic acid effect on equilibrium and kinetics of isotopic exchange between penta- and hexavalent neptunium in nitric acid solutions

    Nikitenko, S.I.; Ionnikova, N.I.

    1989-01-01

    Spectrophotometry at 25 deg C and ionic force μ=1.0 mol/l (KNO 3 +HNO 3 ) was used to show that at HNO 3 concentration 0.1-1.0 mol/l H 2 C 2 O 4 introduction to nitric acid solutions of Np 5+ in the presence of nitrite-ion resulted in the shift of equilibrium between Np 5+ and Np 6+ to the side of Np 6+ accumulation. The presence of H 2 C 2 O 4 at HNO 3 concentration > 1.0 mol/l doesn't affect the equilibrium position. The values of nominal equilibrium constant at different HNO 3 and H 2 C 2 O 4 concentrations were calculated. It was found that isotope exchange ( 239 Np/ 237 Np) between Np 5+ and Np 6+ in oxalate solutions proceeded more slowly than in oxalate absence. Rate constants of isotope exchange calculated at 9 deg C, μ=1.0 mol/l (KNO 3 ), H 2 C 2 O 4 concentration 0.01 mol/l and pH=2.2 and 3.5 are equal to 0.49x10 3 and 0.67x10 2 l/mol·min respectively. Mechanism of isotope exchange including electron transport between Np 5+ and Np 6+ oxalate complexes is suggested

  13. Radiolysis of titanium potassium oxalate in aqueous solution. [. gamma. rays

    Bundo, Y; Ono, I [Industrial Research Inst. of Kanagawa Prefecture, Yokohama (Japan); Ogawa, T

    1975-01-01

    The dissolution state of titanium potassium oxalate in aqueous solution is different according to the pH. The yellowish brown titanium complex produced by the reaction of titanium potassium oxalate and hydrogen peroxide seems to be different in its structure according to the pH. Considering these points, gamma-ray irradiation was carried out on the sample by dissolving titanium potassium oxalate in purified water under the conditions of oxygen saturation and nitrogen saturation, and the relation between irradiation dose and the production of titanium complex was determined. On the basis of the experimental result, the mechanism of forming hydrogen peroxide was presumed. The radiation source used was 2,000 Ci of /sup 60/Co. For photometric analysis, a 139 type photoelectric spectrophotometer of Hitachi Ltd. was used. From the experimental results, in neutral water, titanium potassium oxalate exists in the state that two oxalic acid ions are coordinated to titanyl ion, while in case of the pH lowered by the addition of sulfuric acid, it can exist in the state that one oxalic acid ion is coordinated to titanyl ion. The yield of hydrogen peroxide produced by irradiating titanium potassium oxalate aqueous solution with gamma-ray is the sum of the molecular product from water and the radiolysis product from titanium potassium oxalate.

  14. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    R. Wagner

    2010-08-01

    Full Text Available The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario

  15. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-08-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers

  16. Hygroscopic properties of oxalic acid and atmospherically relevant oxalates

    Ma, Qingxin; He, Hong; Liu, Chang

    2013-04-01

    Oxalic acid and oxalates represent an important fraction of atmospheric organic aerosols, however, little knowledge about the hygroscopic behavior of these particles is known. In this study, the hygroscopic behavior of oxalic acid and atmospherically relevant oxalates (H2C2O4, (NH4)2C2O4, CaC2O4, and FeC2O4) were studied by Raman spectrometry and vapor sorption analyzer. Under ambient relative humidity (RH) of 10-90%, oxalic acid and these oxalates hardly deliquesce and exhibit low hygroscopicity, however, transformation between anhydrous and hydrated particles was observed during the humidifying and dehumidifying processes. During the water adsorption process, conversion of anhydrous H2C2O4, (NH4)2C2O4, CaC2O4, and FeC2O4 to their hydrated particles (i.e., H2C2O4·2H2O, (NH4)2C2O4·H2O, CaC2O4·H2O, and FeC2O4·2H2O) occurred at about 20% RH, 55% RH, 10% RH, and 75% RH, respectively. Uptake of water on hydrated Ca-oxalate and Fe-oxalate particles can be described by a multilayer adsorption isotherm. During the dehumidifying process, dehydration of H2C2O4·2H2O and (NH4)2C2O4·H2O occurred at 5% RH while CaC2O4·H2O and FeC2O4·2H2O did not undergo dehydration. These results implied that hydrated particles represent the most stable state of oxalic acid and oxalates in the atmosphere. In addition, the assignments of Raman shift bands in the range of 1610-1650 cm-1 were discussed according to the hygroscopic behavior measurement results.

  17. Forward osmosis for oily wastewater reclamation: Multi-charged oxalic acid complexes as draw solutes

    Ge, Qingchun; Amy, Gary L.; Chung, Neal Tai-Shung

    2017-01-01

    Cl and other recently synthesized draw solutes, the OA complexes show superior FO performance in terms of high water fluxes up to 27.5 and 89.1 LMH under the respective FO and PRO (pressure retarded osmosis) modes, both with negligible reverse solute fluxes

  18. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids

    Kao, Tzung-Ta; Chang, Yao-Chung

    2014-01-01

    The growth of anodic alumina oxide was conducted in the mixed solution of phosphoric and oxalic acids. The influence of anodizing voltage, electrolyte temperature, and concentration of phosphoric and oxalic acids on the volume expansion of anodic aluminum oxide has been investigated. Either anodizing parameter is chosen to its full extent of range that allows the anodization process to be conducted without electric breakdown and to explore the highest possible volume expansion factor. The volume expansion factors were found to vary between 1.25 and 1.9 depending on the anodizing parameters. The variation is explained in connection with electric field, ion transport number, temperature effect, concentration, and activity of acids. The formation of anodic porous alumina at anodizing voltage 160 V in 1.1 M phosphoric acid mixed with 0.14 M oxalic acid at 2 °C showed the peak volume expansion factor of 1.9 and the corresponding moderate growth rate of 168 nm/min.

  19. Interaction of Celestine Concentrate and Reagent Grade SrSO4 with Oxalate Solutions

    Abdullah Obut

    2012-12-01

    Full Text Available The interaction of reagent grade strontium sulphate and celestine concentrate with aqueous solutions of oxalic acid, sodiumoxalate and ammonium oxalate for the production of strontium carbonate were investigated for different oxalate compound:SrSO4 moleratios and reaction times using x-ray diffraction analysis and dissolution tests. Under the same experimental conditions, it was foundthat aqueous oxalic acid and sodium oxalate solutions had no or little effect on reagent grade strontium sulphate or celestineconcentrate, but aqueous ammonium oxalate solution converted them into strontium oxalate hydrate. Strontium carbonate was obtainedat conversion ratios of 74.7% for the celestine concentrate and 84.6 % for the reagent grade strontium sulphate by the decompositionof the obtained strontium oxalate hydrate at 600 °C under air atmosphere.

  20. Decontamination effectiveness of mixtures of citric acid, oxalic acid and EDTA

    Speranzini, R.A.

    1990-01-01

    An experimental study of the decontamination effectiveness of citric acid, oxalic acid and EDTA mixtures was conducted to assess whether oxalic acid could be removed from decontamination solutions to minimize corrosion. In loop experiments, radioactive specimens from two boiling water reactors and one pressurized water reactor were suspended in solutions of single acids or in mixtures of reagents at total reagent concentrations of less than 0.1 wt% under conditions similar to those used to decontaminate reactor systems. Rate constants for dissolution of oxides and decontamination factors were measured. Based on the results, it was concluded that under certain conditions, oxalic acid was the most effective reagent for the dissolution of oxides. It was also found, however, that conditions under which effective dissolution occurred in solutions of oxalic acid and/or citric acid were difficult to define and control. EDTA was found to be an effective reagent for dissolution of oxides such that rates of dissolution in EDTA containing solutions at 117 degrees Celsius were comparable to rates in oxalic acid containing solutions. At 90 degrees Celsius, EDTA acted synergistically with oxalic acid such that the rate of dissolution of oxides in citric-acid/oxalic-acid/EDTA solutions was higher than in citric-acid/EDTA solutions. The rates of dissolution of oxides were significantly reduced when 60 mg/kg of ferric ion was added to the citric-acid/oxalic-acid, citric-acid/EDTA and citric-acid/oxalic-acid/EDTA solutions. It was concluded that effective decontaminations of BWR and PWR systems could be achieved with mixtures of citric acid and EDTA

  1. Metabolic Conversion of l-Ascorbic Acid to Oxalic Acid in Oxalate-accumulating Plants 1

    Yang, Joan C.; Loewus, Frank A.

    1975-01-01

    l-Ascorbic acid-1-14C and its oxidation product, dehydro-l-ascorbic acid, produced labeled oxalic acid in oxalate-accumulating plants such as spinach seedlings (Spinacia oleracea) and the detached leaves of woodsorrel (Oxalis stricta and O. oregana), shamrock (Oxalis adenopylla), and begonia (Begonia evansiana). In O. oregana, conversion occurred equally well in the presence or absence of light. This relationship between l-ascorbic acid metabolism and oxalic acid formation must be given careful consideration in attempts to explain oxalic accumulation in plants. PMID:16659288

  2. Reaction of hydrazine hydrate with oxalic acid: synthesis and crystal structure of dihydrazinium oxalate

    Selvakumar, Rajendran; Premkumar, Thathan; Manivannan, Vadivelu; Saravanan, Kaliannan; Govindarajan, Subbiah

    2014-01-01

    The reaction of oxalic acid with hydrazine hydrate (in appropriate mole ratio) forms the dihydrazinium oxalate under specific experimental condition. The title compound is a molecular salt containing two discrete hydrazinium cations and an oxalate anion. The oxalate anion is perfectly planar and there is a crystallographic centre of symmetry in the middle of the C-C bond. The C-O bond distances are almost equal indicating the presence of resonance in the oxalate ion. The crystal packing is st...

  3. Neptunium (IV) oxalate solubility

    Luerkens, D.W.

    1983-07-01

    The equilibrium solubility of neptunium (IV) oxalate in nitric/oxalic acid solutions was determined at 22 0 C, 45 0 C, and 60 0 C. The concentrations of nitric/oxalic acid solutions represented a wide range of free oxalate ion concentration. A mathematical solubility model was developed which is based on the formation of the known complexes of neptunium (IV) oxalate. the solubility model uses a simplified concentration parameter which is proportional to the free oxalate ion concentration. The solubility model can be used to estimate the equilibrium solubility of neptunium (IV) oxalate over a wide range of oxalic and nitric acid concentrations at each temperature

  4. Crystal structure of dimethylammonium hydrogen oxalate hemi(oxalic acid

    Waly Diallo

    2015-05-01

    Full Text Available Single crystals of the title salt, Me2NH2+·HC2O4−·0.5H2C2O4, were isolated as a side product from the reaction involving Me2NH, H2C2O4 and Sn(n-Bu3Cl in a 1:2 ratio in methanol or by the reaction of the (Me2NH22C2O4 salt and Sn(CH33Cl in a 2:1 ratio in ethanol. The asymmetric unit comprises a dimethylammonium cation (Me2NH2+, an hydrogenoxalate anion (HC2O4−, and half a molecule of oxalic acid (H2C2O4 situated about an inversion center. From a supramolecular point of view, the three components interact together via hydrogen bonding. The Me2NH2+ cations and the HC2O4− anions are in close proximity through bifurcated N—H...(O,O hydrogen bonds, while the HC2O4− anions are organized into infinite chains via O—H...O hydrogen bonds, propagating along the a-axis direction. In addition, the oxalic acid (H2C2O4 molecules play the role of connectors between these chains. Both the carbonyl and hydroxyl groups of each diacid are involved in four intermolecular interactions with two Me2NH2+ and two HC2O4− ions of four distinct polymeric chains, via two N—H...O and two O—H...O hydrogen bonds, respectively. The resulting molecular assembly can be viewed as a two-dimensional bilayer-like arrangement lying parallel to (010, and reinforced by a C—H...O hydrogen bond.

  5. Recovery Ce from Ce - TBP Used Oxalic Acid

    Purwani, MV; Subagiono, R.; Suyanti

    2007-01-01

    Recovery or stripping Ce from Ce - TBP product of monazite sand used oxalic acid. Ce - TBP as organic phase and oxalic acid as aqueous phase and as strong precipitant compound to precipitate metal element. The stripping product as Ce - oxalic precipitate. The influence parameter were percentage of oxalic acid, volume ratio of Ce-TBP with oxalic acid, time and rate of stripping. At stripping of 25 ml Ce - TBP used oxalic acid, the optimum condition were achieve at using 5% oxalic acid, volume ratio of Ce - TBP : 5% oxalic acid = 1 : 1, time of stripping 7.5 minute and rate of stripping 150 rpm. At the optimum condition was obtained the recovery efficiency was 100%. (author)

  6. Effect of Ethylenediaminetetraacetic Acid and Ammonium Oxalate ...

    Effect of Ethylenediaminetetraacetic Acid and Ammonium Oxalate on the ... The test plant was sown in aluminium-polluted soil (conc. ... The perseverance of the test plant in the aluminium spiked soil is an indication of adaptation to the stress ...

  7. Effect of Ethylenediaminetetraacetic Acid and Ammonium Oxalate ...

    ADOWIE PERE

    acid and ammonium oxalate on the prevalence of microorganisms and removal of aluminum in soil by bitter leaf plant (Vernonia ... highest accumulation of aluminium in the root (16.92mg/kg); however concentrations of aluminium in the roots were .... whereas the sulphate was 13.75mg/kg. Table 2: The total colony count of ...

  8. Directed synthesis of crystalline plutonium (III) and (IV) oxalates: accessing redox-controlled separations in acidic solutions

    Runde, Wolfgang; Brodnax, Lia F.; Goff, George S.; Bean, Amanda C.; Scott, Brian L.

    2009-01-01

    Both binary and ternary solid complexes of Pu(III) and Pu(IV) oxalates have been previously reported in the literature. However, uncertainties regarding the coordination chemistry and the extent of hydration of some compounds remain mainly because of the absence of any crystallographic characterization. Single crystals of hydrated oxalates of Pu(III), Pu 2 (C 2 O 4 ) 3 (H 2 O) 6 ·3H 2 O (I) and Pu(IV), KPu(C 2 O 4 ) 2 (OH)·2.5H 2 O (II), were synthesized under moderate hydrothermal conditions and characterized by single crystal X-ray diffraction studies. Compounds I and II are the first plutonium(III) or (IV) oxalate compounds to be structurally characterized via single crystal X-ray diffraction studies. Crystallographic data for I: monoclinic, space group P21/c, a = 11.246(3) A, b = 9.610(3) A, c = 10.315(3) A, Z = 4 and II: monoclinic, space group C2/c, a = 23.234(14) A, b = 7.502(4) A, c = 13.029(7) A, Z = 8.

  9. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    R. Wagner; O. Möhler; H. Saathoff; M. Schnaiter; T. Leisner

    2010-01-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to ...

  10. Further Studies on Oxalic Acid Biosynthesis in Oxalate-accumulating Plants 1

    Nuss, Richard F.; Loewus, Frank A.

    1978-01-01

    l-Ascorbic acid functions as a precursor of oxalic acid in several oxalate-accumulating plants. The present study extends this observation to include Rumex crispus L. (curly dock), Amaranthus retroflexus L. (red root pigweed), Chenopodium album L. (lamb's-quarters), Beta vulgaris L. (sugar beet), Halogeton glomeratus M. Bieb. (halogeton), and Rheum rhabarbarum L. (rhubarb). Several species with low oxalate content are also examined. When l-[1-14C]ascorbic acid is supplied to young seedlings of R. crispus or H. glomeratus, a major portion of the 14C is released over a 24-hour period as 14CO2 and only a small portion is recovered as [14C]oxalate, unlike cuttings from 2- or 4-month-old plants which retain a large part of the 14C as [14C]oxalic acid and release very little 14CO2. Support for an intermediate role of oxalate in the release of 14CO2 from l-[1-14C]ascorbic acid is seen in the rapid release of 14CO2 by R. crispus and H. glomeratus seedlings labeled with [14C]oxalic acid. The common origin of oxalic acid carbon in the C1 and C2 fragment from l-ascorbic acid is demonstrated by comparison of 14C content of oxalic acid in several oxalate-accumulators after cuttings or seedlings are supplied equal amounts of l-[1-14C]- or l-[UL-14C]ascorbic acid. Theoretically, l-[1-14C]ascorbic acid will produce labeled oxalic acid containing three times as much 14C as l-[UL-14C]ascorbic acid when equal amounts of label are provided. Experimentally, a ratio of 2.7 ± 0.5 is obtained in duplicate experiments with six different species. PMID:16660342

  11. Influence of oxalic acid on the dissolution kinetics of manganese oxide

    Godunov, E. B.; Artamonova, I. V.; Gorichev, I. G.; Lainer, Yu. A.

    2012-11-01

    The kinetics and electrochemical processes of the dissolution of manganese oxides with various oxidation states in sulfuric acid solutions containing oxalate ion additives is studied under variable conditions (concentration, pH, temperature). The parameters favoring a higher degree of the dissolution of manganese oxides in acidic media are determined. The optimal conditions are found for the dissolution of manganese oxides in acidic media in the presence of oxalate ions. The mechanism proposed for the dissolution of manganese oxides in sulfuric acid solutions containing oxalic acid is based on the results of kinetic and electrochemical studies. The steps of the dissolution mechanism are discussed.

  12. EFFECTIVENESS OF USING DILUTE OXALIC ACID TO DISSOLVE HIGH LEVEL WASTE IRON BASED SLUDGE SIMULANT

    Ketusky, E

    2008-01-01

    At the Savannah River Site (SRS), near Aiken South Carolina, there is a crucial need to remove residual quantities of highly radioactive iron-based sludge from large select underground storage tanks (e.g., 19,000 liters of sludge per tank), in order to support tank closure. The use of oxalic acid is planned to dissolve the residual sludge, hence, helping in the removal. Based on rigorous testing, primarily using 4 and 8 wt% oxalic acid solutions, it was concluded that the more concentrated the acid, the greater the amount of residual sludge that would be dissolved; hence, a baseline technology on using 8 wt% oxalic acid was developed. In stark contrast to the baseline technology, reports from other industries suggest that the dissolution will most effectively occur at 1 wt% oxalic acid (i.e., maintaining the pH near 2). The driver for using less oxalic acid is that less (i.e., moles) would decrease the severity of the downstream impacts (i.e., required oxalate solids removal efforts). To determine the initial feasibility of using 1 wt% acid to dissolve > 90% of the sludge solids, about 19,000 liters of representative sludge was modeled using about 530,000 liters of 0 to 8 wt% oxalic acid solutions. With the chemical thermodynamic equilibrium based software results showing that 1 wt% oxalic acid could theoretically work, simulant dissolution testing was initiated. For the dissolution testing, existing simulant was obtained, and an approximate 20 liter test rig was built. Multiple batch dissolutions of both wet and air-dried simulant were performed. Overall, the testing showed that dilute oxalic acid dissolved a greater fraction of the stimulant and resulted in a significantly larger acid effectiveness (i.e., grams of sludge dissolved/mole of acid) than the baseline technology. With the potential effectiveness confirmed via simulant testing, additional testing, including radioactive sludge testing, is planned

  13. Features of atopic dermatitis in children with oxalic acid dysmetabolism

    T.V. Stoieva

    2018-03-01

    Full Text Available The article presents the features of atopic dermatitis in children with concomitant metabolic disturbances of oxalic acid. The influence of metabolic shifts was evaluated by clinical presentation, morphofunctional parameters of the skin and the features of oxalic acid metabolites excretion. In this study, a high incidence of dysmetabolic changes was identified, their significance was determined by the involvement of different systems for oxalic acid products excretion. The increased concentration of oxalate in the urine and in the exhaled air condensate had irritant effect and is associated with the hereditary metabolic disorders, early manifestation of atopy symptoms and the intensity of skin itching, with moderate increase of immunoglobulin E level.

  14. Study on the Key Technology of High Purity Strontium Titanate Powder Synthesized from Oxalic Acid Co-sediment Precipitation

    Bi, Xiaoguo; Dong, Yingnan; Li, Yingjie; Niu, Wei; Tang, Jian; Ding, Shuang; Li, Meiyang

    2017-09-01

    Oxalate coprecipitation is applied in this paper, high purity titanium tetrachloride, and after the purification of strontium chloride, match with a certain concentration of solution, oxalate and strontium chloride and titanium tetrachloride in 1.005:1.000 make strontium titanium mixture ratio, slowly under 60°C to join in oxalic acid solution, aging around 4 h, get oxygen titanium strontium oxalate (SrTiO(C2O4)2 • 4H2 ) precipitation, after washing, drying and other process made oxygen titanium strontium oxalate powder.

  15. Electrochemical behaviour of laser-clad Ti6Al4V with CP Ti in 0.1 M oxalic acid solution

    Obadele, Babatunde Abiodun, E-mail: obadele4@gmail.com [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Olubambi, Peter A. [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Andrews, Anthony [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Materials Engineering, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); Pityana, Sisa [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); National Laser Center, Council for Scientific and Industrial Research, Pretoria (South Africa); Mathew, Mathew T. [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 (United States)

    2015-10-15

    The relationship between the microstructure and corrosion behaviour of Ti6Al4V alloy and laser-clad commercially pure (CP) Ti coating was investigated. The microstructure, phases and properties of the clad layers were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Electrochemical measurement techniques including open circuit potential (OCP) and potentiodynamic polarisation were used to evaluate the corrosion behaviour of Ti6Al4V alloy in 0.1 M oxalic acid solution and the results compared to the behaviour of laser-clad CP Ti at varying laser scan speed. Results showed that laser-clad CP Ti at scan speed of 0.4 m/min formed a good cladding layer without defects such as cracks and pores. The phase present in the cladding layer was mostly α′-Ti. The microstructures of the clad layer were needle like acicular/widmanstätten α. An improvement in the microhardness values was also recorded. Although the corrosion potentials of the laser-clad samples were less noble than Ti6Al4V alloy, the polarisation measurement showed that the anodic current density was lower and also increases with increasing laser scanning speed. - Highlights: • The microstructure and corrosion behaviour of laser-clad CP Ti was investigated. • Laser-clad CP Ti 0.4 m/min scan speed gave a good coating without cracks and pores. • The phase present in the clad layer was mostly α′-Ti. • An improvement in the microhardness values was also recorded. • Anodic current density for coatings increases with increasing laser scan speed.

  16. Electrochemical behaviour of laser-clad Ti6Al4V with CP Ti in 0.1 M oxalic acid solution

    Obadele, Babatunde Abiodun; Olubambi, Peter A.; Andrews, Anthony; Pityana, Sisa; Mathew, Mathew T.

    2015-01-01

    The relationship between the microstructure and corrosion behaviour of Ti6Al4V alloy and laser-clad commercially pure (CP) Ti coating was investigated. The microstructure, phases and properties of the clad layers were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Electrochemical measurement techniques including open circuit potential (OCP) and potentiodynamic polarisation were used to evaluate the corrosion behaviour of Ti6Al4V alloy in 0.1 M oxalic acid solution and the results compared to the behaviour of laser-clad CP Ti at varying laser scan speed. Results showed that laser-clad CP Ti at scan speed of 0.4 m/min formed a good cladding layer without defects such as cracks and pores. The phase present in the cladding layer was mostly α′-Ti. The microstructures of the clad layer were needle like acicular/widmanstätten α. An improvement in the microhardness values was also recorded. Although the corrosion potentials of the laser-clad samples were less noble than Ti6Al4V alloy, the polarisation measurement showed that the anodic current density was lower and also increases with increasing laser scanning speed. - Highlights: • The microstructure and corrosion behaviour of laser-clad CP Ti was investigated. • Laser-clad CP Ti 0.4 m/min scan speed gave a good coating without cracks and pores. • The phase present in the clad layer was mostly α′-Ti. • An improvement in the microhardness values was also recorded. • Anodic current density for coatings increases with increasing laser scan speed

  17. Recovery of plutonium from nitric acid containing oxalate and fluoride by a macroporous bifunctional phosphinic acid resin (MPBPA)

    Venugopal Chetty, K.; Godbole, A.G.; Swarup, R.; Vaidya, V.N.; Venugopal, V.; Vasudeva Rao, P.R.

    2006-01-01

    The sorption of Pu from nitric acid solutions containing oxalate/fluoride was studied using an indigenously available macroporous bifunctional phosphinic acid (MPBPA) resin. Batch experiments were carried out to obtain the distribution data of Pu(IV) with a view to optimize conditions for its recovery from nitric acid waste solutions containing oxalate or fluoride ions. The measurements showed high distribution ratio (D) values even in the presence of strong complexing ions, like oxalate and fluoride, indicating the possibility of recovery of Pu from these types of waste solution. Column studies were carried out using this resin to recover Pu from the oxalate supernatant waste solution, which showed that up to 99% of Pu could be adsorbed on the resin. Elution of Pu loaded on the resin was studied using different eluting agents. (author)

  18. Oxalic acid decreases calcium absorption in rats

    Weaver, C.M.; Martin, B.R.; Ebner, J.S.; Krueger, C.A.

    1987-01-01

    Calcium absorption from salts and foods intrinsically labeled with 45 Ca was determined in the rat model. Calcium bioavailability was nearly 10 times greater for low oxalate kale, CaCO 3 and CaCl 2 than from CaC 2 O 4 (calcium oxalate) and spinach (high in oxalates). Extrinsic and intrinsic labeling techniques gave a similar assessment of calcium bioavailability from kale but not from spinach

  19. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  20. Corrosion and impedance studies on magnesium alloy in oxalate solution

    Fekry, A.M.; Tammam, Riham H.

    2011-01-01

    Highlights: → Corrosion behavior of AZ91E alloy was investigated in 0.1 M Na 2 C 2 O 4 containing different additives as Br - , Cl - or Silicate. → The corrosion rate of 0.1 M oxalate solution containing silicate ion is lower than the blank (0.1 M Na 2 C 2 O 4 ). This was confirmed by scanning electron microscope (SEM) observations. → For the other added ions Br - or Cl - , the corrosion rate is higher than the blank. - Abstract: Corrosion behavior of AZ91E alloy was investigated in oxalate solution using potentiodynamic polarization and electrochemical impedance measurements (EIS). The effect of oxalate concentration was studied, where the corrosion rate increases with increasing oxalate concentration. The effect of added ions (Br - , Cl - or SiO 3 2- ) on the electrochemical behavior of magnesium alloy in 0.1 M Na 2 C 2 O 4 solution at 298 K, was investigated. It was found that the corrosion rate of 0.1 M oxalate solution containing silicate ion is lower than the blank (0.1 M Na 2 C 2 O 4 ). This was confirmed by scanning electron microscope (SEM) observations. However, for the other added ions Br - or Cl - , the corrosion rate is higher than the blank.

  1. Corrosion and impedance studies on magnesium alloy in oxalate solution

    Fekry, A.M., E-mail: hham4@hotmail.com [Chemistry Department, Faculty of Science, Cairo University, Gamaa Street, Giza 12613 (Egypt); Tammam, Riham H. [Chemistry Department, Faculty of Science, Cairo University, Gamaa Street, Giza 12613 (Egypt)

    2011-06-15

    Highlights: > Corrosion behavior of AZ91E alloy was investigated in 0.1 M Na{sub 2}C{sub 2}O{sub 4} containing different additives as Br{sup -}, Cl{sup -} or Silicate. > The corrosion rate of 0.1 M oxalate solution containing silicate ion is lower than the blank (0.1 M Na{sub 2}C{sub 2}O{sub 4}). This was confirmed by scanning electron microscope (SEM) observations. > For the other added ions Br{sup -} or Cl{sup -}, the corrosion rate is higher than the blank. - Abstract: Corrosion behavior of AZ91E alloy was investigated in oxalate solution using potentiodynamic polarization and electrochemical impedance measurements (EIS). The effect of oxalate concentration was studied, where the corrosion rate increases with increasing oxalate concentration. The effect of added ions (Br{sup -}, Cl{sup -} or SiO{sub 3}{sup 2-}) on the electrochemical behavior of magnesium alloy in 0.1 M Na{sub 2}C{sub 2}O{sub 4} solution at 298 K, was investigated. It was found that the corrosion rate of 0.1 M oxalate solution containing silicate ion is lower than the blank (0.1 M Na{sub 2}C{sub 2}O{sub 4}). This was confirmed by scanning electron microscope (SEM) observations. However, for the other added ions Br{sup -} or Cl{sup -}, the corrosion rate is higher than the blank.

  2. Mixing state of oxalic acid containing particles in the rural area of Pearl River Delta, China: implications for the formation mechanism of oxalic acid

    C. Cheng

    2017-08-01

    Full Text Available The formation of oxalic acid and its mixing state in atmospheric particulate matter (PM were studied using a single-particle aerosol mass spectrometer (SPAMS in the summer and winter of 2014 in Heshan, a supersite in the rural area of the Pearl River Delta (PRD region in China. Oxalic-acid-containing particles accounted for 2.5 and 2.7 % in total detected ambient particles in summer and winter, respectively. Oxalic acid was measured in particles classified as elemental carbon (EC, organic carbon (OC, elemental and organic carbon (ECOC, biomass burning (BB, heavy metal (HM, secondary (Sec, sodium-potassium (NaK, and dust. Oxalic acid was found predominantly mixing with sulfate and nitrate during the whole sampling period, likely due to aqueous-phase reactions. In summer, oxalic-acid-containing particle number and ozone concentration followed a very similar trend, which may reflect the significant contribution of photochemical reactions to oxalic acid formation. The HM particles were the most abundant oxalic acid particles in summer and the diurnal variations in peak area of iron and oxalic acid show opposite trends, which suggests a possible loss of oxalic acid through the photolysis of iron oxalato-complexes during the strong photochemical activity period. In wintertime, carbonaceous particles contained a substantial amount of oxalic acid as well as abundant carbon clusters and BB markers. The general existence of nitric acid in oxalic-acid-containing particles indicates an acidic environment during the formation process of oxalic acid. The peak areas of nitrate, sulfate and oxalic had similar temporal change in the carbonaceous type oxalic acid particles, and the organosulfate-containing oxalic acid particles correlated well with total oxalic acid particles during the haze episode, which suggests that the formation of oxalic acid is closely associated with the oxidation of organic precursors in the aqueous phase.

  3. Isolation of oxalic acid tolerating fungi and decipherization of its potential to control Sclerotinia sclerotiorum through oxalate oxidase like protein.

    Yadav, Shivani; Srivastava, Alok K; Singh, Dhanajay P; Arora, Dilip K

    2012-11-01

    Oxalic acid plays major role in the pathogenesis by Sclerotinia sclerotiorum; it lowers the pH of nearby environment and creates the favorable condition for the infection. In this study we examined the degradation of oxalic acid through oxalate oxidase and biocontrol of Sclerotinia sclerotiorum. A survey was conducted to collect the rhizospheric soil samples from Indo-Gangetic Plains of India to isolate the efficient fungal strains able to tolerate oxalic acid. A total of 120 fungal strains were isolated from root adhering soils of different vegetable crops. Out of 120 strains a total of 80 isolates were able to grow at 10 mM of oxalic acid whereas only 15 isolates were grow at 50 mM of oxalic acid concentration. Then we examined the antagonistic activity of the 15 isolates against Sclerotinia sclerotiorum. These strains potentially inhibit the growth of the test pathogen. A total of three potential strains and two standard cultures of fungi were tested for the oxalate oxidase activity. Strains S7 showed the maximum degradation of oxalic acid (23 %) after 60 min of incubation with fungal extract having oxalate oxidase activity. Microscopic observation and ITS (internally transcribed spacers) sequencing categorized the potential fungal strains into the Aspergillus, Fusarium and Trichoderma. Trichoderma sp. are well studied biocontrol agent and interestingly we also found the oxalate oxidase type activity in these strains which further strengthens the potentiality of these biocontrol agents.

  4. (Dimethylphosphorylmethanaminium hydrogen oxalate–oxalic acid (2/1

    Sebastian Bialek

    2014-03-01

    Full Text Available The reaction of (dimethylphosphorylmethanamine (dpma with oxalic acid in ethanol yielded the title solvated salt, C3H11NOP+·C2HO4−·0.5C2H2O4. Its asymmetric unit consists of one dpmaH+ cation, one hydrogen oxalate anion and a half-molecule of oxalic acid located around a twofold rotation axis. The H atom of the hydrogen oxalate anion is statistically disordered over two positions that are trans to each other. The hydrogen oxalate monoanion is not planar (bend angle ∼16° whereas the oxalic acid molecule shows a significantly smaller bend angle (∼7°. In the crystal, the components are connected by strong O—H...O and much weaker N—H...O hydrogen bonds, leading to the formation of layers extending parallel to (001. The structure was refined from a racemically twinned crystal with twin components in an approximate 1:1 ratio.

  5. Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect

    B. Zobrist

    2006-01-01

    Full Text Available Heterogeneous ice freezing points of aqueous solutions containing various immersed solid dicarboxylic acids (oxalic, adipic, succinic, phthalic and fumaric have been measured with a differential scanning calorimeter. The results show that only the dihydrate of oxalic acid (OAD acts as a heterogeneous ice nucleus, with an increase in freezing temperature between 2 and 5 K depending on solution composition. In several field campaigns, oxalic acid enriched particles have been detected in the upper troposphere with single particle aerosol mass spectrometry. Simulations with a microphysical box model indicate that the presence of OAD may reduce the ice particle number density in cirrus clouds by up to ~50% when compared to exclusively homogeneous cirrus formation without OAD. Using the ECHAM4 climate model we estimate the global net radiative effect caused by this heterogeneous freezing to result in a cooling as high as −0.3 Wm−2.

  6. Oxalic acid biosynthesis and oxalacetate acetylhydrolase activity in Streptomyces cattleya

    Houck, D.R.; Inamine, E.

    1987-01-01

    In addition to producing the antibiotic thienamycin, Streptomyces cattleya accumulates large amounts of oxalic acid during the course of a fermentation. Washed cell suspensions were utilized to determine the specific incorporation of carbon-14 into oxalate from a number of labeled organic and amino acids. L-[U- 14 C]aspartate proved to be the best precursor, whereas only a small percentage of label from [1,5- 14 C]citrate was found in oxalate. Cell-free extracts catalyzed the formation of [ 14 C]oxalate and [ 14 C]acetate from L-[U- 14 C]aspartate. When L-[4- 14 C]aspartate was the substrate only [ 14 C]acetate was formed. The cell-free extracts were found to contain oxalacetate acetylhydrolase, the enzyme that catalyzes the hydrolysis of oxalacetate to oxalate and acetate. The enzyme is constitutive and is analogous to enzymes in fungi that produce oxalate from oxalacetate. Properties of the crude enzyme were examined

  7. Atmospheric production of oxalic acid/oxalate and nitric acid/nitrate in the Tampa Bay airshed: Parallel pathways

    Martinelango, P. Kalyani; Dasgupta, Purnendu K.; Al-Horr, Rida S.

    Oxalic acid is the dominant dicarboxylic acid (DCA), and it constitutes up to 50% of total atmospheric DCAs, especially in non-urban and marine atmospheres. A significant amount of particulate H 2Ox/oxalate (Ox) occurred in the coarse particle fraction of a dichotomous sampler, the ratio of oxalate concentrations in the PM 10 to PM 2.5 fractions ranged from 1 to 2, with mean±sd being 1.4±0.2. These results suggest that oxalate does not solely originate in the gas phase and condense into particles. Gaseous H 2Ox concentrations are much lower than particulate Ox concentrations and are well correlated with HNO 3, HCHO, and O 3, supporting a photochemical origin. Of special relevance to the Bay Region Atmospheric Chemistry Experiment (BRACE) is the extent of nitrogen deposition in the Tampa Bay estuary. Hydroxyl radical is primarily responsible for the conversion of NO 2 to HNO 3, the latter being much more easily deposited. Hydroxyl radical is also responsible for the aqueous phase formation of oxalic acid from alkenes. Hence, we propose that an estimate of rad OH can be obtained from H 2Ox/Ox production rate and we accordingly show that the product of total oxalate concentration and NO 2 concentration approximately predicts the total nitrate concentration during the same period.

  8. Studies on Pu(IV)/(III)-oxalate precipitation from nitric acid containing high concentration of calcium and fluoride ions

    Kalsi, P.K.; Pawar, S.M.; Ghadse, D.R.; Joshi, A.R.; Ramakrishna, V.V.; Vaidya, V.N.; Venugopal, V.

    2003-01-01

    Plutonium (IV)/(III) oxalate precipitation from nitric acid solution, containing large amount of calcium and fluoride ions was investigated. It was observed that direct precipitation of Pu (IV) oxalate from nitric acid containing large amount of calcium and fluoride ions did not give good decontamination of Pu from calcium and fluoride impurities. However, incorporation of hydroxide precipitation using ammonium hydroxide prior to Pu (IV) oxalate precipitation results into PuO 2 with much less calcium and fluoride impurities. Whereas, good decontamination from calcium and fluoride impurities could be obtained by employing Pu (III) oxalate precipitation directly from nitric acid containing large amount of calcium and fluoride ions. A method was also developed to recover Pu from the oxalate waste containing calcium and fluoride ions. (author)

  9. Recovery of plutonium from oxalate bearing solutions using a mixture of CMPO and TBP

    Mathur, J.N.; Murali, M.S.; Rizvi, G.H.; Iyer, R.H.; Badheka, L.P.; Banerji, A.; Michael, K.M.; Kapoor, S.C.; Dhumwad, R.K.

    1993-01-01

    A simple and efficient procedure has been developed to quantitatively recover Pu from oxalate bearing solutions using a mixture of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and TBP in dodecane. Pu(IV) in the range of 6.9 to 34.6 mg/1 was quantitatively extracted into 0.2 M CMPO+ 1.2 M TBP in dodecane from an aqueous solution containing 3.0 M HNO 3 and 0.1 M H 2 C 2 O 4 . At such low concentrations of Pu, the distribution ratio (D) did not change but the increase in oxalic acid concentration drastically reduced these values. The variation in HNO 3 concentration at a fixed concentration of 0.2 M CMPO + 1.2 M TBP has shown a dramatic increase in the D values, being 0.3 at 1.0 M and > 10 4 at 7.5 M. The extraction was almost quantitative even at the aqueous to organic ratio of 10:1. Plutonium could be quantitatively recovered (i) by stripping with 0.5 M acetic acid and (ii) by coprecipitating it directly from the organic phase with 0.3 M oxalic acid + 0.3 M calcium nitrate + sodium nitrite. ∼ 92% of the Pu was found in the precipitate and ∼7% in the supernatant. Using this procedure Pu, in a concentrated form (∼50 times), could be recovered from the oxalate bearing solutions without recourse to the destruction of oxalate ion. The slope of 2 from the nitrate ion as well as CMPO variation experiments suggest the species in the organic phase to be PuC 2 O 4 (NO 3 ) 2 .2CMPO. The absorption spectral study of Pu(IV) confirmed the above species in the organic phase. (author). 19 refs., 5 figs., 9 tabs

  10. Computational and experimental studies on oxalic acid imprinted ...

    e-mail: rkkawadkar@chm.vnit.ac.in. MS received 13 ... vent or porogen to form a pre-polymerization complex, followed by .... tered off and the filtrate was analysed for oxalic acid by. UV/VIS ... The experimental binding data were fitted to the.

  11. Enzymatic oxalic acid regulation correlated with wood degradation in four brown-rot fungi

    Anne Christine Steenkjær Hastrup; Frederick Green III; Patricia K. Lebow; Bo Jensen

    2012-01-01

    Oxalic acid is a key component in the initiation of brown-rot decay and it has been suggested that it plays multiple roles during the degradation process. Oxalic acid is accumulated to varying degrees among brown-rot fungi; however, details on active regulation are scarce. The accumulation of oxalic acid was measured in this study from wood degraded by the four brown-...

  12. Calcium extraction from brine water and seawater using oxalic acid

    Natasha, Nadia Chrisayu; Lalasari, Latifa Hanum

    2017-01-01

    Calcium can be extracted not only from rocks but also from natural liquor such as seawater and brine water. In order to extract the calcium from seawater and brine water, oxalic acid was used in this research. Effect of variations of the volume of the oxalic acid at a constant concentration in seawater and brine water to produce calcium was investigated. The concentration of oxalic acid was 100 g/l and the variations of its volume were 2 ml, 4 ml, 6 ml, 8 ml, 10 ml, 20 ml, 30 ml, 40 ml, and 50 ml. The used seawater and brine water were firstly evaporated from 100 ml into 50 ml and then the oxalic acid was added into them with mixing to produce the calcium precipitates. The precipitates were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) and the filtrates were analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES). The SEM analysis showed that the precipitates from brine water were consisted of only calcium compound while from seawater sodium one was also found along with calcium compound. The XRD analysis showed that the calcium was present in the form of calcium oxalate for both seawater and brine water. The ICP-OES analysis of the filtrate from seawater precipitation showed that the its calcium content was decreased from 826.20 ppm to 0.04 ppm while from brine water, it decreased from 170.06 ppm to 1.96 ppm. These results showed that both seawater and brine water have the potential to be a raw material for calcium production.

  13. Equilibrium aluminium hydroxo-oxalate phases during initial clay formation; H +-Al 3+-oxalic acid-Na + system

    Bilinski, Halka; Horvath, Laszlo; Ingri, Nils; Sjöberg, Staffan

    1986-09-01

    The conditions necessary for initial clay formation have been studied in different model systems comprising different organic acids besides Si and Al. In the present paper the solid phases and the precipitation boundary characterizing the subsystem H +-Al 3+-oxalic acid (H 2L) are discussed. pH and tyndallometric measurements were performed in an ionic medium of 0.6 M Na(Cl) at 25 °C. The two phases Al 3(OH) 7(C 2O 4) · 3H 2O (phase I) and NaAl(OH) 2(C 2O 4) · 3H 2O (phase II) determine the precipitation boundary. The following formation constants for the two phases were deduced: lgβ1 = lg([ Al3+] -3[ H2C2O4] -1[ H+] 9 = -21.87 ± 0.08 and lgβ11 = lg([ Al3+] -1[ H2C2O4] -1[ H+] 4 = -5.61 ± 0.06. Phase I exists in the range [ Al] tot≥ 10 -4.4moldm-3,[ H2C2O4] tot ≥ 10 -4.9moldm-3 and at pH oxalic-rich natural waters. The more soluble sodium phase is unlikely to exist in natural waters. The two phases are metastable relative to crystalline gibbsite and may be considered as the first precipitation step in the transition from aqueous Al oxalates down to stable Al hydroxide. Model calculations illustrating these competing hydrolysis-complexation reactions are discussed in terms of predominance and speciation diagrams. The solid phases have been characterized by X-ray analysis of powders, TGA and IR spectra, and tentative structures are proposed. Phase I seems to be an octahedral layer structure, in which 3/5 of the octahedral sites between two close packed oxygen sheets are occupied by Al 3+ and the oxalate ion acts as a bridge ligand between two aluminium atoms. Phase II forms a more open sheet structure and has ion exchange properties. Powder data for a phase crystallized from the studied solution after a year are also presented. This phase, Na 4Al 2(OH) 2(C 2O 4) 4 · 10H 2O, supports the results from the equilibrium analysis of recent solution data by SJöBERG and ÖHMAN (1985), who have found the dinuclear complex Al 2(OH) 2(C 2O 4) 44- to exist in a

  14. Comparative study of oxalic and malonic acid behaviour in the chemical cleaning of alloy 800 surfaces

    Garcia, Damian A.; Bruyere, Vivienne I.E.; Bordoni, Roberto A.; Olmedo, Ana M.; Morando, Pedro J.

    2004-01-01

    This work consisted, in a first stage, on a basic study of the dissolution mechanism of nickel ferrite in aqueous malonic acid. Powdered oxides (Ni x Fe 3-x O 4 ) were synthesized by wet procedures and heated at 750 C degrees. These oxides were characterized by conventional methods and dissolved under different experimental conditions (pH, reagent concentration, temperature, etc.) in order to determine the dissolution rates. Optimal dissolution conditions were explored and compared to the corresponding oxalic acid ones. In a second stage, these conditions were applied to oxides grown on Alloy 800 coupons. Before oxidation, all coupons were ground polished and then were exposed to hydrothermal conditions (350 C degrees, pH 25Cdegrees ≅ 10.4 -LiOH-, 20-22 days) in static autoclaves. Finally, oxidized and unoxidized coupons were treated with chemical solutions containing oxalic or malonic acid at conditions optimized in the first stage. These results were also compared to those obtained on coupons exposed to a commercial formulation, APAC (Alkaline Permanganate Ammonium Citrate), as a reference. The results on coupon descaling using APMAL (AP + Malonic), APOX (AP + oxalic) and the comparison with APAC leads to conclude that malonic acid is a reagent whose chemical behavior is much better than oxalic acid and comparable to commercial formulations. (author) [es

  15. Correlation between oxalic acid production and copper tolerance in Wolfiporia cocos

    C. A. Clausen; Frederick Green; B. M. Woodward; J. W. Evans; R. C. DeGroot

    2000-01-01

    The increased interest in copper-based wood preservatives has hastened the need for understanding why some fungi are able to attack copper-treated wood. Due in part to accumulation of oxalic acid by brown-rot fungi and visualization of copper oxalate crystals in wood decayed by known copper-tolerant decay fungi, oxalic acid has been implicated in copper tolerance by...

  16. 3.2.1. Synthesis, crystal and molecular structure of catena-(bis(µ1-oxalic acid-µ3-hydrogen oxalate-di-aqua-sodium(I.

    Olga Kovalchukova*, Sergey Aldoshin, Andrey Utenyshev, Konstantin Bogenko, Valeriy Tkachev

    2015-07-01

    Full Text Available The crystal and molecular structure of catena-(bis(µ- oxalic acid-µ-hydrogen oxalate-di-aqua-sodium(I was detected by X-Ray analysis. The compound crystallizes in the triclinic space group P-1, with a(Å 6.2378(12; b(Å 7,1115(14; c(Å 10.489(2; α(° 94.65(3; β(° 100.12(3; γ(° 97.78(3. The sodium cation in the title compound is eight coordinated and forms a square antiprism. It is surrounded by two molecules of oxalic acid, one hydrogen oxalate anion and one water molecule. Both oxalic acid and hydrogen oxalate anion act as polydentate bridging ligands. Centrosymmetric sodium cations are bounded by hydrogen oxalate anions through a system of H bonds involving the molecules of oxalic acid. In the lattice, the 3D structure stabilized by H bonds is formed.

  17. Preparation of High-purity Indium Oxalate Salt from Indium Scrap by Organic Acids

    Koo, Su-Jin; Ju, Chang-Sik

    2013-01-01

    Effect of organic acid on the preparation of indium-oxalate salt from indium scraps generated from ITO glass manufacturing process was studied. Effects of parameters, such as type and concentration of organic acids, pH of reactant, temperature, reaction time on indium-oxalate salt preparation were examined. The impurity removal efficiency was similar for both oxalic acid and citric acid, but citric acid did not make organic acid salt with indium. The optimum conditions were 1.5 M oxalic acid, pH 7, 80 .deg. C, and 6 hours. On the other hand, the recoveries increased with pH, but the purity decreased. The indium-oxalate salt purity prepared by two cycles was 99.995% (4N5). The indium-oxalate salt could be converted to indium oxide and indium metal by substitution reaction and calcination

  18. Crystal structure of di?methyl?ammonium hydrogen oxalate hemi(oxalic acid)

    Diallo, Waly; Gueye, Ndongo; Crochet, Aur?lien; Plasseraud, Laurent; Cattey, H?l?ne

    2015-01-01

    Single crystals of the title salt, Me2NH2 +?HC2O4 ??0.5H2C2O4, were isolated as a side product from the reaction involving Me2NH, H2C2O4 and Sn(n-Bu)3Cl in a 1:2 ratio in methanol or by the reaction of the (Me2NH2)2C2O4 salt and Sn(CH3)3Cl in a 2:1 ratio in ethanol. The asymmetric unit comprises a di?methyl?ammonium cation (Me2NH2 +), an hydrogenoxalate anion (HC2O4 ?), and half a mol?ecule of oxalic acid (H2C2O4) situated about an inversion center. From a supra?molecular point of view, the t...

  19. Crystal structure of di­methyl­ammonium hydrogen oxalate hemi(oxalic acid)

    Diallo, Waly; Gueye, Ndongo; Crochet, Aurélien; Plasseraud, Laurent; Cattey, Hélène

    2015-01-01

    Single crystals of the title salt, Me2NH2 +·HC2O4 −·0.5H2C2O4, were isolated as a side product from the reaction involving Me2NH, H2C2O4 and Sn(n-Bu)3Cl in a 1:2 ratio in methanol or by the reaction of the (Me2NH2)2C2O4 salt and Sn(CH3)3Cl in a 2:1 ratio in ethanol. The asymmetric unit comprises a di­methyl­ammonium cation (Me2NH2 +), an hydrogenoxalate anion (HC2O4 −), and half a mol­ecule of oxalic acid (H2C2O4) situated about an inversion center. From a supra­molecular point of view, the three components inter­act together via hydrogen bonding. The Me2NH2 + cations and the HC2O4 − anions are in close proximity through bifurcated N—H⋯(O,O) hydrogen bonds, while the HC2O4 − anions are organized into infinite chains via O—H⋯O hydrogen bonds, propagating along the a-axis direction. In addition, the oxalic acid (H2C2O4) mol­ecules play the role of connectors between these chains. Both the carbonyl and hydroxyl groups of each diacid are involved in four inter­molecular inter­actions with two Me2NH2 + and two HC2O4 − ions of four distinct polymeric chains, via two N—H⋯O and two O—H⋯O hydrogen bonds, respectively. The resulting mol­ecular assembly can be viewed as a two-dimensional bilayer-like arrangement lying parallel to (010), and reinforced by a C—H⋯O hydrogen bond. PMID:25995858

  20. Pseudomonas fluorescens ATCC 13525 Containing an Artificial Oxalate Operon and Vitreoscilla Hemoglobin Secretes Oxalic Acid and Solubilizes Rock Phosphate in Acidic Alfisols

    Yadav, Kavita; Kumar, Chanchal; Archana, G.; Naresh Kumar, G.

    2014-01-01

    Oxalate secretion was achieved in Pseudomonas fluorescens ATCC 13525 by incorporation of genes encoding Aspergillus niger oxaloacetate acetyl hydrolase (oah), Fomitopsis plaustris oxalate transporter (FpOAR) and Vitreoscilla hemoglobin (vgb) in various combinations. Pf (pKCN2) transformant containing oah alone accumulated 19 mM oxalic acid intracellularly but secreted 1.2 mM. However, in the presence of an artificial oxalate operon containing oah and FpOAR genes in plasmid pKCN4, Pf (pKCN4) s...

  1. Oxalic acid has an additional, detoxifying function in Sclerotinia sclerotiorum pathogenesis.

    Annerose Heller

    Full Text Available The mechanism of the diseases caused by the necrotroph plant pathogen Sclerotinia sclerotiorum is not well understood. To investigate the role of oxalic acid during infection high resolution, light-, scanning-, transmission electron microscopy and various histochemical staining methods were used. Our inoculation method allowed us to follow degradation of host plant tissue around single hyphae and to observe the reaction of host cells in direct contact with single invading hyphae. After penetration the outer epidermal cell wall matrix appeared degraded around subcuticular hyphae (12-24 hpi. Calcium oxalate crystals were detected in advanced (36-48 hpi and late (72 hpi infection stages, but not in early stages. In early infection stages, surprisingly, no toxic effect of oxalic acid eventually secreted by S. sclerotiorum was observed. As oxalic acid is a common metabolite in plants, we propose that attacked host cells are able to metabolize oxalic acid in the early infection stage and translocate it to their vacuoles where it is stored as calcium oxalate. The effects, observed on healthy tissue upon external application of oxalic acid to non-infected, living tissue and cell wall degradation of dead host cells starting at the inner side of the walls support this idea. The results indicate that oxalic acid concentrations in the early stage of infection stay below the toxic level. In plant and fungi oxalic acid/calcium oxalate plays an important role in calcium regulation. Oxalic acid likely could quench calcium ions released during cell wall breakdown to protect growing hyphae from toxic calcium concentrations in the infection area. As calcium antimonate-precipitates were found in vesicles of young hyphae, we propose that calcium is translocated to the older parts of hyphae and detoxified by building non-toxic, stable oxalate crystals. We propose an infection model where oxalic acid plays a detoxifying role in late infection stages.

  2. Laboratory study of the effect of oxalic acid on the cloud condensation nuclei activity of mineral dust aerosol

    Gierlus, Kelly M.; Laskina, Olga; Abernathy, Tricia L.; Grassian, Vicki H.

    2012-01-01

    Dicarboxylic acids, which make up a significant portion of the atmospheric organic aerosol, are emitted directly through biomass burning as well as produced through the oxidation of volatile organic compounds. Oxalic acid, the most abundant of the dicarboxylic acids, has been shown by recent field studies to be present in mineral dust aerosol particles. The presence of these internally mixed organic compounds can alter the water absorption and cloud condensation nuclei (CCN) abilities of mineral particles in the Earth's atmosphere. The University of Iowa's Multi-Analysis Aerosol Reactor System ( MAARS) was used to measure the CCN activity of internally mixed particles that were generated from a mixture of either calcite or polystyrene latex spheres (PSLs) in an aqueous solution of oxalic acid. Although PSL is not a mineral dust component, it is used here as a non-reactive, insoluble particle. CCN measurements indicate that the internally mixed oxalate/calcite particles showed nearly identical CCN activity compared to the original calcite particles whereas oxalic acid/PSL internally mixed particles showed much greater CCN activity compared to PSL particles alone. This difference is due to the reaction of calcite with oxalic acid, which produces a relatively insoluble calcium oxalate coating on the particle surface and not a soluble coating as it does on the PSL particle. Our results suggest that atmospheric processing of mineral dust aerosol through heterogeneous processes will likely depend on the mineralogy and the specific chemistry involved. Increase in the CCN activity by incorporation of oxalic acid are only expected for unreactive insoluble dust particles that form a soluble coating.

  3. The oxalic acid biosynthetic activity of Burkholderia mallei is encoded by a single locus

    Although it is known that oxalic acid provides a selective advantage to the secreting microbe, our understanding of how this acid is biosynthesized remains incomplete. This study reports the identification, cloning, and partial characterization of the oxalic acid biosynthetic enzyme from the animal ...

  4. Propensities of oxalic, citric, succinic, and maleic acids for the aqueous solution/vapour interface: Surface tension measurements and molecular dynamics simulations

    Mahiuddin, S.; Minofar, Babak; Borah, J. M.; Das, M. R.; Jungwirth, Pavel

    2008-01-01

    Roč. 462, 4/6 (2008), s. 217-221 ISSN 0009-2614 R&D Projects: GA MŠk LC512; GA ČR(CZ) GD203/05/H001 Grant - others:NSF(US) CHE0431312 Institutional research plan: CEZ:AV0Z40550506 Keywords : carboxylic acids * molecular dynamics * ab initio calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.169, year: 2008

  5. Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water.

    Zhang, Taiying; Kumar, Rajeev; Wyman, Charles E

    2013-01-30

    Dilute oxalic acid pretreatment was applied to maple wood to improve compatibility with downstream operations, and its performance in pretreatment and subsequent enzymatic hydrolysis was compared to results for hydrothermal and dilute hydrochloric and sulfuric acid pretreatments. The highest total xylose yield of ∼84% of the theoretical maximum was for both 0.5% oxalic and sulfuric acid pretreatment at 160 °C, compared to ∼81% yield for hydrothermal pretreatment at 200 °C and for 0.5% hydrochloric acid pretreatment at 140 °C. The xylooligomer fraction from dilute oxalic acid pretreatment was only 6.3% of the total xylose in solution, similar to results with dilute hydrochloric and sulfuric acids but much lower than the ∼70% value for hydrothermal pretreatment. Combining any of the four pretreatments with enzymatic hydrolysis with 60 FPU cellulase/g of glucan plus xylan in the pretreated maple wood resulted in virtually the same total glucose plus xylose yields of ∼85% of the maximum possible. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Pseudomonas fluorescens ATCC 13525 Containing an Artificial Oxalate Operon and Vitreoscilla Hemoglobin Secretes Oxalic Acid and Solubilizes Rock Phosphate in Acidic Alfisols

    Archana, G.; Naresh Kumar, G.

    2014-01-01

    Oxalate secretion was achieved in Pseudomonas fluorescens ATCC 13525 by incorporation of genes encoding Aspergillus niger oxaloacetate acetyl hydrolase (oah), Fomitopsis plaustris oxalate transporter (FpOAR) and Vitreoscilla hemoglobin (vgb) in various combinations. Pf (pKCN2) transformant containing oah alone accumulated 19 mM oxalic acid intracellularly but secreted 1.2 mM. However, in the presence of an artificial oxalate operon containing oah and FpOAR genes in plasmid pKCN4, Pf (pKCN4) secreted 13.6 mM oxalate in the medium while 3.6 mM remained inside. This transformant solubilized 509 μM of phosphorus from rock phosphate in alfisol which is 4.5 fold higher than the Pf (pKCN2) transformant. Genomic integrants of P. fluorescens (Pf int1 and Pf int2) containing artificial oxalate operon (plac-FpOAR-oah) and artificial oxalate gene cluster (plac-FpOAR-oah, vgb, egfp) secreted 4.8 mM and 5.4 mM oxalic acid, released 329 μM and 351 μM P, respectively, in alfisol. The integrants showed enhanced root colonization, improved growth and increased P content of Vigna radiata plants. This study demonstrates oxalic acid secretion in P. fluorescens by incorporation of an artificial operon constituted of genes for oxalate synthesis and transport, which imparts mineral phosphate solubilizing ability to the organism leading to enhanced growth and P content of V. radiata in alfisol soil. PMID:24705024

  7. Pseudomonas fluorescens ATCC 13525 containing an artificial oxalate operon and Vitreoscilla hemoglobin secretes oxalic acid and solubilizes rock phosphate in acidic alfisols.

    Kavita Yadav

    Full Text Available Oxalate secretion was achieved in Pseudomonas fluorescens ATCC 13525 by incorporation of genes encoding Aspergillus niger oxaloacetate acetyl hydrolase (oah, Fomitopsis plaustris oxalate transporter (FpOAR and Vitreoscilla hemoglobin (vgb in various combinations. Pf (pKCN2 transformant containing oah alone accumulated 19 mM oxalic acid intracellularly but secreted 1.2 mM. However, in the presence of an artificial oxalate operon containing oah and FpOAR genes in plasmid pKCN4, Pf (pKCN4 secreted 13.6 mM oxalate in the medium while 3.6 mM remained inside. This transformant solubilized 509 μM of phosphorus from rock phosphate in alfisol which is 4.5 fold higher than the Pf (pKCN2 transformant. Genomic integrants of P. fluorescens (Pf int1 and Pf int2 containing artificial oxalate operon (plac-FpOAR-oah and artificial oxalate gene cluster (plac-FpOAR-oah, vgb, egfp secreted 4.8 mM and 5.4 mM oxalic acid, released 329 μM and 351 μM P, respectively, in alfisol. The integrants showed enhanced root colonization, improved growth and increased P content of Vigna radiata plants. This study demonstrates oxalic acid secretion in P. fluorescens by incorporation of an artificial operon constituted of genes for oxalate synthesis and transport, which imparts mineral phosphate solubilizing ability to the organism leading to enhanced growth and P content of V. radiata in alfisol soil.

  8. Separation of Am-Cm from NaNO3 waste solutions by in-canyon-tank precipitation as oxalates

    Gray, L.W.; Burney, G.A.; Wilson, T.W.; McKibben, J.M.

    1981-09-01

    A process for the purification of Am-Cm residues was developed specifically for application in Savannah River Plant (SRP) canyon tanks. These Am-Cm residues were collected from several campaigns to produce plutonium containing high isotopic concentrations of 240 Pu. An initial purification from Al 3+ had already been accomplished by a solvent extraction process. The product of this process was contaminated with NaNO 3 as a result of entrainment of the solvent extraction NaNO 3 scrub solution. To produce an acceptable feed solution for a later pressurized cation exchange chromatography separation and purification step, the bulk of the NaNO 3 must be removed. This purification process includes formic acid denitration, adjustment of contaminating cations by evaporation and water dilution, and oxalate precipitation of the actinides and lanthanides. After washing, the precipitate was dissolved in 8M nitric acid, and the oxalate was destroyed by nitric acid oxidation

  9. Viscosities of oxalic acid and its salts in water and binary aqueous ...

    Unknown

    Viscosities; oxalic acid and its salts; water + THF mixtures; structure-breakers. 1. Introduction ... has found its application in the organic syntheses as manifested from ... water. In other words, these results indicate that oxalic acid and its salts mix ...

  10. Oxalic acid biosynthesis is encoded by an operon in Burkholderia glumae

    Although the biosynthesis of oxalic acid is known to occur in a number of bacteria, the mechanism(s) regulating its production remains largely unknown. To date, there is no report on the identification of an oxalic acid biosynthetic pathway gene from bacteria. In an attempt to identify such a gene...

  11. In vitro selection of rape variants resistant to oxalic acid using haploid stem apexes

    Wang Yifei; Huang Jianhua; Lu Ruiju; Sun Yuefang; Zhou Runmei; Zhou Zhijiang; Xie Zhujie; Liu Chenghong

    2002-01-01

    Mutagenic treatment was made of the haploid stem apexes rape strain '9841' and '9885' with Pingyangmycin. As a result of positive selection with oxalic acid providing selection pressure, variants with significantly higher tolerance to oxalic acid than the original ones were obtained. 3 germplasm with significantly higher resistance to Sclerotinia sclerotiorum than cultivar Hu You 12 were selected from field test

  12. EFFECT OF NATURAL IRON OXIDE, HYDROGEN PEROXIDE, AND OXALIC ACID ON PHOTOCHEMICAL DEGRADATION OF 2-CHLOROPHENOL

    W REMACHE

    2014-07-01

    Full Text Available The voluntary or accidental release of chemical compounds in the environment is a major cause of pollution of natural waters. Most of chlorophenols are toxic and hardly biodegradable and are difficult to remove from the environment. Therefore, it is important to find innovative and economical methods for the safe and complete destruction. The objective of this work is to test the activity photocatalytic of natural iron oxide (NIO in the photodegradation of 2-chlorophenol (2-CP. The analysis chromatographic with HPLC of solutions exposed under UV irradiation revealed that the degradation of 2-CP was negligible under the condition of using only natural iron oxide. The effect of wavelength on photoreactivity of NIO was also investigated in this process: at high wavelength thus at low energy the efficiency of degradation is important. We have also investigated the activation of NIO by hydrogen peroxide and oxalic acid, The results showed that the photodegradation of 2-CP under UVA irradiation could be enhanced greatly in the presence of oxalate. 2-CP was completly removed after 240 minutes of irradiation when the concentration of oxalic acid is equal to 2.10-3 M. The use of 2.0 % of isopropanol as a scavenger confirmed the intervention of hydroxyl radicals in the photodegradation of 2-CP.

  13. Effect of oxalic acid on the optical, thermal, dielectric and mechanical behaviour of ADP crystals

    Rajesh, P.; Ramasamy, P.

    2009-01-01

    The effect of the addition, over a concentration range from 1 to 5 mol%, of oxalic acid on the growth rate, optical transparency, hardness, dielectric behaviour, and SHG efficiency of ammonium dihydrogen phosphate single crystals grown by slow evaporation method has been investigated. UV-Vis studies show that the transparency of the oxalic acid added crystals decreased gradually. Thermal studies indicate that the decomposition temperatures of the crystal are decreased in oxalic acid added ADP crystals. It is observed from the dielectric measurements that the dielectric constant and dielectric loss increase with increase in temperature for all the crystals. Vicker's microhardness study reveals that the addition of higher concentration of oxalic acid decreases the hardness of the crystal. SHG efficiency of 1 mol% of oxalic acid is higher than the pure ADP.

  14. In vitro dissolution of calcium oxalate stones with ethylenediaminetetraacetic acid and snake venom thrombin-like enzyme.

    Zhou, Xiang-Jun; Zhang, Jie; Zhang, Ci; Xu, Chang-Geng

    2014-01-01

    The aim of this study was to determine the feasibility of using snake venom thrombin-like enzyme (SVTLE) and/or ethylenediaminetetraacetic acid (EDTA) to dissolve calcium oxalate stones in vitro. Seven calcium oxalate stones were incubated with various chemolytic agents [EDTA, Tris-HCl/EDTA (TE) buffer or SVTLE diluted in TE buffer]. The pH, calcium concentration, stone weight and stone surface integrity were recorded, as well as related pathological changes to bladder mucosae. Compared to all other solutions, those containing SVTLE and buffered EDTA had higher concentrations of mobilized calcium and caused significantly more stone weight loss, stone fragility and gaps in the calcium crystals. Also, there were no adverse pathological effects on rabbit bladder mucosae from any of the solutions. The data indicate that buffered EDTA and SVTLE can be used to dissolve calcium oxalate stones and, at the concentrations used here, do not damage tissue. 2013 S. Karger AG, Basel.

  15. Improving the two-step remediation process for CCA-treated wood. Part I, Evaluating oxalic acid extraction

    Carol Clausen

    2004-01-01

    In this study, three possible improvements to a remediation process for chromated-copper-arsenate (CCA) treated wood were evaluated. The process involves two steps: oxalic acid extraction of wood fiber followed by bacterial culture with Bacillus licheniformis CC01. The three potential improvements to the oxalic acid extraction step were (1) reusing oxalic acid for...

  16. Reaction of Hydrazine Hydrate with Oxalic Acid: Synthesis and ...

    NICO

    2013-11-28

    Nov 28, 2013 ... The title compound is a molecular salt containing two discrete hydrazinium cations and an oxalate anion. The oxalate ... RESEARCH ARTICLE ... Scheme and reaction showing the simple experimental procedure for the preparation of .... 7 A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, 4th edn.,.

  17. Enhanced nitrogen availability in karst ecosystems by oxalic acid release in the rhizosphere

    Fujing ePan

    2016-05-01

    Full Text Available In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM and causes nitrogen (N and/or phosphorus (P limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015 where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass C (MBC, and β-1,4-N-acetylglucosaminidase (NAG on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems.

  18. Utilisation of sugarcane trash and other cellulosic wastes for production of oxalic acid

    Mane, J D; Modak, H M; Ramaiah, N A; Jadhav, S J

    1988-01-01

    The nitric acid oxidation process was developed for the production of oxalic acid from sugarcane trash, groundnut shells, corn cobs and rice husks. Good yields of oxalic acid from the above raw materials were obtained under optimum conditions, with sugarcane trash as the preferable raw material. The absorption of waste nitrogen oxide gases in aqueous NaOH to get a valuable by-product, sodium nitrite, was also successful.

  19. Effect of heat treatment on the structure of incorporated oxalate species and photoluminescent properties of porous alumina films formed in oxalic acid

    Vrublevsky, I.; Jagminas, A.; Hemeltjen, S.; Goedel, W. A.

    2008-09-01

    The present work focuses on the use of IR spectroscopy and photoluminescence spectral measurements for studying the treatment temperature effect on the compositional and luminescent properties of oxalic acid alumina films. In line with the recent researches we have also found that heat treatment of porous alumina films formed in oxalic acid leads to considerable changes in their photoluminescence properties: upon annealing the intensity of photoluminescence (PL) increases reaching a maximum at the temperature of around 500 °C and then decreases. IR spectra of as-grown and heat-treated films have proved that PL emission in the anodic alumina films is related with the state of 'structural' oxalate species incorporated in the oxide lattice. These results allowed us to conclude that PL behavior of oxalic acid alumina films can be explained through the concept of variations in the bonding molecular orbitals of incorporated oxalate species including σ- and π-bonds.

  20. The effect of sulfuric acid on pore initiation in anodic alumina formed in oxalic acid

    Behnam Hafezi

    2014-07-01

    Full Text Available In this work, a tracer study on pore initiation in anodic alumina in oxalic acid was performed. Effects of some experimental parameters such as applied electrical potential, electrolyte composition and heat pretreatment were evaluated. Electrochemical and morphological experiments were performed using potentiostatic anodizing and scanning electron microscopy (SEM techniques, respectively. Effect of electrolyte composition on current density was discussed. In various electrical potentials, electrolyte composition had different effects on current density. Addition of sulfuric acid into oxalic acid increased porosity. Also, distribution of pore size and pore diameter were influenced by presence of sulfuric acid. Effect of electrolyte composition on the morphology of aluminum surface layer depended on the electric potential. Current density and porosity of aluminum surface layer was decreased by heat pretreatment.

  1. Oscillatory bromate-oxalic acid-Ce-acetone-sulfuric acid reaction, in CSTR

    Pereira, Janaina A.M.; Faria, Roberto B.

    2004-01-01

    Periodic oscillations were observed for the first time, in a CSTR, in the system bromate-oxalic acid-Ce(IV)-acetone-sulfuric acid, in a CSTR. A reaction between Ce(IV) and acetone, until now not described in the literature and occurring before the addition of the reagents to the reactor, was identified as a decisive factor for the appearing of the regular oscillations. (author)

  2. Recovery of vanadium (V) from used catalysts in sulfuric acid production units by oxalic acid

    Abdulbaki, M.; Shino, O.

    2009-07-01

    Vanadium penta oxide (V 2 O 5 ), is used, in large quantities as a catalyst for the oxidation of SO 2 to SO 3 in sulfuric acid production units, during the oxidation process the level of the oxidation declines with the time because of catalyst poisoning. So the spent catalyst is usually through out in a specified special places by General Fertilizer Company which causes a pollution of the land. The present paper, studies the recovery of vanadium from the spent catalyst by using the oxalic acid. The optimal conditions of spent catalyst leaching have been studied. It has been shown that 2%(w/w) of oxalic acid is the most suitable for leaching process at 70 degree centigrade. The precipitation of vanadium using some alkaline media NH 4 OH has been also studied, it has been shown that ammonium hydroxide was the best at 50 degree centigrade. (author)

  3. (Di­methyl­phosphor­yl)methanaminium hydrogen oxalate–oxalic acid (2/1)

    Bialek, Sebastian; Clemens, Rebecca; Reiss, Guido J.

    2014-01-01

    The reaction of (di­methyl­phosphor­yl)methanamine (dpma) with oxalic acid in ethanol yielded the title solvated salt, C3H11NOP+·C2HO4 −·0.5C2H2O4. Its asymmetric unit consists of one dpmaH+ cation, one hydrogen oxalate anion and a half-mol­ecule of oxalic acid located around a twofold rotation axis. The H atom of the hydrogen oxalate anion is statistically disordered over two positions that are trans to each other. The hydrogen oxalate monoanion is not planar (bend angle ∼16°) whereas the ox...

  4. Intercomparison of the measurements of oxalic acid in aerosols by gas chromatography and ion chromatography

    Kawamura, Kimitaka; Barrie, Leonard A.; Toom-Sauntry, Desiree

    2010-12-01

    Oxalate, the anion of oxalic acid, is one of the most abundant measurable organic species in atmospheric aerosols. Traditionally, this bifunctional species has been measured by gas chromatography (GC) after derivatization to butyl ester and by ion chromatography (IC) without derivatization. However, there are few published comparisons of the two techniques. Here, we report the results of an intercomparison study for the measurement of oxalic acid in Arctic aerosols (oxalic acid by GC ranged from 6.5-59.1 ng m -3 (av. 26.0 ng m -3, median 26.2 ng m -3) whereas those by IC ranged from 6.6-52.1 ng m -3 (av. 26.6 ng m -3, median 25.4 ng m -3). They showed a good correlation ( r = 0.84) with a slope of 0.96. Thus, observations of oxalate obtained by GC employing dibutyl esters are almost equal to those by IC. Because the accuracy of oxalic acid by GC method largely depends on the method used, it is important to strictly examine the recovery in each study.

  5. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid.

    Ja Yeong Jang

    Full Text Available Restricted usage of chemical nematicides has led to development of environmentally safe alternatives. A culture filtrate of Aspergillus niger F22 was highly active against Meloidogyne incognita with marked mortality of second-stage juveniles (J2s and inhibition of egg hatching. The nematicidal component was identified as oxalic acid by organic acid analysis and gas chromatography-mass spectroscopy (GC-MS. Exposure to 2 mmol/L oxalic acid resulted in 100% juvenile mortality at 1 day after treatment and suppressed egg hatching by 95.6% at 7 days after treatment. Oxalic acid showed similar nematicidal activity against M. hapla, but was not highly toxic to Bursaphelenchus xylophilus. The fungus was incubated on solid medium and dried culture was used for preparation of a wettable powder-type (WP formulation as an active ingredient. Two WP formulations, F22-WP10 (ai 10% and oxalic acid-WP8 (ai 8%, were prepared using F22 solid culture and oxalic acid. In a field naturally infested with M. incognita, application of a mixture of F22-WP10 + oxalic acid-WP8 at 1,000- and 500-fold dilutions significantly reduced gall formation on the roots of watermelon plants by 58.8 and 70.7%, respectively, compared to the non-treated control. The disease control efficacy of the mixture of F22-WP10 + oxalic acid-WP8 was significantly higher than that of a chemical nematicide, Sunchungtan (ai 30% fosthiazate. These results suggest that A. niger F22 can be used as a microbial nematicide for the control of root-knot nematode disease.

  6. Nephroprotective effect of Corn Silk extract on oxalic acid-induced nephrocalcinosis in rabbit model

    Faruk Hassan Al-Jawad; Rafi Abdul Majeed Al-Razzuqi; Zainab Awaen Al-Ebady; Thulfuqar Abdul Majeed Al-Razzuqi

    2012-01-01

    ABSTRACT Background : Nephrocalcinosis is a state of deposition of calcium phosphate or oxalate in the renal parenchyma. It may occur in patients with renal tubular acidosis, vitamin D intoxication, and hyperparathyroidism. Corn silk was used in traditional Chinese medicine to relieve renal pains. Aim: To evaluate the effect of Corn silk aqueous extract in reducing calcium deposits from renal parenchyma in oxalic acid-induced nephrocalcinosis model. Materials and methods: Fourteen healthy...

  7. Study of lithium extraction from brine water, Bledug Kuwu, Indonesia by the precipitation series of oxalic acid and carbonate sodium

    Sulistiyono, Eko; Lalasari, Latifa Hanum; Mayangsari, W.; Prasetyo, A. B.

    2018-05-01

    Lithium is one of the key elements in the development of batteries for electric car applications. Currently, the resources of the world's lithium are derived from brine water and lithium mineral based on spodumene rock. Indonesia which is located in the area of the ring of fire, has potential brine water resources in some area, such as brine water from Bledug Kuwu, Central Java that used in this research. The purposes of this research are to characterize brine water, Bledug Kuwu and to investigate the influence of chemical solvents on Li, Na, K, Ca, Mg, Al, B ion precipitation from brine water. This research was done with 2 times the process of chemical precipitation that runs series as follows: 5 liters of brine water were chemically precipitated using 400 ml of 12.43 N oxalic acid and followed by chemical precipitation using 400 mL of 7.07 N sodium carbonate solutions. Evaporation and filtration processes were also done twice in an effort to separate white precipitate and filtrate. The filtrate was analyzed by ICP-OES and white precipitates (salts) were analyzed by SEM, XRD, and XRF. The result shows that oxalate precipitation process extracted 32.24% Al, 23.42% B, 22.43% Ca, 14.26% Fe, 3.21 % K, 9.86% Na and 14.26% Li, the following process by carbonate precipitation process extracted 98.86% Mg, 73% Ca, 22.53% Li, 82.04% Al, 14.38% B, 12.50% K, 2.27% Na. There is 63.21% lithium is not extracted from the series process. The SEM analysis shows that the structure of granules on the precipitated salts by oxalic acid form gentle cubic-shaped solid. In the other hand, oxalate precipitation followed by sodium carbonate has various particle sizes and the shape of crystals is fragments, prism and cube look like magnesium carbonate, calcium chloride, and calcite's crystal respectively. This is in accordance with XRD analysis that phases of whewellite (CaC2O4.H2O), disodium oxalate (Na2C2O4), magnesite (MgCO3), calcium lithium aluminum (Al1.19 Ca1Li0.81), dolomite (CaCO3

  8. Studies in the solubility of Pu(III) oxalate

    Hasilkar, S P; Khedekar, N B; Chander, K; Jadhav, V; Jain, H C [Bhabha Atomic Research Centre, Bombay (India). Fuel Reprocessing Div.

    1994-11-01

    Studies have been carried out on the solubility of Pu(III) oxalate by precipitation of Pu(III) oxalate from varying concentrations of HNO[sub 3]/HCl (0.5-2.0M) solutions and also by equilibrating freshly prepared Pu(III) oxalate with solutions containing varying concentrations of HNO[sub 3]/HCl, oxalic acid and ascorbic acid. Pu(III) solutions in HNO[sub 3] and HCl media were prepared by reduction of Pu(IV) with ascorbic acid. 0.01-0.10M ascorbic acid concentration in the aqueous solution was maintained as holding reductant. The solubility of Pu(III) oxalate was found to be a minimum in 0.5M-1M HNO[sub 3]/HCl solutions containing 0.05M ascorbic acid and 0.2M excess oxalic acid in the supernatant. (author) 6 refs.; 6 tabs.

  9. Kinetics and mechanism of the oxidation of formic and oxalic acids ...

    The oxidation of formic and oxalic acids by benzyltrimethylammonium dichloroiodate (BTMACI), in the presence of zinc chloride, leads to the formation of carbon dioxide. The reaction is first order with respect to BTMACI, zinc chloride and organic acid. Oxidation of deuteriated formic acid indicates the presence of a kinetic ...

  10. LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY

    Nash, C.

    2012-02-03

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.

  11. 3.2.1. Synthesis, crystal and molecular structure of catena-(bis(µ1-oxalic acid)-µ3-hydrogen oxalate-di-aqua-sodium(I)).

    Olga Kovalchukova*, Sergey Aldoshin, Andrey Utenyshev, Konstantin Bogenko, Valeriy Tkachev

    2015-01-01

    The crystal and molecular structure of catena-(bis(µ- oxalic acid)-µ-hydrogen oxalate-di-aqua-sodium(I)) was detected by X-Ray analysis. The compound crystallizes in the triclinic space group P-1, with a(Å) 6.2378(12); b(Å) 7,1115(14); c(Å) 10.489(2); α(°) 94.65(3); β(°) 100.12(3); γ(°) 97.78(3). The sodium cation in the title compound is eight coordinated and forms a square antiprism. It is surrounded by two molecules of oxalic acid, one hydrogen oxalate anion and one water molecule. Both ox...

  12. Evidence of a natural marine source of oxalic acid and a possible link to glyoxal

    Rinaldi, Matteo; Decesari, Stefano; Carbone, Claudio; Finessi, Emanuela; Fuzzi, Sandro; Ceburnis, Darius; O'Dowd, Colin D.; Sciare, Jean; Burrows, John P.; Vrekoussis, Mihalis; Ervens, Barbara; Tsigaridis, Kostas; Facchini, Maria Cristina

    2011-08-01

    This paper presents results supporting the existence of a natural source of oxalic acid over the oceans. Oxalate was detected in "clean-sector" marine aerosol samples at Mace Head (Ireland) (53°20'N, 9°54'W) during 2006, and at Amsterdam Island (37°48'S, 77°34'E) from 2003 to 2007, in concentrations ranging from 2.7 to 39 ng m-3 and from 0.31 to 17 ng m-3, respectively. The oxalate concentration showed a clear seasonal trend at both sites, with maxima in spring-summer and minima in fall-winter, being consistent with other marine biogenic aerosol components (e.g., methanesulfonic acid, non-sea-salt sulfate, and aliphatic amines). The observed oxalate was distributed along the whole aerosol size spectrum, with both a submicrometer and a supermicrometer mode, unlike the dominant submicrometer mode encountered in many polluted environments. Given its mass size distribution, the results suggest that over remote oceanic regions oxalate is produced through a combination of different formation processes. It is proposed that the cloud-mediated oxidation of gaseous glyoxal, recently detected over remote oceanic regions, may be an important source of submicrometer oxalate in the marine boundary layer. Supporting this hypothesis, satellite-retrieved glyoxal column concentrations over the two sampling sites exhibited the same seasonal concentration trend of oxalate. Furthermore, chemical box model simulations showed that the observed submicrometer oxalate concentrations were consistent with the in-cloud oxidation of typical marine air glyoxal mixing ratios, as retrieved by satellite measurements, at both sites.

  13. Kinetics and mechanism of the oxidation of formic and oxalic acids ...

    Unknown

    The organic acids were commercial products of the highest degree of purity .... reaction is not complete even at high concentration of ZnCl2, and that only the ... activation in the oxidation of oxalic acid suggests the involvement of both the ...

  14. Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.)

    Danilo Scordia; Salvatore L. Cosentino; Jae-Won Lee; Thomas W. Jeffries

    2011-01-01

    Biomass pretreatment is essential to overcome recalcitrance of lignocellulose for ethanol production. In the present study we pretreated giant reed (Arundo donax L.), a perennial, rhizomatous lignocellulosic grass with dilute oxalic acid. The effects of temperature (170-190 ºC), acid loading (2-10% w/w) and reaction time (15-40 min) were handled as a single...

  15. SAFETY EVALUATION OF OXALIC ACID WASTE RETRIEVAL IN SINGLE SHELL TANK (SST) 241-C-106

    SHULTZ, M.V.

    2003-01-01

    This report documents the safety evaluation of the process of retrieving sludge waste from single-shell tank 241-C-106 using oxalic acid. The results of the HAZOP, safety evaluation, and control allocation/decision are part of the report. This safety evaluation considers the use of oxalic acid to recover residual waste in single-shell tank (SST) 241-C-106. This is an activity not addressed in the current tank farm safety basis. This evaluation has five specific purposes: (1) Identifying the key configuration and operating assumptions needed to evaluate oxalic acid dissolution in SST 241-C-106. (2) Documenting the hazardous conditions identified during the oxalic acid dissolution hazard and operability study (HAZOP). (3) Documenting the comparison of the HAZOP results to the hazardous conditions and associated analyzed accident currently included in the safety basis, as documented in HNF-SD-WM-TI-764, Hazard Analysis Database Report. (4) Documenting the evaluation of the oxalic acid dissolution activity with respect to: (A) Accident analyses described in HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR), and (B) Controls specified in HNF-SD-WM-TSR-006, Tank Farms Technical Safety Requirements (TSR). (5) Documenting the process and results of control decisions as well as the applicability of preventive and/or mitigative controls to each oxalic acid addition hazardous condition. This safety evaluation is not intended to be a request to authorize the activity. Authorization issues are addressed by the unreviewed safety question (USQ) evaluation process. This report constitutes an accident analysis

  16. The promotion effect of coexisting hygroscopic composition on the reaction between oxalic acid and calcite during humidifying process

    Ma, Q.; He, H.

    2012-12-01

    Internally mixed oxalic acid with mineral dust has been frequently detected in field measurements (Sullivan and Prather, 2007; Wang et al., 2012; Yang et al., 2009). Meanwhile, Furukawa and Takahashi (Furukawa and Takahashi, 2011) found that most of the oxalic acid in mineral mixture is present as metal oxalate complexes in the aerosols, however, the formation mechanism of these complexes is not well known. It was reported that cloud process of H2C2O4/CaCO3 mixture could lead to the formation of calcium oxalate (Gierlus et al., 2012). Recently, we used Raman spectroscopy to investigate the hygroscopic behavior of H2C2O4/CaCO3 mixture below saturation condition as well as the effect of coexisting hygroscopic compositions, e.g. Ca(NO3)2, NaCl, NH4NO3, and (NH4)2SO4. It was found that there was no interaction between H2C2O4 and calcite without third component during humidifying process under ambient condition. In contrast, the presence of coexisting Ca(NO)3, NaCl, or NH4NO3 could promote the reaction between H2C2O4 and calcite by providing an aqueous circumstance after deliquescence, resulting in the formation of calcium oxalate hydrates. Moreover, substitution of strong acid (HNO3) by medium acid (H2C2O4) occurred when water vapor was absorbed in Ca(NO3)2/H2C2O4 mixture (Ma and He, 2012). As for (NH4)2SO4, there existed a competition effect between (NH4)2SO4 and H2C2O4 for the reaction with CaCO3. CaCO3 was preferentially reacted with (NH4)2SO4 to form gypsum in the solution, while the residual NH4+ and C2O42- ions were bonded to (NH4)2C2O4 after efflorescence. These results implies a potential formation pathway of metal oxalate complexes in the atmosphere and also suggests that synergistic effect between different constituents in humidifying process of mixed particles should be considered in future hygroscopic behavior studies.

  17. A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water

    Zhang, Tao; Li, Weiwei; Croue, Jean-Philippe

    2012-01-01

    with ozone. The optimum CuO loading amount was 12%. The molar ratio of oxalate removed/ozone consumption reached 0.84. The catalytic ozonation was most effective in a neutral pH range (6.7-7.9) and became ineffective when the water solution was acidic

  18. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation

    Jae-Won Lee; Rita C.L.B. Rodrigues; Hyun Joo Kim; In-Gyu Choi; Thomas W. Jeffries

    2010-01-01

    High yields of hemicellulosic and cellulosic sugars are critical in obtaining economical conversion of agricultural residues to ethanol. To optimize pretreatment conditions, we evaluated oxalic acid loading rates, treatment temperatures and times in a 23 full factorial design. Response-surface analysis revealed an optimal oxalic acid pretreatment...

  19. The role of nanoparticulate agglomerates in TiO{sub 2} photocatalysis: degradation of oxalic acid

    Ivanova, Irina [Leibniz Universitaet Hannover, Institut fuer Technische Chemie (Germany); Mendive, Cecilia B., E-mail: cbmendive@mdp.edu.ar [Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales, Departamento de Química (Argentina); Bahnemann, Detlef [Leibniz Universitaet Hannover, Institut fuer Technische Chemie (Germany)

    2016-07-15

    The simultaneous bimodal study of the photocatalytic oxalic acid degradation by aqueous TiO{sub 2} suspensions revealed that particular systems possess the capacity to protect a certain amount of oxalic acid from oxidation, thus hindering, to some extent, the photocatalytic reaction. While measurements of the oxalic acid concentration in the bulk liquid phase indicated full photocatalytic degradation; in situ pH-stat measurements allowed the quantification of the amount of oxalic acid remaining in the part of the nanoparticulate agglomerates where light could apparently not access. An explanation for this phenomenon takes into account the possibility of the formation of TiO{sub 2} agglomerates in which these molecules are hidden from the effect of the light, thus being protected from photocatalytic degradation. Studies of different TiO{sub 2} materials with different particle sizes allowed a deeper exploration of this phenomenon. In addition, because this property of encapsulating pollutant molecules by photocatalytic systems is found to be a reversible phenomenon, P25 appears to be more convenient and advantageous as compared to the use of large surface area photocatalysts.Graphical AbstractFig.: Deaggregation of TiO{sub 2} particle agglomerates upon UV illumination.

  20. Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology

    Jae-Won Lee; Rita C.L.B. Rodrigues; Thomas W. Jeffries

    2009-01-01

    Response surface methodology was used to evaluate optimal time, temperature and oxalic acid concentration for simultaneous saccharification and fermentation (SSF) of corncob particles by Pichia stipitis CBS 6054. Fifteen different conditions for pretreatment were examined in a 23 full factorial design with six axial points. Temperatures ranged from 132 to 180º...

  1. Effect of oxalic acid pretreatment of wood chips on manufacturing medium-density fiberboard

    Xianjun Li; Zhiyong Cai; Eric Horn; Jerrold E. Winandy

    2011-01-01

    The main objective of this study was to evaluate the effect of oxalic acid (OA) wood chips pretreatment prior to refining, which is done to reduce energy used during the refining process. Selected mechanical and physical performances of medium-density fiberboard (MDF) – internal bonding (IB), modulus of elasticity (MOE), modulus of rupture (MOR), water absorption (WA)...

  2. Copper tolerance of brown-rot fungi : time course of oxalic acid production

    Frederick Green; Carol A. Clausen

    2003-01-01

    The increase in the use of non-arsenical copper-based wood preservatives in response to environmental concerns has been accompanied by interest in copper-tolerant decay fungi. Oxalic acid production by brown-rot fungi has been proposed as one mechanism of copper tolerance. Fifteen brown-rot fungi representing the genera Postia, Wolfiporia, Meruliporia, Gloeophyllum,...

  3. Oxalic acid pretreatment of rice straw particles and loblolly pine chips : release of hemicellulosic carbohydrates

    Xianjun Li; Zhiyong Cai; Eric Horn; Jerrold E. Winandy

    2011-01-01

    This study was conducted to evaluate the effect of oxalic acid (OA) pretreatment on carbohydrates released from rice straw particles and wood chips. The results showed that OA treatment accelerated carbohydrates extraction from rice straw particles and wood chips. OA pretreatment dramatically increased the amount of carbohydrates extracted, up to 24 times for wood...

  4. Spectra investigation on surface characteristics of graphene oxide nanosheets treated with tartaric, malic and oxalic acids.

    Teng, Xiyao; Yan, Manqing; Bi, Hong

    2014-01-24

    The surface characteristics of graphene oxide nanosheets (GO) treated respectively with tartaric acid, malic acid and oxalic acid, have been investigated by mainly using optical spectroscopic methods including Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible (UV-Vis) absorption and Raman spectroscopy. Additionally, the electrochemical property of the products has also been studied. The data revealed that oxygen-containing groups such as OH, COOH and CO on the GO surface have been almost removed and thus reduced graphene oxide nanosheets (RGN) were obtained. Interestingly, the number of sp(2) domains of RGN increases as treated by tartaric acidacid acid whereas the steric hindrance (SH) decreases and the ionization constant (IC) differs among these three acids. Furthermore, the specific capacitances (Cs) of GO have been greatly promoted from 2.4 F g(-1) to 100.8, 112.4, and 147 F g(-1) after treated with tartaric, malic and oxalic acids, respectively. This finding agrees well with the spectra result of the tendency of surface conjugated degree alteration. We claim that the difference in both SH and IC among these acids is the main reason for the diverse surface characteristics as well as the improved Cs of the RGN. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Recovery of Iron from Pyrolusite Leaching Slag by a Lab-Scale Circulation Process of Oxalic Acid Leaching and Ultraviolet Irradiation

    Biao Deng

    2017-12-01

    Full Text Available Pyrolusite leaching slag is a Fe-containing slag generated from pyrolusite leaching process with SO2. Recovery of iron from the slag not only has economic benefit, but also prevents the secondary pollution to the environment. A novel lab-scale cyclic process for recovering iron from pyrolusite leaching slag was introduced. The process contains two steps: (1 iron was leached with oxalic acid and [Fe(C2O4n](3−2n+ solution was generated; (2 the [Fe(C2O4n](3−2n+ solution was irradiated by ultraviolet and ferrous oxalate precipitation were obtained. The effect of operation parameter on leaching and irradiation process were studied separately. In the leaching process, the optimal solid/liquid ratio, oxalic acid concentration, leaching temperature, stirring rate, and leaching time are 1:50, 0.40 mol/L, 95 °C, 300 r/min, and 3 h, respectively. In the irradiation process, the best irradiation wavelength, Fe/oxalic acid molar ratio and irradiation time are 254 nm, 1:4, and 30 min. Besides, a test of 9 continuous cycles was carried out and the performance and material balance of the combined process were investigated. The results showed that the cyclic process is entirely feasible and prove to be stable producing, and ferrous oxalate of 99.32% purity. Material balance indicated that 95.17% of iron was recovered in the form of FeC2O4·2H2O, and the recovery efficiency of oxalic acid was 58.52%.

  6. Morphological control of calcium oxalate particles in the presence of poly-(styrene-alt-maleic acid)

    Yu Jiaguo; Tang Hua; Cheng Bei; Zhao Xiujian

    2004-01-01

    Calcium oxalate (CaOx) particles exhibiting different shapes and phase structures were fabricated by a simple precipitation reaction of sodium oxalate with calcium chloride in the absence and presence of poly-(styrene-alt-maleic acid) (PSMA) as a crystal modifier at room temperature. The as-obtained products were characterized with scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of reaction conditions including pH, [Ca 2+ ]/[C 2 O 4 2- ] ratio and concentration of PSMA and CaC 2 O 4 on the crystal forms and morphologies of the as-obtained calcium oxalate were investigated. The results show that various crystal morphologies of calcium oxalate, such as parallelograms, plates, spheres, bipyramids etc. can be obtained depending on the experimental conditions. Higher polymer concentration favors formation of the metastable calcium oxalate dihydrate (COD) crystals. Lower pH is beneficial to the formation of plate-like CaOx crystals. Especially, the monodispersed parallelogram-like CaOx crystals can be produced by PSMA as an additive at pH 2. PSMA may act as a good inhibitor for urolithiasis since it induces the formation of COD and reduces the particle size of CaOx. This research may provide new insight into the morphological control of CaOx particles and the prevention of urolithiasis

  7. NIR spectroscopic properties of aqueous acids solutions.

    Omar, Ahmad Fairuz; Atan, Hanafi; Matjafri, Mohd Zubir

    2012-06-15

    Acid content is one of the important quality attributes in determining the maturity index of agricultural product, particularly fruits. Despite the fact that much research on the measurement of acidity in fruits through non-destructive spectroscopy analysis at NIR wavelengths between 700 to 1,000 nm has been conducted, the same response towards individual acids is not well known. This paper presents NIR spectroscopy analysis on aqueous citric, tartaric, malic and oxalic solutions through quantitative analysis by selecting a set of wavelengths that can best be used to measure the pH of the solutions. The aquaphotomics study of the acid solutions has generated R² above 0.9 for the measurement of all acids. The most important wavelengths for pH are located at 918-925 nm and 990-996 nm, while at 975 nm for water.

  8. Thermodynamic analysis of stability in iron removal from kaolin by using oxalic acid

    C. Ocampo-López

    2013-06-01

    Full Text Available The graphical representation of global stability for a system, or Pourbaix diagram, was constructed to perform a thermodynamic study of iron removal from kaolin using oxalic acid as an oxidant. To do this the free energies of formation of the oxalate complex of the system were calculated, and it was found that the more stable specie is Fe(C2O43-3, with a calculated free energy of formation of -3753.88 kcal/mol. Thermodynamic stability functions were estimated for the system as a function of pH and Eh known as potential of oxide reduction. It was built a global stability diagram for the removal system; it showed that the specie trioxalate Fe(C2O43-3 is the only oxalate in equilibrium with other compounds associated with the removal of iron in kaolin.

  9. The Relationship between Serum Oxalic Acid, Central Hemodynamic Parameters and Colonization by Oxalobacter formigenes in Hemodialysis Patients.

    Gulhan, Baris; Turkmen, Kultigin; Aydin, Merve; Gunay, Murat; Cıkman, Aytekin; Kara, Murat

    2015-06-01

    Elevated pulse wave velocity (PWV) and central aortic blood pressures are independent predictors of increased cardiovascular morbidity and mortality in hemodialysis (HD) patients. Oxalic acid is a uremic retention molecule that is extensively studied in the pathogenesis of calcium oxalate stones. Oxalobacter formigenes, a member of the colon microbiota, has important roles in oxalate homeostasis. Data regarding the colonization by and the exact role of O. formigenes in the pathogenesis of oxalic acid metabolism in HD patients are scant. Hence, we aimed to determine the relationship between fecal O. formigenes colonization, serum oxalic acid and hemodynamic parameters in HD patients with regard to the colo-reno-cardiac axis. Fifty HD patients were enrolled in this study. PWV and central aortic systolic (cASBP) and diastolic blood pressures (cADBP) were measured with a Mobil-O-Graph (I.E.M. GmbH, Stolberg, Germany). Serum oxalic acid levels were assessed by ELISA, and fecal O. formigenes DNA levels were isolated and measured by real-time PCR. Isolation of fecal O. formigenes was found in only 2 HD patients. One of them had 113,609 copies/ml, the other one had 1,056 copies/ml. Serum oxalic acid levels were found to be positively correlated with PWV (r = 0.29, p = 0.03), cASBP (r = 0.33, p = 0.001) and cADBP (r = 0.42, p = 0.002) and negatively correlated with LDL (r = -0.30, p = 0.03). In multivariate linear regression analysis, PWV was independently predicted by oxalic acid, glucose and triglyceride. This is the first study that demonstrates the absence of O. formigenes as well as a relation between serum oxalic acid and cASBP, cADBP and PWV in HD patients. Replacement of O. formigenes with pre- and probiotics might decrease serum oxalic acid levels and improve cardiovascular outcomes in HD patients.

  10. In vitro adsorption of oxalic acid and glyoxylic acid onto activated charcoal, resins and hydrous zirconium oxide

    Scholtens, R.; Scholten, J.; de Koning, H. W.; Tijssen, J.; ten Hoopen, H. W.; Olthuis, F. M.; Feijen, J.

    1982-01-01

    Patients suffering from primary hyperoxaluria show elevated plasma concentrations of oxalic acid and glyoxylic acid. The in vitro adsorption of these compounds into activated charcoal, a series of neutral and ion exchange resins and onto hydrous zirconium oxide has been investigated. Hydrous

  11. A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water

    Zhang, Tao

    2012-06-01

    Oxalate is usually used as a refractory model compound that cannot be effectively removed by ozone and hydroxyl radical oxidation in water. In this study, we found that ceria supported CuO significantly improved oxalate degradation in reaction with ozone. The optimum CuO loading amount was 12%. The molar ratio of oxalate removed/ozone consumption reached 0.84. The catalytic ozonation was most effective in a neutral pH range (6.7-7.9) and became ineffective when the water solution was acidic or alkaline. Moreover, bicarbonate, a ubiquitous hydroxyl radical scavenger in natural waters, significantly improved the catalytic degradation of oxalate. Therefore, the degradation relies on neither hydroxyl radical oxidation nor acid assistance, two pathways usually proposed for catalytic ozonation. These special characters of the catalyst make it suitable to be potentially used for practical degradation of refractory hydrophilic organic matter and compounds in water and wastewater. With in situ characterization, the new surface Cu(II) formed from ozone oxidation of the trace Cu(I) of the catalyst was found to be an active site in coordination with oxalate forming multi-dentate surface complex. It is proposed that the complex can be further oxidized by molecular ozone and then decomposes through intra-molecular electron transfer. The ceria support enhanced the activity of the surface Cu(I)/Cu(II) in this process. © 2012 Elsevier B.V.

  12. Destruction of oxalate by reaction with hydrogen peroxide. [Hydrazine oxalate

    Mailen, J.C.; Tallent, O.K.; Arwood, P.C.

    1981-09-01

    The destruction of oxalate by oxidation to carbon dioxide using hydrogen peroxide was studied as an alternative method for the disposal of oxalate in connection with the possible use of an aqueous hydrazine oxalate solution as a scrubbing agent for solvent cleanup in processes for the recovery of uranium, plutonium, and thorium by solvent extraction. The rate of oxidation of oxalate by hydrogen peroxide in acid solution at the reflux temperature was adequate for process application; reaction half-times at 100/sup 0/C were less than one hour when the hydrogen peroxide concentration was greater than 0.5 M. The reaction was first order with respect to both the oxalate and hydrogen peroxide concentrations and had an activation energy of 58.7 kJ/g-mol. The rate increased with the hydrogen ion concentration as (H/sup +/)/sup 0/ /sup 3/ but was not significantly affected by the presence of 100 ppM of uranium or copper in solution. In the near-neutral hydrazine oxalate solutions, the reaction of either component with hydrogen peroxide was too slow for process application.

  13. Study of the temperature influence during the uranium (Vi) sorption on surface of ZrP2O7 in presence of oxalic and salicylic acid

    Garcia G, N.

    2013-01-01

    This work studies the effect of temperature on the uranium (Vi) sorption onto zirconium diphosphate in the presence of organic acids (oxalic and salicylic acids). Zirconium diphosphate was synthesized by a chemical condensation reaction and characterized using several analytical techniques, in order to check its purity. This point is very important because the presence of any impurities or secondary phases may interfere with the hydration and sorption process. Prior to the sorption experiments, three batches of zirconium diphosphate were pre-equilibrated with NaClO 4 , oxalic acid or salicylic acid solutions. The hydrated solids were washed and dried and then again characterized in order to study the interactions between organic acids and zirconium diphosphate surface. Uranium sorption onto zirconium diphosphate (pre-equilibrated with NaClO 4 , oxalic acid and salicylic acid solutions) was investigated as a function of ph, organic acid and temperature (20, 40 y 60 grades C). Thermodynamic parameters for the sorption reactions (enthalpy change, entropy change and Gibbs free energy change) were determined from temperature dependence of distribution coefficient by using the Vant Hoff equation. Solids characterization after hydration shows that exist an interaction between organic acids and ZrP 2 O 7 . This fact was confirmed with the microcalorimetry study, the reaction heat for hydration of zirconium diphosphate in NaClO 4 solution was exothermic (-269.59 mJ) and for hydration of zirconium diphosphate in oxalic acid solution was endothermic (53.64 mJ). The experimental results showed important differences in the sorption mechanisms for the reaction of Uranium with ZrP 2 O 7 in the presence and absence of organic acids. For the zirconium diphosphate hydrated with oxalic acid, the sorption percentage was 50% from lowest ph values. For the zirconium diphosphate hydrated with salicylic acid, the initial concentration of uranium was 6 x 10 -4 M and a percentage of 10% was

  14. Oxalate Acid-Base Cements as a Means of Carbon Storage

    Erdogan, S. T.

    2017-12-01

    Emission of CO2 from industrial processes poses a myriad of environmental problems. One such polluter is the portland cement (PC) industry. PC is the main ingredient in concrete which is the ubiquitous binding material for construction works. Its production is responsible for 5-10 % of all anthropogenic CO2 emissions. Half of this emission arises from the calcination of calcareous raw materials and half from kiln fuel burning and cement clinker grinding. There have long been efforts to reduce the carbon footprint of concrete. Among the many ways, one is to bind CO2 to the phases in the cement-water paste, oxides, hydroxides, and silicates of calcium, during early hydration or while in service. The problem is that obtaining calcium oxide cheaply requires the decarbonation of limestone and the uptake of CO2 is slow and limited mainly to the surface of the concrete due to its low gas permeability. Hence, a faster method to bind more CO2 is needed. Acid-base (AB) cements are fast-setting, high-strength systems that have high durability in many environments in which PC concrete is vulnerable. They are made with a powder base such as MgO and an acid or acid salt, like phosphates. Despite certain advantages over PC cement systems, AB cements are not feasible, due to their high acid content. Also, the phosphoric acid used comes from non-renewable sources of phosphate. A potential way to reduce the drawbacks of using phosphates could be to use organic acids. Oxalic acid or its salts could react with the proper powder base to give concrete that could be used for infrastructure hence that would have very high demand. In addition, methods to produce oxalates from CO2, even atmospheric, are becoming widespread and more economical. The base can also be an industrial byproduct to further lower the environmental impact. This study describes the use of oxalic acid and industrial byproducts to obtain mortars with mechanical properties comparable to those of PC mortars. It is

  15. Isotopic fractionation of NBS oxalic acid and its influence in the calculated age of materials

    Nehmi, V.A.

    1979-10-01

    The intensity of the isotopic fractionation during the oxidation of NBS oxalic acid to carbon dioxide was checked. 30 reactions of oxidation of NBS oxalic acid with potassium permanganate were made. The resultant isotopic composition of CO 2 has been determined with a mass-spectrometer. A conclusion has been reached that the average of Δ 13 C is - 18.9% o with variation between - 17.7 and - 21.2%o. For values of Δ 13 C equal to - 22.0%o, the calculated age with isotopic correction shows the following deviations in relation to non-corrected age: 4% for materials of 1,000 years and 0.3% for 20,000 years.(Author) [pt

  16. Characterization of metabolic network of oxalic acid biosynthesis through RNA seq data analysis of developing spikes of finger millet (Eleusine coracana): Deciphering the role of key genes involved in oxalate formation in relation to grain calcium accumulation.

    Akbar, Naved; Gupta, Supriya; Tiwari, Apoorv; Singh, K P; Kumar, Anil

    2018-04-05

    In the present study, we identified seven major genes of oxalic acid biosynthesis pathway (SGAT, GGAT, ICL, GLO, MHAR, APO and OXO) from developing spike transcriptome of finger millet using rice as a reference. Sequence alignment of identified genes showed high similarity with their respective homolog in rice except for OXO and GLO. Transcript abundance (FPKM) reflects the higher accumulation of identified genes in GP-1 (low calcium genotype) as compared to GP-45 (high calcium genotype) which was further confirmed by qRT-PCR analysis, indicating differential oxalate formation in both genotypes. Determination of oxalic acid and tartaric acid content in developing spikes explain that higher oxalic acid content in GP-1 however, tartaric acid content was more in GP-45. Higher calcium content in GP-45 and lower oxalate accumulation may be due to the diversion of more ascorbic acid into tartaric acid and may correspond to less formation of calcium oxalate. Our results suggest that more than one pathway for oxalic acid biosynthesis might be present in finger millet with probable predominance of ascorbate-tartarate pathway rather than glyoxalate-oxalate conversion. Thus, finger millet can be use as an excellent model system for understanding more specific role of nutrients-antinutrients interactions, as evident from the present study. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Oxalic acid induced hydrothermal synthesis of single crystalline tungsten oxide nanorods

    Patil, V.B.; Adhyapak, P.V.; Suryavanshi, S.S.; Mulla, I.S.

    2014-01-01

    Highlights: • We report synthesis of 1D tungsten oxide using a hydrothermal route at 170 °C. • Oxalic acid plays an important role in the formation of 1D nanostructure. • Monoclinic transforms to hexagonal phase with increment in reaction duration. -- Abstract: One-dimensional single-crystalline tungsten oxide nanorods have been synthesized by the hydrothermal technique. The controlled morphology of tungsten oxide was obtained by using sodium tungstate and oxalic acid as an organic inducer. The reaction was carried out at 170 °C for 24, 48 and 72 h. The obtained tungsten oxides were investigated by using XRD, SEM and HRTEM techniques. In order to understand the role of organic inducer on the shape, size and phase formation of WO 3 was prepared with and without organic inducer. On heating of sodium tungstate without organic inducer for 72 h at 170 °C in the hydrothermal unit we obtain nanoparticles of monoclinic WO 3 , however, on addition of oxalic acid a single phase hexagonal WO 3 with distinct nanorods was formed. On addition of oxalic acid a systematic emergence of nanorod-like morphology was obtained with incrementing reaction times from 24 h to 48 h. The 72 h reaction generates self-assembled 20–30 nm diameter and 4–5 μm long h-WO 3 bundles of nanorods. The XRD studies show hexagonal structure of tungsten oxide, while SAED reveals its single crystalline nature. The photoluminescence (PL) emission spectrum shows a characteristic blue emission peak at 3 eV (410 nm). Raman spectra provide the evidence of hexagonal structure with stretching vibrations (830 cm −1 ) for 72 h of heating at 170 °C

  18. Field Assessment of Yeast- and Oxalic Acid-generated Carbon Dioxide for Mosquito Surveillance

    2014-12-01

    SentinelTM, Centers for Disease Control and Prevention light trap, sugar- fermenting yeast, electrolyzed oxalic acid INTRODUCTION Successful vector-borne...and Eisen 2008). Population data from trap surveil- lance provide key information for the develop- ment of disease risk assessment models (Diuk- Wasser...generated by a fermentation chamber, in which yeast metabolized sucrose. This source had been shown to attract various mosquito species in field and

  19. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid

    Zeng, Xianlai; Li, Jinhui, E-mail: jinhui@tsinghua.edu.cn; Shen, Bingyu

    2015-09-15

    Highlights: • Short-cut recovery of cobalt and lithium was directly obtained using oxalic acid. • Short-cut recovery process was optimized for a high recovery rate. • Leaching process was controlled by chemical reaction. • Leaching order of the sampling LiCoO{sub 2} using oxalic acid was first proposed. - Abstract: With the booming of consumer electronics (CE) and electric vehicle (EV), a large number of spent lithium-ion battery (LIBs) have been generated worldwide. Resource depletion and environmental concern driven from the sustainable industry of CE and EV have motivated spent LIBs should be recovered urgently. However, the conventional process combined with leaching, precipitating, and filtering was quite complicated to recover cobalt and lithium from spent LIBs. In this work, we developed a novel recovery process, only combined with oxalic acid leaching and filtering. When the optimal parameters for leaching process is controlled at 150 min retention time, 95 °C heating temperature, 15 g L{sup −1} solid–liquid ratio, and 400 rpm rotation rate, the recovery rate of lithium and cobalt from spent LIBs can reach about 98% and 97%, respectively. Additionally, we also tentatively discovered the leaching mechanism of lithium cobalt oxide (LiCoO{sub 2}) using oxalic acid, and the leaching order of the sampling LiCoO{sub 2} of spent LIBs. All the obtained results can contribute to a short-cut and high-efficiency process of spent LIBs recycling toward a sound closed-loop cycle.

  20. Oxalic acid induced hydrothermal synthesis of single crystalline tungsten oxide nanorods

    Patil, V.B. [School of Physical Sciences, Solapur University, Solapur 413255 (India); Adhyapak, P.V. [Centre for Materials for Electronic Technology (C-MET), Pune 411008 (India); Suryavanshi, S.S., E-mail: sssuryavanshi@rediffmail.com [School of Physical Sciences, Solapur University, Solapur 413255 (India); Mulla, I.S., E-mail: ismulla2001@gmail.com [Emeritus Scientist (CSIR), Centre for Materials for Electronic Technology (C-MET), Pune 411008 (India)

    2014-03-25

    Highlights: • We report synthesis of 1D tungsten oxide using a hydrothermal route at 170 °C. • Oxalic acid plays an important role in the formation of 1D nanostructure. • Monoclinic transforms to hexagonal phase with increment in reaction duration. -- Abstract: One-dimensional single-crystalline tungsten oxide nanorods have been synthesized by the hydrothermal technique. The controlled morphology of tungsten oxide was obtained by using sodium tungstate and oxalic acid as an organic inducer. The reaction was carried out at 170 °C for 24, 48 and 72 h. The obtained tungsten oxides were investigated by using XRD, SEM and HRTEM techniques. In order to understand the role of organic inducer on the shape, size and phase formation of WO{sub 3} was prepared with and without organic inducer. On heating of sodium tungstate without organic inducer for 72 h at 170 °C in the hydrothermal unit we obtain nanoparticles of monoclinic WO{sub 3}, however, on addition of oxalic acid a single phase hexagonal WO{sub 3} with distinct nanorods was formed. On addition of oxalic acid a systematic emergence of nanorod-like morphology was obtained with incrementing reaction times from 24 h to 48 h. The 72 h reaction generates self-assembled 20–30 nm diameter and 4–5 μm long h-WO{sub 3} bundles of nanorods. The XRD studies show hexagonal structure of tungsten oxide, while SAED reveals its single crystalline nature. The photoluminescence (PL) emission spectrum shows a characteristic blue emission peak at 3 eV (410 nm). Raman spectra provide the evidence of hexagonal structure with stretching vibrations (830 cm{sup −1}) for 72 h of heating at 170 °C.

  1. Primary properties of MDF using thermomechanical pulp made from oxalic acid pretreated rice straw particles

    Xianjun Li; Yiqiang Wu; Zhiyong Cai; Jerrold E. Winandy

    2013-01-01

    The main objective of this study is to evaluate the effect the oxalic acid (OA) and steam pretreatment on the primary properties of rice straw medium-density fiberboard (MDF). The results show the IB strength increased about 9.6% and 13.4% for steam-treated MDF (PC) and OA-treated MDF compared with raw control panels, while OA pretreatment has a slight negative effect...

  2. Oxidation of ferrocene by thiocyanic acid in the presence of ammonium oxalate

    Ruslin, Farah bt; Yamin, Bohari M.

    2014-09-01

    A flake-like crystalline salt was obtained from the reaction of ferrocene, oxalic acid and ammonium thiocyanate in ethanol The elemental analysis and spectroscopic data were in agreement with the preliminary X-ray molecular structure. The compound consists of four ferrocenium moieties and a counter anion consisting of two (tetraisothiocyanato)iron(III) linked by an oxalato bridging group in such a way that both iron central atoms adopt octahedral geometries.

  3. Oxalic acid as an assisting agent for the electrodialytic remediation of chromated copper arsenate treated timber waste

    Ribeiro, Alexandra B.; Mateus, Eduardo P.; Ottosen, Lisbeth M.

    1999-01-01

    The electrodialytic process is proposed as a technique for the remediation of chromated copper arsenate treated timber waste, using oxalic acid as assisting agent. The method prowed succesfull 93% Cu, 95% Cr and 99% As was removed from the timber.......The electrodialytic process is proposed as a technique for the remediation of chromated copper arsenate treated timber waste, using oxalic acid as assisting agent. The method prowed succesfull 93% Cu, 95% Cr and 99% As was removed from the timber....

  4. Growth and characterization of strontium oxalate crystals by the decomposition of ascorbic acid in presence of strontium chloride

    Bijini, B.R.; Prasanna, S.; Rajendra Babu, K.; Deepa, M.

    2010-01-01

    Full text: Ascorbic acid (vitamin c) is an important organic compound that helps to maintain the optimal health of human body. It is essential for the development and maintenance of connective tissues. Vitamin C plays an important role in a number of metabolic functions including the activation of the B vitamin, folic acid, the conversion of cholesterol to bile acids and the conversion of the amino acid, tryptophan, to the neurotransmitter, serotonin. During the process of metabolism it decomposes into oxalic acid. This compound is photosensitive and has least thermal stability. The decomposition of Ascorbic acid has been studied in various conditions. It is reported that decomposition of ascorbic acid in presence of Cd 2+ ions leads to the formation of cadmium oxalate crystals. In the present work, in presence of Sr 2+ ion the ascorbic acid is decomposed to Strontium Oxalate in gel media. In this technique, silica gel is used as a medium to grow crystals. Slow diffusion of reactants in the gel medium can be considered to mimic the growth of crystals in the human body. Gels were prepared by mixing appropriate quantities of sodium meta silicate and ascorbic acid, adjusting the pH in the range 5-7.5. Over the set gel, the feed solution of 1M Strontium chloride was added. Yellowish prismatic and bar shaped crystals were obtained within 24 hours. The nucleation density is maximum at a pH of 6 and minimum at 5. Good quality crystals were obtained for a pH of 5 and gel density 1.05g/cc. The FTIR spectra of grown crystals are recorded and analyzed.The band at 3431 cm -1 is assigned to OH stretching frequency of co-ordinated water molecule and the band at 1637cm -1 corresponds to C=O Stretching of carbonyl group. The band at 1319cm -1 is assigned to symmetric stretching of COO- group. The IR band at 767cm -1 corresponds to the combined effect of inplane deformation of CO 2 and the presence of metal oxygen bond .The band at 505cm -1 is due to wagging mode

  5. Preparation of iron oxide-impregnated spherical granular activated carbon-carbon composite and its photocatalytic removal of methylene blue in the presence of oxalic acid.

    Kadirova, Zukhra C; Hojamberdiev, Mirabbos; Katsumata, Ken-Ichi; Isobe, Toshihiro; Matsushita, Nobuhiro; Nakajima, Akira; Sharipov, Khasan; Okada, Kiyoshi

    2014-01-01

    The spherical granular activated carbon-carbon composites (GAC-Fe) with different iron oxide contents (Fe mass% = 0.6-10) were prepared by a pore volume impregnation method. The X-ray diffraction (XRD), scanning electron microscopy (SEM), and N2-adsorption results confirm the presence of amorphous iron oxide, pyrolytic carbon, and graphitized globular carbon nanoparticles covered with amorphous carbon in the CAG-Fe. The rate of photodegradation of methylene blue (MB) in aqueous solution under UV light in the presence of oxalic acid correlates with porosity of the prepared materials. The total MB removal includes the combination of adsorption and photodegradation without the addition of H2O2. The results of total organic carbon (TOC) analysis reveal that the decolorization of MB in aqueous solution containing oxalic acid corresponds to the decomposition of organic compounds to CO2 and H2O.

  6. Cocrystal Screening of Ibuprofen with Oxalic Acid and Citric Acid via Grinding Method

    Othman, M. F.; Anuar, N.; Rahman, S. Ad; Taifuddin, N. A. Ahmad

    2018-05-01

    Ibuprofen is a Class II Biological Safety Class (BSC) drugs used for relief of arthritis, as an analgesic and possesses the effect of antiplatelet. The major problem involves in ibuprofen is it has a low solubility and high permeability thus causes an unsatisfactory therapeutic effect to humans. Thus, in this work, alteration of ibuprofen’s physicochemical properties is conducted by means of cocrystallization technique. Co-crystallizations of ibuprofen were prepared with selected coformers using dry grinding and liquid assisted grinding (LAG) techniques in different molar ratios while ethanol and propanol were used as a solvent. The new crystalline forms were identified and characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and fourier transform infrared spectroscopy (FTIR). Analysis for Ibuprofen-Citric acid (IBP-CA) system, co-crystal was successfully formed in 1:2, 1:3, 2:1 and 3:1 molar ratios for neat grinding method although the co-crystal produced is unstable. Meanwhile, for Ibuprofen-Oxalic acid (IBP-OA) system, the co-crystal formation was identified only in 1:1, 1:2 and 1:3 molar ratios for the neat grinding method. LAG method shows that co-crystal formation was unsuccessful in both solvents for IBP-CA, while IBP-OA co-crystal was formed in the molar ratio 1:1, 2:1 and 3:1 in ethanol, and 2:1 and 3:1 in propanol.

  7. Evaluation of oxalate decarboxylase and oxalate oxidase for industrial applications.

    Cassland, Pierre; Sjöde, Anders; Winestrand, Sandra; Jönsson, Leif J; Nilvebrant, Nils-Olof

    2010-05-01

    Increased recirculation of process water has given rise to problems with formation of calcium oxalate incrusts (scaling) in the pulp and paper industry and in forest biorefineries. The potential in using oxalate decarboxylase from Aspergillus niger for oxalic acid removal in industrial bleaching plant filtrates containing oxalic acid was examined and compared with barley oxalate oxidase. Ten different filtrates from chemical pulping were selected for the evaluation. Oxalate decarboxylase degraded oxalic acid faster than oxalate oxidase in eight of the filtrates, while oxalate oxidase performed better in one filtrate. One of the filtrates inhibited both enzymes. The potential inhibitory effect of selected compounds on the enzymatic activity was tested. Oxalate decarboxylase was more sensitive than oxalate oxidase to hydrogen peroxide. Oxalate decarboxylase was not as sensitive to chlorate and chlorite as oxalate oxidase. Up to 4 mM chlorate ions, the highest concentration tested, had no inhibitory effect on oxalate decarboxylase. Analysis of the filtrates suggests that high concentrations of chlorate present in some of the filtrates were responsible for the higher sensitivity of oxalate oxidase in these filtrates. Oxalate decarboxylase was thus a better choice than oxalate oxidase for treatment of filtrates from chlorine dioxide bleaching.

  8. On the americium oxalate solubility

    Zakolupin, S.A.; Korablin, Eh.V.

    1977-01-01

    The americium oxalate solubility at different nitric (0.0-1 M) and oxalic (0.0-0.4 M) acid concentrations was investigated in the temperature range from 14 to 60 deg C. The dependence of americium oxalate solubility on the oxalic acid concentration was determined. Increasing oxalic acid concentration was found to reduce the americium oxalate solubility. The dependence of americium oxalate solubility on the oxalic acid concentration was noted to be a minimum at low acidity (0.1-0.3 M nitric acid). This is most likely due to Am(C 2 O 4 ) + , Am(C 2 O 4 ) 2 - and Am(C 2 O 4 ) 3 3- complex ion formation which have different unstability constants. On the basis of the data obtained, a preliminary estimate was carried out for the product of americium oxalate solubility in nitric acid medium (10 -29 -10 -31 ) and of the one in water (6.4x10 -20 )

  9. COMPARATIVE ANALYSIS OF OXALIC ACID PRODUCED FROM RICE HUSK AND PADDY

    P.I. Oghome; K.O.Amanze; C.I.O.Kamalu; A.C Nkwocha; S.O.Opebiyi

    2012-01-01

    In this research work, comparative analysis of Oxalic acid produced from Rice husk and Paddy was carried out in order to ascertain which waste sample produced a better yield. Nitric acid oxidation of carbohydrates was the method adopted in the production. The variable ratios of HNO3:H2SO4 used were 80:20, 70:30, 60:40, and 50:50. The variable ratio of 60:40 gave the maximum yield and at a maximum temperature of 75oC. Rice husk sample gave a percentage yield of 53.2, 64.4, 81.0, and 53.3 at te...

  10. Communication: Remarkable electrophilicity of the oxalic acid monomer: An anion photoelectron spectroscopy and theoretical study

    Buonaugurio, Angela; Graham, Jacob; Buytendyk, Allyson; Bowen, Kit H.; Ryder, Matthew R.; Gutowski, Maciej; Keolopile, Zibo G.; Haranczyk, Maciej

    2014-01-01

    Our experimental and computational results demonstrate an unusual electrophilicity of oxalic acid, the simplest dicarboxylic acid. The monomer is characterized by an adiabatic electron affinity and electron vertical detachment energy of 0.72 and 1.08 eV (±0.05 eV), respectively. The electrophilicity results primarily from the bonding carbon-carbon interaction in the singly occupied molecular orbital of the anion, but it is further enhanced by intramolecular hydrogen bonds. The well-resolved structure in the photoelectron spectrum is reproduced theoretically, based on Franck-Condon factors for the vibronic anion → neutral transitions

  11. (Di­methyl­phosphor­yl)methanaminium hydrogen oxalate–oxalic acid (2/1)

    Bialek, Sebastian; Clemens, Rebecca; Reiss, Guido J.

    2014-01-01

    The reaction of (di­methyl­phosphor­yl)methanamine (dpma) with oxalic acid in ethanol yielded the title solvated salt, C3H11NOP+·C2HO4 −·0.5C2H2O4. Its asymmetric unit consists of one dpmaH+ cation, one hydrogen oxalate anion and a half-mol­ecule of oxalic acid located around a twofold rotation axis. The H atom of the hydrogen oxalate anion is statistically disordered over two positions that are trans to each other. The hydrogen oxalate monoanion is not planar (bend angle ∼16°) whereas the oxalic acid molecule shows a significantly smaller bend angle (∼7°). In the crystal, the components are connected by strong O—H⋯O and much weaker N—H⋯O hydrogen bonds, leading to the formation of layers extending parallel to (001). The structure was refined from a racemically twinned crystal with twin components in an approximate 1:1 ratio. PMID:24765013

  12. Determination of free acid in plutonium (IV) solutions - thermometrically, potentiometrically

    Williams, T.L.; Tucker, G.M.; Huff, G.A.; Jordan, L.G.

    1981-09-01

    The thermometric titration technique was found to offer certain advantages over potentiometry in the determination of free acid in Pu(IV) solutions. The thermometric technique was applied to the determination of free acid in plutonium nitrate solutions using potassium fluoride to suppress the hydrolytic interference of plutonium(IV). The results indicate that 0.2 to 2.0 milliequivalents of free acid can be determined with acceptable bias and precision in solutions containing up to 30 milligrams of plutonium. In contrast, neither the thermometric nor the potentiometric technique was suitable for samples containing more than eight milligrams of plutonium complexed with potassium oxalate

  13. Corrosion of alloy C-22 in organic acid solutions

    Carranza, Ricardo M.; Rodriguez, Martin A.; Giordano, Celia M.

    2007-01-01

    Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C degrees. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric acids. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and Picric acids showed a slightly higher corrosion rate, and Acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids. (author) [es

  14. Adsorption and oxidation of oxalic acid on anatase TiO2 (001) surface: A density functional theory study.

    Sun, Tao; Wang, Yun; Zhang, Haimin; Liu, Porun; Zhao, Huijun

    2015-09-15

    Anatase TiO2 (001) surfaces have attracted great interest for photo-degradation of organic species recently due to their high reactivity. In this work, adsorption properties and oxidation mechanisms of oxalic acid on the anatase TiO2 (001) surface have been theoretically investigated using the first-principles density functional theory. Various possible adsorption configurations are considered by diversifying the connectivity of carboxylic groups with the surface. It is found that the adsorption of oxalic acid on the anatase (001) surface prefer the dissociative states. A novel double-bidentate configuration has been found due to the structural match between oxalic acid and the (001) surface. More charge is transferred from the adsorbed oxalic acid to the surface with the double-bidentate configuration when comparing with other adsorption structures. Thus, there is a positive correlation relationship between the transferred charge amount and the interfacial bond numbers when oxalic acid adsorbs on the anatase TiO2 (001) surface. The adsorption energies with dispersion corrections have demonstrated that the van der Waals interactions play an important role in the adsorption, especially when adsorbates are close to the surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Cassava Pulp Hydrolysis under Microwave Irradiation with Oxalic Acid Catalyst for Ethanol Production

    Euis Hermiati

    2014-07-01

    Full Text Available Microwave irradiation is an alternative method of starch hydrolysis that offers a rapid process. The aim of this research was to improve microwave-assisted hydrolysis of cassava pulp by using oxalic acid as a catalyst. Suspension of cassava pulp in 0.5% oxalic acid (1 g/20 mL was subjected to microwave irradiation at 140-230 °C for 5 minutes, with 4 minutes of pre-heating. One gram of fractured activated carbon made of coconut shell was added into a number of suspensions that were subjected to the same conditions of microwave irradiation. The soluble fraction of the hydrolysates was analyzed for its total soluble solids, malto-oligomer distribution, glucose content, pH value, and formation of brown compounds. The effects of the combined severity parameter at a substrate concentration of 5-12.5% on the glucose yield were also evaluated. The highest glucose yield (78% of dry matter was obtained after hydrolysis at 180 °C without activated carbon addition. Heating above 180 °C reduced the glucose yield and increased the pH and the formation of brown compounds. The use of activated carbon in microwave-assisted acid hydrolysis of cassava pulp reduced the glucose yield, but suppressed the formation of brown compounds. The highest glucose yield (70-80% of dry matter was attained at a severity parameter of 1.3-1.5.

  16. Spectroscopic properties of Pr -doped erbium oxalate crystals

    Spectroscopic properties of praseodymium ions-doped erbium oxalate ... solution with specific gravity 1.04 g/cm3 was mixed homogeneously with 0.5 M oxalic ... of concentrated nitric acid were transferred carefully and gently through the wall ...

  17. Study of interaction of bismuth, strontium, calcium copper, lead nitrates solutions with sodium oxalate solution with the aim of HTSC synthesis

    Danilov, V.P.; Krasnobaeva, O.N.; Nosova, T.A.

    1993-01-01

    With the aim of developing a new technique for HTSC oxides synthesis on the base of combined sedimentation of hydroxy salts and their heat treatment is studied interaction of bismuth, strontium, calcium, copper and lead nitrates with alkali solution of sodium oxalate. Conditions for total sedimentation of all five metals from the solution are found. The phase composition of interaction products is determined. It is established that they are high-dispersed homogeneous mixture of three phases of variable composition: twin hydroxalate of copper-bismuth, lead hydroxalate and twin oxalate of strontium-calcium. After heat treatment of the phases are obtained the HTSC oxides

  18. Biosynthesis of l-Ascorbic Acid and Conversion of Carbons 1 and 2 of l-Ascorbic Acid to Oxalic Acid Occurs within Individual Calcium Oxalate Crystal Idioblasts1

    Kostman, Todd A.; Tarlyn, Nathan M.; Loewus, Frank A.; Franceschi, Vincent R.

    2001-01-01

    l-Ascorbic acid (AsA) and its metabolic precursors give rise to oxalic acid (OxA) found in calcium oxalate crystals in specialized crystal idioblast cells in plants; however, it is not known if AsA and OxA are synthesized within the crystal idioblast cell or transported in from surrounding mesophyll cells. Isolated developing crystal idioblasts from Pistia stratiotes were used to study the pathway of OxA biosynthesis and to determine if idioblasts contain the entire path and are essentially independent in OxA synthesis. Idioblasts were supplied with various 14C-labeled compounds and examined by micro-autoradiography for incorporation of 14C into calcium oxalate crystals. [14C]OxA gave heavy labeling of crystals, indicating the isolated idioblasts are functional in crystal formation. Incubation with [1-14C]AsA also gave heavy labeling of crystals, whereas [6-14C]AsA gave no labeling. Labeled precursors of AsA (l-[1-14C]galactose; d-[1-14C]mannose) also resulted in crystal labeling, as did the ascorbic acid analog, d-[1-14C]erythorbic acid. Intensity of labeling of isolated idioblasts followed the pattern OxA > AsA (erythorbic acid) > l-galactose > d-mannose. Our results demonstrate that P. stratiotes crystal idioblasts synthesize the OxA used for crystal formation, the OxA is derived from the number 1 and 2 carbons of AsA, and the proposed pathway of ascorbic acid synthesis via d-mannose and l-galactose is operational in individual P. stratiotes crystal idioblasts. These results are discussed with respect to fine control of calcium oxalate precipitation and the concept of crystal idioblasts as independent physiological compartments. PMID:11161021

  19. The effect of natural iron oxide and oxalic acid on the photocatalytic degradation of isoproturon: a kinetics and analytical study.

    Boucheloukh, H; Remache, W; Parrino, F; Sehili, T; Mechakra, H

    2017-05-17

    The photocatalytic degradation of isoproturon, a persistent toxic herbicide, was investigated in the presence of natural iron oxide and oxalic acid and under UV irradiation. The influence of the relevant parameters such as the pH and the iron oxide and oxalic acid concentrations has been studied. The presence of natural iron oxide and oxalic acid in the system effectively allow the degradation of isoproturon, whereas the presence of t-butyl alcohol adversely affects the phototransformation of the target pollutant, thus indicating that an OH radical initiated the degradation mechanism. The degradation mechanism of isoproturon was investigated by means of GC-MS analysis. Oxidation of both the terminal N-(CH 3 ) 2 and isopropyl groups is the initial process leading to N-monodemethylated (NHCH 3 ), N-formyl (N(CH 3 )CHO), and CHCH 3 OH as the main intermediates. The substitution of the isopropyl group by an OH group is also observed as a side process.

  20. The effect of CaCl2 on growth rate, wood decay and oxalic acid accumulation in Serpula lacrymans and related brown-rot fungi

    Hastrup, Anne Christine Steenkjær; Jensen, Bo; Clausen, Carol. A.

    2006-01-01

    The dry rot fungus, Serpula lacrymans, is one of the most destructive copper-tolerant fungi causing timber decay in buildings in temperate regions. Calcium and oxalic acid have been shown to play important roles in the mechanism of wood decay. The effect of calcium on growth and decay was evaluated...... for 12 strains of S. lacrymans and compared to five brown-rot fungi. This was done by treating copper citrate (CC)-treated Southern yellow pine (SYP) wood with a CaCl2 solution and estimating the decay rate and amount of soluble oxalic acid in an ASTM soil block test. Decay by S. lacrymans was found....... In summary, a marked decrease was observed in the decay capacity of S. lacrymans in pine treated with CC+CaCl2. The amount of soluble oxalic acid was measured in CC-treated blocks and blocks also treated with CaCl2. Of the comparative brown-rot fungi, both Antrodia vaillantii (TFFH 294) and Postia placenta...

  1. Efficacy of repeated trickle applications of oxalic acid in syrup for varroosis control in Apis mellifera: influence of meteorological conditions and presence of brood.

    Bacandritsos, Nicolaos; Papanastasiou, Iosif; Saitanis, Costas; Nanetti, Antonio; Roinioti, Erifylli

    2007-09-01

    Oxalic acid field trails for the control of varroosis (Varroa destructor) were carried out in an apiary located on the Mt. Imittos (Attica, Greece). The colonies received four successive applications (approximately one every 16 days) with 4.2% oxalic acid (OA) and 60% sugar solution by trickling method with two alternative types of syringes (an automatic self-filling dosing and a single-use) from the broodright to broodless period. The results indicate that the first three applications (from 6th October to 25th November-broodright period) resulted in 65.3% cumulative mite mortality, while only the last application (after the 26th November-broodless period) resulted in 77.3% mite mortality. Very low outern temperatures reduce to the minimum the bee movability, which may result into a slower development of the OA efficacy. No poor colony growth or queen loss were observed even if the bee colonies were received the four successive OA applications with the last one taken place at a very low outern temperature (6.2 degrees C). The trickling method using an automatic-filling syringe seems to be a very quick way for applying oxalic acid in large apiaries (approximately 150hives/h).

  2. Separation of Am-Cm from Al(NO3)3 waste solutions by in-canyon-tank precipitation as oxalates

    Gray, L.W.; Burney, G.A.; Wilson, T.W.; McKibben, J.M.; Bibler, N.E.; Holtzscheiter, E.W.; Campbell, T.G.

    1982-04-01

    A process for recovery of Am-Cm residues from high-activity waste concentrates has been developed specifically for application in Savannah River Plant (SRP) canyon tanks. The Am-Cm residues were collected from a campaign to produce plutonium containing high isotopic concentrations of 242 Pu. The separation of Am-Cm from the high-activity waste stream, containing about 2M Al(NO 3 ) 3 , is necessary to produce an acceptable feed solution for a later pressurized cation exchange chromatography separation and purification step. The new process includes formic acid denitration, adjustment of contaminating cations by evaporation and water dilution, and oxalate precipitation of the actinides and lanthanides. After washing, the precipitate was dissolved in 8M nitric acid and the oxalate was destroyed by nitric acid oxidation that was catalyzed by manganous ions. This new process generates about one-fourth the waste of the californium solvent extraction process, which it replaced. The new process also produces a cleaner feed solution for the pressurized cation exchange chromatography separation and purification step

  3. Photoelectrocatalytic degradation of oxalic acid by spray deposited nanocrystalline zinc oxide thin films

    Shinde, S.S.; Shinde, P.S.; Sapkal, R.T.; Oh, Y.W.; Haranath, D.; Bhosale, C.H.; Rajpure, K.Y.

    2012-01-01

    Highlights: ► Influence of substrate temperature onto the physico-chemical properties. ► Photochemical, structural, luminescent, optoelectrical and thermal properties. ► The kinetics of oxalic acid degradation with reaction mechanism. ► Extent of mineralization by COD and TOC. - Abstract: The high quality nano-crystalline zinc oxide thin films are deposited onto corning glasses by spray pyrolysis technique. The influence of reaction temperature onto their photoelectrochemical, structural, morphological, optoelectronic, luminescence and thermal properties has been investigated. The structural characteristics studied by X-ray diffractometry has complemented by resistivity measurements and UV–Vis spectroscopy. The photoelectrochemical activity shows enhancement in short circuit current (I sc = 0.357 mA) and open circuit voltage (V oc = 0.48 V). Direct band gap calculated by considering R and T values of ZnO thin films increases from 3.14–3.21 eV exhibiting a slight blue shift in band edge. Three characteristic luminescence peaks having near band-edge, blue and green emission are observed in the photoluminescence spectra. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant in films. Photocatalytic degradation of oxalic acid followed with reaction mechanism by using zinc oxide photoelectrode under solar illumination has been investigated.

  4. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid.

    Zeng, Xianlai; Li, Jinhui; Shen, Bingyu

    2015-09-15

    With the booming of consumer electronics (CE) and electric vehicle (EV), a large number of spent lithium-ion battery (LIBs) have been generated worldwide. Resource depletion and environmental concern driven from the sustainable industry of CE and EV have motivated spent LIBs should be recovered urgently. However, the conventional process combined with leaching, precipitating, and filtering was quite complicated to recover cobalt and lithium from spent LIBs. In this work, we developed a novel recovery process, only combined with oxalic acid leaching and filtering. When the optimal parameters for leaching process is controlled at 150 min retention time, 95 °C heating temperature, 15 g L(-1) solid-liquid ratio, and 400 rpm rotation rate, the recovery rate of lithium and cobalt from spent LIBs can reach about 98% and 97%, respectively. Additionally, we also tentatively discovered the leaching mechanism of lithium cobalt oxide (LiCoO2) using oxalic acid, and the leaching order of the sampling LiCoO2 of spent LIBs. All the obtained results can contribute to a short-cut and high-efficiency process of spent LIBs recycling toward a sound closed-loop cycle. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Optimization of the conditions for the precipitation of thorium oxalate. II. Minimization of the product losses

    Pazukhin, E.M.; Smirnova, E.A.; Krivokhatskii, A.S.; Pazukhina, Yu.L.; Kiselev, P.P.

    1987-01-01

    The precipitation of thorium as a poorly soluble oxalate was investigated. An equation relating the concentrations of the metal and nitric acid in the initial solution and the amount of precipitant required to minimize the product losses was derived. A graphical solution of the equation is presented for the case where the precipitant is oxalic acid at a concentration of 0.78 M

  6. Reaction of uranyl nitrate with carboxylic di-acids under hydrothermal conditions. Crystal structure of complexes with L(+)-tartaric and oxalic acids

    Thuery, P.

    2007-01-01

    L(+)-tartaric acid reacts with uranyl nitrate in the presence of KOH, under mild hydrothermal conditions, to give the complex [UO 2 (C 4 H 4 O 6 )(H 2 O)] (1), the first uranyl tartrate to be crystallographically characterized. Each tartrate ligand bridges three uranyl ions, one of them in chelating fashion through proximal carboxylate and hydroxyl groups. The resulting assemblage is two-dimensional, with the uranyl pentagonal bipyramidal coordination polyhedra separated from one another. Prolonged heating of an uranyl tartrate solution resulted in oxidative cleavage of the acid and formation of the oxalate complex [(UO 2 ) 2 (C 2 O 4 ) 2 (OH)Na(H 2 O) 2 ] (2). The bis-bidentate oxalate and bridging hydroxide groups ensure the formation of sheets with corner-sharing uranyl pentagonal bipyramidal coordination polyhedra, in which six-membered metallacycles encompass the sodium ions. These sheets are assembled into a three-dimensional framework through further oxo-bonding of the sodium ions. (authors)

  7. Preparation of [11C]diethyl oxalate and [11C]oxalic acid and demonstration of their use in the synthesis of [11C]-2,3-dihydroxyquinoxaline

    Thorell, J.-O.; Stone-Elander, S.

    1993-01-01

    A method for the production of two new carbon-11 labelled difunctional radiolabelling precursors, [ 11 C]diethyl oxalate,2, and [ 11 C]oxalic acid, 3 is described. Methyl chloroformate was reacted with no-carrier-added [ 11 C]cyanide to generate the intermediate nitrile, methyl [ 11 C]cyanoformate. Alcoholysis with HC1 in ethanol generated 2, which could subsequently be converted to 3 with aqueous acid. The total time of preparation from end-or-trapping of [ 11 C]cyanide was 6-7 min using combined microwave and thermal treatment or, by exclusively thermal treatment, 15 and 20 min for 2 and 3, respectively. The radiochemical conversion of [ 11 C]cyanide to 2 and 3 was ∼ 80% and ∼ 70%, respectively. Both 2 and 3 were used in a model reaction with 1,2-phenylenediamine to synthesize the heterocyclic compound, 2,3-dihydroxyquinoxaline, a basic structural unit in antagonists for the excitatory amino acid receptor system. (Author)

  8. Effect of Tempering Temperature and Time on the Corrosion Behaviour of 304 and 316 Austenitic Stainless Steels in Oxalic Acid

    Ayo S. Afolabi; Johannes H. Potgieter; Ambali S. Abdulkareem; Nonhlanhla Fungura

    2011-01-01

    The effect of different tempering temperatures and heat treatment times on the corrosion resistance of austenitic stainless steels in oxalic acid was studied in this work using conventional weight loss and electrochemical measurements. Typical 304 and 316 stainless steel samples were tempered at 150oC, 250oC and 350oC after being austenized at 1050oC for 10 minutes. These samples were then immersed in 1.0M oxalic acid and their weight losses were measured at every five days for 30 days. The r...

  9. Effect of Postharvest Oxalic Acid and Calcium Chloride on Quality Attributes of Sweet Cherry (Prunus avium L.

    M. Safa

    2016-02-01

    Full Text Available Introduction: Fruits and vegetables have special importance as a very important part of the human food supply. And from the beginnings of life, man has used these products to supply a part of his food. Nowadays, horticultural products are widely used in the diet. Cherry is one of the deciduous trees in the temperate regions, which is potassium rich. Use of Oxalic acid significantly reduces frost injury in pomegranate fruits during storage at a temperature of 2° C. In fruit trees, the importance of calcium is due to a delay in fruit ripening process and this way products have better portability. Materials and Methods: Firmness test was measured using the FT011 model of penetrometer. For determination of titratable acidity, the 0.1 N sodium hydroxide (NaOH titration method was used. Total Soluble solids content (SSC of fruit was measured by a digital refractometer (PAL-1. For determination of vitamin C in fruit juices, titration method with the indicator, 2,6-di-chlorophenolindophenol was used. Fruit juice pH was measured using pH meter model HI 9811.In order to investigate the effect of postharvest soaking treatment with Oxalic acid on the qualitative specifications and storage life of single grain sweet cherry fruit a research was conducted. This experience was conducted in a completely randomized design with 3 replications separately for the two materials. In this experiment Oxalic acid, in four levels (0,4,6 and 8 mM and Calcium chloride in four levels (0, 40, 55 and 70 mM were applied on the single grain sweet cherry fruit in the form of soaking and sampleswith7-day intervals for a period of 28 days from the fridge out and quanti tate and qualitative traits such as stiffness, weight loss, Titratable acidity, total soluble solids, vitamin C and pH were measured. Results and Discussion: The results showed that compared with control ones all of the concentrations of Oxalic acid and Calcium chloride caused significant differences in the amount

  10. Optimization of precipitation conditions of thorium oxalate precipitate

    Pazukhin, Eh.M.; Smirnova, E.A.; Krivokhatskij, A.S.; Pazukhina, Yu.L.; Kiselev, P.P.

    1986-01-01

    Thorium precipitation in the form of difficultly soluble oxalate has been investigated. The equation binding the concentration of metal with the nitric acid in the initial solution and quantity of a precipitator necessary for minimization of desired product losses is derived. The graphical solution of this equation for a case, when the oxalic acid with 0.78 mol/l concentration is the precipitator, is presented

  11. The production of rare earth elements group via tributyl phosphate extraction and precipitation stripping using oxalic acid

    Esmaeil Jorjani

    2016-11-01

    Full Text Available In this study, solvent extraction and precipitation stripping were used to produce rare earth elements (REEs. Tributyl phosphate (TBP was used to extract yttrium, lanthanum, cerium, and neodymium from an aqueous solution produced by nitric acid leaching of apatite concentrate. In the extraction stage, the effects of TBP concentration, pH, contact time, temperature, and phase ratio were investigated. The results show that about 95%, 90%, 87% and 80% of neodymium, cerium, lanthanum, and yttrium, respectively, can be extracted in optimum conditions of extraction. Hot, deionized water was used to scrub the impurities from the loaded organic phase. The results showed that three stages of scrubbing with a phase ratio (Va/Vo of five removed about 80%, 30%, 27%, and 15% of Ca, Mg, Fe, and P, respectively, from loaded TBP, while less than 9% of total REEs was lost. The effects on precipitation stripping of oxalic acid concentration, contact time, and phase ratio were investigated. The results showed that precipitation stripping is a viable alternative to traditional acid stripping in the REEs production process. Mixed REEs oxide with an assay of about 90% can be achieved as a final product.

  12. Effect of the temperature and oxalic acid in the uranyl sorption in zircon; Efecto de la temperatura y acido oxalico en la sorcion de uranilo en circon

    Ordonez R, E.; Almazan T, M. G.; Garcia G, N. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Hernandez O, R., E-mail: eduardo.ordonez@inin.gob.mx [Instituto Tecnologico de Veracruz, Ingenieria Quimica, Miguel Angel de Quevedo No. 2779, 91860 Veracruz (Mexico)

    2012-10-15

    In this work the results of the temperature effect study are presented on uranyl solutions adsorbed on zirconium silicate (ZrSiO{sub 4}) and also on the compounds formed in surface with oxalic acid. The adsorption isotherms of uranyl on hydrated zircon with NaClO{sub 4} 0.5 M, show an increase of the uranyl sorption efficiency when increasing the temperature from 20 to 4 C with a sudden descent in this efficiency when changing the temperature at 60 C. The uranyl sorption efficiency increases to hydrate the zircon with a solution of oxalic acid 0.1 M, maintaining the same tendency regarding to the temperatures of the sorption in medium NaClO{sub 4} 0.5 M. The complex formation in the zircon surface with organic acids of low molecular weight increases the fixation of the uranyl in solution due to the formation of ternary systems, in the order Zircon/A. Organic/Uranyl, without altering their response to the temperature. (Author)

  13. A Neat Trick Using Oxalic Acid Dihydrate and Potassium Permanganate and Other Experiments with Small Organic Amine or Oxygenated Compounds

    Kelland, Malcolm A.

    2011-01-01

    Solid potassium permanganate (KMnO[subscript 4]) is shown to react in a variety of ways with small organic amines or oxygenated compounds depending on whether they are liquids or solids and whether water is present. In particular, its reaction with solid oxalic acid dihydrate can be initiated by the moisture in one's breath, making an intriguing…

  14. Effect of oxalic acid and steam pretreatment on the primary properties of UF-bonded rice straw particleboards

    Xianjun Li; Zhiyong Cai; Jerrold E. Winandy; Altaf H. Basta

    2011-01-01

    The objective is to evaluate the effect of oxalic acid (OA) and steam-pretreatment on the primary performance of rice straw particleboards. In addition, the effect of various treatment conditions on carbohydrates released from rice straw particles was investigated. The results show that steam- and short durations of OA-treatment significantly improved the mechanical...

  15. Queen survival and oxalic acid residues in sugar stores after summer application against Varroa destructor in honey bees (Apis mellifera)

    Cornelissen, B.; Donders, J.N.L.C.; Stratum, van P.; Blacquière, T.; Dooremalen, van C.

    2012-01-01

    Methods using oxalic acid (OA) to control Varroa destructor in honey bee (Apis mellifera) colonies are widely applied. In this study, the effects of an OA spray application in early summer on the survival of young and old queens, and on OA residues in sugar stores were investigated. A questionnaire

  16. Self-Ordered Nanoporous Alumina Templates Formed by Anodization of Aluminum in Oxalic Acid

    Vida-Simiti, Ioan; Nemes, Dorel; Jumate, Nicolaie; Thalmaier, Gyorgy; Sechel, Niculina

    2012-10-01

    Anodic aluminum oxide (AAO) membranes with highly ordered nanopores serve as ideal templates for the formation of various nanostructured materials. The procedure of the template preparation is based on a two-step self-organized anodization of aluminum. In the current study, AAO templates were fabricated in 0.3 M oxalic acid under the anodizing potential range of 30-60 V at an electrolyte temperature of ~5°C. The AAO templates were analyzed using scanning electron microscopy, x-ray diffraction, Fourier-transform infrared spectroscopy, and differential thermal analysis. The as obtained layers are amorphous; the mean pore size is between 40 nm and 75 nm and increases with the increase of the anodization potential. Well-defined pores across the whole aluminum template, a pore density of ~1010 pores/cm2, and a tendency to form a porous structure with hexagonal symmetry were observed.

  17. Synthesis and characterization of polymorphs of photoluminescent Eu(III)-(2,5-furandicarboxylic acid, oxalic acid) MOFs

    Shi, Fa-Nian; Ananias, Duarte; Yang, Ting-Hai; Rocha, João

    2013-01-01

    A novel metal organic framework (MOF) formulated as [Eu(H 2 O) 2 (fdc)(ox) 0.5 ·(H 2 O)] n (1, fdc 2− =2,5-furandicarboxylate, ox 2− =oxalate), was hydrothermally synthesized via in situ ox 2− generation from the partial decomposition of the fdc 2− ligand. This material crystallizes in the monoclinic space group C2/c, unit cell parameters of 1: a=16.7570(10), b=10.5708(7), c=13.5348(14) Å, β=116.917(2)° (Z=8), and exhibits a three-dimensional (3D)-porous framework, with guest water molecules residing in the channel linking all other ligands (H 2 O, ox 2− and fdc 2− ) via hydrogen bonding interactions. Compound 2 is a polymorph of 1 crystallizing in monoclinic P21/c space group. The photoluminescence properties of 1 and 2 were studied at room temperature. The spectra show the typical Eu 3+ red emission and the differences observed reflects the slightly different structures of these polymorphs. - Graphical abstract: Exploring metal organic framework polymorphism in the system Eu(H 2 O) 2 (fdc)(ox) 0.5 ·(H 2 O)] n (fdc 2− =2,5-furandicarboxylate, ox 2− =oxalate) for tuning light emission. Display Omitted - Highlights: • Synthesis of Eu(III)-(2,5-furandicarboxylic acid, oxalic acid) MOF polymorphs. • Detailed single-crystal study of polymorphs including hydrogen-bonding networks. • Photoluminescence spectroscopy show subtle differences light emission properties

  18. Heterogeneous uptake of ammonia and dimethylamine into sulfuric and oxalic acid particles

    Sauerwein, Meike; Keung Chan, Chak

    2017-05-01

    Heterogeneous uptake is one of the major mechanisms governing the amounts of short-chain alkylamines and ammonia (NH3) in atmospheric particles. Molar ratios of aminium to ammonium ions detected in ambient aerosols often exceed typical gas phase ratios. The present study investigated the simultaneous uptake of dimethylamine (DMA) and NH3 into sulfuric and oxalic acid particles at gaseous DMA / NH3 molar ratios of 0.1 and 0.5 at 10, 50 and 70 % relative humidity (RH). Single-gas uptake and co-uptake were conducted under identical conditions and compared. Results show that the particulate dimethyl-aminium/ammonium molar ratios (DMAH / NH4) changed substantially during the uptake process, which was severely influenced by the extent of neutralisation and the particle phase state. In general, DMA uptake and NH3 uptake into concentrated H2SO4 droplets were initially similarly efficient, yielding DMAH / NH4 ratios that were similar to DMA / NH3 ratios. As the co-uptake continued, the DMAH / NH4 gradually dropped due to a preferential uptake of NH3 into partially neutralised acidic droplets. At 50 % RH, once the sulfate droplets were neutralised, the stronger base DMA displaced some of the ammonium absorbed earlier, leading to DMAH / NH4 ratios up to four times higher than the corresponding gas phase ratios. However, at 10 % RH, crystallisation of partially neutralised sulfate particles prevented further DMA uptake, while NH3 uptake continued and displaced DMAH+, forming almost pure ammonium sulfate. Displacement of DMAH+ by NH3 has also been observed in neutralised, solid oxalate particles. The results can explain why DMAH / NH4 ratios in ambient liquid aerosols can be larger than DMA / NH3, despite an excess of NH3 in the gas phase. An uptake of DMA to aerosols consisting of crystalline ammonium salts, however, is unlikely, even at comparable DMA and NH3 gas phase concentrations.

  19. Secondary formation of oxalic acid and related organic species from biogenic sources in a larch forest at the northern slope of Mt. Fuji

    Mochizuki, Tomoki; Kawamura, Kimitaka; Miyazaki, Yuzo; Wada, Ryuichi; Takahashi, Yoshiyuki; Saigusa, Nobuko; Tani, Akira

    2017-10-01

    To better understand the formation of water-soluble organic aerosols in the forest atmosphere, we measured low molecular weight (LMW) dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, unsaturated fatty acids (UFAs), and water-soluble organic carbon (WSOC) in aerosols from a Larix kaempferi forest located at the northern slope of Mt. Fuji, Japan, in summer 2012. Concentrations of dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and WSOC showed maxima in daytime. Relative abundance of oxalic acid in LMW dicarboxylic acids was on average 52% and its average concentration was 214 ng m-3. We found that diurnal and temporal variations of oxalic acid are different from those of isoprene and α-pinene, whereas biogenic secondary organic aerosols (BSOAs) derived from isoprene and α-pinene showed similar variations with oxalic acid. The mass concentration ratios of oxalic acid/BSOAs were relatively constant, although a large variation in the concentrations of toluene that is an anthropogenic volatile organic compound was observed. These results suggest that formation of oxalic acid is associated with the oxidation of isoprene and α-pinene with O3 and other oxidants in the forest atmosphere. In addition, concentrations of UFAs were observed, for the first time, to decrease dramatically during daytime in the forest. Mass concentration ratios of azelaic acid to UFAs showed a positive correlation with O3, suggesting that UFAs are oxidized to yield azelaic acid, which may be further decomposed to oxalic acid in the forest atmosphere. We found that contributions of oxalic acid to WSOC are significantly high ranging from 3.7 to 9.7% (average 6.0%). This study demonstrates that forest ecosystem is an important source of oxalic acid and other dicarboxylic acids in the atmosphere.

  20. Surface activation of MnNb{sub 2}O{sub 6} nanosheets by oxalic acid for enhanced photocatalysis

    Wu, Junshu; Wang, Jinshu, E-mail: wangjsh@bjut.edu.cn; Li, Hongyi; Li, Yongli; Du, Yucheng; Yang, Yilong; Jia, Xinjian

    2017-05-01

    Graphical abstract: Visible light driven photoreduction of Cr(VI) over MnNb{sub 2}O{sub 6} nanosheets is enhanced via oxalic acid surface complex to generate activation layer. - Highlights: • MnNb{sub 2}O{sub 6} nanosheets are crystallized by a surface capping route of sulfonate groups. • Oxalic acid on MnNb{sub 2}O{sub 6} nanosheets forms an excited surface complex hybrid layer. • Surface activation enhances visible-light induced reduction of Cr(VI) into Cr(III). - Abstract: MnNb{sub 2}O{sub 6} nanosheets (P-MNOs) is selectively crystallized by using surface capping ligand with functional sulfonate group (sodium dodecyl benzene sulphonate), which binds to the (131) surface of MnNb{sub 2}O{sub 6} inducing the morphology-controlled crystallization of MnNb{sub 2}O{sub 6} materials. Surface modification of photoactive P-MNOs with electron-rich oxalic acid ligands establishes an excited surface complex layer on phase-pure P-MNO as evidenced by spectroscopic analyses (FT-IR, UV–vis, Raman, PL, etc.), and thus more efficiently photocatalyzes the reduction of Cr(VI) into Cr(III) than solely P-MNOs or oxalic acid under visible light (λ > 420 nm) via a ligand-to-metal interfacial electron transfer pathway. However, the interaction between oxalic acid and MnNb{sub 2}O{sub 6} is highly dependent upon the morphology of solid MnNb{sub 2}O{sub 6} substrate due to the higher surface-area-to-volume ratio and higher surface activity of (131) planes in the sheet-like morphology. This study could assist the construction of stable niobate material systems to allow a versatile solid surface activation for establishing more energy efficient and robust catalysis process under visible light.

  1. Simultaneous determination of oxalic, citric, nitrilotriacetic and ethylenediamenetetraacetic acids by gas liquid chromatography of their methyl esters

    Eskell, C.J.; Pick, M.E.

    1980-04-01

    A procedure for simultaneous determination of ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), citric acid and oxalic acid by gas liquid chromatography is described. The involatile acids are first concerted to their volatile methyl ester derivatives by reaction with boron trifluoride in methanol. Transition metal ions (Fe 3+ , Cr 3+ and Ni 2+ ) which will be present in decontamination liquors from nuclear reactors, and form strong chelates with the acids, have been shown to cause no interference to the esterification reaction. The esters were separated by temperature programming on a 3.5 metre capillary column packed with 3% OV1 on Diatomite CQ and were detected by flame ionisation. (author)

  2. Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives

    Carol A. Clausen; Frederick Green

    2003-01-01

    Accumulation of oxalic acid (OA) by brown-rot fungi and precipitation of copper oxalate crystals in wood decayed by copper-tolerant decay fungi has implicated OA in the mechanism of copper tolerance. Understanding the role of OA in copper tolerance is important due to an increasing reliance on copper-based wood preservatives. In this study, four copper-tolerant brown-...

  3. Potentiometric titration of free acid in uranium solutions

    Suh, M. Y.; Kim, W. H.; Kim, J. S.; Sohn, S. C.; Eom, T. Y.; Lee, C. H.; Jeon, Y. S.; Han, S. H.

    1998-02-01

    Hydrolysis properties of metal cations and fundamental principles of the potentiometric titration of free acid in aqueous solutions containing metal cations were described. The published papers and reports for the alkalimetric and acidimetric titration of free acid were surveyed, and the applicability of these titration methods to the uranium and/or plutonium solutions were discussed. This technical report also includes the various results obtained from the authors' researches to establish the alkalimetric and acidimetric titration methods for the determination of free acid in nitric acid solutions containing uranium and/or oxalic acid, and aluminum. The procedure manuals used in chemical processes and the newly prepared manuals based on the authors' researches are appended. (author). 26 refs., 54 figs

  4. Potentiometric titration of free acid in uranium solutions

    Suh, M. Y.; Kim, W. H.; Kim, J. S.; Sohn, S. C.; Eom, T. Y.; Lee, C. H.; Jeon, Y. S.; Han, S. H.

    1998-02-01

    Hydrolysis properties of metal cations and fundamental principles of the potentiometric titration of free acid in aqueous solutions containing metal cations were described. The published papers and reports for the alkalimetric and acidimetric titration of free acid were surveyed, and the applicability of these titration methods to the uranium and/or plutonium solutions were discussed. This technical report also includes the various results obtained from the authors` researches to establish the alkalimetric and acidimetric titration methods for the determination of free acid in nitric acid solutions containing uranium and/or oxalic acid, and aluminum. The procedure manuals used in chemical processes and the newly prepared manuals based on the authors` researches are appended. (author). 26 refs., 54 figs.

  5. Nephroprotective effect of Corn Silk extract on oxalic acid-induced nephrocalcinosis in rabbit model

    Faruk Hassan Al-Jawad

    2012-04-01

    Full Text Available ABSTRACT Background : Nephrocalcinosis is a state of deposition of calcium phosphate or oxalate in the renal parenchyma. It may occur in patients with renal tubular acidosis, vitamin D intoxication, and hyperparathyroidism. Corn silk was used in traditional Chinese medicine to relieve renal pains. Aim: To evaluate the effect of Corn silk aqueous extract in reducing calcium deposits from renal parenchyma in oxalic acid-induced nephrocalcinosis model. Materials and methods: Fourteen healthy rabbits were allocated to two groups. Two hours before induction of nephrocalcinosis, one group received water and the other received aqueous extract of corn silk and continued feeding for ten days. Blood samples were collected for biochemical analysis before induction and in the fifth and tenth post-induction day. Urine samples were taken to estimate urinary ca+2 levels and crystals. The histopathological examination was carried to check for crystal deposits in renal tissues. Results: Corn silk aqueous extract produced a significant reduction of blood urea nitrogen(5.2+/-0.08 vs 7.3+/-0.2 mmol/l, serum creatinine (85.9+/-0.2 vs 97.3+/-0.5 mmol/l and serum Na+ levels (137+/-0.2 vs 142.16+/-0.7 mmol/l with non-significant reduction in serum K+ (4.0+/-0.02 vs 4.2+/-0.05. There is a significant reduction in calcium deposition in renal parenchyma in comparison to the control group after ten days of treatment. Conclusion: Corn silk had a significant diuretic effect that accelerates the excretion of urinary calcium. [J Intercult Ethnopharmacol 2012; 1(2.000: 75-78

  6. Improvement of the fermentability of oxalic acid hydrolysates by detoxification using electrodialysis and adsorption.

    Jeong, So-Yeon; Trinh, Ly Thi Phi; Lee, Hong-Joo; Lee, Jae-Won

    2014-01-01

    A two-step detoxification process consisting of electrodialysis and adsorption was performed to improve the fermentability of oxalic acid hydrolysates. The constituents of the hydrolysate differed significantly between mixed hardwood and softwood. Acetic acid and furfural concentrations were high in the mixed hardwood, whereas 5-hydroxymethylfurfural (HMF) concentration was relatively low compared with that of the mixed softwood. The removal efficiency of acetic acid reached 100% by electrodialysis (ED) process in both hydrolysates, while those of furfural and HMF showed very low, due to non-ionizable properties. Most of the remaining inhibitors were removed by XAD-4 resin. In the mixed hardwood hydrolysate without removal of the inhibitors, ethanol fermentation was not completed. Meanwhile, both ED-treated hydrolysates successfully produced ethanol with 0.08 and 0.15 g/Lh ethanol productivity, respectively. The maximum ethanol productivity was attained after fermentation with 0.27 and 0.35 g/Lh of detoxified hydrolysates, which were treated by ED, followed by XAD-4 resin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Catalytic upgrading of oleic acid into biofuel using Mo modified zeolite supported Ni oxalate catalyst functionalized with fluoride ion

    Ayodele, O.B.; Abbas, Hazzim F.; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Highlights: • Modification of zeolite with freshly prepared molybdenum oxalate. • Functionalization of Ni oxalate with HF and incorporation into Mo modified zeolite. • Characterization of synthesized Mo modified zeolite supported Ni oxalate catalyst. • Deoxygenation of oleic acid with the synthesized zeolite supported catalyst. • Reusability study on the synthesized zeolite supported catalyst. - Abstract: In this study, fluoride ion functionalized nickel oxalate supported on molybdenum modified zeolite (NiMoFOx/Zeol) catalyst was synthesized, characterized and tested on the hydrodeoxygenation (HDO) of oleic acid (OA) into paraffinic fuel. The NiMoFOx/Zeol characterization results confirmed the presence of both Ni and Mo as well as the formation of NiMoO 4 which is a highly HDO reactive specie at 2θ value of 43.6° according to the XRD result. NiMoFOx/Zeol also showed loss in crystallinity and reduction in the average particle size leading to increase in the pore volume and specific surface area due to the combined effects of fluoride ion presence, oxalic acid functionalization and calcination. The effect of temperature, pressure and NiMoFOx/Zeol loading studied showed that initial increase in their values increased the yield of the target fractions until some points where reduction was observed. The best observed experimental conditions to hydrodeoxygenate 40 g (∼45 mL) of OA into 75% n-C 18 and 23% i-C 18 were 360 °C, 30 mg NiMoFOx/Zeol loading and 20 bar using 100 mL H 2 /min. The presence of i-C 18 was due to the functionalization of the catalyst with fluoride ion. The catalyst reusability result displayed excellent qualities with marginal loss of only 2% in activity after third reuse due to the improved synthesis protocol that employed organometallic precursor. The results are strongly encouraging for further studies toward industrialization of HDO process

  8. Mixing state of oxalic acid containing particles in the rural area of Pearl River Delta, China: implication for seasonal formation mechanism of Secondary Organic Aerosol (SOA)

    Cheng, Chunlei; Li, Mei; Chan, Chak K.; Tong, Haijie; Chen, Changhong; Chen, Duohong; Wu, Dui; Li, Lei; Cheng, Peng; Gao, Wei; Huang, Zhengxu; Li, Xue; Fu, Zhong; Bi, Yanru; Zhou, Zhen

    2016-01-01

    The formation of oxalic acid and its mixing state in atmospheric particulate matter (PM) were studied using a single particle aerosol mass spectrometer (SPAMS) in the summer and winter of 2014 in Heshan, a supersite in the rural area of the Pearl River Delta (PRD) region in China. Oxalic acid-containing particles accounted for 2.5 % and 2.7 % in total detected ambient particles in summer and winter, respectively. Oxalic acid was measured in particles classified as elemental carb...

  9. Synthesis and structural characterization of actinide oxalate compounds

    Tamain, C.

    2011-01-01

    Oxalic acid is a well-known reagent to recover actinides thanks to the very low solubility of An(IV) and An(III) oxalate compounds in acidic solution. Therefore, considering mixed-oxide fuel or considering minor actinides incorporation in ceramic fuel materials for transmutation, oxalic co-conversion is convenient to synthesize mixed oxalate compounds, precursors of oxide solid solutions. As the existing oxalate single crystal syntheses are not adaptable to the actinide-oxalate chemistry or to their manipulation constrains in gloves box, several original crystal growth methods were developed. They were first validate and optimized on lanthanides and uranium before the application to transuranium elements. The advanced investigations allow to better understand the syntheses and to define optimized chemical conditions to promote crystal growth. These new crystal growth methods were then applied to a large number of mixed An1(IV)-An2(III) or An1(IV)-An2(IV) systems and lead to the formation of the first original mixed An1(IV)-An2(III) and An1(IV)-An2(IV) oxalate single crystals. Finally thanks to the first thorough structural characterizations of these compounds, single crystal X-ray diffraction, EXAFS or micro-RAMAN, the particularly weak oxalate-actinide compounds structural database is enriched, which is essential for future studied nuclear fuel cycles. (author) [fr

  10. Effect of Nitric and Oxalic Acid Addition on Hard Anodizing of AlCu4Mg1 in Sulphuric Acid

    Maximilian Sieber

    2018-02-01

    Full Text Available The anodic oxidation process is an established means for the improvement of the wear and corrosion resistance of high-strength aluminum alloys. For high-strength aluminum-copper alloys of the 2000 series, both the current efficiency of the anodic oxidation process and the hardness of the oxide coatings are significantly reduced in comparison to unalloyed substrates. With regard to this challenge, recent investigations have indicated a beneficial effect of nitric acid addition to the commonly used sulphuric acid electrolytes both in terms of coating properties and process efficiency. The present work investigates the anodic oxidation of the AlCu4Mg1 alloy in a sulphuric acid electrolyte with additions of nitric acid as well as oxalic acid as a reference in a full-factorial design of experiments (DOE. The effect of the electrolyte composition on process efficiency, coating thickness and hardness is established by using response functions. A mechanism for the participation of the nitric acid additive during the oxide formation is proposed. The statistical significance of the results is assessed by an analysis of variance (ANOVA. Eventually, scratch testing is applied in order to evaluate the failure mechanisms and the abrasion resistance of the obtained conversion coatings.

  11. Determination of free nitric acid in uranyl nitrate solution

    Mayankutty, P.C.; Ravi, S.; Nadkarni, M.N.

    1981-01-01

    Potentiometric titration of uranyl nitrate solution with sodium hydroxide exhibits two peaks. The first peak characterises the following reaction, UO 2 (C 2 O 4 )+NaOH Na[UO 2 (C 2 O 4 )(OH)]. This reaction, indicating the partial hydrolysis of uranyl oxalate complex, appears to be complete at pH9. If the titration is carried out to this end-point pH, the total alkali consumed can be equated to the sum of uranium content and the free acidity present in the sample volume. Based on this, a method was standardised to determine the free acidity in uranyl nitrate solution. The sample, taken in a solution of potassium oxalate previously adjusted to pH9, is titrated to this pH with standard sodium hydroxide. The free acidity in the sample can be computed by subtracting the alkali reacted with uranium from the total alkali consumed. Analyses of several synthetic samples containing uranium and nitric acid in a wide range of combinations indicate that the free acidity can be accurately determined by this method, if uranium concentration in the sample is known. The results are compared to those obtained by two other widely used methods, viz., (i) titration of pH7 in the presence of neutral potassium oxalate to suppress hydrolysis and (ii) separation of hydrolyzable ions on a cationic resin and alkali titration of the free acid released. The advantages of and the precision obtained with the present method over the above two methods are discussed. (author)

  12. Conductometric and pH metric investigations of the oxalic acid and NaAsO2 reaction

    MIRJANA V. OBRADOVIC

    2008-10-01

    Full Text Available The reaction between NaAsO2 and oxalic acid was studied by pH-metric and conductometric measurements, applying the methods of continual variation and pH-metric and conductometric titration. It was found that oxalic acid forms a complex anion of the type [AsOC2O4]-. The relative stability constant of the complex at ionic strengths, I, of 0.10 (log Kr = 4.70, 0.20 (log Kr = 4.51, 0.50 (log Kr = 4.24 and 0 (log K0r = 5.05 and thermodynamic para¬meters were calculated using the data obtained by pH-metric measurements at 25.0±0.1 °C (DH = 10.5 kJ mol-1, DG = –29.0 kJ mol-1, DS = 133 J mol-1 K-1.

  13. The effect of citric and oxalic acid doping on the superconducting properties of MgB2

    Ojha, N; Singla, Rashmi; Varma, G D; Malik, V K; Bernhard, C

    2009-01-01

    In this paper we report the effect of carbon doping on the structural and superconducting properties of MgB 2 using citric and oxalic acids as carbon sources. The bulk polycrystalline samples have been synthesized via a standard solid state reaction route with composition MgB 2 +x wt% of citric and oxalic acids (x = 0, 5 and 10). The x-ray diffraction results reveal the formation of dominantly MgB 2 with only a small amount of impurity phase MgO and substitution of C at the B site of MgB 2 for both dopants. Improvements in the upper critical field (H C2 ), irreversibility field (H irr ) and high field (>2.5 T) critical current density (J C ) have been observed on C doping in the samples. The correlations between superconducting properties and structural characteristics of the samples are described and discussed in this paper.

  14. Correlation between oxalic acid production and tolerance of Tyromyces palustris strain TYP-6137 to N',N-naphthaloylhydroxamine

    Rachel A. Arango; Patricia K. Lebow; Frederick III Green

    2009-01-01

    Eleven strains of T. palustris were evaluated for mass loss and production of phosphate buffer soluble oxalic acid on pine wood blocks treated with 0.5% N’,N-naphthaloylhydroxamine (NHA) in a soil-block test. After 12 weeks higher percentage mass loss was observed in control groups for 10 strains, while TYP-6137 was shown to be tolerant with no difference between the...

  15. Scale-up study of oxalic acid pretreatment of agricultural lignocellulosic biomass for the production of bioethanol

    Jae-Won Lee; Carl J. Houtman; Hye-Yun Kim; In-Gyu Choi; Thomas W. Jeffries

    2011-01-01

    Building on our laboratory-scale optimization, oxalic acid was used to pretreat corncobs on the pilotscale. The hydrolysate obtained after washing the pretreated biomass contained 32.55 g/l of xylose, 2.74 g/l of glucose and low concentrations of inhibitors. Ethanol production, using Scheffersomyces stipitis, from this hydrolysate was 10.3 g/l, which approached the...

  16. Kinetic Studies on the Oxidation of Some para and meta-Substituted Cinnamic Acids by Pyridinium Bromochromate in the Presence of Oxalic Acid (A Co-oxidation Study

    G. Vanangamudi

    2009-01-01

    Full Text Available The kinetics of oxidation of cinnamic acids by pyridinium bromochromate (PBC in the presence of oxalic acid has been studied in acetic acid-water (60:40% medium. The reaction shows unit order dependence each with respect to oxidant as well as oxalic acid [OX], the order with respect to [H+] and [CA] are fractional. The reaction is acid catalyzed and a low dielectric constant favours the reaction. Increase the ionic strength has no effect on the reaction rate. In the case of substituted cinnamic acids the order with respect to substrate vary depending upon the nature of the substituent present in the ring. In general, the electron withdrawing substituents retard the rate while the electron releasing substituents enhance the rate of reaction. From the kinetic data obtained the activation parameters have been computed and a suitable mechanism has been proposed.

  17. Oxalic acid and diacylglycerol 36:3 are cross-species markers of sleep debt.

    Weljie, Aalim M; Meerlo, Peter; Goel, Namni; Sengupta, Arjun; Kayser, Matthew S; Abel, Ted; Birnbaum, Morris J; Dinges, David F; Sehgal, Amita

    2015-02-24

    Sleep is an essential biological process that is thought to have a critical role in metabolic regulation. In humans, reduced sleep duration has been associated with risk for metabolic disorders, including weight gain, diabetes, obesity, and cardiovascular disease. However, our understanding of the molecular mechanisms underlying effects of sleep loss is only in its nascent stages. In this study we used rat and human models to simulate modern-day conditions of restricted sleep and addressed cross-species consequences via comprehensive metabolite profiling. Serum from sleep-restricted rats was analyzed using polar and nonpolar methods in two independent datasets (n = 10 per study, 3,380 measured features, 407 identified). A total of 38 features were changed across independent experiments, with the majority classified as lipids (18 from 28 identified). In a parallel human study, 92 metabolites were identified as potentially significant, with the majority also classified as lipids (32 of 37 identified). Intriguingly, two metabolites, oxalic acid and diacylglycerol 36:3, were robustly and quantitatively reduced in both species following sleep restriction, and recovered to near baseline levels after sleep restriction (P discovery rate neurotransmitters, vitamin B3, and gut metabolism were elevated in sleep-restricted humans. These results are consistent with induction of peroxisome proliferator-activated receptors and disruptions of the circadian clock. The findings provide a potential link between known pathologies of reduced sleep duration and metabolic dysfunction, and potential biomarkers for sleep loss.

  18. Comparison of hot hydroxylamine hydrochloride and oxalic acid leaching of stream sediment and coated rock samples as anomaly enhancement techniques

    Filipek, L.H.; Chao, T.T.; Theobald, P.K.

    1982-01-01

    A hot hydroxylamine hydrochloride (H-Hxl) extraction in 25% acetic acid is compared with the commonly used oxalic acid extraction as a method of anomaly enhancement for Cu and Zn in samples from two very different metal deposits and climatic environments. Results obtained on minus-80-mesh stream sediments from an area near the Magruder massive sulfide deposit in Lincoln County, Georgia, where the climate is humid subtropical, indicate that H-Hxl enhances the anomaly for Cu by a factor of 2 and for Zn by a factor of 1.5, compared to the oxalic method. Analyses of Fe oxide-coated rock samples from outcrops overlying the North Silver Bell porphyry copper deposit near Tucson, Arizona, where the climate is semi-arid to arid, indicate that both techniques effectively outline the zones of hydrothermal alteration. The H-Hxl extraction can also perform well in high-carbonate or high-clay environments, where other workers have suggested that oxalic acid is not very effective. Therefore, the H-Hxl method is recommended for general exploration use. ?? 1982.

  19. Evaluation of Hanford high level waste vitrification chemistry for an NCAW simulant -- FY 1994: Potential exothermic reactions in the presence of formic acid, glycolic acid, and oxalic acid

    Sills, J.A.

    1995-07-01

    A potential for an uncontrollable exothermic reaction between nitrate and organic salts during preparation of a high level waste melter feed has been identified. In order to examine this potential more closely, the thermal behavior of simulated neutralized current acid waste (NCAW) treated with various organic reductants was studied. Differential scanning calorimetry (DSC) measurements were collected on simulated waste samples and their supernates treated with organics. Organic reductants used were formic acid, glycolic acid, and oxalic acid. For comparison, samples of untreated simulant and untreated simulant with added noble metals were tested. When heated, untreated simulant samples both with and without noble metals showed no exothermic behavior. All of the treated waste simulant samples showed exothermic behavior. Onset temperatures of exothermic reactions were 120 C to 210 C. Many onset temperatures, particularly those for formic acid treated samples, are well below 181 C, the estimated maximum steam coil temperature (considered to be a worst case maximum temperature for chemical process tank contents). The enthalpies of the reactions were {minus}180 {times} 10{sup {minus}3} J/Kg supernate ({minus}181 J/g) for the oxalic acid treated simulant supernate to {minus}1,150 {times} 10{sup {minus}3} J/Kg supernate ({minus}1,153 J/g) for the formic acid treated simulant supernate.

  20. Evaluation of Hanford high level waste vitrification chemistry for an NCAW simulant -- FY 1994: Potential exothermic reactions in the presence of formic acid, glycolic acid, and oxalic acid

    Sills, J.A.

    1995-07-01

    A potential for an uncontrollable exothermic reaction between nitrate and organic salts during preparation of a high level waste melter feed has been identified. In order to examine this potential more closely, the thermal behavior of simulated neutralized current acid waste (NCAW) treated with various organic reductants was studied. Differential scanning calorimetry (DSC) measurements were collected on simulated waste samples and their supernates treated with organics. Organic reductants used were formic acid, glycolic acid, and oxalic acid. For comparison, samples of untreated simulant and untreated simulant with added noble metals were tested. When heated, untreated simulant samples both with and without noble metals showed no exothermic behavior. All of the treated waste simulant samples showed exothermic behavior. Onset temperatures of exothermic reactions were 120 C to 210 C. Many onset temperatures, particularly those for formic acid treated samples, are well below 181 C, the estimated maximum steam coil temperature (considered to be a worst case maximum temperature for chemical process tank contents). The enthalpies of the reactions were -180 x 10 -3 J/Kg supernate (-181 J/g) for the oxalic acid treated simulant supernate to -1,150 x 10 -3 J/Kg supernate (-1,153 J/g) for the formic acid treated simulant supernate

  1. 4-Methoxybenzamidinium hydrogen oxalate monohydrate

    Simona Irrera

    2012-12-01

    Full Text Available The title hydrated salt, C8H11N2O+·C2HO4−·H2O, was synthesized by a reaction of 4-methoxybenzamidine (4-amidinoanisole and oxalic acid in water solution. In the cation, the amidinium group forms a dihedral angle of 15.60 (6° with the mean plane of the benzene ring. In the crystal, each amidinium unit is bound to three acetate anions and one water molecule by six distinct N—H...O hydrogen bonds. The ion pairs of the asymmetric unit are joined by two N—H...O hydrogen bonds into ionic dimers in which the carbonyl O atom of the semi-oxalate anion acts as a bifurcated acceptor, thus generating an R12(6 motif. These subunits are then joined through the remaining N—H...O hydrogen bonds to adjacent semi-oxalate anions into linear tetrameric chains running approximately along the b axis. The structure is stabilized by N—H...O and O—H...O intermolecular hydrogen bonds. The water molecule plays an important role in the cohesion and the stability of the crystal structure being involved in three hydrogen bonds connecting two semi-oxalate anions as donor and a benzamidinium cation as acceptor.

  2. Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II oxalate precursor layers

    Kai Rückriem

    2016-06-01

    Full Text Available Copper(II oxalate grown on carboxy-terminated self-assembled monolayers (SAM using a step-by-step approach was used as precursor for the electron-induced synthesis of surface-supported copper nanoparticles. The precursor material was deposited by dipping the surfaces alternately in ethanolic solutions of copper(II acetate and oxalic acid with intermediate thorough rinsing steps. The deposition of copper(II oxalate and the efficient electron-induced removal of the oxalate ions was monitored by reflection absorption infrared spectroscopy (RAIRS. Helium ion microscopy (HIM reveals the formation of spherical nanoparticles with well-defined size and X-ray photoelectron spectroscopy (XPS confirms their metallic nature. Continued irradiation after depletion of oxalate does not lead to further particle growth giving evidence that nanoparticle formation is primarily controlled by the available amount of precursor.

  3. Literature review for oxalate oxidation processes and plutonium oxalate solubility

    Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign.

  4. Adsorption and photodegradation of methylene blue by iron oxide impregnated on granular activated carbons in an oxalate solution

    Kadirova, Zukhra C., E-mail: zuhra_kadirova@yahoo.com [Institute of General and Inorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77a, Tashkent 100170 (Uzbekistan); Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan); Katsumata, Ken-ichi [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan); Isobe, Toshihiro [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552 (Japan); Matsushita, Nobuhiro [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan); Nakajima, Akira [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552 (Japan); Okada, Kiyoshi [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan)

    2013-11-01

    The photocatalytic adsorbents BAU-OA, BAU-CL and BAU-HA with varying iron oxide content (9–10 mass%) were prepared by heat treatment at 250 °C from commercial activated carbon (BAU) impregnated with iron oxalate, chloride, tris-benzohydroxamate, respectively. The XRD patterns showed amorphous structure in the BAU-CL sample (S{sub BET} 50 m{sup 2}/g) and low crystallinity (as FeOOH and Fe{sub 2}O{sub 3} phases) in the BAU-HA and BAU-OA samples (S{sub BET} 4 and 111 m{sup 2}/g, respectively). The methylene blue adsorption capacities was decreased in order of BAU-OA < BAU-CL < BAU-HA sample and the adsorption followed Langmuir model. The apparent MB photodegradation rate constant (k{sub app}) was increased in same order BAU-HA < BAU-CL < BAU-OA under the standard experimental conditions (initial MB concentrations 0.015–0.025 mM; sample content – 10 mg/l; initial oxalic acid concentration – 0.43 mM; pH 3–4; UV illumination). The process included high efficiency combination of adsorption, heterogeneous and homogeneous catalysis under UV and solar lights illumination without addition of hydrogen peroxide. The detoxification of water sample containing organic dyes was confirmed after combined sorption-photocatalytic treatment.

  5. Adsorption and photodegradation of methylene blue by iron oxide impregnated on granular activated carbons in an oxalate solution

    Kadirova, Zukhra C.; Katsumata, Ken-ichi; Isobe, Toshihiro; Matsushita, Nobuhiro; Nakajima, Akira; Okada, Kiyoshi

    2013-01-01

    The photocatalytic adsorbents BAU-OA, BAU-CL and BAU-HA with varying iron oxide content (9–10 mass%) were prepared by heat treatment at 250 °C from commercial activated carbon (BAU) impregnated with iron oxalate, chloride, tris-benzohydroxamate, respectively. The XRD patterns showed amorphous structure in the BAU-CL sample (S BET 50 m 2 /g) and low crystallinity (as FeOOH and Fe 2 O 3 phases) in the BAU-HA and BAU-OA samples (S BET 4 and 111 m 2 /g, respectively). The methylene blue adsorption capacities was decreased in order of BAU-OA app ) was increased in same order BAU-HA < BAU-CL < BAU-OA under the standard experimental conditions (initial MB concentrations 0.015–0.025 mM; sample content – 10 mg/l; initial oxalic acid concentration – 0.43 mM; pH 3–4; UV illumination). The process included high efficiency combination of adsorption, heterogeneous and homogeneous catalysis under UV and solar lights illumination without addition of hydrogen peroxide. The detoxification of water sample containing organic dyes was confirmed after combined sorption-photocatalytic treatment.

  6. Kinetics and mechanism of photoaccelerated isotope exchange between U(VI) and U(IV) in oxalate solutions

    Shaban, I.S.; Owreit, M.F.; Nikitenko, S.I.

    1992-01-01

    A kinetic study of thermal and photoaccelerated U(IV)-U(VI) isotope exchange has been carried out in oxalate solutions at 11-40 deg C. The rate and quantum yield were determined as a function of U(IV), U(VI) and oxalate concentration, wavelength of incident light, temperature and absorbed dose of γ-radiation. The kinetic equations for thermal and photoaccelerated exchange have been obtained. It was assumed that the mechanism of exchange involves formation of U(V) as an intermediate, followed by slow exchange between U(V) and U(IV). The isokinetic dependence confirms the identity of limiting stages for thermal and photostimulated exchange. The upper component of photoexcited T 1 level of uranyl is supposed to be the most reactive in the process of U(V) generation. It was observed that the small doses of γ-radiation evoke the acceleration of isotope exchange, however, at D>100 krad the rate of exchange is reduced to the level of thermal exchange. (author) 8 refs.; 4 figs.; 2 tabs

  7. Plasma oxalate levels in prevalent hemodialysis patients and potential implications for ascorbic acid supplementation.

    Liu, Yuguan; Weisberg, Lawrence S; Langman, Craig B; Logan, Amanda; Hunter, Krystal; Prasad, Deepali; Avila, Jose; Venkatchalam, Thaliga; Berns, Jeffrey S; Handelman, Garry J; Sirover, William D

    2016-10-01

    Ascorbic acid (AA) supplementation may increase hemoglobin levels and decrease erythropoiesis-stimulating agent dose requirement in patients with end stage renal disease (ESRD). While plasma AA levels >100μM may be supratherapeutic, levels of at least 30μM may be needed to improve wound healing and levels may need to reach 70μM to optimize erythropoiesis. Of concern, oxalate (Ox), an AA metabolite, can accumulate in ESRD. Historically, if plasma Ox levels remain ≥30μM, oxalosis was of concern. Contemporary hemodialysis (HD) efficiencies may decrease the risk of oxalosis by maintaining pre-HD Ox levels HD patients. A prospective, observational study of 197 HD patients with pre-HD AA levels and pre-HD and post-HD Ox levels. Mean plasma Ox levels decreased 71% during the intradialytic period (22.3±11.1μM to 6.4±3.2μM, PHD plasma AA levels ≤100μM were not associated with a pre-HD plasma Ox level≥30μM, even if ferritin levels were increased. Pre-HD plasma Ox levels ≥20 or ≥30μM were not associated with lower cumulative 4-year survival. Pre-HD plasma AA levels up to 100μM in HD patients do not appear to be associated with an increased risk of developing secondary oxalosis, as the corresponding pre-HD plasma Ox level appears to be maintained at tolerable levels. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  8. Mimicking the biomolecular control of calcium oxalate monohydrate crystal growth: effect of contiguous glutamic acids.

    Grohe, Bernd; Hug, Susanna; Langdon, Aaron; Jalkanen, Jari; Rogers, Kem A; Goldberg, Harvey A; Karttunen, Mikko; Hunter, Graeme K

    2012-08-21

    Scanning confocal interference microscopy (SCIM) and molecular dynamics (MD) simulations were used to investigate the adsorption of the synthetic polypeptide poly(l-glutamic acid) (poly-glu) to calcium oxalate monohydrate (COM) crystals and its effect on COM formation. At low concentrations (1 μg/mL), poly-glu inhibits growth most effectively in ⟨001⟩ directions, indicating strong interactions of the polypeptide with {121} crystal faces. Growth in directions was inhibited only marginally by 1 μg/mL poly-glu, while growth in directions did not appear to be affected. This suggests that, at low concentrations, poly-glu inhibits lattice-ion addition to the faces of COM in the order {121} > {010} ≥ {100}. At high concentrations (6 μg/mL), poly-glu resulted in the formation of dumbbell-shaped crystals featuring concave troughs on the {100} faces. The effects on crystal growth indicate that, at high concentrations, poly-glu interacts with the faces of COM in the order {100} > {121} > {010}. This mirrors MD simulations, which predicted that poly-glu will adsorb to a {100} terrace plane (most calcium-rich) in preference to a {121} (oblique) riser plane but will adsorb to {121} riser plane in preference to an {010} terrace plane (least calcium-rich). The effects of different poly-glu concentration on COM growth (1-6 μg/mL) may be due to variations between the faces in terms of growth mechanism and/or (nano)roughness, which can affect surface energy. In addition, 1 μg/mL might not be adequate to reach the critical concentration for poly-glu to significantly pin step movement on {100} and {010} faces. Understanding the mechanisms involved in these processes is essential for the development of agents to reduce recurrence of kidney stone disease.

  9. Influence of multi-step washing using Na2EDTA, oxalic acid and phosphoric acid on metal fractionation and spectroscopy characteristics from contaminated soil.

    Wei, Meng; Chen, Jiajun

    2016-11-01

    A multi-step soil washing test using a typical chelating agent (Na 2 EDTA), organic acid (oxalic acid), and inorganic weak acid (phosphoric acid) was conducted to remediate soil contaminated with heavy metals near an arsenic mining area. The aim of the test was to improve the heavy metal removal efficiency and investigate its influence on metal fractionation and the spectroscopy characteristics of contaminated soil. The results indicated that the orders of the multi-step washing were critical for the removal efficiencies of the metal fractions, bioavailability, and potential mobility due to the different dissolution levels of mineral fractions and the inter-transformation of metal fractions by XRD and FT-IR spectral analyses. The optimal soil washing options were identified as the Na 2 EDTA-phosphoric-oxalic acid (EPO) and phosphoric-oxalic acid-Na 2 EDTA (POE) sequences because of their high removal efficiencies (approximately 45 % for arsenic and 88 % for cadmium) and the minimal harmful effects that were determined by the mobility and bioavailability of the remaining heavy metals based on the metal stability (I R ) and modified redistribution index ([Formula: see text]).

  10. Preparation and characterization of alumina supported nickel-oxalate catalyst for the hydrodeoxygenation of oleic acid into normal and iso-octadecane biofuel

    Ayodele, O.B.; Togunwa, Olayinka S.; Abbas, Hazzim F.; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Highlights: • Preparation of nickel oxalate complex as catalyst precursor. • Incorporation of nickel oxalate complex into alumina support. • Characterization of the alumina supported nickel oxalate catalyst. • Hydrodeoxygenation of oleic acid with nickel oxalate catalyst. • Nickel oxalate catalyst reusability studies. - Abstract: In this study, nickel II oxalate complex (NiOx) was prepared by functionalization of nickel with oxalic acid (OxA) and incorporated into Al 2 O 3 to synthesize alumina supported nickel oxalate (NiOx/Al 2 O 3 ) catalyst for the hydrodeoxygenation (HDO) of oleic acid (OA) into biofuel. The synthesized NiOx/Al 2 O 3 was characterized and the X-ray fluorescence and elemental dispersive X-ray results showed that NiOx was successfully incorporated into the structure of Al 2 O 3 . The X-ray diffraction and Raman spectroscopy results confirmed that highly dispersed Ni species are present in the NiOx/Al 2 O 3 due to the functionalization with OxA. The catalytic activity of the NiOx/Al 2 O 3 on the HDO of OA produced a mixture of 21% iso-C18 and 72% n-C18 at a 360 °C, 20 bar, 30 mg NiOx/Al 2 O 3 loading pressure and gas flow rate of 100 mL/min. The presence of i-C 18 was ascribed to the OxA functionalization which increased the acidity of NiOx/Al 2 O 3 . The NiOx/Al 2 O 3 reusability study showed consistent HDO ability after 5 runs. These results are promising for further research into biofuel production for commercialization

  11. Process for denitrating waste solutions containing nitric acid actinides simultaneously separating the actinides

    Gompper, K.

    1984-01-01

    The invention should reduce the acid and nitrate content of waste solutions containing nitric acid as much as possible, should reduce the total salt content of the waste solution, remove the actinides contained in it by precipitation and reduce the α radio-activity in the remaining solution, without having to worry about strong reactions or an increase in the volume of the waste solution. The invention achieves this by mixing the waste solution with diethyl oxalate at room temperature and heating the mixture to at least 80 0 C. (orig.) [de

  12. Calcium oxalate stone and gout.

    Marickar, Y M Fazil

    2009-12-01

    Gout is well known to be produced by increased uric acid level in blood. The objective of this paper is to assess the relationship between gout and calcium oxalate stone formation in the humans. 48 patients with combination of gout and calcium oxalate stone problem were included. The biochemical values of this group were compared with 38 randomly selected uric acid stone patients with gout, 43 stone patients with gout alone, 100 calcium oxalate stone patients without gout and 30 controls, making a total of 259 patients. Various biochemical parameters, namely serum calcium, phosphorus and uric acid and 24-h urine calcium, phosphorus, uric acid, oxalate, citrate and magnesium were analysed. ANOVA and Duncan's multiple-range tests were performed to assess statistical significance of the variations. The promoters of stone formation, namely serum calcium (P stone patients and gouty calcium oxalate stone patients compared to the non-gouty patients and controls. Urine oxalate (P stones patients. The inhibitor urine citrate (P stone gouty patients, followed by the gouty uric acid stone formers and gouty calcium oxalate stone patients. The high values of promoters, namely uric acid and calcium in the gouty stone patients indicate the tendency for urinary stone formation in the gouty stone patients. There is probably a correlation between gout and calcium oxalate urinary stone. We presume this mechanism is achieved through the uric acid metabolism. The findings point to the summation effect of metabolic changes in development of stone disease.

  13. A comparison of choline:urea and choline:oxalic acid deep eutectic solvents at 338 K

    Gilmore, Mark; Moura, Leila M.; Turner, Adam H.; Swadźba-Kwaśny, Małgorzata; Callear, Samantha K.; McCune, Jade A.; Scherman, Oren A.; Holbrey, John D.

    2018-05-01

    1:2 choline chloride:urea and 1:1 choline chloride:oxalic acid deep eutectic solvents are compared at 338 K using liquid-phase neutron diffraction with H/D isotopic substitution to obtain differential neutron scattering cross sections and fitting of models to the experimental data using Empirical Potential Structure Refinement. In comparison to the previously reported study of choline chloride:urea at 303 K, we observed significant weakening and lengthening of choline-OH⋯Cl- and choline-OH⋯hydrogen-bond acceptor correlations.

  14. The role of salicylic acid, L-ascorbic acid and oxalic acid in promoting the oxidation of alkenes with H(2)O(2) catalysed by [Mn(IV) (2)(O)(3)(tmtacn)(2)](2+)

    de Boer, Johannes W.; Alsters, Paul L.; Meetsma, Auke; Hage, Ronald; Browne, Wesley R.; Feringa, Ben L.

    2008-01-01

    The role played by the additives salicylic acid, L-ascorbic acid and oxalic acid in promoting the catalytic activity of [Mn(IV) (2)(O)(3)(tmtacn)(2)](PF(6))(2) {1(PF(6))(2), where tmtacn = N, N ', N ''-trimethyl-1,4,7-triazacyclononane} in the epoxidation and cis-dihydroxylation of alkenes with

  15. Inorganic salts interact with oxalic acid in submicron particles to form material with low hygroscopicity and volatility

    Drozd, G.; Woo, J.; Häkkinen, S. A. K.; Nenes, A.; McNeill, V. F.

    2014-05-01

    Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. While the hygroscopicities of pure salts, di-carboxylic acids (DCA), and DCA salts are known, the hygroscopicity of internal mixtures of these components, as they are typically found in the atmosphere, has not been fully characterized. Here we show that inorganic-organic component interactions typically not considered in atmospheric models can lead to very strongly bound metal-organic complexes and greatly affect aerosol volatility and hygroscopicity; in particular, the bi-dentate binding of DCA to soluble inorganic ions. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 °C. Dramatic increases in the cloud condensation nuclei (CCN) activation diameter for particles with di-valent salts (e.g., CaCl2) and relatively small particle volume fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O : C ratios are capable of forming low-volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low-particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles without the need for a phase transition.

  16. Estimation of the oxalate content of foods and daily oxalate intake

    Holmes, R. P.; Kennedy, M.

    2000-01-01

    BACKGROUND: The amount of oxalate ingested may be an important risk factor in the development of idiopathic calcium oxalate nephrolithiasis. Reliable food tables listing the oxalate content of foods are currently not available. The aim of this research was to develop an accurate and reliable method to measure the food content of oxalate. METHODS: Capillary electrophoresis (CE) and ion chromatography (IC) were compared as direct techniques for the estimation of the oxalate content of foods. Foods were thoroughly homogenized in acid, heat extracted, and clarified by centrifugation and filtration before dilution in water for analysis. Five individuals consuming self-selected diets maintained food records for three days to determine their mean daily oxalate intakes. RESULTS: Both techniques were capable of adequately measuring the oxalate in foods with a significant oxalate content. With foods of very low oxalate content (choice over IC for estimating the oxalate content of foods with a medium (>10 mg/100 g) to high oxalate content due to a faster analysis time and lower running costs, whereas IC may be better suited for the analysis of foods with a low oxalate content. Accurate estimates of the oxalate content of foods should permit the role of dietary oxalate in urinary oxalate excretion and stone formation to be clarified. Other factors, apart from the amount of oxalate ingested, appear to exert a major influence over the amount of oxalate excreted in the urine.

  17. Kinetics and mechanism of the oxidation of some substituted aldonitrones by quinolinium chlorochromate in aqueous DMF medium in the absence and presence of oxalic acid

    GOVINDASAMY RAJARAJAN

    2009-02-01

    Full Text Available The kinetics of the oxidation of aldonitrones (nitrone by quinolinium chlorochromate (QCC was determined in 50 % DMF–water in the absence and presence of oxalic acid in order to study the effect of oxalic acid. It was considered worthwhile to investigate whether it undergoes co-oxidation or just functions as a catalyst in the reaction. The reaction was followed iodometrically. Under the employed experimental conditions, the reaction is first order each with respect to concentration of nitrone, QCC, and oxalic acid and fractional order with respect to H+ concentration. There was no discernible effect with increasing in ionic strength but the rate of oxidation decreased with decreasing dielectric constant of the medium. Addition of MnSO4 had a significant and acrylonitrile no effect on the reaction rate. A mechanism involving protonated nitrone and QCC as the reactive oxidant is proposed. The activation parameters were calculated and are presented.

  18. Enhanced stabilization of Pb, Zn, and Cd in contaminated soils using oxalic acid-activated phosphate rocks.

    Zhang, Zhuo; Guo, Guanlin; Wang, Mei; Zhang, Jia; Wang, Zhixin; Li, Fasheng; Chen, Honghan

    2018-01-01

    Phosphate amendments, especially phosphate rock (PR), are one of the most commonly used materials to stabilize heavy metals in contaminated soils. However, most of PR reserve consists of low-grade ore, which limits the efficiency of PR for stabilizing heavy metals. This study was to enhance the stabilization of heavy metals through improving the available phosphorous (P) release of PR by oxalic acid activation. Raw PR and activated PR (APR) were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET) surface analysis, and laser diffraction to determine the changes of structure and composition of APR. The stabilization effectiveness of lead (Pb), zinc (Zn), and cadmium (Cd) in soils by APR was investigated through toxicity leaching test and speciation analysis. The results indicated that after treatment by oxalic acid, (1) the crystallinity of the fluorapatite phase of PR transformed into the weddellite phase; (2) the surface area of PR increased by 37%; (3) the particle size of PR became homogenized (20-70 μm); and (4) the available P content in PR increased by 22 times. These changes of physicochemical characteristics of PR induced that APR was more effective to transform soil heavy metals from the non-residual fraction to the residual fraction and enhance the stabilization efficiency of Pb, Zn, and Cd than PR. These results are significant for the future use of low-grade PR to stabilize heavy metals.

  19. Precipitation of plutonium (III) oxalate and calcination to plutonium oxide

    Esteban, A.; Orosco, E.H.; Cassaniti, P.; Greco, L.; Adelfang, P.

    1989-01-01

    The plutonium based fuel fabrication requires the conversion of the plutonium nitrate solution from nuclear fuel reprocessing into pure PuO2. The conversion method based on the precipitation of plutonium (III) oxalate and subsequent calcination has been studied in detail. In this procedure, plutonium (III) oxalate is precipitated, at room temperature, by the slow addition of 1M oxalic acid to the feed solution, containing from 5-100 g/l of plutonium in 1M nitric acid. Before precipitation, the plutonium is adjusted to trivalent state by addition of 1M ascorbic acid in the presence of an oxidation inhibitor such as hydrazine. Finally, the precipitate is calcinated at 700 deg C to obtain PuO2. A flowsheet is proposed in this paper including: a) A study about the conditions to adjust the plutonium valence. b) Solubility data of plutonium (III) oxalate and measurements of plutonium losses to the filtrate and wash solution. c) Characterization of the obtained products. Plutonium (III) oxalate has several potential advantages over similar conversion processes. These include: 1) Formation of small particle sizes powder with good pellets fabrication characteristics. 2) The process is rather insensitive to most process variables, except nitric acid concentration. 3) Ambient temperature operations. 4) The losses of plutonium to the filtrate are less than in other conversion processes. (Author) [es

  20. Process development of oxalic acid production in submerged culture of Aspergillus niger F22 and its biocontrol efficacy against the root-knot nematode Meloidogyne incognita.

    Lee, Sang Il; Lee, Keon Jin; Chun, Ho Hyun; Ha, Sanghyun; Gwak, Hyun Jung; Kim, Ho Myeong; Lee, Jong-Hee; Choi, Hak-Jong; Kim, Hyeong Hwan; Shin, Teak Soo; Park, Hae Woong; Kim, Jin-Cheol

    2018-03-01

    Oxalic acid has potent nematicidal activity against the root-knot nematode Meloidogyne incognita. In this study, fermentation parameters for oxalic acid production in submerged culture of Aspergillus niger F22 at 23, 25, and 30 °C were optimized in 5-L jar fermenters. The viscosity of the culture broth increased with increasing temperature. There was a negative correlation between oxalic acid production and the apparent viscosity; high volumetric productivity of oxalic acid was obtained at low apparent viscosity (less than 1000 cP), with a productivity of more than 100 mg/L h. When the apparent viscosity was over 2500 cP, the volumetric productivity decreased below 50 mg/L h. In addition, the volumetric mass transfer coefficient, K L a, positively correlated with volumetric productivity. When the K L a value increased from 0.0 to 0.017 /s, the volumetric productivity proportionally increased up to 176 mg/L h. When the temperature decreased, K L a increased due to the decrease in viscosity, leading to increased volumetric productivity. The highest productivity of 7453.3 mg/L was obtained at the lowest temperature, i.e., 23 °C. The nematicidal activity of culture filtrate was proportional to the content of oxalic acid. Based on a constant impeller tip speed, oxalic acid production was successfully scaled up to a 500-L pilot vessel, producing a final concentration comparable to that in the 5-L jar.

  1. Role of cellular oxalate in oxalate clearance of patients with calcium oxalate monohydrate stone formation and normal controls.

    Oehlschläger, Sven; Fuessel, Susanne; Meye, Axel; Herrmann, Jana; Froehner, Michael; Albrecht, Steffen; Wirth, Manfred P

    2009-03-01

    To examine the cellular, plasma, and urinary oxalate and erythrocyte oxalate flux in patients with calcium oxalate monohydrate (COM) stone formation vs normal controls. Pathologic oxalate clearance in humans is mostly integrated in calcium oxalate stone formation. An underlying cause of deficient oxalate clearance could be defective transmembrane oxalate transport, which, in many tissues, is regulated by an anion exchanger (SLC26). We studied 2 groups: 40 normal controls and 41 patients with COM stone formation. Red blood cells were divided for cellular oxalate measurement and for resuspension in a buffered solution (pH 7.40); 0.1 mmol/L oxalate was added. The supernatant was measured for oxalate immediately and 1 hour after incubation. The plasma and urinary oxalate were analyzed in parallel. The mean cellular oxalate concentrations were significantly greater in the normal controls (5.25 +/- 0.47 micromol/L) than in those with COM stone formation (2.36 +/- 0.28 micromol/L; P stone formation (0.31 +/- 0.02 mmol/L) than in the controls (0.24 +/- 0.02 mmol/L; P r = 0.49-0.63; P r = -0.29-0.41; P r = -0.30; P r = 0.25; P stone formation. Our data implicate the presence of a cellular oxalate buffer to stabilize plasma and urinary oxalate concentrations in normal controls.

  2. Zirconium for nitric acid solutions

    Yau, T.L.

    1984-01-01

    The excellent corrosion resistance of zirconium in nitric acid has been known for over 30 years. Recently, there is an increasing interest in using zirconium for nitric acid services. Therefore, an extensive research effort has been carried out to achieve a better understanding of the corrosion properties of zirconium in nitric acid. Particular attention is paid to the effect of concentration, temperature, structure, solution impurities, and stress. Immersion, autoclave, U-bend, and constant strain-rate tests were used in this study. Results of this study indicate that the corrosion resistance of zirconium in nitric acid is little affected by changes in temperature and concentration, and the presence of common impurities such as seawater, sodium chloride, ferric chloride, iron, and stainless steel. Moreover, the presence of seawater, sodium chloride, ferric chloride, and stainless steel has little effect on the stress corrosion craking (SCC) susceptibility of zirconium in 70% nitric acid at room temperatures. However, zirconium could be attacked by fluoride-containing nitric acid and the vapors of chloride-containing nitric acid. Also, high sustained tensile stresses should be avoided when zirconium is used to handle 70% nitric acid at elevated temperatures or > 70% nitric acid

  3. Selection of reliable reference genes for gene expression studies in Trichoderma afroharzianum LTR-2 under oxalic acid stress.

    Lyu, Yuping; Wu, Xiaoqing; Ren, He; Zhou, Fangyuan; Zhou, Hongzi; Zhang, Xinjian; Yang, Hetong

    2017-10-01

    An appropriate reference gene is required to get reliable results from gene expression analysis by quantitative real-time reverse transcription PCR (qRT-PCR). In order to identify stable and reliable reference genes in Trichoderma afroharzianum under oxalic acid (OA) stress, six commonly used housekeeping genes, i.e., elongation factor 1, ubiquitin, ubiquitin-conjugating enzyme, glyceraldehyde-3-phosphate dehydrogenase, α-tubulin, actin, from the effective biocontrol isolate T. afroharzianum strain LTR-2 were tested for their expression during growth in liquid culture amended with OA. Four in silico programs (comparative ΔCt, NormFinder, geNorm and BestKeeper) were used to evaluate the expression stabilities of six candidate reference genes. The elongation factor 1 gene EF-1 was identified as the most stably expressed reference gene, and was used as the normalizer to quantify the expression level of the oxalate decarboxylase coding gene OXDC in T. afroharzianum strain LTR-2 under OA stress. The result showed that the expression of OXDC was significantly up-regulated as expected. This study provides an effective method to quantify expression changes of target genes in T. afroharzianum under OA stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Oxalate complexation in dissolved carbide systems

    Choppin, G.R.; Bokelund, H.; Valkiers, S.

    1983-01-01

    It has been shown that the oxalic acid produced in the dissolution of mixed uranium, plutonium carbides in nitric acid can account for the problems of incomplete uranium and plutonium extraction on the Purex process. Moreover, it was demonstrated that other identified products such as benzene polycarboxylic acids are either too insoluble or insufficiently complexing to be of concern. The stability constants for oxalate complexing of UO 2 +2 and Pu +4 ions (as UO 2 (C 2 O 4 ), Pu(C 2 O 4 ) 2+ and Pu(C 2 O 4 ) 2 , respectively) were measured in nitrate solutions of 4.0 molar ionic strength (0-4 M HNO 3 ) by extraction of these species with TBP. (orig.)

  5. Recovery of plutonium from oxalate supernatant using 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone

    Mohapatra, P.K.; Manchanda, V.K.; Gupta, K.K.; Singh, R.K.

    1997-01-01

    Extraction of Pu(IV) from oxalate supernatant was carried out employing varying concentrations of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP). Near quantitative extraction of Pu(IV) from an aqueous solution of 0.2M oxalic acid and 3M HNO 3 was possible employing 0.05M PMBP solution in xylene. Extraction studies at different uranium loading conditions were carried out and conditions for quantitative stripping were arrived at. (author). 2 refs., 4 tabs

  6. A novel digestion method based on a choline chloride–oxalic acid deep eutectic solvent for determining Cu, Fe, and Zn in fish samples

    Habibi, Emadaldin [Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, P.O. BOX 669, Khorramshahr (Iran, Islamic Republic of); Ghanemi, Kamal, E-mail: Kamal.ghanemi@kmsu.ac.ir [Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, P.O. BOX 669, Khorramshahr (Iran, Islamic Republic of); Marine Science Research Institute, Khorramshahr University of Marine Science and Technology, Khorramshahr (Iran, Islamic Republic of); Fallah-Mehrjardi, Mehdi [Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, P.O. BOX 669, Khorramshahr (Iran, Islamic Republic of); Marine Science Research Institute, Khorramshahr University of Marine Science and Technology, Khorramshahr (Iran, Islamic Republic of); Dadolahi-Sohrab, Ali [Department of Marine Environment, Faculty of marine natural resources, Khorramshahr University of Marine Science and Technology, Khorramshahr (Iran, Islamic Republic of)

    2013-01-31

    Highlights: ► A novel digestion method: lack of concentrated acids or oxidizing reagents. ► First report of using choline chloride–oxalic acid (ChCl–Ox) for digestion. ► Complete dissolution of biological samples in ChCl–Ox for solubilization metals. ► Extraction recoveries greater than 95%: validated by the fish protein CRM. ► Successfully applied in different fish tissues (Muscle, Liver, and Gills). -- Abstract: A novel and efficient digestion method based on choline chloride–oxalic acid (ChCl–Ox) deep eutectic solvent (DES) was developed for flame atomic absorption spectrometry (FAAS) determination of Cu, Zn, and Fe in biological fish samples. Key parameters that influence analyte recovery were investigated and optimized, using the fish protein certified reference material (CRM, DORM-3) throughout the procedure. In this method, 100 mg of the sample was dissolved in ChCl–Ox (1:2, molar ratio) at 100 °C for 45 min. Then, 5.0 mL HNO{sub 3} (1.0 M) was added. After centrifugation, the supernatant solution was filtered, diluted to a known volume, and analyzed by FAAS. Under optimized conditions, an excellent agreement between the obtained results and the certified values was observed, using Student's t-test (P = 0.05); the extraction recovery of the all elements was greater than 95.3%. The proposed method was successfully applied to the determination of analytes in different tissues (muscle, liver, and gills) having a broad concentration range in a marine fish sample. The reproducibility of the method was validated by analyzing all samples by our method in a different laboratory, using inductively coupled plasma optical emission spectrometry (ICP-OES). For comparison, a conventional acid digestion (CAD) method was also used for the determination of analytes in all studied samples. The simplicity of the proposed experimental procedure, high extraction efficiency, short analysis time, lack of concentrated acids and oxidizing agents, and the

  7. A novel digestion method based on a choline chloride–oxalic acid deep eutectic solvent for determining Cu, Fe, and Zn in fish samples

    Habibi, Emadaldin; Ghanemi, Kamal; Fallah-Mehrjardi, Mehdi; Dadolahi-Sohrab, Ali

    2013-01-01

    Highlights: ► A novel digestion method: lack of concentrated acids or oxidizing reagents. ► First report of using choline chloride–oxalic acid (ChCl–Ox) for digestion. ► Complete dissolution of biological samples in ChCl–Ox for solubilization metals. ► Extraction recoveries greater than 95%: validated by the fish protein CRM. ► Successfully applied in different fish tissues (Muscle, Liver, and Gills). -- Abstract: A novel and efficient digestion method based on choline chloride–oxalic acid (ChCl–Ox) deep eutectic solvent (DES) was developed for flame atomic absorption spectrometry (FAAS) determination of Cu, Zn, and Fe in biological fish samples. Key parameters that influence analyte recovery were investigated and optimized, using the fish protein certified reference material (CRM, DORM-3) throughout the procedure. In this method, 100 mg of the sample was dissolved in ChCl–Ox (1:2, molar ratio) at 100 °C for 45 min. Then, 5.0 mL HNO 3 (1.0 M) was added. After centrifugation, the supernatant solution was filtered, diluted to a known volume, and analyzed by FAAS. Under optimized conditions, an excellent agreement between the obtained results and the certified values was observed, using Student's t-test (P = 0.05); the extraction recovery of the all elements was greater than 95.3%. The proposed method was successfully applied to the determination of analytes in different tissues (muscle, liver, and gills) having a broad concentration range in a marine fish sample. The reproducibility of the method was validated by analyzing all samples by our method in a different laboratory, using inductively coupled plasma optical emission spectrometry (ICP-OES). For comparison, a conventional acid digestion (CAD) method was also used for the determination of analytes in all studied samples. The simplicity of the proposed experimental procedure, high extraction efficiency, short analysis time, lack of concentrated acids and oxidizing agents, and the use of

  8. Brood removal or queen caging combined with oxalic acid treatment to control varroa mites (Varroa destructor) in honey bee colonies (Apis mellifera)

    Few studies of honey bee colonies exist where varroa mite control is achieved by integrating broodless conditions, through either total brood removal or queen caging, in combination with oxalic acid (OA) applications. We observed significant varroa mortality after applications of OA in obtaining bro...

  9. Effects of current density and electrolyte temperature on the volume expansion factor of anodic alumina formed in oxalic acid

    Zhou, F.; Baron-Wiecheć, A.; Garcia-Vergara, S.J.; Curioni, M.; Habazaki, H.; Skeldon, P.; Thompson, G.E.

    2012-01-01

    The formation of porous anodic alumina in 0.4 M oxalic acid is investigated over a range of current density and electrolyte temperature using sputtering-deposited substrates containing tungsten tracer layers. The findings reveal volume expansion factors and efficiencies of film growth that increase with the increase of the current density and decrease of the temperature. Pore generation by the flow of the anodic alumina in the barrier layer toward the pore walls is proposed to dominate at relatively high current densities (above ∼2 mA cm −2 ), with tungsten tracer species being retained within films. Conversely, losses of tungsten species occur at lower current densities, possibly due to increased field-assisted ejection of Al 3+ ions and/or field-assisted dissolution of the anodic alumina.

  10. Mechanistic insight into chromium(VI) reduction by oxalic acid in the presence of manganese(II)

    Wrobel, Katarzyna; Corrales Escobosa, Alma Rosa; Gonzalez Ibarra, Alan Alexander; Mendez Garcia, Manuel; Yanez Barrientos, Eunice; Wrobel, Kazimierz, E-mail: kazimier@ugto.mx

    2015-12-30

    Over the past few decades, reduction of hexavalent chromium (Cr(VI)) has been studied in many physicochemical contexts. In this research, we reveal the mechanism underlying the favorable effect of Mn(II) observed during Cr(VI) reduction by oxalic acid using liquid chromatography with spectrophotometric diode array detector (HPLC–DAD), nitrogen microwave plasma atomic emission spectrometry (HPLC–MP-AES), and high resolution mass spectrometry (ESI–QTOFMS). Both reaction mixtures contained potassium dichromate (0.67 mM Cr(VI)) and oxalic acid (13.3 mM), pH 3, one reaction mixture contained manganese sulfate (0.33 mM Mn(II)). In the absence of Mn(II) only trace amounts of reaction intermediates were generated, most likely in the following pathways: (1) Cr(VI) → Cr(IV) and (2) Cr(VI) + Cr(IV) → 2Cr(V). In the presence of Mn(II), the active reducing species appeared to be Mn(II) bis-oxalato complex (J); the proposed reaction mechanism involves a one-electron transfer from J to any chromium compound containing Cr=O bond, which is reduced to Cr−OH, and the generation of Mn(III) bis-oxalato complex (K). Conversion of K to J was observed, confirming the catalytic role of Mn(II). Since no additional acidification was required, the results obtained in this study may be helpful in designing a new, environmentally friendly strategy for the remediation of environments contaminated with Cr(VI).

  11. Sustainable Synthesis of Oxalic and Succinic Acid through Aerobic Oxidation of C6 Polyols Under Mild Conditions.

    Ventura, Maria; Williamson, David; Lobefaro, Francesco; Jones, Matthew D; Mattia, Davide; Nocito, Francesco; Aresta, Michele; Dibenedetto, Angela

    2018-03-22

    The sustainable chemical industry encompasses a shift from the use of fossil carbon to renewable carbon. The synthesis of chemicals from nonedible biomass (cellulosic or oil) represents one of the key steps for "greening" the chemical industry. In this paper, we report the aerobic oxidative cleavage of C6 polyols (5-HMF, glucose, fructose and sucrose) to oxalic acid (OA) and succinic acid (SA) in water under mild conditions using M@CNT and M@NCNT (M=Fe, V; CNT=carbon nanotubes; NCNT=N-doped CNT), which, under suitable conditions, were recoverable and reusable without any loss of efficiency. The influence of the temperature, O 2 pressure (PO2 ), reaction time and stirring rate are discussed and the best reaction conditions are determined for an almost complete conversion of the starting material and a good OA yield of 48 %. SA and formic acid were the only co-products. The former could be further converted into OA by oxidation in the presence of formic acid, resulting in an overall OA yield of >62 %. This process was clean and did not produce organic waste nor gas emissions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Structural variability in neptunium(V) oxalate compounds: synthesis and structural characterization of Na2NpO2(C2O4)OH.H2O.

    Bean, Amanda C; Garcia, Eduardo; Scott, Brian L; Runde, Wolfgang

    2004-10-04

    Reaction of a (237)Np(V) stock solution in the presence of oxalic acid, calcium chloride, and sodium hydroxide under hydrothermal conditions produces single crystals of a neptunium(V) oxalate, Na(2)NpO(2)(C(2)O(4))OH.H(2)O. The structure consists of one-dimensional chains running down the a axis and is the first example of a neptunium(V) oxalate compound containing hydroxide anions.

  13. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment.

    Brett Williams

    2011-06-01

    Full Text Available Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA. Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD in plant hosts, this induction of PCD and disease requires generation of reactive oxygen species (ROS in the host, a process triggered by fungal secreted OA. Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function; as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA generates a reducing environment in host cells that suppress host defense responses including the oxidative burst and callose deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic fungus. Chemical reduction of host cells with dithiothreitol (DTT or potassium oxalate (KOA restored the ability of this mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish infection. These results address a long-standing issue

  14. Uranyl Oxalate Solubility

    Leturcq, G.; Costenoble, S.; Grandjean, S. [CEA Marcoule DEN/DRCP/SCPS/LCA - BP17171 - 30207 Bagnols sur Ceze cedex (France)

    2008-07-01

    The solubility of uranyl oxalate was determined at ambient temperature by precipitation in oxalic-nitric solutions, using an initial uranyl concentration of 0.1 mol/L. Oxalic concentration varied from 0.075 to 0.3 mol/L while nitric concentration ranged between 0.75 and 3 mol/L. Dissolution tests, using complementary oxalic-nitric media, were carried out for 550 hours in order to study the kinetic to reach thermodynamic equilibrium. Similar solubility values were reached by dissolution and precipitation. Using the results, it was possible to draw the solubility surface versus oxalic and nitric concentrations and to determine both the apparent solubility constant of UO{sub 2}C{sub 2}O{sub 4}, 3H{sub 2}O (Ks) and the apparent formation constant of the first uranyl-oxalate complex UO{sub 2}C{sub 2}O{sub 4} (log {beta}1), for ionic strengths varying between 1 and 3 mol/L. Ks and log {beta}1 values were found to vary from 1.9 10{sup -8} to 9.2 10{sup -9} and from 5.95 to 6.06, respectively, when ionic strength varied from 1 to 3 mol/L. A second model may fit our data obtained at an ionic strength of 3 mol/L suggesting as reported by Moskvin et al. (1959) that no complexes are formed for [H{sup +}] at 3 M. The Ks value would then be 1.3 10{sup -8}. (authors)

  15. Preparation of [[sup 11]C]diethyl oxalate and [[sup 11]C]oxalic acid and demonstration of their use in the synthesis of [[sup 11]C]-2,3-dihydroxyquinoxaline

    Thorell, J -O; Stone-Elander, S [Karolinska Pharmacy, Stockholm (Sweden) Karolinska Hospital and Institute, Stockholm (Sweden). Dept. of Clinical Neurophysiology; Elander, N [Manne Siegbahn Inst. of Physics, Stockholm (Sweden)

    1993-11-01

    A method for the production of two new carbon-11 labelled difunctional radiolabelling precursors, [[sup 11]C]diethyl oxalate,2, and [[sup 11]C]oxalic acid, 3 is described. Methyl chloroformate was reacted with no-carrier-added [[sup 11]C]cyanide to generate the intermediate nitrile, methyl [[sup 11]C]cyanoformate. Alcoholysis with HC1 in ethanol generated 2, which could subsequently be converted to 3 with aqueous acid. The total time of preparation from end-or-trapping of [[sup 11]C]cyanide was 6-7 min using combined microwave and thermal treatment or, by exclusively thermal treatment, 15 and 20 min for 2 and 3, respectively. The radiochemical conversion of [[sup 11]C]cyanide to 2 and 3 was [approx] 80% and [approx] 70%, respectively. Both 2 and 3 were used in a model reaction with 1,2-phenylenediamine to synthesize the heterocyclic compound, 2,3-dihydroxyquinoxaline, a basic structural unit in antagonists for the excitatory amino acid receptor system. (Author).

  16. Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley.

    El-Zaeddi, Hussein; Calín-Sánchez, Ángel; Nowicka, Paulina; Martínez-Tomé, Juan; Noguera-Artiaga, Luis; Burló, Francisco; Wojdyło, Aneta; Carbonell-Barrachina, Ángel A

    2017-07-01

    The effects of a preharvest treatment with malic (MA), oxalic (OA), or acetylsalicylic (ASA) acid at three concentrations (1, 2 and 3mM) on the bioactivity and antioxidant capacity of coriander, dill, and parsley were investigated. The antioxidant capacity of the herbs extracts was assayed by spectrophotometric methods by using three different analytical methods: ORAC, FRAP, and ABTS; the effects of treatments were very positive in coriander, produced intermediate results in dill, and no effects were found in parsley plants. Polyphenol compounds were identified by LC-MS-QTof and quantified by UPLC-PDA-FL. Thirty phenolic compounds were identified in these three herbs. The major compounds were (i) coriander: dimethoxycinnamoyl hexoside and quercetin-3-O-rutinoside, (ii) dill: neochlorogenic acid and quercetin glucuronide, and (iii) parsley: apigenin-7-apiosylglucoside (apiin) and isorhamnetin-3-O-hexoside. The application of these three organic acids favored the accumulation of phenolic compounds in coriander plants, but had no significant positive effects on dill and parsley. The treatments leading to the best results in all three plants were the application of MA or OA at 1mM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Determination of free acid in U(VI)-Al(III) solution by Gran plot titration

    Suh, Moo Yul; Lee, Chang Heon; Sohn, Se Chul; Kim, Jung Suk; Kim, Won Ho; Eom, Tae Yoon

    1999-01-01

    The determination method of free acid in spent U-Al nuclear fuel solutions by Gran plot titration was described. Effect of U(VI) and Al(III) on the alkalimetric titration of nitric acid was investigation in oxalate complexing media as well as in noncomplexing media. Positive biases were observed in both titration media when the end-point was estimated by the Gran plot method. It was found that the cause of the bias was U(VI) in the oxalate complexing media, but Al(III) in the noncomplexing media. The relative error was less than 1% in the titration of 0.1 M HNO 3 at a U(VI):Al(III):H + mole ratio of up to 2:12:1 as long as the pH of the oxalate titration media was sustained to be below 5.0 at the beginning of titration. The method was successfully applied to the determination of nitric acid in a solution of HANARO reactor fuel with U:Al mole ratio of 1:6

  18. Origin of Urinary Oxalate

    Holmes, Ross P.; Knight, John; Assimos, Dean G.

    2007-04-01

    Urinary oxalate is mostly derived from the absorption of ingested oxalate and endogenous synthesis. The breakdown of vitamin C may also contribute small amounts to the urinary oxalate pool. The amount of oxalate absorbed is influenced by the oxalate content of the diet, the concentrations of divalent cations in the gut, the presence of oxalate-degrading organisms, transport characteristics of the intestinal epithelium, and other factors associated with the intestinal environment. Knowledge of pathways associated with endogenous oxalate synthesis is limited. Urinary oxalate excretion can be modified using strategies that limit dietary oxalate absorption and the ingestion of oxalogenic substrates such as hydroxyproline.

  19. Photocatalytic Oxidation of Azo Dyes and Oxalic Acid in Batch Reactors and CSTR: Introduction of Photon Absorption by Dyes to Kinetic Models

    I. Grčić

    2018-04-01

    Full Text Available The possibilities of treating industrial effluents and water purification by advanced oxidation processes have been extensively studied; photocatalysis has emerged as a feasible alternative solution. In order to apply the photocatalytic treatment on a larger scale, relevant modeling approaches are necessary. The scope of this work was to investigate the applicability of recently published kinetic models in different reactor systems (batch and CSTR under UVA or UVC irradiation and in combination with two types of TiO2 catalyst, AEROXIDE® P25 and PC-500 for degradation of azo dyes (C.I. Reactive Violet 2, and C.I. Mordant Yellow 10, oxalic acid and their mixtures. The influences of reactor geometry and irradiation intensities on pollutant oxidation efficiency were examined. The effect of photon absorption by dyes in water matrix was thoroughly studied. Relevant kinetic models were introduced to the mass balance for particular reactor system. Resulting models were sufficient for description of pollutant degradation in batch reactors and CSTR. Experimental results showed 1.15 times higher mineralization extents achieved after 7 cycles in CSTR than in batch photoreactor of similar geometry within the equivalent time-span. The application of CSTR in-series could simplify the photocatalytic water treatment on a larger scale.

  20. CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-07-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system.

  1. Complexation of Am(III) by oxalate in NaClO4 media

    Choppin, G.R.; Chen, J.F.

    1995-01-01

    The complexation of Am(III) by oxalate has been investigated in solutions of NaClO 4 up to 9.0 M ionic strength at 25 degrees C. The dissociation constants of oxalic acid were determined by potentiometric titration, while the stability constants of the Am(III)-oxalate complexation were measured by the solvent extraction technique. A thermodynamic model was constructed to predict the apparent equilibrium constants at different ionic strengths by applying the Pitzer equation using parameters for the Na + -HOx - , Na + -Ox - , AmOx + -ClO 4 - , and Na + -Am(Ox) 2 - interactions obtained by fitting the data

  2. The effect of CaCl2 on growth rate, wood decay and oxalic acid accumulation in Serpula lacrymans and related brown-rot fungi

    Anne Christine Steenkjaer Hastrup; Bo Jensen; Carol Clausen; Frederick Green

    2006-01-01

    The dry rot fungus, Serpula lacrymans, is one of the most destructive copper-tolerant fungi causing timber decay in buildings in temperate regions. Calcium and oxalic acid have been shown to play important roles in the mechanism of wood decay. The effect of calcium on growth and decay was evaluated for 12 strains of S. lacrymans and compared to five brown-rot fungi....

  3. Analysis of nanopore arrangement of porous alumina layers formed by anodizing in oxalic acid at relatively high temperatures

    Zaraska, Leszek; Stępniowski, Wojciech J.; Jaskuła, Marian; Sulka, Grzegorz D.

    2014-06-01

    Anodic aluminum oxide (AAO) layers were formed by a simple two-step anodization in 0.3 M oxalic acid at relatively high temperatures (20-30 °C) and various anodizing potentials (30-65 V). The effect of anodizing conditions on structural features of as-obtained oxides was carefully investigated. A linear and exponential relationships between cell diameter, pore density and anodizing potential were confirmed, respectively. On the other hand, no effect of temperature and duration of anodization on pore spacing and pore density was found. Detailed quantitative and qualitative analyses of hexagonal arrangement of nanopore arrays were performed for all studied samples. The nanopore arrangement was evaluated using various methods based on the fast Fourier transform (FFT) images, Delaunay triangulations (defect maps), pair distribution functions (PDF), and angular distribution functions (ADF). It was found that for short anodizations performed at relatively high temperatures, the optimal anodizing potential that results in formation of nanostructures with the highest degree of pore order is 45 V. No direct effect of temperature and time of anodization on the nanopore arrangement was observed.

  4. Preharvest application of oxalic acid improves quality and phytochemical content of artichoke (Cynara scolymus L.) at harvest and during storage.

    Martínez-Esplá, Alejandra; García-Pastor, María Emma; Zapata, Pedro Javier; Guillén, Fabián; Serrano, María; Valero, Daniel; Gironés-Vilaplana, Amadeo

    2017-09-01

    In this study the effect of oxalic acid (OA) treatment of artichoke plants (Cynara scolymus L.) on head artichoke development and on artichokes quality parameters (weight loss, firmness, and color), respiration rate, antioxidant activity and phenolics (measured by Folin Ciocalteu and HPLC-DAD-ESI/MS n ) at harvest and during storage for 21days at 2°C was evaluated. OA treatment increased the percentage of the first class artichokes although no significant effect was found in artichoke developmental process. OA-treatment reduced the respiration rate of artichokes and led to higher total hydrosoluble antioxidant activity and total phenolics and hydroxycinnamics and luteolins concentration both at harvest and during cold storage. In addition, luteolin 7-O-glucuronide 3-O-glucoside was identified for the first time in artichoke. Thus, it can be concluded that OA preharvest treatment could be a natural and useful tool to delay the artichoke postharvest senescence and improve the reported health-beneficial properties of artichokes consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Electrolytic destruction of oxalate ions in plutonium oxalate supernatant

    Michael, K.M.; Talnikar, S.G.; Jambunathan, U.; Kapoor, S.C.; Ramanujam, A.; Venkataraman, N.

    1996-01-01

    A simple and efficient electrolytic method is described for the destruction of the oxalate ions present in plutonium oxalate supernatant. Using platinum electrode and very little KMnO 4 , in situ generation of Mn 3+ ions is achieved which in turn destroys the oxalate. The use of lower current density helps in achieving maximum current efficiency. The end point is easily detectable by the pink colour of permanganate. By reversing the current, this slight excess of permanganate can be destroyed, thus avoiding the use of hydrogen peroxide. By this simple electrolytic method, the corrosive oxalate ion is completely destroyed and the salt content of the waste solution is considerably reduced. (author). 4 refs., 1 fig., 6 tabs

  6. Effect of Organic Acid Additions on the General and Localized Corrosion Susceptibility of Alloy 22 in Chloride Solutions

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Ilevbare, G O; Rebak, R B

    2007-08-28

    Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and picric acids showed a slightly higher corrosion rate, and acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids.

  7. Effect of medium pH on chemical selectivity of oxalic acid biosynthesis by Aspergillus niger W78C in submerged batch cultures with sucrose as a carbon source.

    Walaszczyk, Ewa; Podgórski, Waldemar; Janczar-Smuga, Małgorzata; Dymarska, Ewelina

    2018-01-01

    The pH of the medium is the key environmental parameter of chemical selectivity of oxalic acid biosynthesis by Aspergillus niger . The activity of the enzyme oxaloacetate hydrolase, which is responsible for decomposition of oxaloacetate to oxalate and acetate inside the cell of the fungus, is highest at pH 6. In the present study, the influence of pH in the range of 3-7 on oxalic acid secretion by A. niger W78C from sucrose was investigated. The highest oxalic acid concentration, 64.3 g dm -3 , was reached in the medium with pH 6. The chemical selectivity of the process was 58.6% because of the presence of citric and gluconic acids in the cultivation broth in the amount of 15.3 and 30.2 g dm -3 , respectively. Both an increase and a decrease of medium pH caused a decrease of oxalic acid concentration. The obtained results confirm that pH 6 of the carbohydrate medium is appropriate for oxalic acid synthesis by A. niger , but the chemical selectivity of the process described in this paper was high in comparison to values reported previously in the literature.

  8. Inhibition of crystallization of calcium oxalate by the extraction of Tamarix gallica L.

    Bensatal, Ahmed; Ouahrani, M R

    2008-12-01

    The main objective is to study the inhibitor effect of acid fraction of the extract of Tamarix gallica L on the crystallization of calcium oxalate. The extract of Tamarix gallica L is very rich by acid compounds that are used as an inhibitor of nephrolithiasis (calcium oxalate). Our study of the calcium oxalate crystallization is based on the model of turbidimetry by means of a spectrophotometer. The calcium oxalate formation is induced by the addition of oxalate solutions of sodium and of calcium chloride. The addition of inhibitor with various concentrations enabled us to give information on the percentage of inhibition. The comparison between the turbidimetric slopes with and without inhibitor gives the effectiveness of inhibitor for the acid fraction. By comparing the photographs of with and without inhibitor, we concluded that the extract of Tamarix gallica L acts at the stage of growth. The acid fraction of the extract of Tamarix gallica L gives an activity remarkable in the formation of urinary lithiasis (calcium oxalate); this effectiveness is due to the presence of functions of acid.

  9. Acetic acid extraction from aqueous solutions using fatty acids

    IJmker, H.M.; Gramblicka, M.; Kersten, Sascha R.A.; van der Ham, Aloysius G.J.; Schuur, Boelo

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  10. USE OF AN EQUILIBRIUM MODEL TO FORECAST DISSOLUTION EFFECTIVENESS, SAFETY IMPACTS, AND DOWNSTREAM PROCESSABILITY FROM OXALIC ACID AIDED SLUDGE REMOVAL IN SAVANNAH RIVER SITE HIGH LEVEL WASTE TANKS 1-15

    KETUSKY, EDWARD

    2005-01-01

    This thesis details a graduate research effort written to fulfill the Magister of Technologiae in Chemical Engineering requirements at the University of South Africa. The research evaluates the ability of equilibrium based software to forecast dissolution, evaluate safety impacts, and determine downstream processability changes associated with using oxalic acid solutions to dissolve sludge heels in Savannah River Site High Level Waste (HLW) Tanks 1-15. First, a dissolution model is constructed and validated. Coupled with a model, a material balance determines the fate of hypothetical worst-case sludge in the treatment and neutralization tanks during each chemical adjustment. Although sludge is dissolved, after neutralization more is created within HLW. An energy balance determines overpressurization and overheating to be unlikely. Corrosion induced hydrogen may overwhelm the purge ventilation. Limiting the heel volume treated/acid added and processing the solids through vitrification is preferred and should not significantly increase the number of glass canisters

  11. Synthesis and characterization of polymorphs of photoluminescent Eu(III)-(2,5-furandicarboxylic acid, oxalic acid) MOFs

    Shi, Fa-Nian; Ananias, Duarte; Yang, Ting-Hai; Rocha, João

    2013-08-01

    A novel metal organic framework (MOF) formulated as [Eu(H2O)2(fdc)(ox)0.5·(H2O)]n (1, fdc2-=2,5-furandicarboxylate, ox2-=oxalate), was hydrothermally synthesized via in situ ox2- generation from the partial decomposition of the fdc2- ligand. This material crystallizes in the monoclinic space group C2/c, unit cell parameters of 1: a=16.7570(10), b=10.5708(7), c=13.5348(14) Å, β=116.917(2)° (Z=8), and exhibits a three-dimensional (3D)-porous framework, with guest water molecules residing in the channel linking all other ligands (H2O, ox2-and fdc2-) via hydrogen bonding interactions. Compound 2 is a polymorph of 1 crystallizing in monoclinic P21/c space group. The photoluminescence properties of 1 and 2 were studied at room temperature. The spectra show the typical Eu3+ red emission and the differences observed reflects the slightly different structures of these polymorphs.

  12. Decomposition of oxalate precipitates by photochemical reaction

    Jae-Hyung Yoo; Eung-Ho Kim

    1999-01-01

    A photo-radiation method was applied to decompose oxalate precipitates so that it can be dissolved into dilute nitric acid. This work has been studied as a part of partitioning of minor actinides. Minor actinides can be recovered from high-level wastes as oxalate precipitates, but they tend to be coprecipitated together with lanthanide oxalates. This requires another partitioning step for mutual separation of actinide and lanthanide groups. In this study, therefore, some experimental work of photochemical decomposition of oxalate was carried out to prove its feasibility as a step of partitioning process. The decomposition of oxalic acid in the presence of nitric acid was performed in advance in order to understand the mechanistic behaviour of oxalate destruction, and then the decomposition of neodymium oxalate, which was chosen as a stand-in compound representing minor actinide and lanthanide oxalates, was examined. The decomposition rate of neodymium oxalate was found as 0.003 mole/hr at the conditions of 0.5 M HNO 3 and room temperature when a mercury lamp was used as a light source. (author)

  13. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    G. Cailleau

    2011-07-01

    Full Text Available An African oxalogenic tree, the iroko tree (Milicia excelsa, has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi. Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate

  14. Hygroscopic behavior and chemical composition evolution of internally mixed aerosols composed of oxalic acid and ammonium sulfate

    Wang, Xiaowei; Jing, Bo; Tan, Fang; Ma, Jiabi; Zhang, Yunhong; Ge, Maofa

    2017-10-01

    Although water uptake of aerosol particles plays an important role in the atmospheric environment, the effects of interactions between components on chemical composition and hygroscopicity of particles are still not well constrained. The hygroscopic properties and phase transformation of oxalic acid (OA) and mixed particles composed of ammonium sulfate (AS) and OA with different organic to inorganic molar ratios (OIRs) have been investigated by using confocal Raman spectroscopy. It is found that OA droplets first crystallize to form OA dihydrate at 71 % relative humidity (RH), and further lose crystalline water to convert into anhydrous OA around 5 % RH during the dehydration process. The deliquescence and efflorescence point for AS is determined to be 80.1 ± 1.5 % RH and 44.3 ± 2.5 % RH, respectively. The observed efflorescence relative humidity (ERH) for mixed OA / AS droplets with OIRs of 1 : 3, 1 : 1 and 3 : 1 is 34.4 ± 2.0, 44.3 ± 2.5 and 64.4 ± 3.0 % RH, respectively, indicating the elevated OA content appears to favor the crystallization of mixed systems at higher RH. However, the deliquescence relative humidity (DRH) of AS in mixed OA / AS particles with OIRs of 1 : 3 and 1 : 1 is observed to occur at 81.1 ± 1.5 and 77 ± 1.0 % RH, respectively. The Raman spectra of mixed OA / AS droplets indicate the formation of ammonium hydrogen oxalate (NH4HC2O4) and ammonium hydrogen sulfate (NH4HSO4) from interactions between OA and AS in aerosols during the dehydration process on the time scale of hours, which considerably influence the subsequent deliquescence behavior of internally mixed particles with different OIRs. The mixed OA / AS particles with an OIR of 3 : 1 exhibit no deliquescence transition over the RH range studied due to the considerable transformation of (NH4)2SO4 into NH4HC2O4 with a high DRH. Although the hygroscopic growth of mixed OA / AS droplets is comparable to that of AS or OA at high RH during the dehydration process, Raman growth

  15. Hygroscopic behavior and chemical composition evolution of internally mixed aerosols composed of oxalic acid and ammonium sulfate

    X. Wang

    2017-10-01

    Full Text Available Although water uptake of aerosol particles plays an important role in the atmospheric environment, the effects of interactions between components on chemical composition and hygroscopicity of particles are still not well constrained. The hygroscopic properties and phase transformation of oxalic acid (OA and mixed particles composed of ammonium sulfate (AS and OA with different organic to inorganic molar ratios (OIRs have been investigated by using confocal Raman spectroscopy. It is found that OA droplets first crystallize to form OA dihydrate at 71 % relative humidity (RH, and further lose crystalline water to convert into anhydrous OA around 5 % RH during the dehydration process. The deliquescence and efflorescence point for AS is determined to be 80.1 ± 1.5 % RH and 44.3 ± 2.5 % RH, respectively. The observed efflorescence relative humidity (ERH for mixed OA ∕ AS droplets with OIRs of 1 : 3, 1 : 1 and 3 : 1 is 34.4 ± 2.0, 44.3 ± 2.5 and 64.4 ± 3.0 % RH, respectively, indicating the elevated OA content appears to favor the crystallization of mixed systems at higher RH. However, the deliquescence relative humidity (DRH of AS in mixed OA ∕ AS particles with OIRs of 1 : 3 and 1 : 1 is observed to occur at 81.1 ± 1.5 and 77 ± 1.0 % RH, respectively. The Raman spectra of mixed OA ∕ AS droplets indicate the formation of ammonium hydrogen oxalate (NH4HC2O4 and ammonium hydrogen sulfate (NH4HSO4 from interactions between OA and AS in aerosols during the dehydration process on the time scale of hours, which considerably influence the subsequent deliquescence behavior of internally mixed particles with different OIRs. The mixed OA ∕ AS particles with an OIR of 3 : 1 exhibit no deliquescence transition over the RH range studied due to the considerable transformation of (NH42SO4 into NH4HC2O4 with a high DRH. Although the hygroscopic growth of mixed OA

  16. Zirconium-carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated Zr(IV) assembly and adsorption mechanism

    Halla, Velazquez-Jimenez Litza; Hurt Robert, H; Juan, Matos; Rene, Rangel-Mendez Jose

    2014-01-01

    When activated carbon (AC) is modified with zirconium(IV) by impregnation or precipitation, the fluoride adsorption capacity is typically improved. There is significant potential to improve these hybrid sorbent by controlling the impregnation conditions, which determine the assembly and dispersion of the Zr phases on carbon surfaces. Here, commercial activated carbon was modified with Zr(IV) together with oxalic acid (OA) used to maximize the zirconium dispersion and enhance fluoride adsorption. Adsorption experiments were carried out at pH 7 and 25 °C with a fluoride concentration of 40 mg L−1. The OA/Zr ratio was varied to determine the optimal conditions for subsequent fluoride adsorption. The data was analyzed using the Langmuir and Freundlich isotherm models. FTIR, XPS and the surface charge distribution were performed to elucidate the adsorption mechanism. Potentiometric titrations showed that the modified activated carbon (ZrOx-AC) possesses positive charge at pH lower than 7, and FTIR analysis demonstrated that zirconium ions interact mainly with carboxylic groups on the activated carbon surfaces. Moreover, XPS analysis demonstrated that Zr(IV) interacts with oxalate ions, and the fluoride adsorption mechanism is likely to involve –OH− exchange from zirconyl oxalate complexes. PMID:24359079

  17. Competitive and Cooperative Effects during Nickel Adsorption to Iron Oxides in the Presence of Oxalate

    Flynn, Elaine D. [Department of Earth and Planetary; Catalano, Jeffrey G. [Department of Earth and Planetary

    2017-08-09

    Iron oxides are ubiquitous in soils and sediments and play a critical role in the geochemical distribution of trace elements and heavy metals via adsorption and coprecipitation. The presence of organic acids may potentially alter how metals associate with iron oxide minerals through a series of cooperative or competitive processes: solution complexation, ternary surface complexation, and surface site competition. The macroscopic and molecular-scale effects of these processes were investigated for Ni adsorption to hematite and goethite at pH 7 in the presence of oxalate. The addition of this organic acid suppresses Ni uptake on both minerals. Aqueous speciation suggests that this is dominantly the result of oxalate complexing and solubilizing Ni. Comparison of the Ni surface coverage to the concentration of free (uncomplexed) Ni2+ in solution suggests that the oxalate also alters Ni adsorption affinity. EXAFS and ATR-FTIR spectroscopies indicate that these changes in binding affinity are due to the formation of Ni–oxalate ternary surface complexes. These observations demonstrate that competition between dissolved oxalate and the mineral surface for Ni overwhelms the enhancement in adsorption associated with ternary complexation. Oxalate thus largely enhances Ni mobility, thereby increasing micronutrient bioavailability and inhibiting contaminant sequestration.

  18. Extraction of cesium from acid solutions

    Katykhin, G.S.; Simonov, A.S.

    1983-01-01

    The extraction of cesium from acidic solutions is studied. Halogen-substituted carboxylic acids were chosen for the aqueous phase and nitrobenzene the diluent. The distribution coefficients are determined by the use of radioactive tracers 134 Cs and 137 Cs. It is believed that large singly charged anions of strong acids are necessary for the extraction of cesium. Metal halide acids are selected for supplying the anions

  19. Reuse of sewage sludge as a catalyst in ozonation – Efficiency for the removal of oxalic acid and the control of bromate formation

    Wen, Gang; Pan, Zhi-Hui; Ma, Jun; Liu, Zheng-Qian; Zhao, Lei; Li, Jun-Jing

    2012-01-01

    Highlights: ► Sewage sludge was converted into catalyst (SBC) and characterized. ► SBC can enhance oxalic acid degradation in ozonation. ► Surface reaction mechanism is responsible for enhancement of ozonation by SBC. ► SBC can control the formation of bromate in ozonation. ► Several combined reasons for the control of bromate formation are proposed. - Abstract: Sewage derived sludge is produced with an annual amount increase of 2% all over the world and it is an urgent issue to be addressed by human being. In the present study, sludge was converted into sludge-based catalyst (SBC) with ZnCl 2 as activation agent and characterized by several methods (e.g., scanning electron microscope, X-ray photoelectron spectroscope and Fourier transform infrared spectroscope). Then it was used as a catalyst to enhance the removal of refractory organic matter, oxalic acid, and to control the formation of bromate (BrO 3 − ) in bench semi-continuous ozonation experiments. The effects of various operating parameters on the control of BrO 3 − formation were investigated. Furthermore, the mechanism for the enhancement of organic matter removal and the control of BrO 3 − formation was discussed as well. Results indicate that the combination of SBC with ozone shows a strong synergistic effect, resulting in a notable improvement on oxalic acid removal. A crucial surface reaction mechanism for the enhancement of organic matter removal is proposed on the basis of negative effect of higher pH and no inhibition effect of tert-butanol. The control for BrO 3 − formation was demonstrated and the reason for its control in the process of O 3 /SBC is the combined effect of SBC reductive properties, ozone exposure decrease and hydrogen peroxide concentration increase.

  20. Growth of strontium oxalate crystals in agar–agar gel

    Growth of strontium oxalate crystals in agar–agar gel. P V DALAL. ∗ and K B SARAF. Postgraduate Department of Physics, Pratap College, Amalner 425 401, India. MS received 16 March 2008; revised 5 April 2010. Abstract. Single crystals of strontium oxalate have been grown by using strontium chloride and oxalic acid in.

  1. Fate of aliphatic compounds in nitric acid processing solutions

    Clark, W.E.; Howerton, W.B.

    1975-01-01

    The reaction of hyperazeotropic iodic acid-saturated nitric acid with short chain aliphatic iodides, nitrates, and acids was studied in order to determine the conditions for complete removal of organic materials from nitric acid systems. The aliphatic iodides are converted to the nitrates and the nitrates in strong HNO 3 are extensively converted into CO 2 and acids. The aliphatic acids are rather stable; acetic acid was unattacked by boiling in 20M HNO 3 and n-butyric acid was 80 percent unattacked. The dibasic acids oxalic and malonic are extensively attacked, but succinic acid is relatively stable. A wet oxidation method is successful in destroying acetic acid in 5 to 8M HNO 3 . (U.S.)

  2. Liquid waste processing from plutonium (III) oxalate precipitation

    Esteban, A.; Cassaniti, P.; Orosco, E.H.

    1990-01-01

    Plutonium (III) oxalate filtrates contain about 0.2M oxalic acid, 0.09M ascorbic acid, 0.05M hydrazine, 1M nitric acid and 20-100 mg/l of plutonium. The developed treatment of liquid wastes consist in two main steps: a) Distillation to reduce up to 10% of the initial volume and refluxing to destroy organic material. Then, the treated solution is suitable to adjust the plutonium at the tetravalent state by addition of hydrogen peroxide and the nitric molarity up to 8.6M. b) Recovery and purification of plutonium by anion exchange using two columns in series containing Dowex 1-X4 resin. With the proposed process, it is possible to transform 38 litres of filtrates with 40mg/l of Pu into 0.1 l of purified solution with 15-20g/l of Pu. This solution is suitable to be recycled in the Pu (III) oxalate precipitation process. This process has several potential advantages over similar liquid waste treatments. These include: 1) It does not increase the liquid volume. 2) It consumes only few reagents. 3) The operations involved are simple, requiring limited handling and they are feasible to automatization. 4) The Pu recovery factor is about 99%. (Author) [es

  3. Variation in oxalate and oxalate decarboxylase production by six species of brown and white rot fungi

    Hastrup, Anne Christine Steenkjær; Oliver, Jason; Howell, Caitlin

      Oxalic acid (C2O4H2), the strongest of the organic acids is produced by both brown and white rot decay fungi and has been connected to various aspects of brown- and white rot decay including the Fenton reaction (Green and Highley, 1997; Munir et al.,2001). Oxalic acid is secreted into the wood...... cell lumen where it quickly dissociates into hydrogen ions and oxalate, resulting in a pH decrease of the environment, and oxalate-cation complexes. Generally, brown rot fungi accumulate larger quantities of oxalic acid in the wood than white rot fungi. The amount of oxalic acid has been shown to vary...... of formic acid and CO2 (Makela et al., 2002). So far only a few species of brown rot fungi have been shown to accumulate this enzyme (Micales, 1995, Howell and Jellison, 2006).   The purpose of this study was to investigate the variation in the levels of soluble oxalate and total oxalate, in correlation...

  4. Influence of oxalate ligand functionalization on Co/ZSM-5 activity in Fischer Tropsch synthesis and hydrodeoxygenation of oleic acid into hydrocarbon fuels.

    Ayodele, Olumide Bolarinwa

    2017-08-30

    Achieving high degree of active metal dispersions at the highest possible metal loading and high reducibility of the metal remains a challenge in Fischer Tropsch synthesis (FTS) as well as in hydrogeoxygenation (HDO).This study therefore reports the influence of oxalic acid (OxA) functionalization on the metal dispersion, reducibility and activity of Co supported ZSM-5 catalyst in FTS and HDO of oleic acid into paraffin biofuel. The Brunauer-Emmett-Teller (BET) results showed that cobalt oxalate supported ZSM-5 catalyst (CoOx/ZSM-5) synthesized from the incorporation of freshly prepared cobalt oxalate complex into ZSM-5 displayed increase in surface area, pore volume and average pore size while the nonfunctionalized cobalt supported on ZSM-5 (Co/ZSM-5) catalyst showed reduction in those properties. Furthermore, both XRD and XPS confirmed the presence of Co° formed from the decomposition of CoOx during calcination of CoOx/ZSM-5 under inert atmosphere. The HRTEM showed that Co species average particle sizes were smaller in CoOx/ZSM-5 than in Co/ZSM-5, and in addition, CoOx/ZSM-5 shows a clear higher degree of active metal dispersion. The FTS result showed that at CO conversion over Co/ZSM-5 and CoOx/ZSM-5 catalysts were 74.28% and 94.23% and their selectivity to C 5+ HC production were 63.15% and 75.4%, respectively at 4 h TOS. The HDO result also showed that the CoOx/ZSM-5 has higher OA conversion of 92% compared to 59% over Co/ZSM-5. In addition CoOx/ZSM-5 showed higher HDO and isomerization activities compared to Co/ZSM-5.

  5. The production of rare earth elements group via tributyl phosphate extraction and precipitation stripping using oxalic acid

    Jorjani, Esmaeil; Shahbazi, Malek

    2016-01-01

    In this study, solvent extraction and precipitation stripping were used to produce rare earth elements (REEs). Tributyl phosphate (TBP) was used to extract yttrium, lanthanum, cerium, and neodymium from an aqueous solution produced by nitric acid leaching of apatite concentrate. In the extraction stage, the effects of TBP concentration, pH, contact time, temperature, and phase ratio were investigated. The results show that about 95%, 90%, 87% and 80% of neodymium, cerium, lanthanum, and yttri...

  6. Structural diversity of the lanthanide oxalates: Condensation of neodymium oxygen polyhedra under hydrothermal conditions

    Mer, A.; Rivenet, M.; Abraham, F.; De Almeida, L.; Grandjean, S.

    2013-01-01

    New neodymium hydroxo-oxalate and oxalate [Nd 6 (H 2 O) 6 (C 2 O 4 ) 7 (OH) 4 ].4H 2 O (1) and [Nd 2 (H 2 O) 4 (C 2 O 4 ) 3 ].2H 2 O (2) were synthesized by hydrothermal reaction at 150 C between neodymium nitrate and oxalic acid solutions at pH = 10-11 obtained by adding various monoamines. The structures were determined from single-crystal X-ray diffraction data. The two compounds crystallize in the monoclinic system with space group P21/c and a = 17.4384 (11), b = 8.1717 (5), c = 12.9929 (7), β = 94.66 (1) degrees, V = 1845.38 (19) (Angstroms) 3 , Z = 2 for 1 and a = 9.8249 (2) Angstroms, b = 8.2487 (2) Angstroms, c = 10.1911 (3) Angstroms, β = 99.09 (1), V = 815.53 (4) (Angstroms) 3 , Z = 2 for 2. Full matrix least-squares refinement yielded R1 = 0.0365 and 0.0267 for 6033 and 3382 independent reflections for 1 and 2 respectively. In 2, the three-dimensional neodymium oxalate arrangement results from dimeric units of edge shared NdO 9 polyhedra connected through oxalate ions acting as bis-bidentate. In 1, the neodymium atoms are connected through μ2-OH and μ3-OH ions to form a hexa-nuclear inorganic core [Nd 6 (OH) 4 (H 2 O) 6 ] with an un-precedently reported geometry leading to a hexa-nuclear polyhedra block. The blocks are connected through an O-O bridge involving two oxygen atoms of two oxalate ions to build a centipede-like ribbon. The ribbons are further connected through oxalate ions to form a three dimensional neodymium oxalate arrangement. In 1, oxalates adopt four distinct bridging modes of coordination, μ2, μ3, μ4 and μ5. (authors)

  7. Synthesis and structural characterisation of mixed An(IV)-An(III) actinide oxalates used as precursors for dedicated fuel or target

    Tamain, Christelle; Grandjean, Stephane; Arab Chapelet, Benedicte; Abraham, Francis

    2010-01-01

    Oxalic co-conversion process plays an important role by producing mixed-actinide compounds used as starting materials as they are particularly suitable precursors of actinide oxide solid solutions. In these oxalate compounds, a mixed crystallographic site which accommodates both elements in spite of their different oxidation states has been established. The charge compensation is ensured by monovalent cations present in the acidic solution. This communication reviews the various mixed-actinide oxalates obtained by crystallization from acidic solution. First, crystallographic structures determined by X-ray diffraction from single crystals are described. Then completing data obtained by powder X-ray diffraction are presented on various systems. The different supramolecular arrangements underline the complexity of An(IV)-An(III)/Ln(III) oxalate system and the need to pursue studies on single crystals. (authors)

  8. Study of the influence of the citric and oxalic acid in the uranyl sorption in ZrP2O7 for their use in contention barriers

    Garcia G, N.

    2009-01-01

    Countries which produce electricity by nuclear means, such as Mexico, need to develop a technology for that at long term safe containment of nuclear waste that are produced in nuclear power plants, for now, the arrangement of these is made by international companies, as which is extremely expensive. The most accepted proposal for the containment of radioactive waste is the Deep Geological Repository (DGR), which consists of a number of natural barriers and of engineering barriers. Currently, barriers to engineering and materials that the make up are still under study, because must meet a series of structural criteria and chemical such as high insolubility, thermal and chemical stability with ionizing radiation. The surface must have adsorbed features of ions and organic compounds dissolved in infiltration water that could penetrate for a crack in the DGR. This study focuses, as first stage, is the uranyl sorption on zirconium diphosphate in various conditions of time, concentration and ph, then evaluates the influence of citric acid and oxalic acid on the sorption of uranyl on ZrP 2 O 7 , in order to model the behaviour of alpha emitters that are dissolved by percolating water laden with salts and organic matter, that infiltrates might during catastrophic events in the DGR. It was confirmed the purity of the zirconium diphosphate because it was synthesized from sea sand with the physicochemical characterization and superficial. The proposed methodology included elemental analysis by neutron activation and X-ray emission induced by charged particles, functional group analysis with infrared spectroscopy, morphology with scanning electron microscopy, crystallinity with transmission electron microscopy and X-ray diffraction. For properties surface was determined, the specific area using Bet multipoint technique, acidity constants in the FITEQL 4.0 program, the hydration time was obtained from literature, the point of zero charge was identified with a mass titration and

  9. Decomposition of oxalate precipitates by photochemical reaction

    Yoo, J.H.; Kim, E.H.

    1998-01-01

    A photo-radiation method was applied to decompose oxalate precipitates so that it can be dissolved into dilute nitric acid. This work has been studied as a part of partitioning of minor actinides. Minor actinides can be recovered from high-level wastes as oxalate precipitates, but they tend to be coprecipitated together with lanthanide oxalates. This requires another partitioning step for mutual separation of actinide and lanthanide groups. In this study, therefore, the photochemical decomposition mechanism of oxalates in the presence of nitric acid was elucidated by experimental work. The decomposition of oxalates was proved to be dominated by the reaction with hydroxyl radical generated from the nitric acid, rather than with nitrite ion also formed from nitrate ion. The decomposition rate of neodymium oxalate, which was chosen as a stand-in compound representing minor actinide and lanthanide oxalates, was found to be 0.003 M/hr at the conditions of 0.5 M HNO 3 and room temperature when a mercury lamp was used as a light source. (author)

  10. Effect of integration of oxalic acid and hot water treatments on postharvest quality of rambutan (Nephelium lappaceum L. cv. Anak Sekolah) under modified atmosphere packaging.

    Hafiz, Ahmad Faiz Ahmad; Keat, Yeoh Wei; Ali, Asgar

    2017-06-01

    The shelf life of rambutan is often limited due to rapid water loss from the spinterns and browning of the pericarp. An integrated approach, which combined hot water treatment (HWT) (56 °C for 1 min), oxalic acid (OA) dip (10% for 10 min) and modified atmosphere packaging (MAP), was used to study their effectiveness on the quality of rambutan during storage (10 °C, 90-95% relative humidity). Significant differences were observed in rambutan quality with the combination of MAP + HWT + OA after 20 days of storage. This treatment combination resulted into better retention of firmness and colour (L and a* values) than in the control. Change in the total soluble solid content was significantly delayed however the titratable acidity showed no significant change in comparison to the control at the end of storage.

  11. Volumetric properties of itaconic acid aqueous solutions

    Nisenbaum, Alexander; Apelblat, Alexander; Manzurola, Emanuel

    2012-01-01

    Highlights: ► Densities of itaconic acid aqueous solutions in a wide range of concentrations and temperatures. ► The apparent molar volumes and the cubic expansion coefficients. ► The derivatives of isobaric heat capacities with respect to pressure. ► Changes in the structure of water when itaconic acid is dissolved. - Abstract: Densities of itaconic acid aqueous solutions were measured at 5 K intervals from T = (278.15 to 343.15) K. From the determined densities, the apparent molar volumes, the cubic expansion coefficients and the second derivatives of volume with respect to temperature which are interrelated with the derivatives of isobaric heat capacities with respect to pressure were evaluated. These derivatives were qualitatively correlated with the changes in the structure of water when itaconic acid is dissolved in it.

  12. Study of the temperature influence during the uranium (Vi) sorption on surface of ZrP{sub 2}O{sub 7} in presence of oxalic and salicylic acid; Estudio de la influencia de la temperatura durante la sorcion de uranio (VI) en la superficie del ZrP{sub 2}O{sub 7} en presencia de acidos oxalico y salicilico

    Garcia G, N.

    2013-07-01

    This work studies the effect of temperature on the uranium (Vi) sorption onto zirconium diphosphate in the presence of organic acids (oxalic and salicylic acids). Zirconium diphosphate was synthesized by a chemical condensation reaction and characterized using several analytical techniques, in order to check its purity. This point is very important because the presence of any impurities or secondary phases may interfere with the hydration and sorption process. Prior to the sorption experiments, three batches of zirconium diphosphate were pre-equilibrated with NaClO{sub 4}, oxalic acid or salicylic acid solutions. The hydrated solids were washed and dried and then again characterized in order to study the interactions between organic acids and zirconium diphosphate surface. Uranium sorption onto zirconium diphosphate (pre-equilibrated with NaClO{sub 4}, oxalic acid and salicylic acid solutions) was investigated as a function of ph, organic acid and temperature (20, 40 y 60 grades C). Thermodynamic parameters for the sorption reactions (enthalpy change, entropy change and Gibbs free energy change) were determined from temperature dependence of distribution coefficient by using the Vant Hoff equation. Solids characterization after hydration shows that exist an interaction between organic acids and ZrP{sub 2}O{sub 7}. This fact was confirmed with the microcalorimetry study, the reaction heat for hydration of zirconium diphosphate in NaClO{sub 4} solution was exothermic (-269.59 mJ) and for hydration of zirconium diphosphate in oxalic acid solution was endothermic (53.64 mJ). The experimental results showed important differences in the sorption mechanisms for the reaction of Uranium with ZrP{sub 2}O{sub 7} in the presence and absence of organic acids. For the zirconium diphosphate hydrated with oxalic acid, the sorption percentage was 50% from lowest ph values. For the zirconium diphosphate hydrated with salicylic acid, the initial concentration of uranium was 6 x 10

  13. Waste Treatment of Acidic Solutions from the Dissolution of Irradiated LEU Targets for 99-Mo Production

    Bakel, Allen J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Conner, Cliff [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-10-01

    One of the missions of the Reduced Enrichment for Research and Test Reactors (RERTR) program (and now the National Nuclear Security Administrations Material Management and Minimization program) is to facilitate the use of low enriched uranium (LEU) targets for 99Mo production. The conversion from highly enriched uranium (HEU) to LEU targets will require five to six times more uranium to produce an equivalent amount of 99Mo. The work discussed here addresses the technical challenges encountered in the treatment of uranyl nitrate hexahydrate (UNH)/nitric acid solutions remaining after the dissolution of LEU targets. Specifically, the focus of this work is the calcination of the uranium waste from 99Mo production using LEU foil targets and the Modified Cintichem Process. Work with our calciner system showed that high furnace temperature, a large vent tube, and a mechanical shield are beneficial for calciner operation. One- and two-step direct calcination processes were evaluated. The high-temperature one-step process led to contamination of the calciner system. The two-step direct calcination process operated stably and resulted in a relatively large amount of material in the calciner cup. Chemically assisted calcination using peroxide was rejected for further work due to the difficulty in handling the products. Chemically assisted calcination using formic acid was rejected due to unstable operation. Chemically assisted calcination using oxalic acid was recommended, although a better understanding of its chemistry is needed. Overall, this work showed that the two-step direct calcination and the in-cup oxalic acid processes are the best approaches for the treatment of the UNH/nitric acid waste solutions remaining from dissolution of LEU targets for 99Mo production.

  14. Influence of additives on the structure and microstructure of lanthanides and actinides oxalates

    Haidon, Blaise; Vitart, Anne-Lise; Rivenet, Murielle; Arab-Chapelet, Benedicte; Roussel, Pascal; Delahaye, Thibaud; Grandjean, Stephane; Abraham, Francis

    2015-07-01

    Oxalic conversion is a well-known process in the nuclear industry where it is used for precipitating plutonium as an oxalate thereafter calcinated into an oxide. As there is a strong relationship between the morphology of the oxalate precursor and that of the resulting oxide, it is of interest to control the oxalate structure and microstructure during the precipitation step. The influence of additives on the precipitation of neodymium (III) oxalates, non-radioactive analogs of actinides (III) oxalates, was explored. With the use of nitrilotri-methylphosphonic acid (NTMP), the structure and microstructure of the neodymium oxalates are different from that obtained without additive. (authors)

  15. Preparation and thermal characterization of oxalic acid dihydrate/bentonite composite as shape-stabilized phase change materials for thermal energy storage

    Han, Lipeng; Xie, Shaolei; Sun, Jinhe; Jia, Yongzhong

    2017-03-01

    Oxalic acid dihydrate (OAD) which has very high initial phase transition enthalpy is a promising phase change material (PCM). In this paper, shape-stabilized composite PCMs composed of OAD and bentonite were prepared by a facile blending method to overcome the problem of leakage. FT-IR results indicated the interactions between OAD and bentonite, such as the capillary force and the hydrogen bonding, resulting in the confined crystallization process. As a result, the OAD was confined to be amorphous. The thermogravimetric analysis and scanning electron microscope results showed that sample had the best coating effect when the amount of bentonite was 17.7%. The differential scanning calorimetry analyses demonstrated that a decrease in the OAD content was accompanied by a continuous decrease in the melting point and phase change enthalpy of the composites.

  16. Reference values for urinary oxalate, calcium, citrate, uric acid, phosphate, magnesium, sulphate and sodium in biochemistry students at Universidad Nacional del Litoral, Argentina

    Verónica Fernández

    2017-10-01

    Full Text Available Introduction: Urolithiasis (UL is a common disease whose incidence increased in the last quarter of the twentieth century. Metabolic evaluation is necessary for diagnosis, which requires the establishment of reference values (RV for the population in question. Objective: To determine the RV for calcium, oxalate, citrate, uric acid, phosphate, magnesium, sulphate and sodium in 24-hour urine belonging to students from the School of Biochemistry and Biological Sciences at Universidad Nacional del Litoral, province of Santa Fe, Argentina. Once RV were established, a frequency of alterations was determined and then compared with literature data. Methods: The NCCLSC28-A3 guideline (2008 was used. The study group included 69 students. The enzymatic colorimetric method, a Metrolab 1600 plus spectrophotometer and a DIESTRO ionselective electrode were also employed. Results: The RV found (95 % CI were the following: oxalate, 1.96-45.08; calcium, 20.65-250.74; citrate, 112.78-666.01; uric acid, 58.73-782.17; phosphate, 238.37-1051.44; magnesium, 28.7-146.67, all these values expressed as mg/24h; sulphate, 3.15-25.18 mmol/24h, and sodium, 42.81-285.3 mEq/24h. These findings emerged as well: hyperoxaluria, 3 %; hypercalciuria 12 %; hypocitraturia, 3 %; hyperuricosuria, 6 %; hyperphosphaturia, 6 %; hypomagnesuria, 6 %; hypernatriuria, 7 %, and hypersulphaturia, 0 %. When RV were compared, some analyte levels were similar and others showed a considerable difference. Conclusions: The diagnosis of UL through the study of metabolic changes is different according to the reference value used. Applying reference values established for other populations, including those of commercial kits manufacturers, may lead to a diagnosis which does not match the clinical condition of the patient.

  17. [Clinical, laboratory, and functional characteristic of patients with bronchial asthma and chronic obstructive pulmonary disease with disturbances of oxalic acid metabolism].

    Shaĭlieva, L O; Fedoseev, G B; Zorina, M L; Petrova, M A; Trofimov, V I; Kakliugin, A P

    2013-01-01

    We studied the role of oxalate release through the airways as a potential injurious factor in the development of inflammation, bronchial obstruction and cough syndrome (respiratory oxalosis). Detection of oxalates in bronhcoalveolar lavage fluid and daily urine is the most valuable method for diagnostics of oxalates. Systemic effects, such as cholelithiasis, urolithiasis, and spinal osteochondrosis are characteristic clinical signs of respiratory oxalosis, besides purely respiratory symptoms.

  18. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  19. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions.

    Christopher Ash

    Full Text Available Shredded card (SC was assessed for use as a sorbent of potentially toxic elements (PTE carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water. We further assessed SC for retention of PTE, using acidified water (pH 3.4. Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49 were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC. In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC. In water, only Pb showed high sorption (191x more Pb in leachate without SC. In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil, and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC. A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption. SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing.

  20. Process for iron separation from an organic solution containing uranium

    Textoris, A.; Lyaudet, G.; Bathelier, A.

    1987-01-01

    Iron is separated from an organic solution of U and Fe in a phosphine oxide and an acid organic phosphorus compound by reaction on oxalic acid or a mixture of sulfuric and phosphoric acid or phosphoric acid. Uranium stays in the initial organic solution and iron is transferred to the aqueous phase [fr

  1. Oxalate metal complexes in aerosol particles: implications for the hygroscopicity of oxalate-containing particles

    T. Furukawa

    2011-05-01

    Full Text Available Atmospheric aerosols have both a direct and an indirect cooling effect that influences the radiative balance at the Earth's surface. It has been estimated that the degree of cooling is large enough to weaken the warming effect of carbon dioxide. Among the cooling factors, secondary organic aerosols (SOA play an important role in the solar radiation balance in the troposphere as SOA can act as cloud condensation nuclei (CCN and extend the lifespan of clouds because of their high hygroscopic and water soluble nature. Oxalic acid is an important component of SOA, and is produced via several formation pathways in the atmosphere. However, it is not certain whether oxalic acid exists as free oxalic acid or as metal oxalate complexes in aerosols, although there is a marked difference in their solubility in water and their hygroscopicity. We employed X-ray absorption fine structure spectroscopy to characterize the calcium (Ca and zinc (Zn in aerosols collected at Tsukuba in Japan. Size-fractionated aerosol samples were collected for this purpose using an impactor aerosol sampler. It was shown that 10–60% and 20–100% of the total Ca and Zn in the finer particles (<2.1 μm were present as Ca and Zn oxalate complexes, respectively. Oxalic acid is hygroscopic and can thus increase the CCN activity of aerosol particles, while complexes with various polyvalent metal ions such as Ca and Zn are not hygroscopic, which cannot contribute to the increase of the CCN activity of aerosols. Based on the concentrations of noncomplexed and metal-complexed oxalate species, we found that most of the oxalic acid is present as metal oxalate complexes in the aerosols, suggesting that oxalic acid does not always increase the hygroscopicity of aerosols in the atmosphere. Similar results are expected for other dicarboxylic acids, such as malonic and succinic acids. Thus, it is advisable that the cooling effect of organic aerosols should be estimated by including the

  2. Radiolysis of concentrated nitric acid solutions

    Nagaishi, R.; Jiang, P.Y.; Katsumura, Y.; Domae, M.; Ishigure, K.

    1995-01-01

    A study on electron pulse- and 60 Co γ-radiolysis of concentrated nitric acid and nitrate solutions has been carried out to elucidate the radiation induced reactions taking place in the solutions. Dissociation into NO 2 - and O( 3 P) was proposed as a direct action of the radiation on nitrate and gave the G-values were dependent on the chemical forms of nitrate: g s2 (-NO 3 - )=1.6 and g s2 (-HNO 3 )=2.2 (molecules/100eV). Based on the experimental yields of HNO 2 and reduced Ce IV , the primary yields of radiolysis products of water, g w , were evaluated to clarify the effects of nitrate on spur reactions of water in various nitrate solutions. (author)

  3. Acute oxalate nephropathy caused by ethylene glycol poisoning

    Jung Woong Seo

    2012-12-01

    Full Text Available Ethylene glycol (EG is a sweet-tasting, odorless organic solvent found in many agents, such as anti-freeze. EG is composed of four organic acids: glycoaldehyde, glycolic acid, glyoxylic acid and oxalic acid in vivo. These metabolites are cellular toxins that can cause cardio-pulmonary failure, life-threatening metabolic acidosis, central nervous system depression, and kidney injury. Oxalic acid is the end product of EG, which can precipitate to crystals of calcium oxalate monohydrate in the tubular lumen and has been linked to acute kidney injury. We report a case of EG-induced oxalate nephropathy, with the diagnosis confirmed by kidney biopsy, which showed acute tubular injury of the kidneys with extensive intracellular and intraluminal calcium oxalate monohydrate crystal depositions.

  4. Acidities of Water and Methanol in Aqueous Solution and DMSO

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  5. X-ray studies on crystalline complexes involving amino acids and peptides. XXXII. Effect of chirality on ionisation state, stoichiometry and aggregation in the complexes of oxalic acid with DL- and L-lysine.

    Venkatraman, J; Prabu, M M; Vijayan, M

    1997-08-01

    Crystals of the oxalic acid complex of DL-lysine (triclinic P1; a = 5.540(1), b = 10.764(2), c = 12.056(2) A, alpha = 77.8(1), beta = 80.6(1), gamma = 75.6(1).; R = 4.7% for 2023 observed reflections) contain lysine and semioxalate ions in the 1:1 ratio, whereas the ratio of lysine and semioxalate/oxalate ions is 2:3 in the crystals of the L-lysine complex (monoclinic P2(1); alpha = 4.906(1), b = 20.145(4), c = 12.455(1) A, beta = 92.5(1).; R = 4.4% for 1494 observed reflections). The amino acid molecule in the L-lysine complex has an unusual ionisation state with positively charged alpha- and side-chain amino groups and a neutral carboxyl group. The unlike molecules aggregate into separate alternating layers in the DL-lysine complex in a manner similar to that observed in several of the amino acid complexes. The L-lysine complex exhibits a new aggregation pattern which cannot be easily explained in terms of planar features, thus emphasizing the fundamental dependence of aggregation on molecular characteristics. Despite the differences in stoichiometry, ionisation state and long-range aggregation patterns, the basic element of aggregation in the two complexes exhibits considerable similarity.

  6. Enhanced Chemical Cleaning: Effectiveness Of The UV Lamp To Decompose Oxalates

    Ketusky, E.; Huff, T.; Sudduth, C.

    2010-01-01

    Enhanced Chemical Cleaning is a new process scheduled to begin cleaning Savannah River Site High Level Waste Tanks in 2012. It is an improvement over the current chemical cleaning method, in that it minimizes downstream impacts on the High Level Waste System. It is based on a state of the art scale removal process used on the secondary side of nuclear power plants, with modifications to accommodate the unique constraints created by the tanks. Both Enhanced Chemical Cleaning and the scale removal process are founded on dissolving metal oxides/hydroxides using oxalic acid, with subsequent oxalate decomposition via hydroxylation using ozone or peroxide, and UV light as a catalyst. A divergence Enhanced Chemical Cleaning has from nuclear power scale removal is the significantly increased solids concentration during oxalate decomposition. These solids can limit the ability of the UV light to create hydroxyl radicals, either by limiting the ability of the light to penetrate through the solution, or by increasing the fouling rate on the UV light. Both will decrease the overall catalytic effectiveness, thereby decreasing the concentration of formed hydroxyl radicals. The hydroxyl radicals are the driving force behind the oxalate decomposition. To understand the impact of increased solids, testing was performed using a medium pressure UV light inside an ozone supplied Oxalate Decomposition Reactor. Using a dissolved metal sludge simulant with an initial oxalate concentration greater than 12,000 ppm, and an initial pH of about 2.0, the spent acid solution was recirculated through the reactor, while the UV light was allowed to foul. For the first few hours, the oxalate decomposition rate was about 1,300 ppm/hour. After about 3 hours, enough time for the UV lamp to foul, the oxalate decomposition rate decreased to about 500 ppm/hour. The decomposition rate then remained roughly constant for the next 16 hours. Overall, testing showed that the oxalate destruction rate decreased

  7. ENHANCED CHEMICAL CLEANING: EFFECTIVENESS OF THE UV LAMP TO DECOMPOSE OXALATES

    Ketusky, E.; Huff, T.; Sudduth, C.

    2010-01-19

    Enhanced Chemical Cleaning is a new process scheduled to begin cleaning Savannah River Site High Level Waste Tanks in 2012. It is an improvement over the current chemical cleaning method, in that it minimizes downstream impacts on the High Level Waste System. It is based on a state of the art scale removal process used on the secondary side of nuclear power plants, with modifications to accommodate the unique constraints created by the tanks. Both Enhanced Chemical Cleaning and the scale removal process are founded on dissolving metal oxides/hydroxides using oxalic acid, with subsequent oxalate decomposition via hydroxylation using ozone or peroxide, and UV light as a catalyst. A divergence Enhanced Chemical Cleaning has from nuclear power scale removal is the significantly increased solids concentration during oxalate decomposition. These solids can limit the ability of the UV light to create hydroxyl radicals, either by limiting the ability of the light to penetrate through the solution, or by increasing the fouling rate on the UV light. Both will decrease the overall catalytic effectiveness, thereby decreasing the concentration of formed hydroxyl radicals. The hydroxyl radicals are the driving force behind the oxalate decomposition. To understand the impact of increased solids, testing was performed using a medium pressure UV light inside an ozone supplied Oxalate Decomposition Reactor. Using a dissolved metal sludge simulant with an initial oxalate concentration greater than 12,000 ppm, and an initial pH of about 2.0, the spent acid solution was recirculated through the reactor, while the UV light was allowed to foul. For the first few hours, the oxalate decomposition rate was about 1,300 ppm/hour. After about 3 hours, enough time for the UV lamp to foul, the oxalate decomposition rate decreased to about 500 ppm/hour. The decomposition rate then remained roughly constant for the next 16 hours. Overall, testing showed that the oxalate destruction rate decreased

  8. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols

    L. Xing

    2013-04-01

    Full Text Available We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 year-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13 and spatially-invariant due to vigorous photochemistry and secondary organic aerosol (OA production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18 was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07 than in southern cities (1.65 ± 0.15. This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matter constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We report, for the first time, a high regional correlation between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011. We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic properties of aerosol dicarboxylic acids.

  9. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols

    Xing, L.; Fu, T.-M.; Cao, J. J.; Lee, S. C.; Wang, G. H.; Ho, K. F.; Cheng, M.-C.; You, C.-F.; Wang, T. J.

    2013-04-01

    We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios) in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 year-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13) and spatially-invariant due to vigorous photochemistry and secondary organic aerosol (OA) production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18) was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07) than in southern cities (1.65 ± 0.15). This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matter constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We report, for the first time, a high regional correlation between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011). We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic properties of aerosol dicarboxylic acids.

  10. The effects of combined catalysis of oxalic acid and seawater on the kinetics of xylose and arabinose dehydration to furfural

    Hongsiri, W.; Danon, B.; De Jong, W.

    2014-01-01

    It is known that both acids and salts have a positive catalytic effect on the dehydration of pentoses to form furfural, a potentially attractive platform chemical. In this study the effects of the combined usage of an organic acid, instead of stronger mineral acids, and a saline catalyst is

  11. Arthritis associated with calcium oxalate crystals in an anephric patient treated with peritoneal dialysis

    Rosenthal, A.; Ryan, L.M.; McCarty, D.J.

    1988-01-01

    The authors report a case of calcium oxalate arthropathy in a woman undergoing intermittent peritoneal dialysis who was not receiving pharmacologic doses of ascorbic acid. She developed acute arthritis, with calcium oxalate crystals in Heberden's and Bouchard's nodes, a phenomenon previously described in gout. Intermittent peritoneal dialysis may be less efficient than hemodialysis in clearing oxalate, and physicians should now consider calcium oxalate-associated arthritis in patients undergoing peritoneal dialysis who are not receiving large doses of ascorbic acid

  12. Reactive solute transport in acidic streams

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  13. Uranyl fluoride luminescence in acidic aqueous solutions

    Beitz, J.V.; Williams, C.W.

    1996-01-01

    Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 ± 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO 4 at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO 2 F 2 . Studies on the effect of added LiNO 3 or Na 2 WO 4 ·2H 2 O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF 6 content of WF 6 gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF 6

  14. Structure, morphology, and cathode performance of Li{sub 1-x}[Ni{sub 0.5}Mn{sub 1.5}]O{sub 4} prepared by coprecipitation with oxalic acid

    Liu, Dongqiang; Han, Jiantao; Goodenough, John B. [Texas Materials Institute, ETC 9.184, University of Texas at Austin, 1 University Station, C2200, Austin, TX 78712 (United States)

    2010-05-01

    The cathode materials Li{sub 1-x}[Ni{sub 0.5}Mn{sub 1.5}]O{sub 4} prepared by coprecipitation from acetate solution by oxalic acid and annealing at 900 C in air had the preferred disordered Ni and Mn on the 16d octahedral sites of a spinel Fd anti 3m structure. The coprecipitation method provides better crystallinity than the Fd anti 3m phase previously obtained by quenching from the melt. Polycrystalline octahedral-shaped particles with smooth surfaces contained trace amounts of a Li{sub y}Ni{sub 1-y}O impurity that introduced some Mn(III) into the spinel phase. Half-cells cycled at 0.2 C rate between 3.5 and 4.8 V versus Li exhibited a flat voltage V {approx} 4.7 V with a small step at x {approx} 0.5 and a capacity at room temperature of 130 mAh g{sup -1} that showed no fade after 50 cycles. A small capacity fade was initiated with a cut-off voltage {>=}4.9 V; a significant capacity loss between 2 and 5 C cycling rates was reversible to 134 mAh g{sup -1} on returning to 0.1 C after 50 cycles at 10 C between 3.5 and 5.0 V. (author)

  15. Hydrothermal synthesis of uranyl squarates and squarate-oxalates: hydrolysis trends and in situ oxalate formation.

    Rowland, Clare E; Cahill, Christopher L

    2010-07-19

    We report the synthesis of two uranyl squarates and two mixed-ligand uranyl squarate-oxalates from aqueous solutions under hydrothermal conditions. These products exhibit a range of uranyl building units from squarates with monomers in (UO(2))(2)(C(4)O(4))(5).6NH(4).4H(2)O (1; a = 16.731(17) A, b = 7.280(8) A, c = 15.872(16) A, beta = 113.294(16) degrees , monoclinic, P2(1)/c) and chains in (UO(2))(2)(OH)(2)(H(2)O)(2)(C(4)O(4)) (2; a = 12.909(5) A, b = 8.400(3) A, c = 10.322(4) A, beta = 100.056(7) degrees , monoclinic, C2/c) to two squarate-oxalate polymorphs with dimers in (UO(2))(2)(OH)(C(4)O(4))(C(2)O(4)).NH(4).H(2)O (3; a = 9.0601(7) A, b = 15.7299(12) A, c = 10.5108(8) A, beta = 106.394(1) degrees , monoclinic, P2(1)/n; and 4; a = 8.4469(6) A, b = 7.7589(5) A, c = 10.5257(7) A, beta = 105.696(1) degrees , monoclinic, P2(1)/m). The dominance at low pH of monomeric species and the increasing occurrence of oligomeric species with increasing pH suggests that uranyl hydrolysis, mUO(2)(2+) + nH(2)O right harpoon over left harpoon [(UO(2))(m)(OH)(n)](2m-n) + nH(+), has a significant role in the identity of the inorganic building unit. Additional factors that influence product assembly include in situ hydrolysis of squaric acid to oxalic acid, dynamic metal to ligand concentration, and additional binding modes resulting from the introduction of oxalate anions. These points and the effects of uranyl hydrolysis with changing pH are discussed in the context of the compounds presented herein.

  16. Colorimetric sensing of oxalate based on its inhibitory effect on the reaction of Fe (III) with curcumin nanoparticles

    Pourreza, Nahid; Lotfizadeh, Neda; Golmohammadi, Hamed

    2018-03-01

    In this research, a new colorimetric method for the determination of oxalate using curcumin nanoparticles (CURNs) in the presence Fe (III) is introduced. The method is based on the inhibitory effect of oxalate ion on the reaction of (CURNs) with Fe (III) in acidic media. This reaction was monitored by measuring the increase in absorbance of CURNs-Fe3 + complex in the presence of oxalate ion at 427 nm. The effect of different parameters such as the pH of the sample solution, concentration of Fe (III), concentration of CURNs and the reaction time was examined and optimized. Under optimum experimental conditions, the absorption intensity was linear with the concentration of oxalate in the range of 0.15 to 1.70 μg mL- 1. The limit of detection (LOD) was 0.077 μg mL- 1 and the relative standard deviations (RSD) for 8 replicate measurements of 0.40 and 1.05 μg mL- 1 of oxalate were 4.20% and 2.74%, respectively. The developed method was successfully employed to the determination of oxalate in water, food and urine samples with satisfactory results.

  17. Containment of Nitric Acid Solutions of Plutonium-238

    Reimus, M.A.H.; Silver, G.L.; Pansoy-Hjelvik, L.; Ramsey, K.

    1999-01-01

    The corrosion of various metals that could be used to contain nitric acid solutions of Pu-238 has been studied. Tantalum and tantalum/2.5% tungsten resisted the test solvent better than 304L stainless steel and several INCONEL alloys. The solvent used to imitate nitric acid solutions of Pu-238 contained 70% nitric acid, hydrofluoric acid, and ammonium hexanitratocerate

  18. Solubility of Plutonium (IV) Oxalate During Americium/Curium Pretreatment

    Rudisill, T.S.

    1999-01-01

    Approximately 15,000 L of solution containing isotopes of americium and curium (Am/Cm) will undergo stabilization by vitrification at the Savannah River Site (SRS). Prior to vitrification, an in-tank pretreatment will be used to remove metal impurities from the solution using an oxalate precipitation process. Material balance calculations for this process, based on solubility data in pure nitric acid, predict approximately 80 percent of the plutonium in the solution will be lost to waste. Due to the uncertainty associated with the plutonium losses during processing, solubility experiments were performed to measure the recovery of plutonium during pretreatment and a subsequent precipitation process to prepare a slurry feed for a batch melter. A good estimate of the plutonium content of the glass is required for planning the shipment of the vitrified Am/Cm product to Oak Ridge National Laboratory (ORNL).The plutonium solubility in the oxalate precipitation supernate during pretreatment was 10 mg/mL at 35 degrees C. In two subsequent washes with a 0.25M oxalic acid/0.5M nitric acid solution, the solubility dropped to less than 5 mg/mL. During the precipitation and washing steps, lanthanide fission products in the solution were mostly insoluble. Uranium, and alkali, alkaline earth, and transition metal impurities were soluble as expected. An elemental material balance for plutonium showed that greater than 94 percent of the plutonium was recovered in the dissolved precipitate. The recovery of the lanthanide elements was generally 94 percent or higher except for the more soluble lanthanum. The recovery of soluble metal impurities from the precipitate slurry ranged from 15 to 22 percent. Theoretically, 16 percent of the soluble oxalates should have been present in the dissolved slurry based on the dilution effects and volumes of supernate and wash solutions removed. A trace level material balance showed greater than 97 percent recovery of americium-241 (from the beta dec

  19. Advanced Oxidation: Oxalate Decomposition Testing With Ozone

    Ketusky, E.; Subramanian, K.

    2012-01-01

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing

  20. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration

  1. Stability-indicating RP-HPLC method for the simultaneous determination of escitalopram oxalate and clonazepam.

    Kakde, Rajendra B; Satone, Dinesh D; Gadapayale, Kamalesh K; Kakde, Megha G

    2013-07-01

    The objective of the current study was to develop a validated, specific stability-indicating reversed-phase liquid chromatographic (LC) method for the quantitative determination of escitalopram oxalate and clonazepam and their related substances in bulk drugs and pharmaceutical dosage forms in the presence of degradation products. Forced degradation studies were performed on the pure drugs of escitalopram oxalate and clonazepam, as per the stress conditions prescribed by the International Conference on Harmonization (ICH) using acid, base, oxidation, thermal stress and photolytic degradation to show the stability-indicating power of the method. Significant degradation was observed during acid and alkaline hydrolysis and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from forced degradation studies. Good resolution between the peaks corresponded to the active pharmaceutical ingredients, escitalopram oxalate and clonazepam, and degradation products from the analyte were achieved on an ODS Hypersil C18 column (250 × 4.6 mm) using a mobile phase consisting of a mixture of acetonitrile-50 mM phosphate buffer + 10 mM triethylamine (70:30, v/v). The detection was conducted at 268 nm. The limit of detection and the limit of quantitation for escitalopram oxalate and clonazepam were established. The stress test solutions were assayed against the qualified working standards of escitalopram oxalate and clonazepam, which indicated that the developed LC method was stability-indicating. Validation of the developed LC method was conducted as per ICH requirements. The developed LC method was found to be suitable to check the quality of bulk samples of escitalopram oxalate and clonazepam.

  2. OXALATE MASS BALANCE DURING CHEMICAL CLEANING IN TANK 6F

    Poirier, M.; Fink, S.

    2011-07-22

    The Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRR personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 6F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate. Some conclusions from this work are: (1) Approximately 65% of the oxalate added as oxalic acid was removed with the decanted liquid. (2) Approximately 1% of the oxalate (added to the tank as oxalic acid) formed precipitates with compounds such as nickel, manganese, sodium, and iron (II), and was dissolved with nitric acid. (3) As much as 30% of the oxalate may have decomposed forming carbon dioxide. The balance does not fully account for all the oxalate added. The offset represents the combined uncertainty in the analyses and sampling.

  3. Determination of nitric acid in highly radioactive solutions by the method of coulometric titration

    Gromov, V.S.; Kuperman, A.Ya.; Smirnov, Yu.A.

    1988-01-01

    A procedure, a cell, and an electronic block have been developed for a long-distance determination of nitric acid in highly radioactive industrial solutions by coulometric titration under hot chamber conditions. A solution of a mixture of ammonium and potassium oxalates was used for the background and anoide electrolytes. This solution prevents the hydrolysis of the metal ions and appreciably decreases the rate of accumulation of the acid in the anode chamber of the cell. Titration with 0.1-0.5 A currents is carried out with internal generation of hydroxyl ions. The cell was prepared from a radiation-resistant and transparent material, poly(methyl methacrylate). The anode and cathode chambers were separated by a cellophane membrane, reinforced by a porous glass filter. By using the electronic coulometric block working together with a pH-meter (EV-74 or I-130) and with an automatic titration block (BAT-15), the titration can be carried out automatically, and the determination results can be obtained in a digital form

  4. Multiscale structural characterizations of mixed U(iv)-An(iii) oxalates (An(iii) = Pu or Am) combining XAS and XRD measurements.

    Arab-Chapelet, B; Martin, P M; Costenoble, S; Delahaye, T; Scheinost, A C; Grandjean, S; Abraham, F

    2016-04-28

    Mixed actinide(III,IV) oxalates of the general formula M2.2UAn(C2O4)5·nH2O (An = Pu or Am and M = H3O(+) and N2H5(+)) have been quantitatively precipitated by oxalic precipitation in nitric acid medium (yield >99%). Thorough multiscale structural characterization using XRD and XAS measurements confirmed the existence of mixed actinide oxalate solid solutions. The XANES analysis confirmed that the oxidation states of the metallic cations, tetravalent for uranium and trivalent for plutonium and americium, are maintained during the precipitation step. EXAFS measurements show that the local environments around U(+IV), Pu(+III) and Am(+III) are comparable, and the actinides are surrounded by ten oxygen atoms from five bidentate oxalate anions. The mean metal-oxygen distances obtained by XAS measurements are in agreement with those calculated from XRD lattice parameters.

  5. A new method for the analysis of soluble and insoluble oxalate in pulp and paper matrices

    Sithole, Bruce

    2013-11-01

    Full Text Available A novel method has been developed for determining soluble and insoluble forms of oxalate in pulp and paper samples by ion chromatography. Methanesulphonic acid is used to dissolve insoluble oxalate, and total oxalate is then determined by ion...

  6. Determination of plutonium in nitric acid solutions - Method by oxidation by cerium(IV), reduction by iron(II) ammonium sulfate and amperometric back-titration with potassium dichromate

    1987-01-01

    This International Standard specifies a precise and accurate analytical method for determining plutonium in nitric acid solutions. Plutonium is oxidized to plutonium(VI) in a 1 mol/l nitric acid solution with cerium(IV). Addition of sulfamic acid prevents nitrite-induced side reactions. The excess of cerium(IV) is reduced by adding a sodium arsenite solution, catalysed by osmium tetroxide. A slight excess of arsenite is oxidized by adding a 0.2 mol/l potassium permanganate solution. The excess of permanganate is reduced by adding a 0.1 mol/l oxalic acid solution. Iron(III) is used to catalyse the reduction. A small excess of oxalic acid does not interfere in the subsequent plutonium determination. These reduction and oxidation stages can be followed amperometrically and the plutonium is left in the hexavalent state. The sulfuric acid followed by a measured amount of standardized iron(II) ammonium sulfate solution in excess of that required to reduce the plutonium(VI) to plutonium(IV) is added. The excess iron(II) and any plutonium(III) formed to produce iron(III) and plutonium(IV) is amperometrically back-titrated using a standard potassium dichromate solution. The method is almost specifically for plutonium. It is suitable for the direct determination of plutonium in materials ranging from pure product solutions, to fast reactor fuel solutions with a uranium/plutonium ratio of up to 10:1, either before or after irradiation

  7. The crystal structure of paramagnetic copper(ii) oxalate (CuC2O4):

    Christensen, Axel Nørlund; Lebech, Bente; Andersen, Niels Hessel

    2014-01-01

    Synthetic copper(ii) oxalate, CuC2O4, was obtained in a precipitation reaction between a copper(ii) solution and an aqueous solution of oxalic acid. The product was identified from its conventional X-ray powder patterns which match that of the copper mineral Moolooite reported to have...... the composition CuC2O4·0.44H2O. Time resolved in situ investigations of the thermal decomposition of copper(ii) oxalate using synchrotron X-ray powder diffraction showed that in air the compound converts to Cu2O at 215 °C and oxidizes to CuO at 345 °C. Thermo gravimetric analysis performed in an inert Ar....... The crystal structure consists of a random stacking of CuC2O4 micro-crystallites where half the Cu-atoms are placed at (2a) and the other half at (2b) positions with the corresponding oxalate molecules centred around the corresponding (2b) and (2a) site positions, respectively. The diffraction patterns...

  8. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil.

    Wu, L H; Luo, Y M; Christie, P; Wong, M H

    2003-02-01

    A pot experiment was conducted to study the effects of EDTA and low molecular weight organic acids (LMWOA) on the pH, total organic carbon (TOC) and heavy metals in the soil solution in the rhizosphere of Brassica juncea grown in a paddy soil contaminated with Cu, Zn, Pb and Cd. The results show that EDTA and LMWOA have no effect on the soil solution pH. EDTA addition significantly increased the TOC concentrations in the soil solution. The TOC concentrations in treatments with EDTA were significantly higher than those in treatments with LMWOA. Adding 3 mmol kg(-1) EDTA to the soil markedly increased the total concentrations of Cu, Zn, Pb and Cd in the soil solution. Compared to EDTA, LMWOA had a very small effect on the metal concentrations. Total concentrations in the soil solution followed the sequence: EDTA > citric acid (CA) approximately oxalic acid (OA) approximately malic acid (MA) for Cu and Pb; EDTA > MA > CA approximately OA for Zn; and EDTA > MA > CA > OA for Cd. The labile concentrations of Cu, Zn, Pb and Cd showed similar trends to the total concentrations.

  9. Low-frequency magnetic field effect on solubility of oxalate type human organominerals in water in vitro

    PopkovV.M.

    2012-09-01

    Full Text Available The research goal is to determine low-frequency AMF effect on dissolution of urinary stone material in vitro in water with human urinary stones (oxalate type. Materials and Methods. The structural changes in aqueous solutions may occur when exposed to low-frequency alternating magnetic fields (AMF. It depends on chemical composition of the solutions under the study. Results. Organic components (63.1 %, leading to the density decrease of the solution, urea (18.8%, leading to its increase, and oxalic acid (19.7% have been determined in stone composition. The decrease of transmittance T (% by the time of oxalate dissolution has indicated increase in concentration of dissolved sample. The sample has been exposed to AMF of 2-9 Hz on the background of the control sample. The growth of this dependence with AMF increasing of 11-22 Hz has established less concentration of dissolved sample in the test solution than in the control one. Conclusion. The main task has been to determine the influence of AMF of 2-22 Hz on solubility of urinary stones placed in water for an hour. The article is to conclude that maximal solubility of oxalate mineral sample by AMF of 2-22 Hz has been reached. It is 14% more than in the control solution. The effectiveness of AMF influence on solubility of organomineral decreases with frequency increasing. It has been confirmed by photometric and areometric measurements.

  10. Serum creatinine and cystatin C provide conflicting evidence of acute kidney injury following acute ingestion of potassium permanganate and oxalic acid.

    Wijerathna, Thilini Madushanka; Gawarammana, Indika Bandara; Dissanayaka, Dhammika Menike; Palanagasinghe, Chathura; Shihana, Fathima; Dassanayaka, Gihani; Shahmy, Seyed; Endre, Zoltan Huba; Mohamed, Fahim; Buckley, Nicholas Alan

    2017-11-01

    Acute kidney injury (AKI) is common following deliberate self-poisoning with a combination washing powder containing oxalic acid (H 2 C 2 O 4 ) and potassium permanganate (KMnO 4 ). Early and rapid increases in serum creatinine (sCr) follow severe poisoning. We investigated the relationship of these increases with direct nephrotoxicity in an ongoing multicenter prospective cohort study in Sri Lanka exploring AKI following poisoning. Multiple measures of change in kidney function were evaluated in 48 consenting patients who had serial sCr and serum cystatin C (sCysC) data available. Thirty-eight (38/48, 79%) patients developed AKI (AKIN criteria). Twenty-eight (58%) had AKIN stage 2 or 3. Initial increases in urine creatinine (uCr) excretion were followed by a substantial loss of renal function. The AKIN stage 2 and 3 (AKIN2/3) group had very rapid rises in sCr (a median of 118% at 24 h and by 400% at 72 h post ingestion). We excluded the possibility that the rapid rise resulted from the assay used or muscle damage. In contrast, the average sCysC increase was 65% by 72 h. In most AKI, sCysC increases to the same extent but more rapidly than sCr, as sCysC has a shorter half-life. This suggests either a reduction in Cystatin C production or, conversely, that the rapid early rise of sCr results from increased production of creatine and creatinine to meet energy demands following severe oxidative stress mediated by H 2 C 2 O 4 and KMnO 4 . Increased early creatinine excretion supports the latter explanation, since creatinine excretion usually decreases transiently in AKIN2/3 from other causes.

  11. PREPARATION OF METAL OXIDE POWDERS FROM METAL LOADED VERSATIC ACID

    KAKIHATA, Takayuki; USAMI, Kensuke; YAMAMOTO, Hideki; SHIBATA, Junji

    1998-01-01

    A production process for metal oxide powders was developed using a solvent extraction method. Versatic Acid 10 and D2EHPA solutions containing copper, zinc and nickel were used for a precipitation-stripping process, where oxalic acid was added to the solution as a precipitation reagent.Copper, zinc and nickel oxalates were easily formed in an aqueous phase, and 99.9% of precipitation was obtained for each metal during this process. These metal oxalates were easily converted to metal oxides by...

  12. Gamma radiolysis of aqueous solution of ascorbic acid

    Loyola V, V.M.; Azamer B, J.A.; Laviada C, A.; Luna V, P.

    1977-01-01

    A preliminary study of the gamma radiolysis of a 1.13 x 10 -4 Maqueous solution of ascorbic acid is presented. It was found that dehydroascorbic acid was the principal product at doses of about 75 Krad. An increase in the dehydroascorbic acid concentration rangins from 5 to 40% was obtained, these values depend mainly on the initial ascorbic acid concentration. (author)

  13. Cerium oxalate precipitation

    Chang, T.P.

    1987-02-01

    Cerium, a nonradioactive, common stand-in for plutonium in development work, has been used to simulate several plutonium precipitation processes at the Savannah River Laboratory. There are similarities between the plutonium trifluoride and the cerium oxalate precipitations in particle size and extent of plating, but not particle morphology. The equilibrium solubility, precipitation kinetics, particle size, extent of plating, and dissolution characteristics of cerium oxalate have been investigated. Interpretations of particle size and plating based on precipitation kinetics (i.e., nucleation and crystal growth) are presented. 16 refs., 7 figs., 6 tabs

  14. Synthesis of unsymmetrical dimethylhydrazine oxalate from rejected liquid rocket propellant

    Mu, Xiaogang; Yang, Jingjing; Zhang, Youzhi

    2018-02-01

    The rejected liquid propellant unsymmetrical dimethylhydrazine (UDMH) was converted to UDMH oxalate, which has commercial value. The UDMH oxalate structure and stability were investigated by the Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and ultraviolet-visible spectrophotometric analysis. The results indicate that UDMH oxalate has good thermal and aqueous solution stability, a melting point of 144 °C, an initial decomposition temperature of 180 °C, and a peak wavelength of UV in aqueous solution at λ = 204 nm. This disposal method of rejected UDMH is highly efficient and environmentally safe.

  15. Determination of alkaloids and oxalates in some selected food ...

    STORAGESEVER

    2009-01-05

    Jan 5, 2009 ... MATERIALS AND METHODS. Source of samples. Samples ... until the colour of solution changed from salmon pink colour to a faint yellow colour. .... Effect of cooking on the soluble and insoluble oxalate content of some New ...

  16. Radiation protection by ascorbic acid in sodium alginate solutions

    Aliste, A.J.; Mastro, N.L. Del [Center of Radiation Technology, IPEN/CNEN/SP, University City, 05508-000 Sao Paulo (Brazil)]. E-mail: ajaliste@ipen.br

    2004-07-01

    Alginates are gelling hydrocolloids extracted from brown seaweed used widely in the nourishing and pharmaceutical industries. As alginic acid gellification retard food entrance in the stomach alginate is an additive used in diets. The objective of this work was to study the protective action of the ascorbic acid in alginate solutions against the action of {sup 60} Co gamma radiation. One % (w/v) solutions of alginate had been used and concentrations of ascorbic acid varied from 0 to 2.5% (w/v). The solutions were irradiated with doses up to 10 kGy. Viscosity/dose relationship and the p H of the solutions at 25 Centigrade were determined. Ascorbic acid behaved as an antioxidant against radiation oxidative shock in this model system of an irradiated viscous solution. Besides its radiation protective role on alginate solutions ascorbic acid promoted a viscosity increase in the range of concentrations employed. (Author)

  17. Radiation protection by ascorbic acid in sodium alginate solutions

    Aliste, A.J.; Mastro, N.L. Del

    2004-01-01

    Alginates are gelling hydrocolloids extracted from brown seaweed used widely in the nourishing and pharmaceutical industries. As alginic acid gellification retard food entrance in the stomach alginate is an additive used in diets. The objective of this work was to study the protective action of the ascorbic acid in alginate solutions against the action of 60 Co gamma radiation. One % (w/v) solutions of alginate had been used and concentrations of ascorbic acid varied from 0 to 2.5% (w/v). The solutions were irradiated with doses up to 10 kGy. Viscosity/dose relationship and the p H of the solutions at 25 Centigrade were determined. Ascorbic acid behaved as an antioxidant against radiation oxidative shock in this model system of an irradiated viscous solution. Besides its radiation protective role on alginate solutions ascorbic acid promoted a viscosity increase in the range of concentrations employed. (Author)

  18. Photochemical reactions of neptunium in nitric acid solution containing photocatalyst

    Fukasawa, Tetsuo; Kawamura, Fumio

    1991-01-01

    Photochemical oxidation and reduction behaviors of neptunium were preliminarily investigated in 3 mol/l nitric acid solution. Nitric acid of 3 mol/l simulated the high level waste solution from a spent fuel reprocessing process. Concentrations of Np(V), Np(VI) and nitrous acid were determined with a photospectrometer, and solution potential with an electrode. Without additives, Np(VI) was reduced to Np(V) by nitrous acid which was photolytically generated from nitric acid. With a scavenger for nitrous acid, Np(V) was oxidized to extractable Np(VI) by a photolytically generated oxidizing reagent which were predicted by the solution potential measurement. The reduction rate was higher than the oxidation rate because of the larger quantity and higher reactivity of nitrous acid than an oxidizing reagent. Photocatalyst was proved to be effective for the oxidation of Np(V) to Np(VI). (author)

  19. Effects of low-molecular-weight organic acids on the acute lethality, accumulation, and enzyme activity of cadmium in Eisenia fetida in a simulated soil solution.

    Liu, Hai-Long; Wang, Yu-Jun; Xuan, Liang; Dang, Fei; Zhou, Dong-Mei

    2017-04-01

    In the present study, the effects of low-molecular-weight organic acids (LMWOAs) on the toxicity of cadmium (Cd) to Eisenia fetida were investigated in a simulated soil solution. The LMWOAs protected E. fetida from Cd toxicity, as indicated by the increased median lethal concentration (LC50) values and the increased activity of superoxide dismutase. In addition, Cd concentrations in E. fetida decreased dramatically in the presence of LMWOAs. These results were likely because of the complexation between Cd and LMWOAs, which decreased the bioavailability and consequential toxicity of Cd to E. fetida. Notably, LMWOAs reduced Cd toxicity in decreasing order (ethylenediamine tetraacetic acid [EDTA] > citric acid > oxalic acid > malic acid > acetic acid), which was consistent with the decreasing complexation constants between LMWOAs and Cd. These results advance our understanding of the interactions between Cd and LMWOAs in soil. Environ Toxicol Chem 2017;36:1005-1011. © 2016 SETAC. © 2016 SETAC.

  20. Online Automatic Titration of Chromic Acid in Chromium Plating Solutions and Phosphoric and Sulfuric Acids in Electropolishing Solutions

    Sopok, Samuel

    1991-01-01

    .... The analytical chemistry literature lacks an adequate online automatic titration method for the monitoring of chromic acid in chromium plating solutions and the monitoring of phosphoric and sulfuric...

  1. Efficiency and resistance of the artificial oxalate protection treatment on marble against chemical weathering

    Doherty, B.; Pamplona, M.; Selvaggi, R.; Miliani, C.; Matteini, M.; Sgamellotti, A.; Brunetti, B.

    2007-01-01

    The artificial oxalate protection method was analyzed in laboratory experiments in order to achieve an optimum treatment application and concentration giving rise to its most effective protective nature. Spectroscopic (Fourier transform infrared, Micro-Raman and UV-vis colorimetry), microscopic (scanning electron microscope) and contact-angle analyses were carried out to characterize Carrara marble samples before and after application of the treatment to validate its efficiency. The resistance effects against chemical weathering were subsequently observed in a lab-controlled weak acid rain experiment. An acid spray at pH 5.5, representative of normal rain was used to provoke degrade of natural marble, marble treated with the artificial oxalate protective at concentrations of 0.4 and 5% and marble treated with a commercial organic silicon product. Run-off solutions sampled at timely intervals were tested for any change in pH followed by ion chromatography measurements for the presence of calcium ions in solution. The chromatography results of the oxalate treatment applied at a 5% concentration are analogous to an organic commercial product indicating its validity as a method for the conservation of carbonate substrates conferring protection to stone materials against acid environments

  2. Efficiency and resistance of the artificial oxalate protection treatment on marble against chemical weathering

    Doherty, B. [Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy); Pamplona, M. [Centro de Petrologia e Geoquimica do Instituto Superior Tecnico Universidade Tecnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal); Selvaggi, R. [Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy); Miliani, C. [Istituto CNR di Scienze e Tecnologie Molecolari (ISTM), Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy)]. E-mail: miliani@thch.unipg.it; Matteini, M. [CNR Istituto, Conservazione e Valorizzazione dei Beni Culturali (ICVBC), Via Madonna del Piano, 10, Edifico C-50019, Florence (Italy); Sgamellotti, A. [Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy); Istituto CNR di Scienze e Tecnologie Molecolari (ISTM), Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy); Brunetti, B. [Dipartimento di Chimica, Universita degli Studi di Perugia, via Elce di Sotto, 8, I-60123 Perugia (Italy)

    2007-03-15

    The artificial oxalate protection method was analyzed in laboratory experiments in order to achieve an optimum treatment application and concentration giving rise to its most effective protective nature. Spectroscopic (Fourier transform infrared, Micro-Raman and UV-vis colorimetry), microscopic (scanning electron microscope) and contact-angle analyses were carried out to characterize Carrara marble samples before and after application of the treatment to validate its efficiency. The resistance effects against chemical weathering were subsequently observed in a lab-controlled weak acid rain experiment. An acid spray at pH 5.5, representative of normal rain was used to provoke degrade of natural marble, marble treated with the artificial oxalate protective at concentrations of 0.4 and 5% and marble treated with a commercial organic silicon product. Run-off solutions sampled at timely intervals were tested for any change in pH followed by ion chromatography measurements for the presence of calcium ions in solution. The chromatography results of the oxalate treatment applied at a 5% concentration are analogous to an organic commercial product indicating its validity as a method for the conservation of carbonate substrates conferring protection to stone materials against acid environments.

  3. Thorium oxalate solubility and morphology

    Monson, P.R. Jr.; Hall, R.

    1981-10-01

    Thorium was used as a stand-in for studying the solubility and precipitation of neptunium and plutonium oxalates. Thorium oxalate solubility was determined over a range of 0.001 to 10.0 in the concentration parameter [H 2 C 2 O 4 ]/[HNO 3 ] 2 . Morphology of thorium oxide made from the oxalate precipitates was characterized by scanning electron microscopy. The different morphologies found for oxalate-lean and oxalate-rich precipitations were in agreement with predictions based on precipitation theory

  4. Membrane inlet mass spectrometry reveals that Ceriporiopsis subvermispora bicupin oxalate oxidase is inhibited by nitric oxide.

    Moomaw, Ellen W; Uberto, Richard; Tu, Chingkuang

    2014-07-18

    Membrane inlet mass spectrometry (MIMS) uses a semipermeable membrane as an inlet to a mass spectrometer for the measurement of the concentration of small uncharged molecules in solution. We report the use of MIMS to characterize the catalytic properties of oxalate oxidase (E.C. 1.2.3.4) from Ceriporiopsis subvermispora (CsOxOx). Oxalate oxidase is a manganese dependent enzyme that catalyzes the oxygen-dependent oxidation of oxalate to carbon dioxide in a reaction that is coupled with the formation of hydrogen peroxide. CsOxOx is the first bicupin enzyme identified that catalyzes this reaction. The MIMS method of measuring OxOx activity involves continuous, real-time direct detection of oxygen consumption and carbon dioxide production from the ion currents of their respective mass peaks. (13)C2-oxalate was used to allow for accurate detection of (13)CO2 (m/z 45) despite the presence of adventitious (12)CO2. Steady-state kinetic constants determined by MIMS are comparable to those obtained by a continuous spectrophotometric assay in which H2O2 production is coupled to the horseradish peroxidase catalyzed oxidation of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid). Furthermore, we used MIMS to determine that NO inhibits the activity of the CsOxOx with a KI of 0.58±0.06 μM. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions

    Abdelatty Mohamed Radalla

    2015-06-01

    Full Text Available Formation of binary and ternary complexes of the divalent transition metal ions, Cu2+, Ni2+, Co2+ and Zn2+ with gallic acid and the biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids were investigated by means of the potentiometric technique at 25 °C and I = 0.10 mol dm−3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of gallic acid and aliphatic dicarboxylic acids were determined and used for determining the stability constants of the binary and ternary complexes formed in the aqueous medium under the above experimental conditions. The formation of the different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes are inferred from the corresponding potentiometric pH-metric titration curves. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The values of Δ log K, percentage of relative stabilization (%R.S. and log X were evaluated and discussed. The concentration distribution of the various complex species formed in solution was evaluated and discussed. The mode of chelation of ternary complexes formed was ascertained by conductivity measurements.

  6. Recovery of fission products from acidic waste solutions thereof

    Carlin, W.W.; Darlington, W.B.; Dubois, D.W.

    1975-01-01

    Fission products, e.g., palladium, ruthenium and technetium, are removed from aqueous, acidic waste solutions thereof. The acidic waste solution is electrolyzed in an electrolytic cell under controlled cathodic potential conditions and technetium, ruthenium, palladium and rhodium are deposited on the cathode. Metal deposit is removed from the cathode and dissolved in acid. Acid insoluble rhodium metal is recovered, dissolved by alkali metal bisulfate fusion and purified by electrolysis. In one embodiment, the solution formed by acid dissolution of the cathode metal deposit is treated with a strong oxidizing agent and distilled to separate technetium and ruthenium (as a distillate) from palladium. Technetium is separated from ruthenium by organic solvent extraction and then recovered, e.g., as an ammonium salt. Ruthenium is disposed of as waste by-product. Palladium is recovered by electrolysis of an acid solution thereof under controlled cathodic potential conditions. Further embodiments wherein alternate metal recovery sequences are used are described. (U.S.)

  7. Two series of reactant's ratio-dependent lanthanide organic frameworks derived from nicotinic acid N-oxide and oxalate: synthesis, crystal structures and luminescence properties.

    Yu, Yanyan; Zhang, Lijuan; Zhou, Yunshan; Zuhra, Zareen

    2015-03-14

    Two series of lanthanide(III)–organic frameworks with the molecular formula [Ln2(NNO)2(OX)2(H2O)4]n (Ln = Eu 1, Tb 2, Sm 3, Dy 4, Gd 5) and [Ln2(NNO)4(OX)(H2O)2]n (Ln = Eu 6, Tb 7, Sm 8, Dy 9, Gd 10) were synthesized successfully under the same hydrothermal conditions with nicotinic N-oxide (HNNO) and oxalic acid (H2OX) as the mixed ligands merely through varying the molar ratio of the reactants. The compounds were characterized by IR, elemental analysis, UV, TG-DTA and powder X-ray diffraction (XRD). X-ray single-crystal diffraction analyses of compounds 1 and 7 selected as representatives and powder XRD analysis of the compounds revealed that both the series of compounds feature three-dimensional (3-D) open frameworks, and crystallize in the triclinic P1 space group while with different unit cell parameters. In compound 1, pairs of Eu(3+) ions and pairs of NNO(−) ligands connect with each other alternately to form a 1-D infinite Eu-NNO double chain, the adjacent 1-D double-chains are then joined together through OX(2−) ligands leading to a 2D layer, the 2-D layers are further ‘pillared’ by OX(2−) ligands resulting in a 3-D framework. In compound 7, the 1-D Tb-NNO infinite chain and its 2-D layer are formed in an almost similar fashion to that in compound 1. The difference between the structures of the two compounds 1 and 7 is that the adjacent 2-D layers in compound 7 are further connected by NNO(−) ligands resulting in a 3-D framework. The photoluminescence properties and energy transfer mechanism of the compounds were studied systematically. The energy level of the lowest triplet states of the HNNO ligand (23148 cm(−1)) was determined based on the phosphorescence spectrum of compound 5 at 77 K. The (5)D0 (Eu(3+)) and (5)D4 (Tb(3+)) emission lifetimes are 0.46 ms, 0.83 ms, 0.69 ms and 0.89 ms and overall quantum yields are 1.03%, 3.29%, 2.58% and 3.78% for the compounds 1, 2, 6 and 7, respectively.

  8. Corrosion control of vanadium in aqueous solutions by amino acids

    El-Rabiee, M.M.; Helal, N.H.; El-Hafez, Gh.M. Abd; Badawy, W.A.

    2008-01-01

    The electrochemical behavior of vanadium in amino acid free and amino acid containing aqueous solutions of different pH was studied using open-circuit potential measurements, polarization techniques and electrochemical impedance spectroscopy (EIS). The corrosion current density, i corr , the corrosion potential, E corr and the corrosion resistance, R corr , were calculated. A group of amino acids, namely, glycine, alanine, valine, histidine, glutamic and cysteine has been investigated as environmentally safe inhibitors. The effect of Cl - on the corrosion inhibition efficiency especially in acid solutions was investigated. In neutral and basic solutions, the presence of amino acids increases the corrosion resistance of the metal. The electrochemical behavior of V before and after the corrosion inhibition process has shown that some amino acids like glutamic acid and histidine have promising corrosion inhibition efficiency at low concentration (≅25 mM). The inhibition efficiency (η) was found to depend on the structure of the amino acid and the constituents of the corrosive medium. The corrosion inhibition process is based on the adsorption of the amino acid molecules on the metal surface and the adsorption process follows the Freundlich isotherm. The adsorption free energy for valine on V in acidic solutions was found to be -9.4 kJ/mol which reveals strong physical adsorption of the amino acid molecules on the vanadium surface

  9. Heterogeneous nucleation of calcium oxalate on native oxide surfaces

    Song, L.; Pattillo, M.J.; Graff, G.L.; Campbell, A.A.; Bunker, B.C.

    1994-04-01

    The aqueous deposition of calcium oxalate onto colloidal oxides has been studied as a model system for understanding heterogeneous nucleation processes of importance in biomimetic synthesis of ceramic thin films. Calcium oxalate nucleation has been monitored by measuring induction times for nucleation using Constant Composition techniques and by measuring nucleation densities on extended oxide surfaces using an atomic force microscope. Results show that the dependence of calcium oxalate nucleation on solution supersaturation fits the functional form predicted by classical nucleation theories. Anionic surfaces appear to promote nucleation better than cationic surfaces, lowering the effective energy barrier to heterogeneous nucleation

  10. Characterization of ZrP{sub 2}O{sub 7} modified with oxalic acid and thermodynamic analysis associated to the uranyl (Vi) sorption; Caracterizacion de ZrP{sub 2}O{sub 7} modificado con acido oxalico y analisis termodinamico asociado a la sorcion de uranilo (VI)

    Garcia G, N.; Ordonez R, E. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Solis C, D. A. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon y Paseo Tollocan, 50120 Toluca, Estado de Mexico (Mexico); Simoni, E.; Drot, R.; Jeanson, A., E-mail: eduardo.ordonez@inin.gob.mx [Universite Paris-Sud, Institut de Physique Nucleaire, Georges Clemenceau No. 15, Orsay (France)

    2013-10-15

    Several physical and chemical tests were carried out to evaluate the influence of the oxalic acid in the uranium (Vi) sorption on the surface of the zirconium diphosphate. The physical analyses consist of atomic force microscopy (AFM) and total organic coal, and the chemists are the calculation of the reaction heat for the hydrate and sorption processes, the reaction speed constant and the sorption yield in the sodium perchlorate systems and of oxalic acid; these tests allow to corroborate that the oxalic acid influences positively in the uranium (Vi) sorption forming a ternary system of ZrP{sub 2}O{sub 7}/(C{sub 2}O{sub 4})/U(Vi), with a single configuration along the ph interval studied. (Author)

  11. Enzymatic mechanism of oxalate production in the TCA and glyoxylate pathways using various isolates of Antrodia radiculosa

    K.M. Jenkins; S.V. Diehl; C.A. Clausen; F. Green

    2011-01-01

    Brown-rot fungi produce oxalate in large amounts; however, levels of accumulation and function vary by species. Copper-tolerant fungi, like Antrodia radiculosa, produce and accumulate high levels of oxalate in response to copper. Oxalate biosynthesis in copper-tolerant fungi has been linked to the glyoxylate and tricarboxylic acid (TCA) cycles. Within these two cycles...

  12. The Evaluation of Crevice Corrosion of Inconel-600 and 304 Stainless Steel in Reductive Decontamination Solutions

    Jung, Junyoung; Park, Sangyoon; Won, Huijun; Choi, Wangkyu; Moon, Jeikwon; Park, Sojin

    2014-01-01

    In this sturdy, we investigated the characteristics of corrosion to Inconel-600 and type 304 stainless steel which are mainly used for the steam generator and primary system of PWR reactor respectively. We conducted the corrosion test for the HYBRID (HYdrazine Based metal Ion Reductive decontamination) which was developed in KAERI, Citrox and Oxalic acid solutions used in reductive decontamination of the inner surface of PWR. Since Citrox and oxalic acid solution were well-known conventional decontamination solutions, it is meaningful to compare the corrosion result of HYBRID with those solutions to confirm the corrosion compatibility. In order to obtain visible results in a limited time, we conducted the crevice corrosion tests under harsh condition. According to the results of crevice corrosion tests, we can conclude that metals such as type 304 stainless steel and Inconel-600 in HYBRID are very stable against crevice corrosion. On the other hand, those metals in Citrox and oxalic acid solutions were very susceptible to the crevice corrosion. Especially when using the oxalic acid solution, severe corrosion was observed not only Inconel-600 but also 304 stainless steel. The degree of corrosion can be expressed as; HYBRID << Citrox < OA. Conclusively, our results support that the HYBRID is more stable to the corrosion of structural materials in primary system than other Citrox and oxalic acid solutions. This finding will appoint the HYBRID solution as a candidate to solve the corrosion problem which is often issued by existing chemical decontamination processes

  13. Oxalate Encapsulation in Aqueous Medium by Tripodal Urea ...

    1H-NMR titration studies: All 1H-NMR titration experiments for L1 and L2 were conducted on a Bruker 300 MHz spectrometer at 298 K respectively. Potassium oxalate dihydrate (K2C2O4.2H2O) was used to prepare the stock solution of anion in DMSO-d6:D2O (1:1.1) solvent system. Lower solubility of potassium oxalate in ...

  14. Development and characterization of oxalate coatings for the corrosion protection of metallic zinc

    Oliveira, M.; Ferreira Junior, J.M.; Baker, M.A.; Rossi, J.; Costa, I.

    2016-01-01

    This work aims to develop and characterize surface treatments for corrosion protection of zinc. Oxalic acid (OA) was used and the concentration range selected was from 10"-"1 M to 1 M. The chemical composition of the layers formed was evaluated by XPS, and the morphology and thickness, by FIB and EDS, respectively. The corrosion resistance was monitored by Electrochemical Impedance Spectroscopy (EIS). The results showed that a zinc oxalate layer had been formed in both concentrations but of different thickness and crystal sizes but similar morphology. The EIS results showed that the layer formed in the lower concentration solution provided corrosion protection for long periods whereas the one obtained at higher concentration did not protect the surface. The results led to conclude that one of the treatments tested is highly indicated for corrosion protection of zinc. (author)

  15. Study of free acidity determinations in aqueous solution

    Kergreis, A.

    1966-04-01

    The object of this work is the study of the principal methods which can be applied to the measurement of 'free' acidity. In the first part, we define the various types of acidity which can exist in aqueous solution; then, after having studied some hydrolysis reactions, we compare the value of the neutralisation pH of the hydrated cation and that of the precipitation of the hydroxide. In the second part we have started to study the determination of the acidity of an aqueous solution. After having rapidly considered the 'total' acidity determination, we deal with the problem of the 'free' acidity titration. We have considered in particular certain methods: extrapolation of the equivalent point, colorimetric titrations with or without a complexing agent, and finally the use of ion-exchange resins with mixed aqueous and solvent solutions. (author) [fr

  16. Thermodynamic properties of aqueous solutions with citrate ions. Compressibility studies in aqueous solutions of citric acid

    Apelblat, Alexander; Korin, Eli; Manzurola, Emanuel

    2013-01-01

    Highlights: • Over a wide range of concentrations and temperatures sound velocities were measured in aqueous solutions of citric acid. • Compressibility properties of citric acid solutions are thermodynamically characterized. • Changes in the structure of water when citric acid is dissolved are discussed. -- Abstract: Sound velocities in aqueous solutions of citric acid were measured from 15 °C to 50 °C in 5 °C intervals, within the 0.1 mol · kg −1 to 5.0 mol · kg −1 concentration range. These sound velocities served to evaluate the isentropic and isothermal compressibilities, the apparent molar compressibilities, the isochoric thermal pressure coefficients, changes of the cubic expansion coefficients with pressure at constant temperature, the changes of heat capacities with volume and hydration numbers of citric acid in aqueous solutions

  17. Distribution of Components in Ion Exchange Materials Taken from the K East Basin and Leaching of Ion Exchange Materials by Nitric/Hydrofluoric Acid and Nitric/Oxalic Acid

    Delegard, C.H.; Rinehart, D.E.; Hoopes, F.V.

    1998-01-01

    Laboratory tests were performed to examine the efficacy of mixed nitric/hydrofluoric acid followed by mixed nitric/oxalic acid leach treatments to decontaminate ion exchange materials that have been found in a number of samples retrieved from K East (KE)Basin sludge. The ion exchange materials contain organic ion exchange resins and zeolite inorganic ion exchange material. Based on process records, the ion exchange resins found in the K Basins is a mixed-bed, strong acid/strong base material marketed as Purolite NRW-037. The zeolite material is Zeolon-900, a granular material composed of the mineral mordenite. Radionuclides sorbed or associated with the ion exchange material can restrict its disposal to the Environmental Restoration Disposal Facility (ERDF). The need for testing to support development of a treatment process for K Basin sludge has been described in Section 4.2 of ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process'' (Flament 1998). Elutriation and washing steps are designed to remove the organic resins from the K Basin sludge. To help understand the effects of the anticipated separation steps, tests were performed with well-rinsed ion exchange (IX) material from KE Basin floor sludge (sample H-08 BEAD G) and with well-rinsed IX having small quantities of added KE canister composite sludge (sample KECOMP). Tests also were performed to determine the relative quantities of organic and inorganic IX materials present in the H-08 K Basin sludge material. Based on chemical analyses of the separated fractions, the rinsed and dry IX material H-08 BEAD G was found to contain 36 weight percent inorganic material (primarily zeolite). The as-received (unrinsed) and dried H-08 material was estimated to contain 45 weight percent inorganic material

  18. A review of plutonium oxalate decomposition reactions and effects of decomposition temperature on the surface area of the plutonium dioxide product

    Orr, R.M.; Sims, H.E.; Taylor, R.J.

    2015-01-01

    Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or ‘finishing’ processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO_2 product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles. - Highlights: • Critical review of plutonium oxalate decomposition reactions. • New analysis of relationship between SSA and calcination temperature. • New SEM

  19. A review of plutonium oxalate decomposition reactions and effects of decomposition temperature on the surface area of the plutonium dioxide product

    Orr, R.M.; Sims, H.E.; Taylor, R.J., E-mail: robin.j.taylor@nnl.co.uk

    2015-10-15

    Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or ‘finishing’ processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO{sub 2} product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles. - Highlights: • Critical review of plutonium oxalate decomposition reactions. • New analysis of relationship between SSA and calcination temperature.

  20. Vacuum-jacketed hydrofluoric acid solution calorimeter

    Robie, R.A.

    1965-01-01

    A vacuum-jacketed metal calorimeter for determining heats of solution in aqueous HF was constructed. The reaction vessel was made of copper and was heavily gold plated. The calorimeter has a cooling constant of 0.6 cal-deg -1-min-1, approximately 1/4 that of the air-jacketed calorimeters most commonly used with HF. It reaches equilibrium within 10 min after turning off the heater current. Measurements of the heat of solution of reagent grade KCl(-100 mesh dried 2 h at 200??C) at a mole ratio of 1 KCl to 200 H2O gave ??H = 4198??11 cal at 25??C. ?? 1965 The American Institute of Physics.

  1. Compatible solutes in lactic acid bacteria subjected to water stress

    Kets, E.P.W.

    1997-01-01

    The goal of the research project described in this thesis was to investigate the protective effect of compatible solutes on tactic acid bacteria subjected to drying. Dried preparations of lactic acid bacteria are applied as starter cultures in feed and food industries. Dried starter

  2. Electrochemical dissolution of tin in methanesulphonic acid solutions

    de Greef, R.A.T.; Janssen, L.J.J.

    2001-01-01

    High-rate electroplating of tin on a moving steel strip is generally carried out in cells with dimensionally stable anodes. To obtain a matt tin deposit a concentrated acidic tin methanesulphonate solution containing a small concentration of sulphuric acid is used. The concentrated tin

  3. Extraction of fission product rhodium from nitric acid solutions. 1

    Gorski, B.; Beer, M.; Russ, L.

    1988-01-01

    The extraction of noble metals from nitric acid solutions represents one problem of separating valueable substances from nuclear wastes in nuclear fuel reprocessing. Results of distribution experiments demonstrate the possibility of solvent extraction of rhodium using tertiary amines in presence of nitrite. Even short mixing times realize high distribution coefficients allowing quantitative separation from aqueous solutions. (author)

  4. Precipitation of plutonium from acidic solutions using magnesium oxide

    Jones, S.A.

    1994-01-01

    Magnesium oxide will be used as a neutralizing agent for acidic plutonium-containing solutions. It is expected that as the magnesium oxide dissolves, the pH of the solution will rise, and plutonium will precipitate. The resulting solid will be tested for suitability to storage. The liquid is expected to contain plutonium levels that meet disposal limit requirements

  5. Determining the biochemical properties of the Oxalate Biosynthetic Component (Obc)1 from Burkholderia mallei

    Oxalic acid is produced by a variety of organisms ranging from simple microbes to complex animals. This acid has been proposed to fulfill various physiological and pathological functions which vary between organisms. In bacteria from the Burkholderia genus, oxalate secretion has been shown to be quo...

  6. Tetraphenylphosphonium hydrogen oxalate

    Philip A. W. Dean

    2008-01-01

    Full Text Available In the title compound, C24H20P+·C2HO4−, two symmetry-independent ion pairs are present. The cations aggregate into puckered sheets via zigzag infinite chains of sixfold phenyl embraces and parallel fourfold phenyl embraces, while the anions form hydrogen-bonded chains between the sheets of cations. In the two independent oxalate anions, the angles between the normals to the two least-squares carboxylate COO planes are unusually large, viz. 72.5 (1 and 82.1 (1°.

  7. Radiolysis studies of uranyl nitrate solution in nitric acid medium

    Siri, Sandra; Mondino, Angel V.

    2005-01-01

    The radiolysis of acidic uranyl nitrate solutions was investigated using Co-60 gamma radiation. Hydrogen peroxide was determined as a function of increasing dose. The UV-vis absorption spectra of the irradiated solutions were measured and the spectral changes were analyzed. The increasing dose increases the absorbance intensities, possibly by an increment in nitrate concentration produced by radiolysis, which can originate the formation of different uranyl complexes in solution. (author)

  8. Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger

    Kubicek, C.P.; Schreferl-Kunar, G.; Woehrer, W.; Roehr, M.

    1988-03-01

    Oxalate accumulation of up to 8 g/liter was induced in Aspergillus niger by shifting the pH from 6 to 8. This required the presence of P/sub i/ and a nitrogen source and was inhibited by the protein synthesis inhibitor cycloheximide. Exogenously added /sup 14/CO/sub 2/ was not incorporated into oxalate, but was incorporated into acetate and malate, thus indicating the biosynthesis of oxalate by hydrolytic cleavage of oxaloacetate. Inhibition of mitochondrial citrate metabolism by fluorocitrate did not significantly decrease the oxalate yield. The putative enzyme that was responsible for this oxaloacetate hydrolase (EC 3.7.1.1), which was induced de novo during the pH shift. Subcellular fractionation of oxalic acid-forming mycelia of A. niger showed that this enzyme is located in the cytoplasm of A. niger. The results are consistent with a cytoplasmic pathway of oxalate formation which does not involve the tricarboxylic acid cycle.

  9. Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger

    Kubicek, C.P.; Schreferl-Kunar, G.; Woehrer, W.; Roehr, M.

    1988-01-01

    Oxalate accumulation of up to 8 g/liter was induced in Aspergillus niger by shifting the pH from 6 to 8. This required the presence of P/sub i/ and a nitrogen source and was inhibited by the protein synthesis inhibitor cycloheximide. Exogenously added 14 CO 2 was not incorporated into oxalate, but was incorporated into acetate and malate, thus indicating the biosynthesis of oxalate by hydrolytic cleavage of oxaloacetate. Inhibition of mitochondrial citrate metabolism by fluorocitrate did not significantly decrease the oxalate yield. The putative enzyme that was responsible for this oxaloacetate hydrolase (EC 3.7.1.1), which was induced de novo during the pH shift. Subcellular fractionation of oxalic acid-forming mycelia of A. niger showed that this enzyme is located in the cytoplasm of A. niger. The results are consistent with a cytoplasmic pathway of oxalate formation which does not involve the tricarboxylic acid cycle

  10. Oxalate: Effect on calcium absorbability

    Heaney, R.P.; Weaver, C.M.

    1989-01-01

    Absorption of calcium from intrinsically labeled Ca oxalate was measured in 18 normal women and compared with absorption of Ca from milk in these same subjects, both when the test substances were ingested in separate meals and when ingested together. Fractional Ca absorption from oxalate averaged 0.100 +/- 0.043 when ingested alone and 0.140 +/- 0.063 when ingested together with milk. Absorption was, as expected, substantially lower than absorption from milk (0.358 +/- 0.113). Nevertheless Ca oxalate absorbability in these women was higher than we had previously found for spinach Ca. When milk and Ca oxalate were ingested together, there was no interference of oxalate in milk Ca absorption and no evidence of tracer exchange between the two labeled Ca species

  11. Dissolution of oxide films on iron in aqueous solutions containing complexing anions

    Shoesmith, D.W.; Lee, W.; Owen, D.G.

    1981-01-01

    The dissolution, in oxalic acid and oxalic acid plus ethylenediaminetetraacetate, of magnetite films grown at high temperature on iron has been studied under varying conditions of pH and temperature. For oxalate concentrations greater than about 2 x 10 -3 mol dm -3 , magnetite dissolves by direct chemical dissolution. The mechanism appears to involve adsorption of oxalate ions at ferric ion sites in the oxide lattice, followed by proton attack and desorption of cationic species. Once metal dissolution starts, β-ferrous oxalate dihydrate is precipitated on the electrode, leading to erratic fluctuations in the electrode potential and eventually to inhibition of metal dissolution. For oxalate concentrations -3 mol dm -3 , the predominant dissolution mechanism appears to involve reduction by the metal. Also, once solution penetration to the underlying metal has occurred, and the electrode has returned to the active state, autoreductive dissolution appears to predominate even at higher oxalate concentrations. This change in mechanism from predominantly chemical dissolution to predominantly autoreductive dissolution may be due, at least in part, to the desorption of oxalate ions at the more negative potentials achieved in the active state. (author)

  12. Polarography of hexavalent molybdenum in hypophosphorous acid solutions

    Hassan, A.; El-Shatory, S.A.; Azab, H.A.

    1988-01-01

    The polarographic behaviour and determination of Mo(6) in hypophosphorous acid solutions of concentrations varying from 0,1 to 5,0 moll -1 and T = 25±0,1 0 C have been investigated. It was shown that reduction of MoO 4 2- takes place along a single or two waves depending upon the acid concentration. Microcoulometric experiments have been performed at the limiting region of the different waves obtained at different acid concentrations. A scheme for the mechanism of reduction occuring at the DME has been deduced. A method for analytical determination of Mo(6) on both the micro- and macro-scales in hypophosphorous acid solutions has been reported. Analysis of a binary mixture Mo(6)/Cd(2) and a tertiary mixture Mo(6)/Cd(2)/Zn(2) in moll -1 hypophosphorous acid has been investigated. (Author)

  13. Oxalate-metabolising genes of the white-rot fungus Dichomitus squalens are differentially induced on wood and at high proton concentration

    Mäkelä, Miia R; Sietiö, Outi-Maaria; de Vries, Ronald P; Timonen, Sari; Hildén, Kristiina; van den Brink, J.

    2014-01-01

    Oxalic acid is a prevalent fungal metabolite with versatile roles in growth and nutrition, including degradation of plant biomass. However, the toxicity of oxalic acid makes regulation of its intra- and extracellular concentration crucial. To increase the knowledge of fungal oxalate metabolism, a

  14. Seasonal and spatial variability of the organic matter-to-organic carbon mass ratios in Chinese urban organic aerosols and a first report of high correlations between aerosol oxalic acid and zinc

    Xing, L.; Fu, T.-M.; Cao, J. J.; Lee, S. C.; Wang, G. H.; Ho, K. F.; Cheng, M.-C.; You, C.-F.; Wang, T. J.

    2013-01-01

    We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios) in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 yr-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13) and spatially-invariant, due to vigorous photochemistry and secondary OA production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18) was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07) than in southern cities (1.65 ± 0.15). This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matters constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We reported, for the first time, high correlations between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011). We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic property of aerosol dicarboxylic acids.

  15. Photolysis of Periodate and Periodic Acid in Aqueous Solution

    Sehested, Knud; Kläning, U. K.

    1978-01-01

    The photochemistry of periodate and periodic acid in aqueous solution was studied (i) by quantum yield measurements at low light intensity (ii) by flash photolysis, and (iii) by photolysis of glassy samples at 77 K. The photochemical studies were supplemented with pulse radiolysis studies...... of aqueous periodate solutions and with kinetic studies using stopped-flow technique. In strongly alkaline solution the photodecomposition of periodate proceeds via formation of O– and IVI. At pH solution O3 P is formed in a small...

  16. Uranium extraction from sulfuric acid solution using anion exchange resin

    Sheta, M. E.; Abdel Aal, M. M.; Kandil, A. T.

    2012-12-01

    Uranium is currently recovered from sulfuric acid leach liquor using anion exchange resin as Amberlite IRA 402 (CT). This technology is based on fact that, uranium exists as anionic complexes. This takes place by controlling the pH of the solution, agitation time, temperature and resin to solution ratio (R/S). In this work, batch stirrer tank used for uranium extraction from sulfate medium and after extraction, elution process was done using 1M NaCl solution. After extraction and elution process, the resin was separated from the system and uranium was determined in the solution. (Author)

  17. Density of nitric acid solutions of plutonium; Densite des solutions nitriques de plutonium

    Guibergia, J P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The report is intended to furnish an expression making it possible to determine the density of a nitric acid solution of plutonium. Under certain defined experimental conditions, the equation found makes it possible to deduce, for a solution whose concentration, free acidity and temperature are known, the corresponding value of the density of that solution. (author) [French] L'expose a pour but de donner une formule permettant la determination de la densite d'une solution nitrique de plutonium. Suivant certaines conditions experimentales precisees, l'equation trouvee permet, pour une solution dont la concentration, l'acidite libre nitrique et la temperature sont donnees, de deduire la valeur correspondant de la densite de cette solution. (auteur)

  18. Recovery of Am-Cm from high-activity waste concentrate by in-canyon-tank precipitation as oxalates

    Gray, L.W.; Burney, G.A.; Wilson, T.W.; McKibben, J.M.

    1980-01-01

    Savannah River Laboratory and Savannah River Plant have been separating actinides for more than 25 years. Work continues to upgrade processes and to initiate new processes. This report summarizes work on a precipitation process to separate kg amounts of Am and Cm from hundreds of kilograms of NaNO 3 and Al(NO 3 ) 3 . The developed process includes formic acid denitration of the Am-Cm bearing streams for acid adjustment; oxalate precipitation of the Am-Cm; and Mn +2 catalyzed oxidation of oxalate in both the decanted supernate and the precipitated actinides. The new process generates one fourth the radioactive waste as the solvent extraction process which it replaced, and produces a cleaner feed solution for downstream processing to separate the Am and Cm before conversion to their respective oxides

  19. Organic Acids Regulation of Chemical-Microbial Phosphorus Transformations in Soils.

    Menezes-Blackburn, Daniel; Paredes, Cecilia; Zhang, Hao; Giles, Courtney D; Darch, Tegan; Stutter, Marc; George, Timothy S; Shand, Charles; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Blackwell, Martin; Wearing, Catherine; Haygarth, Philip M

    2016-11-01

    We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg -1 . However, low organic acid doses (<2 mmol kg -1 ) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K d ) and desorption rate constants (k -1 ) decreased whereas an increase in the response time of solution P equilibration (T c ) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations.

  20. Removal of sulfamic acid from plutonium sulfamate--sulfamic acid solution

    Gray, L.W.

    1978-10-01

    Plutonium metal can be readily dissolved in aqueous solutions of sulfamic acid. When the plutonium sulfamate--sulfamic acid solutions are added to normal purex process streams, the sulfamate ion is oxidized by addition of sodium nitrite. This generates sodium sulfate which must be stored as radioactive waste. When recovery of ingrown 241 Am or storage of the dissolved plutonium must be considered, the sulfamate ion poses major and undesirable precipitation problems in the process streams. The present studies show that 40 to 80% of the sulfamate present in the dissolver solutions can be removed by precipitation as sulfamic acid by the addition of concentrated nitric acid. Addition of 64% nitric acid allows precipitation of 40 to 50% of the sulfamate; addition of 72% nitric acid allows precipitation of 50 to 60% of the sulfamate. If the solutions are chilled, additional sulfamic acid will precipitate. If the solutions are chilled to -10 0 C, about 70 to 80% of the orginal sulfamic acid in the dissolver will precipitate. A single, low-volume wash of the sulfamic acid crystals with concentrated nitric acid will decontaminate the crystals to a plutonium content of 5 dis/(min-gram)

  1. Coprecipitation of thorium and uranium peroxides from acid solutions

    McTaggart, D.R.; Mailen, J.C.

    1981-01-01

    The factors affecting successful coprecipitation of thorium and uranium peroxides from acid media were studied. Variables considered in this work were H/sup +/ concentration, H/sub 2/O/sub 2/ concentration, duration of contact, and rate of feed solution addition. In all experiments, stock solutions of Th(NO/sub 3/)/sub 4/ and UO/sub 2/(NO/sub 3/)/sub 2/ were fed at a controlled rate into H/sub 2/O/sub 2/ solutions with constant stirring. Samples were taken as a function of time to follow the H/sup +/ concentration of the solution, uranium precipitation, thorium precipitation, precipitant weight/volume of solution, and crystalline structure and growth. The optimum conditions for maximum coprecipitation are low H/sup +/ concentration, high H/sub 2/O/sub 2/ concentration, and extended contact time between the solutions.

  2. 15N NMR spectroscopic investigation of nitrous and nitric acids in sulfuric acid solutions of varying acidities

    Prakash, G.K.S.; Heiliger, L.; Olah, G.A.

    1990-01-01

    Both nitrous and nitric acids were studied in sulfuric acid solutions of varying acid strengths by 15 N NMR spectroscopy. The study gives new insights into the nature of intermediates present at different acid strengths. Furthermore, we have also discovered a novel redox reaction between NO 2 + and NO + ions involving the intermediacy of their respective acids. A mechanism is proposed to explain the observed results. 13 refs., 2 figs., 1 tab

  3. Process for extracting uranium from phosphoric acid solutions

    1977-01-01

    The description is given of a method for extracting uranium from phosphoric acid solutions whereby the previously oxided acid is treated with an organic solvent constituted by a mixture of dialkylphosphoric acid and trialkylphosphine oxide in solution in a non-reactive inert solvent so as to obtain de-uraniated phosphoric acid and an organic extract constituted by the solvent containing most of the uranium. The uranium is then separated from the extract as uranyl ammonium tricarbonate by reaction with ammonia and ammonium carbonate and the extract de-uraniated at the extraction stage is recycled. The extract is treated in a re-extraction apparatus comprising not less than two stages. The extract to be treated is injected at the top of the first stage. At the bottom of the first stage, ammonia is introduced counter current as gas or as an aqueous solution whilst controlling the pH of the first stage so as to keep it to 8.0 or 8.5 and at the bottom of the last stage an ammonium carbonate aqueous solution is injected in a quantity representing 50 to 80% of the stoichiometric quantity required to neutralize the dialkylphosphoric acid contained in the solvent and transform the uranium into uranyl ammonium tricarbonate [fr

  4. Ionizing radiation induced degradation of salicylic acid in aqueous solution

    Albarrán, Guadalupe; Mendoza, Edith

    2018-06-01

    The radiation-induced degradation of salicylic acid (SA-) in aqueous solutions (1.0 and 0.1 mmol dm-3) saturated with N2O or air or without oxygen were studied. Irradiation was carried out using a cobalt-60 source. With a 1 mmol dm-3 solution saturated with N2O a seemingly total degradation occurred at about 18 kGy, although small quantities of 2,3-dihydroxybenzoic acid, catechol and 2,5-dihydroxybenzoic acid were present at that dose at concentrations of 67, 22 and 6 μmol dm-3 respectively. Under air and when free oxygen, the three radiolytic products were present at 18.54 kGy while SA- was destroyed only to 90% and 62%, respectively. In the case of 0.1 mmol dm-3 SA- solutions, the acid was degraded at 3.5 kGy if the solution contained N2O, at 5.8 kGy in air and at 7 kGy without oxygen. The concentration of the radiolytic products increased with increasing dose and after a maximum they decreased. The oxidation was followed by measuring the chemical oxygen demand; the slopes were 0.48 and 0.11, 0.21 and 0.07, 0.15 and 0.03 mmol dm-3 kGy-1 for 1.0 and 0.10 mmol dm-3 solutions saturated with N2O or air or without oxygen, respectively.

  5. Preparation, characterization and catalytic effects of copper oxalate nanocrystals

    Singh, Gurdip; Kapoor, Inder Pal Singh; Dubey, Reena; Srivastava, Pratibha

    2012-01-01

    Graphical abstract: Prepared copper oxalate nanocrystals were characterized by FE-SEM and bright field TEM micrographs. Its catalytic activity was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG-DSC techniques. Highlights: ► Preparation of nanocrystals (∼9.0 nm) of copper oxalate using Cu(NO 3 ) 2 ·2H 2 O, oxalic acid and acetone under thermal conditions. ► Method is simple and novel. ► Characterization using XRD, SEM, TEM, HRTEM and ED pattern. ► Catalytic activity of copper oxalate nanocrystals on AP thermal decomposition using thermal techniques (TG, TG-DSC and ignition delay). ► Kinetics of thermal decomposition of AP + CONs using isoconversional and model fitting kinetic approaches. - Abstract: Recent work has described the preparation and characterization of copper oxalate nanocrystals (CONs). It was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and electron diffraction pattern (ED). The catalytic activity of CONs on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) has been done by thermogravimetry (TG), differential scanning calorimetry (DSC) and ignition delay measurements. Burning rate of CSPs was also found to be enhanced in presence of copper oxalate nanocrystals. Kinetics of thermal decomposition of AP with and without CONs has also been investigated. The model free (isoconversional) and model-fitting kinetic approaches have been applied to data for isothermal TG decomposition.

  6. Actinides in intermediate-level liquid waste: removal by oxalic acid precipitation followed by cement incorporation and characterization of the final product

    Bokelund, H.; Lebrun, M.; Ougier, M.; de Caritat de Peruzzis, G.

    1991-01-01

    The purpose of this study was to investigate the conditions for the provision of an alpha free waste form (non-TRU waste with 5000) and adequate (70) DF-values were found for americium and for plutonium, respectively, with calcium as the preferred carrier. No difference between simulated and genuine ILLW was found. The final cement product was investigated by measurements of its mechanical and chemical properties. The compressive strength was evaluated as functions of the ageing time and the salt content of the waste incorporated. Furthermore, the change of porosity of the product and its resistance to water leaching were tested. The study was carried out on both simulated and genuine ILLW samples. The use of microsilica as an additive to the cement gave significant improvements in the performance of the matrix: the compressive strength was increased and, more pronounced, the leachability was decreased by up to 50%. No detrimental effects of oxalates on the cement matrix were found

  7. Green synthesis of silver nanoparticles and silver colloidal solutions

    Nguyen Thi Phuong Phong; Ngo Hoang Minh; Ngo Vo Ke Thanh; Dang Mau Chien

    2009-01-01

    In this paper, silver colloidal solutions have been synthesized rapidly in green conditions by using microwave irradiation and non-toxic chemistry substances (acid oxalic, silver nitrate, polyvinyl pyrolidone (PVP; Mw = 55 000)). The particle size and morphology of these solutions can be controlled by altering several factors like the time, the power of microwave exposure, and the ratio of silver oxalate and PVP etc. The silver nanoparticles were fabricated by thermal decomposition of silver oxalate. The synthesized silver colloidal solutions and silver nanoparticles were characterized by several analytical techniques like UV- VIS, XRD, TEM, FESEM/EDS and ICP-AAS studies. Finally, we used the synthesized silver colloidal solutions for antibacterial purpose. The obtained results showed that the synthesized silver colloidal solutions, even at very low concentrations, have highly efficient anti-bacterial property.

  8. Study of Gel Growth Cobalt (II Oxalate Crystals as Precursor of Co3O4 Nano Particles

    Yuniar Ponco Prananto

    2013-03-01

    Full Text Available Crystal growth of cobalt (II oxalate in silica gel at room temperature as precursor of Co3O4 nano particles has been studied. Specifically, this project is focusing on the use of two different reaction tube types toward crystallization of cobalt (II oxalate in gel. The gel was prepared at pH 5 by reacting sodium metasilicate solution with dilute nitric acid (for U-tube and oxalic acid (for straight tube, with gelling time of 4 days and crystal growth time of 8 (for straight tube and 12 (for U-tube weeks. Result shows that pink crystalline powder was directly formed using straight tube method. The use of different solvents in straight tube method affects crystallization and could delay direct precipitation of the product. In contrast, bigger and better shape of red block crystal was yielded from U-tube method; however, longer growth time was needed. FTIR studies suggest that both growth method produces identical compound of hydrated cobalt (II oxalate. © 2013 BCREC UNDIP. All rights reservedReceived: 25th October 2012; Revised: 30th November 2012; Accepted: 5th December 2012[How to Cite: Y.P. Prananto, M.M. Khunur, D.T. Wahyuni, R.A. Shobirin, Y.R. Nata, E. Riskah, (2013. Study of Gel Growth Cobalt (II Oxalate Crystals as Precursor of Co3O4 Nano Particles. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 198-204. (doi:10.9767/bcrec.7.3.4066.198-204][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4066.198-204 ] View in  |

  9. Selective extraction of metals from acidic uranium(VI) solutions using neo-tridecano-hydroxamic acid

    Bardoncelli, F.; Grossi, G.

    1975-01-01

    According to this invention neo-alkyl-hydroxamic acids are employed as ion-exchanging agents in processes for liquid-liquid extraction with the aim of separating, purifying dissolved metals and of converting a metal salt solution into a solution of a salt of the same metal but with different anion. In particular it is an objective of this invention to provide a method whereby a molecular pure uranium solution is obtained by selective extraction from a uranium solution delivered by irradiated fuel reprocessing plants and containing plutonium, fission products and other unwanted metals, in which method neo-tridecane-hydroxamic acid is employed as ion exchanger. (Official Gazette)

  10. Copper complexation by tannic acid in aqueous solution

    Kraal, P.; Jansen, B.; Nierop, K.G.J.; Verstraten, J.M.

    2006-01-01

    The speciation of titrated copper in a dissolved tannic acid (TA) solution with an initial concentration of 4 mmol organic carbon ((OC)/l was investigated in a nine-step titration experiment (Cu/oC molar ratio = 0.0030-0.0567). We differentiated between soluble and insoluble Cu species by 0.45 mu m

  11. Flotation separation of hafnium(IV) from aqueous solutions

    Downey, D.M.; Narick, C.N.; Cohen, T.A.

    1985-01-01

    A simple, rapid method for the separation of hafnium from aqueous solutions was investigated using sup(175+181)Hf tracer. Cationic hafnium complex ions were floated from dilute acid solutions with sodium lauryl sulfate (SLS) and anionic hafnium complexes were floated from basic and oxalic acid solutions with hexadecyltrimethyl ammonium bromide (HTMAB). The conditions necessary for quantitative recovery of the metal and mechanisms of flotation are described. (author)

  12. Flotation separation of hafnium(IV) from aqueous solutions

    Downey, D.M.; Narick, C.N.; Cohen, T.A.

    1985-09-01

    A simple, rapid method for the separation of hafnium from aqueous solutions was investigated using sup(175 + 181)Hf tracer. Cationic hafnium complex ions were floated from dilute acid solutions with sodium lauryl sulfate (SLS) and anionic hafnium complexes were floated from basic and oxalic acid solutions with hexadecyltrimethyl ammonium bromide (HTMAB). The conditions necessary for quantitative recovery of the metal and mechanisms of flotation are described. (author). 21 refs.; 5 figs.

  13. Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs).

    Lü, Hongying; Li, Pengcheng; Deng, Changliang; Ren, Wanzhong; Wang, Shunan; Liu, Pan; Zhang, Han

    2015-07-07

    An oxalate-based DES with a tetrabutyl ammonium chloride and oxalate acid molar ratio of 1/2 (TBO1 : 2) exhibited high activity in oxidative desulfurization (ODS) of dibenzothiophene (DBT) under mild reaction conditions. It is potentially a promising and highly environmentally friendly approach for desulfurization of fuels.

  14. an oxalate-peroxide complex used in the preparation of doped barium titanate

    van der Gijp, S.; Winnubst, Aloysius J.A.; Verweij, H.

    1998-01-01

    A method is described for the preparation of homogeneously doped barium titanate, which can be applied in non-linear dielectric elements. Ba and Ti salts are dissolved, mixed with hydrogen peroxide and added to a solution of ammonium oxalate, resulting in the formation of an insoluble peroxo-oxalate

  15. Immobilization of citric acid solutions in portland cement

    Lopes, Valdir M.; Rzyski, Barbara M.

    1997-01-01

    Decontamination processes by using citric acid on certain items used in the nuclear area, can result in large volumes of liquid wastes with low activity or effluents, contaminated with uranium and some elements dangerous to the environment. A great number of installations that have decontamination processes adopt the zero discharge philosophy. So, one of the forms to isolate the solutions is by reducing its volume through the evaporation process. The generated must can be neutralized and encapsulated or immobilized in Portland cement. This work propose a chemical technique to destroy the citric acid in the decontamination solutions instead of neutralization and, depending on the installation convenience, a direct cement immobilization of these solutions or of the evaporation mud. The results obtained in this work involve data about the workability, setting time and mechanical resistance, after 28 days of sealed cure, for samples with water-cement ratios of 4, 0.5 and 0.6, by weight. (author). 5 refs., 2 tabs

  16. Analytical Study of Oxalates Coprecipitation

    Liana MARTA

    2003-03-01

    Full Text Available The paper deals with the establishing of the oxalates coprecipitation conditions in view of the synthesis of superconducting systems. A systematic analytical study of the oxalates precipitation conditions has been performed, for obtaining superconducting materials, in the Bi Sr-Ca-Cu-O system. For this purpose, the formulae of the precipitates solubility as a function of pH and oxalate excess were established. The possible formation of hydroxo-complexes and soluble oxalato-complexes was taken into account. A BASIC program was used for tracing the precipitation curves. The curves of the solubility versus pH for different oxalate excess have plotted for the four oxalates, using a logaritmic scale. The optimal conditions for the quantitative oxalate coprecipitation have been deduced from the diagrams. The theoretical curves were confirmed by experimental results. From the precursors obtained by this method, the BSCCO superconducting phases were obtained by an appropriate thermal treatment. The formation of the superconducting phases was identified by X-ray diffraction analysis.

  17. Interactions of acidic solutions with sediments: a case study

    Peterson, S.R.; Serne, R.J.; Felmy, A.R.; Erikson, R.L.; Krupka, K.M.; Gee, G.W.

    1984-01-01

    A methodology is presented for investigating the chemical interactions of acidic solutions with sediments. The MINTEQ geochemical computer code was used to predict solid-phase reactions that might occur when acidic solutions contact neutral sediments which, in turn, may control the concentrations of certain dissolved components. Results of X-ray diffraction analysis of laboratory samples of sediments that have been contacted with acidic uranium mill tailings solutions suggest gypsum and jarosite precipitated. These same mineralogical changes were identified in sediment samples collected from a drained uranium mill evaporation pond (Lucky Mc mine in Wyoming) with a 10-year history of acid attack. Geochemical modeling predicted that these same phases and several amorphous solids not identifiable by X-ray diffraction should have precipitated in the contacted sediments. An equilibrium conceptual model consisting of an assemblage of minerals and amorphous solid phases was then developed to represent a sediment column through which uranium mill tailings solutions were percolated. The MINTEQ code was used to predict effluent solution concentrations resulting from the reactions of the tailings solution with the assemblage of solid phases in the conceptual model. The conceptual model successfully predicted the concentrations of several of the macro-constituents (e.g., Ca, SO 4 , Al, Fe, and Mn), but was not successful in modeling the concentrations of trace elements. The lack of success in predicting the observed trace metal concentrations suggests that other mechanisms, such as adsorption, must be included in future models. The geochemical modeling methodology coupled with the laboratory and field studies should be applicable to a variety of waste disposal problems

  18. Determination of As, Cr, Mo, Sb, Se and V in agricultural soil samples by inductively coupled plasma optical emission spectrometry after simple and rapid solvent extraction using choline chloride-oxalic acid deep eutectic solvent.

    Matong, Joseph M; Nyaba, Luthando; Nomngongo, Philiswa N

    2017-01-01

    A rapid, simple and green ultrasound-assisted extraction method using deep eutectic solvents (DES) for extraction of As, Cr, Mo, Sb, Se and V in soil samples, has been developed. Choline chloride-oxalic acid based DES was used as a solvent. The target analytes were subsequently quantified using inductively coupled plasma optical emission spectrometer (ICP OES). The parameters that affect the extraction of the target analytes was optimized using standard reference material of San Joaquin soil (SRM 2709a). In the optimization step, a two-level full factorial experimental design was used. The factors under investigation include extraction time, sample mass and acid concentration. Under optimized conditions, limits of detection (LOD) and limits of quantification (LOQ) ranged from 0.009 to 0.1 and 0.03-0.3µgg -1 , respectively. The repeatability (n=20) estimated in terms of relative standard deviation (%RSD) ranged from 0.9% to 3.7%. The accuracy of the proposed method was carried out using SRM 2709a. The obtained and certified/ indicative values were statistically in good agreement at 95% confidence level. The proposed method applied for quantification of As, Cr, Mo, Sb, Se and V in real soil samples. For comparison, the analytes of interest were also determined using a conventional acid digestion method. According to the paired t-test, the analytical results were not significant differences at 95% confidence level. The method was found to be accurate, precise and environmentally friendly. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Growth and physico chemical characterization of lanthanum neodymium oxalate single crystals

    Raju, K.S.; John, Varughese; Ittyachen, M.A.

    1998-01-01

    Single crystals of lanthanum neodymium oxalate (LNO) are grown in sodium meta silicate gels, by the diffusion of a mixture of aqueous solutions of lanthanum nitrate and neodymium nitrate into the test tube having the set gel containing oxalic acid. The bluish pink coloured tabular crystals of LNO having well defined hexagonal basal planes appear either as foggy or clear, the latter at the greater depths inside the gel. The coloration of LNO visually observed is evidenced in UV-visible spectrum, by the revelation of well pronounced characteristic peaks in the visible region (500-900 nm). X-ray diffraction (XRD) of powdered LNO is ordered, meaning crystalline in nature, besides its isostructurality with similarly grown lanthanum samarium oxalate crystals. The single crystallinity of LNO is established by its oscillation XRD pattern. Thermogravimetric analysis (TGA) and differential scanning colorimetry (DSC) support that LNO loses water of crystallization around 120 degC and CO and CO 2 around 350-450 degC, while the infrared absorption (IR) spectrum of LNO establishes the presence of oxalate (C 2 O 4 ) 2- ions. Energy dispersive x-ray analysis (EDAX) confirms the presence of La and Nd in the sample. X-ray photoelectron spectroscopic (XPS) studies of LNO establish the presence of La and Nd in their respective oxide states. An empirical structure for LNO has been proposed on the basis of these findings. The smokiness in the foggy LNO crystal has been attributed due to the gel inclusion during the growth process. (author)

  20. Sorption behavior of Sn(II) onto Haro river sand from aqueous acidic solutions

    Hasany, S.M.; Khurshid, S.J.

    1999-01-01

    The sorption behavior of Sn(II) onto Haro river sand has been examined with respect to nature of electrolyte, agitation time, dosage of sorbent and concentration of sorbate. Maximum sorption (95.5%) has been achieved from 0.034M hydrochloric acid solution after equilibrating sorbate (2 x 10 -5 M) and sorbent (50 mg) for 120 minutes at a V/W ratio of 90 cm 3 x g -1 . The kinetic data have been subjected to Morris-Weber and Lagergren equations. The kinetics of sorption proceeds a two stage process consisting of a relatively slow initial uptake followed by a much rapid increase in the sorption. The rate constant of intraparticle transport, K d , comes out to be 8.75 x 10 -8 mol x g -1 x min -1/2 and the first order rate constant for sorption is 0.0416 min -1 . The sorption data of Sn(II) onto Haro river sand followed Langmuir, Freundlich and Dubinin-Radushkevich (D-R) type isotherms. The Langmuir constant, Q, related to sorption capacity and, b, related to sorption energy are computed to be 10.6±1.1 μmol x g -1 and 1123±137 dm 3 x mol -1 , respectively. The D-R isotherm yields the values of C m = 348±151 μmol x g -1 and β = -0.01044±0.0008 mol 2 x kJ -2 and of E = 6.9±0.3 kJ x mol -1 . In all three isotherms correlation factor (γ) is ≥ 0.99. The influence of common anions and cations on the sorption has been investigated. Zn(II), Mg(II), oxalate, Pb(II), Mn(II) and tartrate reduce the sorption significantly whereas Fe(II) causes substantial increase in the sorption. (author)

  1. Radiation-chemical oxidation of neptunium in perchloric acid solutions

    Shilov, V.P.; Gusev, Yu.K.; Pikaev, A.K.; Stepanova, E.S.; Krot, N.N.

    1979-01-01

    The γ-radiation effect (at a dose rate of 5x10 16 eV/mlxs) on 1x10 -3 Np(6) and Np(5) perchloric acid solutions is studied. The output of Np(6) loss in aerated 0.001-0.005M HClO 4 solutions was 2.4 ions/100 eV. The output of Np(5) loss in solutions saturated with nitrous oxide was 2.1 ions/100 eV at pH-4. In aerated 0.1-1.0 M HClO 4 solutions in presence of XeO 4 the output of Np(5) loss grows from 6.6 to 13.5 ions/100 eV as (XeO 3 ) 0 increases from 1x10 -3 to 2x10 -2 M. Possible process mechanisms have been proposed

  2. Studies of the Tc oxidation states in humic acid solutions

    Wang Bo; Liu Dejun; Yao Jun

    2010-01-01

    The oxidation state is an important aspect of the speciation of Tc in groundwater that contained organic substances due to it control the precipitation, complexation, sorption and colloid formation behavior of the Tc under HWL geological disposal conditions. In present work, the oxidation states of Tc were investigated using the LaCl 3 coagulation method and solution extraction method in aqueous solutions in which the humic acid concentration range is from 0 to 20 mg L -1 and the Tc (Ⅶ) concentration range is about 10 -8 mol l -1 . The radiocounting of 99 Tc was determined using liquid scintillation spectrometry. The humic acid will influence the radiocounting ratio of 99 Tc apparently, however, the quenching effect can be restrained once keep the volume of the cocktail to about twenty times of the sample volume. The LaCl 3 coagulation methods were carried out for the investigation of Tc oxidation states in humic acid aqueous systems at about pH 8. The tetraphenylarsonium chloride (IPA)-chloroform extraction method was used also simultaneously to investigation the concentrations of Tc (Ⅳ) and Tc (Ⅶ) for the availability of the LaCl 3 precipitation method, and the experimental results demonstrate that tetravalent technetium and pertechnetate concentrations are well agreement with the LaCl 3 precipitation method. These two experimental results demonstrated that Tc (Ⅶ) is very stable in the Tc (Ⅶ)-humic acid system during a 350 days experimental period, and the Tc (Ⅳ) concentrations are very lower, that is indicate that there didn't oxidizing reactions between the Fluka humic acid and Tc (Ⅶ) in aqueous solutions under anaerobic conditions. That is means the presence of humic acids even in anaerobic groundwater is disadvantage for the retardance of radionuclides. (authors)

  3. Studies of Tc oxidation states in humic acid solutions

    Wang Bo; Liu Dejun; Yao Jun

    2011-01-01

    The oxidation state of Tc is an important aspect of the speciation in groundwater which contained organic substances due to it control the precipitation, complexation, sorption and colloid formation behavior of the Tc under HWL geological disposal conditions. In present work, the oxidation states of Tc were investigated using the LaCl 3 coagulation method and solution extraction method in aqueous solutions in which the humic acid concentration range is from 0 to 20 mg/L and the Tc (VII) concentration is about 10 -8 mol/L. The radiocounting of 99 Tc was determined using liquid scintillation spectrometry. The humic acid will influence the radiocounting ratio of 99 Tc apparently, however, the quenching effect can be restrained once keep the volume of the cocktail to about twenty times of the sample volume. The LaCl 3 coagulation method was carried out for the investigation of Tc oxidation states in humic acid aqueous systems at about pH 8. The tetraphenylarsonium chloride (TPA)-chloroform extraction method was used also simultaneously to investigation the concentrations of Tc (IV) and Tc (VII) for the availability of the LaCl 3 precipitation method, and the experimental results demonstrate that tetravalent technetium and pertechnetate concentration are well agreement with the LaCl 3 precipitation method. These two experimental results demonstrated that Tc (VII) is very stable in the Tc (VII)-humic acid system during a 350 days experimental period, and the Tc (IV) concentrations are very lower, that is indicate that there didn't oxidizing reactions between the Fluka humic acid and Tc (VII) in aqueous solutions under anaerobic conditions. That means the presence of humic acids even in anaerobic groundwater is disadvantage for the retardance of radionuclides. (authors)

  4. The reducibility of sulphuric acid and sulphate in aqueous solution

    Grauer, R.

    1991-07-01

    In connection with the Swedish project for final storage of spent fuel elements it was necessary to assess whether dissolved sulphate can corrode the copper canister. A simple reaction between copper and sulphate is thermodynamically impossible, but copper can react to give copper sulphide if an additional electron donor such as iron(II) is available. The problem was extended to the more general question of the reducibility of sulphur(VI) in dilute aqueous solution. Chemical reduction of sulphate does not take place in dilute solution at temperatures below 100 o C. In experiments on the reduction of sulphates under hydrothermal conditions a reaction only takes place at temperatures above 275-300 o C. The oxidising action of sulphuric acid on metals becomes perceptible only at acid concentrations over 45-50%. In experiments on the cathodic reduction of 74% sulphuric acid the formation of hydrogen sulphide and elementary sulphur starts, depending on the current density, at 50-130 o C, and polarographic measurements suggest that the reducible species is not the hydrogen sulphate ion but molecular sulphuric acid. The resistance of copper to oxygen-free sulphuric acid up to a concentration of 60% is well-known. Numerous processes in industrial electrochemistry take place in sulphuric acid or sulphate electrolytes. The reversible metal/metal-sulphate electrodes of lead and cadmium are unstable relative to the corresponding metal sulphides. Nevertheless the reversible lead sulphate electrode does not fail from sulphide formation. All these facts confirm that sulphur(VI) in dilute solution is completely inert towards chemical reducing agents and also to cathodic reduction. Thus corrosion of copper by sulphate under final-storage conditions and in the absence of sulphate reducing bacteria can be almost certainly be ruled out. (author) 5 figs., 85 refs

  5. Chemical dosimetry by UV spectrophotometry of aqueous ascorbic acid solutions

    Alian, A.; El-Assay, N.B.; Abdel-Rehim, F.; Amin, N.E.; McLaughlin, W.L.; Roushdy, H.

    1984-01-01

    The decrease in the ultraviolet absorption of aqueous solutions of ascorbic acid brought about by large doses of gamma radiation has been investigated as a means of developing a new chemical dosimeter. Because of spontaneous ring opening under various conditions after dissolution in water, some additives were examined as possible stabilizers against such denaturing of aqueous ascorbic acid. At an ascorbic acid concentration of 10 -4 M, either 1 to 2% glycine or 0.2 M NaCl was found to be a good stabilizer. A mechanism of radiation chemistry has been proposed based on hydroxyl radical and hydroxyl adduct intermediates, leading to dehydroascorbic acid through the ascorbate complex. The optimum dosimeter solution covers an absorbed dose range approx. 50 to 350 Gy, when measured at 264 nm wavelength. The G-values for dehydroascorbic acid production were determined to be 2.94 +- 0.33 and 2.43 +- 0.11 (100 eV) -1 , with glycine and NaCl used respectively as stabilizers. (author)

  6. Simultaneous treatment of chlorinated organics and removal of metals and radionuclides with bimetals and complexing acids - application to surfactant solutions

    Korte, N.E.; Gu, B. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    Currently available methods for separation and treatment of radioactive mixed waste are typically energy-intensive, and often require high temperatures. Passive methods that operate at ambient temperatures are needed. The purpose of this task is to develop bimetallic substrates, using a base metal such as iron and a promoter metal such as palladium (Pd), to provide a passive, low-energy solution to a substantial portion of DOE`s mixed-waste problem. This technology consists of a porous medium that can simultaneously dechlorinate hazardous organics such as TCE and polychlorinated biphenyls (PCBs) at the same time that it removes metallic and hazardous wastes from a solvent/surfactant solution. The porous medium consists of a bimetallic substrate such as palladized iron (Pd/Fe). Palladium is readily chemically plated on iron and preliminary studies suggest that only 0.05 to 0.1% Pd is needed for an efficient reaction. Thus, the cost of the material is reasonable especially is it is long-lived or can be regenerated. Field implementation would consist of the passage of a surfactant-laden, mixed waste through a column or bed of the bimetallic substrate. The organic component of this mixed waste may contain semivolatile compounds such as PCBs or pesticides and herbicides. The bimetal simultaneously removes radionuclides and metals and degrades halogenated hydrocarbons. Virtually any concentration can be treated. Following reaction of the bimetal with the waste stream, the resulting effluent will consist of an uncontaminated aqueous solution of surfactant or solvent that can be reused. The bimetal would then be rinsed with a dilute mineral acid or a mild complexing acid (e.g., oxalic or citric acid) to regenerate the surface and to remove sorbed metals and non-hazardous organic residue. The latter effluent would be low-level radioactive waste in some cases, but it would now be much easier to manage and be of a lower volume than the original mixed waste.

  7. Cs separation from nitric acid solutions of radioactive waste

    Heckmann, K.; Pieronczyk, W.; Strnad, J.; Feldmaier, F.

    1989-01-01

    It was the objective of this study to selectively separate active caesium (Cs-134 and Cs-137) from acid radioactive waste solutions (especially MAW and HAWC). The following 'strategy' was designed for a separation process: synthesis of reagents which are acid-resistant and selective for caesium; precipitation of Cs + and separation of the precipitates by filtration or centrifugation or precipitation of Cs + and separation of the precipitates by flotation; caesium separation by liquid-liquid extraction. As precipitating agents, sodium tetraphenylborate (kalignost) and several of its fluorine derivatives were examined. (orig./RB) [de

  8. Availability of calcium from chemically pure potassium oxalate to the buffalo (Bubalus bubalis)

    Singh, Sudarshan; Sareen, V.K.; Marwah, S.R.; Sharma, K.C.; Bhatia, I.S.

    1978-01-01

    Three experiments were conducted to determine the true dige'stibility of calcium in the buffalo calves fed chemically pure potassium oxalate. In each experiments 6 calves were divided into two groups, viz. control and oxalate-fed. The control group was given basal ration consisting of wheat straw, mustard-cake and maize grains. The oxalate-fed group was fed the basal ration supplemented with 60, 100 and 140 g potassium oxalate per day in experiments 1,2, and 3 respectively. The percent true digestibility of calcium was 51.7 and 52.5 in experiment 1, 60.5 and 44.1 in experiment 2, and 59.3 and 44.1 in experiment 3 in the control and oxalate-fed groups respectively. In all the experiments the oxalate was completely broken down in the rumen. The volume of water intake and urine excretion was more in the oxalate-fed groups. The daily alkali output in the urine in terms of N-acid was 0.7 and 1.3 in experiment 1, 1.5 and 2.5 in experiment 2, and 2.1 and 3.8 in experiment 3 in control and oxalate-fed groups respectively. The daily bicarbonate concentration in the urine (in g) was 26.5 and 53.4 in experiment 1, 83.2 and 146.2 in experiment 2, and 132.6 and 222.8 in experiment 3 in control and oxalate-fed groups respectively. Likewise the excretion of oxalate in the urine was more in oxalate-fed groups. On the basis of the results obtained, the reason for the somewhat low true digestibility of calcium in the calves consuming more than 60 g of potassium oxalate/day are discussed. Isotope-dilution technique using 45 CaCl 2 was employed in the study. (auth.)

  9. The use of microemulsions for the synthesis of oxalate precursors of YBaCuO superconduction oxide

    Wang, L.; Zhang, Y.; Muhammed, M.

    1992-01-01

    Although emulsion technique has been used as an advanced separation method, little attention has been paid to the particular feature of emulsions as a powerful reaction media for synthesis of powders, e.g., precipitation of fine particles. In the present paper, the authors report the use of some microemulsion systems as a reaction media in a controlled coprecipitation of the oxalate precursors of superconducting YBa 2 Cu 3 O 7-δ ceramics. The phase diagram of the system: oil (hydrocarbon) - surfactant (Aerosol Orange T) - water, in the absence and presence of nitric/oxalic acids and nitrates, have been systematically investigated. Several hydrocarbons, n-hexane, n-haptene and n-octane have been tested. The different stability regions of microemulsions have been determined. The oxalate coprecipitation of Y, Ba and Cu from nitrate solution was studied under various operating conditions, pH, ratio of oil/surfactant/water and ratio of Y/Ba/Cu/.H 2 C 2 O 4 2 . The chemical and morphological properties of the oxalate powders obtained in the microemulsion systems have been examined by different techniques, e.g., ICP, TGA, XRD and SEM. By XRD, the optimum products are found to be amorphous oxalate composite with exact required stoichiometry and high homogeneity. The average size of the dispersed particles is 50-70 nm while the mean diameter of the agglomerates is around 300 nm. The best sinters bulk sample has T, (R = 0) at 92 K. These powders are used as fine precursors for the synthesis of high T c superconducting ceramics as bulk material and particularly thick films

  10. Sorption of molybdenum by cellulose polyphosphate from acid solutions

    Luneva, N.K.; Oputina, A.G.; Ermolenko, I.N.

    1985-01-01

    The sorption of molybdenum on cellulose polyphosphate from acid solutions of ammonium molybdate depending on the phosphorus content in samples, concentration and pH of the solution, sorption time is studied. It is shown that a maximum molybdenum content on the cellulose samples with different phosphorus content is pointed out at an ammonium molybdate concentration 0.02 M. Saturation of the sorption curve is attained at molar ratio of adsrbed molybdenum to phosphorus 1:4. In case of small fillings the compound with molybdenum to phosphorus ratio 1:10 is formed

  11. Pulse Radiolysis of Adrenaline in Acid Aqueous Solutions

    Gohn, M.; Getoff, N.; Bjergbakke, Erling

    1976-01-01

    Pulse radiolysis of adrenaline in acid aqueous solutions (pH 1–3) was carried out. The rate constants for the reactions of adrenaline with H and OH were determined: k(H + adr.) = (0·9±0·1) × 109 dm3 mol−1s−1; k(OH + adr.) = (1·65±0·15) × 1010 dm3 mol−1s−1. The H-adduct of adrenaline has two λmax...

  12. Measurement of acidity and density of plutonium solutions

    Hofstetter, K.J.; Bowers, D.L.; Kemmerlin, R.P.

    1978-01-01

    The solutions were analyzed for acidity and total Pu concentration at ambient temperature while the density was determined at 25, 35, 45, and 60 0 C. From least squares fitting, it was found that the density could be computed to within 1% of the experimental value using the equation D = 1 + 0.0477[H + ] - 4.25 x 10 -3 [H + ] 2 + 1.477 x 10 -3 [Pu] - (T - 25)/1000

  13. Volumetric studies of some amino acids in binary aqueous solutions ...

    Unknown

    0 values of glycine, L-alanine, and L-valine in aqueous MgCl2⋅6H2O solutions at. 298⋅15 K in order to describe the temperature dependence behaviour of partial molar quantities. Group contributions to partial molar volumes have been determined for the amino acids. The trends of transfer volumes (∆Vφ. 0) have been ...

  14. The impact of UV-B and sulphur- or copper-containing solutions in acidic conditions on chlorophyll fluorescence in selected Ramalina species

    Garty, J.; Tamir, O.; Levin, T.; Lehr, H.

    2007-01-01

    Ramalina maciformis and Ramalina lacera were exposed to different solutions and UV-B to seek for alterations in the PSII photosynthetic quantum yield (F v /F m ), in response to chemicals and radiation. For R. maciformis, significant alterations of the F v /F m ratio occurred only in response to different bisulphite solutions. The F v /F m ratio decreased most in R. maciformis and R. lacera following exposure to 5 and 1 mM bisulphite, respectively. Significant differences in F v /F m ratios were observed for R. lacera in response to different solutions and light at different wavelengths, this being synergistic. The PSII system was unaffected by simulated acid rain in both lichens. R. maciformis, in particular, may survive limited acid rain exposure owing to high Ca oxalate accumulation. The F v /F m ratio decreased most in R. lacera following short-term exposures to CuSO 4 , suggesting that this species is more sensitive to Cu ions under acidic conditions. - Lichens in the eastern Mediterranean tolerate acid rain owing to high Ca content in the thallus, but are sensitive to bisulphite

  15. Conformation of poly(γ-glutamic acid) in aqueous solution.

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru

    2016-04-01

    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε acidic media. © 2015 Wiley Periodicals, Inc.

  16. Photometric estimation of plutonium in product solutions and acid waste solutions using flow injection analysis technique

    Dhas, A.J.A.; Dharmapurikar, G.R.; Kumaraguru, K.; Vijayan, K.; Kapoor, S.C.; Ramanujam, A.

    1995-01-01

    Flow injection analysis technique is employed for the measurement of plutonium concentrations in product nitrate solutions by measuring the absorbance of Pu(III) at 565 nm and of Pu(IV) at 470 nm, using a Metrohm 662 photometer, with a pyrex glass tube of 2 nm (ID) inserted in the light path of the detector serving as a flow cell. The photometer detector never comes in contact with radioactive solution. In the case of acid waste solutions Pu is first purified by extraction chromatography with 2-ethyl hexyl hydrogen 2 ethyl hexyl phosphonate (KSM 17)- chromosorb and the Pu in the eluate in complexed with Arsenazo III followed by the measured of absorbance at 665 nm. Absorbance of reference solutions in the desired concentration ranges are measured to calibrate the system. The results obtained agree with the reference values within ±2.0%. (author). 3 refs., 1 tab

  17. Reaction Kinetics of Monomethylhydrazine With Nitrous Acid in Perchloric Acid Solution

    Wei Yan; Wang Hui; Pan Yongjun; Cong Haifeng; Jiao Haiyang; Jia Yongfen; Zheng Weifang

    2009-01-01

    The oxidation of monomethylhydrazine (MMH) by nitrous acid was researched in perchloric acid solution with spectrophotometry. The rate equation has been determined as follows: -dc (HNO 2 ) /dt= kc (H + ) 0.9 c (MMH) 1.1 c (HNO 2 ), k is (46.0 ± 2.7) L 2 / (mol 2 · s) with the initial perchlorate concentration of 0.50 mol/L at the temperature of 4.5 degree C. The corresponding activation energy of the reaction is (42.4 ± 0.1) kJ/mol. The results indicate that oxidation of mono-methylhydrazine (MMH) by nitrous acid is fast. The higher concentration of MMH can accelerate the reduction process of nitrous acid. Higher acidity can also speed up the reduction of nitrous acid. (authors)

  18. Pretreatment of americium/curium solutions for vitrification

    Rudisill, T.S.

    1996-01-01

    Vitrification will be used to stabilize an americium/curium (Am/Cm) solution presently stored in F-Canyon for eventual transport to the heavy isotope programs at Oak Ridge National Laboratory. Prior to vitrification, an in-tank oxalate precipitation and a series of oxalic/nitric acid washes will be used to separate these elements and lanthanide fission products from the bulk of the uranium and metal impurities present in the solution. Pretreatment development experiments were performed to understand the behavior of the lanthanides and the metal impurities during the oxalate precipitation and properties of the precipitate slurry. The results of these experiments will be used to refine the target glass composition allowing optimization of the primary processing parameters and design of the solution transfer equipment

  19. Effect of different extracting solutions on the electrodialytic remediation of CCA-treated wood waste Part I. - Behaviour of Cu and Cr

    Velizarova, E.; Ribeiro, A. B.; Mateus, E.

    2004-01-01

    Removal of Cu and Cr from chromated copper arsenate (CCA)-treated wood waste under batch electrodialytic conditions was studied. The effect of different types of extracting solutions, such as deionised water or aqueous solutions of NaCl, formic acid, oxalic acid, and EDTA, on the magnitude...... and direction of the fluxes of Cu- and Cr-containing species in the electrodialytic cell was investigated. Oxalic acid was found to have the best performance if simultaneous removal of the two elements is required (removal efficiencies of 80.5% for Cu and 87.4% for Cr, respectively). A mixture of oxalic acid...... and formic acid also led to similar removal efficiencies. In these experiments, the target elements were accumulated in both the anode and cathode compartments of the electrodialytic cell due to the formation of negatively charged complexes with the organic acids used besides the free cationic forms...

  20. Oxalate Mass Balance During Chemical Cleaning in Tank 5F

    Poirier, M.; Fink, S.

    2011-07-08

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 5F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate.

  1. Structure of polyacrylic acid and polymethacrylic acid solutions : a small angle neutron scattering study

    Moussaid , A.; Schosseler , F.; Munch , J.; Candau , S.

    1993-01-01

    The intensity scattered from polyacrylic acid and polymethacrylic acid solutions has been measured by small angle neutron scattering experiemnts. The influence of polymer concentration, ionization degree, temperature and salt content has been investigated. Results are in qualitative agreement with a model which predicts the existence of microphases in the unstable region of the phase diagram. Quantitative comparison with the theory is performed by fitting the theoretical structure factor to t...

  2. Structure and dynamics of solvated hydrogenoxalate and oxalate anions: theoretical study

    Kroutil, O.; Minofar, Babak; Kabeláč, M.

    2016-01-01

    Roč. 22, č. 9 (2016), s. 210 ISSN 1610-2940 Institutional support: RVO:61388971 Keywords : Ab initio molecular dynamics * oxalic acid anions * Potential energy surface Subject RIV: EE - Microbiology, Virology Impact factor: 1.425, year: 2016

  3. Calorimetric investigation of solution heat of rare earth sulfates in acid solutions

    Vasin, S.K.; Babkin, A.G.; Kessler, Yu.M.

    1978-01-01

    To determine the thermodynamic characteristics of sulfates of rare elements an adiabatic airtight calorimeter has been developed, enabling measurement of minor heat effects of processes in aggressive media with an absolute error of about 5x10 -3 cal, the temperature sensitivity being no less than 2x10 -5 C 0 . The calorimeter is schematically represented. Measured with the aid of the calorimeter was the heat of dissolution of TiOSO 4 x2H 2 O in chloric acid solutions

  4. Arsenic removal from acidic solutions with biogenic ferric precipitates.

    Ahoranta, Sarita H; Kokko, Marika E; Papirio, Stefano; Özkaya, Bestamin; Puhakka, Jaakko A

    2016-04-05

    Treatment of acidic solution containing 5g/L of Fe(II) and 10mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7h, 96-98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pHremoves iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Speciation of platinum(IV) in nitric acid solutions.

    Vasilchenko, Danila; Tkachev, Sergey; Baidina, Iraida; Korenev, Sergey

    2013-09-16

    The speciation of platinum(IV) ions in nitric acid (6-15.8 M) solutions of H2[Pt(OH)6] has been studied by (195)Pt NMR and Raman spectroscopy. Series of aqua-hydroxo-nitrato complexes [Pt(L)(x)(NO3)(6-x)] (L = H2O or OH(-); x = 0, ..., 6) were found to exist in such solutions. The pair additivity model of chemical shifts and statistical theory were used to assign signals in NMR spectra to particular [Pt(L)(x)(NO3)(6-x)] species. Mononuclear hexanitratoplatinates(IV) have been isolated in solid state in substantial yield as pyridinium salt (PyH)2[Pt(NO3)6] and characterized by single-crystal X-ray diffraction. Aging of the platinum nitric acid solutions for more than 5-6 h results in oligomerization of [Pt(L)(x)(NO3)(6-x)] species and the formation of oligonuclear aqua-hydroxo-nitrato complexes with OH(-) and NO3(-) bridging ligands. Oligomeric platinum(IV) complexes with two and four nuclei were unambiguously detected by NMR on (195)Pt -enriched samples. Oligomers with even higher nuclearity were also detected. Dimeric anions [Pt2(μ-OH)2(NO3)8](2-) have been isolated as single crystals of tetramethylammonium salt and characterized by X-ray diffraction.

  6. Reaction of nitrous acid with U(IV) and nitric acid in 30% TBP-kerosene solution

    Xu Xiangrong; Hu Jingxin; Huang Huaian; Qiu Xiaoxi

    1990-01-01

    Reaction of nitrous acid with U(IV) and nitric acid in 30% TBP-kerosene solution is investigated, the rate equations of oxidation of U(IV) by nitrous acid and that of nitrous acid reacting with nitric acid are obtained

  7. Effects of Juice Processing on Oxalate Contents in Carambola Juice Products.

    Huynh, Nha K; Nguyen, Ha V H

    2017-09-01

    Effects of processing methods including pressing, enzyme-assisted extraction, lactic acid fermentation by Lactobacillus acidophilus, and alcohol fermentation by Saccharomyces cerevisiae on total and soluble oxalate contents of carambola juices were studied. In comparison with pressing, the use of enzyme increased juice yields (15.89-17.29%), but resulted in higher total oxalate (1.60-1.73 times) and soluble oxalate contents (1.16-1.49 times). In addition, extension of enzyme incubation periods led to an increase in soluble oxalate contents in the products (p carambola juices. These results suggested that carambola juice products should only be consumed moderately, and that alcohol fermentation could be a potential method to reduce oxalate contents in foods in order to prevent the risks of forming kidney stones.

  8. Extraction of americium from acid aqueous solutions by diethyl-2-hexyl-pyro-phosphoric acid

    Guillaume, Bernard

    1971-02-01

    After having outlined the interesting properties of americium and the difficulties of its recovery, the author reports the study of the mechanism of extraction of americium from acid aqueous solutions by using the diethyl-2hexyl-pyro-phosphoric acid. Several aspects are thus discussed: influence of concentration of H 2 DEHPP, influence of the acidity of the aqueous phase, saturation of extracting agent, influence of the diluting agent, complexing of americium, influence of other cations. In a second part, the author reports the application to the recovery of americium from effluents, and discusses the obtained results

  9. Structure of polyacrylic acid and polymethacrylic acid solutions: a small angle neutron scattering study

    Moussaid, A. (Lab. d' Ultrasons et de Dynamique des Fluides Complexes, Univ. Louis Pasteur, 67 - Strasbourg (France)); Schosseler, F. (Lab. d' Ultrasons et de Dynamique des Fluides Complexes, Univ. Louis Pasteur, 67 - Strasbourg (France)); Munch, J.P. (Lab. d' Ultrasons et de Dynamique des Fluides Complexes, Univ. Louis Pasteur, 67 - Strasbourg (France)); Candau, S.J. (Lab. d' Ultrasons et de Dynamique des Fluides Complexes, Univ. Louis Pasteur, 67 - Strasbourg (France))

    1993-04-01

    The intensity scattered from polyacrylic acid and polymethacrylic acid solutions has been measured by small angle neutron scattering experiments. The influence of polymer concentration, ionization degree, temperature and salt content has been investigated. Results are in qualitative agreement with a model which predicts the existence of microphases in the unstable region of the phase diagram. Quantitative comparison with the theory is performed by fitting the theoretical structure factor to the experimental data. For a narrow range of ionization degrees nearly quantitative agreement with the theory is found for the polyacrylic acid system. (orig.).

  10. Structure of polyacrylic acid and polymethacrylic acid solutions : a small angle neutron scattering study

    Moussaid, A.; Schosseler, F.; Munch, J. P.; Candau, S. J.

    1993-04-01

    The intensity scattered from polyacrylic acid and polymethacrylic acid solutions has been measured by small angle neutron scattering experiemnts. The influence of polymer concentration, ionization degree, temperature and salt content has been investigated. Results are in qualitative agreement with a model which predicts the existence of microphases in the unstable region of the phase diagram. Quantitative comparison with the theory is performed by fitting the theoretical structure factor to the experimental data. For a narrow range of ionizaiton degrees nearly quantitative agreement with the theory is found for the polyacrylic acide system.

  11. Quenching characteristics of bathocuproinedisulfonic acid, disodium salt in aqueous solution and copper sulfate plating solution

    Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao

    2018-04-01

    Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.

  12. Intramolecular synergistic effect of glutamic acid, cysteine and glycine against copper corrosion in hydrochloric acid solution

    Zhang Daquan; Xie Bin; Gao Lixin; Cai Qirui; Joo, Hyung Goun; Lee, Kang Yong

    2011-01-01

    The corrosion protection of copper by glutamic acid, cysteine, glycine and their derivative (glutathione) in 0.5 M hydrochloric acid solution has been studied by the electrochemical impedance spectroscopy and cyclic voltammetry. The inhibition efficiency of the organic inhibitors on copper corrosion increases in the order: glutathione > cysteine > cysteine + glutamic acid + glycine > glutamic acid > glycine. Maximum inhibition efficiency for cysteine reaches about 92.9% at 15 mM concentration level. The glutathione can give 96.4% inhibition efficiency at a concentration of 10 mM. The molecular structure parameters were obtained by PM3 (Parametric Method 3) semi-empirical calculation. The intramolecular synergistic effect of glutamic acid, cysteine and glycine moieties in glutathione is attributed to the lower energy of the lowest unoccupied molecular orbital (E LUMO ) level and to the excess hetero-atom adsorption centers and the bigger coverage on the copper surface.

  13. Electrochemical Studies of Lead Telluride Behavior in Acidic Nitrate Solutions

    Rudnik E.

    2015-04-01

    Full Text Available Electrochemistry of lead telluride stationary electrode was studied in nitric acid solutions of pH 1.5-3.0. E-pH diagram for Pb-Te-H2O system was calculated. Results of cyclic voltammetry of Pb, Te and PbTe were discussed in correlation with thermodynamic predictions. Anodic dissolution of PbTe electrode at potential approx. -100÷50 mV (SCE resulted in tellurium formation, while above 300 mV TeO2 was mainly produced. The latter could dissolve to HTeO+2 under acidic electrolyte, but it was inhibited by increased pH of the bath.

  14. Radiation chemistry of amino acids and peptides in aqueous solutions

    Simic, M.G.

    1978-01-01

    Radiation chemistry relevant to radiation preservation of high protein foods is reviewed. Some conclusions concerning the chemistry of irradiated amino acids, peptides, and proteins have been derived from product analysis of γ-irradiated solutions while the main mechanistic considerations result from the chemistry and kinetics of free radical intermediates observed by pulse radiolysis. The precursors of chemistry in not too concentrated solutions ( - , OH, and H. Their reactivity with molecules and their preference for characteristic groups within the molecule are discussed. The reviewed reactions of the model systems are accountable for a variety of radiolytic products found in irradiated foods. From detailed understanding of radiation chemistry in aqueous and frozen systems formation of many classes of compounds can be predicted or entirely eliminated in order to corroborate and extend the conclusions reached from the animal feeding experiments concerning the formation of toxic, mutagenic, and carcinogenic compounds and/or reduction of the nutritional value of foods

  15. Cyclohexanone microfluidic extraction of radioactive perrhenate from acid solutions

    Dalmázio, Ilza [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Oehlke, Elisabeth, E-mail: E.Oehlke@tudelft.nl [Section Radiation and Isotopes for Health, Department of Radiation Science and Technology, Delft University of Technology (Netherlands)

    2017-07-01

    Several studies have investigated the application of microfluidic devices in extraction processes. A potential use of microfluidic devices is in radionuclide generators based on solvent extraction, as the {sup 188}W/{sup 188}Re generator. The aim of this work is to present the initial results of microfluidic solvent extraction of radioactive perrhenate. Aqueous solutions of ammonium perrhenate at 0.1 mg/mL (in water, HCl or sodium tungstate) were used as feed solution and cyclohexanone as extractant. As a first step, the fluid behaviour inside the glass microchannel was evaluated to reach laminar flow. The second step was the determination of extraction efficiency using thermal neutron activated perrhenate to produce feed solutions. The extraction conditions permitted liquid-liquid contact times as short as 0.5 s. Increasing of the contact time, resulted in a higher extraction efficiency of perrhenate, e.g. 14 % for 0.5 s and 32 % for 1.1 s using a 0.1 mol/L HCl feed solution. The extraction of perrhenate improved also when applying a feed solution with higher acidity, e.g. 52% for 1 mol/L HCl with contact time of 1.1 s. The influence of adding sodium tungstate to the feed solution was also examined. To the best of our knowledge, these are the first results related to perrhenate solvent extraction using a microfluidic device. The usefulness of microfluidic devices to screen extraction conditions was demonstrated making it possible to evaluate the effect of electrolytes on the perrhenate extraction process in a short time-frame. (author)

  16. Cyclohexanone microfluidic extraction of radioactive perrhenate from acid solutions

    Dalmázio, Ilza; Oehlke, Elisabeth

    2017-01-01

    Several studies have investigated the application of microfluidic devices in extraction processes. A potential use of microfluidic devices is in radionuclide generators based on solvent extraction, as the 188 W/ 188 Re generator. The aim of this work is to present the initial results of microfluidic solvent extraction of radioactive perrhenate. Aqueous solutions of ammonium perrhenate at 0.1 mg/mL (in water, HCl or sodium tungstate) were used as feed solution and cyclohexanone as extractant. As a first step, the fluid behaviour inside the glass microchannel was evaluated to reach laminar flow. The second step was the determination of extraction efficiency using thermal neutron activated perrhenate to produce feed solutions. The extraction conditions permitted liquid-liquid contact times as short as 0.5 s. Increasing of the contact time, resulted in a higher extraction efficiency of perrhenate, e.g. 14 % for 0.5 s and 32 % for 1.1 s using a 0.1 mol/L HCl feed solution. The extraction of perrhenate improved also when applying a feed solution with higher acidity, e.g. 52% for 1 mol/L HCl with contact time of 1.1 s. The influence of adding sodium tungstate to the feed solution was also examined. To the best of our knowledge, these are the first results related to perrhenate solvent extraction using a microfluidic device. The usefulness of microfluidic devices to screen extraction conditions was demonstrated making it possible to evaluate the effect of electrolytes on the perrhenate extraction process in a short time-frame. (author)

  17. Volumetric properties of aqueous solutions of glutaric acid

    Ben-Hamo, Meyrav [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)]. E-mail: apelblat@bgu.ac.il; Manzurola, Emanuel [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)

    2007-07-15

    Densities of aqueous solutions with molalities up to 6 mol . kg{sup -1} were determined at 5 K temperature intervals, from T = 288.15 K to T = 333.15 K. Densities served to evaluate the apparent molar volumes, V {sub 2,{phi}}(m, T), the cubic expansion coefficients, {alpha}(m, T), and the changes of isobaric heat capacities with respect to pressure, ({partial_derivative}C {sub P}/{partial_derivative}P) {sub T,m}. They were qualitatively correlated with the changes in the structure of water when glutaric acid is dissolved in it.

  18. Volumetric properties of aqueous solutions of glutaric acid

    Ben-Hamo, Meyrav; Apelblat, Alexander; Manzurola, Emanuel

    2007-01-01

    Densities of aqueous solutions with molalities up to 6 mol . kg -1 were determined at 5 K temperature intervals, from T = 288.15 K to T = 333.15 K. Densities served to evaluate the apparent molar volumes, V 2,φ (m, T), the cubic expansion coefficients, α(m, T), and the changes of isobaric heat capacities with respect to pressure, (∂C P /∂P) T,m . They were qualitatively correlated with the changes in the structure of water when glutaric acid is dissolved in it

  19. Oxalate-metabolising genes of the white-rot fungus Dichomitus squalens are differentially induced on wood and at high proton concentration.

    Miia R Mäkelä

    Full Text Available Oxalic acid is a prevalent fungal metabolite with versatile roles in growth and nutrition, including degradation of plant biomass. However, the toxicity of oxalic acid makes regulation of its intra- and extracellular concentration crucial. To increase the knowledge of fungal oxalate metabolism, a transcriptional level study on oxalate-catabolising genes was performed with an effective lignin-degrading white-rot fungus Dichomitus squalens, which has demonstrated particular abilities in production and degradation of oxalic acid. The expression of oxalic-acid decomposing oxalate decarboxylase (ODC and formic-acid decomposing formate dehydrogenase (FDH encoding genes was followed during the growth of D. squalens on its natural spruce wood substrate. The effect of high proton concentration on the regulation of the oxalate-catabolising genes was determined after addition of organic acid (oxalic acid and inorganic acid (hydrochloric acid to the liquid cultures of D. squalens. In order to evaluate the co-expression of oxalate-catabolising and manganese peroxidase (MnP encoding genes, the expression of one MnP encoding gene, mnp1, of D. squalens was also surveyed in the solid state and liquid cultures. Sequential action of ODC and FDH encoding genes was detected in the studied cultivations. The odc1, fdh2 and fdh3 genes of D. squalens showed constitutive expression, whereas ODC2 and FHD1 most likely are the main responsible enzymes for detoxification of high concentrations of oxalic and formic acids. The results also confirmed the central role of ODC1 when D. squalens grows on coniferous wood. Phylogenetic analysis revealed that fungal ODCs have evolved from at least two gene copies whereas FDHs have a single ancestral gene. As a conclusion, the multiplicity of oxalate-catabolising genes and their differential regulation on wood and in acid-amended cultures of D. squalens point to divergent physiological roles for the corresponding enzymes.

  20. Successful treatment of sodium oxalate induced urolithiasis with Helichrysum flowers.

    Onaran, Metin; Orhan, Nilüfer; Farahvash, Amirali; Ekin, Hasya Nazlı; Kocabıyık, Murat; Gönül, İpek Işık; Şen, İlker; Aslan, Mustafa

    2016-06-20

    Helichrysum (Asteraceae) flowers, known as "altın otu, yayla çiçeği, kudama çiçeği" , are widely used to remove kidney stones and for their diuretic properties in Turkey. To determine the curative effect of infusions prepared from capitulums of Helichrysum graveolens (M. Bieb.) Sweet (HG) and H. stoechas ssp. barellieri (Ten.) Nyman (HS) on sodium oxalate induced kidney stones. Infusions prepared from the capitulums of HG and HS were tested for their curative effect on calcium oxalate deposition induced by sodium oxalate (70mg/kg i.p.). Following the injection of sodium oxalate for 5 days, plant extracts were administered to rats at two different doses. Potassium citrate was used as positive control. Water intake, urine volume, body, liver and kidney weights were measured; biochemical and hematological analyses were conducted on urine and blood samples. Additionally, histopathological examinations were done on kidney samples. H. stoechas extract showed prominent effect at 156mg/kg dose (stone formation score: 0.33), whereas number of kidney stones was maximum in sodium oxalate group (stone formation score: 2.33). The reduction in the uric acid and oxalate levels of urine samples and the elevation in the urine citrate levels are significant and promising in extract groups. Some hematological, biochemical and enzymatic markers are also ameliorated by the extracts. This is the first report on the curative effect of immortal flowers. Our preliminary study indicated that Helichrysum extracts may be used for treatment of urolithiasis and Helichrysum extracts are an alternative therapy to potassium citrate for patients suffering from kidney stones. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Reactivity of nitrate and organic acids at the concrete–bitumen interface of a nuclear waste repository cell

    Bertron, A., E-mail: bertron@insa-toulouse.fr [Université de Toulouse (France); UPS, INSA (France); LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, avenue de Rangueil, F-31 077, Toulouse Cedex 04 (France); Jacquemet, N. [Université de Toulouse (France); UPS, INSA (France); LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, avenue de Rangueil, F-31 077, Toulouse Cedex 04 (France); Erable, B. [Université de Toulouse (France); INPT, UPS (France); CNRS, Laboratoire de Génie Chimique, 4, Allée Emile Monso, F-31030 Toulouse (France); Sablayrolles, C. [Université de Toulouse (France); INP (France); LCA (Laboratoire de Chimie Agro-Industrielle), ENSIACET, 4 allée Emile Monso, BP 44 362, 31432 Toulouse Cedex 4 (France); INRA (France); LCA (Laboratoire de Chimie Agro-Industrielle), F-31029 Toulouse (France); Escadeillas, G. [Université de Toulouse (France); UPS, INSA (France); LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, avenue de Rangueil, F-31 077, Toulouse Cedex 04 (France); Albrecht, A. [Andra, 1-7, rue Jean-Monnet, 92298 Châtenay-Malabry (France)

    2014-03-01

    Highlights: • Interactions of cement paste and organic acid–nitrate solutions were investigated. • Cement leaching imposed alkaline pH (>10) very rapidly in the liquid media. • Acetic acid action on cement paste was similar to that of classical leaching. • Oxalic acid attack formed Ca-oxalate salts; organic matter in solution decreased. • Nitrate was stable under abiotic conditions and with organic matter. - Abstract: This study investigates the fate of nitrate and organic acids at the bitumen–concrete interface within repository cell for long-lived, intermediate-level, radioactive wastes. The interface was simulated by a multiphase system in which cementitious matrices (CEM V cement paste specimens) were exposed to bitumen model leachates consisting of nitrates and acetic acid with and without oxalic acid, chemical compounds likely to be released by bitumen. Leaching experiments were conducted with daily renewal of the solutions in order to accelerate reactions. The concentrations of anions (acetate, oxalate, nitrate, and nitrite) and cations (calcium, potassium) and the pH were monitored over time. Mineralogical changes of the cementitious matrices were analysed by XRD. The results confirmed the stability of nitrates in the abiotic conditions of the experiments. The action of acetic acid on the cementitious matrix was similar to that of ordinary leaching in the absence of organic acids (i.e. carried out with water or strong acids); no specific interaction was detected between acetate and cementitious cations. The reaction of oxalic acid with the cementitious phases led to the precipitation of calcium oxalate salts in the outer layer of the matrix. The concentration of oxalate was reduced by 65% inside the leaching medium.

  2. Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex

    Truong, Quang Duc; Kakihana, Masato

    2012-06-01

    A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.

  3. Characteristic and mechanism of Th{sup 4+} sorption from nitric acid solutions by rice and wheat bran

    Monji, Akbar Boveiri [Kharazmi Univ., Tehran (Iran, Islamic Republic of). Faculty of Chemistry; Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Ghoulipour, Vanik [Kharazmi Univ., Tehran (Iran, Islamic Republic of). Faculty of Chemistry; Mallah, Mohammad Hassan [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2015-07-01

    In line with our previously conducted researches, various instrumental methods were applied to evaluate the adsorption features and mechanism of Th{sup 4+} from highly acidic solution (4M HNO{sub 3}) by rice and wheat bran. Although the results of cation exchange confirmed the existence of ion-exchange interaction in Th{sup 4+} adsorption, it had a trivial contribution in the biosorption process. The presence of Th{sup 4+} ions on the biomass surface was obviously revealed in SEM images and EDS elemental analysis. Moreover, the linkage of C=O, O-H and N-H functional groups on the biomass surface with Th{sup 4+} ions was clearly represented in the ATR-FTIR spectroscopic analysis. Additionally, desorption studies indicated that ammonium oxalate (>81.3%) and ammonium carbonate (>75.4%) were effective in desorbing Th{sup 4+} from the biomass surface due to strong interactions of hard functional groups of C=O with Th{sup 4+}. The overall observations unfold the fact that electrostatic complexation mechanism is dominant between biomass and Th{sup 4+} ions.

  4. Processes for working-up an aqueous fluosilicic acid solution

    Alpha O. Toure

    2012-11-01

    Full Text Available Aqueous fluosilicic acid solutions were once considered to be only adverse by-products of phosphoric acid production, which required treatment to prevent ecosystem destruction when discharged into the sea. However, a range of chemicals can be generated by the transformation of this industrial waste product. Through experiments undertaken in the laboratory, we have shown the possibility of caustic soda production. Volumetric analysis showed caustic soda to be present as a 6%– 7%solution with yields of about 70% – 80%by weight. Two processes were investigated for the caustification of sodium fluoride, using different precipitates: sodium chloride and ethanol and are described by modelling caustification curves. The activation energies of precipitation determined by semi-empirical correlations showed that precipitation by ethanol (EA = 933.536 J/mol was more successful than precipitation by sodium chloride (EA = 7452.405 J/mol. Analyses performed on the precipitates highlighted compositions that are essential and useful constituents in the cement industry.

  5. CO2 Capture from Flue Gas using Amino Acid Salt Solutions

    Lerche, Benedicte Mai; Stenby, Erling Halfdan; Thomsen, Kaj

    2009-01-01

    difficult. Amino acid salt solutions have emerged as an alternative to the alkanolamine solutions. A number of advantages make amino acid salt solutions attractive solvents for CO2 capture from flue gas. In the present study CO2 absorption in aqueous solutions of 0.5 M potassium glycinate and 0.5 M...

  6. A new method for the homogeneous precipitative separation of trace level lanthanides as oxalates: application to different types of geological samples

    Premadas, A.; Cyriac, Bincy; Kesavan, V.S.

    2013-01-01

    Oxalate precipitation of lanthanides in acidic medium is a widely used selective group separation method at percentage to trace level in different types of geological samples. Most of the procedures are based on the heterogeneous oxalate precipitation of lanthanides using calcium as carrier. In the heterogeneous precipitation, the co-precipitated impurities from the matrix elements are more, besides if the pH at the time of precipitation is not monitored carefully there is a chance of losing some of the lanthanides. In this report, we present a new homogeneous oxalate precipitation of trace level lanthanides from different types of geological samples using calcium as carrier. In the present method pH is getting adjusted (pH ∼1) on its own, after the hydrolysis of urea added to the sample solution. This acidic pH is essential for the complete precipitation of the lanthanides. Therefore, no critical parameter adjustment for the precipitation is involved in the proposed method. The oxalate precipitate obtained was in crystalline nature which facilitates the fast settlement, easy filtration; besides the co-precipitated matrix elements are very less as compared to normal heterogeneous oxalate precipitation of lanthanides. Another advantage is more quantity of the sample can be taken for the separation of lanthanides which is a limitation for other separation methods reported. Accuracy of the method was checked by analyzing nine international reference materials comprising different types of geological samples obtained from Canadian Certified Reference Project Materials such as syenite samples SY-2, SY-3 and SY-4; gabro sample MRG-1; soil samples SO-1 and SO-2; iron formation sample FeR-2; lake sediments LKSD-2 and LKSD-4. The values of the lanthanides obtained for these reference materials are comparable with recommended values, indicating that the method is accurate. The reproducibility is characterized by a relative standard deviation (RSD) of 1 to 6% (n=4). (author)

  7. Double thermal transitions of type I collagen in acidic solution.

    Liu, Yan; Liu, Lingrong; Chen, Mingmao; Zhang, Qiqing

    2013-01-01

    Contributed equally to this work. To further understand the origin of the double thermal transitions of collagen in acidic solution induced by heating, the denaturation of acidic soluble collagen was investigated by micro-differential scanning calorimeter (micro-DSC), circular dichroism (CD), dynamic laser light scattering (DLLS), transmission electron microscopy (TEM), and two-dimensional (2D) synchronous fluorescence spectrum. Micro-DSC experiments revealed that the collagen exhibited double thermal transitions, which were located within 31-37 °C (minor thermal transition, T(s) ∼ 33 °C) and 37-55 °C (major thermal transition, T(m) ∼ 40 °C), respectively. The CD spectra suggested that the thermal denaturation of collagen resulted in transition from polyproline II type structure to unordered structure. The DLLS results showed that there were mainly two kinds of collagen fibrillar aggregates with different sizes in acidic solution and the larger fibrillar aggregates (T(p2) = 40 °C) had better heat resistance than the smaller one (T(p1) = 33 °C). TEM revealed that the depolymerization of collagen fibrils occurred and the periodic cross-striations of collagen gradually disappeared with increasing temperature. The 2D fluorescence correlation spectra were also applied to investigate the thermal responses of tyrosine and phenylalanine residues at the molecular level. Finally, we could draw the conclusion that (1) the minor thermal transition was mainly due to the defibrillation of the smaller collagen fibrillar aggregates and the unfolding of a little part of triple helices; (2) the major thermal transition primarily arose from the defibrillation of the larger collagen fibrillar aggregates and the complete denaturation of the majority part of triple helices.

  8. In-cloud oxalate formation in the global troposphere: A 3-D modeling study

    Myriokefalitakis, S.; Tsigaridis, K.; Mihalopoulos, N.; Sciare, J.; Nenes, A.; Kawamura, K.; Segers, A.; Kanakidou, M.

    2011-01-01

    Organic acids attract increasing attention as contributors to atmospheric acidity, secondary organic aerosol mass and aerosol hygroscopicity. Oxalic acid is globally the most abundant dicarboxylic acid, formed via chemical oxidation of gas-phase precursors in the aqueous phase of aerosols and

  9. Arsenic removal from acidic solutions with biogenic ferric precipitates

    Ahoranta, Sarita H., E-mail: sarita.ahoranta@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Kokko, Marika E., E-mail: marika.kokko@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Papirio, Stefano, E-mail: stefano.papirio@unicas.it [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Özkaya, Bestamin, E-mail: bozkaya@yildiz.edu.tr [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Department of Environmental Engineering, Yildiz Technical University, Davutpasa Campus 34220, Esenler, Istanbul (Turkey); Puhakka, Jaakko A., E-mail: jaakko.puhakka@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland)

    2016-04-05

    Highlights: • Continuous and rapid arsenic removal with biogenic jarosite was achieved at pH 3.0. • Arsenic removal was inefficient below pH 2.4 due to reduced Fe–As co-precipitation. • As(V) had better sorption characteristics than As(III). • Biogenic jarosite adsorbed arsenic more effectively than synthetic jarosite. - Abstract: Treatment of acidic solution containing 5 g/L of Fe(II) and 10 mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7 h, 96–98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28 mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pH < 2.4. As(III) was partially oxidized to As(V) in the system. In shake flask experiments, As(V) sorbed onto jarosite better than As(III). Moreover, the sorption capacity of biogenic jarosite was significantly higher than that of synthetic jarosite. The developed bioprocess simultaneously and efficiently removes iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment.

  10. The photochemistry of neptunium in aqueous perchloric acid solutions

    Friedman, H.A.; Toth, L.M.; Osborne, M.M.

    1979-01-01

    The photochemistry of neptunium ions in aqueous perchloric acid has been investigated using 254 and 300 nm UV radiation. In the absence of other reagents, Np(IV) and (V) oxidized to Np(VI), in a stepwise fashion, with individual quantum efficiencies for each step that vary from 0.02 to 0.004. Decreasing acid concentration favors the Np(IV) → Np(V) reaction whereas it hinders the Np(V) → Np(VI) photo-oxidation. When ethanol, acetaldehyde and other mild reducing agents are added to neptunium-perchloric acid solutions which are then photolyzed, the Np species are reduced to Np(III) in a stepwise fashion with individual quantum efficiencies that vary from 0.07 to 0.006. The overall photoredox reactions of neptunium are subject to competing secondary product reactions that become significant as the photolysis products accumulate. Absorption spectrophotometry was used to monitor the changes in Np oxidation states and reference spectra of the various Np oxidation states are given for 1.0 N HClO 4 . The Np species have absorption bands in the 300 to 1320 nm region that obey Beer's law only when they were properly resolved. (author)

  11. Precipitation of plutonium from acidic solutions using magnesium oxide

    Jones, S.A.

    1994-01-01

    Plutonium (IV) is only marginally soluble in alkaline solution. Precipitation of plutonium using sodium or potassium hydroxide to neutralize acidic solutions produces a gelatinous solid that is difficult to filter and an endpoint that is difficult to control. If the pH of the solution is too high, additional species precipitate producing an increased volume of solids separated. The use of magnesium oxide as a reagent has advantages. It is added as a solid (volume of liquid waste produced is minimized), the pH is self-limiting (pH does not exceed about 8.5), and the solids precipitated are more granular (larger particle size) than those produced using KOH or NaOH. Following precipitation, the raffinate is expected to meet criteria for disposal to tank farms. The solid will be heated in a furnace to dry it and convert any hydroxide salts to the oxide form. The material will be cooled in a desiccator. The material is expected to meet vault storage criteria

  12. Behavior of copper in acidic sulfate solution: Comparison with acidic chloride

    Tromans, D.; Silva, J.C. [Univ. of British Columbia, Vancouver, British Columbia (Canada). Dept. of Metals and Materials Engineering

    1997-03-01

    The anodic polarization behavior of copper in a 0.1 M sulfuric acid (H{sub 2}SO{sub 4}) + 1 M sodium sulfate (Na{sub 2}SO{sub 4}) solution (pH = 2.0) was studied at room temperature under quiescent and stirred conditions. The behavior was compared with aqueous equilibria via construction of a potential-vs-pH (E-pH) diagram for the copper-sulfate-water (Cu-SO{sub 4}{sup 2}-H{sub 2}O) system. Interpretation of the behavior was aided by comparison with aqueous equilibria and polarization studies of copper in a 0.2 M hydrochloric acid (HCl) + 1 M sodium chloride (NaCl) solution(pH = 0.8). The initial anodic dissolution region in the acidic sulfate solution exhibited Tafel behavior with a slope consistent with formation of cupric ions (Cu{sup 2+}) whose rate of formation was charge-transfer controlled. At higher potentials, limiting current density (i{sub L}) behavior was observed under E-pH conditions that were consistent with formation of a film of copper sulfate pentahydrate (CuSO{sub 4} {degree} 5H{sub 2}O). Comparison of experimental i{sub L} values with those predicted by mass transport-controlled processes, using estimates of the diffusion layer thickness obtained from the mass transfer-influenced region of apparent Tafel behavior in the acidic chloride solution, were in sufficient agreement to indicate i{sub L} was controlled by the rate of dissolution of the CuSO{sub 4} {degree} 5H{sub 2}O film via transport of Cu{sup 2+} from the film-electrolyte interface into the bulk solution.

  13. Functional characterization of the oxaloacetase encoding gene and elimination of oxalate formation in the ?-lactam producer Penicillium chrysogenum

    Daran, J.M.; Pronk, J.T.; Driessen, A.J.M.; Nijland, J.G.; Lamboo, F.; Puig-Martinez, M.; Veiga, T.; Gombert, A.K.

    2011-01-01

    Penicillium chrysogenum is widely used as an industrial antibiotic producer, in particular in the synthesis of ß-lactam antibiotics such as penicillins and cephalosporins. In industrial processes, oxalic acid formation leads to reduced product yields. Moreover, precipitation of calcium oxalate

  14. Functional characterization of the oxaloacetase encoding gene and elimination of oxalate formation in the beta-lactam producer Penicillium chrysogenum

    Gombert, A. K.; Veiga, T.; Puig-Martinez, M.; Lamboo, F.; Nijland, J. G.; Driessen, A. J. M.; Pronk, J. T.; Daran, J. M.

    Penicillium chrysogenum is widely used as an industrial antibiotic producer, in particular in the synthesis of g-lactam antibiotics such as penicillins and cephalosporins. In industrial processes, oxalic acid formation leads to reduced product yields. Moreover, precipitation of calcium oxalate

  15. Protection of metal artefacts with the formation of metal-oxalates complexes by Beauveria bassiana.

    Edith eJoseph

    2012-01-01

    Full Text Available Several fungi present high tolerance to toxic metals and some are able to transform metals into metal-oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated in vitro. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g.L-1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid as sole metal chelator. The production of metal-oxalates can be used in the restoration and conservation of archaeological and modern metal artefacts. The production of copper-oxalates was confirmed directly using metallic pieces (both archaeological and modern. The conversion of corrosion products into copper oxalates was demonstrated as well. In order to assess whether the capability of B. bassiana to produce metal-oxalates could be applied to other metals, iron and silver were tested as well. Iron appears to be directly sequestered in the wall of the fungal hyphae forming oxalates and probably goethite. However, the formation of a homogeneous layer on the object is not yet optimal. Silver nitrate was extracellularly reduced into nanoparticles of elemental silver by an unknown mechanism. The production of copper oxalates is immediately applicable for the conservation of copper-based artefacts. For iron and silver this is not yet the case. However, the vast ability of B. bassiana to transform toxic metals using different immobilization mechanisms seems to offer considerable possibilities for industrial applications, such as the bioremediation of contaminated soils or the green synthesis of chemicals.

  16. Water solubilization and the dielectric permeability of isomolar solutions of oleic acid and triethanolamine soap of oleic acid

    Demchenko, P.A.; Novitskaya, L.D.

    The investigation of the dependence of water solubilization on the dielectric permeability of isomolar solutions of oleic acid and triethanolamine soap of oleic acid in benzene has shown that at certain acid additions, the solubilization effect can increase almost 6 times, as compared to the soap solution without acid additions. In some cases, electron donor-acceptor complexes are formed, which are more polar than the original components. This leads to a change in the molecular-disperse and micellar part of solution and affects significantly the structure and properties of micellar hydrocarbon solutions of surfactants.

  17. Conductometric investigation of salt-free solutions of polyriboguanylic acid

    Kozlov, A.G.; Davydova, O.V.; Kargov, S.I.

    1993-01-01

    Salt-free solutions of various ionic forms of polyriboguanylic acid (poly(G)) were studied by the methods of conductometry and spectroscopy of annular dichroism. The Manning approach was employed to calculate transport characteristics and structural parameters of poly(G) on the basis of spectra permit putting poly(G) salts in two groups: the first one comprising NH 4 + -, Rb + -, K + -, Na + -, the second one - Cs + -, and Li + -poly(G). The assumption is made that Li + and Cs + ions, bound with concrete groups of polyanion in a specific way, can promote formation of a stable structure different from the one observed in the presence of the first group counterions. 25 refs., 3 figs

  18. Process for denitrating waste solutions containing nitrates and actinides with simultaneous separation of the actinides

    Gompper, K.

    1986-01-01

    The invention is intended to reduce the acid and nitrate content of nitrate waste solutions, to reduce the total salt content of the waste solution, to remove the actinides contained in it by precipitation, without any danger of violent reactions or an increase in the volume of the waste solution. The invention achieves this by mixing the waste solution with diethyl oxalate at room temperature and heating the mixture to at least 80 0 C. (orig./PW) [de

  19. Solubility of xenon in amino-acid solutions. II. Nine less-soluble amino acids

    Kennan, Richard P.; Himm, Jeffrey F.; Pollack, Gerald L.

    1988-05-01

    Ostwald solubility (L) of xenon gas, as the radioisotope 133Xe, has been measured as a function of solute concentration, at 25.0 °C, in aqueous solutions of nine amino acids. The amino-acid concentrations investigated covered much of their solubility ranges in water, viz., asparagine monohydrate (0-0.19 M), cysteine (0-1.16 M), glutamine (0-0.22 M), histidine (0-0.26 M), isoleucine (0-0.19 M), methionine (0-0.22 M), serine (0-0.38 M), threonine (0-1.4 M), and valine (0-0.34 M). We have previously reported solubility results for aqueous solutions of six other, generally more soluble, amino acids (alanine, arginine, glycine, hydroxyproline, lysine, and proline), of sucrose and sodium chloride. In general, L decreases approximately linearly with increasing solute concentration in these solutions. If we postulate that the observed decreases in gas solubility are due to hydration, the results under some assumptions can be used to calculate hydration numbers (H), i.e., the number of H2O molecules associated with each amino-acid solute molecule. The average values of hydration number (H¯) obtained at 25.0 °C are 15.3±1.5 for asparagine, 6.8±0.3 for cysteine, 11.5±1.1 for glutamine, 7.3±0.7 for histidine, 5.9±0.4 for isoleucine, 10.6±0.8 for methionine, 11.2±1.3 for serine, 7.7± 1.0 for threonine, and 6.6±0.6 for valine. We have also measured the temperature dependence of solubility L(T) from 5-40 °C for arginine, glycine, and proline, and obtained hydration numbers H¯(T) in this range. Between 25-40 °C, arginine has an H¯ near zero. This may be evidence for an attractive interaction between xenon and arginine molecules in aqueous solution.

  20. In vivo oxalate degradation by liposome encapsulated oxalate oxidase in rat model of hyperoxaluria

    Tulika Dahiya

    2013-01-01

    Interpretation & conclusions: EMA-oxalate oxidase encapsulated liposome caused oxalate degradation in experimental hyperoxaluria indicating that the enzyme could be used as a therapeutic agent in hyperoxaluria leading to urinary stones.

  1. In-cloud oxalate formation in the global troposphere: a 3-D modeling study

    S. Myriokefalitakis

    2011-06-01

    Full Text Available Organic acids attract increasing attention as contributors to atmospheric acidity, secondary organic aerosol mass and aerosol hygroscopicity. Oxalic acid is globally the most abundant dicarboxylic acid, formed via chemical oxidation of gas-phase precursors in the aqueous phase of aerosols and droplets. Its lifecycle and atmospheric global distribution remain highly uncertain and are the focus of this study. The first global spatial and temporal distribution of oxalate, simulated using a state-of-the-art aqueous-phase chemical scheme embedded within the global 3-dimensional chemistry/transport model TM4-ECPL, is here presented. The model accounts for comprehensive gas-phase chemistry and its coupling with major aerosol constituents (including secondary organic aerosol. Model results are consistent with ambient observations of oxalate at rural and remote locations (slope = 1.16 ± 0.14, r2 = 0.36, N = 114 and suggest that aqueous-phase chemistry contributes significantly to the global atmospheric burden of secondary organic aerosol. In TM4-ECPL most oxalate is formed in-cloud and less than 5 % is produced in aerosol water. About 62 % of the oxalate is removed via wet deposition, 30 % by in-cloud reaction with hydroxyl radical, 4 % by in-cloud reaction with nitrate radical and 4 % by dry deposition. The in-cloud global oxalate net chemical production is calculated to be about 21–37 Tg yr−1 with almost 79 % originating from biogenic hydrocarbons, mainly isoprene. This condensed phase net source of oxalate in conjunction with a global mean turnover time against deposition of about 5 days, maintain oxalate's global tropospheric burden of 0.2–0.3 Tg, i.e. 0.05–0.1 Tg-C that is about 5–9 % of model-calculated water soluble organic carbon burden.

  2. Uptake of ozone to mixed sodium bromide/ citric acid solutions

    Lee, Ming-Tao; Steimle, Emilie; Bartels-Rausch, Thorsten; Kato, Shunsuke; Lampimäki, Markus; Brown, Matthew; van Bokhoven, Jeroen; Nolting, Frithjof; Kleibert, Armin; Türler, Andreas; Ammann, Markus

    2013-04-01

    Sea-salt solution - air interfaces play an important role in the chemistry of the marine boundary layer. The reaction of ozone (O3) with bromide is of interest in the context of formation of photolabile halogens (Br2, BrCl) in the marine boundary layer. Recent experiments have suggested that the bromide oxidation rate is related to the surface concentration of bromide [1] and inversely related to the gas phase concentration of O3, an indication for a precursor mediated reaction at the surface [2]. So far, the effect of organics (such as those occurring at the ocean surface or in marine aerosols) on the reaction of O3 with bromide aerosols has not been studied yet. In our study we investigate the uptake kinetics of O3 to a mixed solution of sodium bromide (NaBr) and citric acid (CA), which represents highly oxidized organic compounds present in the environment, with a well-established coated wall flow tube technique, which leads to exposure of the film to O3 allowing the heterogeneous reactions to take place and the loss of O3 being measured. The results indicate that the uptake of O3 to the films with the higher bromide concentrations (0.34M and 4M) is independent of the gas phase concentration and roughly consistent with uptake limited by reaction in the bulk. For the lower bromide concentration (84mM), however, we observe a trend of the uptake coefficient to decrease with increasing O3 concentration, indicating an increasing importance of a surface reaction. In an attempt to constrain the kinetic data, we employed X-ray photoelectron spectroscopy (XPS) to get insight into the surface composition of the aqueous solution - air interface. Previous XPS studies have shown that halide ion concentrations are enhanced at the aqueous solution air interface [3-4], which likely promotes the surface reactions of bromide or iodide with O3. A first XPS study of ternary solutions of KI with butanol indicated the importance of specific interactions of the cation with the alcohol

  3. Binding abilities of copper to phospholipids and transport of oxalate

    Jaklová Dytrtová, Jana; Jakl, M.; Nováková, Kateřina; Navrátil, Tomáš; Šádek, Vojtěch

    2015-01-01

    Roč. 146, č. 5 (2015), s. 831-837 ISSN 0026-9247 R&D Projects: GA ČR GP13-21409P; GA ČR(CZ) GAP208/12/1645 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : copper cations * dipalmitoylphosphatidylcholine (lecithin) * ESI-MS * impedance spectroscopy * oxalic acid * voltammetry * membrane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.131, year: 2015

  4. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution

    Jialei Su

    2017-02-01

    Full Text Available Agricultural waste cow dung was used as feedstock for the production of a high value–added chemical levulinic acid (LA in dilute acid aqueous solutions. A high LA yield of 338.9 g/kg was obtained from the pretreated cow dung, which was much higher than that obtained from the crude cow dung (135 g/kg, mainly attributed to the breakage of the lignin fraction in the lignocellulose structure of the cow dung by potassium hydroxide (KOH pretreatment, and thus enhanced the accessibility of cow dung to the acid sites in the catalytic reaction. Meanwhile, another value-added chemical formic acid could be obtained with a yield of ca. 160 g/kg in the process, implying a total production of ca. 500 g/kg yield for LA and formic acid from the pretreated cow dung with the proposed process. The developed process was shown to be tolerant to high initial substrate loading with a satisfied LA yield. This work provides a promising strategy for the value-increment utilization of liglocellulosic agricultural residues.

  5. Acid-base equilibrium in aqueous solutions of 1,3-dimethylbarbituric acid as studied by 13C NMR spectroscopy

    Gryff-Keller, A.; Kraska-Dziadecka, A.

    2011-12-01

    13C NMR spectra of 1,3-dimethylbarbituric acid in aqueous solutions of various acidities and for various solute concentrations have been recorded and interpreted. The spectra recorded at pH = 2 and below contain the signals of the neutral solute molecule exclusively, while the ones recorded at pH = 7 and above only the signals of the appropriate anion, which has been confirmed by theoretical GIAO-DFT calculations. The signals in the spectra recorded for solutions of pH pH variation have been observed for the parent barbituric acid.

  6. Isothermal heat measurements of TBP-nitric acid solutions

    Smith, J.R.; Cavin, W.S.

    1994-01-01

    Net heats of reaction were measured in an isothermal calorimeter for both single phase (organic) and two phase (organic and aqueous) TBP/HNO 3 reacting solutions at temperatures above 100 C. The oxidation rate constant was determined to be 5.4E-4 min -1 at 110 C for an open ''vented'' system as compared to 1.33 E-3 min -1 in the closed system. The heat released per unit material oxidized was also reduced. The oxidation in both phases was found to be first order in nitric acid and pseudo-zero order in butylnitrate and water. The hydrolysis (esterification) rate constant determined by Nichols' (1.33E-3 min -1 ) fit the experimental data from this work well. Forced evaporation of the volatile components by the product gases from oxidation resulted in a cooling mechanism which more than balanced the heat from the oxidation reaction in the two-phased systems. Rate expressions were derived and rate constants determined for both the single and two phase systems. An approximating mathematical model was developed to fit the experimental data and to extrapolate beyond the experimental conditions. This model shows that one foot of ''reacting'' 14.3M HNO 3 aqueous phase solution at 121 C will transport sufficient water to the organic phase to replace evaporative losses, maintaining endothermicity, for organic layers up to 12.2 + 6.0 feet deep. If the pressure in a reacting system is allowed to increase due to insufficient venting the temperature of the organic phase would increase in temperature to reach a new equilibrium. The rate of oxidation would increase not only due to the increase in temperature but also from the increased concentration of dissolved HNO 3 reduction products. Another important factor is that the cooling system described in this work becomes less effective as the total pressure increases. These factors probably contributed to the explosion at Tomsk

  7. Humic acid removal from aqueous solutions by peroxielectrocoagulation process

    Ahmad Reza Yazdanbakhsh

    2015-06-01

    Full Text Available Background: Natural organic matter is the cause of many problems associated with water treatment such as the presence of disinfection by-products (DBPs and membrane fouling during water filtration. In this study, the performance of the peroxi-electrocoagulation process (PEP was investigated for the removal of humic acids (HAs from aqueous solutions. Methods: PEP was carried out for the removal of HA using a plexiglas reactor with a volume of 2 L and fitted with iron electrodes and a direct current supply (DC. Samples were taken at various amounts of pH (2-4, current density (1 and 2A/cm2, hydrogen peroxide (50-150 mg/L and reaction time (5-20 minutes and then filtered to remove sludge formed during reaction. Finally, the HA concentration was measured by UV absorbance at 254 nm (UV254. Results: Results indicated that increasing the concentration of H2O2 from 50 to 150 mg/L increased HA removal efficiency from 83% to 94.5%. The highest removal efficiency was observed at pH 3.0; by increasing the pH to the alkaline range, the efficiency of the process was reduced. It was found that HA removal efficiency was high in current density 1A/cm2. Increasing current density up to 1 A cm-2 caused a decrease in removal efficiency. Results of this study showed that under the optimum operating range for the process ([current density] = 1A/cm2, [hydrogen peroxide concentration] = 150 mg/L, [reaction time]= 20 minutes and [pH]= 3.0, HA removal efficiency reached 98%. Conclusion: It can be concluded that PEP has the potential to be utilized for cost-effective removal of HA from aqueous solutions.

  8. Interaction between Al3+ and acrylic acid and polyacrylic acid in acidic aqueous solution: a model experiment for the behavior of Al3+ in acidified soil solution.

    Etou, Mayumi; Masaki, Yuka; Tsuji, Yutaka; Saito, Tomoyuki; Bai, Shuqin; Nishida, Ikuko; Okaue, Yoshihiro; Yokoyama, Takushi

    2011-01-01

    From the viewpoint of the phytotoxicity and mobility of Al(3+) released from soil minerals due to soil acidification, the interaction between Al(3+) and acrylic acid (AA) and polyacrylic acid (PAA) as a model compound of fulvic acid was investigated. The interaction was examined at pH 3 so as to avoid the hydrolysis of Al(3+). The interaction between Al(3+) and AA was weak. However, the interaction between Al(3+) and PAA was strong and depended on the initial (COOH in PAA)/Al molar ratio (R(P)) of the solution. For the range of 1/R(P), the interaction between Al(3+) and PAA can be divided into three categories: (1) 1:1 Al-PAA-complex (an Al(3+) combines to a carboxyl group), (2) intermolecular Al-PAA-complex (an Al(3+) combines to more than 2 carboxyl groups of other Al-PAA-complexes) in addition to the 1:1 Al-PAA-complex and (3) precipitation of intermolecular complexes. In conclusion, R(P) is an important factor affecting the behavior of Al(3+) in acidic soil solution.

  9. Calorimetric study of interaction of barium hydroxide with diluted solutions of hydrofluoric acid

    Kurbanov, A.R.; Sharipov, D.Sh.

    1993-01-01

    Present article is devoted to calorimetric study of interaction of barium hydroxide with diluted solutions of hydrofluoric acid. The calorimetric study of interaction of barium hydroxide with diluted solutions of hydrofluoric acid was carried out in order to determine the thermal effects of reactions. The results of interaction of Ba(OH) 4 ·8H 2 O with 5, 10, and 20% solution of hydrofluoric acid were considered.

  10. Pulse radiolysis of pyridinecarboxylic acids in aqueous solution

    Solar, S.; Getoff, N.; Sehested, K.

    1991-01-01

    The reactivity of OH, e(aq)- and H radicals towards aqueous carboxypyridines: picolinic acid (2-pyridinecarboxylic acid), PA; isonicotinic acid (4-pyridinecarboxylic acid), i-NA; 2,6-pyridinedicarboxylic acid, 2,6-PDCA; and 3,5-pyridinedicarboxylic acid, 3,5-PDCA was investigated in the pH-range 1...... radical are: 20% for PA, 75% for i-NA, 60% for 2,6-PDCA and 25% for 3,5-PDCA (a yield of 50% has been found earlier for nicotinic acid, NA)....

  11. Hydrogen oxidation on gold electrode in perchloric acid solution

    Sustersic, M.G.; Almeida, N.V.; Von Mengershausen, A.E. [Facultad de Ingenieria y Ciencias Economico Sociales, Universidad Nacional de San Luis, 25 de Mayo N 384, 5730 Villa Mercedes, San Luis (Argentina)

    2010-06-15

    The aim of this research is to study the interface gold/perchloric acid solution in presence of hydrogen. The reactive is generated by H{sup +} ion reduction and by saturating the electrolyte with the gaseous H{sub 2}. No evidence of H{sub 2} dissociative adsorption is found. In special conditions, a strongly adsorbed layer is formed from the atoms diffusing from inside of the metal. The mass transport occurs in three ways: the diffusion of H atoms inwards, the diffusion of H atoms back to the surface and the dissolved H{sub 2} diffusion from the bulk electrolyte to the surface. When dissolved H{sub 2} reacts, the reaction is kinetically controlled when the H{sub 2} partial pressure is high, and it is diffusionally controlled when the reactive partial pressure is low. Above 0.7 V, (measured vs. RHE), the (100) plane surface reconstruction lifts, and the rate determining step is the H diffusion towards inside of the metal, and the current suddenly falls. The Hydrogen redox reaction on gold shows reversibility with respect to the potential when the reactives are the H diffusing outwards of the metal and the H{sup +} ion present in the electrolyte. However, the absolute current values of oxidation and reduction are different because the reactive sources are different. (author)

  12. Characteristics of alkali activated material (geopolymer) in sulfuric acid solution

    Simatupang, Partogi H.

    2017-09-01

    Alkali Activated Material (AAM) or Geopolymer is a solid material which made by mixing rich silica alumina material with alkaline activator. AAM is a well known candidate to replace cement based material. Many researches have claimed that AAM has better durability compared to cement based material in agressive environment. However, there was rare paper presented the direct comparison of material characteristics between Class F fly ash based AAM and Class C fly ash based AAM in such aggresive environment. Because of that, this paper present material characteristics of Class F fly ash based AAM and Class C fly ash based AAM if the materials were immersed in 10% sulfuric acid solution for 65 days. Material characteristics evaluated were (1) weight loss, (2) mineral of the material which evaluated by XRD (X-Ray Diffraction), (3) morphology and oxide compounds of material which evaluated by SEM/EDXA (Scanning Electron Microscopic/Energy Dispersive X-Ray Analyzer) and (4) compound bond which evaluated by FTIR (Fourier Transform Infra Red) Spectroscopy Testing. Alkali Activated Material used were Class F fly ash based AAM Mortar and Class C fly ash based AAM Mortar. The result is a quite difference of material characteristics between Class F fly ash based AAM and Class C fly ash based AAM.

  13. SFG study of platinum electrodes in perchloric acid solutions

    Zheng, W. Q.; Pluchery, O.; Tadjeddine, A.

    2002-04-01

    Infrared-visible sum-frequency generation (SFG) spectroscopy has been used to study the structure of water molecules (and/or its derivatives OH -, H 3O + etc.) at aqueous electrolyte/electrode interfaces. For Pt(1 1 0) and Pt(1 0 0) electrodes in 0.1 M perchloric acid solution, we did not observe any significant O-H stretching resonance. In striking contrast to the resonant SFG signal, the nonresonant SFG (NRSFG) signal varies sensitively with the applied electrochemical potential, indicating that the interaction of water molecules with platinum electrodes is relatively weak as compared to that of H + and ClO 4- ions. From changes in the NRSFG signal and on the basis of an ionic adsorption model, we can also deduce that the potential of zero charge of Pt(1 1 0) in 0.1 M HClO 4 should be located at about 0.22 V (vs. NHE). This value is in good agreement with that measured recently by electrochemical method.

  14. A new chemical system solution for acid gas removal

    Seiler, M.; Rolker, J.; Witthaut, D.; Schulze, S. [Evonik Industries AG, Hanau (Germany); Buchholz, S. [Evonik Industries AG, Marl (Germany)

    2012-07-01

    An energy-efficient absorbent formulation fors eparating acid gases (e.g. CO{sub 2}, H2S) from gas streams such as natural gas, syngas or flue gas is important for a number of industrial applications. In many cases, a substantial share of their costs is driven by the operational expenditure (OPEX) of the CO{sub 2} separation unit. One possible strategy for reducing OPEX is the improvement of the absorbent performance. Although a number of absorbents for the separation of CO{sub 2} from gas streams exist, there is still a need to develop CO{sub 2} absorbents with an improved absorption performance, less corrosion and foaming, no nitrosamine formation, lower energy requirement and therefore less OPEX. This contribution aims at giving a brief state-of-the-art overview followed by an introduction and performance characterization of a new family of amine-based CO{sub 2} absorbents. High cyclic capacities in the range of 2.9 to 3.2 mol CO{sub 2} kg{sup -1} absorbent and low absorption enthalpies of about -30 kJ mol{sup -1} allow for significant savings in the regeneration energy of the new absorbent system. Calculations with the modified Kremser model indicate a reduction in the specific reboiler heat duty of 45 %. Moreover, the high-performance absorbents developed show much lower corrosion rates than state-of-the-art solutions that are currently employed. (orig.)

  15. Pulse radiolysis of adrenaline in acid aqueous solutions

    Gohn, M.; Getoff, N.; Bjergbakke, E.

    1976-01-01

    Pulse radiolysis of adrenaline in acid aqueous solutions (pH 1 to 3) was carried out. The rate constants for the reactions of adrenaline with H and 0H were determined: k(H + adr.) = (0.9 +- 0.1) x 10 9 dm 3 mol -1 s -1 ; k(0H + adr.) = (1.65 +- 0.15) x 10 10 dm 3 mol -1 s -1 . The H-adduct of adrenaline has two lambdasub(max), at 280 and 355 nm, with epsilon 280 = 420 m 2 mol -1 and epsilon 355 = 390 m 2 mol -1 , which disappears according to a first order reaction, k 1 = 1.4 x 10 3 s -1 . The spectra formed by 0H attack was assigned to the corresponding benzoxy radical with absorption maxima at 285 and 365 nm and epsilon 285 = 620 m 2 mol -1 and epsilon 365 = 105 m 2 mol -1 . Due to the overlapping of the intermediates, no decay kinetics could be obtained. (author)

  16. Hyaluronic acid solution injection for upper and lower gastrointestinal bleeding after failed conventional endoscopic therapy.

    Lee, Jin Wook; Kim, Hyung Hun

    2014-03-01

    Hyaluronic acid solution injection can be an additional endoscopic modality for controlling bleeding in difficult cases when other techniques have failed. We evaluated 12 cases in which we used hyaluronic acid solution injection for stopping bleeding. Immediately following hyaluronic acid solution injection, bleeding was controlled in 11 out of 12 cases. There was no clinical evidence of renewed bleeding in 11 cases during follow up.Hyaluronic acid solution injection can be a simple and efficient additional method for controlling upper and lower gastrointestinal bleeding after failed endoscopic therapy. © 2013 The Authors. Digestive Endoscopy © 2013 Japan Gastroenterological Endoscopy Society.

  17. A pulse radiolysis study of salicylic acid and 5-sulpho-salicylic acid in aqueous solutions

    Kishore, Kamal; Mukherjee, T.

    2006-01-01

    Reactions of H, OH, e aq - and some one-electron oxidants have been studied with salicylic acid and 5-sulpho-salicylic acid in aqueous solutions. Rate constants for the reaction of e aq - with these compounds were of the order of 10 9 dm 3 mol -1 s -1 and this reaction led to the formation of reducing radicals which could transfer electron to methyl viologen. Other one-electron reductants were not able to reduce these compounds. OH radicals reacted with these compounds by addition pathway with very high rate constants (>10 10 dm 3 mol -1 s -1 ) while O - radical anions could oxidize these molecules to give phenoxyl type of radicals. Amongst the one-electron oxidants, only N 3 radicals and SO 4 - radicals could oxidize salicylic acid while 5-sulpho-salicylic acid could be oxidized only by SO 4 - radicals indicating that while one-electron reduction potential for semi-oxidized SA may be o1 for N 3 ? radical), it is more than 1.33V vs. NHE for semi-oxidized SSA species

  18. PLZT (9/65/35) sintering and characterization through the Pechini and partial oxalate processes

    Cerqueira, Marinalva; Nasar, Ricardo Silveira; Leite, Edson Roberto; Longo, Elson; Varela, Jode Arana

    1996-01-01

    Zr Ti O 4 obtained by the Pechini method was used as precursor for obtaining PLZT. An aqueous solution of oxalic acid was prepared with ZT, Pb (NO 3 ) 2 and La 2 O 3 particles. After the Pb C 2 O 4 and La 2 O 3 precipitation on ZT, the material was calcined and x-ray diffraction (XRD) showed the cubic phase of PLZT. This material was sintered in two steps and density about 8.0 g/cm 3 were obtained. After second sintering XRD showed the occurrence of tetragonal and rhombohedral phases. This was caused by an estequiometric deviation, however the material showed a high optical transparency. (author)

  19. Stripping of Uranium (IV) from D2EHPA + TBP system with ammonium oxalate and its recovery as uranium peroxide

    Singh, D.K.; Singh, H.

    2014-01-01

    Uranium is an important fissile material for the generation of electricity by nuclear reactors. To obtain uranium as a final product meeting the stringent nuclear specifications, many process steps are involved starting from ore processing to the precipitation of yellow cake. Solvent extraction is one of the process industrially adopted worldwide to achieve such purity of uranium from leach liquor and usually uses amine or organophosphorus types of extractant depending upon the composition of feed material. In solvent extraction technique, stripping is a prominent hydrometallurgical operation which brings the metal values of interest in aqueous solution for further treatment. In the case of uranium, stripping is dependent on its oxidation state. For hexavalent state generally carbonate solutions are used, where as in the case of tetravalent form salt solution such as ammonium oxalate is effective. Use of ammonium oxalate as stripping agent for tetravalent uranium from pyrophosphoric acid has been reported in patent however the details are not disclosed. In the present investigation an effort has been made to investigate the stripping behaviour of uranium from a synthetically loaded synergistic solvent mixture of uranium in tetravalent state

  20. Putative Aspergillus niger-induced oxalate nephrosis in sheep : clinical communication

    C.J. Botha

    2009-05-01

    Full Text Available A sheep farmer provided a maize-based brewer's grain (mieliemaroek and bales of Eragrostis curvula hay to ewes and their lambs, kept on zero-grazing in pens. The 'mieliemaroek' was visibly mouldy. After 14 days in the feedlot, clinical signs, including generalised weakness, ataxia of the hind limbs, tremors and recumbency, were noticed. Six ewes died within a period of 7 days. A post mortem examination was performed on 1 ewe. The carcass appeared to be cachectic with mild effusions into the body cavities; mild lung congestion and pallor of the kidneys were observed. Microscopical evaluation revealed nephrosis and birefringent oxalate crystals in the renal tubules when viewed under polarised light. A provisional diagnosis of oxalate nephrosis with subsequent kidney failure was made. Amongst other fungi, Aspergillus niger was isolated from 'mieliemaroek' samples submitted for fungal culture and identification. As A. niger is known to synthesise oxalates, a qualitative screen to detect oxalic acid in the mieliemaroek and purified A. niger isolates was performed using high-performance liquid chromatography (HPLC. Oxalic acid was detected, which supported a diagnosis of soluble oxalate-induced nephropathy.

  1. Investigation on clean-up of Zr and HDBP in PUREX process with UDMH oxalate

    Zhang Youzhi; Wang Xuanjun; Li Zhengli; Liu Xiangxuan

    2007-01-01

    It is generally accepted that the interracial crud formation is related to the complex formation of Zr with degradation products of TBP, such as DBP and MBP, in PUREX process, especially in the first cycle. The crud seriously deteriorates the operation of extraction column and therefore must be properly cleared up. Various clear up methods were studied and those with salt-free washing agents were recently focused. In this paper a new scrubbing agent 1,1- dimethylhydrazine (UDMH) oxalate was proposed, the optimized experimental conditions were described, and the possible mechanism was discussed. The influence of different factors, including reaction temperature, UDMH oxalate concentration, organic-to-aqueous phase ratio, and free UDMH concentration, on the decontamination factors were examined with simulated Zr- and/or DBP-loaded solvents. The optical experimental parameters are found as follows: temperature 40-60 degree C, phase ratio V (o) /V (a) =1, concentration of UDMH oxalate solution 0.4-0.6 mol/L. Especialy some UDMH was added into the UDMH oxalate queues solution to make the concentration of free UDMH 0.2-0.3 mol/L. Under these conditions, the decontaminator factor of Zr from the corresponding simulated solvent with UDMH oxalate is up to 143, slightly higher than that with sodium carbonate. The decontamination factor of HDBP from the corresponding simulated solvent with UDMH oxalate is up to 100, similar to sodium carbonate. (authors)

  2. Acid in perchloroethylene scrubber solutions used in HTGR fuel preparation processes. Analytical chemistry studies

    Lee, D.A.

    1979-02-01

    Acids and corrosion products in used perchloroethylene scrubber solutions collected from HTGR fuel preparation processes have been analyzed by several analytical methods to determine the source and possible remedy of the corrosion caused by these solutions. Hydrochloric acid was found to be concentrated on the carbon particles suspended in perchloroethylene. Filtration of carbon from the scrubber solutions removed the acid corrosion source in the process equipment. Corrosion products chemisorbed on the carbon particles were identified. Filtered perchloroethylene from used scrubber solutions contained practically no acid. It is recommended that carbon particles be separated from the scrubber solutions immediately after the scrubbing process to remove the source of acid and that an inhibitor be used to prevent the hydrolysis of perchloroethylene and the formation of acids

  3. Investigations on the oxidation of nitric acid plutonium solutions with ozone

    Boehm, M.

    1983-01-01

    The reaction of ozone with nitric acid Pu solutions was studied as a function of reaction time, acid concentration and Pu concentration. Strong nitric acid Pu solutions are important in nuclear fuel element production and reprocessing. The Pu must be converted into hexavalent Pu before precipitation from the homogeneous solution together with uranium-IV, ammonia and CO 2 in the form of ammonium uranyl/plutonyl carbonate (AUPuC). Formation of a solid phase during ozonation was observed for the first time. The proneness to solidification increases with incrasing plutonium concentrations and with decreasing acid concentrations. If the formation of a solid phase during ozonation of nitric acid Pu solutions cannot be prevented, the PU-IV oxidation process described is unsuitable for industrial purposes as Pu solutions in industrial processes have much higher concentrations than the solutions used in the present investigation. (orig./EF) [de

  4. Dating oxalate minerals in rock surface deposits

    Watchman, A.

    2001-01-01

    Oxalate minerals are found associated with rocks, mineral coatings, micro-organisms, plants and animals. They are important in archaeology because they have been found intimately associated with organic binders in prehistoric paints. Oxalate minerals also accumulate in the coatings on rock shelter walls and fallen ceiling slabs where they form the natural backing supports for painting and opaque laminates covering engravings. Though the relationship between anthropogenic activity in a rock shelter and oxalate formation is often uncertain, the radiocarbon age of the oxalate may provide the only means for determining the antiquity of a rock painting or engraving. This paper examines the history of dating oxalate minerals at archaeological sites and provides insights into achieving reliable age estimates. (author). 37 refs., 1 fig., 2 tabs

  5. Tetrakis(acetonitrilecopper(I hydrogen oxalate–oxalic acid–acetonitrile (1/0.5/0.5

    A. Timothy Royappa

    2013-10-01

    Full Text Available In the title compound, [Cu(CH3CN4](C2HO4·0.5C2H2O4·0.5CH3CN, the CuI ion is coordinated by the N atoms of four acetonitrile ligands in a slightly distorted tetrahedral environment. The oxalic acid molecule lies across an inversion center. The acetonitrile solvent molecule is disordered across an inversion center and was refined with half occupancy. In the crystal, the hydrogen oxalate anions and oxalic acid molecules are linked via O—H...O hydrogen bonds, forming chains along [010].

  6. Acute Contact Toxicity Test of Oxalic Acid on Honeybees in the Southwestern Zone of Uruguay Prueba de Toxicidad Aguda por Contacto de Ácido Oxálico en Abejas de la Zona Sudoeste de Uruguay

    Leonidas Carrasco-Letelier

    2012-06-01

    Full Text Available This work studies the acute contact toxicity of oxalic acid (OA on a honeybee polyhybrid subspecies (Apis mellifera, which is the dominant biotype in southwestern zone of Uruguay (SWZU and the country's most important honey-producing region. We determined the mean lethal dose (LD50, as well as the no observed effect level (NOEL and the lowest observed effect level (LOEL values. We also estimated the total number of honeybees per hive in the test area. The aim was to assess the relationship between the maximum OA dose used in Uruguay (3.1 g OA per hive and the toxicological parameters of honeybees from SWZU. The current dose of 3.1 g OA per hive corresponds to 132.8 OA per honeybee since determined NOEL is 400 OA per honeybee; our results indicate that the current dose could be increased to 9.3 g OA per hive. The results also highlight some differences between the LD50 value in SWZU honeybees (548.95 OA per honeybee and some published LD50 values for other honeybee subspecies.Este trabajo estudió la toxicidad aguda por contacto del ácido oxálico (AO sobre una subespecie poli-híbrida de abejas (Apis mellifera, la cual es el biotipo dominante en la zona sudoeste de Uruguay (SWZU, la región más importante para la producción de miel en este país. Este estudio determinó la dosis letal 50 (DL50, así como el nivel de efecto no observado (NOEL, el nivel de efecto mínimo observado (LOEL, y el número total de individuos por colmena. El propósito fue evaluar la relación entre la dosis máxima de AO usada en Uruguay (3.1 g AO por colmena y los parámetros toxicológicos de las abejas de la SWZU. Los resultados mostraron que es posible elevar la dosis actual de AO por colmena a 9.3 g, ya que la dosis actual de 3.1 g de AO corresponde a 132.8 AO por abeja, y el NOEL determinado es 400 AO por abeja. Los resultados también destacaron algunas diferencias entre la DL50 de las abejas del SWZU (548.95 AO por abeja y algunos valores de DL50 publicados

  7. Dissolution of thorium/uranium mixed oxide in nitric acid-hydrofluoric acid solution

    Filgueiras, S.A.C.

    1984-01-01

    The dissolution process of thorium oxide and mixed uranium-thorium oxide is studied, as a step of the head-end of the fuel reprocessing. An extensive bibliography was analysed, concerning the main aspects of the system, specially the most important process variables. Proposed mechanisms and models for the thorium oxide dissolution are presented. The laboratory tests were performed in two phases: at first, powdered thoria was used as the material to be dissolved. The objective was to know how changes in he concentrations of the dissolvent solution components HNO 3 , HF and Al(NO 3 ) 3 affect the dissolution rate. The tests were planned according to the fractional factorial method. Thes results showed that it is advantageous to work with powdered material, since the reaction occurs rapidly. And, if the Thorex solution (HNO 3 13M, HF 0.05M and Al(NO 3 ) 3 0.10M) is a suitable dissolvent, it was verified that it is possible to reduce the concentration of either nitric or fluoridric acid, without reducing the reaction rate to an undesirable value. It was also observed significant interaction between the components of the dissolvent solution. In the second phase of the tests, (Th, 5%U)O 2 sintered pellets were used. The main goals were to know the pellets dissolution behaviour and to compare the results for different pellets among themselves. It was observed that the metallurgical history of the material strongly influences its dissolution, specially the density and the microstructure. It was also studied how the (Th,U)O 2 mass/Thorex solution volume ratio affects the time needed to obtain an 1 M Th/liter solution. The activation energy for the reaction was obtained. (Author) [pt

  8. Preparation of acid deficient solutions of uranyl nitrate and thorium nitrate by steam denitration

    Yamagishi, Shigeru; Takahashi, Yoshihisa

    1996-01-01

    Acid deficient heavy metal (HM) nitrate solutions are often required in the internal gelation processes for nuclear fuel fabrication. The stoichiometric HM-nitrate solutions are needed in a sol-gel process for fuel fabrication. A method for preparing such nitrate solutions with a controlled molar ratio of nitrate/metal by denitration of acid-excess nitrate solutions was developed. The denitration was conducted by bubbling a nitrate solution with a mixture of steam+Ar. It was found that steam was more effective for the denitration than Ar. The acid deficient uranyl nitrate solution with nitrate/U=1.55 was yielded by steam bubbling, while not by only Ar bubbling. As for thorium nitrate, acid deficient solutions of nitrate/Th≥3.1 were obtained by steam bubbling. (author)

  9. Oxalic acid pretreatment, fungal enzymatic saccharification and ...

    Furthermore, a native Saccharomyces cerevisiae (strain KB) was able to convert 78% (w/w) of glucose (and other fermentable sugars) to ethanol after 60 h of incubation at 32°C, under stationary culture conditions. The challenges encountered in chemical and biological conversions included incomplete hydrolysis and ...

  10. Separation of rare earths from solutions of phosphoric acid

    Jones, E.A.

    1977-01-01

    Rare earths are separated from 6M phosphoric acid by adsorption onto cation resin BIORAD AG50W-X8. The phosphoric acid is then washed from the column, and the rare earths are eluted with 4M hydrochloric acid

  11. Acid Solutions for Etching Corrosion-Resistant Metals

    Simmons, J. R.

    1982-01-01

    New study characterized solutions for etching austenitic stainless steels, nickel-base alloys, and titanium alloys (annealed). Solutions recommended for use remove at least 0.4 mil of metal from surface in less than an hour. Solutions do not cause intergranular attack on metals for which they are effective, when used under specified conditions.

  12. Comparative radiosensitivity of amino acids during γ-radiolysis in aqueous solutions

    Duzhenkova, N.A.; Savich, A.V.

    1977-01-01

    The radiosensitivity of amino acids contained in proteins has been compared. The γ-radiolysis of aqueous solutions of amino acids has studied over a wide range of concentrations in the presence of air, the dose rate being 60 rad/sec, and the dose, 100 krad. Radiation-chemical yields of amino acid decay and ammonia accumulation are given. An increase in yields with amino acid concentration has been established. Assumptions concerning some peculiarities of the amino acid decay mechanism are made

  13. Ultrastructural and biochemical studies on formation of calcium oxalate in plants

    Abdelmottaleb, A.M.

    1989-01-01

    Plant calcium oxalate crystals occur within cells called crystal idioblasts. Important aspects of this calcification phenomenon have not been characterized. This dissertation examines some of the aspects of this ubiquitous type of calcification including (1) characterization of ultrastructural features of developing crystal idioblasts, (2) determination of the relationship of specialized ultrastructural features of the idioblasts to transport of compounds and mechanisms of crystal deposition, and (3) the biochemical relationship between ascorbic acid metabolism and production of oxalic acid used for crystal formation. Structural and cytochemical studies revealed that crystal idioblasts have dense cytoplasm, modified plastids, enlarged nuclei, extensive endoplasmic reticulum, numerous dictyosomes and vesicles, and a bundle of raphide crystals in their vacuoles. A mechanism for Ca transport and crystal precipitation is proposed, based on these results. There is a strong and dynamic relationship between Ca concentration and oxalic acid produced for crystal formation, where increasing Ca level in the growth medium lead to increased total and insoluble oxalate in the plant. Calmodulin antagonists reduced oxalic acid production

  14. Fixation of Cr(III) traces onto Haro river sand from acidic solution

    Hasany, S.M.; Chaudhry, M.H.

    1998-01-01

    The sorption of chromium(III) onto Haro river sand has been investigated as a function of sorptive solution composition, amounts of sorbent (10-500 mg) and sorbate (4.33 x 10 -8 -5.17 x 10 -6 M), shaking time (I-60 minutes) and temperature (15-35 deg C). Maximum sorption has been achieved from 0.001M HCl solution using 50 mg of the sand and 20 minutes shaking time. The sorption data followed Freundlich and D-R isotherms. The sorption capacity of 0.4 μmole x g -1 and of sorption energy of 9.9 kJ x mole -1 have been computed from D-R parameters. Thermodynamic parameters ΔH = 84.4 kJ x mole -1 , ΔS 284.5 J x mole -1 x K -1 and ΔG = -3.32 kJ x mole -1 at 298 K have been evaluated. Fe(II), Al(III), citrate, borate, oxalate, tartrate and carbonate ions reduce the sorption significantly. Under similar experimental conditions Tc(VII), Re(VII), Sb(V) and Co(II) have very low sorption (<1%) and trivalent Eu and Sm have large distribution ratios. Haro river sand can be used to preconcentrate or to remove micro or submicro amounts of Cr(III) from very dilute solution and for the separation of Tc, Re and Sb from Cr, Eu and Sm. (author)

  15. A review of plutonium oxalate decomposition reactions and effects of decomposition temperature on the surface area of the plutonium dioxide product

    Orr, R. M.; Sims, H. E.; Taylor, R. J.

    2015-10-01

    Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or 'finishing' processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO2 product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles.

  16. Recovery of Tin and Nitric Acid from Spent Solder Stripping Solutions

    Ahn, Jae-Woo; Ryu, Seong-Hyung; Kim, Tae-young

    2015-01-01

    Spent solder-stripping solutions containing tin, copper, iron, and lead in nitric acid solution, are by-products of the manufacture of printed-circuit boards. The recovery of these metals and the nitric acid, for re-use has economic and environmental benefits. In the spent solder-stripping solution, a systematic method to determine a suitable process for recovery of valuable metals and nitric acid was developed. Initially, more than 90% of the tin was successfully recovered as high-purity SnO 2 by thermal precipitation at 80 ℃ for 3 hours. About 94% of the nitric acid was regenerated effectively from the spent solutions by diffusion dialysis, after which there remained copper, iron, and lead in solution. Leakage of tin through the anion-exchange membrane was the lowest (0.026%), whereas Pb-leakage was highest (4.26%). The concentration of the regenerated nitric acid was about 5.1 N.

  17. Enthalpic characteristics of interactions occurring between an ascorbic acid and some saccharides in aqueous solutions

    Terekhova, Irina V.; Kulikov, Oleg V.; Titova, Elena S.

    2004-01-01

    The enthalpies of solution of mono- and disaccharides were measured in water and aqueous ascorbic acid solutions at 298.15 K using a calorimeter of solution. Enthalpies of transfer of saccharides from water to aqueous ascorbic acid solutions were derived, and enthalpic coefficients of pair interaction h xy were calculated according to MacMillan-Mayer theory. Interactions of ascorbic acid with D-fructose and sucrose are energetically favorable and characterized by negative h xy coefficients while h xy for the interactions occurring between ascorbic acid and α-D glucose, D-galactose and maltose are positive. The obtained results are interpreted in terms of the influence of structure and solvation of solutes on the thermodynamic parameters of their interaction in solutions

  18. Solvent extraction of uranium from high acid leach solution

    Ramadevi, G.; Sreenivas, T.; Navale, A.S.; Padmanabhan, N.P.H.

    2010-01-01

    A significant part of the total uranium reserves all over the world is contributed by refractory uranium minerals. The refractory oxides are highly stable and inert to attack by most of the commonly used acids under normal conditions of acid strength, pressure and temperature. Quantitative dissolution of uranium from such ores containing refractory uranium minerals requires drastic operating conditions during chemical leaching like high acid strength, elevated pressures and temperatures. The leach liquors produced under these conditions normally have high free acidity, which affects the downstream operations like ion exchange and solvent extraction

  19. Morphological control of strontium oxalate particles by PSMA-mediated precipitation reaction

    Yu Jiaguo [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)]. E-mail: jiaguoyu@yahoo.com; Tang Hua [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Cheng Bei [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2005-05-15

    In this paper, strontium oxalate particles with different morphologies could be easily obtained by a precipitation reaction of sodium oxalate with strontium chloride in the absence and presence of poly-(styrene-alt-maleic acid) (PSMA). The as-prepared products were characterized with scanning electron microscopy and X-ray diffraction. The effects of pH, aging time and concentration of PSMA on the phase structures and morphologies of the as-prepared strontium oxalate particles were investigated and discussed. The results showed that strontium oxalate particles with various morphologies, such as, bi-pyramids, rods, peanuts, and spherical particles, etc., could be obtained by varying the experimental conditions. PSMA promoted the formation of strontium oxalate dihydrate (SOD) phase. Suitable pH values (pH 7 and 8) favor the formation of the peanut-shaped SrC{sub 2}O{sub 4} particles. This research may provide new insight into the control of morphologies and phase structures of strontium oxalate particles and the biomimetic synthesis of novel inorganic materials.

  20. Determination of Food Oxalates Using Silica–Titania Xerogel Modified with Eriochrome Cyanine R

    Maria A. Morosanova

    2018-03-01

    Full Text Available The interaction of silica–titania xerogel with triphenylmethane dyes (pyrocatechol violet, chrome azurol S, eriochrome cyanine R has been investigated to create a new sensor material for solid phase spectrophotometric determination of food oxalates. The complex forming reaction between xerogel incorporated titanium(IV and triphenylmethane dyes has been studied; half-reaction periods, complex composition, equilibrium constants, and xerogel sorption capacity have been calculated for each dye. Eriochrome cyanine R (ECR is characterized by the shortest half-reaction period, the smallest equilibrium constant, and the greatest capacity; it has been chosen for the sensor material construction because titanium(IV-ECR complex is formed faster and can be destroyed easier than other studied complexes. The interaction of this sensor material with oxalates has been described: the presence of oxalates causes sensor material discoloration and the absorbance is used as analytical signal. The analytical range is 35–900 mg/L (LOD 10.5 mg/L, n = 7. High concentrations of interfering inorganic anions, organic acids, and sucrose did not affect oxalate determination. Proposed solid phase spectrophotometric procedure has been successfully applied for the determination of oxalates in food samples (sorrel, spinach, parsley, ginger, and black pepper and the results are in good agreement with HPLC oxalate determination.

  1. Pathological features of oxalate nephrosis in a population of koalas (Phascolarctos cinereus) in South Australia.

    Speight, K N; Boardman, W; Breed, W G; Taggart, D A; Woolford, L; Haynes, J I

    2013-03-01

    The wild and captive koala population of the Mt Lofty Ranges in South Australia has a high level of renal dysfunction in which crystals consistent with calcium oxalate have been observed in the kidneys. This study aimed to describe the pathological features of the renal disease in this population, confirm the composition of renal crystals as calcium oxalate, and determine whether any age or sex predispositions exist for this disease. A total of 51 koalas (28 wild rescues, 23 captive) were examined at necropsy, of which 28 (55%) were found to have gross and/or histological evidence of oxalate nephrosis. Histopathological features included intratubular and interstitial inflammation, tubule dilation, glomerular atrophy, tubule loss, and cortical fibrosis. Calcium oxalate crystals were demonstrated using a combination of polarization microscopy, alizarin red S staining, infrared spectroscopy, and energy-dispersive X-ray analysis with scanning electron microscopy. Uric acid and phosphate deposits were also shown to be present but were associated with minimal histopathological changes. No significant differences were found between the numbers of affected captive and wild rescued koalas; also, there were no sex or age predispositions identified, but it was found that oxalate nephrosis may affect koalas <2 years of age. The findings of this study suggest that oxalate nephrosis is a leading disease in this koala population. Possible causes of this disease are currently under investigation.

  2. Adsorption of zirconium from nitric acid solutions on hydrated tin dioxide

    Tret' yakov, S Ya; Sharygin, L M; Egorov, Yu V

    1977-01-01

    Adsorption of zirconium from nitric acid solutions has been studied with the use of the labeled atom method on hydrated tin dioxide depending on the sorbate concentration, pH and prehistory of the solution. It has been found that adsorption behavior of zirconium essentially depends on its state in the solution.

  3. Study of the influence of the citric and oxalic acid in the uranyl sorption in ZrP{sub 2}O{sub 7} for their use in contention barriers; Estudio de la influencia del acido citrico y oxalico en la sorcion de uranilo en ZrP{sub 2}O{sub 7}, para su uso en barreras de contencion

    Garcia G, N.

    2009-07-01

    Countries which produce electricity by nuclear means, such as Mexico, need to develop a technology for that at long term safe containment of nuclear waste that are produced in nuclear power plants, for now, the arrangement of these is made by international companies, as which is extremely expensive. The most accepted proposal for the containment of radioactive waste is the Deep Geological Repository (DGR), which consists of a number of natural barriers and of engineering barriers. Currently, barriers to engineering and materials that the make up are still under study, because must meet a series of structural criteria and chemical such as high insolubility, thermal and chemical stability with ionizing radiation. The surface must have adsorbed features of ions and organic compounds dissolved in infiltration water that could penetrate for a crack in the DGR. This study focuses, as first stage, is the uranyl sorption on zirconium diphosphate in various conditions of time, concentration and ph, then evaluates the influence of citric acid and oxalic acid on the sorption of uranyl on ZrP{sub 2}O{sub 7}, in order to model the behaviour of alpha emitters that are dissolved by percolating water laden with salts and organic matter, that infiltrates might during catastrophic events in the DGR. It was confirmed the purity of the zirconium diphosphate because it was synthesized from sea sand with the physicochemical characterization and superficial. The proposed methodology included elemental analysis by neutron activation and X-ray emission induced by charged particles, functional group analysis with infrared spectroscopy, morphology with scanning electron microscopy, crystallinity with transmission electron microscopy and X-ray diffraction. For properties surface was determined, the specific area using Bet multipoint technique, acidity constants in the FITEQL 4.0 program, the hydration time was obtained from literature, the point of zero charge was identified with a mass

  4. Solution properties and taste behavior of lactose monohydrate in aqueous ascorbic acid solutions at different temperatures: Volumetric and rheological approach.

    Sarkar, Abhijit; Sinha, Biswajit

    2016-11-15

    The densities and viscosities of lactose monohydrate in aqueous ascorbic acid solutions with several molal concentrations m=(0.00-0.08)molkg(-1) of ascorbic acid were determined at T=(298.15-318.15)K and pressure p=101kPa. Using experimental data apparent molar volume (ϕV), standard partial molar volume (ϕV(0)), the slope (SV(∗)), apparent specific volumes (ϕVsp), standard isobaric partial molar expansibility (ϕE(0)) and its temperature dependence [Formula: see text] the viscosity B-coefficient and solvation number (Sn) were determined. Viscosity B-coefficients were further employed to obtain the free energies of activation of viscous flow per mole of the solvents (Δμ1(0≠)) and of the solute (Δμ2(0≠)). Effects of molality, solute structure and temperature and taste behavior were analyzed in terms of solute-solute and solute-solvent interactions; results revealed that the solutions are characterized predominantly by solute-solvent interactions and lactose monohydrate behaves as a long-range structure maker. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effects of potassium oxalate on knoop hardness of etch-and-rinse adhesives.

    Silva, S M A; Malacarne-Zanon, J; Carvalho, R M; Alves, M C; De Goes, M F; Anido-Anido, A; Carrilho, M R

    2012-01-01

    The objective of this study was to determine whether the hardness of etch-and-rinse adhesives may be affected by the pretreatment of acid-etched dentin with potassium oxalate desensitizer. Unerupted human third molars were cut into crown segments by removing the occlusal enamel and roots. The pulp chamber of these crown segments was connected to a syringe barrel filled with phosphate-buffered saline so that the moisture of dentin was maintained during the bonding procedures. Three etch-and-rinse adhesives-two two-step systems (Adper Single Bond 2 [SB], One-Step [OS]) and one three-step system (Adper Scotchbond Multi-Purpose [MP])-were applied to acid-etched dentin that had been treated (experimental groups) or not (control groups) with potassium oxalate (BisBlock). The Knoop hardness (KHN) of adhesives was taken at different sites of the outer surface of the adhesive-bonded dentin. The KHN of the three tested adhesives applied to acid-etched dentin treated with potassium oxalate was significantly lower than that exhibited by the respective controls (not treated with oxalate; padhesive, the treatment with potassium oxalate reduced the adhesives' KHN (psystem exhibiting the lowest KHN compared with the MP and SB systems.

  6. Characterization of calcium oxalate biominerals in some (non-Cactaceae) succulent plant species.

    Monje, Paula V; Baran, Enrique J

    2010-01-01

    The water-accumulating leaves of crassulacean acid metabolism plants belonging to five different families were investigated for the presence of biominerals by infrared spectroscopic and microscopic analyses. Spectroscopic results revealed that the mineral present in succulent species of Agavaceae, Aizoaceae, and Asphodelaceae was calcium oxalate monohydrate (whewellite, CaC2O4 x H2O). Crystals were predominantly found as raphides or solitary crystals of various morphologies. However, representative Crassulaceae members and a succulent species of Asteraceae did not show the presence of biominerals. Overall, these results suggest no correlation between calcium oxalate generation and crassulacean acid metabolism in succulent plants.

  7. Process for the removal of radium from acidic solutions containing same

    Scheitlin, F.M.

    The invention is a process for the removal of radium from acidic aqueous solutions. In one aspect, the invention is a process for removing radium from an inorganic-acid solution. The process comprises contacting the solution with coal fly ash to effect adsorption of the radium on the ash. The radium-containing ash then is separated from the solution. The process is simple, comparatively inexpensive, and efficient. High radium-distribution coefficients are obtained even at room temperature. Coal fly ash is an inexpensive, acid-resistant, high-surface-area material which is available in large quantities throughout the United States. The invention is applicable, for example, to the recovery of /sup 226/Ra from nitric acid solutions which have been used to leach radium from uranium-mill tailings.

  8. Investigations of the sorption of cesium from acid solutions by various inorganic sorbents

    Suess, M.; Pfrepper, G.

    1981-01-01

    Studies have been made to investigate the suitability of various inorganic sorbents for separating and obtaining cesium from acid solutions. In greater details, the distribution coefficients of cesium from nitric acid and ammonium nitrate solution were determined. To determine the saturation capacities it was necessary to plot the isotherms of adsorption from 0.5 N and 3.1 N nitric acid. Experimental sorption from a model solution, of which the composition was equal to that of the liquid Purex waste, enabled the suitability of the various exchangers for obtaining cesium from fission product solutions to be determined. From the results obtained it is apparent that ammonium phosphomolybdate is best suited for obtaining cesium from acid fission product solutions. (orig.)

  9. Chemical dosimetry at less than 1000 rad: aqueous trimesic acid solutions

    Matthews, R.W.; Wilson, J.G.

    1981-01-01

    Aqueous solutions of trimesic acid were investigated for possible use as a chemical dosimeter. In aerated 10 -2 M sulphuric acid solution containing 10 -3 M trimesic acid, a highly fluorescent product is formed with its maximum fluorescence at 450nm when excited by 350nm light. The product has fluorescence characteristics very similar to quinine in 0.05 M sulphuric acid. The fluorescence intensity is linear with dose in the range 1-1000 rad and a precision of +-2% was obtained from a number of runs. Solutions are stable for at least several days before and after irradiation. The yield is little affected by moderate changes in trimesic acid concentration, oxygen concentration, water purity, energy of radiation and irradiation temperature. The small dependence of the yield on dose rate and the effect of measurement temperature on the fluorescence signal have been quantified. The most significant factor affecting the fluorescence signal is the hydrogen ion concentration of the solution. In aerated neutral and alkaline (pH 10) solutions, hydroxytrimesic acid (HTMA) is formed with G(HTMA) equal to 2.07 +- 0.04 and 2.21 +- 0.04, for 10 -3 M trimesate. In these solutions, G(HTMA) increases appreciably with increase in the trimesate concentration. The main fluorescent product formed in irradiated acid solutions was not identified but it was not HTMA. (author)

  10. Method for separation of Cs from acid solution dissolving radionuclides and microanalysis of solution with ICP-AES

    Kanazawa, Toru; Hidaka, Akihide; Kudo, Tamotsu; Nakamura, Takehiko; Fuketa, Toyoshi

    2004-06-01

    The VEGA (Verification Experiments of radionuclides Gas/Aerosol release) program is being performed at JAERI to understand mechanisms of radionuclides release from irradiated fuel during severe accidents. As a part of evaluation in the program, the mass balances of released and deposited FP (Fission Products) onto the test apparatus are estimated from gamma ray measurement for acid solution leached from the apparatus, but short-life nuclides are difficult to be measured because those in the VEGA fuel have been mostly depleted due to cooling for several years. Moreover, the radionuclides without emitting gamma rays and very small quantity of elements cannot be quantified by gamma ray measurement. Therefore, a microanalysis by ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry) for the acid solution leached from VEGA apparatuses is being applied to evaluate the released and deposited masses for those elements. Since Cs-134 and -137, which are major FP dissolved in the solution, have high intensity of gamma ray spectrum, they have to be removed from the solution before the microanalysis in order to avoid contamination of ICP system and to decrease exposure to gamma ray. In this report, methods for separation of Cs from acid solution were reviewed and the applicability of them to the ICP-AES analysis was discussed. The method for Cs separation using the inorganic ion exchanger, AMP (Ammonium Molybdate Phosphate) was applied to the solutions of cold and hot test and the effectiveness was examined. The results showed that more than 99.9% of Cs could be removed from the test solutions, and once removed Sb by AMP was recovered by using a complexing agent such as citric acid. Next, the method was applied to an acid solution leached from VEGA-3 apparatus, and ICP-AES analysis was performed for it. The analysis showed that amount of U, Sr and Zr were successfully quantified. Most of elements to be analyzed were measurable except for Sb, Ag and Sn, although

  11. Separation of ions in acidic solution by capillary electrophoresis

    Thornton, Michelle [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Capillary electrophoresis (CE) is an effective method for separating ionic species according to differences in their electrophoretic mobilities. CE separations of amino acids by direct detection are difficult due to their similar electrophoretic mobilities and low absorbances. However, native amino acids can be separated by CE as cations at a low pH by adding an alkanesulfonic acid to the electrolyte carrier which imparts selectivity to the system. Derivatization is unnecessary when direct UV detection is used at 185 nm. Simultaneous speciation of metal cations such as vanadium (IV) and vanadium (V) can easily be performed without complexation prior to analysis. An indirect UV detection scheme for acidic conditions was also developed using guanidine as the background carrier electrolyte (BCE) for the indirect detection of metal cations. Three chapters have been removed for separate processing. This report contains introductory material, references, and general conclusions. 80 refs.

  12. Extraction of uranium from aqueous solution by phosphonic acid-imbedded polyurethane foam

    Katragadda, S.; Gesser, H.D.; Chow, A.

    1997-01-01

    Phenylphosphonic acid was imbedded into the matrix of the polyurethane foam during the fabrication process of the polymer. The extraction of uranium by phosphonic acid-imbedded polyurethane foam and blank polyurethane (i.e., foam without phosphonic acid functional groups) was investigated. Phosphonic acid-imbedded foam showed superior extractability of uranium from solutions with pH = 7.0 ± 1.5 over a wide range of temperatures. (author)

  13. Continuous plutonium(IV) oxalate precipitation, filtration, and calcination process. [From product streams from Redox, Purex, or Recuplex solvent extraction plants

    Beede, R L

    1956-09-27

    A continuous plutonium (IV) oxalate precipitation, filtration, and calcination process has been developed. Continuous and batch decomposition of the oxalate in the filtrates has been demonstrated. The processes have been demonstrated in prototype equipment. Plutonium (IV) oxalate was precipitated continuously at room temperature by the concurrent addition of plutonium (IV) nitrate feed and oxalic acid into the pan of a modified rotary drum filter. The plutonium (IV) oxalate was calcined to plutonium dioxide, which could be readily hydrofluorinated. Continuous decomposition of the oxalate in synthetic plutonium (IV) oxalate filtrates containing plutonium (IV) oxalate solids was demonstrated using co-current flow in a U-shaped reactor. Feeds containing from 10 to 100 g/1 Pu, as plutonium (IV) nitrate, and 1.0 to 6.5 M HNO/sub 3/, respectively, can be processed. One molar oxalic acid is used as the precipitant. Temperatures of 20 to 35/sup 0/C for the precipitation and filtration are satisfactory. Plutonium (IV) oxalate can be calcined at 300 to 400/sup 0/C in a screw-type drier-calciner to plutonium dioxide and hydrofluorinated at 450 to 550/sup 0/C. Plutonium dioxide exceeding purity requirements has been produced in the prototype equipment. Advantages of continuous precipitation and filtration are: uniform plutonium (IV) oxalate, improved filtration characteristics, elimination of heating and cooling facilities, and higher capacities through a single unit. Advantages of the screw-type drier-calciner are the continuous production of an oxide satisfactory for feed for the proposed plant vibrating tube hydrofluorinator, and ease of coupling continuous precipitation and filtration to this proposed hydrofluorinator. Continuous decomposition of oxalate in filtrates offers advantages in decreasing filtrate storage requirements when coupled to a filtrate concentrator. (JGB)

  14. Extraction of Collagen from Chicken Feet with Various Acidic Solutions and Soaking Time

    Prayitno Prayitno

    2007-05-01

    Full Text Available The objective of this research was to know the ability of various acidic solutions on dissolving collagen  chicken feet, with different soaked time.  Each acid 5 percent (v/v, collagen extraction was done by washing chicken feet and then cutted into small pieces and finally grinded.  Every 100 gram treatment was soaked in acetic acid (a1, citric acid (a2, lactic acid (a3 and hydrochloric acid (a4, for 12, 24 and 36 hours.  Precipitated collagen in the filtrate was 5 percent NaOH to reach the neutral pH (pH 7.  Collagen precipitate was separated by filtration usingfilter paper and then  rendement was calculated, HPLC was used to determin amino acid composition, and SDS-PAGE was use determin the type of collagen.  This experiment use factorial completely randomized design (CRD 4 x 3 and three time replication.   Result showed that lactic acid has highest capability to dissolve collagen, while citric acid the lowest.  Combination of acid solution and soaking time had significant (P<0.01 effect on dissolving collagen of chicken feet.  Extracted collagen in all acid solution, hassame amino acid, composition but different in percentage of amino acid molecules.  Collagen type in treatment combination was the same, but for soaking time of 36 hours revealed some peptide band.  Lactic acid had highest capability of collagen extraction in chicken feet than citric acid, acetic acid and hydrochloric acid with soaking time of 12, 24 and 36 hours.  It was estimated that extracted collagen can be grouped to type I consisted of two chain of a1. (Animal Production 9(2: 99-104 (2007   Key Words : Chicken feet, acids, soaking time, collagen

  15. pH Dependency of sclerotial development and pathogenicity revealed by using genetically defined oxalate-minus mutants of Sclerotinia sclerotiorum

    The devastating plant pathogen Sclerotinia sclerotiorum produces copious (up to 50mM) amounts of oxalic acid, which, for over a quarter century, has been claimed as the pathogenicity determinant based on UV-induced mutants that concomitantly lost oxalate production and pathogenicity. Such a claim wa...

  16. Adsorption of pertechnetate ion on various active carbons from mineral acid solutions

    Ito, K.

    1991-01-01

    The adsorption behavior of pertechnetate ion (TcO 4 - ) on active carbon has been studied for various acid solutions, taking as indicative value the distribution coefficient K d of Tc between active carbon surface and solution. In a system where the total anion concentration of the acid and its sodium salt was maintained constant, modifying the pH of the solution proved distinctly to influence the Tc adsorption behavior of active carbon: taking the case of active carbon derived from coconut shell, increasing the acidity raised K d ; around neutrality there occurred a level stage; in the alkali region, K d declined. The rise of K d in the acid region, however, was observed only with active carbon derived from coconut shell, from oil pitch or from saw dust; it failed to occur when the active carbon was derived from coal or from bone. With a hydrochloric acid system, the rise of K d started around 1 M (mol dm -1 ) HCl. Beyond 3 M, on the other hand, a breakthrough occurred, and K d declined with increasing acidity. With a nitric acid system, K d rose from 1 M, and the breakthrough occurred at 2 M. When the adsorption was left to equilibrate beyond 4 h, desorption displacement of TcO 4 - by a coexisting other anion was observed in the case of perchloric acid solutions of concentration above 0.1 M and with sulfuric acid solutions above 0.5 M. (author)

  17. Evaluation of soluble oxalates content in infusions of different kinds of tea and coffee available on the Polish market.

    Rusinek, Elzbieta

    2012-01-01

    Tea and coffee are the potentially rich source of oxalic acid, which can act as a antinutrient. The aim of this study was to determine and evaluate the content of soluble oxalates in teas and coffees available on the Polish market. The green, red and black teas, and black natural ground and instant coffees were used for preparing the infusions. The manganometric method was used for the determination of the oxalates in the infusions. The mean oxalates content in the infusions from 3 g of black teas was 115.68 mg/100 cm3 and was higher as compared to red teas (101.91 mg/100 cm3) and green teas (87.64 mg/100 cm3). Disregarding the variety of analyzed teas, the largest oxalates content was in infusions of pure one-component tea--"Sir Roger" (164.82-174.22 mg/100 cm3), while the lowest oxalates content was noted in the tea containing the components from other plants ("Bio-Active" with grapefruit juice--reaching as low level as 39.00 mg/100 cm3). Instant coffees contained larger amount of oxalates than natural ground coffees. Irrespective of the kind of the tested coffees, the lowest oxalates content was found in the infusions from the following coffees: Tchibo Exclusive--19.62 mg/100 cm3, Gala ulubiona--37.32 mg/100 cm3, and Maxwell House--38.40 mg/100 cm3, while the highest oxalates content in instant coffee--Nescafe Espiro 51.80 mg/100 cm3. The results revealed a significant relation between phytochemical composition of analyzed teas and coffees and the level of soluble oxalates in infusions prepared from the tested products.

  18. The bioavailability of oxalate from Oca (Oxalis tuberosa).

    Albihn, P B; Savage, G P

    2001-08-01

    It is believed that soluble oxalate has higher bioavailability than insoluble oxalate. Oca (Oxalis tuberosa) is moderately high in oxalate and contains oxalate in soluble form only. We estimated the bioavailability of oxalate in oca based on the urinary excretion of oxalate after oxalate loading with oca to estimate the bioavailability of oxalate in oca. We also clarified whether bioavailability differs in various oxalate loads from the same food source and studied the effect of an additional calcium source on the bioavailability of oxalate from oca. Four men and 4 women ingested 50, 100 and 150 gm. oca as well as 100 gm. oca with 100 gm. sour cream. Oxalate was measured in a 6-hour urine sample from each volunteer. The mean bioavailability of oxalate from oca plus or minus standard deviation was 1.44% +/- 1.31% during the 6-hour period after intake. There was no significant difference in oxalate bioavailability among oxalate intake levels in this study, although oca consumption with sour cream significantly decreased the uptake of oxalate (p oca appears to be similar to that in spinach. However, bioavailability varies among individuals and depends on other constituents of a combined meal.

  19. Hydrophobic interactions between polymethacrylic acid and sodium laureth sulfate in aqueous solutions

    Yaremko, Z. M.; Fedushinskaya, L. B.; Burka, O. A.; Soltys, M. N.

    2014-09-01

    The role of hydrophobic interaction in the development of associative processes is demonstrated, based on the concentration dependences of the viscosity and pH of binary solutions of polymethacrylic acid as an anionic polyelectrolyte and sodium laureth sulfate as an anionic surfactant. It is found that the inflection point on the dependence of the difference between the pH values of binary solutions of polymethacrylic acid and sodium laureth sulfate on the polyelectrolyte concentration is a criterion for determining the predominant contribution from hydrophobic interaction, as is the inflection point on the dependence of pH of individual solutions of polymethacrylic acid on the polyelectrolyte concentration.

  20. Indium sulfide precipitation from hydrochloric acid solutions of calcium and sodium chlorides

    Kochetkova, N.V.; Bayandina, Yu.E.; Toptygina, G.M.; Shepot'ko, A.O.

    1988-01-01

    The effect of precipitation duration, acid concentration, indium complexing with chloride ions on the process of indium sulfide chemical precipitation in hydrochloric acid solutions, precipitate composition and dispersity are studied. It is established that indium sulfide solubility increases in solutions with acid concentration exceeding 0.40-0.45 mol/l. Calcium and indium chloride addition to diluted hydrochloric solutions greatly increases the solubility of indium sulfide. The effect of calcium chloride on In 2 S 3 solubility is higher than that of sodium chloride