WorldWideScience

Sample records for output coupled atoms

  1. Transport, atom blockade, and output coupling in a Tonks-Girardeau gas

    International Nuclear Information System (INIS)

    Rutherford, L.; McCann, J. F.; Goold, J.; Busch, Th.

    2011-01-01

    Recent experiments have demonstrated how quantum-mechanical impurities can be created within strongly correlated quantum gases and used to probe the coherence properties of these systems [S. Palzer, C. Zipkes, C. Sias, and M. Koehl, Phys. Rev. Lett. 103, 150601 (2009).]. Here we present a phenomenological model to simulate such an output coupler for a Tonks-Girardeau gas that shows qualitative agreement with the experimental results for atom transport and output coupling. Our model allows us to explore nonequilibrium transport phenomena in ultracold quantum gases and leads us to predict a regime of atom blockade, where the impurity component becomes localized in the parent cloud despite the presence of gravity. We show that this provides a stable mixed-species quantum gas in the strongly correlated limit.

  2. Advanced Output Coupling for High Power Gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Read, Michael [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Marsden, David [Calabazas Creek Research, Inc., San Mateo, CA (United States); Collins, George [Calabazas Creek Research, Inc., San Mateo, CA (United States); Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Guss, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lohr, John [General Atomics, La Jolla, CA (United States); Neilson, Jeffrey [Lexam Research, Redwood City, CA (United States); Bui, Thuc [Calabazas Creek Research, Inc., San Mateo, CA (United States)

    2016-11-28

    The Phase II program developed an internal RF coupler that transforms the whispering gallery RF mode produced in gyrotron cavities to an HE11 waveguide mode propagating in corrugated waveguide. This power is extracted from the vacuum using a broadband, chemical vapor deposited (CVD) diamond, Brewster angle window capable of transmitting more than 1.5 MW CW of RF power over a broad range of frequencies. This coupling system eliminates the Mirror Optical Units now required to externally couple Gaussian output power into corrugated waveguide, significantly reducing system cost and increasing efficiency. The program simulated the performance using a broad range of advanced computer codes to optimize the design. Both a direct coupler and Brewster angle window were built and tested at low and high power. Test results confirmed the performance of both devices and demonstrated they are capable of achieving the required performance for scientific, defense, industrial, and medical applications.

  3. Angular momentum coupling in atom-atom collisions

    International Nuclear Information System (INIS)

    Grosser, J.

    1986-01-01

    The coupling between the electronic angular momentum and the rotating atom-atom axis in the initial or the final phase of an atom-atom collision is discussed, making use of the concepts of radial and rotational (Coriolis) coupling between different molecular states. The description is based on a limited number of well-understood approximations, and it allows an illustrative geometric representation of the transition from the body fixed to the space fixed motion of the electrons. (orig.)

  4. Atomic precision tests and light scalar couplings

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [CEA, IPhT, CNRS, URA 2306, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geneve Univ. (Switzerland). Dept. de Physique Theorique

    2010-10-15

    We calculate the shift in the atomic energy levels induced by the presence of a scalar field which couples to matter and photons. We find that a combination of atomic measurements can be used to probe both these couplings independently. A new and stringent bound on the matter coupling springs from the precise measurement of the 1s to 2s energy level difference in the hydrogen atom, while the coupling to photons is essentially constrained by the Lamb shift. Combining these constraints with current particle physics bounds we find that the contribution of a scalar field to the recently claimed discrepancy in the proton radius measured using electronic and muonic atoms is negligible. (orig.)

  5. Synchronization of chaotic neural networks via output or state coupling

    International Nuclear Information System (INIS)

    Lu Hongtao; Leeuwen, C. van

    2006-01-01

    We consider the problem of global exponential synchronization between two identical chaotic neural networks that are linearly and unidirectionally coupled. We formulate a general framework for the synchronization problem in which one chaotic neural network, working as the driving system (or master), sends its output or state values to the other, which serves as the response system (or slave). We use Lyapunov functions to establish general theoretical conditions for designing the coupling matrix. Neither symmetry nor negative (positive) definiteness of the coupling matrix are required; under less restrictive conditions, the two coupled chaotic neural networks can achieve global exponential synchronization regardless of their initial states. Detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws

  6. Characteristic analysis of a polarization output coupling Porro prism resonator

    Science.gov (United States)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-02-01

    An Electro-optical Q-switched Nd:YAG slab laser with a crossed misalignment Porro prism resonator for space applications has been theoretically and experimentally investigated. The phase shift induced by the combination of different wave plates and Porro prism azimuth angles have been studied for creating high loss condition prior to Q-switching. The relationship of the effective output coupling reflectivity and the employed Q-switch driving voltage is explored by using Jones matrix optics. In the experiment, the maximum output pulse energy of 93 mJ with 14-ns pulse duration is obtained at the repetition rate of 20 Hz and the optical-to-optical conversion efficiency is 16.8%. The beam quality factors are M 2 x = 2.5 and M 2y = 2.2, respectively.

  7. Topology Detection for Output-Coupling Weighted Complex Dynamical Networks with Coupling and Transmission Delays

    Directory of Open Access Journals (Sweden)

    Xinwei Wang

    2017-01-01

    Full Text Available Topology detection for output-coupling weighted complex dynamical networks with two types of time delays is investigated in this paper. Different from existing literatures, coupling delay and transmission delay are simultaneously taken into account in the output-coupling network. Based on the idea of the state observer, we build the drive-response system and apply LaSalle’s invariance principle to the error dynamical system of the drive-response system. Several convergent criteria are deduced in the form of algebraic inequalities. Some numerical simulations for the complex dynamical network, with node dynamics being chaotic, are given to verify the effectiveness of the proposed scheme.

  8. Hydrogen atom kinetics in capacitively coupled plasmas

    Science.gov (United States)

    Nunomura, Shota; Katayama, Hirotaka; Yoshida, Isao

    2017-05-01

    Hydrogen (H) atom kinetics has been investigated in capacitively coupled very high frequency (VHF) discharges at powers of 16-780 mW cm-2 and H2 gas pressures of 0.1-2 Torr. The H atom density has been measured using vacuum ultra violet absorption spectroscopy (VUVAS) with a micro-discharge hollow cathode lamp as a VUV light source. The measurements have been performed in two different electrode configurations of discharges: conventional parallel-plate diode and triode with an intermediate mesh electrode. We find that in the triode configuration, the H atom density is strongly reduced across the mesh electrode. The H atom density varies from ˜1012 cm-3 to ˜1010 cm-3 by crossing the mesh with 0.2 mm in thickness and 36% in aperture ratio. The fluid model simulations for VHF discharge plasmas have been performed to study the H atom generation, diffusion and recombination kinetics. The simulations suggest that H atoms are generated in the bulk plasma, by the electron impact dissociation (e + H2 \\to e + 2H) and the ion-molecule reaction (H2 + + H2 \\to {{{H}}}3+ + H). The diffusion of H atoms is strongly limited by a mesh electrode, and thus the mesh geometry influences the spatial distribution of the H atoms. The loss of H atoms is dominated by the surface recombination.

  9. Evacuation emergency response model coupling atmospheric release advisory capability output

    International Nuclear Information System (INIS)

    Rosen, L.C.; Lawver, B.S.; Buckley, D.W.; Finn, S.P.; Swenson, J.B.

    1983-01-01

    A Federal Emergency Management Agency (FEMA) sponsored project to develop a coupled set of models between those of the Lawrence Livermore National Laboratory (LLNL) Atmospheric Release Advisory Capability (ARAC) system and candidate evacuation models is discussed herein. This report describes the ARAC system and discusses the rapid computer code developed and the coupling with ARAC output. The computer code is adapted to the use of color graphics as a means to display and convey the dynamics of an emergency evacuation. The model is applied to a specific case of an emergency evacuation of individuals surrounding the Rancho Seco Nuclear Power Plant, located approximately 25 miles southeast of Sacramento, California. The graphics available to the model user for the Rancho Seco example are displayed and noted in detail. Suggestions for future, potential improvements to the emergency evacuation model are presented

  10. Inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Winge, R.K.; Fassel, V.A.; Peterson, V.J.; Floyd, M.A.

    1985-01-01

    This atlas of inductively coupled plasma-atomic emission spectroscopy records the spectra of the elements in a way that would reveal the general nature of the spectra, in all their simplicity or complexity; and offers a definitive summary of the most prominent spectral lines of the elements, i.e., those most likely to be useful for the determination of trace and ultratrace concentrations; it provides reliable estimates, based on the recorded experimental spectra, of the powers of detection of the listed prominent lines; and assesses the very important problem of spectral interferences. The atlas is composed of three main sections. Part I is concerned with the historical aspects of compilations of spectral information. Part II is based on 232 wavelength scans of 70 elements. Each of the wavelength scans covers an 80 nm spectral region. These scans allow a rapid comparison of the background and spectral line intensities emitted in the ICP and provide a ready means for identification of the most prominent lines of each element and for estimation of the trace element analytical capabilities of these lines. A listing of 973 prominent lines with associated detection limits is also presented. Part III addresses the problem of spectral interferences. On this topic a detailed collection of coincidence profiles is presented for 281 of the most prominent lines, each with profiles of ten of the most prevalent concomitants superimposed. (Auth.)

  11. Active pixel sensor pixel having a photodetector whose output is coupled to an output transistor gate

    Science.gov (United States)

    Fossum, Eric R. (Inventor); Nakamura, Junichi (Inventor); Kemeny, Sabrina E. (Inventor)

    2005-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. A Simple Floating Gate (SFG) pixel structure could also be employed in the imager to provide a non-destructive readout and smaller pixel sizes.

  12. Evaluation of the potential to upgrade the Sandia Atomic Iodine Laser SAIL-1 to higher output energies

    International Nuclear Information System (INIS)

    Riley, M.E.; Palmer, R.E.

    1977-05-01

    The predicted output energy of the Sandia Atomic Iodine Laser SAIL-1 is given for various numbers of preamplifier stages and for various small signal gains in each stage. Additional possibilities for further increasing the output energy are given

  13. Coupling between water chemistry and thermal output at unsaturated repositories

    International Nuclear Information System (INIS)

    Walton, J.; LeMone, D.; Casey, D.

    1995-01-01

    This paper summarizes issues in predicting thermohydrology in the near field of a deep geological repository and the implications for performance assessment. Predicted thermohydrology depends on waste package design, and particularly on backfill materials. The coupling between solute concentrations and thermal gradients leads to a prediction of highly variable water chemistry in the near field which is radically different than the initial, undisturbed water chemistry; however, most analyses to date assume that waste package chemistry is approximately the same as initial pore water chemistry. Several alternative, simplified approaches for performance assessment are discussed

  14. The non-planar single-frequency ring laser with variable output coupling

    Science.gov (United States)

    Wu, Ke-ying; Yang, Su-hui; Wei, Guang-hui

    2002-03-01

    We put forward a novel non-planar single-frequency ring laser, which consists of a corner cube prism and a specially cut Porro prism made by Nd:YAG crystal. The relative angle between the corner cube and the Porro prism could be adjusted to control the output coupling of the laser resonator and the polarization-state of the output laser. A 1.06 μm single-frequency laser with 1 W output has been obtained.

  15. Output power control of two coupled wind generators

    Directory of Open Access Journals (Sweden)

    A Boukhelifa

    2016-09-01

    Full Text Available In this paper we are interested to the power control of two wind generators coupled to the network through power converters. Every energy chain conversion is composed of a wind turbine, a gearbox, a Double Fed Induction Generator (DFIG, two PWM converters and a DC bus. The power exchange and the DC voltage are controlled by the use of proportional integral correctors. For our study, initially we have modeled all the components of the one system energy conversion, and then we have simulated its behavior using Matlab/Simulink. In another part of this paper we present the analysis of the interaction and the powerflow between the two aerogenerators following a disturbance due to wind speed on every turbine. Also we have considered a connection fault to the DC bus. In each case the assessment of power brought into play is checked. Simulation tests are established.

  16. Interplay of vacuum-mediated inter- and intra-atomic couplings in a pair of atoms

    International Nuclear Information System (INIS)

    Schmid, Sandra Isabelle; Evers, Joerg

    2010-01-01

    The resonance fluorescence emitted by a system of two dipole-dipole interacting nearby four-level atoms in a J=1/2↔J=1/2 configuration is studied. This setup is the simplest realistic model system which provides a complete description of the (inter-atomic) dipole-dipole interaction for arbitrary orientation of the inter-atomic distance vector, and at the same time allows for intra-atomic spontaneously generated coherences. Our main interest is the interplay of both these different coupling mechanisms. We discuss different methods to analyze the contribution of the various vacuum-induced coupling constants to the total resonance fluorescence spectrum. These allow us to find a dressed state interpretation of the contribution of the different inter-atomic dipole-dipole couplings to the total spectrum. We further study the role of the spontaneously generated coherences, and identify two different contributions to the single-particle vacuum-induced couplings. We show that they have a noticeable impact on the total resonance fluorescence spectrum down to small inter-atomic distances, even though the dipole-dipole coupling constants then are much larger in magnitude than the the single-particle coupling constants. Interestingly, we find that the inter-atomic couplings can induce an effect of the intra-atomic spontaneously generated coherences on the observed spectra which is not present in single-atom systems.

  17. A Many-Atom Cavity QED System with Homogeneous Atom-Cavity Coupling

    OpenAIRE

    Lee, Jongmin; Vrijsen, Geert; Teper, Igor; Hosten, Onur; Kasevich, Mark A.

    2013-01-01

    We demonstrate a many-atom-cavity system with a high-finesse dual-wavelength standing wave cavity in which all participating rubidium atoms are nearly identically coupled to a 780-nm cavity mode. This homogeneous coupling is enforced by a one-dimensional optical lattice formed by the field of a 1560-nm cavity mode.

  18. Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes

    Science.gov (United States)

    Zhu, Yifu

    1992-05-01

    We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.

  19. Momentum diffusion for coupled atom-cavity oscillators

    International Nuclear Information System (INIS)

    Murr, K.; Maunz, P.; Pinkse, P. W. H.; Puppe, T.; Schuster, I.; Rempe, G.; Vitali, D.

    2006-01-01

    It is shown that the momentum diffusion of free-space laser cooling has a natural correspondence in optical cavities when the internal state of the atom is treated as a harmonic oscillator. We derive a general expression for the momentum diffusion, which is valid for most configurations of interest: The atom or the cavity or both can be probed by lasers, with or without the presence of traps inducing local atomic frequency shifts. It is shown that, albeit the (possibly strong) coupling between atom and cavity, it is sufficient for deriving the momentum diffusion to consider that the atom couples to a mean cavity field, which gives a first contribution, and that the cavity mode couples to a mean atomic dipole, giving a second contribution. Both contributions have an intuitive form and present a clear symmetry. The total diffusion is the sum of these two contributions plus the diffusion originating from the fluctuations of the forces due to the coupling to the vacuum modes other than the cavity mode (the so-called spontaneous emission term). Examples are given that help to evaluate the heating rates induced by an optical cavity for experiments operating at low atomic saturation. We also point out intriguing situations where the atom is heated although it cannot scatter light

  20. Coupling ultracold atoms to a superconducting coplanar waveguide resonator

    OpenAIRE

    Hattermann, H.; Bothner, D.; Ley, L. Y.; Ferdinand, B.; Wiedmaier, D.; Sárkány, L.; Kleiner, R.; Koelle, D.; Fortágh, J.

    2017-01-01

    We demonstrate coupling of magnetically trapped ultracold $^87$Rb ground state atoms to a coherently driven superconducting coplanar resonator on an integrated atom chip. We measure the microwave field strength in the cavity through observation of the AC shift of the hyperfine transition frequency when the cavity is driven off-resonance from the atomic transition. The measured shifts are used to reconstruct the field in the resonator, in close agreement with transmission measurements of the c...

  1. Study on the output from programs in calculating lattice with transverse coupling

    International Nuclear Information System (INIS)

    Xu Jianming

    1994-01-01

    SYNCH and MAD outputs in calculating lattice with coordinate rotation have been studied. The result shows that the four dispersion functions given by SYNCH output in this case are wrong. There are large discrepancies between the Twiss Parameters given by these two programs. One has to be careful in using these programs to calculate or match lattices with coordinate rotations (coupling between two transverse motions) so that to avoid wrong results

  2. Atomic fluorescence spectrometry with the inductively coupled plasma

    International Nuclear Information System (INIS)

    Omenetto, N.; Winefordner, J.D.

    1987-01-01

    Atomic fluorescence spectrometry (AFS) is based on the radiational activation of atoms and ions produced in a suitable atomizer (ionizer) and the subsequent measurement of the resulting radiational deactivation, called fluorescence. Atomic fluorescence spectrometry has been of considerable interest to researchers in atomic spectrometry because of its use for both analytical and diagnostic purposes. Unfortunately, the analytical applications of AFS have suffered from the lack of commercial instrumentation until the recent marketing of the Baird multiple-element, hollow cathode lamp-excited inductively coupled plasma system. This chapter is concerned strictly with the use of the inductively coupled plasma (ICP) as a cell and as a source for AFS. Many of the major references concerning the ICP in analytical AFS are categorized in Table 9.1, along with several reviews and diagnostical studies. For more detailed discussions of the fundamental aspects of AFS, the reader is referred to previous reviews

  3. Optimum output coupling for a mid-infrared KTiOAsO4 optical parametric oscillator

    International Nuclear Information System (INIS)

    Li, Guochao; Gao, Yesheng; Zheng, Guangjin; Zhao, Yao; Chen, Kunfeng; Wang, Qingpu; Bai, Fen

    2013-01-01

    Taking into account the turn off time of the Q-switch, the coupled equations for a mid-infrared KTiOAsO 4 optical parametric oscillator (OPO) are given. These rate equations are solved numerically and some key parameters for designing the laser system are determined. The key parameters include the optimal coupling and nonlinear crystal length which maximize the output power and OPO conversion efficiency. We found that a low-loss singly resonant OPO cavity not only enhances the mid-infrared output but also decreases the optimal OPO crystal length. (paper)

  4. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.

    Science.gov (United States)

    Hou, Yan-Hua; Yu, Zhenhua

    2015-10-20

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.

  5. Optimization of output power and transmission efficiency of magnetically coupled resonance wireless power transfer system

    Science.gov (United States)

    Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng

    2018-05-01

    Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.

  6. A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching

    International Nuclear Information System (INIS)

    Challa, Vinod R; Prasad, M G; Fisher, Frank T

    2009-01-01

    Vibration energy harvesting is being pursued as a means to power wireless sensors and ultra-low power autonomous devices. From a design standpoint, matching the electrical damping induced by the energy harvesting mechanism to the mechanical damping in the system is necessary for maximum efficiency. In this work two independent energy harvesting techniques are coupled to provide higher electrical damping within the system. Here the coupled energy harvesting device consists of a primary piezoelectric energy harvesting device to which an electromagnetic component is added to better match the total electrical damping to the mechanical damping in the system. The first coupled device has a resonance frequency of 21.6 Hz and generates a peak power output of ∼332 µW, compared to 257 and 244 µW obtained from the optimized, stand-alone piezoelectric and electromagnetic energy harvesting devices, respectively, resulting in a 30% increase in power output. A theoretical model has been developed which closely agrees with the experimental results. A second coupled device, which utilizes the d 33 piezoelectric mode, shows a 65% increase in power output in comparison to the corresponding stand-alone, single harvesting mode devices. This work illustrates the design considerations and limitations that one must consider to enhance device performance through the coupling of multiple harvesting mechanisms within a single energy harvesting device

  7. Hybrid Systems: Cold Atoms Coupled to Micro Mechanical Oscillators =

    Science.gov (United States)

    Montoya Monge, Cris A.

    Micro mechanical oscillators can serve as probes in precision measurements, as transducers to mediate photon-phonon interactions, and when functionalized with magnetic material, as tools to manipulate spins in quantum systems. This dissertation includes two projects where the interactions between cold atoms and mechanical oscillators are studied. In one of the experiments, we have manipulated the Zeeman state of magnetically trapped Rubidium atoms with a magnetic micro cantilever. The results show a spatially localized effect produced by the cantilever that agrees with Landau-Zener theory. In the future, such a scalable system with highly localized interactions and the potential for single-spin sensitivity could be useful for applications in quantum information science or quantum simulation. In a second experiment, work is in progress to couple a sample of optically trapped Rubidium atoms to a levitated nanosphere via an optical lattice. This coupling enables the cooling of the center-of-mass motion of the nanosphere by laser cooling the atoms. In this system, the atoms are trapped in the optical lattice while the sphere is levitated in a separate vacuum chamber by a single-beam optical tweezer. Theoretical analysis of such a system has determined that cooling the center-of-mass motion of the sphere to its quantum ground state is possible, even when starting at room temperature, due to the excellent environmental decoupling achievable in this setup. Nanospheres cooled to the quantum regime can provide new tests of quantum behavior at mesoscopic scales and have novel applications in precision sensing.

  8. High-accuracy coupled cluster calculations of atomic properties

    Energy Technology Data Exchange (ETDEWEB)

    Borschevsky, A. [School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel and Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, 0745 Auckland (New Zealand); Yakobi, H.; Eliav, E.; Kaldor, U. [School of Chemistry, Tel Aviv University, 69978 Tel Aviv (Israel)

    2015-01-22

    The four-component Fock-space coupled cluster and intermediate Hamiltonian methods are implemented to evaluate atomic properties. The latter include the spectra of nobelium and lawrencium (elements 102 and 103) in the range 20000-30000 cm{sup −1}, the polarizabilities of elements 112-114 and 118, required for estimating their adsorption enthalpies on surfaces used to separate them in accelerators, and the nuclear quadrupole moments of some heavy atoms. The calculations on superheavy elements are supported by the very good agreement with experiment obtained for the lighter homologues.

  9. High-accuracy coupled cluster calculations of atomic properties

    International Nuclear Information System (INIS)

    Borschevsky, A.; Yakobi, H.; Eliav, E.; Kaldor, U.

    2015-01-01

    The four-component Fock-space coupled cluster and intermediate Hamiltonian methods are implemented to evaluate atomic properties. The latter include the spectra of nobelium and lawrencium (elements 102 and 103) in the range 20000-30000 cm −1 , the polarizabilities of elements 112-114 and 118, required for estimating their adsorption enthalpies on surfaces used to separate them in accelerators, and the nuclear quadrupole moments of some heavy atoms. The calculations on superheavy elements are supported by the very good agreement with experiment obtained for the lighter homologues

  10. Emission Spectrum Property of Modulated Atom-Field Coupling System

    International Nuclear Information System (INIS)

    Gao Yun-Feng; Feng Jian; Li Yue-Ke

    2013-01-01

    The emission spectrum of a two-level atom interacting with a single mode radiation field in the case of periodic oscillation coupling coefficient is investigated. A general expression for the emission spectrum is derived. The numerical results for the initial field in pure number stare are calculated. It is found that the effect of the coupling coefficient modulation on the spectral structure is very obvious in the case of a low modulation frequency and larger amplitude when the initial field is vacuum, which is potentially useful for exploring a modulated light source. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Majorana edge States in atomic wires coupled by pair hopping.

    Science.gov (United States)

    Kraus, Christina V; Dalmonte, Marcello; Baranov, Mikhail A; Läuchli, Andreas M; Zoller, P

    2013-10-25

    We present evidence for Majorana edge states in a number conserving theory describing a system of spinless fermions on two wires that are coupled by pair hopping. Our analysis is based on a combination of a qualitative low energy approach and numerical techniques using the density matrix renormalization group. In addition, we discuss an experimental realization of pair-hopping interactions in cold atom gases confined in optical lattices.

  12. Optical coupling of cold atoms to a levitated nanosphere

    Science.gov (United States)

    Montoya, Cris; Witherspoon, Apryl; Fausett, Jacob; Lim, Jason; Kitching, John; Geraci, Andrew

    2017-04-01

    Cooling mechanical oscillators to their quantum ground state enables the study of quantum phenomena at macroscopic levels. In many cases, the temperature required to cool a mechanical mode to the ground state is below what current cryogenic systems can achieve. As an alternative to cooling via cryogenic systems, it has been shown theoretically that optically trapped nanospheres could reach the ground state by sympathetically cooling the spheres via cold atoms. Such cooled spheres can be used in quantum limited sensing and matter-wave interferometry, and could also enable new hybrid quantum systems where mechanical oscillators act as transducers. In our setup, optical fields are used to couple a sample of cold Rubidium atoms to a nanosphere. The sphere is optically levitated in a separate vacuum chamber, while the atoms are trapped in a 1-D optical lattice and cooled using optical molasses. This work is partially supported by NSF, Grant No. PHY-1506431.

  13. Cyberknife Relative Output Factor measurements using fiber-coupled luminescence, MOSFETS and RADPOS dosimetry system

    DEFF Research Database (Denmark)

    Ploquin, N.; Kertzscher Schwencke, Gustavo Adolfo Vladimir; Vandervoort, E.

    2012-01-01

    from 5 to 60 mm. ROFs were also measured using a mobileMOSFET system (Best Medical Canada) and EBT1 and EBT2 GAFCHROMIC® (ISP, Ashland) radiochromic films. For cone sizes 12.5–60 mm all detector results were in agreement within the measurement uncertainty. The microMOSFET/RADPOS measurements (published.......3% and 0.865 ± 0.3% for 5, 7.5 and 10 mm cones. Our study shows that the microMOSFET/RADPOS and optical fiber‐coupled RL dosimetry system are well suited for Cyberknife cone output factors measurements over the entire range of field sizes, provided that appropriate correction factors are applied...

  14. Cross-channel coupling in positron-atom scattering

    International Nuclear Information System (INIS)

    McAlinden, M.T.; Kernoghan, A.A.; Walters, H.R.J.

    1994-01-01

    Coupled-state calculations including positronium channels are reported for positron scattering by atomic hydrogen, lithium and sodium. Integrated cross sections and total cross sections are presented for all three atoms. For lithium differential cross sections are also given. Throughout, comparison is made between results calculated with and without inclusion of the positronium channels. S-wave cross sections for positron scattering by atomic hydrogen in the Ps(1s, 2s, 2p) + H(1s, 2s, 2p) approximation show the high energy resonance first observed by Higgins and Burke in the coupled-static approximation. This resonance has now moved up to 51.05 eV and narrowed in width to 2.92 eV. Other pronounced structure is seen in the S-wave cross sections between 10 and 20 eV; it is tentatively suggested that this structure may be due to the formation of a temporary pseudo-molecular collision complex. Results calculated in the Ps(1s, 2s, anti 3 anti s, anti 4 anti s, 2p, anti 3 anti p, anti 4 anti p, anti 3 anti d, anti 4 anti d) + H(1s, 2s, anti 3 anti s, anti 4 anti s, 2p, anti 3 anti p, anti 4 anti p, anti 3 anti d, anti 4 anti d) approximation show convergence towards accurate values in the energy region below and in the Ore gap. Contrary to previous work on lithium using only an atomic basis, it is found that coupling to the 3d state of lithium is not so important when positronium channels are included; this is because a mixed basis of atom and positronium states gives a more rapidly convergent approximation than an expansion based on atom states alone. The threshold behaviour of the elastic cross section and the Ps(1s) formation cross section for lithium is investigated. Results in the Ps(1s, 2s, 2p) + Na(3s, 3p) approximation for sodium show good agreement with the total cross section measurements of Kwan et al. (orig.)

  15. Continuum-Coupling in Electron-Atom scattering

    International Nuclear Information System (INIS)

    Ballance, C.P.; Griffin, D.C.; Badnell, N.R.; Loch, S.D.; Pindzola, M.S.

    2004-01-01

    High quality fundamental atomic data provide the foundation of accurate collisional-radiative models of laboratory and astrophysical plasmas. In the SciDAC (Scientific Discovery through Advanced Computing) project entitled 'Terascale Computational Atomic Physics for the Edge Region in Controlled Fusion Plasmas', we employ an integrated approach from the calculation of basic atomic data to the modeling necessary for the interpretation of controlled nuclear fusion experiments. For example, helium electron-impact excitation results support helium puff experiments on the MAST (Mega Ampere Spherical Tokamak) at Culham to diagnose the radial variation in plasma density and temperature. Similarly, electron-impact excitation/ionization work for isonuclear beryllium will prove vital if beryllium is adopted as a surface material for the plasma-facing walls for ITER. Here we will discuss some examples of electron-impact excitation and ionization, where the effects of coupling to and between the target continuum states are large, and advanced close-coupling methods are required in order to generate data of sufficient accuracy

  16. Development a computer codes to couple PWR-GALE output and PC-CREAM input

    Science.gov (United States)

    Kuntjoro, S.; Budi Setiawan, M.; Nursinta Adi, W.; Deswandri; Sunaryo, G. R.

    2018-02-01

    Radionuclide dispersion analysis is part of an important reactor safety analysis. From the analysis it can be obtained the amount of doses received by radiation workers and communities around nuclear reactor. The radionuclide dispersion analysis under normal operating conditions is carried out using the PC-CREAM code, and it requires input data such as source term and population distribution. Input data is derived from the output of another program that is PWR-GALE and written Population Distribution data in certain format. Compiling inputs for PC-CREAM programs manually requires high accuracy, as it involves large amounts of data in certain formats and often errors in compiling inputs manually. To minimize errors in input generation, than it is make coupling program for PWR-GALE and PC-CREAM programs and a program for writing population distribution according to the PC-CREAM input format. This work was conducted to create the coupling programming between PWR-GALE output and PC-CREAM input and programming to written population data in the required formats. Programming is done by using Python programming language which has advantages of multiplatform, object-oriented and interactive. The result of this work is software for coupling data of source term and written population distribution data. So that input to PC-CREAM program can be done easily and avoid formatting errors. Programming sourceterm coupling program PWR-GALE and PC-CREAM is completed, so that the creation of PC-CREAM inputs in souceterm and distribution data can be done easily and according to the desired format.

  17. Output Feedback-Based Boundary Control of Uncertain Coupled Semilinear Parabolic PDE Using Neurodynamic Programming.

    Science.gov (United States)

    Talaei, Behzad; Jagannathan, Sarangapani; Singler, John

    2018-04-01

    In this paper, neurodynamic programming-based output feedback boundary control of distributed parameter systems governed by uncertain coupled semilinear parabolic partial differential equations (PDEs) under Neumann or Dirichlet boundary control conditions is introduced. First, Hamilton-Jacobi-Bellman (HJB) equation is formulated in the original PDE domain and the optimal control policy is derived using the value functional as the solution of the HJB equation. Subsequently, a novel observer is developed to estimate the system states given the uncertain nonlinearity in PDE dynamics and measured outputs. Consequently, the suboptimal boundary control policy is obtained by forward-in-time estimation of the value functional using a neural network (NN)-based online approximator and estimated state vector obtained from the NN observer. Novel adaptive tuning laws in continuous time are proposed for learning the value functional online to satisfy the HJB equation along system trajectories while ensuring the closed-loop stability. Local uniformly ultimate boundedness of the closed-loop system is verified by using Lyapunov theory. The performance of the proposed controller is verified via simulation on an unstable coupled diffusion reaction process.

  18. Coupling thermal atomic vapor to an integrated ring resonator

    International Nuclear Information System (INIS)

    Ritter, R; Kübler, H; Pfau, T; Löw, R; Gruhler, N; Pernice, W H P

    2016-01-01

    Strongly interacting atom–cavity systems within a network with many nodes constitute a possible realization for a quantum internet which allows for quantum communication and computation on the same platform. To implement such large-scale quantum networks, nanophotonic resonators are promising candidates because they can be scalably fabricated and interconnected with waveguides and optical fibers. By integrating arrays of ring resonators into a vapor cell we show that thermal rubidium atoms above room temperature can be coupled to photonic cavities as building blocks for chip-scale hybrid circuits. Although strong coupling is not yet achieved in this first realization, our approach provides a key step towards miniaturization and scalability of atom–cavity systems. (paper)

  19. Coupling/Tradeoff Analysis and Novel Containment Control for Reactive Power, Output Voltage in Islanded Micro-Grid

    DEFF Research Database (Denmark)

    Han, Renke; Meng, Lexuan; Guerrero, Josep M.

    2016-01-01

    Based on the hierarchical control structure in islanded Micro-Grid (MG) systems, the coupling/tradeoff effects in different control levels are analyzed in details. In the primary level, analyses of the coupling effects among droop control gains, line impedance differences, output reactive power...

  20. Bistable output from a coupled-resonator vertical-cavity laser diode

    International Nuclear Information System (INIS)

    Fischer, A. J.; Choquette, K. D.; Chow, W. W.; Allerman, A. A.; Geib, K.

    2000-01-01

    We report a monolithic coupled-resonator vertical-cavity laser with an ion-implanted top cavity and a selectively oxidized bottom cavity which exhibits bistable behavior in the light output versus injection current. Large bistability regions over current ranges as wide as 18 mA have been observed with on/off contrast ratios of greater than 20 dB. The position and width of the bistability region can be varied by changing the bias to the top cavity. Switching between on and off states can be accomplished with changes as small as 250 μW to the electrical power applied to the top cavity. The bistable behavior is the response of the nonlinear susceptibility in the top cavity to the changes in the bottom intracavity laser intensity as the bottom cavity reaches the thermal rollover point

  1. Inductively coupled plasma as atomization, excitation and ionization sources in analytical atomic spectrometry

    International Nuclear Information System (INIS)

    Kawaguchi, Hiroshi

    1996-01-01

    Studies on inductively coupled plasma (ICP) for atomic emission and mass spectrometry accomplished in our laboratory since 1978 are reviewed. In emission spectrometry, the characteristics of the plasma are studied concerning the spatial profiles of spectral line intensity, axial profiles of gas and excitation temperatures, spectral line widths and matrix effect. The studies are particularly emphasized on the instrumentation such as developments of plasma generator, emission spectrometers, water-cooled torches and sample introduction methods. A slew-scan type spectrometer developed in these works represents a predecessor of the current commercial spectrometers. An ICP mass spectrometer was first developed in Japan in this laboratory in 1984. Non-spectroscopic interference of this method was found to have the correlation with the atomic weight of the matrix element. Plasma gases other than argon such as nitrogen and oxygen were used for the ICP to evaluate their performance in mass spectrometry as for the sensitivity and interferences. (author). 63 refs

  2. Enhancing optical nonreciprocity by an atomic ensemble in two coupled cavities

    Science.gov (United States)

    Song, L. N.; Wang, Z. H.; Li, Yong

    2018-05-01

    We study the optical nonreciprocal propagation in an optical molecule of two coupled cavities with one of them interacting with a two-level atomic ensemble. The effect of increasing the number of atoms on the optical isolation ratio of the system is studied. We demonstrate that the significant nonlinearity supplied by the coupling of the atomic ensemble with the cavity leads to the realization of greatly-enhanced optical nonreciprocity compared with the case of single atom.

  3. Quantum theory of a one-dimensional laser with output coupling. 2. Nonlinear theory

    International Nuclear Information System (INIS)

    Penaforte, J.C.; Baseia, B.

    1984-01-01

    A previous paper describing the quantum theory of a laser in linear approximation is here extended to the nonlinear case. Instead of the approach of conventional theory - which deals with discrete 'cavity-modes' and includes artificial mechanisms to simulates radiation field losses due to beam extraction - a more realistic model of optical cavity having output coupling is used that works entirely within the continuous spectrum, allowing one to obtain the equations for the field both inside and outside the laser cavity. Besides the quantum noise due to spontaneous emission, a noise term of classical nature due to transmission losses automatically emerges from the present treatment. For single-collective-mode operation the equations for laser field are solved exactly, yielding the transient and steady-state solutions. Inside the laser cavity, the results of nonlinear analysis agree with those found in conventional theory once the conventional 'mode-amplitude' is reinterpreted as a collective variable. Outside the cavity - unaccessible region in the conventional treatment - the solution for the laser field is also exhibited. Further considerations as concerning the role played by the noise terms in the field buildup are discussed. (Author) [pt

  4. Generalized Rashba-Dresselhaus spin-orbit coupling for cold atoms

    International Nuclear Information System (INIS)

    Juzeliunas, Gediminas; Ruseckas, Julius; Dalibard, Jean

    2010-01-01

    We study the possibility for generating a new type of spin-orbit coupling for the center-of-mass motion of cold atoms, using laser beams that resonantly couple N atomic internal ground states to an extra state. After a general analysis of the scheme, we concentrate on the tetrapod setup (N=4) where the atomic state can be described by a three-component spinor, evolving under the action of a Rashba-Dresselhaus-type spin-orbit coupling for a spin 1 particle. We illustrate a consequence of this coupling by studying the negative refraction of atoms at a potential step and show that the amplitude of the refracted beam is significantly increased in comparison to the known case of spin 1/2 Rashba-Dresselhaus coupling. Finally, we explore a possible implementation of this tetrapod setup, using stimulated Raman couplings between Zeeman sublevels of the ground state of alkali-metal atoms.

  5. Coupling of (ultra- relativistic atomic nuclei with photons

    Directory of Open Access Journals (Sweden)

    M. Apostol

    2013-11-01

    Full Text Available The coupling of photons with (ultra- relativistic atomic nuclei is presented in two particular circumstances: very high electromagnetic fields and very short photon pulses. We consider a typical situation where the (bare nuclei (fully stripped of electrons are accelerated to energies ≃ 1 TeV per nucleon (according to the state of the art at LHC, for instance and photon sources like petawatt lasers ≃ 1 eV-radiation (envisaged by ELI-NP project, for instance, or free-electron laser ≃ 10 keV-radiation, or synchrotron sources, etc. In these circumstances the nuclear scale energy can be attained, with very high field intensities. In particular, we analyze the nuclear transitions induced by the radiation, including both one- and two-photon proceses, as well as the polarization-driven transitions which may lead to giant dipole resonances. The nuclear (electrical polarization concept is introduced. It is shown that the perturbation theory for photo-nuclear reactions is applicable, although the field intensity is high, since the corresponding interaction energy is low and the interaction time (pulse duration is short. It is also shown that the description of the giant nuclear dipole resonance requires the dynamics of the nuclear electrical polarization degrees of freedom.

  6. A fluid system with coupled input and output, and its application to bottlenecks in ad hoc networks

    NARCIS (Netherlands)

    Mandjes, M.; Roijers, F.

    2007-01-01

    This paper studies a fluid queue with coupled input and output. Flows arrive according to a Poisson process, and when n flows are present, each of them transmits traffic into the queue at a rate c/(n+1), where the remaining c/(n+1) is used to serve the queue. We assume exponentially distributed flow

  7. A fluid system with coupled input and output, and its application to bottlenecks in ad hoc networks.

    NARCIS (Netherlands)

    Mandjes, M.R.H.; Roijers, F.

    2007-01-01

    Abstract: This paper studies a fluid queue with coupled input and output. Flows arrive according to a Poisson process, and when n flows are present, each of them transmits traffic into the queue at a rate c/(n+1), where the remaining c/(n+1) is used to serve the queue. We

  8. Effects of self-coupling and asymmetric output on metastable dynamical transient firing patterns in arrays of neurons with bidirectional inhibitory coupling.

    Science.gov (United States)

    Horikawa, Yo

    2016-04-01

    Metastable dynamical transient patterns in arrays of bidirectionally coupled neurons with self-coupling and asymmetric output were studied. First, an array of asymmetric sigmoidal neurons with symmetric inhibitory bidirectional coupling and self-coupling was considered and the bifurcations of its steady solutions were shown. Metastable dynamical transient spatially nonuniform states existed in the presence of a pair of spatially symmetric stable solutions as well as unstable spatially nonuniform solutions in a restricted range of the output gain of a neuron. The duration of the transients increased exponentially with the number of neurons up to the maximum number at which the spatially nonuniform steady solutions were stabilized. The range of the output gain for which they existed reduced as asymmetry in a sigmoidal output function of a neuron increased, while the existence range expanded as the strength of inhibitory self-coupling increased. Next, arrays of spiking neuron models with slow synaptic inhibitory bidirectional coupling and self-coupling were considered with computer simulation. In an array of Class 1 Hindmarsh-Rose type models, in which each neuron showed a graded firing rate, metastable dynamical transient firing patterns were observed in the presence of inhibitory self-coupling. This agreed with the condition for the existence of metastable dynamical transients in an array of sigmoidal neurons. In an array of Class 2 Bonhoeffer-van der Pol models, in which each neuron had a clear threshold between firing and resting, long-lasting transient firing patterns with bursting and irregular motion were observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Sensitive detection of individual neutral atoms in a strong coupling cavity QED system

    International Nuclear Information System (INIS)

    Zhang Pengfei; Zhang Yuchi; Li Gang; Du Jinjin; Zhang Yanfeng; Guo Yanqiang; Wang Junmin; Zhang Tiancai; Li Weidong

    2011-01-01

    We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime. A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5 mm above the micro-cavity center. The atoms fall down freely in gravitation after shutting off the magneto-optical trap and pass through the cavity. The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually. We detect the single atom transits either in the resonance or various detunings. The single atom vacuum-Rabi splitting is directly measured to be Ω = 2π × 23.9 MHz. The average duration of atom-cavity coupling of about 110 μs is obtained according to the probability distribution of the atom transits. (authors)

  10. Information entropy properties of the atoms in the system of coupled Λ-type three-level atoms interacting with coherent field in Kerr medium

    International Nuclear Information System (INIS)

    Li Ke; Ling Weijun

    2011-01-01

    The information entropy properties of the atoms of coupled Λ-type three-level atoms interacting with coherent field are studied by means of quantum theory, and discussed the time evolutions of the information entropy of the atoms via the average photon number, initial state of the atoms, detuning, coupling constant between the atoms and the coefficient of Kerr medium. Numerical calculation results show that the time evolutions of the information entropy properties of the atoms strongly dependent on the initial state of the system and the average photon number. Detuning, coupling constant between the atoms and the Kerr coefficient still make influence on the information entropy of the atoms. (authors)

  11. Observation of Fano-Type Interference in a Coupled Cavity-Atom System

    International Nuclear Information System (INIS)

    Cheng Yong; Tan Zheng; Wang Jin; Zhan Ming-Sheng; Zhu Yi-Fu

    2016-01-01

    We present the experimental observation of the Fano-type interference in a coupled cavity-atom system by confining the laser-cooled "8"5Rb atoms in an optical cavity. The asymmetric Fano profile is obtained through quantum interference in a three-level atomic system coherently coupled to a single mode cavity field. The observed Fano profile can be explained by the interference between the intra-cavity dark state and the polariton state of the coupled cavity-atom system. The possible applications of our observations include all-optical switching, optical sensing and narrow band optical filters. (paper)

  12. Generation of maximally entangled mixed states of two atoms via on-resonance asymmetric atom-cavity couplings

    International Nuclear Information System (INIS)

    Li, Shang-Bin

    2007-01-01

    A scheme for generating the maximally entangled mixed state of two atoms on-resonance asymmetrically coupled to a single mode optical cavity field is presented. The part frontier of both maximally entangled mixed states and maximal Bell violating mixed states can be approximately reached by the evolving reduced density matrix of two atoms if the ratio of coupling strengths of two atoms is appropriately controlled. It is also shown that exchange symmetry of global maximal concurrence is broken if and only if coupling strength ratio lies between (√(3)/3) and √(3) for the case of one-particle excitation and asymmetric coupling, while this partial symmetry breaking cannot be verified by detecting maximal Bell violation

  13. On- and off-resonance radiation-atom-coupling matrix elements involving extended atomic wave functions

    Science.gov (United States)

    Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.

    2014-01-01

    In continuation of our earlier works, we present results concerning the computation of matrix elements of the multipolar Hamiltonian (MPH) between extended wave functions that are obtained numerically. The choice of the MPH is discussed in connection with the broader issue of the form of radiation-atom (or -molecule) interaction that is appropriate for the systematic solution of various problems of matter-radiation interaction. We derive analytic formulas, in terms of the sine-integral function and spherical Bessel functions of various orders, for the cumulative radial integrals that were obtained and calculated by Komninos, Mercouris, and Nicolaides [Phys. Rev. A 71, 023410 (2005), 10.1103/PhysRevA.71.023410]. This development allows the much faster and more accurate computation of such matrix elements, a fact that enhances the efficiency with which the time-dependent Schrödinger equation is solved nonperturbatively, in the framework of the state-specific expansion approach. The formulas are applicable to the general case where a pair of orbitals with angular parts |ℓ1,m1> and |ℓ2,m2> are coupled radiatively. As a test case, we calculate the matrix elements of the electric field and of the paramagnetic operators for on- and off-resonance transitions, between hydrogenic circular states of high angular momentum, whose quantum numbers are chosen so as to satisfy electric dipole and electric quadrupole selection rules. Because of the nature of their wave function (they are nodeless and the large centrifugal barrier keeps their overwhelming part at large distances from the nucleus), the validity of the electric dipole approximation in various applications where the off-resonance couplings must be considered becomes precarious. For example, for the transition from the circular state with n = 20 to that with n = 21, for which ≈400 a.u., the dipole approximation starts to fail already at XUV wavelengths (λ <125nm).

  14. Stabilization of matter wave solitons in weakly coupled atomic condensates

    International Nuclear Information System (INIS)

    Radha, R.; Vinayagam, P.S.

    2012-01-01

    We investigate the dynamics of a weakly coupled two component Bose–Einstein condensate and generate bright soliton solutions. We observe that when the bright solitons evolve in time, the density of the condensates shoots up suddenly by virtue of weak coupling indicating the onset of instability in the dynamical system. However, this instability can be overcome either through Feshbach resonance by tuning the temporal scattering length or by suitably changing the time dependent coupling coefficient, thereby extending the lifetime of the condensates.

  15. Phonon scattering and thermal conductance properties in two coupled graphene nanoribbons modulated with bridge atoms

    International Nuclear Information System (INIS)

    Tan, Shi-Hua; Tang, Li-Ming; Chen, Ke-Qiu

    2014-01-01

    The phonon scattering and thermal conductance properties have been studied in two coupled graphene nanoribbons connected by different bridge atoms by using density functional theory in combination with non-equilibrium Green's function approach. The results show that a wide range of thermal conductance tuning can be realized by changing the chemical bond strength and atom mass of the bridge atoms. It is found that the chemical bond strength (bridge atom mass) plays the main role in phonon scattering at low (high) temperature. A simple equation is presented to describe the relationship among the thermal conductance, bridge atom, and temperature.

  16. Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity

    DEFF Research Database (Denmark)

    Reick, Sebastian; Mølmer, Klaus; Alt, Wolfgang

    2010-01-01

    We induce quantum jumps between the hyperfine ground states of one and two cesium atoms, strongly coupled to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify experimental parameters to deduce the atomic spin state nondestructively from ...

  17. A hybrid system of a membrane oscillator coupled to ultracold atoms

    Science.gov (United States)

    Kampschulte, Tobias

    2015-05-01

    The control over micro- and nanomechanical oscillators has recently made impressive progress. First experiments demonstrated ground-state cooling and single-phonon control of high-frequency oscillators using cryogenic cooling and techniques of cavity optomechanics. Coupling engineered mechanical structures to microscopic quantum system with good coherence properties offers new possibilities for quantum control of mechanical vibrations, precision sensing and quantum-level signal transduction. Ultracold atoms are an attractive choice for such hybrid systems: Mechanical can either be coupled to the motional state of trapped atoms, which can routinely be ground-state cooled, or to the internal states, for which a toolbox of coherent manipulation and detection exists. Furthermore, atomic collective states with non-classical properties can be exploited to infer the mechanical motion with reduced quantum noise. Here we use trapped ultracold atoms to sympathetically cool the fundamental vibrational mode of a Si3N4 membrane. The coupling of membrane and atomic motion is mediated by laser light over a macroscopic distance and enhanced by an optical cavity around the membrane. The observed cooling of the membrane from room temperature to 650 +/- 230 mK shows that our hybrid mechanical-atomic system operates at a large cooperativity. Our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state. Furthermore, we will present a scheme where an optomechanical system is coupled to internal states of ultracold atoms. The mechanical motion is translated into a polarization rotation which drives Raman transitions between atomic ground states. Compared to the motional-state coupling, the new scheme enables to couple atoms to high-frequency structures such as optomechanical crystals.

  18. Tunable superconducting resonators with integrated trap structures for coupling with ultracold atomic gases

    Energy Technology Data Exchange (ETDEWEB)

    Ferdinand, Benedikt; Wiedmaier, Dominik; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany); Bothner, Daniel [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany); Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands)

    2016-07-01

    We intend to investigate a hybrid quantum system where ultracold atomic gases play the role of a long-living quantum memory, coupled to a superconducting qubit via a coplanar waveguide transmission line resonator. As a first step we developed a resonator chip containing a Z-shaped trapping wire for the atom trap. In order to suppress parasitic resonances due to stray capacitances, and to achieve good ground connection we use hybrid superconductor - normal conductor chips. As an additional degree of freedom we add a ferroelectric capacitor making the resonators voltage-tunable. We furthermore show theoretical results on the expected coupling strength between resonator and atomic cloud.

  19. The photonics collapse-revival's of intensity-dependent coupling of lambda atoms and fields

    International Nuclear Information System (INIS)

    Hajivandi, J.; Golshan, M. M.

    2007-01-01

    In this paper, we extend the intensity-dependent coupling of the interaction of two-level atoms and an electromagnetic field, originated by Sivakumar, to that of Λ-type atoms. In addition, we assume that the interaction occurs in a Kerr medium. In the present model we allow the Λ-type atom to interact with two quantized electromagnetic fields, one of which is initially coherent while the other one is not. We thus report the effect of such coupling and the medium on the collapse-revival's of the photonic mean numbers.

  20. Spontaneous excitation of a circularly accelerated atom coupled to electromagnetic vacuum fluctuations

    International Nuclear Information System (INIS)

    Jin, Yao; Hu, Jiawei; Yu, Hongwei

    2014-01-01

    We study, using the formalism proposed by Dalibard, Dupont-Roc and Cohen-Tannoudji, the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy for a circularly accelerated multilevel atom coupled to vacuum electromagnetic fields in the ultrarelativistic limit. We find that the balance between vacuum fluctuation and radiation reaction is broken, which causes spontaneous excitations of accelerated ground state atoms in vacuum. Unlike for a circularly accelerated atom coupled to vacuum scalar fields, the contribution of radiation reaction is also affected by acceleration, and this term takes the same form as that of a linearly accelerated atom coupled to vacuum electromagnetic fields. For the contribution of vacuum fluctuations, we find that in contrast to the linear acceleration case, terms proportional to the Planckian factor are replaced by those proportional to a non-Planck exponential term, and this indicates that the radiation perceived by a circularly orbiting observer is no longer thermal as is in the linear acceleration case. However, for an ensemble of two-level atoms, an effective temperature can be defined in terms of the atomic transition rates, which is found to be dependent on the transition frequency of the atom. Specifically, we calculate the effective temperature as a function of the transition frequency and find that in contrast to the case of circularly accelerated atoms coupled to the scalar field, the effective temperature in the current case is always larger than the Unruh temperature. -- Highlights: •We study the spontaneous excitation of a circularly accelerated atom. •Contribution of radiation reaction to the excitation is affected by acceleration. •The radiation perceived by a circularly orbiting observer is no longer thermal. •An effective temperature can be defined in terms of atomic transition rates. •Effective temperature is larger than Unruh temperature and frequency-dependent

  1. The effect of a coupling field on the entanglement dynamics of a three-level atom

    International Nuclear Information System (INIS)

    Mortezapour, Ali; Mahmoudi, Mohammad; Abedi, Majid; Khajehpour, M R H

    2011-01-01

    The effect of a coupling laser field on the entanglement of a three-level quantum system and its spontaneous emission is investigated via the reduced quantum entropy. We consider two schemes: the upper- and lower-level couplings. By calculating the degree of entanglement (DEM) for both systems, it is shown that the entanglement between the atom and its spontaneous emission can be controlled by the coupling laser field. This field, however, affects the entanglement differently in the two schemes; it is only the lower-level coupling scheme that shows a non-zero steady state DEM which can be controlled by the intensity and detuning of the coupling laser field.

  2. The effect of a coupling field on the entanglement dynamics of a three-level atom

    Energy Technology Data Exchange (ETDEWEB)

    Mortezapour, Ali; Mahmoudi, Mohammad [Physics Department, Zanjan University, PO Box 45195-313, Zanjan (Iran, Islamic Republic of); Abedi, Majid; Khajehpour, M R H, E-mail: mahmoudi@iasbs.ac.ir, E-mail: pour@iasbs.ac.ir [Institute for Advanced Studies in Basic Sciences, PO Box 45195-159, Zanjan (Iran, Islamic Republic of)

    2011-04-28

    The effect of a coupling laser field on the entanglement of a three-level quantum system and its spontaneous emission is investigated via the reduced quantum entropy. We consider two schemes: the upper- and lower-level couplings. By calculating the degree of entanglement (DEM) for both systems, it is shown that the entanglement between the atom and its spontaneous emission can be controlled by the coupling laser field. This field, however, affects the entanglement differently in the two schemes; it is only the lower-level coupling scheme that shows a non-zero steady state DEM which can be controlled by the intensity and detuning of the coupling laser field.

  3. Strong coupling effects between a meta-atom and MIM nanocavity

    Directory of Open Access Journals (Sweden)

    San Chen

    2012-09-01

    Full Text Available In this paper, we investigate the strong coupling effects between a meta-atom and a metal-insulator-metal (MIM nanocavity. By changing the meta-atom sizes, we achieve the meta-atomic electric dipole, quadrupole or multipole interaction with the plasmonic nanocavity, in which characteristic anticrossing behaviors demonstrate the occurrence of the strong coupling. The various interactions present obviously different splitting values and behaviors of dependence on the meta-atomic position. The largest Rabi-type splittings, about 360.0 meV and 306.1 meV, have been obtained for electric dipole and quadrupole interaction, respectively. We attribute the large splitting to the highly-confined cavity mode and the large transition dipole of the meta-atom. Also the Rabi-type oscillation in time domain is given.

  4. Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities

    Science.gov (United States)

    Zheng, Bin; Shen, Li-Tuo; Chen, Ming-Feng

    2016-05-01

    We propose a one-step scheme for implementing entanglement generation and the quantum state transfer between two atomic qubits trapped in two different cavities that are not directly coupled to each other. The process is realized through engineering an effective asymmetric X-Y interaction for the two atoms involved in the gate operation and an auxiliary atom trapped in an intermediate cavity, induced by virtually manipulating the atomic excited states and photons. We study the validity of the scheme as well as the influences of the dissipation by numerical simulation and demonstrate that it is robust against decoherence.

  5. Realistic Rashba and Dresselhaus spin-orbit coupling for neutral atoms

    International Nuclear Information System (INIS)

    Campbell, D. L.; Spielman, I. B.; Juzeliunas, G.

    2011-01-01

    We describe a new class of atom-laser coupling schemes which lead to spin-orbit-coupled Hamiltonians for ultracold neutral atoms. By properly setting the optical phases, a pair of degenerate pseudospin (a linear combination of internal atomic) states emerge as the lowest-energy eigenstates in the spectrum and are thus immune to collisionally induced decay. These schemes use N cyclically coupled ground or metastable internal states. We focus on two situations: a three-level case and a four-level case, where the latter adds a controllable Dresselhaus contribution. We describe an implementation of the four-level scheme for 87 Rb and analyze its sensitivity to typical laboratory noise sources. Last, we argue that the Rashba Hamiltonian applies only in the large intensity limit since any laser coupling scheme will produce terms nonlinear in momentum that decline with intensity.

  6. Coupling between the Output Force and Stiffness in Different Variable Stiffness Actuators

    Directory of Open Access Journals (Sweden)

    Amir Jafari

    2014-08-01

    Full Text Available The fundamental objective in developing variable stiffness actuators is to enable the actuator to deliberately tune its stiffness. This is done through controlling the energy flow extracted from internal power units, i.e., the motors of a variable stiffness actuator (VSA. However, the stiffness may also be unintentionally affected by the external environment, over which, there is no control. This paper analysis the correlation between the external loads, applied to different variable stiffness actuators, and their resultant output stiffness. Different types of variable stiffness actuators have been studied considering springs with different types of nonlinearity. The results provide some insights into how to design the actuator mechanism and nonlinearity of the springs in order to increase the decoupling between the load and stiffness in these actuators. This would significantly widen the application range of a variable stiffness actuator.

  7. C-C Coupling on Single-Atom-Based Heterogeneous Catalyst.

    Science.gov (United States)

    Zhang, Xiaoyan; Sun, Zaicheng; Wang, Bin; Tang, Yu; Nguyen, Luan; Li, Yuting; Tao, Franklin Feng

    2018-01-24

    Compared to homogeneous catalysis, heterogeneous catalysis allows for ready separation of products from the catalyst and thus reuse of the catalyst. C-C coupling is typically performed on a molecular catalyst which is mixed with reactants in liquid phase during catalysis. This homogeneous mixing at a molecular level in the same phase makes separation of the molecular catalyst extremely challenging and costly. Here we demonstrated that a TiO 2 -based nanoparticle catalyst anchoring singly dispersed Pd atoms (Pd 1 /TiO 2 ) is selective and highly active for more than 10 Sonogashira C-C coupling reactions (R≡CH + R'X → R≡R'; X = Br, I; R' = aryl or vinyl). The coupling between iodobenzene and phenylacetylene on Pd 1 /TiO 2 exhibits a turnover rate of 51.0 diphenylacetylene molecules per anchored Pd atom per minute at 60 °C, with a low apparent activation barrier of 28.9 kJ/mol and no cost of catalyst separation. DFT calculations suggest that the single Pd atom bonded to surface lattice oxygen atoms of TiO 2 acts as a site to dissociatively chemisorb iodobenzene to generate an intermediate phenyl, which then couples with phenylacetylenyl bound to a surface oxygen atom. This coupling of phenyl adsorbed on Pd 1 and phenylacetylenyl bound to O ad of TiO 2 forms the product molecule, diphenylacetylene.

  8. Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field

    International Nuclear Information System (INIS)

    Bach, V.; Sigal, I.M.

    1999-01-01

    We consider systems of static nuclei and electrons - atoms and molecules - coupled to the quantized radiation field. The interactions between electrons and the soft modes of the quantized electromagnetic field are described by minimal coupling, p→p-eA(x), where A(x) is the electromagnetic vector potential with an ultraviolet cutoff. If the interactions between the electrons and the quantized radiation field are turned off, the atom or molecule is assumed to have at least one bound state. We prove that, for sufficiently small values of the fine structure constant α, the interacting system has a ground state corresponding to the bottom of its energy spectrum. For an atom, we prove that its excited states above the ground state turn into metastable states whose life-times we estimate. Furthermore the energy spectrum is absolutely continuous, except, perhaps,in a small interval above the ground state energy and around the threshold energies of the atom or molecule. (orig.)

  9. Dynamical Negative Differential Resistance in Antiferromagnetically Coupled Few-Atom Spin Chains

    Science.gov (United States)

    Rolf-Pissarczyk, Steffen; Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; McMurtrie, Gregory; Loth, Sebastian

    2017-11-01

    We present the appearance of negative differential resistance (NDR) in spin-dependent electron transport through a few-atom spin chain. A chain of three antiferromagnetically coupled Fe atoms (Fe trimer) was positioned on a Cu2 N /Cu (100 ) surface and contacted with the spin-polarized tip of a scanning tunneling microscope, thus coupling the Fe trimer to one nonmagnetic and one magnetic lead. Pronounced NDR appears at the low bias of 7 mV, where inelastic electron tunneling dynamically locks the atomic spin in a long-lived excited state. This causes a rapid increase of the magnetoresistance between the spin-polarized tip and Fe trimer and quenches elastic tunneling. By varying the coupling strength between the tip and Fe trimer, we find that in this transport regime the dynamic locking of the Fe trimer competes with magnetic exchange interaction, which statically forces the Fe trimer into its high-magnetoresistance state and removes the NDR.

  10. Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror couplings

    Science.gov (United States)

    Chen, Bin; Wang, Xiao-Fang; Yan, Jia-Kai; Zhu, Xiao-Fei; Jiang, Cheng

    2018-01-01

    We theoretically investigate the optical bistable behavior in a three-mode optomechanical system with atom-cavity-mirror couplings. The effects of the cavity-pump detuning and the pump power on the bistable behavior are discussed detailedly, the impacts of the atom-pump detuning and the atom-cavity coupling strength on the bistability of the system are also explored, and the influences of the cavity-resonator coupling strength and the cavity decay rate are also taken into consideration. The numerical results demonstrate that by tuning these parameters the bistable behavior of the system can be freely switched on or off, and the threshold of the pump power for the bistability as well as the bistable region width can also be effectively controlled. These results can find potential applications in optical bistable switch in the quantum information processing.

  11. The Use of a Microprocessor-Controlled, Video Output Atomic Absorption Spectrometer as an Educational Tool in a Two-Year Technical Curriculum.

    Science.gov (United States)

    Kerfoot, Henry B.

    Based on instructional experiences at Charles County Community College, Maryland, this report examines the pedagogical advantage of teaching atomic absorption (AA) spectroscopy with an AA spectrophotometer that is equipped with a microprocessor and video output mechanism. The report first discusses the growing importance of AA spectroscopy in…

  12. Quantum superchemistry in an output coupler of coherent matter waves

    International Nuclear Information System (INIS)

    Jing, H.; Cheng, J.

    2006-01-01

    We investigate the quantum superchemistry or Bose-enhanced atom-molecule conversions in a coherent output coupler of matter waves, as a simple generalization of the two-color photoassociation. The stimulated effects of molecular output step and atomic revivals are exhibited by steering the rf output couplings. The quantum noise-induced molecular damping occurs near a total conversion in a levitation trap. This suggests a feasible two-trap scheme to make a stable coherent molecular beam

  13. Quantum effects induced by a gap in the spectrum of atom-bath coupling constants: ''Freezing'' of atomic decay and monochromatic collective radiation

    International Nuclear Information System (INIS)

    Mogilevtsev, D.S.; Kilin, S.Ya.

    1994-08-01

    A specific kind of inhibition of atomic decay (''freezing of decay) and intense monochromatic collective radiation are predicted for a single two-level atom and for a system of atoms interacting with the field bath having the gap in the spectrum of coupling constants. (author). 10 refs, 5 figs

  14. Inductively coupled plasma nanoetching of atomic layer deposition alumina

    DEFF Research Database (Denmark)

    Han, Anpan; Chang, Bingdong; Todeschini, Matteo

    2018-01-01

    such as silicon dioxide, silicon nitride, and diamond. In this report, we systematically study nanoscale plasma etching of Al2O3 with electron beam lithography and deep UV resist masks. The gas composition and pressure were tuned for optimal etching, and redeposition conditions were mapped. With a BCl3 and Ar...... the resist profile angle. For Al2O3 patterned with deep UV lithography, the smallest structures were 220 nm. For electron beam lithography patterns, the smallest gratings were 18-nm-wide with 50-nm-pitch. Using alumina as a hard mask, we show aspect ratio of 7-10 for subsequent silicon plasma etching, and we......Al2O3 thin-film deposited by atomic layer deposition is an attractive plasma etch mask for Micro and Nano Electro-Mechanical Systems (MEMS and NEMS). 20-nm-thick Al2O3 mask enables through silicon wafer plasma etching. Al2O3 is also an excellent etch mask for other important MEMS materials...

  15. Electromagnetically induced transparency and nonlinear pulse propagation in a combined tripod and Λ atom-light coupling scheme

    International Nuclear Information System (INIS)

    Hamedi, H R; Ruseckas, J; Juzeliūnas, G

    2017-01-01

    We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N -type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell–Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system. (paper)

  16. Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface.

    Science.gov (United States)

    Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D; Willke, Philip; Lado, Jose L; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J; Lutz, Christopher P

    2017-12-01

    Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces.

  17. Dynamics for a two-atom two-mode intensity-dependent Raman coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S., E-mail: vasudha-rnc1@rediffmail.com, E-mail: sudhhasingh@gmail.com; Gilhare, K. [Ranchi University, Department of Physics (India)

    2016-06-15

    We study the quantum dynamics of a two-atom Raman coupled model interacting with a quantized bimodal field with intensity-dependent coupling terms in a lossless cavity. The unitary transformation method used to solve the time-dependent problem also gives the eigensolutions of the interaction Hamiltonian. We study the atomic-population dynamics and dynamics of the photon statistics in the two cavity modes, and present evidence of cooperative effects in the production of antibunching and anticorrelations between the modes. We also investigate the effect of detuning on the evolution of second-order correlation functions and observe that the oscillations become more rapid for large detuning.

  18. Spontaneous emission spectrum of a four-level atom coupled by three kinds of reservoirs

    International Nuclear Information System (INIS)

    Yang Dong; Wang Jian; Zhang, Hanzhuang; Yao Jinbo

    2007-01-01

    A model of a four-level atom embedded in a double-band photonic crystal (PC) is presented. The atomic transitions from the upper two levels to the lower two levels are coupled by the same reservoir which is assumed in turn to be isotropic PC modes, anisotropic PC modes and free vacuum modes. The effects of the fine structure of the atomic ground state levels and the quantum interference on the spontaneous emission spectrum of an atom are investigated in detail. Most interestingly, it is shown for the first time that new spontaneous emission lines are produced from the fine splitting of atomic ground state levels in the isotropic PC case. Quantum interference induces additional narrow spontaneous lines near the transition from the empty upper level to the lower levels

  19. Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange

    Science.gov (United States)

    Zhao, Peng; Tan, Xinsheng; Yu, Haifeng; Zhu, Shi-Liang; Yu, Yang

    2017-10-01

    We present a model to describe a generic circuit QED system which consists of multiple artificial three-level atoms, namely, qutrits, strongly coupled to a cavity mode. When the state transition of the atoms disobeys the selection rules the process that does not conserve the number of excitations can happen determinatively. Therefore, we can realize coherent exchange interaction among three or more atoms mediated by the exchange of virtual photons. In addition, we generalize the one-cavity-mode mediated interactions to the multicavity situation, providing a method to entangle atoms located in different cavities. Using experimentally feasible parameters, we investigate the dynamics of the model including three cyclic-transition three-level atoms, for which the two lowest energy levels can be treated as qubits. Hence, we have found that two qubits can jointly exchange excitation with one qubit in a coherent and reversible way. In the whole process, the population in the third level of atoms is negligible and the cavity photon number is far smaller than 1. Our model provides a feasible scheme to couple multiple distant atoms together, which may find applications in quantum information processing.

  20. Stable C-band fiber laser with switchable multi-wavelength output using coupled microfiber Mach-Zehnder interferometer

    Science.gov (United States)

    Ahmad, H.; Jasim, A. A.

    2017-07-01

    A compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is proposed and experimentally demonstrated for C-band region multi-wavelength tuning and switching in a fiber laser. The CM-MZI is fabricated using a 9 μm single tapered silica optical microfiber fabricated by flame-drawing technique and exploits multi-mode interference to produce spatial mode beating and suppress mode competition of the homogeneous gain medium. The output wavelength spacing is immune to changes in the external environment, but can be changed from 1.5 nm to 1.4 nm by slightly modifying the path-length difference of the CM-MZI. The proposed laser is capable of generating single, dual, triple, quintuple, and sextuple stabilize wavelengths outputs over a range of more than 32 nm using polarization rotation (PR) and macro-bending. The lasers having a 3 dB line-width of less than ∼30 pm and peak-to-floor of about 55 dB at a pump power of 38 mW.

  1. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  2. Determination of rare earth elements in aluminum by inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Mahanti, H.S.; Barnes, R.M.

    1983-01-01

    Inductively coupled plasma-atomic emission spectroscopy is evaluated for the determination of 14 rare earth elements in aluminum. Spectral line interference, limit of detection, and background equivalent concentration values are evaluated, and quantitative recovery is obtained from aluminum samples spiked with rare earth elements. The procedure is simple and suitable for routine process control analysis. 20 references, 5 tables

  3. Tunneling couplings in discrete lattices, single-particle band structure, and eigenstates of interacting atom pairs

    International Nuclear Information System (INIS)

    Piil, Rune; Moelmer, Klaus

    2007-01-01

    By adjusting the tunneling couplings over longer than nearest-neighbor distances, it is possible in discrete lattice models to reproduce the properties of the lowest energy band of a real, continuous periodic potential. We propose to include such terms in problems with interacting particles, and we show that they have significant consequences for scattering and bound states of atom pairs in periodic potentials

  4. COUPLED ATOMIZATION AND SPRAY MODELLING IN THE SPRAY FORMING PROCESS USING OPENFOAM

    DEFF Research Database (Denmark)

    Gjesing, Rasmus; Hattel, Jesper Henri; Fritsching, Udo

    2009-01-01

    The paper presents a numerical model capable of simulating the atomization, break-up and in-flight spray phenomena in the spray forming process. The model is developed and implemented in the freeware code openFOAM. The focus is on studying the coupling effect of the melt break-up phenomena...

  5. Transfer behavior of quantum states between atoms in photonic crystal coupled cavities

    International Nuclear Information System (INIS)

    Zhang Ke; Li Zhiyuan

    2010-01-01

    In this article, we discuss the one-excitation dynamics of a quantum system consisting of two two-level atoms each interacting with one of two coupled single-mode cavities via spontaneous emission. When the atoms and cavities are tuned into resonance, a wide variety of time-evolution behaviors can be realized by modulating the atom-cavity coupling strength g and the cavity-cavity hopping strength λ. The dynamics is solved rigorously via the eigenproblem of an ordinary coupled linear system and simple analytical solutions are derived at several extreme situations of g and λ. In the large hopping limit where g >λ, the time-evolution behavior of the system is characterized by the usual slowly varying carrier envelope superimposed upon a fast and violent oscillation. At a certain instant, the energy is fully transferred from the one quantum subsystem to the other. When the two interaction strengths are comparable in magnitude, the dynamics acts as a continuous pulse having irregular frequency and line shape of peaks and valleys, and the complicated time-evolution behaviors are ascribed to the violent competition between all the one-excitation quantum states. The coupled quantum system of atoms and cavities makes a good model to study cavity quantum electrodynamics with great freedoms of many-body interaction.

  6. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    Science.gov (United States)

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  7. Competition between the symmetry breaking and onset of collapse in weakly coupled atomic condensates

    International Nuclear Information System (INIS)

    Salasnich, L.; Toigo, F.; Malomed, B. A.

    2010-01-01

    We analyze the symmetry breaking of matter-wave solitons in a pair of cigar-shaped traps coupled by tunneling of atoms. The model is based on a system of linearly coupled nonpolynomial Schroedinger equations. Unlike the well-known spontaneous-symmetry-breaking (SSB) bifurcation in coupled cubic equations, in the present model the SSB competes with the onset of collapse in this system. Stability regions of symmetric and asymmetric solitons, as well as the collapse region, are identified in the system's parameter space.

  8. Van der Waals enhancement of optical atom potentials via resonant coupling to surface polaritons.

    Science.gov (United States)

    Kerckhoff, Joseph; Mabuchi, Hideo

    2009-08-17

    Contemporary experiments in cavity quantum electrodynamics (cavity QED) with gas-phase neutral atoms rely increasingly on laser cooling and optical, magneto-optical or magnetostatic trapping methods to provide atomic localization with sub-micron uncertainty. Difficult to achieve in free space, this goal is further frustrated by atom-surface interactions if the desired atomic placement approaches within several hundred nanometers of a solid surface, as can be the case in setups incorporating monolithic dielectric optical resonators such as microspheres, microtoroids, microdisks or photonic crystal defect cavities. Typically in such scenarios, the smallest atom-surface separation at which the van der Waals interaction can be neglected is taken to be the optimal localization point for associated trapping schemes, but this sort of conservative strategy generally compromises the achievable cavity QED coupling strength. Here we suggest a new approach to the design of optical dipole traps for atom confinement near surfaces that exploits strong surface interactions, rather than avoiding them, and present the results of a numerical study based on (39)K atoms and indium tin oxide (ITO). Our theoretical framework points to the possibility of utilizing nanopatterning methods to engineer novel modifications of atom-surface interactions. (c) 2009 Optical Society of America

  9. Optical coupling between atomically thin black phosphorus and a two dimensional photonic crystal nanocavity

    Science.gov (United States)

    Ota, Yasutomo; Moriya, Rai; Yabuki, Naoto; Arai, Miho; Kakuda, Masahiro; Iwamoto, Satoshi; Machida, Tomoki; Arakawa, Yasuhiko

    2017-05-01

    Atomically thin black phosphorus (BP) is an emerging two dimensional (2D) material exhibiting bright photoluminescence in the near infrared region. Coupling its radiation to photonic nanostructures will be an important step toward the realization of 2D material based nanophotonic devices that operate efficiently in the near infrared region, which includes the technologically important optical telecommunication wavelength bands. In this letter, we demonstrate the optical coupling between atomically thin BP and a 2D photonic crystal nanocavity. We employed a home-build dry transfer apparatus for placing a thin BP flake on the surface of the nanocavity. Their optical coupling was analyzed through measuring cavity mode emission under optical carrier injection at room temperature.

  10. Photon-Induced Spin-Orbit Coupling in Ultracold Atoms inside Optical Cavity

    Directory of Open Access Journals (Sweden)

    Lin Dong

    2015-05-01

    Full Text Available We consider an atom inside a ring cavity, where a plane-wave cavity field together with an external coherent laser beam induces a two-photon Raman transition between two hyperfine ground states of the atom. This cavity-assisted Raman transition induces effective coupling between atom’s internal degrees of freedom and its center-of-mass motion. In the meantime, atomic dynamics exerts a back-action to cavity photons. We investigate the properties of this system by adopting a mean-field and a full quantum approach, and show that the interplay between the atomic dynamics and the cavity field gives rise to intriguing nonlinear phenomena.

  11. High-flux cold rubidium atomic beam for strongly-coupled cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)

    2012-08-15

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.

  12. Lasing by driven atoms-cavity system in collective strong coupling regime.

    Science.gov (United States)

    Sawant, Rahul; Rangwala, S A

    2017-09-12

    The interaction of laser cooled atoms with resonant light is determined by the natural linewidth of the excited state. An optical cavity is another optically resonant system where the loss from the cavity determines the resonant optical response of the system. The near resonant combination of an optical Fabry-Pérot cavity with laser cooled and trapped atoms couples two distinct optical resonators via light and has great potential for precision measurements and the creation of versatile quantum optics systems. Here we show how driven magneto-optically trapped atoms in collective strong coupling regime with the cavity leads to lasing at a frequency red detuned from the atomic transition. Lasing is demonstrated experimentally by the observation of a lasing threshold accompanied by polarization and spatial mode purity, and line-narrowing in the outcoupled light. Spontaneous emission into the cavity mode by the driven atoms stimulates lasing action, which is capable of operating as a continuous wave laser in steady state, without a seed laser. The system is modeled theoretically, and qualitative agreement with experimentally observed lasing is seen. Our result opens up a range of new measurement possibilities with this system.

  13. Resonant atom-field interaction in large-size coupled-cavity arrays

    International Nuclear Information System (INIS)

    Ciccarello, Francesco

    2011-01-01

    We consider an array of coupled cavities with staggered intercavity couplings, where each cavity mode interacts with an atom. In contrast to large-size arrays with uniform hopping rates where the atomic dynamics is known to be frozen in the strong-hopping regime, we show that resonant atom-field dynamics with significant energy exchange can occur in the case of staggered hopping rates even in the thermodynamic limit. This effect arises from the joint emergence of an energy gap in the free photonic dispersion relation and a discrete frequency at the gap's center. The latter corresponds to a bound normal mode stemming solely from the finiteness of the array length. Depending on which cavity is excited, either the atomic dynamics is frozen or a Jaynes-Cummings-like energy exchange is triggered between the bound photonic mode and its atomic analog. As these phenomena are effective with any number of cavities, they are prone to be experimentally observed even in small-size arrays.

  14. Coupled electronic and atomic effects on defect evolution in silicon carbide under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xue, Haizhou [Univ. of Tennessee, Knoxville, TN (United States); Zarkadoula, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sachan, Ritesh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Army Research Office, Triangle Park, NC (United States); Ostrouchov, Christopher [Univ. of Tennessee, Knoxville, TN (United States); Liu, Peng [Univ. of Tennessee, Knoxville, TN (United States); Shandong Univ., Jinan (China); Wang, Xue -lin [Shandong Univ., Jinan (China); Zhang, Shuo [Lanzhou Univ., Gansu Province (China); Wang, Tie Shan [Lanzhou Univ., Gansu Province (China); Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-16

    Understanding energy dissipation processes in electronic/atomic subsystems and subsequent non-equilibrium defect evolution is a long-standing challenge in materials science. In the intermediate energy regime, energetic particles simultaneously deposit a significant amount of energy to both electronic and atomic subsystems of silicon carbide (SiC). Here we show that defect evolution in SiC closely depends on the electronic-to-nuclear energy loss ratio (Se/Sn), nuclear stopping powers (dE/dxnucl), electronic stopping powers (dE/dxele), and the temporal and spatial coupling of electronic and atomic subsystem for energy dissipation. The integrated experiments and simulations reveal that: (1) increasing Se/Sn slows damage accumulation; (2) the transient temperatures during the ionization-induced thermal spike increase with dE/dxele, which causes efficient damage annealing along the ion trajectory; and (3) for more condensed displacement damage within the thermal spike, damage production is suppressed due to the coupled electronic and atomic dynamics. Ionization effects are expected to be more significant in materials with covalent/ionic bonding involving predominantly well-localized electrons. Here, insights into the complex electronic and atomic correlations may pave the way to better control and predict SiC response to extreme energy deposition

  15. Dynamics of atom-field probability amplitudes in a coupled cavity system with Kerr non-linearity

    Energy Technology Data Exchange (ETDEWEB)

    Priyesh, K. V.; Thayyullathil, Ramesh Babu [Department of Physics, Cochin University of Science and Technology, Cochin (India)

    2014-01-28

    We have investigated the dynamics of two cavities coupled together via photon hopping, filled with Kerr non-linear medium and each containing a two level atom in it. The evolution of various atom (field) state probabilities of the coupled cavity system in two excitation sub space are obtained numerically. Detailed analysis has been done by taking different initial conditions of the system, with various coupling strengths and by varying the susceptibility of the medium. The role of susceptibility factor, on the dynamics atom field probability has been examined. In a coupled cavity system with strong photon hopping it is found that the susceptibility factor modifies the behaviour of probability amplitudes.

  16. Numerical and experimental modelling of back stream flow during close-coupled gas atomization

    OpenAIRE

    Motaman, S; Mullis, AM; Borman, DJ; Cochrane, RF; McCarthy, IN

    2013-01-01

    This paper reports the numerical and experimental investigation into the effects of different gas jet mis-match angles (for an external melt nozzle wall) on the back-stream flow in close coupled gas atomization. The Pulse Laser Imaging (PLI) technique was applied for visualising the back-stream melt flow phenomena with an analogue water atomizer and the associated PLI images compared with numerical results. In the investigation a Convergent–Divergent (C–D) discrete gas jet die at five differe...

  17. Optical properties of an atomic ensemble coupled to a band edge of a photonic crystal waveguide

    Science.gov (United States)

    Munro, Ewan; Kwek, Leong Chuan; Chang, Darrick E.

    2017-08-01

    We study the optical properties of an ensemble of two-level atoms coupled to a 1D photonic crystal waveguide (PCW), which mediates long-range coherent dipole-dipole interactions between the atoms. We show that the long-range interactions can dramatically alter the linear and nonlinear optical behavior, as compared to a typical atomic ensemble. In particular, in the linear regime, we find that the transmission spectrum contains multiple transmission dips, whose properties we characterize. Moreover, we show how the linear spectrum may be used to infer the number of atoms present in the system, constituting an important experimental tool in a regime where techniques for conventional ensembles break down. We also show that some of the transmission dips are associated with an effective ‘two-level’ resonance that forms due to the long-range interactions. In particular, under strong global driving and appropriate conditions, we find that the atomic ensemble is only capable of absorbing and emitting single collective excitations at a time. Our results are of direct relevance to atom-PCW experiments that should soon be realizable.

  18. Control of the dynamics of coupled atomic-molecular Bose-Einstein condensates: Modified Gross-Pitaevskii approach

    International Nuclear Information System (INIS)

    Gupta, Moumita; Dastidar, Krishna Rai

    2009-01-01

    We study the dynamics of the atomic and molecular Bose-Einstein condensates (BECs) of 87 Rb in a spherically symmetric trap coupled by stimulated Raman photoassociation process. Considering the higher order nonlinearity in the atom-atom interaction we analyze the dynamics of the system using coupled modified Gross-Pitaevskii (MGP) equations and compare it with mean-field coupled Gross-Pitaevskii (GP) dynamics. Considerable differences in the dynamics are obtained in these two approaches at large scattering length, i.e., for large values of peak-gas parameter x pk ≥10 -3 . We show how the dynamics of the coupled system is affected when the atom-molecule and molecule-molecule interactions are considered together with the atom-atom interaction and also when the strengths of these three interactions are increased. The effect of detuning on the efficiency of conversion of atomic fractions into molecules is demonstrated and the feasibility of maximum molecular BEC formation by varying the Raman detuning parameter at different values of time is explored. Thus by varying the Raman detuning and the scattering length for atom-atom interaction one can control the dynamics of the coupled atomic-molecular BEC system. We have also solved coupled Gross-Pitaevskii equations for atomic to molecular condensate formation through magnetic Feshbach resonance in a BEC of 85 Rb. We found similar features for oscillations between atomic and molecular condensates noted in previous theoretical study and obtained fairly good agreement with the evolution of total atomic condensate observed experimentally.

  19. The dynamics of coupled atom and field assisted by continuous external pumping

    International Nuclear Information System (INIS)

    Burlak, G.; Hernandez, J.A.; Starostenko, O.

    2006-01-01

    The dynamics of a coupled system comprising a two-level atom and cavity field assisted by a continuous external classical field (driving Jaynes-Cummings model) is studied. When the initial field is prepared in a coherent state, the dynamics strongly depends on the algebraic sum of both fields. If this sum is zero (the compensative case) in the system, only the vacuum Rabi oscillations occur. The results with dissipation and external field detuning from the cavity field are also discussed. (Author)

  20. The dynamics of coupled atom and field assisted by continuous external pumping

    Energy Technology Data Exchange (ETDEWEB)

    Burlak, G.; Hernandez, J.A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma de Morelos, Cuernavaca, Morelos (Mexico); Starostenko, O. [Departamento de Fisica, Electronica, Sistemas y Mecatronica, Universidad de las Americas, 72820 Puebla (Mexico)

    2006-07-01

    The dynamics of a coupled system comprising a two-level atom and cavity field assisted by a continuous external classical field (driving Jaynes-Cummings model) is studied. When the initial field is prepared in a coherent state, the dynamics strongly depends on the algebraic sum of both fields. If this sum is zero (the compensative case) in the system, only the vacuum Rabi oscillations occur. The results with dissipation and external field detuning from the cavity field are also discussed. (Author)

  1. Inductively coupled plasma for atomic emission spectroscopy at the Savannah River Plant

    International Nuclear Information System (INIS)

    Coleman, J.T.

    1986-01-01

    The Savannah River Plant atomic emission spectroscopy laboratory has been in operation for over 30 years. Routine analytical methods and instrumentation are being replaced with current technology. Laboratory renovation will include the installation of contained dual excitation sources (inductively coupled plasma and d-c arc) with a direct reading spectrometer. The instrument will be used to provide impurity analyses of plutonium, uranium, and other nuclear fuel cycle materials

  2. On the equivalence of the solar wind coupling parameter ε and the magnetospheric energy output parameter UT during intense geomagnetic storms

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Gonzalez, A.L.C.; Tsurutani, B.T.

    1990-01-01

    For intervals with intense geomagnetic activity it is shown that the solar wind coupling parameter ε and the magnetospheric output parameter U T are equivalent and that ranges of values of ε can be set up in terms of values of the ring current-time constant τ. (author)

  3. Entanglement Criteria of Two Two-Level Atoms Interacting with Two Coupled Modes

    Science.gov (United States)

    Baghshahi, Hamid Reza; Tavassoly, Mohammad Kazem; Faghihi, Mohammad Javad

    2015-08-01

    In this paper, we study the interaction between two two-level atoms and two coupled modes of a quantized radiation field in the form of parametric frequency converter injecting within an optical cavity enclosed by a medium with Kerr nonlinearity. It is demonstrated that, by applying the Bogoliubov-Valatin canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Then, under particular initial conditions for the atoms (in a coherent superposition of its ground and upper states) and the fields (in a standard coherent state) which may be prepared, the time evolution of state vector of the entire system is analytically evaluated. In order to understand the degree of entanglement between subsystems (atom-field and atom-atom), the dynamics of entanglement through different measures, namely, von Neumann reduced entropy, concurrence and negativity is evaluated. In each case, the effects of Kerr nonlinearity and detuning parameter on the above measures are numerically analyzed, in detail. It is illustrated that the amount of entanglement can be tuned by choosing the evolved parameters, appropriately.

  4. Time-Dependent Close-Coupling Methods for Electron-Atom/Molecule Scattering

    International Nuclear Information System (INIS)

    Colgan, James

    2014-01-01

    The time-dependent close-coupling (TDCC) method centers on an accurate representation of the interaction between two outgoing electrons moving in the presence of a Coulomb field. It has been extensively applied to many problems of electrons, photons, and ions scattering from light atomic targets. Theoretical Description: The TDCC method centers on a solution of the time-dependent Schrödinger equation for two interacting electrons. The advantages of a time-dependent approach are two-fold; one treats the electron-electron interaction essentially in an exact manner (within numerical accuracy) and a time-dependent approach avoids the difficult boundary condition encountered when two free electrons move in a Coulomb field (the classic three-body Coulomb problem). The TDCC method has been applied to many fundamental atomic collision processes, including photon-, electron- and ion-impact ionization of light atoms. For application to electron-impact ionization of atomic systems, one decomposes the two-electron wavefunction in a partial wave expansion and represents the subsequent two-electron radial wavefunctions on a numerical lattice. The number of partial waves required to converge the ionization process depends on the energy of the incoming electron wavepacket and on the ionization threshold of the target atom or ion.

  5. Frequency shift, damping, and tunneling current coupling with quartz tuning forks in noncontact atomic force microscopy

    Science.gov (United States)

    Nony, Laurent; Bocquet, Franck; Para, Franck; Loppacher, Christian

    2016-09-01

    A combined experimental and theoretical approach to the coupling between frequency-shift (Δ f ) , damping, and tunneling current (It) in combined noncontact atomic force microscopy/scanning tunneling microscopy using quartz tuning forks (QTF)-based probes is reported. When brought into oscillating tunneling conditions, the tip located at the QTF prong's end radiates an electromagnetic field which couples to the QTF prong motion via its piezoelectric tensor and loads its electrodes by induction. Our approach explains how those It-related effects ultimately modify the Δ f and the damping measurements. This paradigm to the origin of the coupling between It and the nc-AFM regular signals relies on both the intrinsic piezoelectric nature of the quartz constituting the QTF and its electrodes design.

  6. Strong light-matter coupling from atoms to solid-state systems

    CERN Document Server

    2014-01-01

    The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptu...

  7. Multiple ionization and coupling effects in L-subshell ionization of heavy atoms by oxygen ions

    International Nuclear Information System (INIS)

    Pajek, M.; Banas, D.; Semaniak, J.; Braziewicz, J.; Majewska, U.; Chojnacki, S.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Glombik, A.; Kretschmer, W.; Trautmann, D.; Lapicki, G.; Mukoyama, T.

    2003-01-01

    The multiple-ionization and coupling effects in L-shell ionization of atoms by heavy-ion impact have been studied by measuring the L x-ray production cross sections in solid targets of Au, Bi, Th, and U bombarded by oxygen ions in the energy range 6.4-70 MeV. The measured L x-ray spectra were analyzed using the recently proposed method accounting for the multiple-ionization effects, such as x-ray line shifting and broadening, which enables one to obtain the ionization probabilities for outer shells. The L-subshell ionization cross sections have been obtained from measured x-ray production cross sections for resolved Lα 1,2 , Lγ 1 , and Lγ 2,3 transitions using the L-shell fluorescence and Coster-Kronig yields being substantially modified by the multiple ionization in the M and N shells. In particular, the effect of closing of strong L 1 -L 3 M 4,5 Coster-Kronig transitions in multiple-ionized atoms was evidenced and discussed. The experimental ionization cross sections for the L 1 , L 2 , and L 3 subshells have been compared with the predictions of the semiclassical approximation (SCA) and the ECPSSR theory that includes the corrections for the binding-polarization effect within the perturbed stationary states approximation, the projecticle energy loss, and Coulomb deflection effects as well as the relativistic description of inner-shell electrons. These approaches were further modified to include the L-subshell couplings within the ''coupled-subshell model'' (CSM). Both approaches, when modified for the coupling effects, are in better agreement with the data. Particularly, the predictions of the SCA-CSM calculations reproduce the experimental L-subshell ionization cross section reasonably well. Remaining discrepancies are discussed qualitatively, in terms of further modifications of the L-shell decay rates caused by a change of electronic wave functions in multiple-ionized atoms

  8. From Cycling Between Coupled Reactions to the Cross-Bridge Cycle: Mechanical Power Output as an Integral Part of Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Frank Diederichs

    2012-10-01

    Full Text Available ATP delivery and its usage are achieved by cycling of respective intermediates through interconnected coupled reactions. At steady state, cycling between coupled reactions always occurs at zero resistance of the whole cycle without dissipation of free energy. The cross-bridge cycle can also be described by a system of coupled reactions: one energising reaction, which energises myosin heads by coupled ATP splitting, and one de-energising reaction, which transduces free energy from myosin heads to coupled actin movement. The whole cycle of myosin heads via cross-bridge formation and dissociation proceeds at zero resistance. Dissipation of free energy from coupled reactions occurs whenever the input potential overcomes the counteracting output potential. In addition, dissipation is produced by uncoupling. This is brought about by a load dependent shortening of the cross-bridge stroke to zero, which allows isometric force generation without mechanical power output. The occurrence of maximal efficiency is caused by uncoupling. Under coupled conditions, Hill’s equation (velocity as a function of load is fulfilled. In addition, force and shortening velocity both depend on [Ca2+]. Muscular fatigue is triggered when ATP consumption overcomes ATP delivery. As a result, the substrate of the cycle, [MgATP2−], is reduced. This leads to a switch off of cycling and ATP consumption, so that a recovery of [ATP] is possible. In this way a potentially harmful, persistent low energy state of the cell can be avoided.

  9. Influence of driving frequency on oxygen atom density in O2 radio frequency capacitively coupled plasma

    International Nuclear Information System (INIS)

    Kitajima, Takeshi; Noro, Kouichi; Nakano, Toshiki; Makabe, Toshiaki

    2004-01-01

    The influence of the driving frequency on the absolute oxygen atom density in an O 2 radio frequency (RF) capacitively coupled plasma (CCP) was investigated using vacuum ultraviolet absorption spectroscopy with pulse modulation of the main plasma. A low-power operation of a compact inductively coupled plasma light source was enabled to avoid the significant measurement errors caused by self-absorption in the light source. The pulse modulation of the main plasma enabled accurate absorption measurement for high plasma density conditions by eliminating background signals due to light emission from the main plasma. As for the effects of the driving frequency, the effect of VHF (100 MHz) drive on oxygen atom production was small because of the modest increase in plasma density of electronegative O 2 in contrast to the significant increase in electron density previously observed for electropositive Ar. The recombination coefficient of oxygen atoms on the electrode surface was obtained from a decay rate in the afterglow by comparison with a diffusion model, and it showed agreement with previously reported values for several electrode materials

  10. Magnetic-Field Dependence of Raman Coupling Strength in Ultracold "4"0K Atomic Fermi Gas

    International Nuclear Information System (INIS)

    Huang Liang-Hui; Wang Peng-Jun; Meng Zeng-Ming; Peng Peng; Chen Liang-Chao; Li Dong-Hao; Zhang Jing

    2016-01-01

    We experimentally demonstrate the relation of Raman coupling strength with the external bias magnetic field in degenerate Fermi gas of "4"0K atoms. Two Raman lasers couple two Zeeman energy levels, whose energy splitting depends on the external bias magnetic field. The Raman coupling strength is determined by measuring the Rabi oscillation frequency. The characteristics of the Rabi oscillation is to be damped after several periods due to Fermi atoms in different momentum states oscillating with different Rabi frequencies. The experimental results show that the Raman coupling strength will decrease as the external bias magnetic field increases, which is in good agreement with the theoretical prediction. (paper)

  11. Kinetics of the processes, plasma parameters, and output characteristics of a UV emitter operating on XeI molecules and iodine molecules and atoms

    Energy Technology Data Exchange (ETDEWEB)

    Shuaibov, A. K.; Grabovaya, I. A.; Minya, A. I.; Homoki, Z. T. [Uzhgorod National University (Ukraine); Kalyuzhnaya, A. G.; Shchedrin, A. I. [National Academy of Sciences of Ukraine, Institute of Physics (Ukraine)

    2011-03-15

    A kinetic model of the processes occurring in the plasma of a high-power low-pressure gas-discharge lamp is presented, and the output characteristics of the lamp are described. The lamp is excited by a longitudinal glow discharge and emits the I{sub 2}(D Prime -A Prime ) 342-nm and XeI(B-X) 253-nm bands and the 206.2-nm spectral line of atomic iodine. When the emitter operates in a sealed-off mode on the p(He): p(Xe): p(I{sub 2}) = 400: 120: (100-200) Pa mixture, the fractions of the UV radiation power of iodine atoms, exciplex molecules of xenon iodide, and iodine molecules comprise 55, 10, and 35%, respectively. At the optimal partial pressure, the maximum total radiation power of the lamp reaches 37 W, the energy efficiency being about 15%.

  12. Concept of electric power output control system for atomic power generation plant utilizing cool energy of stored snow

    International Nuclear Information System (INIS)

    Kamimura, Seiji; Toita, Takayuki

    2003-01-01

    A concept of the SEAGUL system (Snow Enhancing Atomic-power Generation UtiLity) is proposed in this paper. Lowering the temperature of sea water for cooling of atomic-power plant will make a efficiency of power generation better and bring several ten MW additional electric power for 1356 MW class plant. The system concept stands an idea to use huge amount of seasonal storage snow for cooling water temperature control. In a case study for the Kashiwazaki-Kariwa Nuclear Power Station, it is estimated to cool down the sea water of 29degC to 20degC by 80 kt snow for 3 hours in a day would brought 60 MWh electric power per a day. Annually 38.4 Mt of stored snow will bring 1800 MWh electric power. (author)

  13. Phosphatidic acid regulates signal output by G protein coupled receptors through direct interaction with phospholipase C-beta(1).

    Science.gov (United States)

    Litosch, Irene; Pujari, Rajeshree; Lee, Shawn J

    2009-09-01

    Phosphatidic acid (PA), generated downstream of monomeric Rho GTPases via phospholipase D (PLD) and additionally by diacylglycerol kinases (DGK), both stimulates phospholipase C-beta(1) (PLC-beta(1)) and potentiates stimulation of PLC-beta(1) activity by Galpha(q) in vitro. PA is a potential candidate for integrating signaling by monomeric and heterotrimeric G proteins to regulate signal output by G protein coupled receptors (GPCR), and we have sought to understand the mechanisms involved. We previously identified the region spanning residues 944-957, lying within the PLC-beta(1) C-terminus alphaA helix and flexible loop of the Galpha(q) binding domain, as required for stimulation of lipase activity by PA in vitro. Regulation by PA does not require residues essential for stimulation by Galpha(q) or GTPase activating activity. The present studies evaluated shorter alanine/glycine replacement mutants and finally point mutations to identify Tyr(952) and Ile(955) as key determinants for regulation by PA, assessed by both in vitro enzymatic and cell-based co-transfection assays. Replacement of Tyr(952) and Ile(955), PLC-beta(1) (Y952G/I955G), results in an 85% loss in stimulation by PA relative to WT-PLC-beta(1) in vitro. COS 7 cells co-transfected with PLC-beta(1) (Y952G/I955G) demonstrate a 10-fold increase in the EC(50) for stimulation and a 60% decrease in maximum stimulation by carbachol via Galpha(q) linked m1 muscarinic receptors, relative to cells co-transfected with WT-PLC-beta(1) but otherwise similar conditions. Residues required for regulation by PA are not essential for stimulation by G protein subunits. WT-PLC-beta(1) and PLC-beta(1) (Y952G/I955G) activity is increased comparably by co-transfection with Galpha(q) and neither is markedly affected by co-transfection with Gbeta(1)gamma(2). Inhibiting PLD-generated PA production by 1-butanol has little effect on maximum stimulation, but shifts the EC(50) for agonist stimulation of WT-PLC-beta(1) by 10-fold

  14. Rabi dynamics of coupled atomic and molecular Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Ishkhanyan, Artur; Chernikov, G.P.; Nakamura, Hiroki

    2004-01-01

    The dynamics of coherent Rabi oscillations in coupled atomic and molecular Bose-Einstein condensates is considered taking into account the atom-atom, atom-molecule, and molecule-molecule elastic interactions. The exact solution for the molecule formation probability is derived in terms of the elliptic functions. The two-dimensional space of the involved parameters intensity and detuning is analyzed and divided into two regions where the Rabi oscillations show different characteristics. A resonance curve is found, on which the molecular formation probability monotonically increases as a function of time. The maximum value of the final transition probability on this curve is 1/2 (i.e., total transition to the molecular state) and it is achieved at high field intensities starting from a minimal threshold defined by the interspecies interaction scattering lights. The explicit form of the resonance curve is determined, and it is shown that the resonance frequency position reveals a nonlinear dependence on the Rabi frequency of the applied field. A singular point is found on the resonance curve, where a power-law time evolution of the system is observed

  15. Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Jerome; Light, Philip S.; Kashyap, Raman; Luiten, Andre N. [Frequency Standards and Metrology Group, School of Physics, University of Western Australia, Western Australia 6009, Perth (Australia); Department of Engineering Physics, Ecole Polytechnique de Montreal, Montreal, Quebec, Canada H3C 3A7 (Canada); Frequency Standards and Metrology, School of Physics, University of Western Australia, Western Australia 6009, Perth (Australia)

    2011-11-15

    We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow beam can confine cold atoms to the darkest regions of the beam, thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and a guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-{mu}m-radius core hollow fiber, it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When the MOT is positioned farther away, coupling efficiencies over 50% can be achieved with larger core fibers.

  16. Spin-orbit coupling in ultracold Fermi gases of 173Yb atoms

    Science.gov (United States)

    Song, Bo; He, Chengdong; Hajiyev, Elnur; Ren, Zejian; Seo, Bojeong; Cai, Geyue; Amanov, Dovran; Zhang, Shanchao; Jo, Gyu-Boong

    2017-04-01

    Synthetic spin-orbit coupling (SOC) in cold atoms opens an intriguing new way to probe nontrivial topological orders beyond natural conditions. Here, we report the realization of the SOC physics both in a bulk system and in an optical lattice. First, we demonstrate two hallmarks induced from SOC in a bulk system, spin dephasing in the Rabi oscillation and asymmetric atomic distribution in the momentum space respectively. Then we describe the observation of non-trivial spin textures and the determination of the topological phase transition in a spin-dependent optical lattice dressed by the periodic Raman field. Furthermore, we discuss the quench dynamics between topological and trivial states by suddenly changing the band topology. Our work paves a new way to study non-equilibrium topological states in a controlled manner. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants).

  17. Experimental evidence of state-selective charge transfer in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2004-01-01

    State-selective charge-transfer behavior was observed for Fe, Cr, Mn and Cu in inductively coupled plasma (ICP)-atomic emission spectrometry. Charge transfer from Ar + to Fe, Cr and Mn is state-selective because of inefficient collisional mixing of the quasiresonant charge-transfer energy levels with nearby levels. This low efficiency is the consequence of differences in electronic configuration of the core electrons. The reason for state-selective charge-transfer behavior to Cu is not clear, although a tentative explanation based on efficiency of intramultiplet and intermultiplet mixing for this special case is offered

  18. Integration of fiber-coupled high-Q SiNx microdisks with atom chips

    International Nuclear Information System (INIS)

    Barclay, Paul E.; Srinivasan, Kartik; Painter, Oskar; Lev, Benjamin; Mabuchi, Hideo

    2006-01-01

    Micron scale silicon nitride (SiN x ) microdisk optical resonators are demonstrated with Q=3.6x10 6 and an effective mode volume of 15(λ/n) 3 at near-visible wavelengths. A hydrofluoric acid wet etch provides sensitive tuning of the microdisk resonances, and robust mounting of a fiber taper provides efficient fiber optic coupling to the microdisks while allowing unfettered optical access for laser cooling and trapping of atoms. Measurements indicate that cesium adsorption on the SiN x surfaces significantly red detunes the microdisk resonances. Parallel integration of multiple (10) microdisks with a single fiber taper is also demonstrated

  19. Convergent close-coupling calculations of low-energy positron-atomic-hydrogen scattering

    International Nuclear Information System (INIS)

    Bray, I.; Stelbovics, A.T.

    1993-07-01

    The convergent close coupling approach developed by the authors is applied to positron scattering from atomic hydrogen below the first excitation threshold. In this approach the multi-channel expansion one-electron states are obtained by diagonalizing the target Hamiltonian in a large Laguerre basis. It is demonstrated that this expansion of the scattering wave function is sufficient to reproduce the very accurate low-energy variational results, provided target states with l≤ 15 are included in the expansions. 10 refs., 1 tab

  20. Determination of trace amounts of cerium in paint by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Wong, K.L.

    1981-01-01

    The determination of Ce in paint by inductively coupled plasma atomic emission spectrometry (ICP-OES) is described, and the detection limit of ICP-OES of 0.0004 ppM is compared with that of other methods. The effects of the major elemental components of paint, Si, Pb, Cr, and Na on the ICP-OES determination of Ce were studied. The interference of 400 ppM of the other ions on the determination of 10 ppM Ce was small (0 to 3% error). The method is applicable to the range of 0.2 to 700 ppM Ce

  1. Athermalization in atomic force microscope based force spectroscopy using matched microstructure coupling.

    Science.gov (United States)

    Torun, H; Finkler, O; Degertekin, F L

    2009-07-01

    The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.

  2. The coupling of rapidly synergistic cloud point extraction with thermospray flame furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Wen, X.; Deng, Q.; Guo, J.; Zhao, X.; Zhao, Y.; Ji, S.

    2012-01-01

    Rapidly synergistic cloud point extraction (RS-CPE) was coupled with thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) to result in new CPE patterns and accelerated (1 min) protocols. It is demonstrated, for the case of copper (II) ion, that TS-FF-AAS improves the sampling efficiency and the sensitivity of FAAS determinations. Problems of nebulization associated with previous methods based on the coupling of FAAS and RS-CPE are overcome. TS-FF-AAS also improves sensitivity and gives a limit of detection for copper of 0.20 μg L -1 , which is better by a factor of 32. Compared to direct FAAS, the factor is 114. (author)

  3. Coupled-channels calculations of excitation and ionization in ion-atom collisions

    International Nuclear Information System (INIS)

    Martir, M.H.

    1981-01-01

    A numerical method has been used to compute excitation and ionization cross sections for ion-atom collisions. The projectile is treated classically and follows a straight line, constant velocity path (unless indicated otherwise). The wave function that describes the atom is expanded about the target in a truncated Hilbert space. The interaction between the projectile and the target atom is treated as a time dependent perturbation. A unitary time development operator, U, propagates the wave function from a time prior to the collision to a time after the collision in small time steps. Contrary to first-order theories, coupling between states is allowed. This method has been improved so that any number of partial waves can be included in the wave function expansion. This method has been applied to study negatively charged projectiles. Cross sections are obtained for collisions of antiprotons on atomic hydrogen (30 keV to 372 keV) and compared with cross sections of protons on atomic hydrogen to explore the Z/sub P/ dependence. The antiproton-hydrogen results were converted into electron-hydrogen values with E/sub e/ = E/sub P/(m/sub e//m/sub P/) (15 eV to 200 eV) and compared to experimental values. The method is then applied to study vacancy production from the L-shell. The partial wave convergence of the cross sections was carefully studied for s through g waves. Collisions between protons (and alpha-particles) and argon are studied to explore the Z/sub P/ dependence of the cross sections. The cross section ratio sigma(α)/(4sigma(p)) is compared to experiment

  4. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  5. Dehalogenation and coupling of a polycyclic hydrocarbon on an atomically thin insulator.

    Science.gov (United States)

    Dienel, Thomas; Gómez-Díaz, Jaime; Seitsonen, Ari P; Widmer, Roland; Iannuzzi, Marcella; Radican, Kevin; Sachdev, Hermann; Müllen, Klaus; Hutter, Jürg; Gröning, Oliver

    2014-07-22

    Catalytic activity is of pivotal relevance in enabling efficient and selective synthesis processes. Recently, covalent coupling reactions catalyzed by solid metal surfaces opened the rapidly evolving field of on-surface chemical synthesis. Tailored molecular precursors in conjunction with the catalytic activity of the metal substrate allow the synthesis of novel, technologically highly relevant materials such as atomically precise graphene nanoribbons. However, the reaction path on the metal substrate remains unclear in most cases, and the intriguing question is how a specific atomic configuration between reactant and catalyst controls the reaction processes. In this study, we cover the metal substrate with a monolayer of hexagonal boron nitride (h-BN), reducing the reactivity of the metal, and gain unique access to atomistic details during the activation of a polyphenylene precursor by sequential dehalogenation and the subsequent coupling to extended oligomers. We use scanning tunneling microscopy and density functional theory to reveal a reaction site anisotropy, induced by the registry mismatch between the precursor and the nanostructured h-BN monolayer.

  6. Applicability of multisyringe chromatography coupled to cold-vapor atomic fluorescence spectrometry for mercury speciation analysis

    International Nuclear Information System (INIS)

    Guzmán-Mar, J.L.; Hinojosa-Reyes, L.; Serra, A.M.; Hernández-Ramírez, A.; Cerdà, V.

    2011-01-01

    Graphical abstract: An automatic system, based on the applicability of multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) detection is developed for mercury speciation. Highlights: ► The on-line coupling of MSC to CV/AFS was developed for mercury speciation analysis. ► The speciation of MeHg + , Hg 2+ and EtHg + was achieved on a RP C18 monolithic column. ► The hyphenated system provided higher sample throughput compared to HPLC–CV/AFS. ► The limits of detection for mercury species were comparable or better than those reported by HPLC–CV/AFS. ► The developed method also provided low instrumental and operational costs. - Abstract: In this paper, a novel automatic approach for the speciation of inorganic mercury (Hg 2+ ), methylmercury (MeHg + ) and ethylmercury (EtHg + ) using multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) was developed. For the first time, the separation of mercury species was accomplished on a RP C18 monolithic column using a multi-isocratic elution program. The elution protocol involved the use of 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)–acetonitrile (99:1, v/v), followed by 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)–acetonitrile (90:10, v/v). The eluted mercury species were then oxidized under post-column UV radiation and reduced using tin(II) chloride in an acidic medium. Subsequently, the generated mercury metal were separated from the reaction mixture and further atomized in the flame atomizer and detected by AFS. Under the optimized experimental conditions, the limits of detection (3σ) were found to be 0.03, 0.11 and 0.09 μg L −1 for MeHg + , Hg 2+ and EtHg + , respectively. The relative standard deviation (RSD, n = 6) of the peak height for 3, 6 and 3 μg L −1 of MeHg + , Hg 2+ and EtHg + (as Hg) ranged from 2.4 to 4.0%. Compared with the conventional HPLC–CV/AFS hyphenated systems

  7. Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator

    Science.gov (United States)

    Gard, Bryan T.; Jacobs, Kurt; McDermott, R.; Saffman, M.

    2017-07-01

    A candidate for converting quantum information from microwave to optical frequencies is the use of a single atom that interacts with a superconducting microwave resonator on one hand and an optical cavity on the other. The large electric dipole moments and microwave transition frequencies possessed by Rydberg states allow them to couple strongly to superconducting devices. Lasers can then be used to connect a Rydberg transition to an optical transition to realize the conversion. Since the fundamental source of noise in this process is spontaneous emission from the atomic levels, the resulting control problem involves choosing the pulse shapes of the driving lasers so as to maximize the transfer rate while minimizing this loss. Here we consider the concrete example of a cesium atom, along with two specific choices for the levels to be used in the conversion cycle. Under the assumption that spontaneous emission is the only significant source of errors, we use numerical optimization to determine the likely rates for reliable quantum communication that could be achieved with this device. These rates are on the order of a few megaqubits per second.

  8. Entropy squeezing for a two-level atom in the Jaynes-Cummings model with an intensity-depend coupling

    Institute of Scientific and Technical Information of China (English)

    李春先; 方卯发

    2003-01-01

    We study the squeezing for a two-level atom in the Jaynes-Cummings model with intensity-dependent coupling using quantum information entropy, and examine the influences of the initial state of the system on the squeezed component number and direction of the information entropy squeezing. Our results show that, the squeezed component number depends on the atomic initial distribution angle, while the squeezed direction is determined by both the phases of the atom and the field for the information entropy squeezing. Quantum information entropy is shown to be a remarkable precision measure for atomic squeezing.

  9. Entropy squeezing for a two—level atom in the Jaynes—Cummings model with an intensity—depend coupling

    Institute of Scientific and Technical Information of China (English)

    李春先; 方卯发; 等

    2003-01-01

    We study the squeezing for a two-level atom in the Jaynes-Cumings model with intensity-dependent coupling using quantum information entropy,and examine the influences of the initial state of the system on the squeezed component number and direction of the information entropy squeezing.Our results show that,the squeezed component number depends on the atomic initial distribution angle,while the squeezed direction is determined by both the phases of the atom and the field for the information entropy squeezing.Quantum information entropy is shown to be a remarkable precision measure for atomic squeezing.

  10. Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states.

    Science.gov (United States)

    Sirjoosingh, Andrew; Hammes-Schiffer, Sharon

    2011-03-24

    The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.

  11. Multielement determination of rare earth elements by liquid chromatography/inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Sawatari, Hideyuki; Asano, Takaaki; Hu, Xincheng; Saizuka, Tomoo; Itoh, Akihide; Hirose, Akio; Haraguchi, Hiroki

    1995-01-01

    The rapid determination of rare earth elements (REEs) has been investigated by an on-line system of high performance liquid chromatography/multichannel inductively coupled plasma atomic emission spectrometry. In the present system, all REEs could be detected simultaneously in a single chromatographic measurement without spectral interferences. Utilizing a cation exchange column and 2-hydroxy-2-methylpropanoic acid aqueous solution as the mobile phase, the detection limits of 0.4-30 ng ml -1 for all REEs were obtained. The system was applied to the determination of REEs in geological standard rock samples and rare earth impurities in high purity rare earth oxides. The REEs in standard rocks could be determined by the present HPLC/ICP-AES system without pretreatment after acid digestion, although the detection limits were not sufficient for the analysis of rare earth oxides. (author)

  12. Tunable spin-orbit coupling for ultracold atoms in two-dimensional optical lattices

    Science.gov (United States)

    Grusdt, Fabian; Li, Tracy; Bloch, Immanuel; Demler, Eugene

    2017-06-01

    Spin-orbit coupling (SOC) is at the heart of many exotic band structures and can give rise to many-body states with topological order. Here we present a general scheme based on a combination of microwave driving and lattice shaking for the realization of two-dimensional SOC with ultracold atoms in systems with inversion symmetry. We show that the strengths of Rashba and Dresselhaus SOC can be independently tuned in a spin-dependent square lattice. More generally, our method can be used to open gaps between different spin states without breaking time-reversal symmetry. We demonstrate that this allows for the realization of topological insulators with nontrivial spin textures closely related to the Kane-Mele model.

  13. A numerical solution of the coupled proton-H atom transport equations for the proton aurora

    International Nuclear Information System (INIS)

    Basu, B.; Jasperse, J.R.; Grossbard, N.J.

    1990-01-01

    A numerical code has been developed to solve the coupled proton-H atom linear transport equations for the proton aurora. The transport equations have been simplified by using plane-parallel geometry and the forward-scattering approximations only. Otherwise, the equations and their numerical solutions are exact. Results are presented for the particle fluxes and the energy deposition rates, and they are compared with the previous analytical results that were obtained by using additional simplifying approximations. It is found that although the analytical solutions for the particle fluxes differ somewhat from the numerical solutions, the energy deposition rates calculated by the two methods agree to within a few percent. The accurate particle fluxes given by the numerical code are useful for accurate calculation of the characteristic quantities of the proton aurora, such as the ionization rates and the emission rates

  14. Determination of rare earth elements by liquid chromatography/inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Yoshida, K.; Haraguchi, H.

    1984-01-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) interfaced with high-performance liquid chromatography (HPLC) has been applied to the determination of rare earth elements. ICP-AES was used as an element-selective detector for HPLC. The separation of rare earth elements with HPLC helped to avoid erroneous analytical results due to spectral interferences. Fifteen rare earth elements (Y and 14 lanthanides) were determined selectively with the HPLC/ICP-AES system using a concentration gradient method. The detection limits with the present HPLC/ICP-AES system were about 0.001-0.3 μg/mL with a 100-μL sample injection. The calibration curves obtained by the peak height measurements showed linear relationships in the concentration range below 500 μg/mL for all rare earth elements. A USGS rock standard sample, rare earth ores, and high-purity lanthanide reagents (>99.9%) were successfully analyzed without spectral interferences

  15. Study of uranium matrix interference on ten analytes using inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, A.A.; Qamar, S.; Atta, M.A. (A.Q. Khan Research Labs., Rawalpindi (Pakistan))

    1993-08-01

    Maximum allowable concentrations of 12 elements in uranium hexafluoride feed for enrichment to reactor grade material (about 3%), vary from 1 to 100 ppm ([mu]g/g). Using an inductively coupled plasma atomic emission spectrometer, 51 lines of tine of these elements (B, Cr, Mo, P, Sb, Si, Ta, Ti, V and W) has been studied with a uranium matrix to investigate the matrix interference on the basis of signal to background (SBR), and background to background ratios (BBR). Detection limits and limits of quantitative determination (LQDs) were calculated for these elements in a uranium matrix using SBR and relative standard deviation of the background signal (RSD[sub B]) approach. In almost all cases, the uranium matrix interference reduces the SBRs to the extent that direct trace analysis is impossible. A uranium sample having known concentrations of impurities (around LQDs) was directly analysed with results that showed reasonable accuracy and precision. (Author).

  16. Inner-shell correlations and Sturm expansions in coupled perturbation calculations of atomic systems

    International Nuclear Information System (INIS)

    Sherstyuk, A.I.; Solov'eva, G.S.

    1995-01-01

    It is shown that virtual Hartree-Fock orbitals in Sturm-type expansions can be used to calculate the response of atomic systems to an external field within the framework of the coupled perturbation theory with allowance for correlation effects. The corrected electron-electron interaction in a system with field-distorted orbitals is considered by adding a nonlocal potential to a one-electron Hartree-Fock operator within each group of equivalent elections. The remaining correlation effects are calculated by solving a system of equations for corrections to the radial functions. The system is solved iteratively, with each subsequent iteration corresponding to a correction of an increasingly higher order in the electron--electron interaction. The explicit expression derived for the polarizability contains one-and two-particle radial integrals of the Sturm functions

  17. Consequences of atomic layer etching on wafer scale uniformity in inductively coupled plasmas

    Science.gov (United States)

    Huard, Chad M.; Lanham, Steven J.; Kushner, Mark J.

    2018-04-01

    Atomic layer etching (ALE) typically divides the etching process into two self-limited reactions. One reaction passivates a single layer of material while the second preferentially removes the passivated layer. As such, under ideal conditions the wafer scale uniformity of ALE should be independent of the uniformity of the reactant fluxes onto the wafers, provided all surface reactions are saturated. The passivation and etch steps should individually asymptotically saturate after a characteristic fluence of reactants has been delivered to each site. In this paper, results from a computational investigation are discussed regarding the uniformity of ALE of Si in Cl2 containing inductively coupled plasmas when the reactant fluxes are both non-uniform and non-ideal. In the parameter space investigated for inductively coupled plasmas, the local etch rate for continuous processing was proportional to the ion flux. When operated with saturated conditions (that is, both ALE steps are allowed to self-terminate), the ALE process is less sensitive to non-uniformities in the incoming ion flux than continuous etching. Operating ALE in a sub-saturation regime resulted in less uniform etching. It was also found that ALE processing with saturated steps requires a larger total ion fluence than continuous etching to achieve the same etch depth. This condition may result in increased resist erosion and/or damage to stopping layers using ALE. While these results demonstrate that ALE provides increased etch depth uniformity, they do not show an improved critical dimension uniformity in all cases. These possible limitations to ALE processing, as well as increased processing time, will be part of the process optimization that includes the benefits of atomic resolution and improved uniformity.

  18. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the ^{199}Hg Atom.

    Science.gov (United States)

    Sahoo, B K; Das, B P

    2018-05-18

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P,T-odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P,T-odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to ^{199}Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  19. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the 199Hg Atom

    Science.gov (United States)

    Sahoo, B. K.; Das, B. P.

    2018-05-01

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P ,T -odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P ,T -odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to 199Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  20. Use of magnesium as a test element for inductively coupled plasma atomic emission spectrometry diagnosis

    International Nuclear Information System (INIS)

    Mermet, J.M.

    1991-01-01

    To optimize atomization and ionization processes in an inductively coupled plasma used as a source in atomic emission spectrometry, the Mg II 280.270-nm/Mg I 285-213-nm line intensity ratio is used. A theoretic ratio is calculated assuming a local thermodynamic equilibrium.A review of previously published experimental values of the ratio is given as a function of the parameters influencing the energy transfer between the plasma and injected species. In particular, the effects of the power, the carrier gas flow-rate, the i.d. of the torch injector, the use of a sheathing gas and the presence of hydrogen are described. Values of the ratio close to the theoretical values are obtained with a high power (>1.4 kW), a lower carrier gas flow-rate ( -1 ) and a large i.d. of the injector (>2 mm). This optimization can also be applied to the minimization of interference effects due to the presence of sodium. (author). 64 refs.; 9 figs.; 1 tab

  1. Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition

    International Nuclear Information System (INIS)

    Tinck, S; Bogaerts, A

    2011-01-01

    In this paper, an O 2 inductively coupled plasma used for plasma enhanced atomic layer deposition of Al 2 O 3 thin films is investigated by means of modeling. This work intends to provide more information about basic plasma properties such as species densities and species fluxes to the substrate as a function of power and pressure, which might be hard to measure experimentally. For this purpose, a hybrid model developed by Kushner et al is applied to calculate the plasma characteristics in the reactor volume for different chamber pressures ranging from 1 to 10 mTorr and different coil powers ranging from 50 to 500 W. Density profiles of the various oxygen containing plasma species are reported as well as fluxes to the substrate under various operating conditions. Furthermore, different orientations of the substrate, which can be placed vertically or horizontally in the reactor, are taken into account. In addition, special attention is paid to the recombination process of atomic oxygen on the different reactor walls under the stated operating conditions. From this work it can be concluded that the plasma properties change significantly in different locations of the reactor. The plasma density near the cylindrical coil is high, while it is almost negligible in the neighborhood of the substrate. Ion and excited species fluxes to the substrate are found to be very low and negligible. Finally, the orientation of the substrate has a minor effect on the flux of O 2 , while it has a significant effect on the flux of O. In the horizontal configuration, the flux of atomic oxygen can be up to one order of magnitude lower than in the vertical configuration.

  2. Polarizabilities and hyperpolarizabilities for the atoms Al, Si, P, S, Cl, and Ar: Coupled cluster calculations.

    Science.gov (United States)

    Lupinetti, Concetta; Thakkar, Ajit J

    2005-01-22

    Accurate static dipole polarizabilities and hyperpolarizabilities are calculated for the ground states of the Al, Si, P, S, Cl, and Ar atoms. The finite-field computations use energies obtained with various ab initio methods including Moller-Plesset perturbation theory and the coupled cluster approach. Excellent agreement with experiment is found for argon. The experimental alpha for Al is likely to be in error. Only limited comparisons are possible for the other atoms because hyperpolarizabilities have not been reported previously for most of these atoms. Our recommended values of the mean dipole polarizability (in the order Al-Ar) are alpha/e(2)a(0) (2)E(h) (-1)=57.74, 37.17, 24.93, 19.37, 14.57, and 11.085 with an error estimate of +/-0.5%. The recommended values of the mean second dipole hyperpolarizability (in the order Al-Ar) are gamma/e(4)a(0) (4)E(h) (-3)=2.02 x 10(5), 4.31 x 10(4), 1.14 x 10(4), 6.51 x 10(3), 2.73 x 10(3), and 1.18 x 10(3) with an error estimate of +/-2%. Our recommended polarizability anisotropy values are Deltaalpha/e(2)a(0) (2)E(h) (-1)=-25.60, 8.41, -3.63, and 1.71 for Al, Si, S, and Cl respectively, with an error estimate of +/-1%. The recommended hyperpolarizability anisotropies are Deltagamma/e(4)a(0) (4)E(h) (-3)=-3.88 x 10(5), 4.16 x 10(4), -7.00 x 10(3), and 1.65 x 10(3) for Al, Si, S, and Cl, respectively, with an error estimate of +/-4%. (c) 2005 American Institute of Physics.

  3. Development of nanomanipulator using a high-speed atomic force microscope coupled with a haptic device

    International Nuclear Information System (INIS)

    Iwata, F.; Ohashi, Y.; Ishisaki, I.; Picco, L.M.; Ushiki, T.

    2013-01-01

    The atomic force microscope (AFM) has been widely used for surface fabrication and manipulation. However, nanomanipulation using a conventional AFM is inefficient because of the sequential nature of the scan-manipulation scan cycle, which makes it difficult for the operator to observe the region of interest and perform the manipulation simultaneously. In this paper, a nanomanipulation technique using a high-speed atomic force microscope (HS-AFM) is described. During manipulation using the AFM probe, the operation is periodically interrupted for a fraction of a second for high-speed imaging that allows the topographical image of the manipulated surface to be periodically updated. With the use of high-speed imaging, the interrupting time for imaging can be greatly reduced, and as a result, the operator almost does not notice the blink time of the interruption for imaging during the manipulation. This creates a more intuitive interface with greater feedback and finesse to the operator. Nanofabrication under real-time monitoring was performed to demonstrate the utility of this arrangement for real-time nanomanipulation of sample surfaces under ambient conditions. Furthermore, the HS-AFM is coupled with a haptic device for the human interface, enabling the operator to move the HS-AFM probe to any position on the surface while feeling the response from the surface during the manipulation. - Highlights: • A nanomanipulater based on a high-speed atomic force microscope was developped. • High-speed imaging provides a valuable feedback during the manipulation operation. • Operator can feel the response from the surface via a haptic device during manipulation. • Nanofabrications under real-time monitoring were successfully performed

  4. Optimizing the coupling of output of a quasi-optical gyrotron owing to a diffraction grating with ellipsoidal support

    International Nuclear Information System (INIS)

    Hogge, J.P.

    1993-12-01

    The output scheme of a quasi-optical gyrotron has been optimized in order to produce a gaussian output microwave beam suitable for transmission over long distances. The technique which has been applied consists of substituting one of the mirrors of the Fabry-Perot resonator in which the particle-wave interaction takes place by a diffraction grating placed in the -1 order Littrow mount and designed such that only orders -1 and 0 can propagate. In such a configuration, the diffraction angle of the order -1 coincides exactly with the incidence direction, thus providing a feedback in the cavity, whereas the order 0 constitutes the output of the resonator. A theoretical study of the power content in each diffracted order of a planar grating of infinite extent with equally spaced linear grooves as a function of the grating parameters has been performed. It has been shown that parameter domains can be found, which provide appropriate efficiencies in both orders for an application on a quasi-optical gyrotron. The Littrow condition was then adapted in order to match the spherical wavefronts of a gaussian beam incident on a possibly non-planar surface. The grooves become thus curvilinear and are no longer equally spaced. Measurements made on a cold test stand have confirmed the validity of the Littrow condition extension and allowed to determine its limits. It has also been shown that this type of cavity provides a mode having an optimal gaussian content and giving a minimal cavity transmission. The angular dispersion of the grating leads to a higher cavity transmission and to a slightly lower gaussian content for the adjacent resonator modes. The fundamental eigenmode electric field profile has been measured inside the cavity and is similar to that of an equivalent resonator made with two spherical mirrors. (author) figs., tabs., 141 refs

  5. Ultrafast Coulomb-Induced Intervalley Coupling in Atomically Thin WS2.

    Science.gov (United States)

    Schmidt, Robert; Berghäuser, Gunnar; Schneider, Robert; Selig, Malte; Tonndorf, Philipp; Malić, Ermin; Knorr, Andreas; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf

    2016-05-11

    Monolayers of semiconducting transition metal dichalcogenides hold the promise for a new paradigm in electronics by exploiting the valley degree of freedom in addition to charge and spin. For MoS2, WS2, and WSe2, valley polarization can be conveniently initialized and read out by circularly polarized light. However, the underlying microscopic processes governing valley polarization in these atomically thin equivalents of graphene are still not fully understood. Here, we present a joint experiment-theory study on the ultrafast time-resolved intervalley dynamics in monolayer WS2. Based on a microscopic theory, we reveal the many-particle mechanisms behind the observed spectral features. We show that Coulomb-induced intervalley coupling explains the immediate and prominent pump-probe signal in the unpumped valley and the seemingly low valley polarization degrees typically observed in pump-probe measurements compared to photoluminescence studies. The gained insights are also applicable to other light-emitting monolayer transition metal dichalcogenides, such as MoS2 and WSe2, where the Coulomb-induced intervalley coupling also determines the initial carrier dynamics.

  6. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Chen-Long; Liu, Xiao; Chen, Rong, E-mail: rongchen@mail.hust.edu.cn, E-mail: bshan@mail.hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China); Shan, Bin, E-mail: rongchen@mail.hust.edu.cn, E-mail: bshan@mail.hust.edu.cn [State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China)

    2015-07-15

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas–solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al{sub 2}O{sub 3} films on spherical SiO{sub 2} NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  7. Role of atomic spin-mechanical coupling in the problem of a magnetic biocompass

    Science.gov (United States)

    Cao, Yunshan; Yan, Peng

    2018-04-01

    It is a well established notion that animals can detect the Earth's magnetic field, while the biophysical origin of such magnetoreception is still elusive. Recently, a magnetic receptor Drosophila CG8198 (MagR) with a rodlike protein complex is reported [S. Qin et al., Nat. Mater. 15, 217 (2016), 10.1038/nmat4484] to act like a compass needle to guide the magnetic orientation of animals. This view, however, is challenged [M. Meister, Elife 5, e17210 (2016), 10.7554/eLife.17210] by arguing that thermal fluctuations beat the Zeeman coupling of the proteins's magnetic moment with the rather weak geomagnetic field (˜25 -65 μ T ). In this work, we show that the spin-mechanical interaction at the atomic scale gives rise to a high blocking temperature which allows a good alignment of the protein's magnetic moment with the Earth's magnetic field at room temperature. Our results provide a promising route to resolve the debate on the thermal behaviors of MagR, and may stimulate a broad interest in spin-mechanical couplings down to atomistic levels.

  8. Self-consistent coupling of atomic orbitals to a moving charge

    International Nuclear Information System (INIS)

    Da Costa, H.F.M.; Micha, D.A.

    1994-01-01

    The authors describe the time evolution of hydrogenic orbitals perturbed by a moving charge. Starting with the equation for an atom interacting with a charge, the authors use an eikonal representation of the total wave-function, followed by an eikonal approximation, to derive coupled differential equations for the temporal change of the orbitals and the charge's trajectory. The orbitals are represented by functions with complex exponents changing with time, describing electronic density and flux changes. For each orbital, they solve a set of six coupled differential equations; two of them are derived with a time-dependent variational procedure for the real and imaginary parts of the exponents, and the other four are the Hamilton equations of the positions and momenta of the moving charge. The molecular potentials are derived from the exact expressions for the electronic energies. Results of calculations for 1s and 2s orbitals show large variation of the real exponent parts over time, with respect to asymptotic values, and that imaginary parts remain small

  9. Applicability of multisyringe chromatography coupled to cold-vapor atomic fluorescence spectrometry for mercury speciation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guzman-Mar, J.L.; Hinojosa-Reyes, L. [Department of Chemistry Sciences, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, Pedro de Alba s/n, C.P. 66451 San Nicolas de los Garza, Nuevo Leon (Mexico); Serra, A.M. [Department of Chemistry, University of the Balearic Islands, E-07122 Palma de Mallorca (Spain); Hernandez-Ramirez, A. [Department of Chemistry Sciences, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, Pedro de Alba s/n, C.P. 66451 San Nicolas de los Garza, Nuevo Leon (Mexico); Cerda, V., E-mail: victor.cerda@uib.es [Department of Chemistry, University of the Balearic Islands, E-07122 Palma de Mallorca (Spain)

    2011-12-05

    Graphical abstract: An automatic system, based on the applicability of multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) detection is developed for mercury speciation. Highlights: Black-Right-Pointing-Pointer The on-line coupling of MSC to CV/AFS was developed for mercury speciation analysis. Black-Right-Pointing-Pointer The speciation of MeHg{sup +}, Hg{sup 2+} and EtHg{sup +} was achieved on a RP C18 monolithic column. Black-Right-Pointing-Pointer The hyphenated system provided higher sample throughput compared to HPLC-CV/AFS. Black-Right-Pointing-Pointer The limits of detection for mercury species were comparable or better than those reported by HPLC-CV/AFS. Black-Right-Pointing-Pointer The developed method also provided low instrumental and operational costs. - Abstract: In this paper, a novel automatic approach for the speciation of inorganic mercury (Hg{sup 2+}), methylmercury (MeHg{sup +}) and ethylmercury (EtHg{sup +}) using multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) was developed. For the first time, the separation of mercury species was accomplished on a RP C18 monolithic column using a multi-isocratic elution program. The elution protocol involved the use of 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (99:1, v/v), followed by 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (90:10, v/v). The eluted mercury species were then oxidized under post-column UV radiation and reduced using tin(II) chloride in an acidic medium. Subsequently, the generated mercury metal were separated from the reaction mixture and further atomized in the flame atomizer and detected by AFS. Under the optimized experimental conditions, the limits of detection (3{sigma}) were found to be 0.03, 0.11 and 0.09 {mu}g L{sup -1} for MeHg{sup +}, Hg{sup 2+} and EtHg{sup +}, respectively. The relative standard deviation (RSD, n = 6) of the

  10. Convergent Close-Coupling Calculations for Electron-Atom and Electron-Molecule Scattering

    International Nuclear Information System (INIS)

    Fursa, Dmitry; Zammit, M.C.; Bostock, C.J.; Bray, I.

    2014-01-01

    The Convergent Close-Coupling (CCC) method developed in our group has been applied extensively to study electron-atom/ion collisions and recently has been extended to electron collisions with diatomic molecules. This approach relies on the ability to represent the infinite number of target bound states and its continuum via a finite number of states obtained by a diagonalization of the target in a square-integrable (Sturmian) one-electron basis. We normally use a Laguerre basis though other choices are possible, for example a boxed-based basis or a B-spline basis. The choice of the basis is governed by the physical problem under consideration. As the size of a Sturmian basis increases the calculated negative energy states (relative to the corresponding ionization stage of the target) converge to the target true bound states and the positive energy states provide an increasingly dense representation of the target continuum. We then perform a multichannel expansion of the total (projectile plus target electrons) wave function and formulate a set of close-coupling equations. These equations are transformed into momentum space where they take the form of the Lippmann-Schwinger equations for the T-matrix. A solution of the T-matrix equations is obtained at each total energy E by converting them into a set of linear equations that are solved by standard techniques. We perform a partial-wave expansion of the projectile wave function and take into account the symmetry of the scattering system (e.g, total spin, parity, etc.) in order to reduce the size of the coupled equations and make calculations feasible. As soon as the T-matrix is obtained we can evaluate scattering amplitudes and cross sections for the transitions of interest. For the case of molecular targets the formulation is done within the fixed-nuclei approximation. We adopt a single-centre approach in CCC calculations. This allows us to utilize a great deal of computational development thoroughly tested for

  11. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  12. Rovibrational coupling in molecular nitrogen at high temperature: An atomic-level study

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, Paolo, E-mail: vale0142@umn.edu; Norman, Paul, E-mail: norma198@umn.edu; Zhang, Chonglin, E-mail: zhang993@umn.edu; Schwartzentruber, Thomas E., E-mail: schwart@aem.umn.edu [Department of Aerospace Engineering and Mechanics, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-05-15

    This article contains an atomic-level numerical investigation of rovibrational relaxation in molecular nitrogen at high temperature (>4000 K), neglecting dissociation. We conduct our study with the use of pure Molecular Dynamics (MD) and Classical Trajectory Calculations (CTC) Direct Simulation Monte Carlo (DSMC), verified to produce statistically identical results at the conditions of interest here. MD and CTC DSMC solely rely on the specification of a potential energy surface: in this work, the site-site Ling-Rigby potential. Additionally, dissociation is prevented by modeling the N–N bond either as a harmonic or an anharmonic spring. The selected molecular model was shown to (i) recover the shear viscosity (obtained from equilibrium pure MD Green-Kubo calculations) of molecular nitrogen over a wide range of temperatures, up to dissociation; (ii) predict well the near-equilibrium rotational relaxation behavior of N{sub 2}; (iii) reproduce vibrational relaxation times in excellent accordance with the Millikan-White correlation and previous semi-classical trajectory calculations in the low temperature range, i.e., between 4000 K and 10 000 K. By simulating isothermal relaxations in a periodic box, we found that the traditional two-temperature model assumptions become invalid at high temperatures (>10 000 K), due to a significant coupling between rotational and vibrational modes for bound states. This led us to add a modification to both the Jeans and the Landau-Teller equations to include a coupling term, essentially described by an additional relaxation time for internal energy equilibration. The degree of anharmonicity of the N{sub 2} bond determines the strength of the rovibrational coupling. Although neglecting N{sub 2} dissociation only provides a partial description of a nitrogen system at very high temperatures, high-energy trends for bound-bound transitions are essential to understand nonequilibrium gas flows, with possible implications on rovibration

  13. Rovibrational coupling in molecular nitrogen at high temperature: An atomic-level study

    International Nuclear Information System (INIS)

    Valentini, Paolo; Norman, Paul; Zhang, Chonglin; Schwartzentruber, Thomas E.

    2014-01-01

    This article contains an atomic-level numerical investigation of rovibrational relaxation in molecular nitrogen at high temperature (>4000 K), neglecting dissociation. We conduct our study with the use of pure Molecular Dynamics (MD) and Classical Trajectory Calculations (CTC) Direct Simulation Monte Carlo (DSMC), verified to produce statistically identical results at the conditions of interest here. MD and CTC DSMC solely rely on the specification of a potential energy surface: in this work, the site-site Ling-Rigby potential. Additionally, dissociation is prevented by modeling the N–N bond either as a harmonic or an anharmonic spring. The selected molecular model was shown to (i) recover the shear viscosity (obtained from equilibrium pure MD Green-Kubo calculations) of molecular nitrogen over a wide range of temperatures, up to dissociation; (ii) predict well the near-equilibrium rotational relaxation behavior of N 2 ; (iii) reproduce vibrational relaxation times in excellent accordance with the Millikan-White correlation and previous semi-classical trajectory calculations in the low temperature range, i.e., between 4000 K and 10 000 K. By simulating isothermal relaxations in a periodic box, we found that the traditional two-temperature model assumptions become invalid at high temperatures (>10 000 K), due to a significant coupling between rotational and vibrational modes for bound states. This led us to add a modification to both the Jeans and the Landau-Teller equations to include a coupling term, essentially described by an additional relaxation time for internal energy equilibration. The degree of anharmonicity of the N 2 bond determines the strength of the rovibrational coupling. Although neglecting N 2 dissociation only provides a partial description of a nitrogen system at very high temperatures, high-energy trends for bound-bound transitions are essential to understand nonequilibrium gas flows, with possible implications on rovibration

  14. Current and future groundwater recharge in West Africa as estimated from a range of coupled climate model outputs

    Science.gov (United States)

    Verhoef, Anne; Cook, Peter; Black, Emily; Macdonald, David; Sorensen, James

    2017-04-01

    This research addresses the terrestrial water balance for West Africa. Emphasis is on the prediction of groundwater recharge and how this may change in the future, which has relevance to the management of surface and groundwater resources. The study was conducted as part of the BRAVE research project, "Building understanding of climate variability into planning of groundwater supplies from low storage aquifers in Africa - Second Phase", funded under the NERC/DFID/ESRC Programme, Unlocking the Potential of Groundwater for the Poor (UPGro). We used model output data of water balance components (precipitation, surface and subsurface run-off, evapotranspiration and soil moisture content) from ERA-Interim/ERA-LAND reanalysis, CMIP5, and high resolution model runs with HadGEM3 (UPSCALE; Mizielinski et al., 2014), for current and future time-periods. Water balance components varied widely between the different models; variation was particularly large for sub-surface runoff (defined as drainage from the bottom-most soil layer of each model). In-situ data for groundwater recharge obtained from the peer-reviewed literature were compared with the model outputs. Separate off-line model sensitivity studies with key land surface models were performed to gain understanding of the reasons behind the model differences. These analyses were centered on vegetation, and soil hydraulic parameters. The modelled current and future recharge time series that had the greatest degree of confidence were used to examine the spatiotemporal variability in groundwater storage. Finally, the implications for water supply planning were assessed. Mizielinski, M.S. et al., 2014. High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign. Geoscientific Model Development, 7(4), pp.1629-1640.

  15. Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perring, Loic; Basic-Dvorzak, Marija [Department of Quality and Safety Assurance, Nestle Research Centre, P.O. Box 44, Vers chez-les-Blanc, 1000, Lausanne (Switzerland)

    2002-09-01

    Tin is considered to be a priority contaminant by the Codex Alimentarius Commission. Tin can enter foods either from natural sources, environmental pollution, packaging material or pesticides. Higher concentrations are found in processed food and canned foods. Dissolution of the tinplate depends on the of food matrix, acidity, presence of oxidising reagents (anthocyanin, nitrate, iron and copper) presence of air (oxygen) in the headspace, time and storage temperature. To reduce corrosion and dissolution of tin, nowadays cans are usually lacquered, which gives a marked reduction of tin migration into the food product. Due to the lack of modern validated published methods for food products, an ICP-AES (Inductively coupled plasma-atomic emission spectroscopy) method has been developed and evaluated. This technique is available in many laboratories in the food industry and is more sensitive than atomic absorption. Conditions of sample preparation and spectroscopic parameters for tin measurement by axial ICP-AES were investigated for their ruggedness. Two methods of preparation involving high-pressure ashing or microwave digestion in volumetric flasks were evaluated. They gave complete recovery of tin with similar accuracy and precision. Recoveries of tin from spiked products with two levels of tin were in the range 99{+-}5%. Robust relative repeatabilities and intermediate reproducibilities were <5% for different food matrices containing >30 mg/kg of tin. Internal standard correction (indium or strontium) did not improve the method performance. Three emission lines for tin were tested (189.927, 283.998 and 235.485 nm) but only 189.927 nm was found to be robust enough with respect to interferences, especially at low tin concentrations. The LOQ (limit of quantification) was around 0.8 mg/kg at 189.927 nm. A survey of tin content in a range of canned foods is given. (orig.)

  16. Analysis of inter-country input-output table based on bibliographic coupling network: How industrial sectors on the GVC compete for production resources

    Science.gov (United States)

    Guan, Jun; Xu, Xiaoyu; Xing, Lizhi

    2018-03-01

    The input-output table is comprehensive and detailed in describing national economic systems with abundance of economic relationships depicting information of supply and demand among industrial sectors. This paper focuses on how to quantify the degree of competition on the global value chain (GVC) from the perspective of econophysics. Global Industrial Strongest Relevant Network models are established by extracting the strongest and most immediate industrial relevance in the global economic system with inter-country input-output (ICIO) tables and then have them transformed into Global Industrial Resource Competition Network models to analyze the competitive relationships based on bibliographic coupling approach. Three indicators well suited for the weighted and undirected networks with self-loops are introduced here, including unit weight for competitive power, disparity in the weight for competitive amplitude and weighted clustering coefficient for competitive intensity. Finally, these models and indicators were further applied empirically to analyze the function of industrial sectors on the basis of the latest World Input-Output Database (WIOD) in order to reveal inter-sector competitive status during the economic globalization.

  17. Analyses of power output of piezoelectric energy-harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method.

    Science.gov (United States)

    Zhu, Meiling; Worthington, Emma; Njuguna, James

    2009-07-01

    This paper presents, for the first time, a coupled piezoelectric-circuit finite element model (CPC-FEM) to analyze the power output of a vibration-based piezoelectric energy-harvesting device (EHD) when it is connected to a load resistor. Special focus is given to the effect of the load resistor value on the vibrational amplitude of the piezoelectric EHD, and thus on the current, voltage, and power generated by the device, which are normally assumed to be independent of the load resistor value to reduce the complexity of modeling and simulation. The presented CPC-FEM uses a cantilever with a sandwich structure and a seismic mass attached to the tip to study the following characteristics of the EHD as a result of changing the load resistor value: 1) the electric outputs: the current through and voltage across the load resistor; 2) the power dissipated by the load resistor; 3) the displacement amplitude of the tip of the cantilever; and 4) the shift in the resonant frequency of the device. It is found that these characteristics of the EHD have a significant dependence on the load resistor value, rather than being independent of it as is assumed in most literature. The CPC-FEM is capable of predicting the generated output power of the EHD with different load resistor values while simultaneously calculating the effect of the load resistor value on the displacement amplitude of the tip of the cantilever. This makes the CPC-FEM invaluable for validating the performance of a designed EHD before it is fabricated and tested, thereby reducing the recurring costs associated with repeat fabrication and trials. In addition, the proposed CPC-FEM can also be used for producing an optimized design for maximum power output.

  18. Revisiting the electrochemical impedance spectroscopy of magnesium with online inductively coupled plasma atomic emission spectroscopy.

    Science.gov (United States)

    Shkirskiy, Viacheslav; King, Andrew D; Gharbi, Oumaïma; Volovitch, Polina; Scully, John R; Ogle, Kevin; Birbilis, Nick

    2015-02-23

    The electrochemical impedance of reactive metals such as magnesium is often complicated by an obvious inductive loop with decreasing frequency of the AC polarising signal. The characterisation and ensuing explanation of this phenomenon has been lacking in the literature to date, being either ignored or speculated. Herein, we couple electrochemical impedance spectroscopy (EIS) with online atomic emission spectroelectrochemistry (AESEC) to simultaneously measure Mg-ion concentration and electrochemical impedance spectra during Mg corrosion, in real time. It is revealed that Mg dissolution occurs via Mg(2+) , and that corrosion is activated, as measured by AC frequencies less than approximately 1 Hz approaching DC conditions. The result of this is a higher rate of Mg(2+) dissolution, as the voltage excitation becomes slow enough to enable all Mg(2+) -enabling processes to adjust in real time. The manifestation of this in EIS data is an inductive loop. The rationalisation of such EIS behaviour, as it relates to Mg, is revealed for the first time by using concurrent AESEC. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Environmental samples analysis by Atomic Absorption Spectrophotometry and Inductively Coupled Plasma-Optical Emission Spectroscopy

    International Nuclear Information System (INIS)

    Popescu, I.V.; Iordan, M.; Stihi, C.; Bancuta, A.; Busuioc, G.; Dima, G.; Ciupina, V.; Belc, M.; Vlaicu, Gh.; Marian, R.

    2002-01-01

    Biological samples are interesting from many aspects of environmental monitoring. By analyzing tree leaves conclusions can be drown regarding the metal loading in the growth medium. So that, starting from assumption that the pollution factors from environmental medium can modify the normal concentration of elements, we decided to control the presence of toxic elements and the deviation from normal state of elements in leaves of different trees from areas situated at different distances of pollution source. The aim of this work is to determine the elemental composition of tree leaves using Atomic Absorption Spectrophotometry (AAS) method and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) method. Using AAS spectrophotometer SHIMADZU we identified and determined the concentration of: Cd, Co, Cu, Zn, Mn, Cr, Fe, Se, Pb with an instrumental error less than 1% for most of the elements analyzed. The same samples were analyzed by ICP-OES spectrometer, BAIRD ICP2070-Sequential Plasma spectrometer. We identified and determined in leaves of different trees the concentration of Mg, Ca, and Sr with a precision less than 6%. (authors)

  20. A simulation of atomic force microscope microcantilever in the tapping mode utilizing couple stress theory.

    Science.gov (United States)

    Abbasi, Mohammad

    2018-04-01

    The nonlinear vibration behavior of a Tapping mode atomic force microscopy (TM-AFM) microcantilever under acoustic excitation force has been modeled and investigated. In dynamic AFM, the tip-surface interactions are strongly nonlinear, rapidly changing and hysteretic. First, the governing differential equation of motion and boundary conditions for dynamic analysis are obtained using the modified couple stress theory. Afterwards, closed-form expressions for nonlinear frequency and effective nonlinear damping ratio are derived utilizing perturbation method. The effect of tip connection position on the vibration behavior of the microcantilever are also analyzed. The results show that nonlinear frequency is size dependent. According to the results, an increase in the equilibrium separation between the tip and the sample surface reduces the overall effect of van der Waals forces on the nonlinear frequency, but its effect on the effective nonlinear damping ratio is negligible. The results also indicate that both the change in the distance between tip and cantilever free end and the reduction of tip radius have significant effects on the accuracy and sensitivity of the TM-AFM in the measurement of surface forces. The hysteretic behavior has been observed in the near resonance frequency response due to softening and hardening of the forced vibration response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Inductively coupled plasma--atomic emission spectrometry: trace elements in oil matrices

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Charlie Albert [Iowa State Univ., Ames, IA (United States)

    1977-12-01

    The simultaneous determination of up to 20 trace elements in various oil matrices by inductively coupled plasma-atomic emission spectrometry is reported. The oil matrices investigated were lubricating oils (for wear metals), fuel oil, centrifuged coal liquefaction product, crude soybean oil, and commercial edible oils. The samples were diluted with appropriate organic solvents and injected into the plasma as an aerosol generated by a pneumatic nebulization technique. Detection limits of the 28 elements studied ranged from 0.0006 to 9 μg/g with the majority falling in the 0.01 to 0.1 μg/g range. Analytical calibration curves were linear over at least two orders of magnitude and for some elements this linearity extended over 4.5 orders of magnitude. Relevant data on precision and accuracy are included. Because metals often occur as particles in lubricating oil and coal liquefaction products, the effect of particles on the analytical results was examined. Wear metal particles in used oil did not appear to affect the analytical results. However, incomplete recovery relative to organometallic reference solutions was obtained for iron particles with a nominal mean diameter of 3.0 μm suspended in oil. It was shown that the following factors contributed to incomplete recovery for the particles: settling of the suspended particles in the flask, a difference in nebulization efficiency between particle suspensions and organometallic solutions, and indications of incomplete vaporization of the larger particles in the plasma.

  2. Interplay of tensor correlations and vibrational coupling for single-particle states in atomic nuclei

    International Nuclear Information System (INIS)

    Colo, G.; SAgawa, H.; Bortignon, P. F.

    2009-01-01

    To study the structure of atomic nuclei, the ab-initio methods can nowadays be applied only for mass number A smaller than ∼ 10-15. For heavier systems, the self-consistent mean-field (SCMF) approach is probably the most microscopic approach which can be systematically applied to stable and exotic nuclei. In practice, the SCMF is mostly based on parametrizations of an effective interaction. However, the are groups who are intensively working on the development of a general density functional (DF) which is not necessarily extracted from an Hamiltonian. The basic question is to what extent this allows improving on the existing functionals. In this contribution we analyze the performance of existing functionals as far as the reproduction of single-particle states is concerned. We start by analyzing the effect of the tensor terms, on which the attention of several groups have recently focused. Then we discuss the impact of the particle-vibration coupling (PVC). Although the basic idea of this approach dates back to long time ago, we present here for the first time calculations which are entirely based on microscopic interactions without dropping any term or introducing ad hoc parameters. We show results both for well-known, benchmark nuclei like 4 0C a and 2 08P b as well as unstable nuclei like 1 32S n. Both single-particle energies and spectroscopic factors are discussed.(author)

  3. Inductively coupled plasma atomic emission spectrometric determination of tin in canned food.

    Science.gov (United States)

    Sumitani, H; Suekane, S; Nakatani, A; Tatsuka, K

    1993-01-01

    Various canned foods were digested sequentially with HNO3 and HCl, diluted to 100 mL, and filtered, and then tin was determined by inductively coupled plasma atomic emission spectrometry (ICP/AES). Samples of canned Satsuma mandarin, peach, apricot, pineapple, apple juice, mushroom, asparagus, evaporated milk, short-necked clam, spinach, whole tomato, meat, and salmon were evaluated. Sample preparations did not require time-consuming dilutions, because ICP/AES has wide dynamic range. The standard addition method was used to determine tin concentration. Accuracy of the method was tested by analyzing analytical standards containing tin at 2 levels (50 and 250 micrograms/g). The amounts of tin found for the 50 and 250 micrograms/g levels were 50.5 and 256 micrograms/g, respectively, and the repeatability coefficients of variation were 4.0 and 3.8%, respectively. Recovery of tin from 13 canned foods spiked at 2 levels (50 and 250 micrograms/g) ranged from 93.9 to 109.4%, with a mean of 99.2%. The quantitation limit for tin standard solution was about 0.5 microgram/g.

  4. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    Science.gov (United States)

    Chan, George C. Y. [Bloomington, IN; Hieftje, Gary M [Bloomington, IN

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  5. Level population measurements on analyte atom and ion excited states in the inductively coupled plasma

    International Nuclear Information System (INIS)

    Walker, Z.H.; Blades, M.W.

    1986-01-01

    During the past decade a number of publications dealing with fundamental studies of the inductively coupled plasma (ICP) have appeared in the literature. The purpose of many of these investigations has been to understand the nature of the interaction between the plasma gas and the analyte. The general conclusion drawn from these studies has been that the ICP is very close to Local Thermodynamic Equilibrium (LTE), but that some deviations from LTE do occur. Recent studies by the authors' have been directed towards the measurement of analyte atom and ion excited state level populations with the objective of obtaining a better understanding of both ionization and excitation in the ICP discharge and the extent to which such processes contribute to a non-equilibrium state. Further discussion is drawn from similar measurements made on elements with low ionization potentials, such as Barium, as well as on elements such as Iron in the presence of Easily Ionizable Elements (EIE's). The spatial and power dependences of such measurements are also discussed

  6. Average and extreme multi-atom Van der Waals interactions: Strong coupling of multi-atom Van der Waals interactions with covalent bonding

    Directory of Open Access Journals (Sweden)

    Finkelstein Alexei V

    2007-07-01

    Full Text Available Abstract Background The prediction of ligand binding or protein structure requires very accurate force field potentials – even small errors in force field potentials can make a 'wrong' structure (from the billions possible more stable than the single, 'correct' one. However, despite huge efforts to optimize them, currently-used all-atom force fields are still not able, in a vast majority of cases, even to keep a protein molecule in its native conformation in the course of molecular dynamics simulations or to bring an approximate, homology-based model of protein structure closer to its native conformation. Results A strict analysis shows that a specific coupling of multi-atom Van der Waals interactions with covalent bonding can, in extreme cases, increase (or decrease the interaction energy by about 20–40% at certain angles between the direction of interaction and the covalent bond. It is also shown that on average multi-body effects decrease the total Van der Waals energy in proportion to the square root of the electronic component of dielectric permittivity corresponding to dipole-dipole interactions at small distances, where Van der Waals interactions take place. Conclusion The study shows that currently-ignored multi-atom Van der Waals interactions can, in certain instances, lead to significant energy effects, comparable to those caused by the replacement of atoms (for instance, C by N in conventional pairwise Van der Waals interactions.

  7. Liquid sample introduction in inductively coupled plasma atomic emission and mass spectrometry — Critical review

    Energy Technology Data Exchange (ETDEWEB)

    Bings, N.H., E-mail: bings@uni-mainz.de; Orlandini von Niessen, J.O.; Schaper, J.N.

    2014-10-01

    Inductively coupled plasma optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS) can be considered as the most important tools in inorganic analytical chemistry. Huge progress has been made since the first analytical applications of the ICP. More stable RF generators, improved spectrometers and detection systems were designed along with the achievements gained from advanced microelectronics, leading to overall greatly improved analytical performance of such instruments. In contrast, for the vast majority of cases liquid sample introduction is still based on the pneumatic principle as described in the late 19th century. High flow pneumatic nebulizers typically demand the use of spray chambers as “aerosol filters” in order to match the prerequisites of an ICP. By this, only a small fraction of the nebulized sample actually contributes to the measured signal. Hence, the development of micronebulizers was brought forward. Those systems produce fine aerosols at low sample uptake rates, but they are even more prone for blocking or clogging than conventional systems in the case of solutions containing a significant amount of total dissolved solids (TDS). Despite the high number of publications devoted to liquid sample introduction, it is still considered the Achilles' heel of atomic spectrometry and it is well accepted, that the technology used for liquid sample introduction is still far from ideal, even when applying state-of-the-art systems. Therefore, this review is devoted to offer an update on developments in the field liquid sample introduction that had been reported until the year 2013. The most recent and noteworthy contributions to this field are discussed, trends are highlighted and future directions are outlined. The first part of this review provides a brief overview on theoretical considerations regarding conventional pneumatic nebulization, the fundamentals on aerosol generation and discusses characteristics of aerosols ideally

  8. Liquid sample introduction in inductively coupled plasma atomic emission and mass spectrometry — Critical review

    International Nuclear Information System (INIS)

    Bings, N.H.; Orlandini von Niessen, J.O.; Schaper, J.N.

    2014-01-01

    Inductively coupled plasma optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS) can be considered as the most important tools in inorganic analytical chemistry. Huge progress has been made since the first analytical applications of the ICP. More stable RF generators, improved spectrometers and detection systems were designed along with the achievements gained from advanced microelectronics, leading to overall greatly improved analytical performance of such instruments. In contrast, for the vast majority of cases liquid sample introduction is still based on the pneumatic principle as described in the late 19th century. High flow pneumatic nebulizers typically demand the use of spray chambers as “aerosol filters” in order to match the prerequisites of an ICP. By this, only a small fraction of the nebulized sample actually contributes to the measured signal. Hence, the development of micronebulizers was brought forward. Those systems produce fine aerosols at low sample uptake rates, but they are even more prone for blocking or clogging than conventional systems in the case of solutions containing a significant amount of total dissolved solids (TDS). Despite the high number of publications devoted to liquid sample introduction, it is still considered the Achilles' heel of atomic spectrometry and it is well accepted, that the technology used for liquid sample introduction is still far from ideal, even when applying state-of-the-art systems. Therefore, this review is devoted to offer an update on developments in the field liquid sample introduction that had been reported until the year 2013. The most recent and noteworthy contributions to this field are discussed, trends are highlighted and future directions are outlined. The first part of this review provides a brief overview on theoretical considerations regarding conventional pneumatic nebulization, the fundamentals on aerosol generation and discusses characteristics of aerosols ideally

  9. Inductively coupled plasma-atomic emission spectroscopy glovebox assembly system at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Marlow, J.H.; McCarthy, K.M.; Tamul, N.R.

    1999-01-01

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ''cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation and

  10. Determination of trace elements in Egyptian cane sugar (Deshna Factories) by neutron activation, atomic absorption spectrophotometric and inductively coupled plasma-atomic emission spectrometric analysis

    International Nuclear Information System (INIS)

    Awadallah, R.M.; Sherif, M.K.; Mohamed, A.E.; Grass, F.

    1986-01-01

    Multielement instrumental neutron activation (INAA), inductively coupled plasma-atomic emission spectrometric (ICP-AES) and atomic absorption spectrophotometric (AAS) analyses were utilized for the determination of Ag, Al, As, Au, Ba, Be, Br, Ca, Cd, Ce, Cl, Co, Cr, Cu, Eu, Fe, Ga, Hf, K, La, Li, Lu, Mg, Mn, Na, Nb, Ni, P, Pb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Th, Ti, U, V, W and Zn in sugar cane plant, raw juice, juice in different stages, syrup, deposits, molasses, A, B and C sugar, refinery 1 and 2 sugar, and in soil samples picked up from the immediate vicinity of the cane plant roots at surface, 30 and 60 cm depth, respectively. (author)

  11. Electron correlation in the interacting quantum atoms partition via coupled-cluster lagrangian densities.

    Science.gov (United States)

    Holguín-Gallego, Fernando José; Chávez-Calvillo, Rodrigo; García-Revilla, Marco; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás

    2016-07-15

    The electronic energy partition established by the Interacting Quantum Atoms (IQA) approach is an important method of wavefunction analyses which has yielded valuable insights about different phenomena in physical chemistry. Most of the IQA applications have relied upon approximations, which do not include either dynamical correlation (DC) such as Hartree-Fock (HF) or external DC like CASSCF theory. Recently, DC was included in the IQA method by means of HF/Coupled-Cluster (CC) transition densities (Chávez-Calvillo et al., Comput. Theory Chem. 2015, 1053, 90). Despite the potential utility of this approach, it has a few drawbacks, for example, it is not consistent with the calculation of CC properties different from the total electronic energy. To improve this situation, we have implemented the IQA energy partition based on CC Lagrangian one- and two-electron orbital density matrices. The development presented in this article is tested and illustrated with the H2 , LiH, H2 O, H2 S, N2 , and CO molecules for which the IQA results obtained under the consideration of (i) the CC Lagrangian, (ii) HF/CC transition densities, and (iii) HF are critically analyzed and compared. Additionally, the effect of the DC in the different components of the electronic energy in the formation of the T-shaped (H2 )2 van der Waals cluster and the bimolecular nucleophilic substitution between F(-) and CH3 F is examined. We anticipate that the approach put forward in this article will provide new understandings on subjects in physical chemistry wherein DC plays a crucial role like molecular interactions along with chemical bonding and reactivity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Advancements in Ti Alloy Powder Production by Close-Coupled Gas Atomization

    Energy Technology Data Exchange (ETDEWEB)

    Heidloff, Andy; Rieken, Joel; Anderson, Iver; Byrd, David

    2011-04-01

    As the technology for titanium metal injection molding (Ti-MIM) becomes more readily available, efficient Ti alloy fine powder production methods are required. An update on a novel close-coupled gas atomization system has been given. Unique features of the melting apparatus are shown to have measurable effects on the efficiency and ability to fully melt within the induction skull melting system (ISM). The means to initiate the melt flow were also found to be dependent on melt apparatus. Starting oxygen contents of atomization feedstock are suggested based on oxygen pick up during the atomization and MIM processes and compared to a new ASTM specification. Forming of titanium by metal injection molding (Ti-MIM) has been extensively studied with regards to binders, particle shape, and size distribution and suitable de-binding methods have been discovered. As a result, the visibility of Ti-MIM has steadily increased as reviews of technology, acceptability, and availability have been released. In addition, new ASTM specification ASTM F2885-11 for Ti-MIM for biomedical implants was released in early 2011. As the general acceptance of Ti-MIM as a viable fabrication route increases, demand for economical production of high quality Ti alloy powder for the preparation of Ti-MIM feedstock correspondingly increases. The production of spherical powders from the liquid state has required extensive pre-processing into different shapes thereby increasing costs. This has prompted examination of Ti-MIM with non-spherical particle shape. These particles are produced by the hydride/de-hydride process and are equi-axed but fragmented and angular which is less than ideal. Current prices for MIM quality titanium powder range from $40-$220/kg. While it is ideal for the MIM process to utilize spherical powders within the size range of 0.5-20 {mu}m, titanium's high affinity for oxygen to date has prohibited the use of this powder size range. In order to meet oxygen requirements the top

  13. Anderson Transition of Cold Atoms with Synthetic Spin-Orbit Coupling in Two-Dimensional Speckle Potentials

    Science.gov (United States)

    Orso, Giuliano

    2017-03-01

    We investigate the metal-insulator transition occurring in two-dimensional (2D) systems of noninteracting atoms in the presence of artificial spin-orbit interactions and a spatially correlated disorder generated by laser speckles. Based on a high order discretization scheme, we calculate the precise position of the mobility edge and verify that the transition belongs to the symplectic universality class. We show that the mobility edge depends strongly on the mixing angle between Rashba and Dresselhaus spin-orbit couplings. For equal couplings a non-power-law divergence is found, signaling the crossing to the orthogonal class, where such a 2D transition is forbidden.

  14. Circuit-quantum electrodynamics with direct magnetic coupling to single-atom spin qubits in isotopically enriched 28Si

    Directory of Open Access Journals (Sweden)

    Guilherme Tosi

    2014-08-01

    Full Text Available Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified 28Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.

  15. A coupled channel study on a binding mechanism of positronic alkali atoms

    International Nuclear Information System (INIS)

    Kubota, Yoshihiro; Kino, Yasushi

    2008-01-01

    In order to investigate the binding mechanism of weakly bound states of positronic alkali atoms, we calculate the energies and wavefunctions using the Gaussian expansion method (GEM) where a positronium (Ps)-alkali ion channel and a positron-alkali atom channel are explicitly introduced. The energies of the bound states are updated using a model potential that reproduces well the observed energy levels of alkali atoms. The binding mechanism of the positronic alkali atom is analyzed by the wavefunctions obtained. The structure of the positronic alkali atom has been regarded as a Ps cluster orbiting the alkali ion, which is described by the Ps-alkali ion channel. We point out that the fraction having the positron-alkali atom configuration is small but plays an indispensable role for the weakly bound system

  16. Development of inductively coupled plasma atomic emission spectrometry for palladium and Rhodium determination in platinum-based alloy

    International Nuclear Information System (INIS)

    Kovacevic, R.; Todorovic, M.; Manojlovic, D.; Mutic, J.

    2008-01-01

    Inductively coupled plasma atomic emission spectroscopy with internal standardization was applied for the analysis of an in-house reference platinum alloy containing palladium and rhodium (approximately 5% by weight). In order to compensate for variations in signal recovery due to matrix interferences, and therefore to improve the precision, platinum. the major component, was chosen as an internal standard. Quantitative analysis was based on calibration using a set of matrix-matched calibration standards with and without employing the internal standard. These results were compared with those obtained by X-ray fluorescence spectroscopy. The results for both techniques were in a good agreement, although the precision was slightly better in the inductively coupled plasma atomic emission spectroscopy technique, with or without the internal standard

  17. Quantum Computation by Optically Coupled Steady Atoms/Quantum-Dots Inside a Quantum Cavity

    Science.gov (United States)

    Pradhan, P.; Wang, K. L.; Roychowdhury, V. P.; Anantram, M. P.; Mor, T.; Saini, Subhash (Technical Monitor)

    1999-01-01

    We present a model for quantum computation using $n$ steady 3-level atoms kept inside a quantum cavity, or using $n$ quantum-dots (QDs) kept inside a quantum cavity. In this model one external laser is pointed towards all the atoms/QDs, and $n$ pairs of electrodes are addressing the atoms/QDs, so that each atom is addressed by one pair. The energy levels of each atom/QD are controlled by an external Stark field given to the atom/QD by its external pair of electrodes. Transition between two energy levels of an individual atom/ QD are controlled by the voltage on its electrodes, and by the external laser. Interactions between two atoms/ QDs are performed with the additional help of the cavity mode (using on-resonance condition). Laser frequency, cavity frequency, and energy levels are far off-resonance most of the time, and they are brought to the resonance (using the Stark effect) only at the time of operations. Steps for a controlled-NOT gate between any two atoms/QDs have been described for this model. Our model demands some challenging technological efforts, such as manufacturing single-electron QDs inside a cavity. However, it promises big advantages over other existing models which are currently implemented, and might enable a much easier scale-up, to compute with many more qubits.

  18. Elemental analysis using instrumental neutron activation analysis and inductively coupled plasma atomic emission spectrometry: a comparative study

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Choi, Kwang Soon; Moon, Jong Hwa; Kim, Sun Ha; Lim, Jong Myoung; Kim, Young Jin; Quraishi, Shamshad Begum

    2003-05-01

    Elemental analyses for certified reference materials were carried out using instrumental neutron activation analysis and inductively coupled plasma-atomic emission spectrometry. Five Certified Reference Materials (CRM) were selected for the study on comparative analysis of environmental samples. The CRM are Soil (NIST SRM 2709), Coal fly ash (NIST SRM 1633a), urban dust (NIST SRM 1649a) and air particulate on filter media (NIST SRM 2783 and human hair (GBW 09101)

  19. Vacuum-induced stationary entanglement in radiatively coupled three-level atoms

    International Nuclear Information System (INIS)

    Derkacz, Lukasz; Jakobczyk, Lech

    2008-01-01

    We consider a pair of three-level atoms interacting with a common vacuum and analyse the process of entanglement production due to spontaneous emission. We show that in the case of closely separated atoms collective damping can generate robust entanglement of the asymptotic states

  20. Vacuum-induced stationary entanglement in radiatively coupled three-level atoms

    Energy Technology Data Exchange (ETDEWEB)

    Derkacz, Lukasz; Jakobczyk, Lech [Institute of Theoretical Physics, University of Wroclaw, Plac Maxa Borna 9, 50-204 Wroclaw (Poland)], E-mail: ljak@ift.uni.wroc.pl

    2008-05-23

    We consider a pair of three-level atoms interacting with a common vacuum and analyse the process of entanglement production due to spontaneous emission. We show that in the case of closely separated atoms collective damping can generate robust entanglement of the asymptotic states.

  1. Inelastic collisions between an atom and a diatomic molecule. I. Theoretical and numerical considerations for the close coupling approximation

    International Nuclear Information System (INIS)

    Choi, B.H.; Tang, K.T.

    1975-01-01

    The close coupled differential equations for rotational excitation in collisions between an atom and a diatomic molecule are reformulated. Although it is equivalent to other formulations, it is computationally more convenient and gives a simpler expression for differential cross sections. Questions concerning real boundary conditions and the unitarity of the S matrix are discussed. Stormer's algorithm for solving coupled differential equations is introduced for molecular scatterings. This numerical procedure, which is known to be very useful in nuclear scattering problems, has to be modified for molecular systems. It is capable of treating the case where all channels are open as well as the case where some of the channels are closed. This algorithm is compared with other typical procedures of solving coupled differential equations

  2. Effects of doping in 25-atom bimetallic nanocluster catalysts for carbon–carbon coupling reaction of iodoanisole and phenylacetylene

    Directory of Open Access Journals (Sweden)

    Zhimin Li

    2016-10-01

    Full Text Available We here report the catalytic effects of foreign atoms (Cu, Ag, and Pt doped into well-defined 25-gold-atom nanoclusters. Using the carbon-carbon coupling reaction of p-iodoanisole and phenylacetylene as a model reaction, the gold-based bimetallic MxAu25−x(SR18 (–SR=–SCH2CH2Ph nanoclusters (supported on titania were found to exhibit distinct effects on the conversion of p-iodoanisole as well as the selectivity for the Sonogashira cross-coupling product, 1-methoxy-4-(2-phenylethynylbenzene. Compared to Au25(SR18, the centrally doped Pt1Au24(SR18 causes a drop in catalytic activity but with the selectivity retained, while the AgxAu25−x(SR18 nanoclusters gave an overall performance comparable to Au25(SR18. Interestingly, CuxAu25−x(SR18 nanoclusters prefer the Ullmann homo-coupling pathway and give rise to product 4,4′-dimethoxy-1,1′-biphenyl, which is in opposite to the other three nanocluster catalysts. Our overall conclusion is that the conversion of p-iodoanisole is largely affected by the electronic effect in the bimetallic nanoclusters’ 13-atom core (i.e., Pt1Au12, CuxAu13−x, and Au13, with the exception of Ag doping, and that the selectivity is primarily determined by the type of atoms on the MxAu12−x shell (M=Ag, Cu, and Au in the nanocluster catalysts.

  3. Dependence of EIA spectra on mutual coherence between coupling and probe fields in Cs atomic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Mi Rang; Kim, Kyoung Dae; Park, Hyun Deok; Kim, Jung Bog [Korea National University of Education, Chungwon (Korea, Republic of); Moon, Han Seb [Korea Research Institute of the Standards and Science, Taejon (Korea, Republic of)

    2002-03-01

    We observed the dependence of EIA spectra on the mutual coherence between the coupling and the probe fields in the D{sub 2}F{sub 9} = 4 {r_reversible} F{sub e} = 5 transition of Cs vapors at room temperature where the coupling and the probe fields were made from one laser source or two independent laser sources. By using one source having a high mutual coherence, we found EIA spectra linewidths much narrower than 0.1 {gamma} on the weak coupling field and the transparent spectra with linewidths narrower than 1 MHz within subnatural absorption on the strong coupling field. On the other hand, where the two sources which were nearly incoherent with each other were used, the absorption profiles showed the same dependence on the coupling power as the spectra for the one source, but their linewidths were broad, on the order of the natural linewidth.

  4. Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence

    Institute of Scientific and Technical Information of China (English)

    Zhang Jian; Shao Bin; Zou Jian

    2009-01-01

    In this paper,we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling.We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially.The effects of the field squeezing factor,the two-level atomic transition frequency,the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed.Without intrinsic decoherence,the increase of field squeezing factor can break the entropy squeezing.The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing.The influence of the second field frequency is complicated.With the intrinsic decoherence taken into consideration,the results show that the stronger the intrinsic decoherence is,the more quickly the entropy squeezing will disappear.The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing.

  5. Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence

    International Nuclear Information System (INIS)

    Jian, Zhang; Bin, Shao; Jian, Zou

    2009-01-01

    In this paper, we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling. We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially. The effects of the field squeezing factor, the two-level atomic transition frequency, the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed. Without intrinsic decoherence, the increase of field squeezing factor can break the entropy squeezing. The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing. The influence of the second field frequency is complicated. With the intrinsic decoherence taken into consideration, the results show that the stronger the intrinsic decoherence is, the more quickly the entropy squeezing will disappear. The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing. (classical areas of phenomenology)

  6. Determination of Ar metastable atom densities in Ar and Ar/H2 inductively coupled low-temperature plasmas

    International Nuclear Information System (INIS)

    Fox-Lyon, N; Knoll, A J; Oehrlein, G S; Franek, J; Demidov, V; Koepke, M; Godyak, V

    2013-01-01

    Ar metastable atoms are important energy carriers and surface interacting species in low-temperature plasmas that are difficult to quantify. Ar metastable atom densities (N Ar,m ) in inductively coupled Ar and Ar/H 2 plasmas were obtained using a model combining electrical probe measurements of electron density (N e ) and temperature (T e ), with analysis of spectrally resolved Ar plasma optical emission based on 3p → 1s optical emission ratios of the 419.8 nm line to the 420.1 nm line. We present the variation of N Ar,m as the Ar pressure and the addition of H 2 to Ar are changed comparatively to recent adsorption spectroscopy measurements. (paper)

  7. A control approach to cross-coupling compensation of piezotube scanners in tapping-mode atomic force microscope imaging.

    Science.gov (United States)

    Wu, Ying; Shi, Jian; Su, Chanmin; Zou, Qingze

    2009-04-01

    In this article, an approach based on the recently developed inversion-based iterative control (IIC) to cancel the cross-axis coupling effect of piezoelectric tube scanners (piezoscanners) in tapping-mode atomic force microscope (AFM) imaging is proposed. Cross-axis coupling effect generally exists in piezoscanners used for three-dimensional (x-y-z axes) nanopositioning in applications such as AFM, where the vertical z-axis movement can be generated by the lateral x-y axes scanning. Such x/y-to-z cross-coupling becomes pronounced when the scanning is at large range and/or at high speed. In AFM applications, the coupling-caused position errors, when large, can generate various adverse effects, including large imaging and topography distortions, and damage of the cantilever probe and/or the sample. This paper utilizes the IIC technique to obtain the control input to precisely track the coupling-caused x/y-to-z displacement (with sign-flipped). Then the obtained input is augmented as a feedforward control to the existing feedback control in tapping-mode imaging, resulting in the cancellation of the coupling effect. The proposed approach is illustrated through two exemplary applications in industry, the pole-tip recession examination, and the nanoasperity measurement on hard-disk drive. Experimental results show that the x/y-to-z coupling effect in large-range (20 and 45 microm) tapping-mode imaging at both low to high scan rates (2, 12.2 to 24.4 Hz) can be effectively removed.

  8. Two-photon transitions in hydrogen atoms embedded in weakly coupled plasmas

    International Nuclear Information System (INIS)

    Paul, S.; Ho, Y. K.

    2008-01-01

    The pseudostate method has been applied to calculate energy eigenvalues and corresponding eigenfunctions of the hydrogen atom in Debye plasma environments. Resonant two-photon transition rates from the ground state of atomic hydrogen to 2s and 3s excited states have been computed as a function of photon frequency in the length and velocity gauges for different Debye lengths. A two-photon transparency is found in correspondence to each resonance for 1s-3s. The transparency frequency and resonance enhancement frequency vary significantly with the Debye length.

  9. Electrical and thermal transport in the quasi-atomic limit of coupled Luttinger liquids

    OpenAIRE

    Szasz, Aaron; Ilan, Roni; Moore, Joel E.

    2016-01-01

    We introduce a new model for quasi one-dimensional materials, motivated by intriguing but not yet well-understood experiments that have shown two-dimensional polymer films to be promising materials for thermoelectric devices. We consider a two-dimensional material consisting of many one-dimensional systems, each treated as a Luttinger liquid, with weak (incoherent) coupling between them. This approximation of strong interactions within each one-dimensional chain and weak coupling between them...

  10. A separation method to overcome the interference of aluminium on zinc determination by inductively coupled plasma atomic emission spectroscopy

    OpenAIRE

    Jesus, Djane S. de; Korn, Maria das Graças Andrade; Ferreira, Sergio Luis Costa; Carvalho, Marcelo Souza de

    2000-01-01

    Texto completo: acesso restrito. p.389–394 The use of polyurethane foam (PUF) to separate zinc from large amounts of aluminium and its determination by inductively coupled plasma atomic emission spectroscopy technique (ICP-AES) in aluminium matrices is described. The proposed method is based on the solid-phase extraction of the zinc(II) cation as a thiocyanate complex. Parameters such as effect of pH on zinc sorption, zinc desorption from the foam and analytical features of the procedure w...

  11. Observation of the spin-orbit activated interchannel coupling in the 3d photoionization of caesium atoms

    International Nuclear Information System (INIS)

    Farrokhpour, H; Alagia, M; Amusia, M Ya

    2006-01-01

    The ionization cross-section of the 3d spin-orbit components of the Cs atom has been measured from about 12 to 70 eV above their respective thresholds. The measured relative ionization cross-section of the 3d 5/2 channel exhibits a pronounced minimum above threshold followed by a second maximum near the 3d 3/2 ionization onset and thus qualitatively confirms the theoretical predictions of a spin-orbit activated interchannel coupling (Amusia et al 2002 Phys. Rev. Lett 88 093002)

  12. Observation of the spin-orbit activated interchannel coupling in the 3d photoionization of caesium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Farrokhpour, H [Chemistry Department, Isfahan University of Technology, Isfahan 84154 (Iran, Islamic Republic of); Abdus Salam International Centre for Theoretical Physics, I-34014 Trieste (Italy); Alagia, M [CNR-ISMN Sez.Roma1, P.le A Moro 5, I-00185 Rome (Italy) and CNR-Lab. Naz. TASC-INFM, Gas Phase Beamline at Elettra, Area Science Park, I-34012 Basovizza, Trieste (Italy); Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); A F Ioffe Physical-Technical Institute, St Petersburg 194021 (Russian Federation)] (and others)

    2006-02-21

    The ionization cross-section of the 3d spin-orbit components of the Cs atom has been measured from about 12 to 70 eV above their respective thresholds. The measured relative ionization cross-section of the 3d{sub 5/2} channel exhibits a pronounced minimum above threshold followed by a second maximum near the 3d{sub 3/2} ionization onset and thus qualitatively confirms the theoretical predictions of a spin-orbit activated interchannel coupling (Amusia et al 2002 Phys. Rev. Lett 88 093002)

  13. Force on an electric/magnetic dipole and classical approach to spin-orbit coupling in hydrogen-like atoms

    Science.gov (United States)

    Kholmetskii, A. L.; Missevitch, O. V.; Yarman, T.

    2017-09-01

    We carry out the classical analysis of spin-orbit coupling in hydrogen-like atoms, using the modern expressions for the force and energy of an electric/magnetic dipole in an electromagnetic field. We disclose a novel physical meaning of this effect and show that for a laboratory observer the energy of spin-orbit interaction is represented solely by the mechanical energy of the spinning electron (considered as a gyroscope) due to the Thomas precession of its spin. Concurrently we disclose some errors in the old and new publications on this subject.

  14. Ultracold Atoms in a Square Lattice with Spin-Orbit Coupling: Charge Order, Superfluidity, and Topological Signatures

    Science.gov (United States)

    Rosenberg, Peter; Shi, Hao; Zhang, Shiwei

    2017-12-01

    We present an ab initio, numerically exact study of attractive fermions in square lattices with Rashba spin-orbit coupling. The ground state of this system is a supersolid, with coexisting charge and superfluid order. The superfluid is composed of both singlet and triplet pairs induced by spin-orbit coupling. We perform large-scale calculations using the auxiliary-field quantum Monte Carlo method to provide the first full, quantitative description of the charge, spin, and pairing properties of the system. In addition to characterizing the exotic physics, our results will serve as essential high-accuracy benchmarks for the intense theoretical and especially experimental efforts in ultracold atoms to realize and understand an expanding variety of quantum Hall and topological superconductor systems.

  15. Induced dipole-dipole coupling between two atoms at a migration resonance

    Science.gov (United States)

    Kaur, Maninder; Mian, Mahmood

    2018-05-01

    Results of numerical simulations for the resonant energy exchange phenomenon called Migration reaction between two cold Rydberg atoms are presented. The effect of spatial interatomic distance on the onset of peculiar coherent mechanism is investigated. Observation of Rabi-like population inversion oscillation at the resonance provides a clear signature of dipole induced exchange of electronic excitations between the atoms. Further we present the results for the dependence of expectation value of the interaction hamiltonian on the interatomic distance, which is responsible for energy exchange process. The results of this observation endorse the range of inter atomic distance within which the excitation exchange process occurs completely or partially. Migration process enhance the Rydberg-Rydberg interaction in the absence of an external field, under the condition of the zero permanent dipole moments. Our next observation sheds light on the fundamental mechanism of induced electric fields initiated by the oscillating dipoles in such energy exchange processes. We explore the dependence of induced electric field on the interatomic distance and angle between the dipoles highlighting the inverse power law dependence and anisotropic property of the field. We put forward an idea to utilise the coherent energy exchange process to build efficient and fast energy transfer channels by incorporating more atoms organised at successive distances with decreasing distance gradient.

  16. Spontaneous excitation of a static multilevel atom coupled with electromagnetic vacuum fluctuations in Schwarzschild spacetime

    International Nuclear Information System (INIS)

    Zhou Wenting; Yu Hongwei

    2012-01-01

    We study the spontaneous excitation of a radially polarized static multilevel atom outside a spherically symmetric black hole in multipolar interaction with quantum electromagnetic fluctuations in the Boulware, Unruh and Hartle-Hawking vacuum states. We find that spontaneous excitation does not occur in the Boulware vacuum, and, in contrast to the scalar field case, the spontaneous emission rate is not well behaved at the event horizon as a result of the blow-up of the proper acceleration of the static atom. However, spontaneous excitation can take place both in the Unruh and the Hartle-Hawking vacua as if there were thermal radiation from the black hole. Distinctive features in contrast to the scalar field case are the existence of a term proportional to the proper acceleration squared in the rate of change of the mean atomic energy in the Unruh and the Hartle-Hawking vacua and the structural similarity in the spontaneous excitation rate between the static atoms outside a black hole and uniformly accelerated ones in a flat space with a reflecting boundary, which is particularly dramatic at the event horizon where a complete equivalence exists. (paper)

  17. Reactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer.

    Science.gov (United States)

    Anglada, Josep M; Crehuet, Ramon; Adhikari, Sarju; Francisco, Joseph S; Xia, Yu

    2018-02-14

    Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH 3 , -NH 2 , -C(O)OH, -CN, and -NO 2 ). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H 2 O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH 3 SSH being the most reactive species found in this study (overall rate constant: 4.55 × 10 12 M -1 s -1 ). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.

  18. Phase-space curvature in spin-orbit-coupled ultracold atomic systems

    Science.gov (United States)

    Armaitis, J.; Ruseckas, J.; Anisimovas, E.

    2017-04-01

    We consider a system with spin-orbit coupling and derive equations of motion which include the effects of Berry curvatures. We apply these equations to investigate the dynamics of particles with equal Rashba-Dresselhaus spin-orbit coupling in one dimension. In our derivation, the adiabatic transformation is performed first and leads to quantum Heisenberg equations of motion for momentum and position operators. These equations explicitly contain position-space, momentum-space, and phase-space Berry curvature terms. Subsequently, we perform the semiclassical approximation and obtain the semiclassical equations of motion. Taking the low-Berry-curvature limit results in equations that can be directly compared to previous results for the motion of wave packets. Finally, we show that in the semiclassical regime, the effective mass of the equal Rashba-Dresselhaus spin-orbit-coupled system can be viewed as a direct effect of the phase-space Berry curvature.

  19. Microwave-to-optical frequency conversion with a Rydberg atom coupled to a coplanar waveguide

    Science.gov (United States)

    Gard, Bryan; Jacobs, Kurt; McDermott, Robert; Saffman, Mark

    2017-04-01

    A primary candidate for converting quantum information from microwave to optical frequencies is the use of Rydberg states of a single atom trapped near a surface. The fact that the Rydberg states possess both large electric dipole moments and microwave transition frequencies allows them to interact with superconducting mesoscopic circuits. By considering a concrete example, that of a Cesium atom, and using numerical search methods to optimize the control protocols, we determine the fidelities and transmission rates that could be achievable with such a device. We show that while protocols that exploit the adiabatic STIRAP mechanism provide the best raw transfer fidelities, the fastest communication speeds can be obtained by using heralding, which allows one to remove the adiabatic constraint. Support from Oak Ridge Associated Universities.

  20. Coupling n-level Atoms with l-modes of Quantised Light in a Resonator

    International Nuclear Information System (INIS)

    Castaños, O; Cordero, S; Nahmad-Achar, E; López-Peña, R

    2016-01-01

    We study the quantum phase transitions associated to the Hamiltonian of a system of n-level atoms interacting with l modes of electromagnetic radiation in a resonator. The quantum phase diagrams are determined in analytic form by means of a variational procedure where the test function is constructed in terms of a tensorial product of coherent states describing the matter and the radiation field. We demonstrate that the system can be reduced to a set of Dicke models. (paper)

  1. Analytical applications of atomic spectroscopy, with particular reference to inductively coupled plasma emission analysis of coal and fly ash

    International Nuclear Information System (INIS)

    Pougnet, M.A.B.

    1983-08-01

    This thesis outlines the analytical applications of atomic emission and absorption spectroscopy to a variety of materials. Special attention was directed to the analysis of coal and coal ashes. A simple slurry sampling technique was developed and used to determine V, Ni, Co, Mo and Mn in the National Bureau of Standards Standard Reference Materials (NBS-SRM) coals 1632a and 1635 by furnace atomic absorption spectroscopy (FAAS). Coal and fly ash were analysed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The determination of B, Be, Li, C, K and other trace elements by ICP-AES was investigated. Analytical methods were developed for the analysis of coal, fly ash and water samples. Fusion with sodium carbonate and a digestion bomb dissolution method were compared for the determination of boron in a South African boron-rich mineral (Kornerupine). Eight elements were determined in 10 industrial water samples from a power plant. Ca, Mg, Si and B were determined by ICP-AES and V, Ni, Co and Mo by FAAS. Various problems encountered during the course of the work and interferences in ICP-AES analysis are discussed. Some recommendations concerning method development and routine analysis by this technique are suggested

  2. Inductively coupled plasma-atomic emission spectrometry: analytical assessment of the technique at the beginning of the 90's

    International Nuclear Information System (INIS)

    Sanz-Medel, A.

    1991-01-01

    The main application of the inductively coupled plasma (ICP) today is in atomic emission spectroscopy (AES), as an excitation spectrochemical source, although uses of an ICP for fluorescence as just an atomizer, and specially for mass spectrometry, as an ionization source, are rocketing in the last few years. Since its inception, only a quarter of a century ago, ICP-AES has rapidly evolved to one of the preferred routine analytical techniques for convenient determination of many elements with high speed, at low levels and in the most varied samples. Perhaps its comparatively high kinetic temperature (capable of atomizing virtually every compound of any sample), its high excitation and ionization temperatures, and its favourable spatial structure at the core of the ICP success. By now, the ICP-AES can be considered as having achieved maturity in that a huge amount of analytical problems can be tackled with this technique, while no major or fundamental changes have been adopted for several years. Despite this fact, important driving forces are still in operation to further improve the ICP-AES sensitivity, selectivity, precision, sample throughput, etc. Moreover, proposals to extend the scope of the technique to traditionally elusive fields (e.g. non-metals and organic compound analysis) are also appearing in the recent literature. In this paper the 'state of the art', the last developments and the expectations in trying to circumvent the limitations of the ICP-AES (on the light of literature data and personal experience) are reviewed. (author)

  3. Atlas of atomic spectral lines of plutonium emitted by an inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Edelson, M.C.; DeKalb, E.L.; Winge, R.K.; Fassel, V.A.

    1986-09-01

    Optical emission spectra from high-purity Pu-242 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 2280 to 7008 Angstrom wavelength range are presented along with general commentary on ICP-Pu spectroscopy.

  4. Classical-quantal coupling in the capture of muons by hydrogen atoms

    International Nuclear Information System (INIS)

    Kwong, N.H.; Garcia, J.D.

    1989-01-01

    We describe a self-consistent semiclassical approach to the problem of muon capture by hydrogen atoms. The dynamics of the heavier muon and proton are treated classically, and the electron quantally, with the potentials for both being self-consistently determined. Our numerical results are compared to classical-trajectory Monte Carlo (CTMC) and adiabatic ionisation (AI) results. Our capture cross sections are larger at low energy but fall more rapidly to zero. Our results provide the corrections to the dynamics beyond the adiabatic picture, which were missing in other approaches; interesting questions concerning the quantal nature of the events are discussed. (author)

  5. Theory of neutron scattering by atomic electrons: jj-coupling scheme

    International Nuclear Information System (INIS)

    Balcar, E.; Lovesey, S.W.; Uppsala Univ.

    1991-02-01

    Expressions are reported for the matrix element of the neutron-electron interaction for atomic electrons in a j n configuration, appropriate for palladium and platinum group compounds and rare earth and actinide materials. For the latter, f-electron systems, an isolated ion is a realistic approximation. Compact expressions are provided, together with tables of reduced matrix elements, for elastic and inelastic structure factors, and compared with the corresponding Russell-Saunders expressions. Inelastic scattering by two f-electrons, including non-equivalent states, is presented in detail. (author)

  6. Searching for Supersolidity in Ultracold Atomic Bose Condensates with Rashba Spin-Orbit Coupling

    Science.gov (United States)

    Liao, Renyuan

    2018-04-01

    We developed a functional integral formulation for the stripe phase of spinor Bose-Einstein condensates with Rashba spin-orbit coupling. The excitation spectrum is found to exhibit double gapless band structures, identified to be two Goldstone modes resulting from spontaneously broken internal gauge symmetry and translational invariance symmetry. The sound velocities display anisotropic behavior with the lower branch vanishing in the direction perpendicular to the stripe in the x -y plane. At the transition point between the plane-wave phase and the stripe phase, physical quantities such as fluctuation correction to the ground-state energy and quantum depletion of the condensates exhibit discontinuity, characteristic of the first-order phase transition. Despite strong quantum fluctuations induced by Rashba spin-orbit coupling, we show that the supersolid phase is stable against quantum depletion. Finally, we extend our formulation to finite temperatures to account for interactions between excitations.

  7. Output field-quadrature measurements and squeezing in ultrastrong cavity-QED

    Science.gov (United States)

    Stassi, Roberto; Savasta, Salvatore; Garziano, Luigi; Spagnolo, Bernardo; Nori, Franco

    2016-12-01

    We study the squeezing of output quadratures of an electro-magnetic field escaping from a resonator coupled to a general quantum system with arbitrary interaction strengths. The generalized theoretical analysis of output squeezing proposed here is valid for all the interaction regimes of cavity-quantum electrodynamics: from the weak to the strong, ultrastrong, and deep coupling regimes. For coupling rates comparable or larger then the cavity resonance frequency, the standard input-output theory for optical cavities fails to calculate the variance of output field-quadratures and predicts a non-negligible amount of output squeezing, even if the system is in its ground state. Here we show that, for arbitrary interaction strength and for general cavity-embedded quantum systems, no squeezing can be found in the output-field quadratures if the system is in its ground state. We also apply the proposed theoretical approach to study the output squeezing produced by: (i) an artificial two-level atom embedded in a coherently-excited cavity; and (ii) a cascade-type three-level system interacting with a cavity field mode. In the latter case the output squeezing arises from the virtual photons of the atom-cavity dressed states. This work extends the possibility of predicting and analyzing the results of continuous-variable optical quantum-state tomography when optical resonators interact very strongly with other quantum systems.

  8. Atom-Photon Coupling from Nitrogen-vacancy Centres Embedded in Tellurite Microspheres

    Science.gov (United States)

    Ruan, Yinlan; Gibson, Brant C.; Lau, Desmond W. M.; Greentree, Andrew D.; Ji, Hong; Ebendorff-Heidepriem, Heike; Johnson, Brett C.; Ohshima, Takeshi; Monro, Tanya M.

    2015-06-01

    We have developed a technique for creating high quality tellurite microspheres with embedded nanodiamonds (NDs) containing nitrogen-vacancy (NV) centres. This hybrid method allows fluorescence of the NVs in the NDs to be directly, rather than evanescently, coupled to the whispering gallery modes of the tellurite microspheres at room temperature. As a demonstration of its sensing potential, shifting of the resonance peaks is also demonstrated by coating a sphere surface with a liquid layer. This new approach is a robust way of creating cavities for use in quantum and sensing applications.

  9. Multiscale development of a fission gas thermal conductivity model: Coupling atomic, meso and continuum level simulations

    International Nuclear Information System (INIS)

    Tonks, Michael R.; Millett, Paul C.; Nerikar, Pankaj; Du, Shiyu; Andersson, David; Stanek, Christopher R.; Gaston, Derek; Andrs, David; Williamson, Richard

    2013-01-01

    Fission gas production and evolution significantly impact the fuel performance, causing swelling, a reduction in the thermal conductivity and fission gas release. However, typical empirical models of fuel properties treat each of these effects separately and uncoupled. Here, we couple a fission gas release model to a model of the impact of fission gas on the fuel thermal conductivity. To quantify the specific impact of grain boundary (GB) bubbles on the thermal conductivity, we use atomistic and mesoscale simulations. Atomistic molecular dynamic simulations were employed to determine the GB thermal resistance. These values were then used in mesoscale heat conduction simulations to develop a mechanistic expression for the effective GB thermal resistance of a GB containing gas bubbles, as a function of the percentage of the GB covered by fission gas. The coupled fission gas release and thermal conductivity model was implemented in Idaho National Laboratory’s BISON fuel performance code to model the behavior of a 10-pellet LWR fuel rodlet, showing how the fission gas impacts the UO 2 thermal conductivity. Furthermore, additional BISON simulations were conducted to demonstrate the impact of average grain size on both the fuel thermal conductivity and the fission gas release

  10. Determination of daily intake of elements from Philippine total diet samples using inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Leon, G.C. de; Shiraishi, K.; Kawamura, H.; Igaraishi, Y.; Palattao, M.V.; Azanon, E.M.

    1990-10-01

    Total diet samples were analyzed for major elements (Na, K, Ca, Mg, P) and some minor trace elements (Fe, Zn, Mn, Al, Sr, Cu, Ba, Yt) using inductively coupled plasma-atomic emission spectrometry (ICP-AES). Samples analyzed were classified into sex and age groups. Results for some elements (Na, K, Mg, Zn, Cu, Mn) were compared with values from Bataan dietary survey calculated using the Philippine composition table. Exceot for Na, analytical results were similar to calculated values. Analytical results for Ca and Fe were also compared with the values from Food and Nutrition Research Institute. In general, values obtained in the study were lower than the FNRI values. Comparison of the analytical and calculated results with the Japanese and ICRP data showed that Philippine values were lower than foreign values. (Auth.). 22 refs., 9 tabs

  11. Atomic motions in the αβ-region of glass-forming polymers: molecular versus mode coupling theory approach

    International Nuclear Information System (INIS)

    Colmenero, Juan; Narros, Arturo; Alvarez, Fernando; Arbe, Arantxa; Moreno, Angel J

    2007-01-01

    We present fully atomistic molecular dynamics simulation results on a main-chain polymer, 1,4-polybutadiene, in the merging region of the α- and β-relaxations. A real-space analysis reveals the occurrence of localized motions ('β-like') in addition to the diffusive structural relaxation. A molecular approach provides a direct connection between the local conformational changes reflected in the atomic motions and the secondary relaxations in this polymer. Such local processes occur just in the time window where the β-process of the mode coupling theory is expected. We show that the application of this theory is still possible and yields an unusually large value of the exponent parameter. This result might originate from the competition between two mechanisms for dynamic arrest: intermolecular packing and intramolecular barriers for local conformational changes ('β-like')

  12. Quasi-spin method in the case of j-j coupling in a shell of equivalent atomic electrons

    International Nuclear Information System (INIS)

    Savichyus, E.G.; Kanyauskas, Yu.M.; Rudzikas, Z.B.

    1979-01-01

    Mathematical apparatus of the theory of multielectronic atoms and ions in the case of j-j coupling in a shell of equivalent electrons is built. Quasi-spin method is used. The scheme of the investigation is the following: 1. Tensorial properties of the operators in quasi-spin space are considered. 2. Matrix elements of these operators are built and with the help of Wigner-Eckart theorem the dependence of the matrix elements upon the projection, including the quasi-spin projection, of the quantity of electrons in jj-subshell, is determined. 3. Subgenealogical coefficients (genealogical coefficients presented in quasi-spin space) are determined and some of their properties are investigated. The tables of subgenealogical coefficients for j=5/2, 7/2 are presented

  13. Accuracy and Precision in Elemental Analysis of Environmental Samples using Inductively Coupled Plasma-Atomic Emission Spectrometry

    International Nuclear Information System (INIS)

    Quraishi, Shamsad Begum; Chung, Yong-Sam; Choi, Kwang Soon

    2005-01-01

    Inductively Coupled Plasma-Atomic Emission Spectrometry followed by micro-wave digestion have been performed on different environmental Certified Reference Materials (CRMs). Analytical results show that accuracy and precision in ICP-AES analysis were acceptable and satisfactory in case of soil and hair CRM samples. The relative error of most of the elements in these two CRMs is within 10% with few exceptions and coefficient of variation is also less than 10%. Z-score as an analytical performance was also within the acceptable range (±2). ICP-AES was found as an inadequate method for Air Filter CRM due to incomplete dissolution, low concentration of elements and very low mass of the sample. However, real air filter sample could have been analyzed with high accuracy and precision by increasing sample mass during collection. (author)

  14. Extraction of butyltins from sediments and their determination by liquid chromatography interfaced to inductively coupled plasma atomic emission detector

    International Nuclear Information System (INIS)

    Rivaro, P.; Frache, R.

    2000-01-01

    A liquid-liquid extraction of the butyltin compounds from sediment, suitable for their subsequent following determination by high performance liquid chromatography-hydride generation inductively coupled plasma atomic emission detector system, is proposed. Recoveries of 86%, 80% and 42% for tributyltin (TBT), dibutyltin (DBT) and monobutyltin (MBT) respectively were achieved. The relative detection limits of butyltin compounds by this method ranged from 27 to 62 ng of tin per gram of dry sediment. The method was applied to real sediment samples collected in the Venice lagoon (Italy). The results showed that, despite the restrictions on the use of butyltin contained in antifoulting paints, a considerable amount of organotin compounds is still present in Venice sediments [it

  15. Semi-automatic determination of tin in marine materials by continuous flow hydride generation inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Feng Yonglai; Narasaki, Hisataki; Chen Hongyuan; Tian Liching

    1997-01-01

    A semi-automated continuous flow hydride generation system with inductively coupled plasma atomic emission spectrometry (ICP-AES) was used for the determination of tin in marine materials. The effects of acids (H 2 SO 4 and HCl) were studied. The analytical parameters were thoroughly investigated. Under optimized conditions, the detection limit is 0.4 ng/ml. Interferences from transition elements were investigated and seven masking reagents were tested. L-cysteine hydrochloride monohydrate (1%) was used to mask the interferences from foreign ions. Finally, the accuracy, checked with a marine standard reference material obtained from the National Research Council (NRC), was within the certified value. (orig.). With 6 figs., 4 tabs

  16. Interlayer Exchange Coupling: A General Scheme Turning Chiral Magnets into Magnetic Multilayers Carrying Atomic-Scale Skyrmions.

    Science.gov (United States)

    Nandy, Ashis Kumar; Kiselev, Nikolai S; Blügel, Stefan

    2016-04-29

    We report on a general principle using interlayer exchange coupling to extend the regime of chiral magnetic films in which stable or metastable magnetic Skyrmions can appear at a zero magnetic field. We verify this concept on the basis of a first-principles model for a Mn monolayer on a W(001) substrate, a prototype chiral magnet for which the atomic-scale magnetic texture is determined by the frustration of exchange interactions, impossible to unwind by laboratory magnetic fields. By means of ab initio calculations for the Mn/W_{m}/Co_{n}/Pt/W(001) multilayer system we show that for certain thicknesses m of the W spacer and n of the Co reference layer, the effective field of the reference layer fully substitutes the required magnetic field for Skyrmion formation.

  17. Limit Cycles and Chaos via Quasi-periodicity in Two Coupled Ensembles of Ultra-cold Atoms.

    Science.gov (United States)

    Patra, Aniket; Yuzbashyan, Emil; Altshuler, Boris

    We study the dynamics of two mesoscopic ensembles of ultra-cold two level atoms, which are collectively coupled to an optical cavity and are being pumped incoherently to the excited state. Whereas the time independent steady states are well understood, little is known about the time dependent ones. We explore and categorize various time dependent steady states, e.g. limit cycles and chaotic behavior. We draw a non-equilibrium phase diagram indicating different steady-state behaviors in different parts of the parameter space. We discuss the synchronization of the two ensembles in the time dependent steady states. We also show the onset of chaos via quasi-periodicity. The rich time dependent steady-state behavior, especially the existence of chaos, opens up possibilities for several engineering applications. Supported in part by the University and Louis Bevier Graduate Fellowship.

  18. Zinc, lead and copper in human teeth measured by induced coupled argon plasma atomic emission spectroscopy (ICP-AES)

    Energy Technology Data Exchange (ETDEWEB)

    Chew, L.T.; Bradley, D.A. E-mail: D.A.Bradley@exeter.ac.uk; Mohd, Y.; Jamil, M

    2000-11-15

    Inductively Coupled Argon Plasma Atomic Emission Spectroscopy (ICP-AES) has been used to determine Pb, Zn and Cu levels in 47 exfoliated human teeth (all of which required extraction for orthodontic reasons). Lead concentrations for the group were 1.7 {mu}g (g tooth mass){sup -1} to 40.5 {mu}g (g tooth mass){sup -1}, with a median of 9.8 {mu}g (g tooth mass){sup -1}. A median lead level in excess of the group value was found for the teeth of six lorry drivers who were included in the study. A more significant enhancement was found for the seven subjects whose age was in excess of 60 years. The median values for Zn and Cu were 123.0 and 0.6 {mu}g (g tooth mass){sup -1} respectively. Present values for tooth-Zn are lower than published data for other ethnic groups.

  19. Standard test method for determining elements in waste streams by inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This test method covers the determination of trace, minor, and major elements in waste streams by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) following an acid digestion of the specimen. Waste streams from manufacturing processes of nuclear and nonnuclear materials can be analyzed. This test method is applicable to the determination of total metals. Results from this test method can be used to characterize waste received by treatment facilities and to formulate appropriate treatment recipes. The results are also usable to process control within waste treatment facilities. This test method is applicable only to waste streams that contain radioactivity levels which do not require special personnel or environmental protection. A list of the elements determined in waste streams and the corresponding lower reporting limit is included

  20. Critical evaluation of analytical performance of atomic absorption spectrometry and inductively coupled plasma mass spectrometry for mercury determination

    International Nuclear Information System (INIS)

    Krata, A.; Bulska, E.

    2005-01-01

    The analytical performance of cold vapor atomic absorption spectrometry (CV AAS), graphite furnace atomic absorption spectrometry (GF AAS) and inductively coupled plasma mass spectrometry (ICP-MS) for mercury determination have been investigated with the use of two reference materials SRM 2710 Montana I Soil and BCR-144R (sewage sludge from domestic origin). The digestion conditions and their influence on determination of mercury have been studied. Samples were decomposed by microwave digestion in closed vessels with the use of HCl alone or mixture of HCl+HNO 3 +HF. The digestion solutions were analyzed by CV AAS using NaBH 4 as a reducing agent, by GF AAS with Pd or mixture of Pd/Rh as modifiers and by ICP-MS with Rh as internal standard. In the case of CV AAS, results were not dependent on digestion conditions. In the case of GF AAS and ICP-MS, results depended significantly on digestion conditions; in both cases, the use of the mixture of acids as defined above suppressed the signal of mercury. Therefore, in those cases, the microwave digestion with HCl is recommended. Detection limits of 0.003, 0.01 and 0.2 μg g -1 were achieved by ICP-MS, CV AAS and GF AAS, respectively

  1. Analysis of bauxite by inductively coupled plasma-atomic emission spectroscopy

    Science.gov (United States)

    Barnes, Ramon M.; Mahanti, Himansu S.

    Methods are described for the analysis of bauxite by inductively coupled plasma (ICP) emission spectroscopy. Bauxite samples were dissolved either in HCl, HNO 3, and HF at 160°C in all-PTFE bomb or fused with NaOH. Spectral lines were selected after examination of experimental wavelength scans at each potential analyte wavelength. Limits of detection, background equivalent concentration, and analytical figures of merit were established. The accuracy of the method was confirmed by determining 17 elements in NBS-SRM bauxite samples. Silicon in HF solutions was analyzed using a modified ICP torch with a graphite injector tube, an inert nebulizer using PTFE capillary tubes, and a PTFE spray chamber.

  2. Atlas of Atomic Spectral Lines of Neptunium Emitted by Inductively Coupled Plasma

    Energy Technology Data Exchange (ETDEWEB)

    DeKalb, E.L. and Edelson, M. C.

    1987-08-01

    Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230-700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data. The Ames Laboratory Nuclear Safeguards and Security Program has been charged with the task of developing optical spectroscopic methods to analyze the composition of spent nuclear fuels. Such materials are highly radioactive even after prolonged 'cooling' and are chemically complex. Neptunium (Np) is a highly toxic by-product of nuclear power generation and is found, in low abundance, in spent nuclear fuels. This atlas of the optical emission spectrum of Np, as produced by an inductively coupled plasma (ICP) spectroscopic source, is part of a general survey of the ICP emission spectra of the actinide elements. The ICP emission spectrum of the actinides originates almost exclusively from the electronic relaxation of excited, singly ionized species. Spectral data on the Np ion emission spectrum (i.e., the Np II spectrum) have been reported by Tomkins and Fred [1] and Haaland [2]. Tomkins and Fred excited the Np II spectrum with a Cu spark discharge and identified 114 Np lines in the 265.5 - 436.3 nm spectral range. Haaland, who corrected some spectral line misidentifications in the work of Tomkins and Fred, utilized an enclosed Au spark discharge to excite the Np II spectrum and reported 203 Np lines within the 265.4 - 461.0 nm wavelength range.

  3. Atlas of Atomic Spectral Lines of Neptunium Emitted by an Inductively Coupled Plasma

    International Nuclear Information System (INIS)

    DeKalb, E.L.; Edelson, M.C.

    1987-01-01

    Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230-700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data. The Ames Laboratory Nuclear Safeguards and Security Program has been charged with the task of developing optical spectroscopic methods to analyze the composition of spent nuclear fuels. Such materials are highly radioactive even after prolonged 'cooling' and are chemically complex. Neptunium (Np) is a highly toxic by-product of nuclear power generation and is found, in low abundance, in spent nuclear fuels. This atlas of the optical emission spectrum of Np, as produced by an inductively coupled plasma (ICP) spectroscopic source, is part of a general survey of the ICP emission spectra of the actinide elements. The ICP emission spectrum of the actinides originates almost exclusively from the electronic relaxation of excited, singly ionized species. Spectral data on the Np ion emission spectrum (i.e., the Np II spectrum) have been reported by Tomkins and Fred (1) and Haaland (2). Tomkins and Fred excited the Np II spectrum with a Cu spark discharge and identified 114 Np lines in the 265.5 - 436.3 nm spectral range. Haaland, who corrected some spectral line misidentifications in the work of Tomkins and Fred, utilized an enclosed Au spark discharge to excite the Np II spectrum and reported 203 Np lines within the 265.4 - 461.0 nm wavelength range.

  4. Mercury speciation in thawed out and refrozen fish samples by gas chromatography coupled to inductively coupled plasma mass spectrometry and atomic fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krystek, Petra; Ritsema, Rob [National Institute for Public Health and the Environment (RIVM), Laboratory for Analytical Chemistry, Bilthoven (Netherlands)

    2005-01-01

    Different sub-sampling procedures were applied for the determination of mercury species (as total mercury Hg, methylmercury MeHg{sup +} and inorganic mercury Hg{sup 2+}) in frozen fish meat. Analyses were carried out by two different techniques. After the sample material was pre-treated by microwave digestion, atomic fluorescence spectroscopy (AFS) was used for the determination of total Hg. Speciation analysis was performed according to the following procedure: dissolution of sample material in tetramethylammonium hydroxide (TMAH), derivatisation with sodium tetraethylborate (NaBEt{sub 4}), extraction into isooctane and measurement with gas chromatography inductively coupled plasma mass spectrometry (GC-ICPMS) for the identification and quantification of methylmercury (MeHg{sup +}) and inorganic mercury (Hg{sup 2+}). The concentration range of total Hg measured in the shark fillets is between 0.9 and 3.6 {mu}g g{sup -1} thawed out shark fillet. Speciation analysis leads to {>=}94% Hg present as MeHg{sup +}. Homogeneity, storage conditions and stability of analytical species and sample materials have great influence on analytical results. Sub-sampling of half-frozen/partly thawed out fish and analysis lead to significantly different concentrations, which are on average a factor of two lower. (orig.)

  5. Internal standardization in atomic-emission spectrometry using inductively coupled plasma

    International Nuclear Information System (INIS)

    Moore, G.L.

    1985-01-01

    The principle of internal standardization has been used in quantitative analytical emission spectroscopy since 1925 to minimize the errors arising from fluctuations in sample preparation, excitation-source conditions, and detection parameters. Although modern spectroscopic excitation sources are far more stable and electronic detection methods are more precise than before, the system for the introduction of the sample in spectrometric analysis using inductively coupled plasma (ICP) introduces significant errors, and internal standardization can still play a useful role in improving the overall precision of the analytical results. The criteria for the selection of the elements to be used as internal standards in arc and spark spectrographic analysis apply to a much lesser extent in ICP-spectrometric analysis. Internal standardization is recommended for use in routine ICP-simultaneous spectrometric analysis to improve its accuracy and precision and to provide a monitor for the reassurance of the analyst. However, the selection of an unsuitable reference element can result in misuse of the principle of internal standardization and, although internal standardization can be applied when a sequential monochromator is used, the main sources of error will not be minimized

  6. Synthesis of Well-Defined Three-Arm Star-Branched Polystyrene through Arm-First Coupling Approach by Atom Transfer Radical Polymerization

    OpenAIRE

    Shahabuddin, Syed; Hamime Ismail, Fatem; Mohamad, Sharifah; Muhamad Sarih, Norazilawati

    2015-01-01

    Here we describe a simple route to synthesize three-arm star-branched polystyrene. Atom transfer radical polymerization technique has been utilized to yield branched polystyrene involving Williamson coupling strategy. Initially a linear polymeric chain of predetermined molecular weight has been synthesized which is further end-functionalized into a primary alkyl bromide moiety, a prime requisition for Williamson reaction. The end-functionalized polymer is then coupled using 1,1,1-tris(4-hydro...

  7. Recent advances in on-line coupling of capillary electrophoresis to atomic absorption and fluorescence spectrometry for speciation analysis and studies of metal-biomolecule interactions

    International Nuclear Information System (INIS)

    Li Yan; Yin Xuebo; Yan Xiuping

    2008-01-01

    Speciation information is vital for the understanding of the toxicity, mobility and bioavailability of elements in environmental or biological samples. Hyphenating high resolving power of separation techniques and element-selective detectors provides powerful tools for studying speciation of trace elements in environmental and biological systems. During the last five years several novel hybrid techniques based on capillary electrophoresis (CE) and atomic spectrometry have been developed for speciation analysis and metal-biomolecule interaction study in our laboratory. These techniques include CE on-line coupled with atomic fluorescence spectrometry (AFS), chip-CE on-line coupled with AFS, CE on-line coupled with flame heated quartz furnace atomic absorption spectrometry (FHF-AAS), and CE on-line coupled with electrothermal atomic absorption spectrometry (ETAAS). The necessity for the development of these techniques, their interface design, and applications in speciation analysis and metal-biomolecule interaction study are reviewed. The advantages and limitations of the developed hybrid techniques are critically discussed, and further development is also prospected

  8. Evaluation of an inductively-coupled plasma with an extended-sleeve torch as an atomization cell for laser-excited fluorescence spectrometry.

    Science.gov (United States)

    Kosinski, M A; Uchida, H; Winefordner, J D

    1983-05-01

    An inductively-coupled plasma (ICP) with an extended-sleeve torch has been evaluated as an atomization cell for laser-excited fluorescence spectrometry. Limits of detection for 20 lines are given. The detection power is almost equivalent to that obtained by excitation with a hollow-cathode lamp. Interelement effects and spectral interferences are discussed.

  9. Prediction of the transition energies of atomic No and Lr by the intermediate Hamiltonian coupled cluster method

    International Nuclear Information System (INIS)

    Borschevsky, A.; Eliav, E.; Kaldor, U.; Vilkas, M.J.; Ishikawa, Y.

    2007-01-01

    Complete text of publication follows: Measurements of the spectroscopic properties of the superheavy elements present a serious challenge to the experimentalist. Their short lifetimes and the low quantities of their production necessitate reliable prediction of transition energies to avoid the need for broad wavelength scans and to assist in identifying the lines. Thus, reliable high-accuracy calculations are necessary prior and parallel to experimental research. Nobelium and Lawrencium are at present the two most likely candidates for spectroscopic measurements, with the first experiments planned at GSI, Darmstadt. The intermediate Hamiltonian (IH) coupled cluster method is applied to the ionization potentials, electron affinities, and excitation energies of atomic nobelium and lawrencium. Large basis sets are used (37s31p26d21f16g11h6i). All levels of a particular atom are obtained simultaneously by diagonalizing the IH matrix. The matrix elements correspond to all excitations from correlated occupied orbitals to virtual orbitals in a large P space, and are 'dressed' by folding in excitations to higher virtual orbitals (Q space) at the coupled cluster singles-and-doubles level. Lamb-shift corrections are included. The same approach was applied to the lighter homologues of Lr and No, lutetium and ytterbium, for which many transition energies are experimentally known, in order to assess the accuracy of the calculation. The average absolute error of 20 excitation energies of Lu is 423 cm -1 , and the error limits for Lr are therefore put at 700 cm -1 . Predicted Lr excitations with large transition moments in the prime range for the planned experiment, 20,000-30,000 cm -1 , are 7p → 8s at 20,100 cm -1 and 7p →p 7d at 28,100 cm -1 . In case of Yb, the calculated ionization potential was within 20 cm -1 of the experiment, and the average error of the 20 lowest calculated excitations was about 300 cm -1 . Hence, the error limits of nobelium are set to 800 cm -1

  10. Couplings

    Science.gov (United States)

    Stošić, Dušan; Auroux, Aline

    Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.

  11. Standard test method for determining elements in waste Streams by inductively coupled plasma-atomic emission spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of trace, minor, and major elements in waste streams by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) following an acid digestion of the sample. Waste streams from manufacturing processes of nuclear and non-nuclear materials can be analyzed. This test method is applicable to the determination of total metals. Results from this test method can be used to characterize waste received by treatment facilities and to formulate appropriate treatment recipes. The results are also usable in process control within waste treatment facilities. 1.2 This test method is applicable only to waste streams that contain radioactivity levels that do not require special personnel or environmental protection. 1.3 A list of the elements determined in waste streams and the corresponding lower reporting limit is found in Table 1. 1.4 This test method has been used successfully for treatment of a large variety of waste solutions and industrial process liquids. The com...

  12. Determination of the mineral compositions of in six beans by microwave digestion with inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Yan, Q.; Yang, L.; Chen, S.; Liu, X.; Ma, X.

    2012-01-01

    In the study, microwave digestion procedure optimized was applied for digesting beans. Nineteen mineral element concentrations were determined by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The result indicated detection limits for the 19 elements were less than 0.0998, and relative standard deviations were 1.01% - 5.02% for all the elements, and recoveries were 90.89% - 104.55% by adding standard recovery experiment. The study showed the beans selected were abundant in mineral element contents in human nutrition, determination mineral element contents by ICP-AES with microwave digestion technology were a lot of merits of small environmental pollution, fast and accurate determination result, which could satisfy the examination request of bean samples. The results provided evidence that the six beans were a good source of K, P, Mg and Ca. This study is to give important reference value to people due to individual differences by adjusting the dietary to complement the different mineral elements. (author)

  13. Standard practice for analysis of aqueous leachates from nuclear waste materials using inductively coupled plasma-atomic emission spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice is applicable to the determination of low concentration and trace elements in aqueous leachate solutions produced by the leaching of nuclear waste materials, using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). 1.2 The nuclear waste material may be a simulated (non-radioactive) solid waste form or an actual solid radioactive waste material. 1.3 The leachate may be deionized water or any natural or simulated leachate solution containing less than 1 % total dissolved solids. 1.4 This practice should be used by analysts experienced in the use of ICP-AES, the interpretation of spectral and non-spectral interferences, and procedures for their correction. 1.5 No detailed operating instructions are provided because of differences among various makes and models of suitable ICP-AES instruments. Instead, the analyst shall follow the instructions provided by the manufacturer of the particular instrument. This test method does not address comparative accuracy of different devices...

  14. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry

    International Nuclear Information System (INIS)

    Frentiu, Tiberiu; Mihaltan, Alin I.; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-01-01

    Highlights: → Use of a miniaturized analytical system with microtorch plasma for Hg determination. → Determination of Hg in non- and biodegradable materials using cold vapor generation. → Figures of merit and advantages of the miniaturized system for Hg determination. - Abstract: A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min -1 Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl 2 reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO 3 -H 2 SO 4 mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml -1 or 0.08 μg g -1 in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg -1 , while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level).

  15. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry.

    Science.gov (United States)

    Frentiu, Tiberiu; Mihaltan, Alin I; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-10-15

    A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min(-1) Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl(2) reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO(3)-H(2)SO(4) mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml(-1) or 0.08 μg g(-1) in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg(-1), while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level). Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Frentiu, Tiberiu, E-mail: ftibi@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Mihaltan, Alin I., E-mail: alinblaj2005@yahoo.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Ponta, Michaela, E-mail: mponta@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Darvasi, Eugen, E-mail: edarvasi@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Frentiu, Maria, E-mail: frentiu.maria@yahoo.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Cordos, Emil, E-mail: emilcordos@gmail.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania)

    2011-10-15

    Highlights: {yields} Use of a miniaturized analytical system with microtorch plasma for Hg determination. {yields} Determination of Hg in non- and biodegradable materials using cold vapor generation. {yields} Figures of merit and advantages of the miniaturized system for Hg determination. - Abstract: A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min{sup -1} Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl{sub 2} reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO{sub 3}-H{sub 2}SO{sub 4} mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml{sup -1} or 0.08 {mu}g g{sup -1} in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg{sup -1}, while recovery in two polyethylene certified reference materials in the range 98.7 {+-} 4.5% (95% confidence level).

  17. Fingerprinting of complex mixtures with the use of high performance liquid chromatography, inductively coupled plasma atomic emission spectroscopy and chemometrics

    International Nuclear Information System (INIS)

    Ni Yongnian; Peng Yunyan; Kokot, Serge

    2008-01-01

    The molecular and metal profile fingerprints were obtained from a complex substance, Atractylis chinensis DC-a traditional Chinese medicine (TCM), with the use of the high performance liquid chromatography (HPLC) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) techniques. This substance was used in this work as an example of a complex biological material, which has found application as a TCM. Such TCM samples are traditionally processed by the Bran, Cut, Fried and Swill methods, and were collected from five provinces in China. The data matrices obtained from the two types of analysis produced two principal component biplots, which showed that the HPLC fingerprint data were discriminated on the basis of the methods for processing the raw TCM, while the metal analysis grouped according to the geographical origin. When the two data matrices were combined into a one two-way matrix, the resulting biplot showed a clear separation on the basis of the HPLC fingerprints. Importantly, within each different grouping the objects separated according to their geographical origin, and they ranked approximately in the same order in each group. This result suggested that by using such an approach, it is possible to derive improved characterisation of the complex TCM materials on the basis of the two kinds of analytical data. In addition, two supervised pattern recognition methods, K-nearest neighbors (KNNs) method, and linear discriminant analysis (LDA), were successfully applied to the individual data matrices-thus, supporting the PCA approach

  18. A valence-universal coupled-cluster single- and double-excitations method for atoms: Pt. 3

    International Nuclear Information System (INIS)

    Jankowski, K.; Malinowski, P.

    1994-01-01

    To better understand the problems met when solving the equations of VU-CC approaches in the presence of intruder states, we are concerned with the following aspects of the solvability problem for sets of non-linear equations: the existence and properties of multiple solutions and the attainability of these solutions by means of various numerical methods. Our study is concentrated on the equations obtained for Be within the framework of the recently formulated atomically oriented form of the valence-universal coupled-cluster theory accounting for one- and two-electron excitations (VU-CCSD/R) and based on the complete model space (2s 2 , 2p 2 ). Six pairs of multiple solutions representing four 1 S states are found and discussed. Three of these solutions provide amplitudes describing the 2p 2 1 S state for which the intruder state problem has been considered as extremely serious. Several known numerical methods have been applied to solve the same set of non-linear equations for the two-valence cluster amplitudes. It is shown that these methods perform quite differently in the presence of intruder states, which seems to indicate that the intruder state problem for VU-CC methods is partly caused by the commonly used methods of solving the non-linear equations. (author)

  19. Entanglement and Other Nonclassical Properties of Two Two-Level Atoms Interacting with a Two-Mode Binomial Field: Constant and Intensity-Dependent Coupling Regimes

    International Nuclear Information System (INIS)

    Tavassoly, M.K.; Hekmatara, H.

    2015-01-01

    In this paper, we consider the interaction between two two-level atoms and a two-mode binomial field with a general intensity-dependent coupling regime. The outlined dynamical problem has explicit analytical solution, by which we can evaluate a few of its physical features of interest. To achieve the purpose of the paper, after choosing a particular nonlinearity function, we investigate the quantum statistics, atomic population inversion and at last the linear entropy of the atom-field system which is a good measure for the degree of entanglement. In detail, the effects of binomial field parameters, in addition to different initial atomic states on the temporal behavior of the mentioned quantities have been analyzed. The results show that, the values of binomial field parameters and the initial state of the two atoms influence on the nonclassical effects in the obtained states through which one can tune the nonclassicality criteria appropriately. Setting intensity-dependent coupling function equal to 1 reduces the results to the constant coupling case. By comparing the latter case with the nonlinear regime, we will observe that the nonlinearity disappears the pattern of collapse-revival phenomenon in the evolution of Mandel parameter and population inversion (which can be seen in the linear case with constant coupling), however, more typical collapse-revivals will be appeared for the cross-correlation function in the nonlinear case. Finally, in both linear and nonlinear regime, the entropy remains less than (but close to) 0.5. In other words the particular chosen nonlinearity does not critically affect on the entropy of the system. (paper)

  20. Multimode quantum model of a cw atom laser

    International Nuclear Information System (INIS)

    Hope, J.J.; Haine, S.A.; Savage, C.M.

    2002-01-01

    Full text: Laser cooling allows dilute atomic gases to be cooled to within K of absolute zero. Ultracold gases were first achieved twenty years ago and have since found applications in areas such as spectroscopy, time standards, frequency standards, quantum information processing and atom optics. The atomic analogue of the lasing mode in optical lasers is Bose-Einstein Condensation (BEC), in which a cooled sample of atoms condense into the lowest energy quantum state. This new state of matter was recently achieved in dilute Bose gases in 1995. Atoms coupled out of a BEC exhibit long-range spatial coherence, and provide the coldest atomic source currently available. These atomic sources are called 'atom lasers' because the BEC is analogous to the lasing mode of an optical laser. The high spectral flux from optical lasers is caused by a process called gain-narrowing, which requires continuous wave (cw) operation. Coupling a BEC quickly into an untrapped state forms a coherent atomic beam but it has a spread in momentum as large as the trapped BEC. Coupling the atoms out more slowly reduces the output linewidth at the expense of reducing the overall flux. These atom lasers are equivalent to Q-switched optical lasers. A cw atom laser with gain-narrowing would produce an increasingly monoenergetic output as the flux increased, dramatically improving the spectral flux. A cw atom laser is therefore a major goal of the atom optics community, but there are several theoretical and practical obstacles to understanding the complexities of such a system. The main obstacle to the production of a cw atom laser is the technical difficulties involved in continuously pumping the lasing mode. No complete theory exists which describes a cw atom laser. Complete cw atom laser models require a quantum field description due to their non-Markovian dynamics, significant spatial effects and the dependence of the output on the quantum statistics of the lasing mode. The extreme dimensionality

  1. The Interaction of a N-Type Four Level Atom with the Electromagnetic Field for a Kerr Medium Induced Intensity-Dependent Coupling

    Science.gov (United States)

    Othman, Anas; Yevick, David

    2018-01-01

    The interaction of a N-type four-level atom with a single field in the presence of an intensity-dependent coupling in a nonlinear Kerr medium is investigated. The exact analytic solution is obtained in the case that the atom and electromagnetic field are initially in a higher excited state and a coherent state, respectively. It is then demonstrated that effects such as nonclassical light generation, degree of entanglement stabilization, Kerr medium nonclassical control, and squeezed light are can be more efficiently implemented within this four-level framework than in many competing procedures. Additionally, inversion, linear entropy, Mandel Q-parameter and normal squeezing dynamics are examined.

  2. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  3. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  4. [Improvement of the method for methylmercury determination in aquatic products using liquid chromatography online coupled with atomic fluorescence spectrometry].

    Science.gov (United States)

    Shang, Xiaohong; Zhao, Yunfeng; Zhang, Lei; Li, Xiaowei; Wu, Yongning

    2011-07-01

    The improvement method was developed for methylmercury determination using liquid chromatography online coupled with cold vapor atomic fluorescence spectrometry (LC-CV-AFS). Cysteine was used as complexing agent in mobile phase instead of mercaptoethanol. Under the optimized conditions, baseline separation of mercury species could be achieved within 8 min on a C18 column with a mobile phase of 5% (v/v) acetonitrile-1 g/L L-cysteine-50 mmol/L ammonium acetate aqueous solution. The linear range of calibration curve of methylmercury was 1-50 microg/L and the limit of detection (S/N = 3) for methylmercury was 0.3 microg/L. Ultrasonication assisted hydrochloric acid extraction was used to extract methylmercury from seafood samples. The sample extract was cleaned up by a C18 solid phase extraction (SPE) cartridge. For validation of the method, certified reference materials and spiked seafood samples were analyzed. The determined methylmercury contents of certified reference materials NIST1566b, BCR464 and GBW10029 agreed well with the certified values. The determined methylmercury values for Food Analysis Performance Assessment Scheme (FAPAS) sample 07115 were satisfied. The recoveries of methylmercury in seafood samples at three spiked levels (10, 50 and 500 microg/kg) ranged from 89% to 112%, including cooked seafood food. The precision of the method based on relative standard deviation (RSD) was not more than 7%. The present method of LC-CV-AFS is accurate, sensitive, simple, and can meet the demand of methylmercury determination in seafood.

  5. Separation of gold, palladium and platinum in chromite by anion exchange chromatography for inductively coupled plasma atomic emission spectrometric analysis

    International Nuclear Information System (INIS)

    Choi, Kwang Soon; Lee, Chang Heon; Park, Yeong Jae; Joe, Kih Soo; Kim, Won Ho

    2001-01-01

    A study has been carried out on the separation of gold, iridium, palladium, rhodium, ruthenium and platinum in chromite samples and their quantitative determination using inductively coupled plasma atomic emission spectrometry (ICP-AES). The dissolution condition of the minerals by fusion with sodium peroxide was optimized and chromatographic elution behavior of the rare metals was investigated by anion exchange chromatography. Spectral interference of chromium, a matrix of the minerals, was investigated on determination of gold. Chromium interfered on determination of gold at the concentration of 500 mg/L and higher. Gold plus trace amounts of iridium, palladium, rhodium and ruthenium, which must be preconcentrated before ICP-AES was separated by anion exchange chromatography after reducing Cr(VI) to Cr(III) by H 2 O 2 . AuCl - 4 retained on the resin column was selectively eluted with acetone- HNO 3 -H 2 O as an eluent. In addition, iridium, palladium, rhodium and ruthenium remaining on the resin column were eluted as a group with concentrated HCl. However, platinum was eluted with concentrated HNO 3 . The recovery yield of gold with acetone-HNO 3 -H 2 O was 100.7 ± 2.0 % , and the yields of palladium and platinum with concentrated HCl and HNO 3 were 96.1 ± 1.8% and 96.6 ± 1.3%, respectively. The contents of gold and platinum in a Mongolian chromite sample were 32.6 ± 2.2 μg/g and 1.6 ± 0.14 μg/g, respectively. Palladium was not detected

  6. Synthesis of Well-Defined Three-Arm Star-Branched Polystyrene through Arm-First Coupling Approach by Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2015-01-01

    Full Text Available Here we describe a simple route to synthesize three-arm star-branched polystyrene. Atom transfer radical polymerization technique has been utilized to yield branched polystyrene involving Williamson coupling strategy. Initially a linear polymeric chain of predetermined molecular weight has been synthesized which is further end-functionalized into a primary alkyl bromide moiety, a prime requisition for Williamson reaction. The end-functionalized polymer is then coupled using 1,1,1-tris(4-hydroxyphenylethane, a trifunctional core molecule, to give well-defined triple-arm star-branched polystyrene.

  7. High-performance liquid chromatographic separation of biologically important arsenic species utilizing on-line inductively coupled argon plasma atomic emission spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Spall, W.D.; Lynn, J.G.; Andersen, J.L.; Valdez, J.G.; Gurley, L.R.

    1986-06-01

    An anion exchange, high-performance liquid chromatography technique using a 15-min linear gradient from water to 0.5 M ammonium carbonate to separate arsenite, arsenate, methylarsonic acid, and dimethylarsinic acid from neutral arsenic containing compounds was developed for application to a study of arsenic metabolism in cultured cell suspensions. Arsenic detection was accomplished by the direct coupling of the column effluent to an inductively coupled argon plasma atomic emission spectrometer (ICAP-AES) set to monitor the arsenic emission line at 197.19 nm. The analysis requires 20 min and is sensitive to as low as 60 ng of arsenic injected to the column.

  8. Non-local coupled-channels optical calculation of electron scattering by atomic hydrogen at 54.42 eV

    International Nuclear Information System (INIS)

    Ratnavelu, K.; McCarthy, I.E.

    1990-01-01

    The present study incorporates the non-local optical potentials for the continuum within the coupled-channels optical framework to study electron scattering from atomic hydrogen at 54.42 eV. Nine-state coupled-channels calculations with non-local and local continuum optical potentials were performed. The results for differential, total and ionization cross sections as well as the 2p angular correlation parameters λ and R are comparable with other non-perturbative calculations. There are still discrepancies between theory and experiment, particularly for λ and R at larger angles. (author)

  9. Enhanced performance CCD output amplifier

    Science.gov (United States)

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  10. Quantum metrology of phase for accelerated two-level atom coupled with electromagnetic field with and without boundary

    Science.gov (United States)

    Yang, Ying; Liu, Xiaobao; Wang, Jieci; Jing, Jiliang

    2018-03-01

    We study how to improve the precision of the quantum estimation of phase for an uniformly accelerated atom in fluctuating electromagnetic field by reflecting boundaries. We find that the precision decreases with increases of the acceleration without the boundary. With the presence of a reflecting boundary, the precision depends on the atomic polarization, position and acceleration, which can be effectively enhanced compared to the case without boundary if we choose the appropriate conditions. In particular, with the presence of two parallel reflecting boundaries, we obtain the optimal precision for atomic parallel polarization and the special distance between two boundaries, as if the atom were shielded from the fluctuation.

  11. Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong-Yang [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Wen, Jing-Ji [College of Foundation Science, Harbin University of Commerce, Harbin, Heilongjiang 150028 (China); Bai, Cheng-Hua; Hu, Shi; Cui, Wen-Xue [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Wang, Hong-Fu, E-mail: hfwang@ybu.edu.cn [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Zhu, Ai-Dong [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Zhang, Shou, E-mail: szhang@ybu.edu.cn [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China)

    2015-09-15

    An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.

  12. Connection of off-diagonal radiative-decay coupling to electromagnetically induced transparency and amplification without inversion in a three-level atomic system

    International Nuclear Information System (INIS)

    Cardimona, D.A.; Huang Danhong

    2002-01-01

    The equivalence between the off-diagonal radiative-decay coupling (ODRDC) effect in the bare-atom picture of a three-level atomic system [see Cardimona et al., J. Phys. B 15, 55 (1982)] and the electromagnetically induced transparency (EIT) effect in the dressed-atom picture [see Imamoglu et al., Opt. Lett. 14, 1344 (1989)] is uncovered and a full comparison of their physical origins is given. The mechanism for both ODRDC and Harris' EIT is found to be a consequence of the quantum interference between a direct absorption path and an indirect absorption path mediated by either a self absorption of spontaneous photons or a Fano-type coupling. A connection is then pointed out between the effects of probe-field gain (PFG) based on an ODRDC process [see Huang et al., Phys. Rev. A 64, 013822 (2001)] and amplification without inversion (AWI) [see Fearn et al., Opt. Commun. 87, 323 (1992)] in the bare-atom picture of a three-level atomic system. The PFG effect is found as a result of transferring electrons between the two upper levels due to the phase-sensitive coherence provided by a laser-induced ODRDC process, while the AWI effect to one of the two probe fields is attributed to its coupling to a strong laser field generating an off-resonant gain through an induced nonlinearity in the other probe field. Both the advantages and disadvantages as well as the limitations of the ODRDC, EIT, PFG, and AWI effects are discussed and compared

  13. Effect of State Feedback Coupling and System Delays on the Transient Performance of Stand-Alone VSI with LC Output Filter

    DEFF Research Database (Denmark)

    Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    The influence of state feedback coupling in the dynamics performance of power converters for stand-alone microgrids is investigated. Computation and PWM delays are the main factors that limit the achievable bandwidth of current regulators in digital implementations. In particular, the performance...... of state feedback decoupling is degraded because of these delays. Two decoupling techniques to improve the transient response of the system are investigated, named non-ideal and ideal capacitor voltage decoupling respectively. In particular, the latter solution consists in leading the capacitor voltage...... on the state feedback decoupling path in order to compensate for system delays. Practical implementation issues are discussed with reference to both the decoupling techniques. A design methodology for the voltage loop, that considers the closed loop transfer functions developed for the inner loop, is also...

  14. Phosphodiesterase inhibitor KMUP-3 displays cardioprotection via protein kinase G and increases cardiac output via G-protein-coupled receptor agonist activity and Ca2+ sensitization

    Directory of Open Access Journals (Sweden)

    Chung-Pin Liu

    2016-02-01

    Full Text Available KMUP-3 (7-{2-[4-(4-nitrobenzene piperazinyl]ethyl}-1, 3-dimethylxanthine displays cardioprotection and increases cardiac output, and is suggested to increase cardiac performance and improve myocardial infarction. To determine whether KMUP-3 improves outcomes in hypoperfused myocardium by inducing Ca2+ sensitization to oppose protein kinase (PKG-mediated Ca2+ blockade, we measured left ventricular systolic blood pressure, maximal rates of pressure development, mean arterial pressure and heart rate in rats, and measured contractility and expression of PKs/RhoA/Rho kinase (ROCKII in beating guinea pig left atria. Hemodynamic changes induced by KMUP-3 (0.5–3.0 mg/kg, intravenously were inhibited by Y27632 [(R-(+-trans-4-1-aminoethyl-N-(4-Pyridyl cyclohexane carboxamide] and ketanserin (1 mg/kg, intravenously. In electrically stimulated left guinea pig atria, positive inotropy induced by KMUP-3 (0.1–100μM was inhibited by the endothelial NO synthase (eNOS inhibitors N-nitro-l-arginine methyl ester (L-NAME and 7-nitroindazole, cyclic AMP antagonist SQ22536 [9-(terahydro-2-furanyl-9H-purin-6-amine], soluble guanylyl cyclase (sGC antagonist ODQ (1H-[1,2,4] oxadiazolo[4,3-a] quinoxalin-1-one, RhoA inhibitor C3 exoenzyme, β-blocker propranolol, 5-hydroxytryptamine 2A antagonist ketanserin, ROCK inhibitor Y27632 and KMUP-1 (7-{2-[4-(2-chlorobenzene piperazinyl]ethyl}-1, 3-dimethylxanthine at 10μM. Western blotting assays indicated that KMUP-3 (0.1–10μM increased PKA, RhoA/ROCKII, and PKC translocation and CIP-17 (an endogenous 17-kDa inhibitory protein activation. In spontaneous right atria, KMUP-3 induced negative chronotropy that was blunted by 7-nitroindazole and atropine. In neonatal myocytes, L-NAME inhibited KMUP-3-induced eNOS phosphorylation and RhoA/ROCK activation. In H9c2 cells, Y-27632 (50μM and PKG antagonist KT5823 [2,3,9,10,11,12-hexahydro-10R- methoxy-2,9-dimethyl-1-oxo-9S,12R-epoxy-1H-diindolo(1,2,3-fg:3′,2′,1

  15. Quantum incommensurate skyrmion crystals and commensurate to in-commensurate transitions in cold atoms and materials with spin-orbit couplings in a Zeeman field

    Science.gov (United States)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2017-08-01

    In this work, we study strongly interacting spinor atoms in a lattice subject to a two dimensional (2d) anisotropic Rashba type of spin orbital coupling (SOC) and an Zeeman field. We find the interplay between the Zeeman field and the SOC provides a new platform to host rich and novel classes of quantum commensurate and in-commensurate phases, excitations and phase transitions. These commensurate phases include two collinear states at low and high Zeeman field, two co-planar canted states at mirror reflected SOC parameters respectively. Most importantly, there are non-coplanar incommensurate Skyrmion (IC-SkX) crystal phases surrounded by the four commensurate phases. New excitation spectra above all the five phases, especially on the IC-SKX phase are computed. Three different classes of quantum commensurate to in-commensurate transitions from the IC-SKX to its four neighboring commensurate phases are identified. Finite temperature behaviors and transitions are discussed. The critical temperatures of all the phases can be raised above that reachable by current cold atom cooling techniques simply by tuning the number of atoms N per site. In view of recent impressive experimental advances in generating 2d SOC for cold atoms in optical lattices, these new many-body phenomena can be explored in the current and near future cold atom experiments. Applications to various materials such as MnSi, {Fe}}0.5 {Co}}0.5Si, especially the complex incommensurate magnetic ordering in Li2IrO3 are given.

  16. Coupling effects of refractive index discontinuity, spot size and spot location on the deflection sensitivity of optical-lever based atomic force microscopy

    International Nuclear Information System (INIS)

    Liu Yu; Yang Jun

    2008-01-01

    Atomic force microscopy (AFM) plays an essential role in nanotechnology and nanoscience. The recent advances of AFM in bionanotechnology include phase imaging of living cells and detection of biomolecular interactions in liquid biological environments. Deflection sensitivity is a key factor in both imaging and force measurement, which is significantly affected by the coupling effects of the refractive index discontinuity between air, the glass window and the liquid medium, and the laser spot size and spot location. The effects of both the spot size and the spot location on the sensitivity are amplified by the refractive index discontinuity. The coupling effects may govern a transition of the deflection sensitivity from enhancement to degradation. It is also found that there is a critical value for the laser spot size, above which the deflection sensitivity is mainly determined by the refractive index of the liquid. Experimental results, in agreement with theoretical predication, elucidate the coupling effects

  17. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry.

    Science.gov (United States)

    Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2013-09-13

    Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.

  18. Dynamics of entanglement of a three-level atom in motion interacting with two coupled modes including parametric down conversion

    Science.gov (United States)

    Faghihi, M. J.; Tavassoly, M. K.; Hatami, M.

    In this paper, a model by which we study the interaction between a motional three-level atom and two-mode field injected simultaneously in a bichromatic cavity is considered; the three-level atom is assumed to be in a Λ-type configuration. As a result, the atom-field and the field-field interaction (parametric down conversion) will be appeared. It is shown that, by applying a canonical transformation, the introduced model can be reduced to a well-known form of the generalized Jaynes-Cummings model. Under particular initial conditions, which may be prepared for the atom and the field, the time evolution of state vector of the entire system is analytically evaluated. Then, the dynamics of atom by considering ‘atomic population inversion’ and two different measures of entanglement, i.e., ‘von Neumann entropy’ and ‘idempotency defect’ is discussed, in detail. It is deduced from the numerical results that, the duration and the maximum amount of the considered physical quantities can be suitably tuned by selecting the proper field-mode structure parameter p and the detuning parameters.

  19. New approach to exploit optimally the PV array output energy by maximizing the discharge rate of a directly-coupled photovoltaic water pumping system (DC/PVPS)

    International Nuclear Information System (INIS)

    Boutelhig, Azzedine; Hadj Arab, Amar; Hanini, Salah

    2016-01-01

    Highlights: • Mismatches on a designed d-c PV pumping system have been highlighted. • A new approach predicting the maximal discharge has been developed. • The approach has been discussed versus its linearity coefficient. • The approach effectiveness has been investigated and approved. • Theoretical and experimental obtained values have been compared and approved. - Abstract: A directly-coupled photovoltaic water pumping system (DC/PVPS) is generally designed by considering the worst month conditions on lowest daylight-hours, the maximum monthly daily required water volume and tank to store the excess water. In case of absence of hydraulic storage (water tank) or it is not enough dimensioned, the extra amount of pumped water is lost or is not reasonably used, when the system is operated on full daylight-hour. Beside that the extra amount of energy, which might be produced by the PV generator, is not exploited, when the system is operated only during a specified period-time needed to satisfy the demand. Beyond the accurate design that satisfying the end-user, a new approach has been developed as target to exploit maximally the PV array energy production, by maximizing the discharge rate of the system. The methodology consists of approaching maximally the demanded energy to the supplied energy on full operating day. Based on the demand/supply energy condition, the approach has been developed, upon the PV array and the pump performance models. The issued approach predicts the maximum delivery capacity of the system on monthly daily water volumes versus the monthly daily averages of solar irradiation, previously recorded. Its efficacy has been investigated and discussed according to the estimated and experimental values of its linearity coefficient, following the characterization tests of a designed system, carried out at our pumping test facility in Ghardaia (Algeria). The new theoretically and experimentally obtained flow-rates fit well, except

  20. Quenching of the OH and nitrogen molecular emission by methane addition in an Ar capacitively coupled plasma to remove spectral interference in lead determination by atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Frentiu, T., E-mail: ftibi@chem.ubbcluj.r [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Ponta, M., E-mail: mponta@chem.ubbcluj.r [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Mihaltan, A.I., E-mail: alinblaj2005@yahoo.co [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Darvasi, E., E-mail: edarvasi@chem.ubbcluj.r [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Frentiu, M., E-mail: frentiu.maria@yahoo.co [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Cordos, E., E-mail: emilcordos@gmail.co [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania)

    2010-07-15

    A new method is proposed to remove the spectral interference on elements in atomic fluorescence spectrometry by quenching of the molecular emission of the OH radical (A{sup 2{Sigma}+} {yields} X{sup 2{Pi}}) and N{sub 2} second positive system (C{sup 3{Pi}}{sub u} {yields} B{sup 3{Sigma}}{sub g}) in the background spectrum of medium power Ar plasmas. The experiments were carried out in a radiofrequency capacitively coupled plasma (275 W, 27.12 MHz) by CH{sub 4} addition. The quenching is the result of the high affinity of OH radical for a hydrogen atom from the CH{sub 4} molecule and the collisions of the second kind between nitrogen excited molecules and CH{sub 4}, respectively. The decrease of the emission of N{sub 2} second positive system in the presence of CH{sub 4} is also the result of the deactivation of the metastable argon atoms that could excite the nitrogen molecules. For flow rates of 0.7 l min{sup -1} Ar with addition of 7.5 ml min{sup -1} CH{sub 4}, the molecular emission of OH and N{sub 2} was completely removed from the plasma jet spectrum at viewing heights above 60 mm. The molecular emission associated to CH and CH{sub 2} species was not observed in the emission spectrum of Ar/CH{sub 4} plasma in the ultraviolet range. The method was experimented for the determination of Pb at 283.31 nm by atomic fluorescence spectrometry with electrodeless discharge lamp and a multichannel microspectrometer. The detection limit was 35 ng ml{sup -1}, 2-3 times better than in atomic emission spectrometry using the same plasma source, and similar to that in hollow cathode lamp microwave plasma torch atomic fluorescence spectrometry.

  1. Determination of some inorganic metals in edible vegetable oils by inductively coupled plasma atomic emission spectroscopy (ICP-AES

    Directory of Open Access Journals (Sweden)

    Musa Özcan, M.

    2008-09-01

    Full Text Available Seventeen edible vegetable oils were analyzed spectrometrically for their metal (Cu, Fe, Mn, Co, Cr, Pb, Cd, Ni, and Zn contents. Toxic metals in edible vegetable oils were determined by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES. The highest metal concentrations were measured as 0.0850, 0.0352, 0.0220, 0.0040, 0.0010, 0.0074, 0.0045, 0.0254 and 0.2870 mg/kg for copper in almond oil, for iron in corn oil-(c, for manganese in soybean oil, for cobalt in sunflower oil-(b and almond oil, for chromium in almond oil, for lead in virgin olive oil, for cadmium in sunflower oil-(e, for nickel almond oil and for zinc in almond oil respectively. The method for determining toxic metals in edible vegetable oils by using ICP-AES is discussed. The metals were extracted from low quantities of oil (2-3 g with a 10% nitric acid solution. The extracted metal in acid solution can be injected into the ICPAES. The proposed method is simple and allows the metals to be determined in edible vegetable oils with a precision estimated below 10% relative standard deviation (RSD for Cu, 5% for Fe, 15% for Mn, 8% for Co, 10% for Cr, 20% for Pb, 5% for Cd, 16% for Ni and 11% for Zn.En este estudio se analizó espectrométricamente el contenido en metales (Cu, Fe, Mn, Co, Cr, Pb, Cd, Ni, and Zn de 17 aceites vegetales comestibles mediante ICP-AES. Las concentaciones más elevadas se encontraron para el cobre en el aceite de almendra (0.0850 mg/kg, para el hierro en el aceite de maiz(c,(0.0352 mg/kg, para el manganeso en el aceite de soja (0.0220 mg/kg, para el cobalto en el aceite de girasol (b (0.0040 mg/kg, para el cromo en el aceite de almendra (0.0010 mg/kg, para el plomo en el aceite de oliva virgen (0.0074 mg/kg, para el cadmio en el aceite de girasol (e (0.0045 mg/kg, para el niquel en el aceite de almendra (0.0254 mg/kg y para el zincen el aceite de almendra (0.2870 mg/kg. Los metales se extrajeron a partir de bajas cantidades de aceite (2-3 g, con

  2. Implementation of suitable flow injection/sequential-sample separation/preconcentration schemes for determination of trace metal concentrations using detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Wang, Jianhua

    2002-01-01

    Various preconditioning procedures encomprising appropriate separation/preconcentration schemes in order to obtain optimal sensitivity and selectivity characteristics when using electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS...

  3. Coupled cluster and density functional theory calculations of atomic hydrogen chemisorption on pyrene and coronene as model systems for graphene hydrogenation.

    Science.gov (United States)

    Wang, Ying; Qian, Hu-Jun; Morokuma, Keiji; Irle, Stephan

    2012-07-05

    Ab initio coupled cluster and density functional theory studies of atomic hydrogen addition to the central region of pyrene and coronene as molecular models for graphene hydrogenation were performed. Fully relaxed potential energy curves (PECs) were computed at the spin-unrestricted B3LYP/cc-pVDZ level of theory for the atomic hydrogen attack of a center carbon atom (site A), the midpoint of a neighboring carbon bond (site B), and the center of a central hexagon (site C). Using the B3LYP/cc-pVDZ PEC geometries, we evaluated energies at the PBE density functional, as well as ab initio restricted open-shell ROMP2, ROCCSD, and ROCCSD(T) levels of theory, employing cc-pVDZ and cc-pVTZ basis sets, and performed a G2MS extrapolation to the ROCCSD(T)/cc-pVTZ level of theory. In agreement with earlier studies, we find that only site A attack leads to chemisorption. The G2MS entrance channel barrier heights, binding energies, and PEC profiles are found to agree well with a recent ab initio multireference wave function theory study (Bonfanti et al. J. Chem. Phys.2011, 135, 164701), indicating that single-reference open-shell methods including B3LYP are sufficient for the theoretical treatment of the interaction of graphene with a single hydrogen atom.

  4. Acceleration of Vaporization, Atomization, and Ionization Efficiencies in Inductively Coupled Plasma by Merging Laser-Ablated Particles with Hydrochloric Acid Gas.

    Science.gov (United States)

    Nakazawa, Takashi; Izumo, Saori; Furuta, Naoki

    2016-01-01

    To accelerate the vaporization, atomization, and ionization efficiencies in laser ablation inductively coupled plasma mass spectrometry, we merged HCl gas with laser-ablated particles before introduction into the plasma, to convert their surface constituents from oxides to lower-melting chlorides. When particles were merged with HCl gas generated from a HCl solution at 200°C, the measured concentrations of elements in the particles were 135% higher on average than the concentrations in particles merged with ultrapure water vapor. Particle corrosion and surface roughness were observed by scanning electron microscopy, and oxide conversion to chlorides was confirmed by X-ray photoelectron spectroscopy. Under the optimum conditions, the recoveries of measured elements improved by 23% on average, and the recoveries of elements with high-melting oxides (Sr, Zr, and Th) improved by as much as 36%. These results indicate that vaporization, atomization, and ionization in the ICP improved when HCl gas was merged with the ablated particles.

  5. Coupling of atom-by-atom calculations of extended defects with B kick-out equations: application to the simulation of boron ted

    International Nuclear Information System (INIS)

    Lampin, E.; Cristiano, F.; Lamrani, Y.; Colombeau, B.

    2004-01-01

    We present simulations of B TED based on a complete calculation of the extended defect growth/shrinkage during annealing. The Si self-interstitial supersaturation calculated at the extended defect depth is coupled to the set of equations for the B kick-out diffusion through a generation/recombination term in the diffusion equation of the Si self-interstitials. The simulations are compared to the measurements performed on a Si wafer containing several B marker layers, where the amount of TED varies from one peak to the other. The good agreement obtained on this experiment is very promising for the application of these calculations to the case of ultra-shallow B + implants

  6. Determination of 21 trace impurities in UO2 with tributyl phosphate chromatographic separation-USN-inductively coupled/atomic emission spectrometric

    International Nuclear Information System (INIS)

    Hou Lieqi; Wang Shuan; Li Jie

    1996-03-01

    A method of tributyl phosphate chromatographic separation-USN-inductively coupled/atomic emission spectrometric was selected. And the parameters, interference of acid concentrations, interference of coexisting elements, selecting of flow for carrier gas, solution temperature were studied. When the sampling amount is 250 mg, the determination range for Al, Ag, Ba, Ca, Cd, Co, Cr, Cu, Fe, In, Li, Mg, Mn, Mo, Ni, Pb, Sn, Ti, V, Y and Zn are 0.2∼100 ng· -1 , recovery are 94%∼110%. The RSD (n 8) are 0.8%∼6.2%. (3 refs., 4 tabs.)

  7. Use of oxidative and reducing vapor generation for reducing the detection limits of iodine in biological samples by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Vtorushina, Eh.A.; Saprykin, A.I.; Knapp, G.

    2009-01-01

    Procedures of microwave combustion in an oxygen flow and microwave acid decomposition of biological samples were optimized for the subsequent determination of iodine. A new method was proposed for the generation of molecular iodine from periodate iona using hydrogen peroxide as a reductant. Procedures were developed for determining iodine in biological samples by inductively coupled plasma atomic emission spectrometry (ICP-AES) using oxidative and reducing vapor generation; these allowed the detection limit for iodine to be lowered by 3-4 orders of magnitude. The developed procedures were used to analyze certified reference materials of milk (Skim Milk Powder BCR 150) and seaweed (Sea Lettuce BCR 279) and a Supradyn vitamin complex

  8. Coupled-channel optical calculation of electron-atom scattering: elastic scattering from sodium at 20 to 150 eV

    International Nuclear Information System (INIS)

    Bray, Igor; Konovalov, D.A.; McCarthy, I.E.

    1991-04-01

    A coupled-channel optical method for electron-atom scattering is applied to elastic electron-sodium scattering at energies of 20, 22.1, 54.4, 100, and 150 eV. It is demonstrated that the effect of all the inelastic channels on elastic scattering may be well reproduced by the 'ab initio' calculated complex non-local polarization potential. Whilst the experiments generally agree at small angles and therefore agree on the total elastic cross section, there is considerable discrepancy at intermediate and backward angles. 9 refs., 2 tabs., 1 fig

  9. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    International Nuclear Information System (INIS)

    Lockrem, L.L.; Owens, J.W.; Seidel, C.M.

    2009-01-01

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method

  10. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    International Nuclear Information System (INIS)

    Seidel, C.M.; Jain, J.; Owens, J.W.

    2009-01-01

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method

  11. Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhiming, E-mail: 465609785@qq.com [School of Economics and Management, Wuyi University, Jiangmen 529020 (China); Situ, Haozhen, E-mail: situhaozhen@gmail.com [College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642 (China)

    2017-02-15

    In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangled initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.

  12. Asymptotic solution of the coupled equations for electron collisions with atoms or positive ions using Dirac hamiltonians

    International Nuclear Information System (INIS)

    Grant, I.P.

    1982-01-01

    Possible relativistic effects in low energy electron scattering from atoms or positive ions has been investigated using the Dirac hamiltonian. Single channel formula and many channel expressions indicate that asymptotic estimation of radial wavefunctions can be carried out satisfactorily for most purposes using non-relativistic methods. (U.K.)

  13. Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field

    International Nuclear Information System (INIS)

    Huang, Zhiming; Situ, Haozhen

    2017-01-01

    In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangled initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.

  14. Plasma-related matrix effects in inductively coupled plasma--atomic emission spectrometry by group I and group II matrix-elements

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Chan, W.-T.

    2003-01-01

    The effects of Na, K, Ca and Ba matrices on the plasma excitation conditions in inductively coupled plasma-atomic emission spectrometry (ICP-AES) were studied. Normalized relative intensity was used to indicate the extent of the plasma-related matrix effects. The group I matrices have no effects on the plasma excitation conditions. In contrast, the group II matrices depress the normalized relative intensities of some spectral lines. Specifically, the Group II matrices have no effects on the normalized relative intensity of atomic lines of low upper energy level (soft lines), but reduce the normalized relative intensity of some ionic lines and atomic lines of high energy level (hard lines). The Group II matrices seem to shift the Saha balance of the analytes only; no shift in the Boltzmann balance was observed experimentally. Moreover, for some ionic lines with sum of ionization and excitation potentials close to the ionization potential of argon (15.75 eV), the matrix effect is smaller than other ionic lines of the same element. The reduced matrix effects may be attributed qualitatively to charge transfer excitation mechanism of these ionic lines. Charge transfer reaction renders ionic emission lines from the quasi-resonant levels similar in characteristics of atomic lines. The contribution of charge transfer relative to excitation by other non-specific excitation mechanisms (via Saha balance and Boltzmann balance) determines the degree of atomic behavior of a quasi-resonant level. A significant conclusion of this study is that plasma-related matrix effect depends strongly on the excitation mechanism of a spectral line. Since, in general, more than one excitation mechanism may contribute to the overall excitation of an emission line, the observed matrix effects reflect the sum of the effects due to individual excitation mechanisms. Excitation mechanisms, in addition to the often-used total excitation energy, should be considered in matrix effect studies

  15. Theory of collisions between an atom and a diatomic molecule in the body-fixed coordinate system.)/sup a/ I. Coupled differential equation and asymptotic boundary conditions

    International Nuclear Information System (INIS)

    Choi, B.H.; Poe, R.T.; Tang, K.T.

    1978-01-01

    The body-fixed (BF) formulation for atom--diatom scatterings is developed to the extent that one can use it to perform accurate close-coupling calculation, without introducing further approximation except truncating a finite basis set of the target molecular wave function, on the same ground as one use the space-fixed (SF) formulation. In this formulation, the coupled differential equations are solved an the boundary conditions matched entirely in the BF coordinate system. A unitary transformation is used to obtain both the coupled differential equation and the boundary condition in BF system system from SF system. All properties of the solution with respect to parity are derived entirely from the transformation, without using the parity eignfunctions of the BF frame. Boundary conditions that yield the scattering (S) matrix and the reactance (R) matrix are presented for each parity in both the far asymptotic region (where the interaction and the centrifugal potentials are both negligible) and the near asymptotic region (where the interaction potential is negligible but the centrifugal potential is not). While our differential equations are the same as those derived by others with different methods, our asymptotic boundary conditions disagree with some existing ones. With a given form of the BF coupled differential equations, the acceptable boundary conditions are discussed

  16. Optically coupled CAMAC analog input output system

    International Nuclear Information System (INIS)

    Horie, Katsuzo; Kanazawa, Shuhei; Minehara, Eisuke; Hanashima, Susumu

    1985-08-01

    In an accelerator system, especially in ion sources, signals are exchanged between devices at different potentials. We have four ion sources in the negative ion injector for the JAERI tandem accelerator. Voltage to frequency conversion technic and optical fiber were used in the previous system. When we intended to extend the injector, we decided to revise the system to improve accuracy and reliability. For the purpose, we developed a new CAMAC module. It is an interface device between CAMAC dataway and optical fiber. The module has frequency synthesizers, frequency counters, optical transmitters and optical receivers in it. Accuracy, reliability and maintenability of the system were greatly improved by the module. (author)

  17. Coupling continuous ultrasound-assisted extraction, preconcentration and flame atomic absorption spectrometric detection for the determination of cadmium and lead in mussel samples

    International Nuclear Information System (INIS)

    Yebra-Biurrun, M.C.; Cancela-Perez, S.; Moreno-Cid-Barinaga, A.

    2005-01-01

    Continuous ultrasound-assisted extraction has been coupled with preconcentration and flame atomic absorption spectrometry for the determination of cadmium and lead in mussel samples. Experimental designs were used for the optimisation of the leaching and preconcentration steps. The use of diluted nitric acid as extractant in the continuous mode at a flow rate of 3.5 ml min -1 and room temperature was sufficient for quantitative extraction of these trace metals. A minicolumn containing a chelating resin (Chelite P, with aminomethylphosphoric acid groups) was proved as an excellent material for the quantitative preconcentration of cadmium and lead prior to their flame atomic absorption detection. A flow injection manifold was used as interface for coupling the three analytical steps, which allowed the automation of the whole analytical process. A good precision of the whole procedure (2.0 and 2.3%), high enrichment factors (20.5 and 11.8) and a detection limit of 0.011 and 0.25 μg g -1 for cadmium and lead, respectively, were obtained for 80 mg of sample. The sample throughputs were ca. 16 and 14 samples h -1 for cadmium and lead, respectively. The accuracy of the analytical procedures was verified by using a standard reference material (BCR 278-R, mussel tissue) and the results were in good agreement with the certified values. The method was successfully applied to the determination of trace amounts of cadmium and lead in mussel samples from the coast of Galicia (NW, Spain)

  18. Dynamic generation and coherent control of beating stationary light pulses by a microwave coupling field in five-level cold atoms

    Science.gov (United States)

    Bao, Qian-Qian; Zhang, Yan; Cui, Cui-Li; Meng, Shao-Ying; Fang, You-Wei; Tian, Xue-Dong

    2018-04-01

    We propose an efficient scheme for generating and controlling beating stationary light pulses in a five-level atomic sample driven into electromagnetically induced transparency condition. This scheme relies on an asymmetrical procedure of light storage and retrieval tuned by two counter-propagating control fields where an additional coupling field, such as the microwave field, is introduced in the retrieval stage. A quantum probe field, incident upon such an atomic sample, is first transformed into spin coherence excitation of the atoms and then retrieved as beating stationary light pulses exhibiting a series of maxima and minima in intensity due to the alternative constructive and destructive interference. It is convenient to control the beating stationary light pulses just by manipulating the intensity and detuning of the additional microwave field. This interesting phenomenon involves in fact the coherent manipulation of dark-state polaritons and could be explored to achieve the efficient temporal splitting of stationary light pulses and accurate measurement of the microwave intensity.

  19. Superradiators created atom by atom

    Science.gov (United States)

    Meschede, Dieter

    2018-02-01

    High radiation rates are usually associated with macroscopic lasers. Laser radiation is “coherent”—its amplitude and phase are well-defined—but its generation requires energy inputs to overcome loss. Excited atoms spontaneously emit in a random and incoherent fashion, and for N such atoms, the emission rate simply increases as N. However, if these atoms are in close proximity and coherently coupled by a radiation field, this microscopic ensemble acts as a single emitter whose emission rate increases as N2 and becomes “superradiant,” to use Dicke's terminology (1). On page 662 of this issue, Kim et al. (2) show the buildup of coherent light fields through collective emission from atomic radiators injected one by one into a resonator field. There is only one atom ever in the cavity, but the emission is still collective and superradiant. These results suggest another route toward thresholdless lasing.

  20. Ultra-trace determination of methylmercuy in seafood by atomic fluorescence spectrometry coupled with electrochemical cold vapor generation

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Wenchuan, E-mail: zuhongshuai@126.com [Beijing Institute of Technology, College of Chemistry, Beijing 100081 (China); Beijing Center for Physical & Chemical Analysis, Beijing 100089 (China); Wang, Zhenghao [Beijing Normal University, College of Chemistry, Beijing 100875 (China)

    2016-03-05

    Highlights: • Methylmercury detection by ECVG-AFS without pre-separation by HPLC is proposed. • Methylmercury is atomized by direct electrochemical reduction with no reductant. • Remarkably better sensitivity is obtained than the traditional HPLC-UV-AFS method. • Glassy carbon is the best cathode material to generate Hg vapor from methylmercury. - Abstract: A homemade electrochemical flow cell was adopted for the determination of methylmercury. The cold vapor of mercury atoms was generated from the surface of glassycarbon cathode through the method of electrolytic reduction and detected by atomic fluorescence spectroscopy subsequently. The operating conditions were optimized with 2 ng mL{sup −1} methylmercury standard solution. The caliberation curve was favorably linear when the concentrations of standard HgCH{sub 3}{sup +} solutions were in the range of 0.2–5 ng mL{sup −1}(as Hg). Under the optimized conditions, the limit of detection (LOD) for methylmercury was 1.88 × 10{sup −3} ng mL{sup −1} and the precision evaluated by relative standard deviation was 2.0% for six times 2 ng mL{sup −1} standard solution replicates. The terminal analytical results of seafood samples, available from local market, showed that the methylmercury content ranged within 3.7–45.8 ng g{sup −1}. The recoveries for methylmercury spiked samples were found to be in the range of 87.6–103.6% and the relative standard deviations below 5% (n = 6)were acquired, which showed this method was feasible for real sample analysis.

  1. He atom scattering from ZnO surfaces: calculation of diffraction peak intensities using the close-coupling approach

    Energy Technology Data Exchange (ETDEWEB)

    MartInez-Casado, R [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, 28006 Madrid (Spain); Meyer, B [Interdisziplinaeres Zentrum fuer Molekulare Materialien ICMM and Computer-Chemie-Centrum CCC, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Naegelsbachstrasse 25, 91052 Erlangen (Germany); Traeger, F [Lehrstuhl fuer Physikalische Chemie I, Ruhr-Universitaet Bochum, 44801 Bochum (Germany); Woell, Ch, E-mail: r.martinezcasado@imperial.ac.u [Institut fuer Funktionelle Grenzflaechen, Karlsruher Institut fuer Technologie KIT, Kaiserstrasse 12, 76131 Karlsruhe (Germany)

    2010-08-04

    Diffraction intensities of a molecular He beam scattered off the clean and water-covered ZnO(101-bar0) surface have been simulated using a new potential model in conjunction with the close-coupling formalism. The effective corrugation functions for the systems He-ZnO(101-bar0) and He-H{sub 2}O/ZnO(101-bar0) have been obtained from density functional theory calculations within the Esbjerg-Noerskov approximation. Using these data a potential model is constructed consisting of a corrugated Morse potential at small He-surface distances and a semiempiric attractive part at larger distances. The diffraction patterns obtained from close-coupling calculations agree with the experimental data within about 10%, which opens the possibility to simulate He diffraction from surfaces of any structural complexity and to verify surface and adsorbate structures proposed theoretically by employing this kind of analysis.

  2. Rapid determination of {sup 135}Cs and precise {sup 135}Cs/{sup 137}Cs atomic ratio in environmental samples by single-column chromatography coupled to triple-quadrupole inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guosheng [Department of Radiation Chemistry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 (Japan); Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049 (China); Tazoe, Hirofumi [Department of Radiation Chemistry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 (Japan); Yamada, Masatoshi, E-mail: myamada@hirosaki-u.ac.jp [Department of Radiation Chemistry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 (Japan)

    2016-02-18

    For source identification, measurement of {sup 135}Cs/{sup 137}Cs atomic ratio not only provides information apart from the detection of {sup 134}Cs and {sup 137}Cs, but it can also overcome the application limit that measurement of the {sup 134}Cs/{sup 137}Cs ratio has due to the short half-life of {sup 134}Cs (2.06 y). With the recent advancement of ICP-MS, it is necessary to improve the corresponding separation method for rapid and precise {sup 135}Cs/{sup 137}Cs atomic ratio analysis. A novel separation and purification technique was developed for the new generation of triple-quadrupole inductively coupled plasma-mass spectrometry (ICP-MS/MS). The simple chemical separation, incorporating ammonium molybdophosphate selective adsorption of Cs and subsequent single cation-exchange chromatography, removes the majority of isobaric and polyatomic interference elements. Subsequently, the ICP-MS/MS removes residual interference elements and eliminates the peak tailing effect of stable {sup 133}Cs, at m/z 134, 135, and 137. The developed analytical method was successfully applied to measure {sup 135}Cs/{sup 137}Cs atomic ratios and {sup 135}Cs activities in environmental samples (soil and sediment) for radiocesium source identification. - Highlights: • A simple {sup 135}Cs/{sup 137}Cs analytical method was developed. • The separation procedure was based on AMP adsorption and one column chromatography. • {sup 135}Cs/{sup 137}Cs was measured by ICP-MS/MS. • Decontamination factors for Ba, Mo, Sb, and Sn were improved. • {sup 135}Cs/{sup 137}Cs atomic ratios of 0.341–0.351 were found in Japanese soil samples.

  3. Combination of the ionic-to-atomic line intensity ratios from two test elements for the diagnostic of plasma temperature and electron number density in Inductively Coupled Plasma Atomic Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tognoni, E. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)], E-mail: tognoni@ipcf.cnr.it; Hidalgo, M.; Canals, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia. Universidad de Alicante. Apdo. 99, 03080, Alicante (Spain); Cristoforetti, G.; Legnaioli, S.; Salvetti, A.; Palleschi, V. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)

    2007-05-15

    In Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) spectrochemical analysis, the MgII(280.270 nm)/MgI(285.213 nm) ionic to atomic line intensity ratio is commonly used as a monitor of the robustness of operating conditions. This approach is based on the univocal relationship existing between intensity ratio and plasma temperature, for a pure argon atmospheric ICP in thermodynamic equilibrium. In a multi-elemental plasma in the lower temperature range, the measurement of the intensity ratio may not be sufficient to characterize temperature and electron density. In such a range, the correct relationship between intensity ratio and plasma temperature can be calculated only when the complete plasma composition is known. We propose the combination of the line intensity ratios of two test elements (double ratio) as an effective diagnostic tool for a multi-elemental low temperature LTE plasma of unknown composition. In particular, the variation of the double ratio allows us discriminating changes in the plasma temperature from changes in the electron density. Thus, the effects on plasma excitation and ionization possibly caused by introduction of different samples and matrices in non-robust conditions can be more accurately interpreted. The method is illustrated by the measurement of plasma temperature and electron density in a specific analytic case.

  4. Unit 16 - Output

    OpenAIRE

    Unit 16, CC in GIS; Star, Jeffrey L.

    1990-01-01

    This unit discusses issues related to GIS output, including the different types of output possible and the hardware for producing each. It describes text, graphic and digital data that can be generated by a GIS as well as line printers, dot matrix printers/plotters, pen plotters, optical scanners and cathode ray tubes (CRTs) as technologies for generating the output.

  5. Temporal Bell-type inequalities for two-level Rydberg atoms coupled to a high-Q resonator

    International Nuclear Information System (INIS)

    Huelga, S.F.; Marshall, T.W.; Santos, E.

    1996-01-01

    Following the strategy of showing specific quantum effects by means of the violation of a classical inequality, a pair of Bell-type inequalities is derived on the basis of certain additional assumptions, whose plausibility is discussed in detail. Such inequalities are violated by the quantum mechanical predictions for the interaction of a two-level Rydberg atom with a single mode sustained by a high-Q resonator. The experimental conditions required in order to show the existence of forbidden values, according to a hidden variables formalism, in a real experiment are analyzed for various initial field statistics. In particular, the revival dynamics expected for the interaction with a coherent field leads to classically forbidden values, which would indicate a purely quantum effect. copyright 1996 The American Physical Society

  6. The interpretation of resonance formation in coupled-channel models of positron scattering by atomic hydrogen using localized optical potentials

    International Nuclear Information System (INIS)

    Bransden, B.H.; Hewitt, R.N.

    1997-01-01

    Above-threshold resonances can occur in coupled-channel models of the e + + H system when Ps formation is taken into account (although it should be pointed out that, in this specific system, resonances do not occur in an exact theory). In general, to understand the mechanism of resonance formation it is useful to obtain the exact optical potential in a given channel in a localized form. The methods of achieving this localization are discussed with reference to a specific application to the resonance found in the two-state approximation for the l = 0 partial wave. (author)

  7. Scintillation camera with improved output means

    International Nuclear Information System (INIS)

    Lange, K.; Wiesen, E.J.; Woronowicz, E.M.

    1978-01-01

    In a scintillation camera system, the output pulse signals from an array of photomultiplier tubes are coupled to the inputs of individual preamplifiers. The preamplifier output signals are coupled to circuitry for computing the x and y coordinates of the scintillations. A cathode ray oscilloscope is used to form an image corresponding with the pattern in which radiation is emitted by a body. Means for improving the uniformity and resolution of the scintillations are provided. The means comprise biasing means coupled to the outputs of selected preamplifiers so that output signals below a predetermined amplitude are not suppressed and signals falling within increasing ranges of amplitudes are increasingly suppressed. In effect, the biasing means make the preamplifiers non-linear for selected signal levels

  8. Speciation analysis of organomercurial compounds in Fish Tissue by capillary gas chromatography coupled to microwave-induced plasma atomic emission detection

    Directory of Open Access Journals (Sweden)

    Dorfe Díaz

    Full Text Available This paper describes a novel approach for analysis of mercury speciation in fish using gas chromatography coupled with microwave-induced plasma optical emission spectrometry (GC-MIP-OES in surfatron resonant cavity. Sample treatment was based on quantitative leaching of mercury species from fish tissue with ultrasound-assisted acid-toluene extraction. The extracted mercury species analyzed with GC-MIP-OES attained detection limits of 5 and 9 pg for methylmercury (MeHg and ethylmercury (EtHg, respectively. A complete chromatogram could be completed in 1.5 min. MeHg values obtained with GC-MIP-OES were matched with organic mercury values obtained with selective reduction cold vapour- atomic absorption spectrometry (CV-AAS.

  9. Determination of Cu, Zn, Pb and Cd by atomic emission spectrometry with inductively coupled plasma in waters and sediments from San Juan Ecosystem, Santiago de Cuba

    International Nuclear Information System (INIS)

    Argota Perez, George; Argota Coello, Humberto; Fernandez-Heredia, Angel

    2014-01-01

    In this paper the levels of concentration of copper, zinc, lead and cadmium in waters and sediments from the ecosystem San Juan in the Santiago of Cuba province were evaluated. Two sampling of the ecosystem in two stations belonging to the high and middle part of the river, in rainy and little rainy periods were carried out. The conservation and treatment of the samples were developed according to established standards and the determinations of the elements were realized using atomic emission spectrometry with inductively coupled plasma. The concentrations intervals of the studied elements were established so much in the superficial waters like in the sediments and it was demonstrated that exists statistical significant differences for the factors station, period and type of sample, being the middle part of the river, the little rainy period and the sediments, where the grater concentrations of the pollutants appear

  10. Critical comparison of performances of inductively coupled plasma atomic emission spectrometry and neutron activation analysis for the determination of elements in human lungs

    International Nuclear Information System (INIS)

    Alimonti, A.; Coni, E.; Caroli, S.; Sabbioni, E.; Nicolaou, G.E.; Pietra, R.

    1989-01-01

    A study was carried out to assess the performance of inductively coupled plasma atomic emission spectrometry (ICP-AES) and neutron activation analysis (NAA) techniques for determining reference values for Al, Cd, Cr, Cu, Mg, Mn, V and Zn in human lungs of urban non-smoking subjects. Experimental data were subjected to the usual basic statistical tests to evaluate the respective merits of the two basically different analytical techniques. Both approaches, if used under carefully optimised experimental conditions, can yield reliable results affected only minimally by systematic and random errors. On the other hand, on a more routine basis, particular attention should be paid to elements such as Al, Cd and V which may pose some problems with both techniques. (author)

  11. Curve resolution and figures of merit estimation for determination of trace elements in geological materials by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Lorber, A.; Harel, A.; Goldbart, Z.; Brenner, I.B.

    1987-01-01

    In geochemical analysis using inductively coupled plasma atomic emission spectrometry (ICP-AES), spectral interferences and background enhancement in response to sample concomitants are the main cause of deterioration of the limit of detection (LOD) and inaccuracy of the determination at the trace and minor element levels. In this account, the authors describe the chemometric procedure of curve resolution for compensating for these sources of error. A newly developed method for calculating figures of merit is used to evaluate the correction procedure, test the statistical significance of the determined concentration, and determine LODs for each sample. The technique involves scanning the vicinity of the spectral line of the analyte. With prior knowledge of potential spectral interferences, deconvolution of the overlapped response is possible. Analytical data for a wide range of geological standard reference materials demonstrate the effectiveness of the chemometric techniques. Separation of 0.002 nm spectral coincidence, employing a 0.02 nm resolution spectrometer, is demonstrated

  12. A Slater parameter optimisation interface for the CIV3 atomic structure code and its possible use with the R-matrix close coupling collision code

    International Nuclear Information System (INIS)

    Fawcett, B.C.; Hibbert, A.

    1989-11-01

    Details are here provided of amendments to the atomic structure code CIV3 which allow the optional adjustment of Slater parameters and average energies of configurations so that they result in improved energy levels and eigenvectors. It is also indicated how, in principle, the resultant improved eigenvectors can be utilised by the R-matrix collision code, thus providing an optimised target for close coupling collision strength calculations. An analogous computational method was recently reported for distorted wave collision strength calculations and applied to Fe XIII. The general method is suitable for the computation of collision strengths for complex ions and in some cases can then provide a basis for collision strength calculations in ions where ab initio computations break down or result in unnecessarily large errors. (author)

  13. The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments

    International Nuclear Information System (INIS)

    Zou, Hong-Mei; Fang, Mao-Fa; Yang, Bai-Yuan; Guo, You-Neng; He, Wei; Zhang, Shi-Yang

    2014-01-01

    The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments are studied using the time-convolutionless master-equation approach. The influence of the non-Markovian effect and detuning on the lower bound of the quantum entropic uncertainty relation and entanglement witness is discussed in detail. The results show that, only if the two non-Markovian reservoirs are identical, increasing detuning and non-Markovian effect can reduce the lower bound of the entropic uncertainty relation, lengthen the time region during which the entanglement can be witnessed, and effectively protect the entanglement region witnessed by the lower bound of the entropic uncertainty relation. The results can be applied in quantum measurement, quantum cryptography tasks and quantum information processing. (paper)

  14. Rate-controlling two-proton transfer coupled with heavy-atom motion in the 2-pyridinone-catalyzed mutarotation of tetramethylglucose. Experimental and calculated deuterium isotope effects

    International Nuclear Information System (INIS)

    Engdahl, K.A.; Bivehed, H.; Ahlberg, P.; Saunders, W.H. Jr.

    1983-01-01

    Primary and secondary deuterium isotope effects have been measured by polarimetry, and primary isotope effects have been calculated for the classical bifunctional catalysis: 2-pyridinone-catalyzed mutarotation of 2,3,4,6-tetra-O-methyl-α-D-glucopyranose (α-TMG) in benzene. From the positively curved plot of the specific rate of epimerization vs. the mole fraction of 2 H in the ''pool'' of OH and NH hydrogens, the isotope effects k/sub HH//k/sub DD/ = 3.66 +/- 0.09, k/sub HH//k/sub DH/ = 1.5, and k/sub HH//k/sub HD/ = 2.4 have been calculated. A secondary isotope effect of 1.14 +/- 0.02 has been measured by using α-TMG and (1- 2 H)-2,3,4,6-tetra-O-methyl-α-D-glucopyranose [(l- 2 H)-α-TMG], the synthesis of which is described in detail, together with those for (N- 2 H)-2-pyridinone and (1-O- 2 H)-2,3,4,6-tetra-O-methyl-α-D-glucopyranose [(1-O- 2 H)-α-TMG]. The rate data obtained have also been analyzed by fractionation theory, yielding approximately equal fractionation factors (0.5). The interpretation of the results has been assisted by calculations of the primary deuterium isotope effects using the BEBOVIB IV program. Two models involving small and considerable coupling, respectively, of the transferring protons to heavy-atom motion have been considered. In the favored structure for the transition state of the rate-limiting step, two protons are in transit, and their motion is governed either by a potential with a barrier or by one without. Their motion is considerably coupled to the heavy-atom motion (i.e., the breakage of the ring C-O bond), and tunnel corrections to the isotope effects are found to be negligible

  15. Design of a scanning probe microscope with advanced sample treatment capabilities: An atomic force microscope combined with a miniaturized inductively coupled plasma source

    International Nuclear Information System (INIS)

    Hund, Markus; Herold, Hans

    2007-01-01

    We describe the design and performance of an atomic force microscope (AFM) combined with a miniaturized inductively coupled plasma source working at a radio frequency of 27.12 MHz. State-of-the-art scanning probe microscopes (SPMs) have limited in situ sample treatment capabilities. Aggressive treatments such as plasma etching or harsh treatments such as etching in aggressive liquids typically require the removal of the sample from the microscope. Consequently, time consuming procedures are required if the same sample spot has to be imaged after successive processing steps. We have developed a first prototype of a SPM which features a quasi in situ sample treatment using a modified commercial atomic force microscope. A sample holder is positioned in a special reactor chamber; the AFM tip can be retracted by several millimeters so that the chamber can be closed for a treatment procedure. Most importantly, after the treatment, the tip is moved back to the sample with a lateral drift per process step in the 20 nm regime. The performance of the prototype is characterized by consecutive plasma etching of a nanostructured polymer film

  16. Effects of spin orbital coupling on atomic and electronic structures in Al2Cu and Al2Au crystal and liquid phases via ab initio molecular dynamics simulations

    International Nuclear Information System (INIS)

    Wang, Y.; Lu, Y.H.; Wang, X.D.; Cao, Q.P.; Zhang, D.X.; Jiang, J.Z.

    2014-01-01

    Highlights: • The SOC effect affects the cohesion energy of crystal phase. • The effect of SOC was reduced due to random local atomic structures in liquids. • The local geometrical structures also affect the melting points. • Both SOC effect and local atomic structures are important for melting point difference. - Abstract: The origin of different melting points between Al 2 Cu and Al 2 Au has been studied using ab initio molecular dynamics simulations. Cohesive energy, electronic structures and structure information of both crystal and liquid phases have been analyzed. It is found that spin orbital coupling (SOC) plays an important role on the cohesive energy of crystal phase, consistent with the different melting points of these two alloys. Whereas, it seems that SOC has no effect on the formation energy and structure of liquid phase. Possible mechanism of reduced SOC effect at liquid phase is proposed. Our results are helpful to understand the glass formation ability difference between Al 2 Cu and Al 2 Au

  17. Elemental speciation via high-performance liquid chromatography combined with inductively coupled plasma atomic emission spectroscopic detection: application of a direct injection nebulizer

    International Nuclear Information System (INIS)

    LaFreniere, K.E; Fassel, V.A.; Eckels, D.E.

    1987-01-01

    An evaluation is presented of a direct injection nebulizer (DIN) interfaced to a high-performance liquid chromatograph (HPLC) with inductively coupled plasma atomic emission spectroscopic (ICP-AES) detection for simultaneous multielement speciation. The limits of detection (LODs) obtained with the DIN interface in the HPLC mode were found to be comparable to those obtained by continuous-flow sample introduction into the ICP, or inferior by up to only a factor of 4. In addition, the DIN allowed for the direct injection into the ICP of a variety of common HPLC solvents (up to 100% methanol, acetonitrile, methyl isobutyl ketone, pyridine, and water). The HPLC-DIN-ICP-AES system was compared to other HPLC-atomic spectroscopic detection techniques and was found to offer substantial improvement over the alternative on-line, detection methods in terms of LODs. Representative applications of the HPLC-DIN-ICP-AES system to the elemental speciation of coal process streams, shale oil, solvent refined coal, and crude oil are presented

  18. Direct atomic spectrometric analysis by slurry atomisation: Pt. 7. Analysis of coal using inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ebdon, Les; Foulkes, M E; Parry, H G.M.; Tye, C T

    1988-09-01

    The application of slurry atomisation - inductively coupled plasma mass spectrometry (ICP-MS) to major, minor and trace element determination in coals has been investigated. Eight certified reference material (CRM) coals have been ground by the bottle and bead method and analysed using both rapid scan semi-quantitative analysis, employing a single rhodium internal standard, and full quantitative analysis using simple aqueous standards for calibration. The semi-quantitative mode, which determines the concentration using the mass-response curve for 68 elements against the single internal standard, produced values which were within a factor of two of the certified reference value, in most instances. The full quantitative determination gave excellent agreement with the certified reference material coals for a large number of elemental constituents. The results from the determination of 16 elements of interest are discussed including the effects of polyatomic interferents and isotope sensitivity.

  19. Major constituent quantitative determination in uranium alloys by coupled plasma atomic emission spectrometry and X ray fluorescence wavelength dispersive spectrometry

    International Nuclear Information System (INIS)

    Oliveira, Luis Claudio de; Silva, Adriana Mascarenhas Martins da; Gomide, Ricardo Goncalves; Silva, Ieda de Souza

    2013-01-01

    A wavelength-dispersive X-ray fluorescence (WD-XRF) spectrometric method for determination of major constituents elements (Zr, Nb, Mo) in Uranium/Zirconium/Niobium and Uranium/Molybdenum alloy samples were developed. The methods use samples taken in the form of chips that were dissolved in hot nitric acid and precipitate particles melted with lithium tetraborate and dissolved in hot nitric acid and finally analyzed as a solution. Studies on the determination by inductively coupled plasma optic emission spectrometry (ICP OES) using matched matrix in calibration curve were developed. The same samples solution were analyzed in both methods. The limits of detection (LOD), linearity of the calibrations curves, recovery study, accuracy and precision of the both techniques were carried out. The results were compared. (author)

  20. Solution of the fifth dynamic Atomic Energy Research benchmark problem using the coupled code DIN3/ATHLET

    International Nuclear Information System (INIS)

    Kliem, S.

    1998-01-01

    The fifth dynamic benchmark is the first benchmark for coupled thermohydraulic system/three dimensional hexagonal neutron kinetic core models. In this benchmark the interaction between the components of a WWER-440 NPP with the reactor core has been investigated. The initiating event is a symmetrical break of the main steam header at the end of the first fuel cycle and the shutdown conditions with one control rod group s tucking. This break causes an overcooling of the primary circuit. During this overcooling the scram reactivity is compensated and the scrammed reactor becomes re critical. The calculation was continued until the highly-borated water from the high pressure injection system terminated the power excursion. Several aspects of the very complex and complicated benchmark problem are analyzed in detail. Sensitivity studies with different hydraulic parameters are made. The influence on the course of the transient and on the solution is discussed.(Author)

  1. Determination of total and inorganic mercury in fish samples with on-line oxidation coupled to atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Shao Lijun; Gan Wuer; Su Qingde

    2006-01-01

    An atomic fluorescence spectrometry system for determination of total and inorganic mercury with electromagnetic induction-assisted heating on-line oxidation has been developed. Potassium peroxodisulphate was used as the oxidizing agent to decompose organomercury compounds. Depending on the temperature selected, inorganic or total mercury could be determined with the same manifold. Special accent was put on the study of the parameters influencing the on-line digestion efficiency. The tolerance to the interference of coexisting ions was carefully examined in this system. Under optimal conditions, the detection limits (3σ) were evaluated to be 2.9 ng l -1 for inorganic mercury and 2.6 ng l -1 for total mercury, respectively. The relative standard deviations for 10 replicate determinations of 1.0 μg l -1 Hg were 2.4 and 3.2% for inorganic mercury and total mercury, respectively. The proposed method was successfully applied to the determination of total and inorganic mercury in fish samples

  2. Antimony speciation analysis in sediment reference materials using high-performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Potin-Gautier, M.; Pannier, F.; Quiroz, W.; Pinochet, H.; Gregori, I. de

    2005-01-01

    This work presents the development of suitable methodologies for determination of the speciation of antimony in sediment reference samples. Liquid chromatography with a post-column photo-oxidation step and hydride generation atomic fluorescence spectrometry as detection system is applied to the separation and determination of Sb(III), Sb(V) and trimethylantimony species. Post-column decomposition and hydride generation steps were studied for sensitive detection with the AFS detector. This method was applied to investigate the conditions under which speciation analysis of antimony in sediment samples can be carried out. Stability studies of Sb species during the extraction processes of solid matrices, using different reagents solutions, were performed. Results demonstrate that for the extraction yield and the stability of Sb species in different marine sediment extracts, citric acid in ascorbic acid medium was the best extracting solution for antimony speciation analysis in this matrix (between 55% and 65% of total Sb was recovered from CRMs, Sb(III) being the predominant species). The developed method allows the separation of the three compounds within 6 min with detection limits of 30 ng g -1 for Sb(III) and TMSbCl2 and 40 ng g -1 for Sb(V) in sediment samples

  3. Effects of weakly coupled and dense quantum plasmas environments on charge exchange and ionization processes in Na+ + Rb(5s) atom collisions

    Science.gov (United States)

    Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam

    2017-02-01

    The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.

  4. Multielement detection limits and sample nebulization efficiencies of an improved ultrasonic nebulizer and a conventional pneumatic nebulizer in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Olson, K.W.; Haas, W.J. Jr.; Fassel, V.A.

    1977-01-01

    Two important aspects of the analytical performance of a newly developed ultrasonic nebulizer and a specially designed pneumatic nebulizer have been compared for use in inductively coupled plasma--atomic emission spectroscopy (ICP-AES). The ultrasonic nebulizer, when combined with a conventional aerosol desolvation apparatus, provided an order of magnitude or more improvement in simultaneous multielement detection limits as compared to those obtained when the pneumatic nebulizer was used either with or without desolvation. Application of a novel method for direct measurement of the overall efficiency of nebulization to the two systems showed that an approximately tenfold greater rate of sample delivery to the plasma torch was primarily responsible for the superior detection limits afforded by the ultrasonic nebulizer. A unique feature of the ultrasonic nebulizer described is the protection against chemical attack which is achieved by completely enclosing the transducer in an acoustically coupled borosilicate glass cylinder. Direct sample introduction, convenient sample change, and rapid cleanout are other important characteristics of the system which make it an attractive alternate to pneumatic nebulizer systems

  5. Comparison of inductively coupled plasma mass spectrometry with inductively coupled plasma atomic emission spectrometry and instrumental neutron activation analysis for the determination of rare earth elements in Greek bauxites

    International Nuclear Information System (INIS)

    Ochsenkuehn-Petropoulou, Maria; Luck, Joachim

    1991-01-01

    Fore the determination of rare earth elements (REE) in bauxitic materials the techniques of inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and instrumental neutron activation analysis (INAA) were compared. In the NIST (National Institute of Standards and Technology) bauxites SRM 697 Dominican, and SRM 69 b Arkansas, the concentration of some REEs were determined. With the reference bauxite BX-N of the ARNT (Association Nationale de la Recherche Technique) the precision and accuracy of ICP-AES for the determination of REEs in bauxites was tested. Furthermore, Greek bauxites of the Parnassos-Giona area were investigated. In a comparison of the three methods it was possible to calculate from the data series the precision of each method, which showed that the tendency found in the deviations for the different REEs is in accordance with published values. Also the limits of detection for REEs in bauxites were calculated and found to be in the same range as those in the literature. (author)

  6. Determination of hafnium at the 10−4% level (relative to zirconium content) using neutron activation analysis, inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Smolik, Marek; Polkowska-Motrenko, Halina; Hubicki, Zbigniew; Jakóbik-Kolon, Agata; Danko, Bożena

    2014-01-01

    Graphical abstract: -- Highlights: •We worked out ICP-MS method of Hf determination in Zr and Zr compounds. •We used NAA method as reference one. •We obtained pure zirconium matrix by ion exchange (Diphonix ® resin). •These permit to determine ≥1 × 10 −4 % Hf in Zr sample by ICP MS with good precision and accuracy. -- Abstract: Hafnium at the very low level of 1–8 ppm (in relation to zirconium) was determined in zirconium sulfate solutions (originating from investigations of the separation of ca. 44 ppm Hf from zirconium by means of the ion exchange method) by using three independent methods: inductively coupled plasma mass spectrometry (ICP MS), neutron activation analysis (NAA) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results of NAA and ICP MS determinations were consistent with each other across the entire investigated range (the RSD of both methods did not exceed 38%). The results of ICP-AES determination were more diverse, particularly at less than 5 ppm Hf (RSD was significantly higher: 29–253%). The ion exchange method exploiting Diphonix ® resin proved sufficient efficiency in Zr–Hf separation when the initial concentration ratio of the elements ([Zr] 0 /[Hf] 0 ) ranged from 1200 to ca. 143,000

  7. Studies on the spectral interference of gadolinium on different analytes in inductively coupled plasma atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Sengupta, Arijit; Thulasidas, S.K.; Natarajan, V.; Airan, Yougant

    2015-01-01

    Due to the multi-electronic nature, rare earth elements are prone to exhibit spectral interference in ICP-AES, which leads to erroneous determination of analytes in presence of such matrix. This interference is very significant, when the analytes are to be determined at trace level in presence of emission rich matrix elements. An attempt was made to understand the spectral interference of Gd on 29 common analytes like Ag, Al, B, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Dy, Fe, Ga, Gd, In, La, Li, Lu, Mg, Mn, Na, Nd, Ni, Pb, Pr, Sr, Tl and Zn using ICP-AES with capacitive Charged Coupled Device (CCD) as detector. The present study includes identification of suitable interference free analytical lines of these analytes, evaluation of correction factor for each analytical line and determination of tolerance levels of these analytical lines along with the ICP-AES based methodology for simultaneous determination of Gd. Based on the spectral interference study, an ICP-AES based method was developed for the determination of these analytes at trace level in presence of Gd matrix without chemical separation. Further the developed methodology was validated using synthetic samples prepared from commercially available reference material solution of individual element; the results were found to be satisfactory. The method was also compared with other existing techniques

  8. Matrix digestion of soil and sediment samples for extraction of lead, cadmium and antimony and their direct determination by inductively coupled plasma-mass spectrometry and atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chattopadhyay, P.; Fisher, A.S.; Henon, D.N.; Hill, S.J.

    2004-01-01

    An environmentally friendly and simple method has been developed for complete digestion of lead, cadmium and antimony from soil samples using a magnesium nitrate assisted dry ashing procedure. Statistical data for a series of experiments with standard reference materials are presented, and precision values are found to be comparable for inductively coupled plasma-mass spectrometry and for inductively coupled plasma-atomic emission spectrometry. From a single digest solution all analytes are quantified without involving any preconcentration routes. Inter-method comparison of inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) shows that the probability of the results being different is less than 99 %. (author)

  9. Quantum entanglement and position-momentum entropic squeezing of a moving Lambda-type three-level atom interacting with a single-mode quantized field with intensity-dependent coupling

    Science.gov (United States)

    Faghihi, M. J.; Tavassoly, M. K.

    2013-07-01

    In this paper, we study the interaction between a moving Λ-type three-level atom and a single-mode cavity field in the presence of intensity-dependent atom-field coupling. After obtaining the state vector of the entire system explicitly, we study the nonclassical features of the system such as quantum entanglement, position-momentum entropic squeezing, quadrature squeezing and sub-Poissonian statistics. According to the obtained numerical results we illustrate that the squeezed period, the duration of entropy squeezing and the maximal squeezing can be controlled by choosing the appropriate nonlinearity function together with entering the atomic motion effect by the suitable selection of the field-mode structure parameter. Also, the atomic motion, as well as the nonlinearity function, leads to the oscillatory behaviour of the degree of entanglement between the atom and field.

  10. Input-output supervisor

    International Nuclear Information System (INIS)

    Dupuy, R.

    1970-01-01

    The input-output supervisor is the program which monitors the flow of informations between core storage and peripheral equipments of a computer. This work is composed of three parts: 1 - Study of a generalized input-output supervisor. With sample modifications it looks like most of input-output supervisors which are running now on computers. 2 - Application of this theory on a magnetic drum. 3 - Hardware requirement for time-sharing. (author) [fr

  11. Self-consistent finite-temperature model of atom-laser coherence properties

    International Nuclear Information System (INIS)

    Fergusson, J.R.; Geddes, A.J.; Hutchinson, D.A.W.

    2005-01-01

    We present a mean-field model of a continuous-wave atom laser with Raman output coupling. The noncondensate is pumped at a fixed input rate which, in turn, pumps the condensate through a two-body scattering process obeying the Fermi golden rule. The gas is then coupled out by a Gaussian beam from the system, and the temperature and particle number are self-consistently evaluated against equilibrium constraints. We observe the dependence of the second-order coherence of the output upon the width of the output-coupling beam, and note that even in the presence of a highly coherent trapped gas, perfect coherence of the output matter wave is not guaranteed

  12. Arsenic speciation in edible alga samples by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Salgado, S. [Departamento de Ingenieria Civil: Tecnologia Hidraulica y Energetica, Escuela Universitaria de Ingenieria Tecnica de Obras Publicas, Universidad Politecnica de Madrid, Alfonso XII 3 y 5, 28014 Madrid (Spain); Quijano, M.A., E-mail: marian.quijano@upm.es [Departamento de Ingenieria Civil: Tecnologia Hidraulica y Energetica, Escuela Universitaria de Ingenieria Tecnica de Obras Publicas, Universidad Politecnica de Madrid, Alfonso XII 3 y 5, 28014 Madrid (Spain); Bonilla, M.M. [Departamento de Ingenieria Civil: Tecnologia Hidraulica y Energetica, Escuela Universitaria de Ingenieria Tecnica de Obras Publicas, Universidad Politecnica de Madrid, Alfonso XII 3 y 5, 28014 Madrid (Spain)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Total As and As species were analyzed in edible marine algae. Black-Right-Pointing-Pointer A microwave-assisted extraction method with deionized water was applied. Black-Right-Pointing-Pointer As compounds identified comprised DMA, As(V) and four arsenosugars Black-Right-Pointing-Pointer Considerably high As(V) concentrations were found in the most of the algae studied. - Abstract: Twelve commercially available edible marine algae from France, Japan and Spain and the certified reference material (CRM) NIES No. 9 Sargassum fulvellum were analyzed for total arsenic and arsenic species. Total arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after microwave digestion and ranged from 23 to 126 {mu}g g{sup -1}. Arsenic species in alga samples were extracted with deionized water by microwave-assisted extraction and showed extraction efficiencies from 49 to 98%, in terms of total arsenic. The presence of eleven arsenic species was studied by high performance liquid chromatography-ultraviolet photo-oxidation-hydride generation atomic-fluorescence spectrometry (HPLC-(UV)-HG-AFS) developed methods, using both anion and cation exchange chromatography. Glycerol and phosphate sugars were found in all alga samples analyzed, at concentrations between 0.11 and 22 {mu}g g{sup -1}, whereas sulfonate and sulfate sugars were only detected in three of them (0.6-7.2 {mu}g g{sup -1}). Regarding arsenic toxic species, low concentration levels of dimethylarsinic acid (DMA) (<0.9 {mu}g g{sup -1}) and generally high arsenate (As(V)) concentrations (up to 77 {mu}g g{sup -1}) were found in most of the algae studied. The results obtained are of interest to highlight the need to perform speciation analysis and to introduce appropriate legislation to limit toxic arsenic species content in these food products.

  13. A COUPLED CHEMISTRY-EMISSION MODEL FOR ATOMIC OXYGEN GREEN AND RED-DOUBLET EMISSIONS IN THE COMET C/1996 B2 HYAKUTAKE

    International Nuclear Information System (INIS)

    Bhardwaj, Anil; Raghuram, Susarla

    2012-01-01

    The green (5577 Å) and red-doublet (6300, 6364 Å) lines are prompt emissions of metastable oxygen atoms in the 1 S and 1 D states, respectively, that have been observed in several comets. The value of the intensity ratio of green to red-doublet (G/R ratio) of 0.1 has been used as a benchmark to identify the parent molecule of oxygen lines as H 2 O. A coupled chemistry-emission model is developed to study the production and loss mechanisms of the O( 1 S) and O( 1 D) atoms and the generation of red and green lines in the coma of C/1996 B2 Hyakutake. The G/R ratio depends not only on photochemistry, but also on the projected area observed for cometary coma, which is a function of the dimension of the slit used and the geocentric distance of the comet. Calculations show that the contribution of photodissociation of H 2 O to the green (red) line emission is 30%-70% (60%-90%), while CO 2 and CO are the next potential sources contributing 25%-50% ( 1 S) to O( 1 D) would be around 0.03 (±0.01) if H 2 O is the main source of oxygen lines, whereas it is ∼0.6 if the parent is CO 2 . Our calculations suggest that the yield of O( 1 S) production in the photodissociation of H 2 O cannot be larger than 1%. The model-calculated radial brightness profiles of the red and green lines and G/R ratios are in good agreement with the observations made on the comet Hyakutake in 1996 March.

  14. Cu determination in crude oil distillation products by atomic absorption and inductively coupled plasma mass spectrometry after analyte transfer to aqueous solution

    International Nuclear Information System (INIS)

    Kowalewska, Zofia; Ruszczynska, Anna; Bulska, Ewa

    2005-01-01

    Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system (ii) mineralization in a closed microwave system (iii) combustion in hydrogen-oxygen flame in the Wickbold's apparatus (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g -1 in procedures i-v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g -1 in procedures i-iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50-110 ng g -1 in crude oil, -1 in gasoline, -1 in atmospheric oil, -1 in heavy vacuum oil and 140-300 ng g -1 in distillation residue

  15. Cu determination in crude oil distillation products by atomic absorption and inductively coupled plasma mass spectrometry after analyte transfer to aqueous solution

    Science.gov (United States)

    Kowalewska, Zofia; Ruszczyńska, Anna; Bulska, Ewa

    2005-03-01

    Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system, (ii) mineralization in a closed microwave system, (iii) combustion in hydrogen-oxygen flame in the Wickbold's apparatus, (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g - 1 in procedures i-v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g - 1 in procedures i-iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50-110 ng g - 1 in crude oil, oil, oil and 140-300 ng g - 1 in distillation residue.

  16. A COUPLED CHEMISTRY-EMISSION MODEL FOR ATOMIC OXYGEN GREEN AND RED-DOUBLET EMISSIONS IN THE COMET C/1996 B2 HYAKUTAKE

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Anil; Raghuram, Susarla, E-mail: bhardwaj_spl@yahoo.com, E-mail: anil_bhardwaj@vssc.gov.in, E-mail: raghuramsusarla@gmail.com [Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum 695022 (India)

    2012-03-20

    The green (5577 Angstrom-Sign ) and red-doublet (6300, 6364 Angstrom-Sign ) lines are prompt emissions of metastable oxygen atoms in the {sup 1}S and {sup 1}D states, respectively, that have been observed in several comets. The value of the intensity ratio of green to red-doublet (G/R ratio) of 0.1 has been used as a benchmark to identify the parent molecule of oxygen lines as H{sub 2}O. A coupled chemistry-emission model is developed to study the production and loss mechanisms of the O({sup 1}S) and O({sup 1}D) atoms and the generation of red and green lines in the coma of C/1996 B2 Hyakutake. The G/R ratio depends not only on photochemistry, but also on the projected area observed for cometary coma, which is a function of the dimension of the slit used and the geocentric distance of the comet. Calculations show that the contribution of photodissociation of H{sub 2}O to the green (red) line emission is 30%-70% (60%-90%), while CO{sub 2} and CO are the next potential sources contributing 25%-50% (<5%). The ratio of the photoproduction rate of O({sup 1} S) to O({sup 1} D) would be around 0.03 ({+-}0.01) if H{sub 2}O is the main source of oxygen lines, whereas it is {approx}0.6 if the parent is CO{sub 2}. Our calculations suggest that the yield of O({sup 1} S) production in the photodissociation of H{sub 2}O cannot be larger than 1%. The model-calculated radial brightness profiles of the red and green lines and G/R ratios are in good agreement with the observations made on the comet Hyakutake in 1996 March.

  17. Modified mesoporous silica materials for on-line separation and preconcentration of hexavalent chromium using a microcolumn coupled with flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zheng, E-mail: wangzheng@mail.sic.ac.cn [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Fang Dongmei; Li Qing [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); East China University of Science and Technology, Shanghai 200237 (China); Zhang Lingxia; Qian Rong; Zhu Yan; Qu Haiyun [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Du Yiping [East China University of Science and Technology, Shanghai 200237 (China)

    2012-05-06

    Highlights: Black-Right-Pointing-Pointer A modified SBA-15 mesoporous silica material (NH{sub 2}-SBA-15) was synthesized as sorbent. Black-Right-Pointing-Pointer The material was used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Black-Right-Pointing-Pointer The NH{sub 2}-SBA-15 enables retain Cr (VI) with an enrichment factor of 44. Black-Right-Pointing-Pointer The micro-column of NH{sub 2}-SBA-15 underwent more than 100 adsorption/desorption cycles. - Abstract: A modified SBA-15 mesoporous silica material NH{sub 2}-SBA-15 was synthesized successfully by grafting {gamma}-aminopropyl-triethoxysilane. The material was characterized using transmission electron microscopy (TEM) and Fourier transform infrared/Raman (FT-IR/Raman) spectroscopy, and used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Effective sorption of Cr (VI) was achieved at pH 2.0 with no interference from Cr (III) and other ions and 0.5 mol L{sup -1} NH{sub 3}{center_dot}H{sub 2}O solution was found optimal for the complete elution of Cr (VI). An enrichment factor of 44 and was achieved under optimized experimental conditions at a sample loading of 2.0 mL min{sup -1} sample loading (300 s) and an elution flow rate of 2.0 mL min{sup -1} (24 s). The precision of the 11 replicate Cr (VI) measurements was 2.1% at the 100 {mu}g L{sup -1} level with a detection limit of 0.2 {mu}g L{sup -1} (3 s, n = 10) using the FAAS. The developed method was successfully applied to trace chromium determination in waste water. The accuracy was validated using a certified reference material of riverine water (GBW08607).

  18. Inductively coupled plasma--atomic emission spectroscopy: an evaluation of the use of nitrogen--argon admixtures as plasma discharge atmospheres

    International Nuclear Information System (INIS)

    Zalewski, J.C.

    1979-01-01

    The effects of the use of nitrogen in either the plasma coolant or aerosol carrier gas flows on the physical and spectrochemical properties of the inductively coupled plasma (ICP) were examined. While the plasma operated with nitrogen in the coolant flow exhibited a stability comparable to that of the argon plasma, the use of nitrogen in the aerosol carrier gas flow resulted in a plasma that was less stable. The detection limits obtained for the three plasmas exhibited a similar trend. In addition, the use of nitrogen--argon admixtures in the plasma coolant gas flow yielded an increase in both the net analyte and the background emission intensities when the corresponding argon and nitrogen--argon plasmas were operated under various conditions. Furthermore, the effect of aluminum on the Ca II (393.4 nm) spectral line was reported for the 1000/1 Al/Ca molar ratio. At an observation height of 15 mm, the signal depressions were 4 and 14% for the nitrogen--argon and the argon plasmas, respectively. The above experimental evidence suggested that the operation of the ICP with an Ar--N 2 coolant gas might be hotter than the argon plasma currently in use in this laboratory. The demountable plasma torch designed in collaboration with K. Olson yielded detection limits for 15 elements and 19 spectral lines that were approximately within a factor of two of those obtained with the torch of fused quartz design. The design also appeared to offer a more readily initiated plasma discharge. The experimental evidence presented supports the utilization of nitrogen--argon admixtures in the plasma coolant gas flow as alternate discharge atmospheres for inductively coupled plasma--atomic emission spectroscopy. In contrast, the experimental evidence shows that there is a deterioration in both physical and spectrochemical properties of plasmas operated with a nitrogen aerosol carrier gas

  19. Output hardcopy devices

    CERN Document Server

    Durbeck, Robert

    1988-01-01

    Output Hardcopy Devices provides a technical summary of computer output hardcopy devices such as plotters, computer output printers, and CRT generated hardcopy. Important related technical areas such as papers, ribbons and inks, color techniques, controllers, and character fonts are also covered. Emphasis is on techniques primarily associated with printing, as well as the plotting capabilities of printing devices that can be effectively used for computer graphics in addition to their various printing functions. Comprised of 19 chapters, this volume begins with an introduction to vector and ras

  20. Preconcentration of uranium, thorium, zirconium, titanium, molybdenum and vanadium with oxine supported on microcrystalline naphthalene and their determinations by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Naveen Kumar, P.; Sanjay Kumar; Vijay Kumar; Nandakishore, S.S.; Bangroo, P.N.

    2013-01-01

    A sensitive and rapid method for the determination of uranium, thorium, zirconium, titanium, molybdenum and vanadium by inductively coupled plasma atomic emission spectrometry (ICP-AES) after solid-liquid extraction with microcrystalline naphthalene is developed. Analytes were quantitatively adsorbed as their oxinate complexes on naphthalene and determined by ICP-AES after stripping with 2 M HCl. The effect of various experimental parameters such as pH, reagent amounts, naphthalene amount and stripping conditions on the determination of these elements was investigated in detail. Under the optimized experimental conditions, the detection limits of this method for U (VI), Th (IV), Zr (IV), Ti (IV), Mo (VI) and V (V) were 20.0 ng mL -1 and the relative standard deviations obtained for three replicate determinations at a concentration of 1.0 µg mL -1 were 1.5-3.0%. The proposed method has been applied in the analysis of SY-2, SY-3 and pre-analysed samples for U, Th, Zr, Ti, Mo and V the analytical results are in good agreement with recommended values. (author)

  1. Development of novel and sensitive methods for the determination of sulfide in aqueous samples by hydrogen sulfide generation-inductively coupled plasma-atomic emission spectroscopy.

    Science.gov (United States)

    Colon, M; Todolí, J L; Hidalgo, M; Iglesias, M

    2008-02-25

    Two new, simple and accurate methods for the determination of sulfide (S(2-)) at low levels (microgL(-1)) in aqueous samples were developed. The generation of hydrogen sulfide (H(2)S) took place in a coil where sulfide reacted with hydrochloric acid. The resulting H(2)S was then introduced as a vapor into an inductively coupled plasma-atomic emission spectrometer (ICP-AES) and sulfur emission intensity was measured at 180.669nm. In comparison to when aqueous sulfide was introduced, the introduction of sulfur as H(2)S enhanced the sulfur signal emission. By setting a gas separator at the end of the reaction coil, reduced sulfur species in the form of H(2)S were removed from the water matrix, thus, interferences could be avoided. Alternatively, the gas separator was replaced by a nebulizer/spray chamber combination to introduce the sample matrix and reagents into the plasma. This methodology allowed the determination of both sulfide and sulfate in aqueous samples. For both methods the linear response was found to range from 5microgL(-1) to 25mgL(-1) of sulfide. Detection limits of 5microgL(-1) and 6microgL(-1) were obtained with and without the gas separator, respectively. These new methods were evaluated by comparison to the standard potentiometric method and were successfully applied to the analysis of reduced sulfur species in environmental waters.

  2. Comparison of digestion procedures used for the determination of boron in biological tissues by ICP-AES [inductively-coupled, plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Bauer, W.F.; Miller, D.L.; Steele, S.M.

    1988-01-01

    A study was designed to identify the most accurate and reliable procedures for the digestion of biological tissues prior to the determination of boron by inductively-coupled, plasma-atomic emission spectroscopy (ICP-AES). The four procedures used in this study were an acid bomb digestion and digestions performed in test tubes using perchloric acid and hydrogen peroxide, nitric acid and hydrogen peroxide, and nitric acid alone. Digestions using nitric acid and hydrogen peroxide and nitric acid alone were performed in a manner analogous to the perchloric acid/hydrogen peroxide procedure. The tissues used in the study were from dogs that had been administered a boron compound (Na 2 B 12 H 11 SH) and included two brain tissues, a liver and a tongue. These tissues were selected in order to eliminate results that may be due to surface spiking only. None of the test tube procedures were successful in completely dissolving the samples, as was evidenced by residual color and a coagulated precipitate. The amount of precipitate was much larger for the brain tissues in all cases. The acid bomb digestion and the perchloric acid/hydrogen peroxide procedures gave comparable boron concentrations for all of the tissues in this study. 2 refs., 1 tab

  3. Automated magnetic sorbent extraction based on octadecylsilane functionalized maghemite magnetic particles in a sequential injection system coupled with electrothermal atomic absorption spectrometry for metal determination.

    Science.gov (United States)

    Giakisikli, Georgia; Anthemidis, Aristidis N

    2013-06-15

    A new automatic sequential injection (SI) system for on-line magnetic sorbent extraction coupled with electrothermal atomic absorption spectrometry (ETAAS) has been successfully developed for metal determination. In this work, we reported effective on-line immobilization of magnetic silica particles into a microcolumn by the external force of two strong neodymium iron boron (NdFeB) magnets across it, avoiding the use of frits. Octadecylsilane functionalized maghemite magnetic particles were used as sorbent material. The potentials of the system were demonstrated for trace cadmium determination in water samples. The method was based on the on-line complex formation with diethyldithiocarbamate (DDTC), retention of Cd-DDTC on the surface of the MPs and elution with isobutyl methyl ketone (IBMK). The formation mechanism of the magnetic solid phase packed column and all critical parameters (chemical, flow, graphite furnace) influencing the performance of the system were optimized and offered good analytical characteristics. For 5 mL sample volume, a detection limit of 3 ng L(-1), a relative standard deviation of 3.9% at 50 ng L(-1) level (n=11) and a linear range of 9-350 ng L(-1) were obtained. The column remained stable for more than 600 cycles keeping the cost down in routine analysis. The proposed method was evaluated by analyzing certified reference materials and natural waters. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Determination of Metals Present in Textile Dyes Using Laser-Induced Breakdown Spectroscopy and Cross-Validation Using Inductively Coupled Plasma/Atomic Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Rehan

    2017-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS was used for the quantitative analysis of elements present in textile dyes at ambient pressure via the fundamental mode (1064 nm of a Nd:YAG pulsed laser. Three samples were collected for this purpose. Spectra of textile dyes were acquired using an HR spectrometer (LIBS2000+, Ocean Optics, Inc. having an optical resolution of 0.06 nm in the spectral range of 200 to 720 nm. Toxic metals like Cr, Cu, Fe, Ni, and Zn along with other elements like Al, Mg, Ca, and Na were revealed to exist in the samples. The %-age concentrations of the detected elements were measured by means of standard calibration curve method, intensities of every emission from every species, and calibration-free (CF LIBS approach. Only Sample 3 was found to contain heavy metals like Cr, Cu, and Ni above the prescribed limit. The results using LIBS were found to be in good agreement when compared to outcomes of inductively coupled plasma/atomic emission spectroscopy (ICP/AES.

  5. Leaching of heavy metals from contaminated soils using inductively coupled plasma optical emission spectrometer (ICP-OES) and atomic absorption spectrometer (AAS)

    International Nuclear Information System (INIS)

    Hussain, Z.; Islam, M.

    2010-01-01

    The clean-up of soils contaminated with heavy metals is one of the most difficult tasks for environmental engineering. Heavy metals are highly persistent in soil and a number of techniques have been developed that aim to remove heavy metals from contaminated soil. A method has been adopted to evaluate dynamic leaching of metal contaminants from industrial soil samples obtained from textile industrial sites in Lahore, Pakistan. In the extraction procedures employed five different leaching liquors were used: 0.01 M CaCl/sub 2/, 1 M HNO/sub 3/, a 1:1 mixture of 0.1M HCl and 0.1M NaCl, 0.01 M EDTA and pH controlled 0.5 M acetic acid. The qualitative and quantitative analyses were carried out by Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES). The results indicate that Cu, Zn, Cd, Ni, Pb, Fe and As were extracted in the soil samples in varying concentration when using the different leach liquors. The predominant metals which were leached were As 78.7 ng/ml in 0.01 M EDTA; Zn 1.81 mu g/ml and Fe 898.96 macro g/ml in HNO/sub 3/. (author)

  6. Simultaneous Pre-Concentration of Cadmium and Lead in Environmental Water Samples with Dispersive Liquid-Liquid Microextraction and Determination by Inductively Coupled Plasma-Atomic Emission Spectrometry

    Directory of Open Access Journals (Sweden)

    M. Salahinejad

    2013-06-01

    Full Text Available The dispersive liquid–liquid microextraction (DLLME method for determination of Pb+2 and Cd+2 ions in the environmental water samples was combined with inductively coupled plasma-atomic emission spectrometry (ICP-AES. Ammonium pyrrolidine dithiocarbamate (APDC, chloroform and ethanol were used as chelating agent, extraction solvent and disperser solvent, respectively. Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters included extraction and disperser solvent type as well as their volume, extraction time, salt effect, pH, sample volume and amount of the chelating agent.   Under the optimum conditions, the enrichment factor of 75 and 105 for Cd+2 and Pb+2 ions respectively was obtained from only 5.00mL of water sample. The detection limit (S/N=3 was 12 and 0.8ngmL−1 for Pb and Cd respectively. The relative standard deviation (RSDs for five replicate measurements of 0.50 mgL−1 of lead and cadmium was 6.5 and 4.4 % respectively. Mineral, tap, river, sea, dam and spiked water samples were analyzed for Cd and Pb amount.

  7. Flotation separation of Cd, Co, Cr, Cu, Ni and Tl from calcium minerals and their determination by inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Zajkova-Paneva, Vesna; Stafilov, Trajche; Boev, Blazho

    2003-01-01

    The method of inductively coupled plasma-atomic spectrometry (ICP-AES), is developed for determination of Cd, Co, Cr, Cu, Ni and Tl in traces in calcite and gypsum. The interferences of Ca as matrix element on Co, Cr, Cu, Ni and Tl intensities during their ICP-AES determination are investigated. The results reveal that Ca does not interfere on intensities of Cr, but tends to decrease the intensity of the other elements. To eliminate those matrix interferences of Ca on trace elements intensities a flotation separation method is proposed. Lead(II) hexamethylenedithiocarbamate, Pb(HMDTC) 2 , is applied as a collector for flotation of trace elements from acidic solutions of mineral samples. The most suitable concentrations of calcite and gypsum solutions for flotation are ascertained. The detection limits of ICP-AES method following flotation of elements present in calcite and gypsum as impurities are determined: 0.022 and 0.061 μg·g -1 for Cd, 0.071 and 0.042 μg·g -1 for Co, 0.026 and 0.132 μg·g -1 for Cr, 0.164 and 0.149 μg·g -1 for Cu, 0.289 and 0.095 μg·g -1 for Ni and 0.645 and 0.7666 μg·g -1 for Tl, respectively. (Original)

  8. Flagging and correcting non-spectral matrix interferences with spatial emission profiles and gradient dilution in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Cheung, Yan; Schwartz, Andrew J.; Chan, George C.-Y.; Hieftje, Gary M.

    2015-01-01

    Matrix interference remains one of the most daunting challenges commonly encountered in inductively coupled plasma-atomic emission spectrometry (ICP-AES). In the present study, a method is described that enables identification and correction of matrix interferences in axial-viewed ICP-AES through a combination of spatial mapping and on-line gradient dilution. Cross-sectional emission maps of the plasma are used to indicate the presence of non-spectral (plasma-related and sample-introduction-related) matrix interferences. In particular, apparent concentrations of an analyte species determined at various radial locations in the plasma differ in the presence of a matrix interference, which allows the interference to be flagged. To correct for the interference, progressive, on-line dilution of the sample, performed by a gradient high-performance liquid-chromatograph pump, is utilized. The spatially dependent intensities of analyte emission are monitored at different levels of sample dilution. As the dilution proceeds, the matrix-induced signal variation is reduced. At a dilution where the determined concentrations become independent of location in the plasma, the matrix interference is minimized. - Highlights: • Non-spectral matrix interference in ICP-AES is flagged and minimized. • Emission from different locations of the plasma are collected simultaneously. • Spatially dependent determined concentrations indicate the presence of interference. • Gradient dilution is performed on both calibration standards and sample. • Optimal dilution factor to minimize interference is found as dilution increases

  9. Use of gradient dilution to flag and overcome matrix interferences in axial-viewing inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Cheung, Yan; Schwartz, Andrew J.; Hieftje, Gary M.

    2014-01-01

    Despite the undisputed power of inductively coupled plasma-atomic emission spectrometry (ICP-AES), its users still face serious challenges in obtaining accurate analytical results. Matrix interference is perhaps the most important challenge. Dilution of a matrix-containing sample is a common practice to reduce matrix interference. However, determining the optimal dilution factor requires tedious and time-consuming offline sample preparation, since emission lines and the effect of matrix interferences are affected differently by the dilution. The current study exploits this difference by employing a high-performance liquid chromatography gradient pump prior to the nebulizer to perform on-line mixing of a sample solution and diluent. Linear gradient dilution is performed on both the calibration standard and the matrix-containing sample. By ratioing the signals from two emission lines (from the same or different elements) as a function of dilution factor, the analyst can not only identify the presence of a matrix interference, but also determine the optimal dilution factor needed to overcome the interference. A ratio that does not change with dilution signals the absence of a matrix interference, whereas a changing ratio indicates the presence of an interference. The point on the dilution profile where the ratio stabilizes indicates the optimal dilution factor to correct the interference. The current study was performed on axial-viewing ICP-AES with o-xylene as the solvent

  10. One-step displacement dispersive liquid-liquid microextraction coupled with graphite furnace atomic absorption spectrometry for the selective determination of methylmercury in environmental samples.

    Science.gov (United States)

    Liang, Pei; Kang, Caiyan; Mo, Yajun

    2016-01-01

    A novel method for the selective determination of methylmercury (MeHg) was developed by one-step displacement dispersive liquid-liquid microextraction (D-DLLME) coupled with graphite furnace atomic absorption spectrometry. In the proposed method, Cu(II) reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which was used as the chelating agent instead of DDTC for the dispersive liquid-liquid microextraction (DLLME) of MeHg. Because the stability of MeHg-DDTC is higher than that of Cu-DDTC, MeHg can displace Cu from the Cu-DDTC complex and be preconcentrated in a single DLLME procedure. MeHg could be extracted into the extraction solvent phase at pH 6 while Hg(II) remained in the sample solution. Potential interference from co-existing metal ions with lower DDTC complex stability was largely eliminated without the need of any masking reagent. Under the optimal conditions, the limit of detection of this method was 13.6ngL(-1) (as Hg), and an enhancement factor of 81 was achieved with a sample volume of 5.0mL. The proposed method was successfully applied for the determination of trace MeHg in some environmental samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Flagging and correcting non-spectral matrix interferences with spatial emission profiles and gradient dilution in inductively coupled plasma-atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Yan; Schwartz, Andrew J.; Chan, George C.-Y.; Hieftje, Gary M., E-mail: hieftje@indiana.edu

    2015-08-01

    Matrix interference remains one of the most daunting challenges commonly encountered in inductively coupled plasma-atomic emission spectrometry (ICP-AES). In the present study, a method is described that enables identification and correction of matrix interferences in axial-viewed ICP-AES through a combination of spatial mapping and on-line gradient dilution. Cross-sectional emission maps of the plasma are used to indicate the presence of non-spectral (plasma-related and sample-introduction-related) matrix interferences. In particular, apparent concentrations of an analyte species determined at various radial locations in the plasma differ in the presence of a matrix interference, which allows the interference to be flagged. To correct for the interference, progressive, on-line dilution of the sample, performed by a gradient high-performance liquid-chromatograph pump, is utilized. The spatially dependent intensities of analyte emission are monitored at different levels of sample dilution. As the dilution proceeds, the matrix-induced signal variation is reduced. At a dilution where the determined concentrations become independent of location in the plasma, the matrix interference is minimized. - Highlights: • Non-spectral matrix interference in ICP-AES is flagged and minimized. • Emission from different locations of the plasma are collected simultaneously. • Spatially dependent determined concentrations indicate the presence of interference. • Gradient dilution is performed on both calibration standards and sample. • Optimal dilution factor to minimize interference is found as dilution increases.

  12. Problems, possibilities and limitations of inductively coupled plasma atomic emission spectrometry in the determination of platinum, palladium and rhodium in samples with different matrix composition

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, P.; Velichkov, S. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. bl. 11, 1113 Sofia (Bulgaria); Velitchkova, N. [Geological Institute, Bulgarian Academy of Sciences, Acad. G. Bontchev Str., bl.24, 1113 Sofia (Bulgaria); Havezov, I. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. bl. 11, 1113 Sofia (Bulgaria); Daskalova, N., E-mail: das15482@svr.igic.bas.b [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. bl. 11, 1113 Sofia (Bulgaria)

    2010-02-15

    The economic and geological importance of platinum group of elements has led to the development of analytical methods to quantify them in different types of samples. In the present paper the quantitative information for spectral interference in radial viewing 40.68 MHz inductively coupled plasma atomic emission spectrometry in the determination of Pt, Pd and Rh in the presence of complex matrix, containing Al, Ca, Fe, Mg, Mn, P and Ti as matrix constituents was obtained. The database was used for optimum line selections. By using the selected analysis lines the following detection limits in ng g{sup -1} were obtained: Pt 1700, Pd-1440, Rh-900. The reached detection limits determine the possibilities and limitation of the direct ICP-AES method in the determination of Pt, Pd and Rh in geological and environmental materials. The database for spectral interferences in the presence of aluminum can be used for the determination of platinum group of elements in car catalysts. The accuracy of the analytical results was experimentally demonstrated by two certified reference materials that were analyzed: SARM 7, Pt ore and recycled auto-catalyst certified reference material SRM 2556.

  13. Microwave-assisted versus conventional decomposition procedures applied to a ceramic potsherd standard reference material by inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulou, D.N.; Zachariadis, G.A.; Anthemidis, A.N.; Tsirliganis, N.C.; Stratis, J.A

    2004-03-03

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) is a powerful, sensitive analytical technique with numerous applications in chemical characterization including that of ancient pottery, mainly due to its multi-element character, and the relatively short time required for the analysis. A critical step in characterization studies of ancient pottery is the selection of a suitable decomposition procedure for the ceramic matrix. The current work presents the results of a comparative study of six decomposition procedures applied on a standard ceramic potsherd reference material, SARM 69. The investigated decomposition procedures included three microwave-assisted decomposition procedures, one wet decomposition (WD) procedure by conventional heating, one combined microwave-assisted and conventional heating WD procedure, and one fusion procedure. Chemical analysis was carried out by ICP-AES. Five major (Si, Al, Fe, Ca, Mg), three minor (Mn, Ba, Ti) and two trace (Cu, Co) elements were determined and compared with their certified values. Quantitation was performed at two different spectral lines for each element and multi-element matrix-matched calibration standards were used. The recovery values for the six decomposition procedures ranged between 75 and 110% with a few notable exceptions. Data were processed statistically in order to evaluate the investigated decomposition procedures in terms of recovery, accuracy and precision, and eventually select the most appropriate one for ancient pottery analysis.

  14. Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy.

    Science.gov (United States)

    Lei, W Q; El Haddad, J; Motto-Ros, V; Gilon-Delepine, N; Stankova, A; Ma, Q L; Bai, X S; Zheng, L J; Zeng, H P; Yu, J

    2011-07-01

    Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.

  15. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples.

    Science.gov (United States)

    Liu, Yao-Min; Zhang, Feng-Ping; Jiao, Bao-Yu; Rao, Jin-Yu; Leng, Geng

    2017-04-14

    An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg + ), ethylmercury (EtHg + ) and inorganic mercury (Hg 2+ ) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated. Key parameters, such as the type and volume of the chelation, extraction and dispersive solvent, aspiration speed, sample pH, salt effect and matrix effect, were thoroughly investigated. Under the optimum conditions, linear range was 10-1200ngL -1 for EtHg + and 5-450ngL -1 for MeHg + and Hg 2+ . Limits of detection were 3.0ngL -1 for EtHg + and 1.5ngL -1 for MeHg + and Hg 2+ . Reproducibility and recoveries were assessed by spiking three natural water samples with different Hg concentrations, giving recoveries from 88.4-96.1%, and relative standard deviations <5.1%. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Quantum entanglement and position–momentum entropic squeezing of a moving Lambda-type three-level atom interacting with a single-mode quantized field with intensity-dependent coupling

    International Nuclear Information System (INIS)

    Faghihi, M J; Tavassoly, M K

    2013-01-01

    In this paper, we study the interaction between a moving Λ-type three-level atom and a single-mode cavity field in the presence of intensity-dependent atom–field coupling. After obtaining the state vector of the entire system explicitly, we study the nonclassical features of the system such as quantum entanglement, position–momentum entropic squeezing, quadrature squeezing and sub-Poissonian statistics. According to the obtained numerical results we illustrate that the squeezed period, the duration of entropy squeezing and the maximal squeezing can be controlled by choosing the appropriate nonlinearity function together with entering the atomic motion effect by the suitable selection of the field-mode structure parameter. Also, the atomic motion, as well as the nonlinearity function, leads to the oscillatory behaviour of the degree of entanglement between the atom and field. (paper)

  17. WRF Model Output

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains WRF model output. There are three months of data: July 2012, July 2013, and January 2013. For each month, several simulations were made: A...

  18. VMS forms Output Tables

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These output tables contain parsed and format validated data from the various VMS forms that are sent from any given vessel, while at sea, from the VMS devices on...

  19. Governmentally amplified output volatility

    Science.gov (United States)

    Funashima, Yoshito

    2016-11-01

    Predominant government behavior is decomposed by frequency into several periodic components: updating cycles of infrastructure, Kuznets cycles, fiscal policy over business cycles, and election cycles. Little is known, however, about the theoretical impact of such cyclical behavior in public finance on output fluctuations. Based on a standard neoclassical growth model, this study intends to examine the frequency at which public investment cycles are relevant to output fluctuations. We find an inverted U-shaped relationship between output volatility and length of cycle in public investment. This implies that periodic behavior in public investment at a certain frequency range can cause aggravated output resonance. Moreover, we present an empirical analysis to test the theoretical implication, using the U.S. data in the period from 1968 to 2015. The empirical results suggest that such resonance phenomena change from low to high frequency.

  20. CMAQ Model Output

    Data.gov (United States)

    U.S. Environmental Protection Agency — CMAQ and CMAQ-VBS model output. This dataset is not publicly accessible because: Files too large. It can be accessed through the following means: via EPA's NCC tape...

  1. An Investigation on the Extraction and Quantitation of a Hexavalent Chromium in Acrylonitrile Butadiene Styrene Copolymer (ABS) and Printed Circuit Board (PCB) by Ion Chromatography Coupled with Inductively Coupled Plasma Atomic Emission Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Sang Ho; Kim, Yu Na [Mokpo National University, Muan (Korea, Republic of)

    2012-06-15

    A hexavalent chromium (Cr (VI)) is one of the hazardous substances regulated by the RoHS. The determination of Cr (VI) in various polymers and printed circuit board (PCB) has been very important. In this study, the three different analytical methods were investigated for the determination of a hexavalent chromium in Acrylonitrile Butadiene Styrene copolymer (ABS) and PCB. The results by three analytical methods were obtained and compared. An analytical method by UV-Visible spectrometer has been generally used for the determination of Cr (VI) in a sample, but a hexavalent chromium should complex with diphenylcarbazide for the detection in the method. The complexation did make an adverse effect on the quantitative analysis of Cr (VI) in ABS. The analytical method using diphenylcarbazide was also not applicable to printed circuit board (PCB) because PCB contained lots of irons. The irons interfered with the analysis of hexavalent chromium because those also could complex with diphenylcarbazide. In this study, hexavalent chromiums in PCB have been separated by ion chromatography (IC), then directly and selectively detected by inductively coupled plasma atomic emission spectrometry (ICP-AES). The quantity of Cr (VI) in PCB was 0.1 mg/kg

  2. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  3. Single atom oscillations

    International Nuclear Information System (INIS)

    Wiorkowski, P.; Walther, H.

    1990-01-01

    Modern methods of laser spectroscopy allow the study of single atoms or ions in an unperturbed environment. This has opened up interesting new experiments, among them the detailed study of radiation-atom coupling. In this paper, the following two experiments dealing with this problem are reviewed: the single-atom maser and the study of the resonance fluorescence of a single stored ion. The simplest and most fundamental system for studying radiation-matter coupling is a single two-level atom interacting with a single mode of an electromagnetic field in a cavity. This problem received a great deal of attention shortly after the maser was invented

  4. In-situ determination of cross-over point for overcoming plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2008-01-01

    A novel method is described for overcoming plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry (ICP-AES). The method is based on measurement of the vertically resolved atomic emission of analyte within the plasma and therefore requires the addition of no reagents to the sample solution or to the plasma. Plasma-related matrix effects enhance analyte emission intensity low in the plasma but depress the same emission signal at higher positions. Such bipolar behavior is true for all emission lines and matrices that induce plasma-related interferences. The transition where the enhancement is balanced by the depression (the so-called cross-over point) results in a spatial region with no apparent matrix effects. Although it would be desirable always to perform determinations at this cross-over point, its location varies between analytes and from matrix to matrix, so it would have to be found separately for every analyte and for every sample. Here, a novel approach is developed for the in-situ determination of the location of this cross-over point. It was found that the location of the cross-over point is practically invariant for a particular analyte emission line when the concentration of the matrix was varied. As a result, it is possible to determine in-situ the location of the cross-over point for all analyte emission lines in a sample by means of a simple one-step sample dilution. When the original sample is diluted by a factor of 2 and the diluted sample is analyzed again, the extent of the matrix effect is identical (zero) between the original sample and the diluted sample at one and only one location - the cross-over point. This novel method was verified with several single-element matrices (0.05 M Na, Ca, Ba and La) and some mixed-element matrices (mixtures of Na-Ca, Ca-Ba, and a plant-sample digest). The inaccuracy in emission intensity due to the matrix effect could be as large as - 30% for conventional measurements in the

  5. Selective determination of four arsenic species in rice and water samples by modified graphite electrode-based electrolytic hydride generation coupled with atomic fluorescence spectrometry.

    Science.gov (United States)

    Yang, Xin-An; Lu, Xiao-Ping; Liu, Lin; Chi, Miao-Bin; Hu, Hui-Hui; Zhang, Wang-Bing

    2016-10-01

    This work describes a novel non-chromatographic approach for the accurate and selective determining As species by modified graphite electrode-based electrolytic hydride generation (EHG) for sample introduction coupled with atomic fluorescence spectrometry (AFS) detection. Two kinds of sulfydryl-containing modifiers, l-cysteine (Cys) and glutathione (GSH), are used to modify cathode. The EHG performance of As has been changed greatly at the modified cathode, which has never been reported. Arsenite [As(III)] on the GSH modified graphite electrode (GSH/GE)-based EHG can be selectively and quantitatively converted to AsH3 at applied current of 0.4A. As(III) and arsenate [As(V)] on the Cys modified graphite electrode (Cys/GE) EHG can be selectively and efficiently converted to arsine at applied current of 0.6A, whereas monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) do not form any or only less volatile hydrides under this condition. By changing the analytical conditions, we also have achieved the analysis of total As (tAs) and DMA. Under the optimal condition, the detection limits (3s) of As(III), iAs and tAs in aqueous solutions are 0.25μgL(-1), 0.22μgL(-1) and 0.10μgL(-1), respectively. The accuracy of the method is verified through the analysis of standard reference materials (SRM 1568a). Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Development of novel and sensitive methods for the determination of sulfide in aqueous samples by hydrogen sulfide generation-inductively coupled plasma-atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Colon, M. [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Todoli, J.L. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Hidalgo, M. [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Iglesias, M. [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain)], E-mail: monica.iglesias@udg.es

    2008-02-25

    Two new, simple and accurate methods for the determination of sulfide (S{sup 2-}) at low levels ({mu}g L{sup -1}) in aqueous samples were developed. The generation of hydrogen sulfide (H{sub 2}S) took place in a coil where sulfide reacted with hydrochloric acid. The resulting H{sub 2}S was then introduced as a vapor into an inductively coupled plasma-atomic emission spectrometer (ICP-AES) and sulfur emission intensity was measured at 180.669 nm. In comparison to when aqueous sulfide was introduced, the introduction of sulfur as H{sub 2}S enhanced the sulfur signal emission. By setting a gas separator at the end of the reaction coil, reduced sulfur species in the form of H{sub 2}S were removed from the water matrix, thus, interferences could be avoided. Alternatively, the gas separator was replaced by a nebulizer/spray chamber combination to introduce the sample matrix and reagents into the plasma. This methodology allowed the determination of both sulfide and sulfate in aqueous samples. For both methods the linear response was found to range from 5 {mu}g L{sup -1} to 25 mg L{sup -1} of sulfide. Detection limits of 5 {mu}g L{sup -1} and 6 {mu}g L{sup -1} were obtained with and without the gas separator, respectively. These new methods were evaluated by comparison to the standard potentiometric method and were successfully applied to the analysis of reduced sulfur species in environmental waters.

  7. Use of stirred tanks for studying matrix effects caused by inorganic acids, easily ionized elements and organic solvents in inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, Eduardo [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Maestre, Salvador E. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Todoli, Jose L. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain)]. E-mail: jose.todoli@ua.es

    2006-03-15

    A stirred tank was used for the first time to elucidate the mechanism responsible for inductively coupled plasma atomic emission spectroscopy (ICP-AES) matrix effects caused by inorganic, acids and easily ionized elements (EIEs), as well as organic, ethanol and acetic acid, compounds. In order to gradually increase the matrix concentration, a matrix solution was introduced inside a stirred container (tank) initially filled with an aqueous multielement standard. PolyTetraFluoroEthylene (PTFE) tubing was used to deliver the resulting solution to the liquid sample introduction system. Matrix concentration ranged from 0 to 2 mol l{sup -1} in the case of inorganic acids (i.e., nitric, sulfuric, hydrochloric and a mixture of them), from 0 to about 2500 mg l{sup -1} for EIEs (i.e., sodium, calcium and mixtures of both) and from 0% to 15%, w/w for organic compounds. Up to 40-50 different solutions were prepared and measured in a period of time shorter than 6-7 min. This investigation was carried out in terms of emission intensity and tertiary aerosols characteristics. The experimental setup used in the present work allowed to thoroughly study the effect of matrix concentration on analytical signal. Generally speaking, the experiments concerning tertiary aerosol characterization revealed that, in the case of inorganic acids and EIEs, the mechanism responsible for changes in aerosol characteristics was the droplet fission. In contrast, for organic matrices it was found that the interference was caused by a change in both aerosol transport and plasma thermal characteristics. The extent of the interferences caused by organic as well as inorganic compounds was compared for a set of 14 emission lines through a wide range of matrix concentrations. With a stirred tank, it is possible to choose an efficient internal standard for any given matrix composition. The time required to complete this procedure was shorter than 7 min.

  8. Flow Injection Photochemical Vapor Generation Coupled with Miniaturized Solution-Cathode Glow Discharge Atomic Emission Spectrometry for Determination and Speciation Analysis of Mercury.

    Science.gov (United States)

    Mo, Jiamei; Li, Qing; Guo, Xiaohong; Zhang, Guoxia; Wang, Zheng

    2017-10-03

    A novel, compact, and green method was developed for the determination and speciation analysis of mercury, based on flow injection photochemical vapor generation (PVG) coupled with miniaturized solution cathode glow discharge-atomic emission spectroscopy (SCGD-AES). The SCGD was generated between a miniature hollow titanium tube and a solution emerging from a glass capillary. Cold mercury vapor (Hg(0)) was generated by PVG and subsequently delivered to the SCGD for excitation, and finally the emission signals were recorded by a miniaturized spectrograph. The detection limits (DLs) of Hg(II) and methylmercury (MeHg) were both determined to be 0.2 μg L -1 . Moreover, mercury speciation analysis could also be performed by using different wavelengths and powers from the UV lamp and irradiation times. Both Hg(II) and MeHg can be converted to Hg(0) for the determination of total mercury (T-Hg) with 8 W/254 nm UV lamp and 60 s irradiation time; while only Hg(II) can be reduced to Hg(0) and determined selectively with 4 W/365 nm UV lamp and 20 s irradiation time. Then, the concentration of MeHg can be calculated by subtracting the Hg(II) from the T-Hg. Because of its similar sensitivity and DL at 8 W/254 nm, the simpler and less toxic Hg(II) was used successfully as a primary standard for the quantification of T-Hg. The novel PVG-SCGD-AES system provides not only a 365-fold improvement in the DL for Hg(II) but also a nonchromatographic method for the speciation analysis of mercury. After validating its accuracy, this method was successfully used for mercury speciation analysis of water and biological samples.

  9. Use of stirred tanks for studying matrix effects caused by inorganic acids, easily ionized elements and organic solvents in inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Paredes, Eduardo; Maestre, Salvador E.; Todoli, Jose L.

    2006-01-01

    A stirred tank was used for the first time to elucidate the mechanism responsible for inductively coupled plasma atomic emission spectroscopy (ICP-AES) matrix effects caused by inorganic, acids and easily ionized elements (EIEs), as well as organic, ethanol and acetic acid, compounds. In order to gradually increase the matrix concentration, a matrix solution was introduced inside a stirred container (tank) initially filled with an aqueous multielement standard. PolyTetraFluoroEthylene (PTFE) tubing was used to deliver the resulting solution to the liquid sample introduction system. Matrix concentration ranged from 0 to 2 mol l -1 in the case of inorganic acids (i.e., nitric, sulfuric, hydrochloric and a mixture of them), from 0 to about 2500 mg l -1 for EIEs (i.e., sodium, calcium and mixtures of both) and from 0% to 15%, w/w for organic compounds. Up to 40-50 different solutions were prepared and measured in a period of time shorter than 6-7 min. This investigation was carried out in terms of emission intensity and tertiary aerosols characteristics. The experimental setup used in the present work allowed to thoroughly study the effect of matrix concentration on analytical signal. Generally speaking, the experiments concerning tertiary aerosol characterization revealed that, in the case of inorganic acids and EIEs, the mechanism responsible for changes in aerosol characteristics was the droplet fission. In contrast, for organic matrices it was found that the interference was caused by a change in both aerosol transport and plasma thermal characteristics. The extent of the interferences caused by organic as well as inorganic compounds was compared for a set of 14 emission lines through a wide range of matrix concentrations. With a stirred tank, it is possible to choose an efficient internal standard for any given matrix composition. The time required to complete this procedure was shorter than 7 min

  10. Arsenic speciation in edible alga samples by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    García-Salgado, S.; Quijano, M.A.; Bonilla, M.M.

    2012-01-01

    Highlights: ► Total As and As species were analyzed in edible marine algae. ► A microwave-assisted extraction method with deionized water was applied. ► As compounds identified comprised DMA, As(V) and four arsenosugars ► Considerably high As(V) concentrations were found in the most of the algae studied. - Abstract: Twelve commercially available edible marine algae from France, Japan and Spain and the certified reference material (CRM) NIES No. 9 Sargassum fulvellum were analyzed for total arsenic and arsenic species. Total arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after microwave digestion and ranged from 23 to 126 μg g −1 . Arsenic species in alga samples were extracted with deionized water by microwave-assisted extraction and showed extraction efficiencies from 49 to 98%, in terms of total arsenic. The presence of eleven arsenic species was studied by high performance liquid chromatography–ultraviolet photo-oxidation–hydride generation atomic–fluorescence spectrometry (HPLC–(UV)–HG–AFS) developed methods, using both anion and cation exchange chromatography. Glycerol and phosphate sugars were found in all alga samples analyzed, at concentrations between 0.11 and 22 μg g −1 , whereas sulfonate and sulfate sugars were only detected in three of them (0.6-7.2 μg g −1 ). Regarding arsenic toxic species, low concentration levels of dimethylarsinic acid (DMA) ( −1 ) and generally high arsenate (As(V)) concentrations (up to 77 μg g −1 ) were found in most of the algae studied. The results obtained are of interest to highlight the need to perform speciation analysis and to introduce appropriate legislation to limit toxic arsenic species content in these food products.

  11. Activated carbon-modified knotted reactor coupled to electrothermal atomic absorption spectrometry for sensitive determination of arsenic species in medicinal herbs and tea infusions

    Energy Technology Data Exchange (ETDEWEB)

    Grijalba, Alexander Castro; Martinis, Estefanía M. [Laboratory of Analytical Chemistry for Research and Development (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre J. Contreras 1300, (5500) Mendoza (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires (Argentina); Lascalea, Gustavo E. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires (Argentina); Wuilloud, Rodolfo G., E-mail: rwuilloud@mendoza-conicet.gob.ar [Laboratory of Analytical Chemistry for Research and Development (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre J. Contreras 1300, (5500) Mendoza (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires (Argentina)

    2015-01-01

    A flow injection system based on a modified polytetrafluoroethylene (PTFE) knotted reactor (KR) was developed for arsenite [As(III)] and arsenate [As(V)] species preconcentration and determination by electrothermal atomic absorption spectrometry (ETAAS). Activated carbon (AC) was immobilized on the inner walls of a PTFE KR by a thermal treatment. A significant increase in analyte retention was obtained with the AC-modified KR (100%) as compared to the regular PTFE KR (25%). The preconcentration method involved the on-line formation of As(III)-ammonium pyrrolidinedithiocarbamate (As-APDC) complex, followed by its adsorption onto the inner walls of the AC-modified KR. After analyte retention, the complex was eluted with acetone directly into the graphite furnace of ETAAS. The parameters affecting the flow injection system were evaluated with a full central composite face centered design with three center points. Under optimum conditions, a preconcentration factor of 200 was obtained with 10 ml of sample. The detection limit was 4 ng L{sup −1} and the relative standard deviation (RSD) for six replicate measurements at 0.2 μg L{sup −1} of As were 4.3% and 4.7% for As(III) and As(V), respectively. The developed methodology was highly selective towards As(III), while As(V), monomethylarsonic acid [MMA(V)] and dimethylarsinic [DMA(V)] were not retained in the AC-modified KR. The proposed method was successfully applied for As speciation analysis in infusions originated from medicinal herbs and tea. - Highlights: • We report an efficient method for As speciation. • We have modified a knotted reactor with activated carbon for high sorption capacity. • We provide a simple procedure for surface modification of a PTFE knotted reactor. • We have selectively separated inorganic As species from complex matrix samples. • We have implemented a modified KR in a flow injection system coupled to ETAAS.

  12. Activated carbon-modified knotted reactor coupled to electrothermal atomic absorption spectrometry for sensitive determination of arsenic species in medicinal herbs and tea infusions

    International Nuclear Information System (INIS)

    Grijalba, Alexander Castro; Martinis, Estefanía M.; Lascalea, Gustavo E.; Wuilloud, Rodolfo G.

    2015-01-01

    A flow injection system based on a modified polytetrafluoroethylene (PTFE) knotted reactor (KR) was developed for arsenite [As(III)] and arsenate [As(V)] species preconcentration and determination by electrothermal atomic absorption spectrometry (ETAAS). Activated carbon (AC) was immobilized on the inner walls of a PTFE KR by a thermal treatment. A significant increase in analyte retention was obtained with the AC-modified KR (100%) as compared to the regular PTFE KR (25%). The preconcentration method involved the on-line formation of As(III)-ammonium pyrrolidinedithiocarbamate (As-APDC) complex, followed by its adsorption onto the inner walls of the AC-modified KR. After analyte retention, the complex was eluted with acetone directly into the graphite furnace of ETAAS. The parameters affecting the flow injection system were evaluated with a full central composite face centered design with three center points. Under optimum conditions, a preconcentration factor of 200 was obtained with 10 ml of sample. The detection limit was 4 ng L −1 and the relative standard deviation (RSD) for six replicate measurements at 0.2 μg L −1 of As were 4.3% and 4.7% for As(III) and As(V), respectively. The developed methodology was highly selective towards As(III), while As(V), monomethylarsonic acid [MMA(V)] and dimethylarsinic [DMA(V)] were not retained in the AC-modified KR. The proposed method was successfully applied for As speciation analysis in infusions originated from medicinal herbs and tea. - Highlights: • We report an efficient method for As speciation. • We have modified a knotted reactor with activated carbon for high sorption capacity. • We provide a simple procedure for surface modification of a PTFE knotted reactor. • We have selectively separated inorganic As species from complex matrix samples. • We have implemented a modified KR in a flow injection system coupled to ETAAS

  13. Determination of trace cadmium in rice by liquid spray dielectric barrier discharge induced plasma - chemical vapor generation coupled with atomic fluorescence spectrometry

    Science.gov (United States)

    Liu, Xing; Zhu, Zhenli; Bao, Zhengyu; Zheng, Hongtao; Hu, Shenghong

    2018-03-01

    Cadmium contamination in rice has become an increasing concern in many countries including China. A simple, cost-effective, and highly sensitive method was developed for the determination of trace cadmium in rice samples based on a new high-efficient liquid spray dielectric barrier discharge induced plasma (LSDBD) vapor generation coupled with atomic fluorescence spectrometry (AFS). The analytical procedure involves the efficient formation of Cd volatile species by LSDBD plasma induced chemical processes without the use of any reducing reagents (Na/KBH4 in conventional hydride generation). The effects of the addition of organic substances, different discharge parameters such as discharge voltage and discharge gap, as well as the foreign ion interferences were investigated. Under optimized conditions, a detection limit of 0.01 μg L- 1 and a precision of 0.8% (RSD, n = 5, 1 μg L- 1 Cd) was readily achieved. The calibration curve was linear in the range between 0.1 and 10 μg L- 1, with a correlation coefficient of R2 = 0.9995. Compared with the conventional acid-BH4- vapor generation, the proposed method not only eliminates the use of unstable and expensive reagents, but also offers high tolerance for coexisting ions, which is well suited to the direct analysis of environmental samples. The validation of the proposed method was demonstrated by the analysis of Cd in reference material of rice (GBW080684). It was also successfully applied to the determination of trace cadmium in locally collected 11 rice samples, and the obtained Cd concentrations are ranged from 7.2 to 517.7 μg kg- 1.

  14. Preconcentration and speciation of chromium in a sequential injection system incorporating dual mini-columns coupled with electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zou Aimei; Tang Xiaoyan; Chen Mingli [Research Center for Analytical Sciences, Northeastern University, Box 332, Shenyang 110004 (China); Wang Jianhua [Research Center for Analytical Sciences, Northeastern University, Box 332, Shenyang 110004 (China)], E-mail: jianhuajrz@mail.neu.edu.cn

    2008-05-15

    A procedure for chromium preconcentration and speciation with a dual mini-column sequential injection system coupled with electrothermal atomic absorption spectrometry (ETAAS) was developed. At pH 6, the sample solution was firstly aspirated to flow through a Chlorella vulgaris cell mini-column on which the Cr(III) was retained. The effluent was afterwards directed to flow through a 717 anion exchange resin mini-column accompanied by the retention of Cr(VI). Thereafter, Cr(III) and Cr(VI) were eluted by 0.04 mol L{sup -1} and 1.0 mol L{sup -1} nitric acid, respectively, and the eluates were quantified with ETAAS. Chemical and flow variables governing the performance of the system were investigated. By using a sampling volume of 600 {mu}L, sorption efficiencies of 99.7% for Cr(III) and 99% for Cr(VI) were achieved along with enrichment factors of 10.5 for Cr(III) and 11.6 for Cr(VI), within linear ranges of 0.1-2.5 {mu}g L{sup -1} for Cr(III) and 0.12-2.0 {mu}g L{sup -1} for Cr(VI). Detection limits of 0.02 {mu}g L{sup -1} for Cr(III) and 0.03 {mu}g L{sup -1} for Cr(VI) along with RSD values of 1.9% for Cr(III) and 2.5% for Cr(VI) (1.0 {mu}g L{sup -1}, n = 11) were obtained. The procedure was validated by analyzing a certified reference material of GBW08608 and further demonstrated by chromium speciation in river and tap water samples.

  15. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis

    International Nuclear Information System (INIS)

    Papadopoulou, D.N.; Zachariadis, G.A.; Anthemidis, A.N.; Tsirliganis, N.C.; Stratis, J.A.

    2004-01-01

    Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level)

  16. High Precision Seawater Sr/Ca Measurements in the Florida Keys by Inductively Coupled Plasma Atomic Emission Spectrometry: Analytical Method and Implications for Coral Paleothermometry

    Science.gov (United States)

    Khare, A.; Kilbourne, K. H.; Schijf, J.

    2017-12-01

    Standard methods of reconstructing past sea surface temperatures (SSTs) with coral skeletal Sr/Ca ratios assume the seawater Sr/Ca ratio is constant. However, there is little data to support this assumption, in part because analytical techniques capable of determining seawater Sr/Ca with sufficient accuracy and precision are expensive and time consuming. We demonstrate a method to measure seawater Sr/Ca using inductively coupled plasma atomic emission spectrometry where we employ an intensity ratio calibration routine that reduces the self- matrix effects of calcium and cancels out the matrix effects that are common to both calcium and strontium. A seawater standard solution cross-calibrated with multiple instruments is used to correct for long-term instrument drift and any remnant matrix effects. The resulting method produces accurate seawater Sr/Ca determinations rapidly, inexpensively, and with a precision better than 0.2%. This method will make it easier for coral paleoclimatologists to quantify potentially problematic fluctuations in seawater Sr/Ca at their study locations. We apply our method to test for variability in surface seawater Sr/Ca along the Florida Keys Reef Tract. We are collecting winter and summer samples for two years in a grid with eleven nearshore to offshore transects across the reef, as well as continuous samples collected by osmotic pumps at four locations adjacent to our grid. Our initial analysis of the grid samples indicates a trend of decreasing Sr/Ca values offshore potentially due to a decreasing groundwater influence. The values differ by as much as 0.05 mmol/mol which could lead to an error of 1°C in mean SST reconstructions. Future work involves continued sampling in the Florida Keys to test for seasonal and interannual variability in seawater Sr/Ca, as well as collecting data from small reefs in the Virgin Islands to test the stability of seawater Sr/Ca under different geologic, hydrologic and hydrographic environments.

  17. Determination of tellurium at ultra-trace levels in drinking water by on-line solid phase extraction coupled to graphite furnace atomic absorption spectrometer

    International Nuclear Information System (INIS)

    Pedro, Juana; Stripekis, Jorge; Bonivardi, Adrian; Tudino, Mabel

    2008-01-01

    In this paper, two time-based flow injection (FI) separation pre-concentration systems coupled to graphite furnace atomic absorption spectrometry (GFAAS) for tellurium determination are studied and compared. The first alternative involves the pre-concentration of the analyte onto Dowex 1X8 employed as packaging material of a micro-column inserted in the flow system. The second set-up is based on the co-precipitation of tellurium with La(OH) 3 followed by retention onto XAD resins. Both systems are compared in terms of limit of detection, linear range, RSD%, sample throughput, micro-columns lifetime and aptitude for fully automatic operation. The features of the Dowex system are: 37% efficiency of retention and an enhancement factor of 42 for a pre-concentration time of 180 seconds (sample flow rate = 3 ml min -1 ) with acetic acid elution volumes of 80 μl. The detection limit (3 s) is 7 ng l -1 and the relative standard deviation (n = 7200 ng l -1 ) is 5.8%. The analytical performance of the XAD system is: 72% efficiency of retention and an enhancement factor of 25 for a pre-concentration time of 180 s (sample flow rate = 3 ml min -1 ) with nitric acid elution volumes of 300 μl. The detection limit is 66 ng l -1 and the relative standard deviation (n = 7200 ng l -1 ) is 8.3%. Applications to the determination of tellurium in tap water and the validation of the analytical methodology employing SRM 1643e as certified reference material are shown

  18. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulou, D.N. [Laboratory of Analytical Chemistry, Faculty of Chemistry, Aristotle University, GR-54124, Thessaloniki (Greece); Zachariadis, G.A. [Laboratory of Analytical Chemistry, Faculty of Chemistry, Aristotle University, GR-54124, Thessaloniki (Greece); Anthemidis, A.N. [Laboratory of Analytical Chemistry, Faculty of Chemistry, Aristotle University, GR-54124, Thessaloniki (Greece); Tsirliganis, N.C. [Archaeometry Laboratory, Cultural and Educational Technology Institute, Tsimiski 58, GR-67100, Xanthi (Greece); Stratis, J.A. [Laboratory of Analytical Chemistry, Faculty of Chemistry, Aristotle University, GR-54124, Thessaloniki (Greece)]. E-mail: jstratis@chem.auth.gr

    2004-12-01

    Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level)

  19. Influence of a Thiolate Chemical Layer on GaAs (100 Biofunctionalization: An Original Approach Coupling Atomic Force Microscopy and Mass Spectrometry Methods

    Directory of Open Access Journals (Sweden)

    Alex Bienaime

    2013-10-01

    Full Text Available Widely used in microelectronics and optoelectronics; Gallium Arsenide (GaAs is a III-V crystal with several interesting properties for microsystem and biosensor applications. Among these; its piezoelectric properties and the ability to directly biofunctionalize the bare surface, offer an opportunity to combine a highly sensitive transducer with a specific bio-interface; which are the two essential parts of a biosensor. To optimize the biorecognition part; it is necessary to control protein coverage and the binding affinity of the protein layer on the GaAs surface. In this paper; we investigate the potential of a specific chemical interface composed of thiolate molecules with different chain lengths; possessing hydroxyl (MUDO; for 11-mercapto-1-undecanol (HS(CH211OH or carboxyl (MHDA; for mercaptohexadecanoic acid (HS(CH215CO2H end groups; to reconstitute a dense and homogeneous albumin (Rat Serum Albumin; RSA protein layer on the GaAs (100 surface. The protein monolayer formation and the covalent binding existing between RSA proteins and carboxyl end groups were characterized by atomic force microscopy (AFM analysis. Characterization in terms of topography; protein layer thickness and stability lead us to propose the 10% MHDA/MUDO interface as the optimal chemical layer to efficiently graft proteins. This analysis was coupled with in situ MALDI-TOF mass spectrometry measurements; which proved the presence of a dense and uniform grafted protein layer on the 10% MHDA/MUDO interface. We show in this study that a critical number of carboxylic docking sites (10% is required to obtain homogeneous and dense protein coverage on GaAs. Such a protein bio-interface is of fundamental importance to ensure a highly specific and sensitive biosensor.

  20. Oil output's changing fortunes

    International Nuclear Information System (INIS)

    Eldridge, D.

    1994-01-01

    The Petroleum Economist, previously the Petroleum Press Service, has been making annual surveys of output levels of petroleum in all the oil-producing countries since its founding in 1934. This article documents trends and changes in the major oil-producing countries output from 1934 until the present. This analysis is linked with the political and historical events accompanying these changes, notably the growth of Middle Eastern oil production, the North Sea finds and most recently, Iraq's invasion of Kuwait in 1990. (UK)

  1. Cardiac output measurement

    Directory of Open Access Journals (Sweden)

    Andreja Möller Petrun

    2014-02-01

    Full Text Available In recent years, developments in the measuring of cardiac output and other haemodynamic variables are focused on the so-called minimally invasive methods. The aim of these methods is to simplify the management of high-risk and haemodynamically unstable patients. Due to the need of invasive approach and the possibility of serious complications the use of pulmonary artery catheter has decreased. This article describes the methods for measuring cardiac output, which are based on volume measurement (Fick method, indicator dilution method, pulse wave analysis, Doppler effect, and electrical bioimpedance.

  2. Efficient generation of volatile species for cadmium analysis in seafood and rice samples by a modified chemical vapor generation system coupled with atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Yang, Xin-an; Chi, Miao-bin; Wang, Qing-qing; Zhang, Wang-bing

    2015-01-01

    Highlights: • We develop a modified chemical vapor generation method coupled with AFS for the determination of cadmium. • The response of Cd could be increased at least four-fold compared to conventional thiourea and Co(II) system. • A simple mixing sequences experiment is designed to study the reaction mechanism. • The interference of transition metal ions can be easily eliminated by adding DDTC. • The method is successfully applied in seafood samples and rice samples. - Abstract: A vapor generation procedure to determine Cd by atomic fluorescence spectrometry (AFS) has been established. Volatile species of Cd are generated by following reaction of acidified sample containing Fe(II) and L-cysteine (Cys) with sodium tetrahydroborate (NaBH 4 ). The presence of 5 mg L −1 Fe(II) and 0.05% m/v Cys improves the efficiency of Cd vapor generation substantially about four-fold compared with conventional thiourea and Co(II) system. Three experiments with different mixing sequences and reaction times are designed to study the reaction mechanism. The results document that the stability of Cd(II)–Cys complexes is better than Cys–THB complexes (THB means NaBH 4 ) while the Cys–THB complexes have more contribution to improve the Cd vapor generation efficiency than Cd(II)–Cys complexes. Meanwhile, the adding of Fe(II) can catalyze the Cd vapor generation. Under the optimized conditions, the detection limit of Cd is 0.012 μg L −1 ; relative standard deviations vary between 0.8% and 5.5% for replicate measurements of the standard solution. In the presence of 0.01% DDTC, Cu(II), Pb(II) and Zn(II) have no significant influence up to 5 mg L −1 , 10 mg L −1 and 10 mg L −1 , respectively. The accuracy of the method is verified through analysis of the certificated reference materials and the proposed method has been applied in the determination of Cd in seafood and rice samples

  3. Efficient generation of volatile species for cadmium analysis in seafood and rice samples by a modified chemical vapor generation system coupled with atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xin-an, E-mail: 13087641@qq.com; Chi, Miao-bin, E-mail: 1161306667@qq.com; Wang, Qing-qing, E-mail: wangqq8812@163.com; Zhang, Wang-bing, E-mail: ahutwbzh@163.com

    2015-04-15

    Highlights: • We develop a modified chemical vapor generation method coupled with AFS for the determination of cadmium. • The response of Cd could be increased at least four-fold compared to conventional thiourea and Co(II) system. • A simple mixing sequences experiment is designed to study the reaction mechanism. • The interference of transition metal ions can be easily eliminated by adding DDTC. • The method is successfully applied in seafood samples and rice samples. - Abstract: A vapor generation procedure to determine Cd by atomic fluorescence spectrometry (AFS) has been established. Volatile species of Cd are generated by following reaction of acidified sample containing Fe(II) and L-cysteine (Cys) with sodium tetrahydroborate (NaBH{sub 4}). The presence of 5 mg L{sup −1} Fe(II) and 0.05% m/v Cys improves the efficiency of Cd vapor generation substantially about four-fold compared with conventional thiourea and Co(II) system. Three experiments with different mixing sequences and reaction times are designed to study the reaction mechanism. The results document that the stability of Cd(II)–Cys complexes is better than Cys–THB complexes (THB means NaBH{sub 4}) while the Cys–THB complexes have more contribution to improve the Cd vapor generation efficiency than Cd(II)–Cys complexes. Meanwhile, the adding of Fe(II) can catalyze the Cd vapor generation. Under the optimized conditions, the detection limit of Cd is 0.012 μg L{sup −1}; relative standard deviations vary between 0.8% and 5.5% for replicate measurements of the standard solution. In the presence of 0.01% DDTC, Cu(II), Pb(II) and Zn(II) have no significant influence up to 5 mg L{sup −1}, 10 mg L{sup −1}and 10 mg L{sup −1}, respectively. The accuracy of the method is verified through analysis of the certificated reference materials and the proposed method has been applied in the determination of Cd in seafood and rice samples.

  4. Arsenic fractionation in agricultural soil using an automated three-step sequential extraction method coupled to hydride generation-atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rosas-Castor, J.M. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66451 Nuevo León (Mexico); Group of Analytical Chemistry, Automation and Environment, University of Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Portugal, L.; Ferrer, L. [Group of Analytical Chemistry, Automation and Environment, University of Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Guzmán-Mar, J.L.; Hernández-Ramírez, A. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66451 Nuevo León (Mexico); Cerdà, V. [Group of Analytical Chemistry, Automation and Environment, University of Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Hinojosa-Reyes, L., E-mail: laura.hinojosary@uanl.edu.mx [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66451 Nuevo León (Mexico)

    2015-05-18

    Highlights: • A fully automated flow-based modified-BCR extraction method was developed to evaluate the extractable As of soil. • The MSFIA–HG-AFS system included an UV photo-oxidation step for organic species degradation. • The accuracy and precision of the proposed method were found satisfactory. • The time analysis can be reduced up to eight times by using the proposed flow-based BCR method. • The labile As (F1 + F2) was <50% of total As in soil samples from As-contaminated-mining zones. - Abstract: A fully automated modified three-step BCR flow-through sequential extraction method was developed for the fractionation of the arsenic (As) content from agricultural soil based on a multi-syringe flow injection analysis (MSFIA) system coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS). Critical parameters that affect the performance of the automated system were optimized by exploiting a multivariate approach using a Doehlert design. The validation of the flow-based modified-BCR method was carried out by comparison with the conventional BCR method. Thus, the total As content was determined in the following three fractions: fraction 1 (F1), the acid-soluble or interchangeable fraction; fraction 2 (F2), the reducible fraction; and fraction 3 (F3), the oxidizable fraction. The limits of detection (LOD) were 4.0, 3.4, and 23.6 μg L{sup −1} for F1, F2, and F3, respectively. A wide working concentration range was obtained for the analysis of each fraction, i.e., 0.013–0.800, 0.011–0.900 and 0.079–1.400 mg L{sup −1} for F1, F2, and F3, respectively. The precision of the automated MSFIA–HG-AFS system, expressed as the relative standard deviation (RSD), was evaluated for a 200 μg L{sup −1} As standard solution, and RSD values between 5 and 8% were achieved for the three BCR fractions. The new modified three-step BCR flow-based sequential extraction method was satisfactorily applied for arsenic fractionation in real agricultural

  5. The light output of BGO crystals

    International Nuclear Information System (INIS)

    Gong Zhufang; Ma Wengan; Lin Zhirong; Wang Zhaomin; Xu Zhizong; Fan Yangmei

    1987-01-01

    The dependence of light output on the surface treatment of BGO crystals has been tested. The results of experiments and Monte Carlo calculation indicate that for a tapered BGO crystal the best way to improve the uniformity and the energy resolution and to obtain higher light output is roughing the surface coupled to photomultiplier tube. The authors also observed that different wrapping method can effect its uniformity and resolutoin. Monte Carlo calculation indicates that the higher one of the 'double peaks' is the photoelectron peak of γ rays

  6. Squeezing effects of an atom laser: Beyond the linear model

    International Nuclear Information System (INIS)

    Jing Hui; Ge Molin; Chen Jingling

    2002-01-01

    We investigate the quantum dynamics and statistics of an atom laser by taking into account binary atom-atom collisions. The rotating wave approximation Hamiltonian of the system is solved analytically . We show that the nonlinear atom-atom interactions could yield periodic quadrature squeezing effects in the atom laser output beam, although the input radio frequency field is in a Glauber coherent state

  7. Dynamics of entropy and nonclassical properties of the state of a Λ-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium

    Science.gov (United States)

    Faghihi, M. J.; Tavassoly, M. K.

    2012-02-01

    In this paper, we study the interaction between a three-level atom and a quantized single-mode field with ‘intensity-dependent coupling’ in a ‘Kerr medium’. The three-level atom is considered to be in a Λ-type configuration. Under particular initial conditions, which may be prepared for the atom and the field, the dynamical state vector of the entire system will be explicitly obtained, for the arbitrary nonlinearity function f(n) associated with any physical system. Then, after evaluating the variation of the field entropy against time, we will investigate the quantum statistics as well as some of the nonclassical properties of the introduced state. During our calculations we investigate the effects of intensity-dependent coupling, Kerr medium and detuning parameters on the depth and domain of the nonclassicality features of the atom-field state vector. Finally, we compare our obtained results with those of V-type three-level atoms.

  8. High-precision two-dimensional atom localization from four-wave mixing in a double-Λ four-level atomic system

    Science.gov (United States)

    Shui, Tao; Yang, Wen-Xing; Chen, Ai-Xi; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu

    2018-03-01

    We propose a scheme for high-precision two-dimensional (2D) atom localization via the four-wave mixing (FWM) in a four-level double-Λ atomic system. Due to the position-dependent atom-field interaction, the 2D position information of the atoms can be directly determined by the measurement of the normalized light intensity of output FWM-generated field. We further show that, when the position-dependent generated FWM field has become sufficiently intense, efficient back-coupling to the FWM generating state becomes important. This back-coupling pathway leads to competitive multiphoton destructive interference of the FWM generating state by three supplied and one internally generated fields. We find that the precision of 2D atom localization can be improved significantly by the multiphoton destructive interference and depends sensitively on the frequency detunings and the pump field intensity. Interestingly enough, we show that adjusting the frequency detunings and the pump field intensity can modify significantly the FWM efficiency, and consequently lead to a redistribution of the atoms. As a result, the atom can be localized in one of four quadrants with holding the precision of atom localization.

  9. Carnot efficiency at divergent power output

    Science.gov (United States)

    Polettini, Matteo; Esposito, Massimiliano

    2017-05-01

    The widely debated feasibility of thermodynamic machines achieving Carnot efficiency at finite power has been convincingly dismissed. Yet, the common wisdom that efficiency can only be optimal in the limit of infinitely slow processes overlooks the dual scenario of infinitely fast processes. We corroborate that efficient engines at divergent power output are not theoretically impossible, framing our claims within the theory of Stochastic Thermodynamics. We inspect the case of an electronic quantum dot coupled to three particle reservoirs to illustrate the physical rationale.

  10. Determination of the mineral compositions of some selected oil-bearing seeds and kernels using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES

    Directory of Open Access Journals (Sweden)

    Musa Özcan, M.

    2006-06-01

    Full Text Available The aim of this paper was to establish the mineral contents of oil-bearing seeds and kernels such as peanut, turpentine, walnut, hazelnut, sesame, corn, poppy, almond, sunflower etc., using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES. Significant differences in mineral composition were observed among crops. All seeds and kernels contained high amounts of Al, Ca, Fe, K, Mg, Na, P and Zn. B, Cr, Cu, Li, Ni, Sr, Ti while V contents of the crops were found to be very low. The levels of K and P of all crops in this study were found to be higher than those of other seeds and kernels. The results obtained from analyses of the crops showed that the mean levels of potassiumcontent ranged from 1701.08 mg/kg (corn to 20895.8 mg/kg (soybean, the average content of phosphorus ranged from 3076.9 mg/kg (turpentine to 12006,5 mg/kg to 2617.4 mg/kg (cotton seed, and Ca from 68.4 mg/kg (corn to 13195.7 mg/kg (poppy seed. The results show that these values may  be useful for the evaluation of dietary information. Particularly the obtained results provide evidence that soybean, pinestone and poppy seed are a good source of K, P and Ca, respectively. Whereas pinestone is a good source of zinc.La finalidad del trabajo es establecer el contenido en elementos minerales de semillas oleaginosas tales como cacahuetes, trementina, avellana, sesamo, maiz, almendras, girasol, utilizando ICP-AES. Se han observado diferencias significativas en la composición de minerales entre cosechas. Todas las semillas contienen cantidades elevadas de Al, Ca, Fe, K, Mg, Na, P y Zn. Los contenidos de B, Cr, Cu, Li, Ni, Sr, Ti y V, sin embargo, fueron bajos. Los contenidos de K y P en todas las semillas estudiadas fueron superiores a las de otras semillas. El contenido medio de K osciló entre 1.701,1 mg/kg (maiz a 20.895,8 mg/kg (soja, el P entre 3.076.9 mg/kg (trementina a 12.006.5 mg/kg o 2.617,4 mg/kg (semilla de algodón, y Ca de 68,4 mg/kg (maiz a 13.195,7 mg

  11. Dynamics of entropy and nonclassical properties of the state of a Λ-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium

    International Nuclear Information System (INIS)

    Faghihi, M J; Tavassoly, M K

    2012-01-01

    In this paper, we study the interaction between a three-level atom and a quantized single-mode field with ‘intensity-dependent coupling’ in a ‘Kerr medium’. The three-level atom is considered to be in a Λ-type configuration. Under particular initial conditions, which may be prepared for the atom and the field, the dynamical state vector of the entire system will be explicitly obtained, for the arbitrary nonlinearity function f(n) associated with any physical system. Then, after evaluating the variation of the field entropy against time, we will investigate the quantum statistics as well as some of the nonclassical properties of the introduced state. During our calculations we investigate the effects of intensity-dependent coupling, Kerr medium and detuning parameters on the depth and domain of the nonclassicality features of the atom–field state vector. Finally, we compare our obtained results with those of V-type three-level atoms. (paper)

  12. Single-atom lasing induced atomic self-trapping

    International Nuclear Information System (INIS)

    Salzburger, T.; Ritsch, H.

    2004-01-01

    We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)

  13. Speciation of four selenium compounds using high performance liquid chromatography with on-line detection by inductively coupled plasma mass spectrometry or flame atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Pedersen, Gitte Alsing; Larsen, Erik Huusfeldt

    1997-01-01

    An analytical method for the speciation of selenomethionine, selenocystine, selenite and selenate by high performance liquid chromatography (HPLC) with atomic spectrometric detection is presented. An organic polymeric strong anion exchange column was used as the stationary phase in combination...... spectrometry (ICP-MS). The signal-to-noise ratio of the FAAS detector was optimized using a hydrogen-argon entrained-air flame and a slotted-tube atom trap (STAT) in the flame. The limit of detection (3 sigma) achieved by the HPLC-FAAS system was 1 mg L-1 of selenium (100 mu L injections) for each of the four...

  14. State-selective charge exchange in slow collisions of Si3+ ions with H atoms: A molecular state close coupling treatment

    International Nuclear Information System (INIS)

    Joseph, Dwayne C; Saha, Bidhan C

    2012-01-01

    Charge transfer cross sections are calculated by employing both the quantal and semiclassical ε(R) molecular orbital close coupling (MOCC) approximations in the adiabatic representation and compared with other theoretical and experimental results

  15. State-selective charge exchange in slow collisions of Si3+ ions with H atoms: A molecular state close coupling treatment*)

    Science.gov (United States)

    Joseph, Dwayne C.; Saha, Bidhan C.

    2012-11-01

    Charge transfer cross sections are calculated by employing both the quantal and semiclassical ɛ(R) molecular orbital close coupling (MOCC) approximations in the adiabatic representation and compared with other theoretical and experimental results

  16. Determination of bismuth by dielectric barrier discharge atomic absorption spectrometry coupled with hydride generation: Method optimization and evaluation of analytical performance

    Czech Academy of Sciences Publication Activity Database

    Kratzer, Jan; Boušek, J.; Sturgeon, R. E.; Mester, Z.; Dědina, Jiří

    2014-01-01

    Roč. 86, č. 19 (2014), s. 9620-9625 ISSN 0003-2700 Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * hydride generation * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.636, year: 2014

  17. Building and analyzing models from data by stirred tank experiments for investigation of matrix effects caused by inorganic matrices and selection of internal standards in Inductively Coupled Plasma-Atomic Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grotti, Marco [Dipartimento di Chimica e Chimica Industriale, Via Dodecaneso 31, 16146 Genova (Italy)], E-mail: grotti@chimica.unige.it; Paredes, Eduardo; Maestre, Salvador; Todoli, Jose Luis [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, 03080, Alicante (Spain)

    2008-05-15

    Interfering effects caused by inorganic matrices (inorganic acids as well as easily ionized elements) in inductively coupled plasma-atomic emission spectroscopy have been modeled by regression analysis of experimental data obtained using the 'stirred tank method'. The main components of the experimental set-up were a magnetically-stirred container and two peristaltic pumps. In this way the matrix composition was gradually and automatically varied, while the analyte concentration remained unchanged throughout the experiment. An inductively coupled plasma spectrometer with multichannel detection based on coupled charge device was used to simultaneously measure the emission signal at several wavelengths when the matrix concentration was modified. Up to 50 different concentrations were evaluated in a period of time of 10 min. Both single interfering species (nitric, hydrochloric and sulphuric acids, sodium and calcium) and different mixtures (aqua regia, sulfonitric mixture, sodium-calcium mixture and sodium-nitric acid mixture) were investigated. The dependence of the emission signal on acid concentration was well-fitted by logarithmic models. Conversely, for the easily ionized elements, 3-order polynomial models were more suitable to describe the trends. Then, the coefficients of these models were used as 'signatures' of the matrix-related signal variations and analyzed by principal component analysis. Similarities and differences among the emission lines were highlighted and discussed, providing a new insight into the interference phenomena, mainly with regards to the combined effect of concomitants. The combination of the huge amount of data obtained by the stirred tank method in a short period of time and the speed of analysis of principal component analysis provided a judicious means for the selection of the optimal internal standard in inductively coupled plasma-atomic emission spectroscopy.

  18. Cardiac output during exercise

    DEFF Research Database (Denmark)

    Siebenmann, C; Rasmussen, P.; Sørensen, H.

    2015-01-01

    Several techniques assessing cardiac output (Q) during exercise are available. The extent to which the measurements obtained from each respective technique compares to one another, however, is unclear. We quantified Q simultaneously using four methods: the Fick method with blood obtained from...... the right atrium (Q(Fick-M)), Innocor (inert gas rebreathing; Q(Inn)), Physioflow (impedance cardiography; Q(Phys)), and Nexfin (pulse contour analysis; Q(Pulse)) in 12 male subjects during incremental cycling exercise to exhaustion in normoxia and hypoxia (FiO2  = 12%). While all four methods reported...... a progressive increase in Q with exercise intensity, the slopes of the Q/oxygen uptake (VO2) relationship differed by up to 50% between methods in both normoxia [4.9 ± 0.3, 3.9 ± 0.2, 6.0 ± 0.4, 4.8 ± 0.2 L/min per L/min (mean ± SE) for Q(Fick-M), Q(Inn), QP hys and Q(Pulse), respectively; P = 0...

  19. Output control system in a boiling water atomic power plant

    International Nuclear Information System (INIS)

    Sadakane, Ken-ichiro.

    1975-01-01

    Object: To provide a line in bypass relation with a water heater, a flow rate of said bypass being adjusted to thereby perform quick responsive sub-cool control of a core inlet. Structure: A steam line and a water line are disposed so as to feed water from the reactor core to the water heater via turbine and thence to the core. A line disposed in bypass relation with the water heater arranged in the water line includes a control valve for controlling water passing through the bypass line and a main control for sending a signal to said control valve, said main control receiving loads from the outside, whereby a control signal is transmitted to the control valve, causing water passing through the water heater and water line to the core to be bypassed, a period of time for supplying time to be reduced, and quick response to be enhanced. (Kamimura, M.)

  20. Coupled electron and atomic kinetics through the solution of the Boltzmann equation for generating time-dependent X-ray spectra

    International Nuclear Information System (INIS)

    Sherrill, M.E.; Abdallah, J. Jr.; Csanak, G.; Kilcrease, D.P.; Dodd, E.S.; Fukuda, Y.; Akahane, Y.; Aoyama, M.; Inoue, N.; Ueda, H.; Yamakawa, K.; Faenov, A.Ya.; Magunov, A.I.; Pikuz, T.A.; Skobelev, I.Yu.

    2006-01-01

    In this work, we present a model that solves self-consistently the electron and atomic kinetics to characterize highly non-equilibrium plasmas, in particular for those systems where both the electron distribution function is far from Maxwellian and the evolution of the ion level populations are dominated by time-dependent atomic kinetics. In this model, level populations are obtained from a detailed collisional-radiative model where collision rates are computed from a time varying electron distribution function obtained from the solution of the zero-dimensional Boltzmann equation. The Boltzmann collision term includes the effects of electron-electron collisions, electron collisional ionization, excitation and de-excitation. An application for He α spectra from a short pulse laser irradiated argon cluster target will be shown to illustrate the results of our model

  1. Coupled electron and atomic kinetics through the solution of the Boltzmann equation for generating time-dependent X-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Sherrill, M.E. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States)]. E-mail: manolo@t4.lanl.gov; Abdallah, J. Jr. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States); Csanak, G. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States); Kilcrease, D.P. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States); Dodd, E.S. [Los Alamos National Laboratory, X-1, Los Alamos, NM 87545 (United States); Fukuda, Y. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Akahane, Y. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Aoyama, M. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Inoue, N. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Ueda, H. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Yamakawa, K. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Faenov, A.Ya. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation); Magunov, A.I. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation); Pikuz, T.A. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation); Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation)

    2006-05-15

    In this work, we present a model that solves self-consistently the electron and atomic kinetics to characterize highly non-equilibrium plasmas, in particular for those systems where both the electron distribution function is far from Maxwellian and the evolution of the ion level populations are dominated by time-dependent atomic kinetics. In this model, level populations are obtained from a detailed collisional-radiative model where collision rates are computed from a time varying electron distribution function obtained from the solution of the zero-dimensional Boltzmann equation. The Boltzmann collision term includes the effects of electron-electron collisions, electron collisional ionization, excitation and de-excitation. An application for He{sub {alpha}} spectra from a short pulse laser irradiated argon cluster target will be shown to illustrate the results of our model.

  2. Trace mercury determination in drinking and natural water after preconcentration and separation by DLLME-SFO method coupled with cold vapor atomic absorption spectrometry

    OpenAIRE

    Abdollahi Atousa; Amirkavehei Mooud; Gheisari Mohammad Mehdi; Tadayon Fariba

    2014-01-01

    A novel dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for simultaneous separation/preconcentration of ultra trace amounts of mercury was used. A method based on amalgamation was used for collection of gaseous mercury on gold coated sand (Gold trap). The concentration of mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS). The DLLME-SFO behavior of mercury by using dithizone as complexing agent was systematically ...

  3. Storage and retrieval of time-entangled soliton trains in a three-level atom system coupled to an optical cavity

    Science.gov (United States)

    Welakuh, Davis D. M.; Dikandé, Alain M.

    2017-11-01

    The storage and subsequent retrieval of coherent pulse trains in the quantum memory (i.e. cavity-dark state) of three-level Λ atoms, are considered for an optical medium in which adiabatic photon transfer occurs under the condition of quantum impedance matching. The underlying mechanism is based on intracavity Electromagnetically-Induced Transparency, by which properties of a cavity filled with three-level Λ-type atoms are manipulated by an external control field. Under the impedance matching condition, we derive analytic expressions that suggest a complete transfer of an input field into the cavity-dark state by varying the mixing angle in a specific way, and its subsequent retrieval at a desired time. We illustrate the scheme by demonstrating the complete transfer and retrieval of a Gaussian, a single hyperbolic-secant and a periodic train of time-entangled hyperbolic-secant input photon pulses in the atom-cavity system. For the time-entangled hyperbolic-secant input field, a total controllability of the periodic evolution of the dark state population is made possible by changing the Rabi frequency of the classical driving field, thus allowing to alternately store and retrieve high-intensity photons from the optically dense Electromagnetically-Induced transparent medium. Such multiplexed photon states, which are expected to allow sharing quantum information among many users, are currently of very high demand for applications in long-distance and multiplexed quantum communication.

  4. Exploring possible reaction pathways for the o-atom transfer reactions to unsaturated substrates catalyzed by a [Ni-NO2 ] ↔ [Ni-NO] redox couple using DFT methods.

    Science.gov (United States)

    Tsipis, Athanassios C

    2017-07-15

    The (nitro)(N-methyldithiocarbamato)(trimethylphospane)nickel(II), [Ni(NO 2 )(S 2 CNHMe)(PMe 3 )] complex catalyses efficiently the O-atom transfer reactions to CO and acetylene. Energetically feasible sequence of elementary steps involved in the catalytic cycle of the air oxidation of CO and acetylene are proposed promoted by the Ni(NO 2 )(S 2 CNHMe)(PMe 3 )] ↔ Ni(NO 2 )(S 2 CNHMe)(PMe 3 ) redox couple using DFT methods both in vacuum and dichloromethane solutions. The catalytic air oxidation of HC≡CH involves formation of a five-member metallacycle intermediate, via a [3 + 2] cyclo-addition reaction of HC≡CH to the Ni-N = O moiety of the Ni(NO 2 )(S 2 CNHMe)(PMe 3 )] complex, followed by a β H-atom migration toward the C α carbon atom of the coordinated acetylene and release of the oxidation product (ketene). The geometric and energetic reaction profile for the reversible [Ni( κN1-NO 2 )(S 2 CNHMe)(PMe 3 )] ⇌ [Ni( κO,O2-ONO)(S 2 CNHMe)(PMe 3 )] linkage isomerization has also been modeled by DFT calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Comparative oxidation state specific analysis of arsenic species by high-performance liquid chromatography-inductively coupled-mass spectrometry and hydride generation-cryotrapping-atomic absorption spectrometry

    Science.gov (United States)

    The formation of methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII) in the course of inorganic arsenic (iAs) metabolism plays an important role in the adverse effects of chronic exposure to iAs. High-performance liquid chromatography-inductively coupled plasma-mass ...

  6. Device for frequency modulation of a laser output spectrum

    Science.gov (United States)

    Beene, J.R.; Bemis, C.E. Jr.

    1984-07-17

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  7. Thin disk laser with unstable resonator and reduced output coupler

    Science.gov (United States)

    Gavili, Anwar; Shayganmanesh, Mahdi

    2018-05-01

    In this paper, feasibility of using unstable resonator with reduced output coupling in a thin disk laser is studied theoretically. Unstable resonator is modeled by wave-optics using Collins integral and iterative method. An Yb:YAG crystal with 250 micron thickness is considered as a quasi-three level active medium and modeled by solving rate equations of energy levels populations. The amplification of laser beam in the active medium is calculated based on the Beer-Lambert law and Rigrod method. Using generalized beam parameters method, laser beam parameters like, width, divergence, M2 factor, output power as well as near and far-field beam profiles are calculated for unstable resonator. It is demonstrated that for thin disk laser (with single disk) in spite of the low thickness of the disk which leads to low gain factor, it is possible to use unstable resonator (with reduced output coupling) and achieve good output power with appropriate beam quality. Also, the behavior of output power and beam quality versus equivalent Fresnel number is investigated and optimized value of output coupling for maximum output power is achieved.

  8. Inverter communications using output signal

    Science.gov (United States)

    Chapman, Patrick L.

    2017-02-07

    Technologies for communicating information from an inverter configured for the conversion of direct current (DC) power generated from an alternative source to alternating current (AC) power are disclosed. The technologies include determining information to be transmitted from the inverter over a power line cable connected to the inverter and controlling the operation of an output converter of the inverter as a function of the information to be transmitted to cause the output converter to generate an output waveform having the information modulated thereon.

  9. Electron transfer in keV Li+-Na(3s, 3p) collisions: I. Atomic basis coupled-channel calculations

    International Nuclear Information System (INIS)

    Nielsen, S.E.; Dubois, A.

    1995-01-01

    Integral cross sections for electron capture from the ground state Na(3s) and excited states Na(3p) to Li(nlm), n = 2, 3, are calculated by the semiclassical impact-parameter method, using a two-centre atomic basis expansion. In the impact energy range 1-50 keV, results are analysed with particular emphasis on the alignment and orientation of initial and final p-states. At intermediate velocities opposite initial alignment effects are found for capture to n = 2 and n = 3 states, respectively. Orientation effects in state-to-state capture cross sections are predicted from oriented and tilted aligned initial states. (Author)

  10. Coupling of collective and single-particle degrees of freedom in atomic nuclei (commentary to thesis qualifying for assistant-professorship)

    International Nuclear Information System (INIS)

    Chlebowska, D.

    1992-11-01

    The analysis of the spectroscopic properties of the spherical and transitional nuclei is performed from the point of view of the relation between the single-particle and collective degrees of freedom on the ground of the core-particle coupling model with the total angular momentum conserved and without any unphysical parameters (such as the attenuation parameter). A new definition of the rotational alignment is given. The staggering effect is interpreted as a manifestation of the vibrational structure. The rotational dependence of the energy gap parameter is shown to have an influence on the energy spectra of the transitional nuclei. The nuclei with A 130 are shown to have a tendency to be rather rigid. The vibrational and rotational structures, and the magnitude of the rotation-particle coupling in the considered nuclei are determined. 18 figs., 9 tabs., 66 refs. (author)

  11. Comparison of ultra-violet and inductively coupled plasma-atomic emission spectrometry for the on-line quantification of selenium species after their separation by reversed-phase liquid chromatography

    International Nuclear Information System (INIS)

    Tsopelas, Fotios N.; Ochsenkuehn-Petropoulou, Maria Th.; Mergias, Ioannis G.; Tsakanika, Lambrini V.

    2005-01-01

    An analytical approach for selenium speciation using liquid chromatography (LC) coupled with ultra-violet (UV) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) was developed. The separation of the investigated selenium species, selenites, selenates, selenomethionine, selenocystine, selenocystamine and dimethyldiselenide was accomplished in less than 6 min on a BIO Wide Pore RP-18 column using sodium salt of n-octanesulfonic acid as ion-pairing modifier. The on-line detection of the separated selenium species was performed using UV spectrometry at the optimum wavelength of 192 nm, obtained by the UV spectra of the investigated individual selenium species. ICP-AES was also used as element specific on-line detector, after its coupling with the chromatographic system. The UV and ICP-AES detectors were compared for their suitability, including sensitivity and detection limits, for the on-line quantification of the six selenium species. The developed LC-UV as well as LC-ICP-AES techniques were successfully applied to a selenized yeast candidate reference material, after its enzymatic extraction with protease XIV. It was found that the described LC-UV technique is suitable for the determination of selenomethionine, the main selenium compound in the yeast, with an accuracy of 5%, although the UV detector is not element specific and it is rarely used for selenium speciation. This finding can prove valuable for routine laboratories to perform selenium speciation in such materials

  12. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  13. 3,5-Bis(ethynyl)pyridine and 2,6-bis(ethynyl)pyridine spanning two Fe(Cp*)(dppe) units: role of the nitrogen atom on the electronic and magnetic couplings.

    Science.gov (United States)

    Costuas, Karine; Cador, Olivier; Justaud, Frédéric; Le Stang, Sylvie; Paul, Frédéric; Monari, Antonio; Evangelisti, Stefano; Toupet, Loï C; Lapinte, Claude; Halet, Jean-François

    2011-12-19

    The role of the nitrogen atom on the electronic and magnetic couplings of the mono-oxidized and bi-oxidized pyridine-containing complex models [2,6-{Cp(dpe)Fe-C≡C-}(2)(NC(5)H(3))](n+) and [3,5-{Cp(dpe)Fe-C≡C-}(2)(NC(5)H(3))](n+) is theoretically tackled with the aid of density-functional theory (DFT) and multireference configuration interaction (MR-CI) calculations. Results are analyzed and compared to those obtained for the reference complex [1,3-{Cp*(dppe)Fe-C≡C-)}(2)(C(6)H(4))](n+). The mono-oxidized species show an interesting behavior at the borderline between spin localization and delocalization and one through-bond communication path among the two involving the central ring, is favored. Investigation of the spin state of the dicationic complexes indicates ferromagnetic coupling, which can differ in magnitude from one complex to the other. Very importantly, electronic and magnetic properties of these species strongly depend not only upon the location of the nitrogen atom in the ring versus that of the organometallic end-groups but also upon the architectural arrangement of one terminus, with respect to the other and/or vis-à-vis the central ring. To help validate the theoretical results, the related families of compounds [1,3-{Cp*(dppe)Fe-C≡C-)}(2)(C(6)H(4))](n+), [2,6-{Cp*(dppe)Fe-C≡C-}(2)(NC(5)H(3))](n+), [3,5-{Cp*(dppe)Fe-C≡C-}(2)(NC(5)H(3))](n+) (n = 0-2) were experimentally synthesized and characterized. Electrochemical, spectroscopic (infrared (IR), Mössbauer), electronic (near-infrared (NIR)), and magnetic properties (electron paramagnetic resonance (EPR), superconducting quantum interference device (SQUID)) are discussed and interpreted in the light of the theoretical data. The set of data obtained allows for many strong conclusions to be drawn. A N atom in the long branch increases the ferromagnetic interaction between the two Fe(III) spin carriers (J > 500 cm(-1)), whereas, when placed in the short branch, it dramatically reduces the

  14. Atomic emission spectroscopy

    Science.gov (United States)

    Andrew, K. H.

    1975-01-01

    The relationship between the Slater-Condon theory and the conditions within the atom as revealed by experimental data was investigated. The first spectrum of Si, Rb, Cl, Br, I, Ne, Ar, and Xe-136 and the second spectrum of As, Cu, and P were determined. Methods for assessing the phase stability of fringe counting interferometers and the design of an autoranging scanning system for digitizing the output of an infrared spectrometer and recording it on magnetic tape are described.

  15. Determining intervention thresholds that change output behavior patterns

    NARCIS (Netherlands)

    Walrave, B.

    2016-01-01

    This paper details a semi-automated method that can calculate intervention thresholds—that is, the minimum required intervention sizes, over a given time frame, that result in a desired change in a system’s output behavior pattern. The method exploits key differences in atomic behavior profiles that

  16. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  17. Performance of inverted polymer solar cells with randomly oriented ZnO nanorods coupled with atomic layer deposited ZnO

    International Nuclear Information System (INIS)

    Zafar, Muhammad; Yun, Ju-Young; Kim, Do-Heyoung

    2017-01-01

    Highlights: • Hydrothermally grown, randomly oriented, and low areal density ZnO nanorods have been successfully adopted as the electron transport layer in inverted organic solar cells. • The addition of atomic layer deposited ZnO on the ZnO nanorods effectively enhance the photovoltaic performances of inverted organic solar cells. • The inverted organic solar cells with 5 nm thick-ALD ZnO showed the highest power conversion efficiency of 3.08%, which is an enhancement of approximately 80% compared to the cells without the ALD ZnO layer (PCE = 1.67%). - Abstract: Nanostructuring of the electron transport layer (ETL) in organic photovoltaic cells (OPV) is of great interest because it increases the surface area of the cell and electron transport. In this work, hydrothermally grown, randomly oriented, and low areal density ZnO nanorods (NRs) have been adopted as the ETL, and the effect of adding atomic layer deposited (ALD) ZnO on the ZnO NRs on the inverted organic solar cell performance has been investigated. The fabricated inverted organic solar cell with 5-nm-thick ALD-ZnO grown on the ZnO NRs showed the highest power conversion efficiency (PCE) of 3.08%, which is an enhancement of 85% from that of the cell without ALD-ZnO (PCE = 1.67%). The ultrathin ALD-ZnO was found to act as a curing layer of the surface defects on the hydrothermally grown ZnO NRs, resulting in an improvement in photovoltaic performance.

  18. Performance of inverted polymer solar cells with randomly oriented ZnO nanorods coupled with atomic layer deposited ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, Muhammad [School of Chemical Engineering, Chonnam National University, 300 Youngbong-dong, Gwangju 500-757 (Korea, Republic of); Yun, Ju-Young [Center for Vacuum, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Daejeon 305-600 (Korea, Republic of); Kim, Do-Heyoung, E-mail: kdhh@chonnam.ac.kr [School of Chemical Engineering, Chonnam National University, 300 Youngbong-dong, Gwangju 500-757 (Korea, Republic of)

    2017-03-15

    Highlights: • Hydrothermally grown, randomly oriented, and low areal density ZnO nanorods have been successfully adopted as the electron transport layer in inverted organic solar cells. • The addition of atomic layer deposited ZnO on the ZnO nanorods effectively enhance the photovoltaic performances of inverted organic solar cells. • The inverted organic solar cells with 5 nm thick-ALD ZnO showed the highest power conversion efficiency of 3.08%, which is an enhancement of approximately 80% compared to the cells without the ALD ZnO layer (PCE = 1.67%). - Abstract: Nanostructuring of the electron transport layer (ETL) in organic photovoltaic cells (OPV) is of great interest because it increases the surface area of the cell and electron transport. In this work, hydrothermally grown, randomly oriented, and low areal density ZnO nanorods (NRs) have been adopted as the ETL, and the effect of adding atomic layer deposited (ALD) ZnO on the ZnO NRs on the inverted organic solar cell performance has been investigated. The fabricated inverted organic solar cell with 5-nm-thick ALD-ZnO grown on the ZnO NRs showed the highest power conversion efficiency (PCE) of 3.08%, which is an enhancement of 85% from that of the cell without ALD-ZnO (PCE = 1.67%). The ultrathin ALD-ZnO was found to act as a curing layer of the surface defects on the hydrothermally grown ZnO NRs, resulting in an improvement in photovoltaic performance.

  19. Complementary power output characteristics of electromagnetic generators and triboelectric generators.

    Science.gov (United States)

    Fan, Feng-Ru; Tang, Wei; Yao, Yan; Luo, Jianjun; Zhang, Chi; Wang, Zhong Lin

    2014-04-04

    Recently, a triboelectric generator (TEG) has been invented to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. Compared to the traditional electromagnetic generator (EMG) that produces a high output current but low voltage, the TEG has different output characteristics of low output current but high output voltage. In this paper, we present a comparative study regarding the fundamentals of TEGs and EMGs. The power output performances of the EMG and the TEG have a special complementary relationship, with the EMG being a voltage source and the TEG a current source. Utilizing a power transformed and managed (PTM) system, the current output of a TEG can reach as high as ∼3 mA, which can be coupled with the output signal of an EMG to enhance the output power. We also demonstrate a design to integrate a TEG and an EMG into a single device for simultaneously harvesting mechanical energy. In addition, the integrated NGs can independently output a high voltage and a high current to meet special needs.

  20. Ultra-trace monitoring of copper in environmental and biological samples by inductively coupled plasma atomic emission spectrometry after separation and preconcentration by using octadecyl silica membrane disks modified by a new schiff's base

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Ganjali

    2004-04-01

    Full Text Available Ultra-trace amounts of Cu(II were separated and preconcentrated by solid phase extraction on octadecyl-bonded silica membrane disks modified with a new Schiff,s base (Bis- (2-Hydroxyacetophenone -2,2-dimethyl-1,3-propanediimine (SBTD followed by elution and inductively coupled plasma atomic emission spectrometric detection. The method was applied as a separation and detection method for copper(II in environmental and biological samples. Extraction efficiency and the influence of sample matrix, flow rate, pH, and type and minimum amount of stripping acid were investigated. The concentration factor and detection limit of the proposed method are 500 and 12.5 pg mL-1, respectively.

  1. GDP Growth, Potential Output, and Output Gaps in Mexico

    OpenAIRE

    Ebrima A Faal

    2005-01-01

    This paper analyzes the sources of Mexico's economic growth since the 1960s and compares various decompositions of historical growth into its trend and cyclical components. The role of the implied output gaps in the inflationary process is then assessed. Looking ahead, the paper presents medium-term paths for GDP based on alternative assumptions for productivity growth rates. The results indicate that the most important factor underlying the slowdown in output growth was a decline in trend to...

  2. Evolution Properties of Atomic Fidelity in the Combined Multi-Atom-Cavity Field System

    International Nuclear Information System (INIS)

    Wang Ju-Xia; Zhang Xiao-Juan; Zhang Xiu-Xing

    2015-01-01

    The atom fidelity is investigated in a system consisting of Mtwo-level atoms and M single-mode fields by use of complete quantum theory and numerical evaluation method. The influences of various system parameters on the evolution of atomic fidelity are studied. The results show that the atomic fidelity evolves in a Rabi oscillation manner. The oscillation frequency is mainly modulated by the coupling strength between atoms and light field, the atomic transition probabilities and the average photon numbers. Other factors hardly impact on the atomic fidelity. The present results may provide a useful approach to the maintenance of the atomic fidelity in the atom cavity field systems. (paper)

  3. Number-phase entropic squeezing and nonclassical properties of a three-level atom interacting with a two-mode field: intensity-dependent coupling, deformed Kerr medium, and detuning effects

    Science.gov (United States)

    Faghihi, Mohammad Javad; Tavassoly, Mohammad Kazem

    2013-11-01

    In this paper, we follow our presented model in J. Opt. Soc. Am. B {\\bf 30}, 1109--1117 (2013), in which the interaction between a $\\Lambda$-type three-level atom and a quantized two-mode radiation field in a cavity in the presence of nonlinearities is studied. After giving a brief review on the procedure of obtaining the state vector of the atom-field system, some further interesting and important physical features (which are of particular interest in the quantum optics field of research) of the whole system state, i.e., the number-phase entropic uncertainty relation (based on the two-mode Pegg-Barnett formalism) and some of the nonclassicality signs consist of sub-Poissonian statistics, Cauchy-Schwartz inequality and two kinds of squeezing phenomenon are investigated. During our presentation, the effects of intensity-dependent coupling, deformed Kerr medium and the detuning parameters on the depth and domain of each of the mentioned nonclassical criteria of the considered quantum system are studied, in detail. It is shown that each of the mentioned nonclassicality aspects can be obtained by appropriately choosing the related parameters.

  4. Effects of spin orbital coupling on atomic and electronic structures in Al{sub 2}Cu and Al{sub 2}Au crystal and liquid phases via ab initio molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Lu, Y.H., E-mail: luyh@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Wang, X.D.; Cao, Q.P. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, D.X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2014-11-15

    Highlights: • The SOC effect affects the cohesion energy of crystal phase. • The effect of SOC was reduced due to random local atomic structures in liquids. • The local geometrical structures also affect the melting points. • Both SOC effect and local atomic structures are important for melting point difference. - Abstract: The origin of different melting points between Al{sub 2}Cu and Al{sub 2}Au has been studied using ab initio molecular dynamics simulations. Cohesive energy, electronic structures and structure information of both crystal and liquid phases have been analyzed. It is found that spin orbital coupling (SOC) plays an important role on the cohesive energy of crystal phase, consistent with the different melting points of these two alloys. Whereas, it seems that SOC has no effect on the formation energy and structure of liquid phase. Possible mechanism of reduced SOC effect at liquid phase is proposed. Our results are helpful to understand the glass formation ability difference between Al{sub 2}Cu and Al{sub 2}Au.

  5. Flow analysis by using solenoid valves for As(III determination in natural waters by an on-line separation and pre-concentration system coupled to a tungsten coil atomizer

    Directory of Open Access Journals (Sweden)

    José Y. Neira

    2005-03-01

    Full Text Available A flow system coupled to a tungsten coil atomizer in an atomic absorption spectrometer (TCA-AAS was developed for As(III determination in waters, by extraction with sodium diethyldithiocarbamate (NaDDTC as complexing agent, and by sorption of the As(III-DDTC complex in a micro-column filled with 5 mg C18 reversed phase (10 µL dry sorbent, followed by elution with ethanol. A complete pre-concentration/elution cycle took 208 s, with 30 s sample load time (1.7 mL and 4 s elution time (71 µL. The interface and software for the synchronous control of two peristaltic pumps (RUN/ STOP, an autosampler arm, seven solenoid valves, one injection valve, the electrothermal atomizer and the spectrometer Read function were constructed. The system was characterized and validated by analytical recovery studies performed both in synthetic solutions and in natural waters. Using a 30 s pre-concentration period, the working curve was linear between 0.25 and 6.0 µg L-1 (r = 0.9976, the retention efficiency was 94±1% (6.0 µg L-1, and the pre-concentration coefficient was 28.9. The characteristic mass was 58 pg, the mean repeatability (expressed as the variation coefficient was 3.4% (n=5, the detection limit was 0.058 µg L-1 (4.1 pg in 71 µL of eluate injected into the coil, and the mean analytical recovery in natural waters was 92.6 ± 9.5 % (n=15. The procedure is simple, economic, less prone to sample loss and contamination and the useful lifetime of the micro-column was between 200-300 pre-concentration cycles.

  6. Ion imprinted activated carbon solid-phase extraction coupled to flame atomic absorption spectrometry for selective determination of lead ions in environmental samples

    International Nuclear Information System (INIS)

    Naraghi, Kiyana; Panahi, Homayon Ahmad; Hassani, Amir Hesam; Moniri, Elham

    2014-01-01

    A simple lead ion imprinted sorbent was synthesized by coupling activated carbon with a known metal chelating compound, iminodiacetic acid. The ion imprinted sorbent has been characterized using Fourier transform infrared spectroscopy, elemental analysis and thermogravimetric analysis and subjected for the extraction and determination of trace Pb(II) in environmental water samples. The optimum pH value for sorption of the lead ion was 6.5. The sorption capacity of lead imprinted sorbent was 42.2 mg g"−"1. The chelating imprinted sorbent can be reused for five cycles of sorption-desorption without any significant change in sorption capacity. Compared with non-imprinted polymer particles, the lead ion imprinted sorbent showed high adsorption capacity, significant selectivity, good site accessibility for Pb(II). The equilibrium adsorption data of Pb(II) by modified resin were analyzed by Langmuir, Freundlich, Temkin and Redlich-Peterson models

  7. Ion imprinted activated carbon solid-phase extraction coupled to flame atomic absorption spectrometry for selective determination of lead ions in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Naraghi, Kiyana; Panahi, Homayon Ahmad; Hassani, Amir Hesam [Islamic Azad University, Tehran (Korea, Republic of); Moniri, Elham [Islamic Azad University, Varamin (Iran, Islamic Republic of)

    2014-10-15

    A simple lead ion imprinted sorbent was synthesized by coupling activated carbon with a known metal chelating compound, iminodiacetic acid. The ion imprinted sorbent has been characterized using Fourier transform infrared spectroscopy, elemental analysis and thermogravimetric analysis and subjected for the extraction and determination of trace Pb(II) in environmental water samples. The optimum pH value for sorption of the lead ion was 6.5. The sorption capacity of lead imprinted sorbent was 42.2 mg g{sup −1}. The chelating imprinted sorbent can be reused for five cycles of sorption-desorption without any significant change in sorption capacity. Compared with non-imprinted polymer particles, the lead ion imprinted sorbent showed high adsorption capacity, significant selectivity, good site accessibility for Pb(II). The equilibrium adsorption data of Pb(II) by modified resin were analyzed by Langmuir, Freundlich, Temkin and Redlich-Peterson models.

  8. A new method to induce transitions in muonic atoms using a high-power tunable dye laser coupled to a stopping muon beam

    CERN Document Server

    Bertin, A; Duclos, J; Gastaldi, Ugo; Gorini, G; Neri, G; Picard, J; Pitzurra, O; Placci, A; Polacco, E; Stefanini, G; Torelli, G; Vitale, A; Zavattini, E

    1974-01-01

    An apparatus is described in which a ruby-pumped dye laser is used to induce transitions from the 2S to the 2P levels of the muonic ion ( mu He)/sup +/. The dye laser supplies infra-red radiation pulses in the wavelengths (8040-8180) AA, at typical repetition rates of 1 pulse every 4 s, with an energy release per pulse of 300 mJ for 1.2 J pumping energy. A special synchronization procedure is followed to trigger the laser in close coupling with the incoming muon beam which is stopped in a helium target at pressures between 40 and 50 atm. The other performances of the device are fully discussed with reference both to the laser facility and to the special high-pressure helium target. (23 refs).

  9. Coupled cluster calculations of mean excitation energies of the noble gas atoms He, Ne and Ar and of the H2 molecule

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Ul Haq, Inam; Sabin, John R.

    2014-01-01

    by about 1%. For the two-electron systems He and H2, our CCSD results (for a Lanczos chain length equal to the full excitation space), I0 = 42:28 eV (Helium) and I0 = 19:62 eV (H2), correspond to full conguration interaction results and are therefore the exact, non-relativistic theoretical values......Using an asymmetric-Lanczos-chain algorithm for the calculation of the coupled cluster linear response functions at the CCSD and CC2 levels of approximation, we have calculated the mean excitation energies of the noble gases He, Ne and Ar, and of the hydrogen molecule H2. Convergence with respect...... for the mean excitation energy of these two systems within the Bethe theory for the chosen basis set and, in the case of H2, at the experimental equilibrium geometry....

  10. On-line micro-volume introduction system developed for lower density than water extraction solvent and dispersive liquid–liquid microextraction coupled with flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Anthemidis, Aristidis N.; Mitani, Constantina; Balkatzopoulou, Paschalia; Tzanavaras, Paraskevas D.

    2012-01-01

    Highlights: ► A dispersive liquid–liquid micro extraction method for lead and copper determination. ► A micro-volume transportation system for extractant solvent lighter than water. ► Analysis of natural water samples. - Abstract: A simple and fast preconcentration/separation dispersive liquid–liquid micro extraction (DLLME) method for metal determination based on the use of extraction solvent with lower density than water has been developed. For this purpose a novel micro-volume introduction system was developed enabling the on-line injection of the organic solvent into flame atomic absorption spectrometry (FAAS). The effectiveness and efficiency of the proposed system were demonstrated for lead and copper preconcentration in environmental water samples using di-isobutyl ketone (DBIK) as extraction solvent. Under the optimum conditions the enhancement factor for lead and copper was 187 and 310 respectively. For a sample volume of 10 mL, the detection limit (3 s) and the relative standard deviation were 1.2 μg L −1 and 3.3% for lead and 0.12 μg L −1 and 2.9% for copper respectively. The developed method was evaluated by analyzing certified reference material and it was applied successfully to the analysis of environmental water samples.

  11. Trace mercury determination in drinking and natural water after preconcentration and separation by DLLME-SFO method coupled with cold vapor atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Abdollahi Atousa

    2014-07-01

    Full Text Available A novel dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO for simultaneous separation/preconcentration of ultra trace amounts of mercury was used. A method based on amalgamation was used for collection of gaseous mercury on gold coated sand (Gold trap. The concentration of mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS. The DLLME-SFO behavior of mercury by using dithizone as complexing agent was systematically investigated. The factors influencing, the complex formation and extraction of DLLME-SFO method such as type and volume of extraction and disperser solvents, pH, concentration of salt, centrifuging time and concentration of the chelating agent were optimized. The method was successfully applied to the determination of mercury in drinking and natural water and satisfactory relative recoveries (95–105% were achieved. The proposed procedure was based on very low consumption of organic solvents. The other benefits of the system were sensitive, simple, friendly to the environment, rejection of matrix constituent, low cost, the time consuming and high enrichment factor.

  12. Fully automated dissolution and separation methods for inductively coupled plasma atomic emission spectrometry rock analysis. Application to the determination of rare earth elements

    International Nuclear Information System (INIS)

    Govindaraju, K.; Mevelle, G.

    1987-01-01

    In rock analysis laboratories, sample preparation is a serious problem, or even an enormous bottleneck. Because this laboratory is production-oriented, this problem was attacked by automating progressively, different steps in rock analysis for major, minor and trace elements. This effort has been considerably eased by the fact that all sample preparation schemes in this laboratory for the past three decades have been based on an initial lithium borate fusion of rock samples and all analytical methods based on multi-element atomic emission spectrometry, with switch-over from solid analysis by arc/spark excitation to solution analysis by plasma excitation in 1974. The sample preparation steps which have been automated are: weighing of samples and fluxes, lithium borate fusion, dissolution and dilution of fusion products and ion-exchange separation of difficult trace elements such as rare earth elements (REE). During 1985 and 1986, these different unit operations have been assembled together as peripheral units in the form of a workstation, called LabRobStation. A travelling robot is the master of LabRobStation, with all peripheral units at its reach in 10 m 2 workspace. As an example of real application, the automated determination of REE, based on more than 8000 samples analysed during 1982 and 1986, is presented. (author)

  13. Optically coupled semiconductor device

    Energy Technology Data Exchange (ETDEWEB)

    Kumagaya, Naoki

    1988-11-18

    This invention concerns an optically coupled semiconductor device using the light as input signal and a MOS transistor for the output side in order to control on-off of the output side by the input signal which is insulated from the output. Concerning this sort of element, when a MOS transistor and a load resistance are planned to be accumulated on the same chip, a resistor and control of impurity concentration of the channel, etc. become necessary despite that the only formation of a simple P-N junction is enough, for a solar cell, hence cost reduction thereof cannot be done. In order to remove this defect, this invention offers an optically coupled semiconductor device featuring that two solar cells are connected in reverse parallel between the gate sources of the output MOS transistors and an operational light emitting element is individually set facing a respective solar cell. 4 figs.

  14. Influence of binders on infrared laser ablation of powdered tungsten carbide pressed pellets in comparison with sintered tungsten carbide hardmetals studied by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Hola, Marketa; Otruba, Vitezslav; Kanicky, Viktor

    2006-01-01

    Laser ablation (LA) was studied as a sample introduction technique for the analysis of powdered and sintered tungsten carbides (WC/Co) by inductively coupled plasma optical emission spectrometry (ICP-OES). The possibility to work with powdered and compact materials with close chemical composition provided the opportunity to compare LA sampling of similar substances in different forms that require different preparation procedures. Powdered WC/Co precursors of sintered hardmetals were prepared for the ablation as pressed pellets with and without powdered silver as a binder, while sintered hardmetal blocks were embedded into a resin to obtain discs, which were then smoothed and polished. A Q-switched Nd:YAG laser operated at its fundamental wavelength of 1064 nm with a pulse frequency of 10 Hz and maximum pulse energy of 220 mJ was used. A single lens was used for the laser beam focusing. An ablation cell (14 cm 3 ) mounted on a PC-controlled XY-translator was connected to an ICP spectrometer Jobin Yvon 170 Ultrace (laterally viewed ICP, mono- and polychromator) using a 1.5-m tubing (4 mm i.d.). Ablation was performed in a circular motion (2 mm diameter). Close attention was paid to the study of the crater parametres depending on hardness, cohesion and Ag binder presence in WC/Co samples. The influence of the Co content on the depth and structure of the ablation craters of the binderless pellets was also studied. Linear calibration plots of Nb, Ta and Ti were obtained for cemented WC/Co samples, binderless and binder-containing pellets. Relative widths of uncertainty intervals about the centroids vary between ± 3% and ± 7%, and exceptionally reach a value above 10%. The lowest determinable quantities (LDQ) of Nb, Ta and Ti calculated from the calibration lines were less than 0.5% (m/m). To evaluate the possibility of quantitative elemental analysis by LA-ICP-OES, two real sintered WC/Co samples and two real samples of powdered WC/Co materials were analysed. The

  15. Influence of binders on infrared laser ablation of powdered tungsten carbide pressed pellets in comparison with sintered tungsten carbide hardmetals studied by inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hola, Marketa [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic); Otruba, Vitezslav [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic); Kanicky, Viktor [Research Centre for Environmental Chemistry and Ecotoxicology and Laboratory of Atomic Spectrochemistry, Faculty of Science, Masaryk University in Brno, Kotlarska 2, CZ 611 37 Brno (Czech Republic)]. E-mail: viktork@chemi.muni.cz

    2006-05-15

    Laser ablation (LA) was studied as a sample introduction technique for the analysis of powdered and sintered tungsten carbides (WC/Co) by inductively coupled plasma optical emission spectrometry (ICP-OES). The possibility to work with powdered and compact materials with close chemical composition provided the opportunity to compare LA sampling of similar substances in different forms that require different preparation procedures. Powdered WC/Co precursors of sintered hardmetals were prepared for the ablation as pressed pellets with and without powdered silver as a binder, while sintered hardmetal blocks were embedded into a resin to obtain discs, which were then smoothed and polished. A Q-switched Nd:YAG laser operated at its fundamental wavelength of 1064 nm with a pulse frequency of 10 Hz and maximum pulse energy of 220 mJ was used. A single lens was used for the laser beam focusing. An ablation cell (14 cm{sup 3}) mounted on a PC-controlled XY-translator was connected to an ICP spectrometer Jobin Yvon 170 Ultrace (laterally viewed ICP, mono- and polychromator) using a 1.5-m tubing (4 mm i.d.). Ablation was performed in a circular motion (2 mm diameter). Close attention was paid to the study of the crater parametres depending on hardness, cohesion and Ag binder presence in WC/Co samples. The influence of the Co content on the depth and structure of the ablation craters of the binderless pellets was also studied. Linear calibration plots of Nb, Ta and Ti were obtained for cemented WC/Co samples, binderless and binder-containing pellets. Relative widths of uncertainty intervals about the centroids vary between {+-} 3% and {+-} 7%, and exceptionally reach a value above 10%. The lowest determinable quantities (LDQ) of Nb, Ta and Ti calculated from the calibration lines were less than 0.5% (m/m). To evaluate the possibility of quantitative elemental analysis by LA-ICP-OES, two real sintered WC/Co samples and two real samples of powdered WC/Co materials were analysed

  16. Determination of thiomersal by flow injection coupled with microwave-assisted photochemical online oxidative decomposition of organic mercury and cold vapor atomic fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Campanella, Beatrice; Onor, Massimo; Mascherpa, Marco Carlo; D’Ulivo, Alessandro [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Ferrari, Carlo [National Research Council of Italy, C.N.R., Istituto Nazionale di Ottica, INO–UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Bramanti, Emilia, E-mail: bramanti@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2013-12-04

    Graphical abstract: -- Highlights: •Thiomersal was determined on line using FI-MW/UV-CVGAFS. •MW/UV allows a “green” on line oxidation of organic mercury to Hg{sup II}. •Each measure requires less than 5 min with a LOD of 3 ng mL{sup −1} (as mercury). •Hg concentration in commercial ophthalmic solutions ranges between 7.5 and 59.0 μg mL{sup −1}. -- Abstract: We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C{sub 9}H{sub 9}HgNaO{sub 2}S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH{sub 4} solution, and AFS detection in an Ar/H{sub 2} miniaturized flame. The method was linear in the 0.01–2 μg mL{sup −1} range, with a LOD of 0.003 μg mL{sup −1}. This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL{sup −1}.

  17. Determination of thiomersal by flow injection coupled with microwave-assisted photochemical online oxidative decomposition of organic mercury and cold vapor atomic fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Campanella, Beatrice; Onor, Massimo; Mascherpa, Marco Carlo; D’Ulivo, Alessandro; Ferrari, Carlo; Bramanti, Emilia

    2013-01-01

    Graphical abstract: -- Highlights: •Thiomersal was determined on line using FI-MW/UV-CVGAFS. •MW/UV allows a “green” on line oxidation of organic mercury to Hg II . •Each measure requires less than 5 min with a LOD of 3 ng mL −1 (as mercury). •Hg concentration in commercial ophthalmic solutions ranges between 7.5 and 59.0 μg mL −1 . -- Abstract: We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C 9 H 9 HgNaO 2 S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH 4 solution, and AFS detection in an Ar/H 2 miniaturized flame. The method was linear in the 0.01–2 μg mL −1 range, with a LOD of 0.003 μg mL −1 . This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL −1

  18. Development of new portable miniaturize solid phase microextraction of silver-APDC complex using micropipette tip in-syringe system couple with electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Naeemullah; Kazi, Tasneem Gul; Afridi, Hassan Imran; Shah, Faheem; Arain, Sadaf Sadia; Arain, Salma Aslam; Panhwar, Abdul Haleem; Arain, Mariam Shahzadi; Samoon, Muhammad Kashif

    2016-02-01

    An innovative and simple miniaturized solid phase microextraction (M-SPME) method, was developed for preconcentration and determination of silver(I) in the fresh and waste water samples. For M-SPME, a micropipette tip packed with activated carbon cloth (ACC) as sorbent, in a syringe system. The size, morphology and elemental composition of ACC before and after adsorption of analyte have been characterized by scanning electron microscopy and energy dispersive spectroscopy. The sample solution treated with a complexing reagent, ammonium pyrrolidine dithiocarbamate (APDC), was drawn into the syringe filled with ACC and dispensed manually for 2 to 10 aspirating/dispensing cycle. Then the Ag- complex sorbed on the ACC in micropipette was quantitatively eluted by drawing and dispensing of different concentrations of acids for 2 to 5 aspirating/dispensing cycles. The extracted Ag ions with modifier were injected directly into the electrothermal atomic absorption spectrometry for analysis. The influence of different variables on the extraction efficiency, including the concentration of ligand, pH, sample volume, eluent type, concentration and volume was investigated. Validity and accuracy of the developed method was checked by the standard addition method. Reliability of the proposed methodology was checked by the relative standard deviation (%RSD), which was found to be < 5%. Under the optimized experimental variables, the limits of detection (LOD) and enhancement factors (EF), were obtained to be 0.86 ng L- 1 and 120, respectively. The proposed method was successfully applied for the determination of trace levels of silver ions in fresh and waste water samples.

  19. Development of new portable miniaturize solid phase microextraction of silver-APDC complex using micropipette tip in-syringe system couple with electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Naeemullah; Kazi, Tasneem Gul; Afridi, Hassan Imran; Shah, Faheem; Arain, Sadaf Sadia; Arain, Salma Aslam; Panhwar, Abdul Haleem; Arain, Mariam Shahzadi; Samoon, Muhammad Kashif

    2016-02-05

    An innovative and simple miniaturized solid phase microextraction (M-SPME) method, was developed for preconcentration and determination of silver(I) in the fresh and waste water samples. For M-SPME, a micropipette tip packed with activated carbon cloth (ACC) as sorbent, in a syringe system. The size, morphology and elemental composition of ACC before and after adsorption of analyte have been characterized by scanning electron microscopy and energy dispersive spectroscopy. The sample solution treated with a complexing reagent, ammonium pyrrolidine dithiocarbamate (APDC), was drawn into the syringe filled with ACC and dispensed manually for 2 to 10 aspirating/dispensing cycle. Then the Ag- complex sorbed on the ACC in micropipette was quantitatively eluted by drawing and dispensing of different concentrations of acids for 2 to 5 aspirating/dispensing cycles. The extracted Ag ions with modifier were injected directly into the electrothermal atomic absorption spectrometry for analysis. The influence of different variables on the extraction efficiency, including the concentration of ligand, pH, sample volume, eluent type, concentration and volume was investigated. Validity and accuracy of the developed method was checked by the standard addition method. Reliability of the proposed methodology was checked by the relative standard deviation (%RSD), which was found to be <5%. Under the optimized experimental variables, the limits of detection (LOD) and enhancement factors (EF), were obtained to be 0.86 ng L(-1) and 120, respectively. The proposed method was successfully applied for the determination of trace levels of silver ions in fresh and waste water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Preconcentration and determination of vanadium and molybdenum in milk, vegetables and foodstuffs by ultrasonic-thermostatic-assisted cloud point extraction coupled to flame atomic absorption spectrometry.

    Science.gov (United States)

    Gürkan, Ramazan; Korkmaz, Sema; Altunay, Nail

    2016-08-01

    A new ultrasonic-thermostatic-assisted cloud point extraction procedure (UTA-CPE) was developed for preconcentration at the trace levels of vanadium (V) and molybdenum (Mo) in milk, vegetables and foodstuffs prior to determination via flame atomic absorption spectrometry (FAAS). The method is based on the ion-association of stable anionic oxalate complexes of V(V) and Mo(VI) with [9-(diethylamino)benzo[a]phenoxazin-5-ylidene]azanium; sulfate (Nile blue A) at pH 4.5, and then extraction of the formed ion-association complexes into micellar phase of polyoxyethylene(7.5)nonylphenyl ether (PONPE 7.5). The UTA-CPE is greatly simplified and accelerated compared to traditional cloud point extraction (CPE). The analytical parameters optimized are solution pH, the concentrations of complexing reagents (oxalate and Nile blue A), the PONPE 7.5 concentration, electrolyte concentration, sample volume, temperature and ultrasonic power. Under the optimum conditions, the calibration curves for Mo(VI) and V(V) are obtained in the concentration range of 3-340µgL(-1) and 5-250µgL(-1) with high sensitivity enhancement factors (EFs) of 145 and 115, respectively. The limits of detection (LODs) for Mo(VI) and V(V) are 0.86 and 1.55µgL(-1), respectively. The proposed method demonstrated good performances such as relative standard deviations (as RSD %) (≤3.5%) and spiked recoveries (95.7-102.3%). The accuracy of the method was assessed by analysis of two standard reference materials (SRMs) and recoveries of spiked solutions. The method was successfully applied into the determination of trace amounts of Mo(VI) and V(V) in milk, vegetables and foodstuffs with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms

    Energy Technology Data Exchange (ETDEWEB)

    Miake, Yudai; Mukaiyama, Takashi, E-mail: muka@ils.uec.ac.jp [Institute for Laser Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); O’Hara, Kenneth M. [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802-6300 (United States); Gensemer, Stephen [CSIRO Manufacturing Flagship, Lindfield, NSW 2070 (Australia)

    2015-04-15

    We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:Y V O{sub 4} ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser were achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two piezoelectric transducers (PZTs) in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime.

  2. Assessing oral bioaccessibility of trace elements in soils under worst-case scenarios by automated in-line dynamic extraction as a front end to inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rosende, María [FI-TRACE group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa, km 7.5, Palma de Mallorca, Illes Balears E-07122 (Spain); Magalhães, Luis M.; Segundo, Marcela A. [REQUIMTE, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. de Jorge Viterbo Ferreira, 228, Porto 4050-313 (Portugal); Miró, Manuel, E-mail: manuel.miro@uib.es [FI-TRACE group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa, km 7.5, Palma de Mallorca, Illes Balears E-07122 (Spain)

    2014-09-09

    Highlights: • Automatic oral bioaccessibility tests of trace metals under worst-case scenarios. • Use of intricate and realistic digestive fluids (UBM method). • Analysis of large amounts of soils (≥400 mg) in a flow-based configuration. • Smart interface to inductively coupled plasma atomic emission spectrometry. • Comparison of distinct flow systems mimicking physiological conditions. - Abstract: A novel biomimetic extraction procedure that allows for the in-line handing of ≥400 mg solid substrates is herein proposed for automatic ascertainment of trace element (TE) bioaccessibility in soils under worst-case conditions as per recommendations of ISO norms. A unified bioaccessibility/BARGE method (UBM)-like physiological-based extraction test is evaluated for the first time in a dynamic format for accurate assessment of in-vitro bioaccessibility of Cr, Cu, Ni, Pb and Zn in forest and residential-garden soils by on-line coupling of a hybrid flow set-up to inductively coupled plasma atomic emission spectrometry. Three biologically relevant operational extraction modes mimicking: (i) gastric juice extraction alone; (ii) saliva and gastric juice composite in unidirectional flow extraction format and (iii) saliva and gastric juice composite in a recirculation mode were thoroughly investigated. The extraction profiles of the three configurations using digestive fluids were proven to fit a first order reaction kinetic model for estimating the maximum TE bioaccessibility, that is, the actual worst-case scenario in human risk assessment protocols. A full factorial design, in which the sample amount (400–800 mg), the extractant flow rate (0.5–1.5 mL min{sup −1}) and the extraction temperature (27–37 °C) were selected as variables for the multivariate optimization studies in order to obtain the maximum TE extractability. Two soils of varied physicochemical properties were analysed and no significant differences were found at the 0.05 significance level

  3. Assessing oral bioaccessibility of trace elements in soils under worst-case scenarios by automated in-line dynamic extraction as a front end to inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Rosende, María; Magalhães, Luis M.; Segundo, Marcela A.; Miró, Manuel

    2014-01-01

    Highlights: • Automatic oral bioaccessibility tests of trace metals under worst-case scenarios. • Use of intricate and realistic digestive fluids (UBM method). • Analysis of large amounts of soils (≥400 mg) in a flow-based configuration. • Smart interface to inductively coupled plasma atomic emission spectrometry. • Comparison of distinct flow systems mimicking physiological conditions. - Abstract: A novel biomimetic extraction procedure that allows for the in-line handing of ≥400 mg solid substrates is herein proposed for automatic ascertainment of trace element (TE) bioaccessibility in soils under worst-case conditions as per recommendations of ISO norms. A unified bioaccessibility/BARGE method (UBM)-like physiological-based extraction test is evaluated for the first time in a dynamic format for accurate assessment of in-vitro bioaccessibility of Cr, Cu, Ni, Pb and Zn in forest and residential-garden soils by on-line coupling of a hybrid flow set-up to inductively coupled plasma atomic emission spectrometry. Three biologically relevant operational extraction modes mimicking: (i) gastric juice extraction alone; (ii) saliva and gastric juice composite in unidirectional flow extraction format and (iii) saliva and gastric juice composite in a recirculation mode were thoroughly investigated. The extraction profiles of the three configurations using digestive fluids were proven to fit a first order reaction kinetic model for estimating the maximum TE bioaccessibility, that is, the actual worst-case scenario in human risk assessment protocols. A full factorial design, in which the sample amount (400–800 mg), the extractant flow rate (0.5–1.5 mL min −1 ) and the extraction temperature (27–37 °C) were selected as variables for the multivariate optimization studies in order to obtain the maximum TE extractability. Two soils of varied physicochemical properties were analysed and no significant differences were found at the 0.05 significance level

  4. Atom chip gravimeter

    Science.gov (United States)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM

  5. A new nebulization device with exchangeable aerosol generation mode as a useful tool to investigate sample introduction processes in inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Grotti, Marco; Lagomarsino, Cristina; Frache, Roberto

    2004-01-01

    A new sample introduction device has been designed in order to differentiate between the effects of the aerosol production and its following desolvation on analytical performances of an inductively coupled plasma optical spectrometer. This research tool allows to easily switch between the pneumatic and ultrasonic aerosol generation mode and to use a joint desolvation chamber. In this way, a real comparison between aerosol production systems may be attained and the influence of aerosol generation process on analytical figures clearly distinguished from that of the desolvation process. In this work, the separate effects of the aerosol generation and desolvation processes on analytical sensitivity and tolerance towards matrix effects have been investigated. Concerning sensitivity, it was found that both the processes play an important role in determining emission intensities, being the increase in sensitivity due to desolvation higher than that due to the improved aerosol generation efficiency. Concerning the matrix effects, a predominant role of the desolvation system was found, while the influence of the aerosol generation mode was much less important. For nitric acid, the decreasing effect was mitigated by the presence of a desolvation system, due to partial removal of the acid. On the contrary, the depressive effect of sulfuric acid was enhanced by the presence of a desolvation system, due to degradation of the solvent removal efficiency and to further decrease in the analyte transport rate caused by clustering phenomena. Concerning the interferences due to sodium and calcium, a depressive effect was observed, which is enhanced by desolvation

  6. Simultaneous determination of carbohydrates, carboxylic acids, alcohols, and metals in foods by high-performance liquid chromatography inductively coupled plasma atomic emission spectrometry.

    Science.gov (United States)

    Paredes, Eduardo; Maestre, Salvador E; Prats, Soledad; Todolí, José L

    2006-10-01

    The applicability of the HPLC-ICP-AES coupling for the simultaneous determination of carbohydrates, carboxylic acids, alcohols, and metals in a single chromatographic run has been demonstrated in the present work. Five saccharides, glucose, fructose, sucrose, sorbitol, and lactose; five carboxylic acids, citric, tartaric, malic, lactic, and acetic; and three alcohols, glycerol, ethanol, and methanol, have been determined. A H+ cation exchange column has been used to separate these compounds. The chromatograms have been obtained by monitoring the carbon emission signal at 193.09 nm. The results obtained by HPLC-ICP-AES have been compared against those found with conventional detection systems (i.e., refractive index, UV, and photodyode array detectors). The HPLC-ICP-AES method has shown the following features: (i) organic compounds and metals can be simultaneously determined; (ii) the detection method is universal; (iii) for nonvolatile organic compounds, a complete calibration line can be obtained from a single injection; and (iv) it provides absolute limits of detection similar to or lower than those found with conventional detection systems (i.e., on the order of several tens of nanograms of organic compound). The methodology has been validated through the analysis of food samples such as juices, isotonic beverages, wines, and a certified nonfat milk powder sample.

  7. Atomic physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  8. Output

    DEFF Research Database (Denmark)

    Mehlsen, Camilla

    2010-01-01

    Hvad får vi egentlig ud af internationale komparative undersøgelser som PISA, PIRLS og TIMSS? Hvordan påvirker de dansk uddannelsespolitik? Asterisk har talt med tre forskere med ekspertise på området.......Hvad får vi egentlig ud af internationale komparative undersøgelser som PISA, PIRLS og TIMSS? Hvordan påvirker de dansk uddannelsespolitik? Asterisk har talt med tre forskere med ekspertise på området....

  9. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  10. Sample Preprocessing For Atomic Spectrometry

    International Nuclear Information System (INIS)

    Kim, Sun Tae

    2004-08-01

    This book gives descriptions of atomic spectrometry, which deals with atomic absorption spectrometry such as Maxwell-Boltzmann equation and Beer-Lambert law, atomic absorption spectrometry for solvent extraction, HGAAS, ETASS, and CVAAS and inductively coupled plasma emission spectrometer, such as basic principle, generative principle of plasma and device and equipment, and interferences, and inductively coupled plasma mass spectrometry like device, pros and cons of ICP/MS, sample analysis, reagent, water, acid, flux, materials of experiments, sample and sampling and disassembling of sample and pollution and loss in open system and closed system.

  11. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  12. Selenium speciation using capillary electrophoresis coupled with modified electrothermal atomic absorption spectrometry after selective extraction with 5-sulfosalicylic acid functionalized magnetic nanoparticles.

    Science.gov (United States)

    Yan, Lizhen; Deng, Biyang; Shen, Caiying; Long, Chanjuan; Deng, Qiufen; Tao, Chunyao

    2015-05-22

    A new method for selenium speciation in fermented bean curd wastewater and juice was described. This method involved sample extraction with 5-sulfosalicylic acid (SSA)-functionalized silica-coated magnetic nanoparticles (SMNPs), capillary electrophoresis (CE) separation, and online detection with a modified electrothermal atomic absorption spectrometry (ETAAS) system. The modified interface for ETAAS allowed for the introduction of CE effluent directly through the end of the graphite tube. Elimination of the upper injection hole of the graphite tube reduced the loss of the anlayte and enhanced the detection sensitivity. The SSA-SMNPs were synthesized and used to extract trace amounts of selenite [Se(IV)], selenite [Se(VI)], selenomethionine (SeMet), and selenocystine (SeCys2) from dilute samples. The concentration enrichment factors for Se(VI), Se(IV), SeMet, and SeCys2 were 21, 29, 18, and 12, respectively, using the SSA-SMNPs extraction. The limits of detection for Se(VI), Se(IV), SeMet, and SeCys2 were 0.18, 0.17, 0.54, 0.49ngmL(-1), respectively. The RSD values (n=6) of method for intraday were observed between 0.7% and 2.9%. The RSD values of method for interday were less than 3.5%. The linear range of Se(VI) and Se(IV) were in the range of 0.5-200ngmL(-1), and the linear ranges of SeMet and SeCys2 were 2-500 and 2-1000ngmL(-1), respectively. The detection limits of this method were improved by 10 times due to the enrichment by the SSA-SMNP extraction. The contents of Se(VI) and Se(IV) in fermented bean curd wastewater were measured as 3.83 and 2.62ngmL(-1), respectively. The contents of Se(VI), Se(IV), SeMet, and SeCys2 in fermented bean curd juice were determined as 6.39, 4.08, 2.77, and 4.00ngmL(-1), respectively. The recoveries were in the range of 99.14-104.5% and the RSDs (n=6) of recoveries between 0.82% and 3.5%. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Accurate determination of trace amounts of phosphorus in geological samples by inductively coupled plasma atomic emission spectrometry with ion-exchange separation

    International Nuclear Information System (INIS)

    Asoh, Kazuya; Ebihara, Mitsuru

    2013-01-01

    Graphical abstract: -- Highlights: •We set up an effective ICP-AES procedure for determining trace P in rock samples. •Some certified values of P for reference rock samples were proved to be doubtful. •Accurate and reliable data were presented for a suite of geological reference rocks. -- Abstract: In order to determine trace amounts of phosphorus in geological and cosmochemical rock samples, simple as well as reliable analytical schemes using an ICP-AES instrument were investigated. A (conventional) ICP-AES procedure could determine phosphorus contents at the level of several 100 μg g −1 with a reasonable reproducibility ( −1 ; 1σ). An ICP-AES procedure coupled with matrix-separation using cation and anion exchange resins could lower the quantification level down to 1 μg g −1 or even lower under the present experimental conditions. The matrix-separation ICP-AES procedure developed in this study was applied to twenty-one geological reference samples issued by Geological Survey of Japan. Obtained values vary from 1250 μg g −1 for JB-3 (basalt) to 2.07 μg g −1 for JCt-1 (carbonate). Matrix-separation ICP-AES yielded reasonable reproducibility (less than 8.3%; 1σ) of three replicate analyses for all the samples analyzed. In comparison of our data with certificate values as well as literature or reported values, there appear to be an apparent (and large) discrepancy between our values and certificate/reported values regardless of phosphorus contents. Based on the reproducibility of our data and the analytical capability of the matrix-separation ICP-AES procedure developed in this study (in terms of quantification limit, recovery, selectivity of an analyte through pre-concentration process, etc.), it is concluded that certified values for several reference standard rocks should be reevaluated and revised accordingly. It may be further pointed that some phosphorus data reported in literatures should be critically evaluated when they are to be

  14. Redesign lifts prep output 288%

    Energy Technology Data Exchange (ETDEWEB)

    Hamric, J

    1987-02-01

    This paper outlines the application of engineering creativity and how it brought output at an Ohio coal preparation plant up from 12,500 tpd to nearly four times that figure, 48,610 tpd. By streamlining the conveyor systems, removing surplus belt length and repositioning subplants the whole operation was able to run far more efficiently with a greater output. Various other alterations including the raw material supply and management and operating practices were also undertaken to provide a test for the achievements possible with such reorganization. The new developments have been in the following fields: fine coal cleaning, heavy media cyclones, feeders, bins, filter presses, dewatering equipment and settling tanks. Output is now limited only by the reduced demand by the Gavin power station nearby.

  15. Output factors and scatter ratios

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, P N; Summers, R E; Samulski, T V; Baird, L C [Allegheny General Hospital, Pittsburgh, PA (USA); Ahuja, A S; Dubuque, G L; Hendee, W R; Chhabra, A S

    1979-07-01

    Reference is made to a previous publication on output factors and scatter ratios for radiotherapy units in which it was suggested that the output factor should be included in the definitions of scatter-air ratio and tissue-maximum ratio. In the present correspondence from other authors and from the authors of the previous publication, the original definitions and the proposed changes are discussed. Radiation scatter from source and collimator degradation of beam energy and calculation of dose in tissue are considered in relation to the objective of accurate dosimetry.

  16. Ubiquitous atom

    International Nuclear Information System (INIS)

    Spruch, G.M.; Spruch, L.

    1974-01-01

    The fundamentals of modern physics, including the basic physics and chemistry of the atom, elementary particles, cosmology, periodicity, and recent advances, are surveyed. The biology and chemistry of the life process is discussed to provide a background for considering the effects of atomic particles on living things. The uses of atomic power in space travel, merchant shipping, food preservation, desalination, and nuclear clocks are explored. (Pollut. Abstr.)

  17. Atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 2 3 Po, 2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 2 3 Po level of helium-like krypton

  18. Optically trapped atom interferometry using the clock transition of large 87Rb Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Altin, P A; McDonald, G; Doering, D; Debs, J E; Barter, T H; Close, J D; Robins, N P; Haine, S A; Hanna, T M; Anderson, R P

    2011-01-01

    We present a Ramsey-type atom interferometer operating with an optically trapped sample of 10 6 Bose-condensed 87 Rb atoms. We investigate this interferometer experimentally and theoretically with an eye to the construction of future high precision atomic sensors. Our results indicate that, with further experimental refinements, it will be possible to produce and measure the output of a sub-shot-noise-limited, large atom number BEC-based interferometer. The optical trap allows us to couple the |F=1, m F =0)→|F=2, m F =0) clock states using a single photon 6.8 GHz microwave transition, while state selective readout is achieved with absorption imaging. We analyse the process of absorption imaging and show that it is possible to observe atom number variance directly, with a signal-to-noise ratio ten times better than the atomic projection noise limit on 10 6 condensate atoms. We discuss the technical and fundamental noise sources that limit our current system, and present theoretical and experimental results on interferometer contrast, de-phasing and miscibility.

  19. Low energy atom-atom collisions

    International Nuclear Information System (INIS)

    Child, M.S.

    1980-01-01

    The semiclassical theory of atom-atom potential scattering and of low energy inelastic atom-atom scattering is reviewed. Particular attention is given to the origin and interpretation of rainbow structure, diffraction oscillations and exchange oscillations in the potential scattering differential cross-section, and to the glory structure and symmetry oscillations in the integral cross-section. Available methods for direct inversion of the cross-section data to recover the potential are reviewed in some detail. The theory of non-adiabatic transitions is introduced by a short discussion of interaction mechanisms and of diabetic and adiabatic representations. Analytical S matrix elements are presented for two state curve-crossing (Landau-Zener-Stuckelberg), Demkov and Nikitin models. The relation between Stuckelberg oscillations in the S matrix and in the differential cross-section is discussed in terms of interference between trajectories belonging to two different classical deflection functions. The energy dependences of the inelastic integral cross-section for curve-crossing and Demkov type transitions are also discussed. Finally the theory is reviewed in relation to a recent close-coupled study of fine structure transitions in F( 2 P) + Xe( 2 S) scattering

  20. Initial wavefunction dependence on atom interferometry phases

    NARCIS (Netherlands)

    Jansen, M.A.H.M.; Leeuwen, van K.A.H.

    2008-01-01

    In this paper we present a mathematical procedure to analytically calculate the output signal of a pulsed atom interferometer in an inertial field. Using the wellknown ABCD¿ method we take into account the full wave dynamics of the atoms with a first order treatment of the wavefront distortion by

  1. World Input-Output Network.

    Directory of Open Access Journals (Sweden)

    Federica Cerina

    Full Text Available Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD is one of the first efforts to construct the global multi-regional input-output (GMRIO tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries.

  2. Remote input/output station

    CERN Multimedia

    1972-01-01

    A general view of the remote input/output station installed in building 112 (ISR) and used for submitting jobs to the CDC 6500 and 6600. The card reader on the left and the line printer on the right are operated by programmers on a self-service basis.

  3. Compact Circuit Preprocesses Accelerometer Output

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1993-01-01

    Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.

  4. Optimizing microwave photodetection: input-output theory

    Science.gov (United States)

    Schöndorf, M.; Govia, L. C. G.; Vavilov, M. G.; McDermott, R.; Wilhelm, F. K.

    2018-04-01

    High fidelity microwave photon counting is an important tool for various areas from background radiation analysis in astronomy to the implementation of circuit quantum electrodynamic architectures for the realization of a scalable quantum information processor. In this work we describe a microwave photon counter coupled to a semi-infinite transmission line. We employ input-output theory to examine a continuously driven transmission line as well as traveling photon wave packets. Using analytic and numerical methods, we calculate the conditions on the system parameters necessary to optimize measurement and achieve high detection efficiency. With this we can derive a general matching condition depending on the different system rates, under which the measurement process is optimal.

  5. Floating Gate CMOS Dosimeter With Frequency Output

    Science.gov (United States)

    Garcia-Moreno, E.; Isern, E.; Roca, M.; Picos, R.; Font, J.; Cesari, J.; Pineda, A.

    2012-04-01

    This paper presents a gamma radiation dosimeter based on a floating gate sensor. The sensor is coupled with a signal processing circuitry, which furnishes a square wave output signal, the frequency of which depends on the total dose. Like any other floating gate dosimeter, it exhibits zero bias operation and reprogramming capabilities. The dosimeter has been designed in a standard 0.6 m CMOS technology. The whole dosimeter occupies a silicon area of 450 m250 m. The initial sensitivity to a radiation dose is Hz/rad, and to temperature and supply voltage is kHz/°C and 0.067 kHz/mV, respectively. The lowest detectable dose is less than 1 rad.

  6. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  7. Early Atomism

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  8. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  9. Exotic atoms

    International Nuclear Information System (INIS)

    Horvath, D.; Lambrecht, R.M.

    1984-01-01

    This bibliography on exotic atoms covers the years 1939 till 1982. The annual entries are headed by an introduction describing the state of affairs of the branch of science and listing the main applications in quantum electrodynamics, particle physics, nuclear physics, atomic physics, chemical physics and biological sciences. The bibliography includes an author index and a subject index. (Auth.)

  10. Optimization of atomic beam sources for polarization experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, Martin; Nass, Alexander; Stroeher, Hans [IKP, Forschungszentrum Juelich (Germany)

    2013-07-01

    For experiments with spin-polarized protons and neutrons a dense target is required. In current atomic beam sources an atomic hydrogen or deuterium beam is expanded through a cold nozzle and a system of sextupole magnets and RF-transition units selects a certain hyperfine state. The achievable flux seems to be limited to about 10{sup 17} particles per second with a high nuclear polarization. A lot of experimental and theoretical effort has been undertaken to understand all effects and to increase the flux. However, improvements have remained marginal. Now, a Monte Carlo simulation based on the DSMC part of the open source C++ library OpenFOAM is set up in order to get a better understanding of the flow and to optimize the various elements. It is intended to include important effects like deflection from magnetic fields, recombination on the walls and spin exchange collisions in the simulation and make quantitative predictions of changes in the experimental setup. The goal is to get a tool that helps to further increase the output of an atomic beam source. So far, a new binary collision model, magnetic fields, RF-transition units and a tool to measure the collision age are included. The next step will be to couple the whole simulation with an optimization algorithm implementing Adaptive Simulated Annealing (ASA) in order to automatically optimize the atomic beam source.

  11. Determination of trace amounts of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment by inductively coupled plasma atomic emission spectrometry after iron matrix removal with extractant-contained resin

    International Nuclear Information System (INIS)

    Xu Yuyu; Zhou Jianfeng; Wang Guoxin; Zhou Jinfan; Tao Guanhong

    2007-01-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) was applied to the determination of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment. Samples were dissolved with hydrochloric acid and hydrogen peroxide. The digest was passed through a column, which was packed with a polymer resin containing a neutral organophosphorus extractant, tri-n-butylphosphate. Iron was sorbed selectively on the resin and the analytes of interest passed through the column, allowing the effective separation of them from the iron matrix. Conditions of separation were optimized. The detection limits (3σ) in solution were 10, 40, 7 and 5 μg L -1 , and in pigment were 0.2, 0.8, 0.14 and 0.1 mg kg -1 for lead, arsenic, cobalt and nickel, respectively. The recoveries ranged from 95% to 107% when sample digests were spiked with 5 μg of the analytes of interest, and relative standard deviations (n = 6) were 1.5-17.6% for the determination of the spiked samples. The method was successfully applied to the determination of trace amounts of these elements in high-purity iron oxide pigment samples

  12. Investigation of plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry caused by matrices with low second ionization potentials-identification of the secondary factor

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2006-01-01

    Plasma-related matrix effects induced by a comprehensive list of matrix elements (a total of fifty-one matrices) in inductively coupled plasma-atomic emission spectrometry were investigated and used to confirm that matrix effects caused by elements with a low second ionization potential are more severe than those from matrix elements having a low first ionization potential. Although the matrix effect is correlated unambiguously with the second ionization potential of a matrix, the correlation is not monotonic, which suggests that at least one other factor is operative. Through study of a large pool of matrix elements, it becomes possible to identify another critical parameter that defines the magnitude of the matrix effect; namely the presence of low-lying energy levels in the doubly charged matrix ion. Penning ionization by Ar excited states is proposed as the dominant mechanism for both analyte ionization/excitation and matrix effects; matrices with a low second ionization potential can effectively quench the population of Ar excited states through successive Penning ionization followed by ion-electron recombination and lead to more severe matrix effects

  13. Sb(III) and Sb(V) separation and analytical speciation by a continuous tandem on-line separation device in connection with inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Menendez Garcia, A. [Oviedo Univ. (Spain). Dept. of Phys. and Anal. Chem.; Perez Rodriguez, M.C. [Oviedo Univ. (Spain). Dept. of Phys. and Anal. Chem.; Sanchez Uria, J.F. [Oviedo Univ. (Spain). Dept. of Phys. and Anal. Chem.; Sanz-Medel, A. [Oviedo Univ. (Spain). Dept. of Phys. and Anal. Chem.

    1995-09-01

    A sensitive, precise and automated non-chromatographic method for Sb(III) and Sb(V) analytical speciation based on a continuous tandem on-line separation device in connection with inductively coupled plasma-atomic emission (ICP-AES) detection is proposed. Two on-line successive separation steps are included into this method: a continuous liquid-liquid extraction of Sb(III) with ammonium pyrrolidine dithiocarbamate (APDC) into methylisobuthylketone (MIBK), followed by direct stibine generation from the organic phase. Both separation steps are carried out in a continuous mode and on-line with the ICP-AES detector. Optimization of experimental conditions for the tandem separation and ICP-AES detection are investigated in detail. Detection limits for Sb(III) were 3 ng.mL{sup -1} and for Sb(V) 8 ng.mL{sup -1}. Precisions observed are in the range {+-} 5%. The proposed methodology has been applied to Sb(III) and Sb(V) speciation in sea-water samples. (orig.)

  14. Improvement of AOAC Official Method 984.27 for the determination of nine nutritional elements in food products by Inductively coupled plasma-atomic emission spectroscopy after microwave digestion: single-laboratory validation and ring trial.

    Science.gov (United States)

    Poitevin, Eric; Nicolas, Marine; Graveleau, Laetitia; Richoz, Janique; Andrey, Daniel; Monard, Florence

    2009-01-01

    A single-laboratory validation (SLV) and a ring trial (RT) were undertaken to determine nine nutritional elements in food products by inductively coupled plasma-atomic emission spectroscopy in order to improve and update AOAC Official Method 984.27. The improvements involved optimized microwave digestion, selected analytical lines, internal standardization, and ion buffering. Simultaneous determination of nine elements (calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc) was made in food products. Sample digestion was performed through wet digestion of food samples by microwave technology with either closed or open vessel systems. Validation was performed to characterize the method for selectivity, sensitivity, linearity, accuracy, precision, recovery, ruggedness, and uncertainty. The robustness and efficiency of this method was proved through a successful internal RT using experienced food industry laboratories. Performance characteristics are reported for 13 certified and in-house reference materials, populating the AOAC triangle food sectors, which fulfilled AOAC criteria and recommendations for accuracy (trueness, recovery, and z-scores) and precision (repeatability and reproducibility RSD and HorRat values) regarding SLV and RT. This multielemental method is cost-efficient, time-saving, accurate, and fit-for-purpose according to ISO 17025 Norm and AOAC acceptability criteria, and is proposed as an improved version of AOAC Official Method 984.27 for fortified food products, including infant formula.

  15. Collection of trace evidence of explosive residues from the skin in a death due to a disguised letter bomb. The synergy between confocal laser scanning microscope and inductively coupled plasma atomic emission spectrometer analyses.

    Science.gov (United States)

    Turillazzi, Emanuela; Monaci, Fabrizio; Neri, Margherita; Pomara, Cristoforo; Riezzo, Irene; Baroni, Davide; Fineschi, Vittorio

    2010-04-15

    In most deaths caused by explosive, the victim's body becomes a depot for fragments of explosive materials, so contributing to the collection of trace evidence which may provide clues about the specific type of device used with explosion. Improvised explosive devices are used which contain "homemade" explosives rather than high explosives because of the relative ease with which such components can be procured. Many methods such as chromatography-mass spectrometry, scanning electron microscopy, stereomicroscopy, capillary electrophoresis are available for use in the identification of explosive residues on objects and bomb fragments. Identification and reconstruction of the distribution of explosive residues on the decedent's body may give additional hints in assessing the position of the victim in relation to the device. Traditionally these residues are retrieved by swabbing the body and clothing during the early phase, at autopsy. Gas chromatography-mass spectrometry and other analytical methods may be used to analyze the material swabbed from the victim body. The histological examination of explosive residues on skin samples collected during the autopsy may reveal significant details. The information about type, quantity and particularly about anatomical distribution of explosive residues obtained utilizing confocal laser scanning microscope (CLSM) together with inductively coupled plasma atomic emission spectrometer (ICP-AES), may provide very significant evidence in the clarification and reconstruction of the explosive-related events. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  16. A Magnetized Nanoparticle Based Solid-Phase Extraction Procedure Followed by Inductively Coupled Plasma Atomic Emission Spectrometry to Determine Arsenic, Lead and Cadmium in Water, Milk, Indian Rice and Red Tea.

    Science.gov (United States)

    Azimi, Salameh; Es'haghi, Zarrin

    2017-06-01

    A sensitive and simple method using magnetic multi-walled carbon nanotube (MWCNTs-Fe 3 O 4 MNP), as the adsorbent, has been successfully developed for extraction and pre-concentration of arsenic, lead and cadmium with detection by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The nanosorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction pattern (XRD), vibrating sample magnetometer (VSM) and transmission electron microscopy (TEM). The key factors affecting the signal intensity such as pH, adsorbent amount, etc. were investigated. Under optimal conditions, the limits of detection (three-time of signal to noise ratio, S/N 3) were 0.3, 0.6, 0.3 ng/mL for arsenic, lead and cadmium, respectively. Application of the adsorbent was investigated by the analysis of water, milk, Indian rice and red tea. The experimental data was analyzed and obeyed Langmuir and Freundlich adsorption models. The kinetic data was fitted to the pseudo-second-order model. Thermodynamic studies revealed the feasibility and exothermic nature of the system.

  17. Cold atoms in microscopic traps: from wires to chips

    International Nuclear Information System (INIS)

    Cassettari, D.

    2000-05-01

    This thesis reports on the experimental demonstration of magnetic guides, traps and beam splitters for neutral atoms using current carrying wires. A straight wire allows to create two basic guide configurations: the magnetic field generated by the wire alone produces a guide where atoms in a strong field seeking state perform orbits around the wire (Kepler guide); by adding an external magnetic field, atoms in a weak field seeking state are guided at the location where the external field and the field generated by the wire cancel out (side guide). Furthermore, bending the wire in various shapes allows to modify the side guide potential and hence to create a large variety of three dimensional traps. A relevant property of these potentials is that higher trapping gradients are obtained by decreasing the current flowing in the wires. As the trap is compressed, it also moves closer to the wire. This feature has allowed us to create microscopic potentials by using thin wires designed on a surface (atom chip) by means of high resolution microfabrication techniques. Wires mounted on a surface have the advantage of being more robust and able to sustain larger currents due to their thermal coupling with the substrate. In our experiment we have developed methods to load these traps and guides with laser cooled atoms. Our first investigations have been performed with free standing wires which we have used to study the Kepler guide, the side guide and a three dimensional Ioffe-Pritchard trap. In the latter we have achieved the trapping parameters required in the experiments with Bose-Einstein condensates with much reduced power consumption. In a second time we have replaced the free standing wires with an atom chip, which we have used to compress the atomic cloud in potentials with trap frequencies above 100 kHz and ground state sizes below 100 nm. Such potentials are especially interesting for quantum information proposals of performing quantum gate operations with controlled

  18. Discrete Energies of a Weakly Outcoupled Atom Laser Beam Outside the Bose–Einstein Condensate Region

    Directory of Open Access Journals (Sweden)

    Teguh Budi Prayitno

    2014-12-01

    Full Text Available We consider the possibility of a discrete set of energies of a weakly outcoupled atom laser beam to the homogeneous Schrödinger equation with anisotropic harmonic trap in Cartesian coordinates outside the Bose–Einstein condensate region. This treatment is used because working in the cylindrical coordinates is not really possible, even though we implement the cigar-shaped trap case. The Schrödinger equation appears to replace a set of two-coupled Gross– Pitaevskii equations by enabling the weak-coupling assumption. This atom laser can be produced in a simple way that only involves extracting the atoms in a condensate from by using the radio frequency field. We initially present the relation between condensates as sources and atom laser as an output by exploring the previous work of Riou et al. in the case of theoretical work for the propagation of atom laser beams. We also show that even though the discrete energies are obtained by means of an approaching harmonic oscillator, degeneracy is only available in two states because of the anisotropic external potential

  19. Spontaneous emission by moving atoms

    International Nuclear Information System (INIS)

    Meystre, P.; Wilkens, M.

    1994-01-01

    It is well known that spontaneous emission is not an intrinsic atomic property, but rather results from the coupling of the atom to the vacuum modes of the electromagnetic field. As such, it can be modified by tailoring the electromagnetic environment into which the atom can radiate. This was already realized by Purcell, who noted that the spontaneous emission rate can be enhanced if the atom placed inside a cavity is resonant with one of the cavity is resonant with one of the cavity modes, and by Kleppner, who discussed the opposite case of inhibited spontaneous emission. It has also been recognized that spontaneous emission need not be an irreversible process. Indeed, a system consisting of a single atom coupled to a single mode of the electromagnetic field undergoes a periodic exchange of excitation between the atom and the field. This periodic exchange remains dominant as long as the strength of the coupling between the atom and a cavity mode is itself dominant. 23 refs., 6 figs

  20. GaN Nanowire Arrays for High-Output Nanogenerators

    KAUST Repository

    Huang, Chi-Te

    2010-04-07

    Three-fold symmetrically distributed GaN nanowire (NW) arrays have been epitaxially grown on GaN/sapphire substrates. The GaN NW possesses a triangular cross section enclosed by (0001), (2112), and (2112) planes, and the angle between the GaN NW and the substrate surface is ∼62°. The GaN NW arrays produce negative output voltage pulses when scanned by a conductive atomic force microscope in contact mode. The average of piezoelectric output voltage was about -20 mV, while 5-10% of the NWs had piezoelectric output voltages exceeding -(0.15-0.35) V. The GaN NW arrays are highly stable and highly tolerate to moisture in the atmosphere. The GaN NW arrays demonstrate an outstanding potential to be utilized for piezoelectric energy generation with a performance probably better than that of ZnO NWs. © 2010 American Chemical Society.

  1. UFO - The Universal FEYNRULES Output

    Science.gov (United States)

    Degrande, Céline; Duhr, Claude; Fuks, Benjamin; Grellscheid, David; Mattelaer, Olivier; Reiter, Thomas

    2012-06-01

    We present a new model format for automatized matrix-element generators, the so-called Universal FEYNRULES Output (UFO). The format is universal in the sense that it features compatibility with more than one single generator and is designed to be flexible, modular and agnostic of any assumption such as the number of particles or the color and Lorentz structures appearing in the interaction vertices. Unlike other model formats where text files need to be parsed, the information on the model is encoded into a PYTHON module that can easily be linked to other computer codes. We then describe an interface for the MATHEMATICA package FEYNRULES that allows for an automatic output of models in the UFO format.

  2. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  3. Aggregate Supply and Potential Output

    OpenAIRE

    Razin, Assaf

    2004-01-01

    The New-Keynesian aggregate supply derives from micro-foundations an inflation-dynamics model very much like the tradition in the monetary literature. Inflation is primarily affected by: (i) economic slack; (ii) expectations; (iii) supply shocks; and (iv) inflation persistence. This paper extends the New Keynesian aggregate supply relationship to include also fluctuations in potential output, as an additional determinant of the relationship. Implications for monetary rules and to the estimati...

  4. Event-triggered output feedback control for distributed networked systems.

    Science.gov (United States)

    Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa

    2016-01-01

    This paper addresses the problem of output-feedback communication and control with event-triggered framework in the context of distributed networked control systems. The design problem of the event-triggered output-feedback control is proposed as a linear matrix inequality (LMI) feasibility problem. The scheme is developed for the distributed system where only partial states are available. In this scheme, a subsystem uses local observers and share its information to its neighbors only when the subsystem's local error exceeds a specified threshold. The developed method is illustrated by using a coupled cart example from the literature. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Particle-rotation coupling in atomic nuclei

    International Nuclear Information System (INIS)

    Almberger, J.

    1980-01-01

    Recently an increased interest in the rotational nuclei has been spurred by the new experimental high-spin activities and by the possibilities for lower spins to interpret an impressive amount of experimental data by some comparatively simple model calculations. The author discusses the particle modes of excitation for rotational nuclei in the pairing regime where some puzzles in the theoretical description remain to be resolved. A model comparison is made between the particle-rotor and cranking models which have different definitions of the collective rotation. The cranking model is found to imply a smaller value of the quasiparticle spin alignment than the particle-rotor model. Rotational spectra for both even and odd nuclei are investigated with the use of the many-BCS-quasiparticles plus rotor model. This model gives an accurate description of the ground and S-bands in many even-even rare-earth nuclei. However, the discrepancies for odd-A nuclei between theory and experiments point to the importance of additional physical components. Therefore the rotationally induced quadrupole pair field is considered. This field has an effect on the low spin states in odd-A nuclei, but is not sufficient to account for the experimental data. Another topic considered is the interaction matrix element in crossings for given spin between quasiparticle rotational bands. The matrix elements are found to oscillate as a function of the number of particles, thereby influencing the sharpness of the backbending. Finally the low-spin continuation of the S-band is studied and it is shown that such states can be populated selectively by means of one-particle pickup reactions involving high angular momentum transfer. (Auth.)

  6. Atomic interferometry

    International Nuclear Information System (INIS)

    Baudon, J.; Robert, J.

    2004-01-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation λ = h/(mv), where λ is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  7. Judicial Influence on Policy Outputs?

    DEFF Research Database (Denmark)

    Martinsen, Dorte Sindbjerg

    2015-01-01

    to override unwanted jurisprudence. In this debate, the Court of Justice of the European Union (CJEU) has become famous for its central and occasionally controversial role in European integration. This article examines to what extent and under which conditions judicial decisions influence European Union (EU......) social policy outputs. A taxonomy of judicial influence is constructed, and expectations of institutional and political conditions on judicial influence are presented. The analysis draws on an extensive novel data set and examines judicial influence on EU social policies over time, that is, between 1958...

  8. Atomic politics

    International Nuclear Information System (INIS)

    Skogmar, G.

    1979-01-01

    The authors basic point is that the military and civil sides of atomic energy cannot be separated. The general aim of the book is to analyze both the military and civil branches, and the interdependence between them, of American foreign policy in the atomic field. Atomic policy is seen as one of the most important imstruments of foreign policy which, in turn, is seen against the background of American imperialism in general. Firstly, the book investigates the most important means by which the United States has controlled the development in the nuclear field in other countries. These means include influencing the conditions of access to nuclear resources of various kinds, influencing the flow of technical-economic information and influencing international organizations and treaties bearing on atomic energy. The time period treated is 1945-1973. 1973 is chosen as the end-year of the study mainly because of the new conditions in the whole energy field initiated by the oil crisis in that year. The sources of the empirical work are mainly hearings before the Joint Committee on Atomic Energy of the U.S. Congress and legal material of various kinds. Secondly, the goals of the American policy are analyzed. The goals identified are armament effect, non-proliferation (horizontal), sales, and energy dependence. The relation between the main goals is discussed.The discussion is centered on the interdependence between the military and the civil aspects, conflict and coincidence of various goals, the relation between short-term and long-term goals, and the possibilities of using one goal as pretext for another. Thirdly, some causes of the changes in the atomic policy around 1953 and 1963 are identified. These are the strategic balance, the competitive situation, the capacity (of the American atomic productive apparatus), and the nuclear technological stage. The specific composition of these four factors at the two time-points can explain the changes of policy. (author)

  9. Development of a new green non-dispersive ionic liquid microextraction method in a narrow glass column for determination of cadmium prior to couple with graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Naeemullah, E-mail: naeemullah433@yahoo.com [Gaziosmanpaşa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kazi, Tasneem Gul [National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Tuzen, Mustafa [Gaziosmanpaşa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Shah, Faheem; Afridi, Hassan Imran [National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Citak, Demirhan [Gaziosmanpaşa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey)

    2014-02-17

    Graphical abstract: -- Highlights: •A novel and rapid non-dispersive ionic liquid based microextractions. •We used a long narrow glass column to provide more contact area between two media (aqueous and extractive). •APDC using as complexing agent and analyzed by GFAAS. •Introduced a novel approach that reduced solvent consumption, effort, time. •It was applied for determination of understudy analytes in real water sample. -- Abstract: Easy and innovative non-dispersive ionic liquid based microextraction (NDILME) has been developed for preconcentration of trace level of cadmium (Cd) in aqueous real surface water samples prior to couple with graphite furnace atomic absorption spectrometry (GFAAS). A 200 cm long narrow glass column containing aqueous solution of standard/sample was used to increase phase transfer ratio by providing more contact area between two medium (aqueous and extractive), which drastically improve the recoveries of labile hydrophobic chelate of Cd ammonium pyrrolidinedithiocarbamate (APDC), into ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [C{sub 4}mim][PF{sub 6}]. Different aspect of the desire method have been investigated and optimized. Under the optimized key experimental variables, limit of detection (LOD) and enhancement factor (EF) were achieved to be 0.5 ng L{sup −1} and 150, respectively. Reliability of the model method was checked by relative standard deviation (%RSD), which was found to be < 5%. Validity and accuracy of the developed method was checked by analysis of certified reference water samples (SLRS-4 Riverine water) using standard addition method. Application of the model method was productively performed by analysis of Cd in real surface water samples (tap and sea)

  10. Micro- and nano-volume samples by electrothermal, near-torch vaporization sample introduction using removable, interchangeable and portable rhenium coiled-filament assemblies and axially-viewed inductively coupled plasma-atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Badiei, Hamid R.; Lai, Bryant; Karanassios, Vassili

    2012-11-15

    An electrothermal, near-torch vaporization (NTV) sample introduction for micro- or nano-volume samples is described. Samples were pipetted onto coiled-filament assemblies that were purposely developed to be removable and interchangeable and were dried and vaporized into a small-volume vaporization chamber that clips onto any ICP torch with a ball joint. Interchangeable assemblies were also constructed to be small-size (e.g., less than 3 cm long with max diameter of 0.65 cm) and light-weight (1.4 g) so that they can be portable. Interchangeable assemblies with volume-capacities in three ranges (i.e., < 1 {mu}L, 1-10 {mu}L and 10-100 {mu}L) were fabricated and used. The horizontally-operated NTV sample introduction was interfaced to an axially-viewed ICP-AES (inductively coupled plasma-atomic emission spectrometry) system and NTV was optimized using ICP-AES and 8 elements (Pb, Cd, Zn, V, Ba, Mg, Be and Ca). Precision was 1.0-2.3% (peak height) and 1.1-2.4% (peak area). Detection limits (obtained using 5 {mu}L volumes) expressed in absolute-amounts ranged between 4 pg for Pb to 0.3 fg ({approx} 5 million atoms) for Ca. Detection limits expressed in concentration units (obtained using 100 {mu}L volumes of diluted, single-element standard solutions) were: 50 pg/mL for Pb; 10 pg/mL for Cd; 9 pg/mL for Zn; 1 pg/mL for V; 0.9 pg/mL for Ba; 0.5 pg/mL for Mg; 50 fg/mL for Be; and 3 fg/mL for Ca. Analytical capability and utility was demonstrated using the determination of Pb in pg/mL levels of diluted natural water Certified Reference Material (CRM) and the determination of Zn in 80 nL volumes of the liquid extracted from an individual vesicle. It is shown that portable and interchangeable assemblies with dried sample residues on them can be transported without analyte loss (for the concentrations tested), thus opening up the possibility for 'taking part of the lab to the sample' applications, such as testing for Cu concentration-compliance with the lead

  11. Effect of Aspect Ratio on the Light Output of Scintillators

    CERN Document Server

    Pauwels, Kristof; Gundacker, S.; Knapitsch, A.; Lecoq, P.

    2012-01-01

    The influence of the geometry of the scintillators is presented in this paper. We focus on the effect of narrowing down the section of crystals that have a given length. The light output of a set of crystals with very similar scintillating properties but different geometries measured with several coupling/wrapping configurations is provided. We observe that crystals shaped in thin rods have a lower light output as compared to bulk or sliced crystals. The effect of unpolishing the crystal faces is also investigated, and it is shown that highest light outputs are not necessarily obtained with crystals having all faces polished. Simulation results based on a realistic model of the crystal that implements light scattering on the crystal edges are in agreement with the experimental data. Fine-tuning of this model would allow us to further explore the details of light propagation in scintillators and would be highly valuable to fast timing detection and highly granular detectors.

  12. Atomic secrecy

    International Nuclear Information System (INIS)

    Sweet, W.

    1979-01-01

    An article, The H-Bomb Secret: How We Got It, Why We're Telling It, by Howard Morland was to be published in The Progressive magazine in February, 1979. The government, after learning of the author's and the editors' intention to publish the article and failing to persuade them to voluntarily delete about 20% of the text and all of the diagrams showing how an H-bomb works, requested a court injunction against publication. Acting under the Atomic Energy Act of 1954, US District Court Judge Robert W. Warren granted the government's request on March 26. Events dealing with the case are discussed in this publication. Section 1, Progressive Hydrogen Bomb Case, is discussed under the following: Court Order Blocking Magazine Report; Origins of the Howard Morland Article; Author's Motives, Defense of Publication; and Government Arguments Against Disclosure. Section 2, Access to Atomic Data Since 1939, contains information on need for secrecy during World War II; 1946 Atomic Energy Act and its effects; Soviet A-Bomb and the US H-Bomb; and consequences of 1954 Atomic Energy Act. Section 3, Disputed Need for Atomic Secrecy, contains papers entitled: Lack of Studies on H-Bomb Proliferation; Administration's Position on H-Bombs; and National Security Needs vs Free Press

  13. Bose-Einstein condensation of atomic gases

    International Nuclear Information System (INIS)

    Anglin, J. R.; Ketterle, W.

    2003-01-01

    The early experiments on Bose-Einstein condensation in dilute atomic gases accomplished three longstanding goals. First, cooling of neutral atoms into their motional state, thus subjecting them to ultimate control, limited only by Heisenberg uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum states, and the realization of atom lasers - devices that output coherent matter waves. And third, creation of gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose-Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum degenerate gases has grown, and now includes metastable and fermionic atoms. condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions. (author)

  14. Inverted relativistic magnetron with a single axial output

    International Nuclear Information System (INIS)

    Ballard, W.P.; Earley, L.M.; Wharton, C.B.

    1986-01-01

    A twelve vane, 1 MV, S-band magnetron has been designed and tested. An inverted design was selected to minimize the parasitic axial electron losses. The stainless steel anode is approximately one wavelength long. One end is partially short-circuited to rf, while the other end has a mode transformer to couple the 3.16 GHz π-mode out into a TM 01 circular waveguide. The magnetron has a loaded output Q of about 100. Operation at 1 MV, 0.31 T, 5 kA routinely produces approx.150 MW peak rms and 100 MW average rms with pulse lengths adjustable from 5 to 70 ns. The microwave power pulse has a rise time of approx.2 ns. The output power is diagnosed using four methods: calorimetry, two circular-waveguide directional couplers installed on the magnetron, two transmitting-receiving systems, and gaseous breakdown. Operation at other voltages and magnetic fields shows that the oscillation frequency is somewhat dependent on the magnetron current. Frequency changes of approx.20 MHz/kA occur as the operating conditions are varied. A series of experiments varying the anode conductivity, the electron emission profile, and the output coupling transformer design showed that none of these significantly increased the output power. Therefore, we have concluded that this magnetron operates in saturation. Because of the anode lifetime and repeatability, this magnetron has the potential to be repetitively pulsed. 36 refs., 16 figs

  15. First-Order Quantum Phase Transition for Dicke Model Induced by Atom-Atom Interaction

    International Nuclear Information System (INIS)

    Zhao Xiu-Qin; Liu Ni; Liang Jiu-Qing

    2017-01-01

    In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model’s ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength. (paper)

  16. Antimatter atoms

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    In january 1996, CERN broadcasted the information of the creation of nine anti-hydrogen atoms, observed through disintegration products. The experimental facility was CERN LEAR ring. An antiproton beam scattered a xenon jet, and the resulting antimatter was first selected by its insensitivity to beam bending magnets. Their disintegration was detected in thin NaI detectors, in which the anti-atoms are at once deprived from their positron. Then, magnetic and time-of-flight spectrometers are used. (D.L.)

  17. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  18. Integration of TMVA Output into Jupyter notebooks

    CERN Document Server

    Saliji, Albulena

    2016-01-01

    The purpose of this report is to describe the work that I have been doing during these past eight weeks as a Summer Student at CERN. The task which was assigned to me had to do with the integration of TMVA Output into Jupyter notebooks. In order to integrate the TMVA Output into the Jupyter notebook, first, improvement of the TMVA Output in the terminal was required. Once the output was improved, it needed to be transformed into HTML output and at the end it would be possible to integrate that output into the Jupyter notebook.

  19. Optically trapped atom interferometry using the clock transition of large {sup 87}Rb Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Altin, P A; McDonald, G; Doering, D; Debs, J E; Barter, T H; Close, J D; Robins, N P [Department of Quantum Science, ARC Centre of Excellence for Quantum Atom Optics, the Australian National University, ACT 0200 (Australia); Haine, S A [School of Mathematics and Physics, ARC Centre of Excellence for Quantum-Atom Optics, The University of Queensland, Queensland 4072 (Australia); Hanna, T M [Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, 100 Bureau Drive, Stop 8423, Gaithersburg, MD 20899-8423 (United States); Anderson, R P, E-mail: paul.altin@anu.edu.au [School of Physics, Monash University, VIC 3800 (Australia)

    2011-06-15

    We present a Ramsey-type atom interferometer operating with an optically trapped sample of 10{sup 6} Bose-condensed {sup 87}Rb atoms. We investigate this interferometer experimentally and theoretically with an eye to the construction of future high precision atomic sensors. Our results indicate that, with further experimental refinements, it will be possible to produce and measure the output of a sub-shot-noise-limited, large atom number BEC-based interferometer. The optical trap allows us to couple the |F=1, m{sub F}=0){yields}|F=2, m{sub F}=0) clock states using a single photon 6.8 GHz microwave transition, while state selective readout is achieved with absorption imaging. We analyse the process of absorption imaging and show that it is possible to observe atom number variance directly, with a signal-to-noise ratio ten times better than the atomic projection noise limit on 10{sup 6} condensate atoms. We discuss the technical and fundamental noise sources that limit our current system, and present theoretical and experimental results on interferometer contrast, de-phasing and miscibility.

  20. Output power characteristics of the neutral xenon long laser

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J. [TRW Space and Electronics Group, Redondo Beach, CA (United States). Space and Technology Div.

    1994-12-31

    Lasers which oscillate within inhomogeneously broadened gain media exhibit spectral hole burning and concomitant reduction in output power compared with equivalent homogeneously-broadened laser gain media. By increasing the cavity length, it may be possible to demonstrate at least a partial transition from an inhomogeneous laser cavity mode spectrum to a homogeneous spectrum. There are a number of high gain laser lines which are inhomogeneously-broadened transitions in electric discharges of neutral xenon. In neutral xenon lasers, as in the cases of many other gas lasers, the inhomogeneous spectral broadening mechanism arises from Doppler shifts, {Delta}{nu}{sub D}, of individual atoms in thermal motion within the electric discharge comprising the laser gain medium. Optical transitions corresponding to these noble gas atoms have natural linewidths, {Delta}{nu}{sub n}{lt}{Delta}{nu}{sub D}. Simulations of the output power characteristics of the xenon laser were carried out as a function of laser cavity parameters, including the cavity length, L. These calculations showed that when the intracavity mode spacing frequency, c/2L{lt}{Delta}{nu}{sub n}, the inhomogeneously broadened xenon mode spectrum converted to a homogeneously broadened oscillation spectrum with an increase in output power. These simulations are compared with experimental results obtained for the long laser oscillation characteristics of the (5d[5/2]{degree}{sub 2}{r_arrow}6p[3/2]{sub 1}) transition corresponding to the strong, high-gain 3.508 {mu} line in xenon.

  1. Atoms stories

    International Nuclear Information System (INIS)

    Radvanyi, P.; Bordry, M.

    1988-01-01

    Physicists from different countries told each evening during one learning week, to an audience of young people, some great discoveries in evoking the difficulties and problems to which the researchers were confronted. From Antiquity to a more recent history, it is a succession of atoms stories. (N.C.)

  2. Atomic physics

    International Nuclear Information System (INIS)

    Held, B.

    1991-01-01

    This general book describes the change from classical physics to quantum physics. The first part presents atom evolution since antiquity and introduces fundamental quantities and elements of relativity. Experiments which have contributed to the evolution of knowledge on matter are analyzed in the second part. Applications of wave mechanics to the study of matter properties are presented in the third part [fr

  3. Observability of linear systems with saturated outputs

    NARCIS (Netherlands)

    Koplon, R.; Sontag, E.D.; Hautus, M.L.J.

    1994-01-01

    We present necessary and sufficient conditions for observability of the class of output-saturated systems. These are linear systems whose output passes through a saturation function before it can be measured.

  4. Chameleon induced atomic afterglow

    International Nuclear Information System (INIS)

    Brax, Philippe; Burrage, Clare

    2010-01-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.

  5. Chameleon Induced Atomic Afterglow

    CERN Document Server

    Brax, Philippe

    2010-01-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.

  6. Chameleon induced atomic afterglow

    International Nuclear Information System (INIS)

    Brax, Philippe

    2010-09-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter. (orig.)

  7. Chameleon induced atomic afterglow

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [CEA, IPhT, CNRS, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-09-15

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter. (orig.)

  8. Probabilistic Output Analysis by Program Manipulation

    DEFF Research Database (Denmark)

    Rosendahl, Mads; Kirkeby, Maja Hanne

    2015-01-01

    The aim of a probabilistic output analysis is to derive a probability distribution of possible output values for a program from a probability distribution of its input. We present a method for performing static output analysis, based on program transformation techniques. It generates a probability...

  9. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    Science.gov (United States)

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  10. Artificial Atoms: from Quantum Physics to Applications

    International Nuclear Information System (INIS)

    2014-01-01

    The primary objective of this workshop is to survey the most recent advances of technologies enabling single atom- and artificial atom-based devices. These include the assembly of artificial molecular structures with magnetic dipole and optical interactions between engineered atoms embedded in solid-state lattices. The ability to control single atoms in diamond or similar solids under ambient operating conditions opens new perspectives for technologies based on nanoelectronics and nanophotonics. The scope of the workshop is extended towards the physics of strong coupling between atoms and radiation field modes. Beyond the traditional atom-cavity systems, artificial dipoles coupled to microwave radiation in circuit quantum electrodynamics is considered. All these technologies mutually influence each other in developing novel devices for sensing at the quantum level and for quantum information processing.

  11. Model output: fact or artefact?

    Science.gov (United States)

    Melsen, Lieke

    2015-04-01

    As a third-year PhD-student, I relatively recently entered the wonderful world of scientific Hydrology. A science that has many pillars that directly impact society, for example with the prediction of hydrological extremes (both floods and drought), climate change, applications in agriculture, nature conservation, drinking water supply, etcetera. Despite its demonstrable societal relevance, hydrology is often seen as a science between two stools. Like Klemeš (1986) stated: "By their academic background, hydrologists are foresters, geographers, electrical engineers, geologists, system analysts, physicists, mathematicians, botanists, and most often civil engineers." Sometimes it seems that the engineering genes are still present in current hydrological sciences, and this results in pragmatic rather than scientific approaches for some of the current problems and challenges we have in hydrology. Here, I refer to the uncertainty in hydrological modelling that is often neglected. For over thirty years, uncertainty in hydrological models has been extensively discussed and studied. But it is not difficult to find peer-reviewed articles in which it is implicitly assumed that model simulations represent the truth rather than a conceptualization of reality. For instance in trend studies, where data is extrapolated 100 years ahead. Of course one can use different forcing datasets to estimate the uncertainty of the input data, but how to prevent that the output is not a model artefact, caused by the model structure? Or how about impact studies, e.g. of a dam impacting river flow. Measurements are often available for the period after dam construction, so models are used to simulate river flow before dam construction. Both are compared in order to qualify the effect of the dam. But on what basis can we tell that the model tells us the truth? Model validation is common nowadays, but validation only (comparing observations with model output) is not sufficient to assume that a

  12. Canada's helium output rising fast

    Energy Technology Data Exchange (ETDEWEB)

    1966-12-01

    About 12 months from now, International Helium Limited will be almost ready to start up Canada's second helium extraction plant at Mankota, in Saskatchewan's Wood Mountain area about 100 miles southwest of Moose Jaw. Another 80 miles north is Saskatchewan's (and Canada's) first helium plant, operated by Canadian Helium and sitting on a gas deposit at Wilhelm, 9 miles north of Swift Current. It contains almost 2% helium, some COD2U, and the rest nitrogen. One year in production was apparently enough to convince Canadian Helium that the export market (it sells most of its helium in W. Europe) can take a lot more than it's getting. Construction began this summer on an addition to the Swift Current plant that will raise its capacity from 12 to 36MMcf per yr when it goes on stream next spring. Six months later, International Helium's 40 MMcf per yr plant to be located about 4 miles from its 2 Wood Mountain wells will double Canada's helium output again.

  13. Spin polarized atom traps and fundamental symmetries

    International Nuclear Information System (INIS)

    Haeusser, O.

    1994-10-01

    Plans are described to couple a neutral atom trap to an upgraded version of TRIUMF's TISOL on-line mass separator. The unique properties of trapped and cooled atoms promise improvements of some symmetry tests of the Standard Model of the electroweak and strong interactions. (author). 33 refs., 3 figs

  14. Vibronic coupling density and related concepts

    International Nuclear Information System (INIS)

    Sato, Tohru; Uejima, Motoyuki; Iwahara, Naoya; Haruta, Naoki; Shizu, Katsuyuki; Tanaka, Kazuyoshi

    2013-01-01

    Vibronic coupling density is derived from a general point of view as a one-electron property density. Related concepts as well as their applications are presented. Linear and nonlinear vibronic coupling density and related concepts, orbital vibronic coupling density, reduced vibronic coupling density, atomic vibronic coupling constant, and effective vibronic coupling density, illustrate the origin of vibronic couplings and enable us to design novel functional molecules or to elucidate chemical reactions. Transition dipole moment density is defined as an example of the one-electron property density. Vibronic coupling density and transition dipole moment density open a way to design light-emitting molecules with high efficiency.

  15. Design of atomic energy information network system

    International Nuclear Information System (INIS)

    Kim, Y. T.; Lee, E. J.; Han, K. W.; Lee, H. C.; Chang, J. H.

    2004-01-01

    As the 21 st century is expected to induce a Knowledge based society, responding to this kind of change on our own initiative could be achieved by establishing networks among atomic energy agencies with the Atomic Energy Portal Site in a pivotal role. Thus, enabling the knowledge information from each agency to be easily shared and utilized. Furthermore, it can contribute to further researches by providing accumulated knowledge in the atomic energy, such as research output and past achievements, and by avoiding the repetition of researches on the same subjects. It could also provide remote educational data to researchers and industrial experts in atomic energy, as well as atomic energy information for general public consistently, so that we can promote our confidence in atomic energy

  16. Atomic iodine laser

    International Nuclear Information System (INIS)

    Fisk, G.A.; Gusinow, M.A.; Hays, A.K.; Padrick, T.D.; Palmer, R.E.; Rice, J.K.; Truby, F.K.; Riley, M.E.

    1978-05-01

    The atomic iodine photodissociation laser has been under intensive study for a number of years. The physics associated with this system is now well understood and it is possible to produce a 0.1 nsec (or longer) near-diffraction-limited laser pulse which can be amplified with negligible temporal distortion and little spatial deformation. The output of either a saturated or unsaturated amplifier consists of a high-fidelity near-diffraction-limited, energetic laser pulse. The report is divided into three chapters. Chapter 1 is a survey of the important areas affecting efficient laser operation and summarizes the findings of Chap. 2. Chapter 2 presents detailed discussions and evaluations pertinent to pumps, chemical regeneration, and other elements in the overall laser system. Chapter 3 briefly discusses those areas that require further work and the nature of the work required to complete the full-scale evaluation of the applicability of the iodine photodissociation laser to the inertial confinement program

  17. Interfase y software de control para operar en sincronismo un automuestreador y un atomizador electrotérmico por filamento de tungsteno en espectrofotometría de absorción atómica Development of interface and software for synchronous operation of an autosampler and a tungsten coil electrothermal atomizer coupled to an atomic absorption spectophotometer

    OpenAIRE

    J. Neira; G. Valenzuela; J. Vega; J. Moya; C. G. Bruhn; J. A. Nóbrega

    1998-01-01

    The interface and software for synchronous control of an autosampler and an electrothermal tungsten coil atomizer in atomic absorption spectrophotometry were developed. The control of the power supply, the trigger of the Read function of the spectrophotometer and the automatic operation of the autosampler was performed by software written in "TurboBasic". The system was evaluated by comparison of the repeatability of peak-height absorbances obtained in the atomization of lead by consecutive 1...

  18. Efficient atom localization via probe absorption in an inverted-Y atomic system

    Science.gov (United States)

    Wu, Jianchun; Wu, Bo; Mao, Jiejian

    2018-06-01

    The behaviour of atom localization in an inverted-Y atomic system is theoretically investigated. For the atoms interacting with a weak probe field and several orthogonal standing-wave fields, their position information can be obtained by measuring the probe absorption. Compared with the traditional scheme, we couple the probe field to the transition between the middle and top levels. It is found that the probe absorption sensitively depends on the detuning and strength of the relevant light fields. Remarkably, the atom can be localized at a particular position in the standing-wave fields by coupling a microwave field to the transition between the two ground levels.

  19. PREVIMER : Meteorological inputs and outputs

    Science.gov (United States)

    Ravenel, H.; Lecornu, F.; Kerléguer, L.

    2009-09-01

    PREVIMER is a pre-operational system aiming to provide a wide range of users, from private individuals to professionals, with short-term forecasts about the coastal environment along the French coastlines bordering the English Channel, the Atlantic Ocean, and the Mediterranean Sea. Observation data and digital modelling tools first provide 48-hour (probably 96-hour by summer 2009) forecasts of sea states, currents, sea water levels and temperatures. The follow-up of an increasing number of biological parameters will, in time, complete this overview of coastal environment. Working in partnership with the French Naval Hydrographic and Oceanographic Service (Service Hydrographique et Océanographique de la Marine, SHOM), the French National Weather Service (Météo-France), the French public science and technology research institute (Institut de Recherche pour le Développement, IRD), the European Institute of Marine Studies (Institut Universitaire Européen de la Mer, IUEM) and many others, IFREMER (the French public institute fo marine research) is supplying the technologies needed to ensure this pertinent information, available daily on Internet at http://www.previmer.org, and stored at the Operational Coastal Oceanographic Data Centre. Since 2006, PREVIMER publishes the results of demonstrators assigned to limited geographic areas and to specific applications. This system remains experimental. The following topics are covered : Hydrodynamic circulation, sea states, follow-up of passive tracers, conservative or non-conservative (specifically of microbiological origin), biogeochemical state, primary production. Lastly, PREVIMER provides researchers and R&D departments with modelling tools and access to the database, in which the observation data and the modelling results are stored, to undertake environmental studies on new sites. The communication will focus on meteorological inputs to and outputs from PREVIMER. It will draw the lessons from almost 3 years during

  20. The 'icon' of output efficiency

    International Nuclear Information System (INIS)

    Bligh, L.N.; Evans, S.G.; Larcos, G.; Gruenewald, S.M.

    1999-01-01

    Full text: Output efficiency (OE) is a well-validated parameter used in the assessment of hydronephrosis. Current analysis on Microdelta appears to produce few low OE values and occasional inability to produce a result. We sought an OE program which gave a reliable response over the full range of values. The aims of this study were to determine: (1) whether OE results are comparable between two computer systems; (2) a normal range for OE on an ICON; (3) inter-observer reproducibility; and (4) the correlation between the two programs and the residual cortical activity ratio (RCA), an index which assesses tracer washout from the 20 min cortical activity/peak cortical activity. Accordingly, two blinded medical radiation scientists reviewed 41 kidneys (26 native, 15 transplant) and calculated OE for each kidney on the ICON and Microdelta computers The OE on the Microdelta and the ICON had good correspondence (r = 0.6%, SEE = 6.2). The extrapolated normal range for ICON OE was 69-92% (mean 80.9%). The inter-observer reproducibility on the ICON was excellent with a CV of 8.7%. ICON OE and RCA had a strong correlation (r = - 0.77, SEE = 0.09), compared with a weaker correlation for the Microdelta (r = 0.47, SEE = 0.13). Processing on the ICON was almost half that of the Microdelta at 4 min compared with 7 min. We conclude that OE generated by these computer programs has good correlation, an established normal range, excellent interobserver reproducibility, but differing correlation with RCA. The response of the ICON program to low ranges of OE is being investigated further