WorldWideScience

Sample records for ori binding activities

  1. The N-terminus of porcine circovirus type 2 replication protein is required for nuclear localization and ori binding activities

    International Nuclear Information System (INIS)

    Lin, W.-L.; Chien, M.-S.; Du, Y.-W.; Wu, P.-C.; Huang Chienjin

    2009-01-01

    Porcine circovirus type 2 possesses a circular, single-stranded DNA genome that requires the replication protein (Rep) for virus replication. To characterize the DNA binding potential and the significant region that confers the nuclear localization of the Rep protein, the defined coding regions of rep gene were cloned and expressed. All of the recombinant proteins except for the N-terminal 110 residues deletion mutant could bind to the double-stranded minimal binding site of replication origin (ori). In addition, the N-terminal deletion mutant lacking 110 residues exhibited mainly cytoplasmic staining in the transfected cells in contrast to the others, which localized dominantly in the nucleus, suggesting that this N-terminal domain is essential for nuclear localization. Furthermore, a series of green fluorescence proteins (GFP) containing potential nuclear localization signal (NLS) sequences were tested for their cellular distribution. The ability of the utmost 20 residues of the N-terminal region to target the GFP to the nucleus confirmed its role as a functional NLS.

  2. The lytic origin of herpesvirus papio is highly homologous to Epstein-Barr virus ori-Lyt: evolutionary conservation of transcriptional activation and replication signals.

    Science.gov (United States)

    Ryon, J J; Fixman, E D; Houchens, C; Zong, J; Lieberman, P M; Chang, Y N; Hayward, G S; Hayward, S D

    1993-01-01

    Herpesvirus papio (HVP) is a B-lymphotropic baboon virus with an estimated 40% homology to Epstein-Barr virus (EBV). We have cloned and sequenced ori-Lyt of herpesvirus papio and found a striking degree of nucleotide homology (89%) with ori-Lyt of EBV. Transcriptional elements form an integral part of EBV ori-Lyt. The promoter and enhancer domains of EBV ori-Lyt are conserved in herpesvirus papio. The EBV ori-Lyt promoter contains four binding sites for the EBV lytic cycle transactivator Zta, and the enhancer includes one Zta and two Rta response elements. All five of the Zta response elements and one of the Rta motifs are conserved in HVP ori-Lyt, and the HVP DS-L leftward promoter and the enhancer were activated in transient transfection assays by the EBV Zta and Rta transactivators. The EBV ori-Lyt enhancer contains a palindromic sequence, GGTCAGCTGACC, centered on a PvuII restriction site. This sequence, with a single base change, is also present in the HVP ori-Lyt enhancer. DNase I footprinting demonstrated that the PvuII sequence was bound by a protein present in a Raji nuclear extract. Mobility shift and competition assays using oligonucleotide probes identified this sequence as a binding site for the cellular transcription factor MLTF. Mutagenesis of the binding site indicated that MLTF contributes significantly to the constitutive activity of the ori-Lyt enhancer. The high degree of conservation of cis-acting signal sequences in HVP ori-Lyt was further emphasized by the finding that an HVP ori-Lyt-containing plasmid was replicated in Vero cells by a set of cotransfected EBV replication genes. The central domain of EBV ori-Lyt contains two related AT-rich palindromes, one of which is partially duplicated in the HVP sequence. The AT-rich palindromes are functionally important cis-acting motifs. Deletion of these palindromes severely diminished replication of an ori-Lyt target plasmid. Images PMID:8389916

  3. A chimeric protein composed of NuMA fused to the DNA binding domain of LANA is sufficient for the ori-P-dependent DNA replication

    International Nuclear Information System (INIS)

    Ohsaki, Eriko; Ueda, Keiji

    2017-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) genome is stably maintained in KSHV-infected PEL cell lines during cell division. We previously showed that accumulation of LANA in the nuclear matrix fraction could be important for the latent DNA replication, and that the functional significance of LANA should be its recruitment of ori-P to the nuclear matrix. Here, we investigated whether the forced localization of the LANA-DNA binding domain (DBD) to the nuclear matrix facilitated ori-P-containing plasmid replication. We demonstrated that chimeric proteins constructed by fusion of LANA DBD with the nuclear mitotic apparatus protein (NuMA), which is one of the components of the nuclear matrix, could bind with ori-P and enhance replication of an ori-P-containing plasmid, compared with that in the presence of DBD alone. These results further suggested that the ori-P recruitment to the nuclear matrix through the binding with DBD is important for latent viral DNA replication. - Highlights: •KSHV replication in latency depends on LANA localization to the nuclear matrix. •LANA DBD was fused with NuMA, a nuclear matrix protein, at the N- and C-terminus. •NuMA-DBD was in the nuclear matrix and supported the ori-P dependent replication. •LANA in the nuclear matrix should be important for the KSHV replication in latency.

  4. A chimeric protein composed of NuMA fused to the DNA binding domain of LANA is sufficient for the ori-P-dependent DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Ohsaki, Eriko; Ueda, Keiji, E-mail: kueda@virus.med.osaka-u.ac.jp

    2017-01-15

    The Kaposi's sarcoma-associated herpesvirus (KSHV) genome is stably maintained in KSHV-infected PEL cell lines during cell division. We previously showed that accumulation of LANA in the nuclear matrix fraction could be important for the latent DNA replication, and that the functional significance of LANA should be its recruitment of ori-P to the nuclear matrix. Here, we investigated whether the forced localization of the LANA-DNA binding domain (DBD) to the nuclear matrix facilitated ori-P-containing plasmid replication. We demonstrated that chimeric proteins constructed by fusion of LANA DBD with the nuclear mitotic apparatus protein (NuMA), which is one of the components of the nuclear matrix, could bind with ori-P and enhance replication of an ori-P-containing plasmid, compared with that in the presence of DBD alone. These results further suggested that the ori-P recruitment to the nuclear matrix through the binding with DBD is important for latent viral DNA replication. - Highlights: •KSHV replication in latency depends on LANA localization to the nuclear matrix. •LANA DBD was fused with NuMA, a nuclear matrix protein, at the N- and C-terminus. •NuMA-DBD was in the nuclear matrix and supported the ori-P dependent replication. •LANA in the nuclear matrix should be important for the KSHV replication in latency.

  5. Provider, father, and bro--Sedentary Māori men and their thoughts on physical activity.

    Science.gov (United States)

    Warbrick, Isaac; Wilson, Denise; Boulton, Amohia

    2016-02-04

    ori (indigenous peoples of New Zealand) men have a disproportionate prevalence of lifestyle-related illnesses and are targeted for national physical activity initiatives. While physical activity impacts on physical and mental health and overall wellbeing, current approaches to health promotion often lack cultural relevance. Having better understanding and incorporating relevant cultural values and motivators into program designs could improve the success of health initiatives for indigenous and minority men. Nevertheless, little is known about Māori men's preferences, attitudes, or perspectives about physical activity, which are often interpreted through a colonized or dominant Western lens. Understanding perspectives of those groups whose values do not align with dominant cultural approaches will better equip health promoters and trainers to develop relevant community initiatives and private programs for indigenous and minority men. An indigenous research approach informed a qualitative study with 18 sedentary, 'overweight' Māori men aged 28 to 72 years. From 2014 to 2015 these men participated in three focus group discussions aimed at understanding their views about physical activity and exercise. Data were thematically analysed and interpeted using a Māori worldview. Four key themes were identified - Cameraderie and 'Bro-ship'; Adulthood Distractions and Priorities; Problems with Contemporary Gym Culture; and Provider Orientation. Key motivators for physical activity included a sense of 'brotherhood' in sport and physical activity and accountability to others. Participants reported the need to highlight the value of people and relationships, and having an orientation to the collective to enhance physical activity experiences for Māori men in general. Modern lifestyle distractions (such as being time deficient, and family responsibilities) along with other priorities contributed to difficulties incorporating physical activity into their daily lives. In

  6. A protein that binds to the P1 origin core and the oriC 13mer region in a methylation-specific fashion is the product of the host seqA gene.

    Science.gov (United States)

    Brendler, T; Abeles, A; Austin, S

    1995-08-15

    The P1 plasmid replication origin P1oriR is controlled by methylation of four GATC adenine methylation sites within heptamer repeats. A comparable (13mer) region is present in the host origin, oriC. The two origins show comparable responses to methylation; negative control by recognition of hemimethylated DNA (sequestration) and a positive requirement for methylation for efficient function. We have isolated a host protein that recognizes the P1 origin region only when it is isolated from a strain proficient for adenine methylation. The substantially purified 22 kDa protein also binds to the 13mer region of oriC in a methylation-specific fashion. It proved to be the product of the seqA gene that acts in the negative control of oriC by sequestration. We conclude that the role of the SeqA protein in sequestration is to recognize the methylation state of P1oriR and oriC by direct DNA binding. Using synthetic substrates we show that SeqA binds exclusively to the hemimethylated forms of these origins forms that are the immediate products of replication in a methylation-proficient strain. We also show that the protein can recognize sequences with multiple GATC sites, irrespective of the surrounding sequence. The basis for origin specificity is primarily the persistence of hemimethylated forms that are over-represented in the natural. DNA preparations relative to controls.

  7. Multiple 5' ends of human cytomegalovirus UL57 transcripts identify a complex, cycloheximide-resistant promoter region that activates oriLyt

    International Nuclear Information System (INIS)

    Kiehl, Anita; Huang, Lili; Franchi, David; Anders, David G.

    2003-01-01

    The human cytomegalovirus (HCMV) UL57 gene lies adjacent to HCMV oriLyt, from which it is separated by an organizationally conserved, mostly noncoding region that is thought to both regulate UL57 expression and activate oriLyt function. However, the UL57 promoter has not been studied. We determined the 5' ends of UL57 transcripts toward an understanding of the potential relationship between UL57 expression and oriLyt activation. The results presented here identified three distinct 5' ends spread over 800 bp, at nt 90302, 90530, and 91138; use of these sites exhibited differential sensitivity to phosphonoformic acid treatment. Interestingly, a 10-kb UL57 transcript accumulated in cycloheximide-treated infected cells, even though other early transcripts were not detectable. However, the 10-kb transcript did not accumulate in cells treated with the more stringent translation inhibitor anisomycin. Consistent with the notion that the identified 5' ends arise from distinct transcription start sites, the sequences upstream of sites I and II functioned as promoters responsive to HCMV infection in transient assays. However, the origin-proximal promoter region III required downstream sequences for transcriptional activity. Mutation of candidate core promoter elements suggested that promoter III is regulated by an initiator region (Inr) and a downstream promoter element. Finally, a 42-bp sequence containing the candidate Inr activated a minimal oriLyt core construct in transient replication assays. Thus, these studies showed that a large, complex promoter region with novel features controls UL57 expression, and identified a sequence that regulates both UL57 transcription and oriLyt activation

  8. Population-Specific Resequencing Associates the ATP-Binding Cassette Subfamily C Member 4 Gene With Gout in New Zealand Māori and Pacific Men.

    Science.gov (United States)

    Tanner, Callum; Boocock, James; Stahl, Eli A; Dobbyn, Amanda; Mandal, Asim K; Cadzow, Murray; Phipps-Green, Amanda J; Topless, Ruth K; Hindmarsh, Jennie Harré; Stamp, Lisa K; Dalbeth, Nicola; Choi, Hyon K; Mount, David B; Merriman, Tony R

    2017-07-01

    There is no evidence for a genetic association between organic anion transporters 1-3 (SLC22A6, SLC22A7, and SLC22A8) and multidrug resistance protein 4 (MRP4; encoded by ABCC4) with the levels of serum urate or gout. The Māori and Pacific (Polynesian) population of New Zealand has the highest prevalence of gout worldwide. The aim of this study was to determine whether any Polynesian population-specific genetic variants in SLC22A6-8 and ABCC4 are associated with gout. All participants had ≥3 self-reported Māori and/or Pacific grandparents. Among the total sample set of 1,808 participants, 191 hyperuricemic and 202 normouricemic individuals were resequenced over the 4 genes, and the remaining 1,415 individuals were used for replication. Regression analyses were performed, adjusting for age, sex, and Polynesian ancestry. To study the functional effect of nonsynonymous variants of ABCC4, transport assays were performed in Xenopus laevis oocytes. A total of 39 common variants were detected, with an ABCC4 variant (rs4148500) significantly associated with hyperuricemia and gout. This variant was monomorphic for the urate-lowering allele in Europeans. There was evidence for an association of rs4148500 with gout in the resequenced samples (odds ratio [OR] 1.62 [P = 0.012]) that was replicated (OR 1.25 [P = 0.033]) and restricted to men (OR 1.43 [P = 0.001] versus OR 0.98 [P = 0.89] in women). The gout risk allele was associated with fractional excretion of uric acid in male individuals (β = -0.570 [P = 0.01]). A rare population-specific allele (P1036L) with predicted strong functional consequence reduced the uric acid transport activity of ABCC4 by 30%. An association between ABCC4 and gout and fractional excretion of uric acid is consistent with the established role of MRP4 as a unidirectional renal uric acid efflux pump. © 2017, American College of Rheumatology.

  9. Archives: ORiON

    African Journals Online (AJOL)

    Items 1 - 27 of 27 ... Archives: ORiON. Journal Home > Archives: ORiON. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 27 of 27 Items. 2017. Vol 33, No 2 (2017) · Vol 33, No 1 ...

  10. Role for a region of helically unstable DNA within the Epstein-Barr virus latent cycle origin of DNA replication oriP in origin function

    International Nuclear Information System (INIS)

    Polonskaya, Zhanna; Benham, Craig J.; Hearing, Janet

    2004-01-01

    The minimal replicator of the Epstein-Barr virus (EBV) latent cycle origin of DNA replication oriP is composed of two binding sites for the Epstein-Barr virus nuclear antigen-1 (EBNA-1) and flanking inverted repeats that bind the telomere repeat binding factor TRF2. Although not required for minimal replicator activity, additional binding sites for EBNA-1 and TRF2 and one or more auxiliary elements located to the right of the EBNA-1/TRF2 sites are required for the efficient replication of oriP plasmids. Another region of oriP that is predicted to be destabilized by DNA supercoiling is shown here to be an important functional component of oriP. The ability of DNA fragments of unrelated sequence and possessing supercoiled-induced DNA duplex destabilized (SIDD) structures, but not fragments characterized by helically stable DNA, to substitute for this component of oriP demonstrates a role for the SIDD region in the initiation of oriP-plasmid DNA replication

  11. Elements in the transcriptional regulatory region flanking herpes simplex virus type 1 oriS stimulate origin function.

    Science.gov (United States)

    Wong, S W; Schaffer, P A

    1991-05-01

    Like other DNA-containing viruses, the three origins of herpes simplex virus type 1 (HSV-1) DNA replication are flanked by sequences containing transcriptional regulatory elements. In a transient plasmid replication assay, deletion of sequences comprising the transcriptional regulatory elements of ICP4 and ICP22/47, which flank oriS, resulted in a greater than 80-fold decrease in origin function compared with a plasmid, pOS-822, which retains these sequences. In an effort to identify specific cis-acting elements responsible for this effect, we conducted systematic deletion analysis of the flanking region with plasmid pOS-822 and tested the resulting mutant plasmids for origin function. Stimulation by cis-acting elements was shown to be both distance and orientation dependent, as changes in either parameter resulted in a decrease in oriS function. Additional evidence for the stimulatory effect of flanking sequences on origin function was demonstrated by replacement of these sequences with the cytomegalovirus immediate-early promoter, resulting in nearly wild-type levels of oriS function. In competition experiments, cotransfection of cells with the test plasmid, pOS-822, and increasing molar concentrations of a competitor plasmid which contained the ICP4 and ICP22/47 transcriptional regulatory regions but lacked core origin sequences resulted in a significant reduction in the replication efficiency of pOS-822, demonstrating that factors which bind specifically to the oriS-flanking sequences are likely involved as auxiliary proteins in oriS function. Together, these studies demonstrate that trans-acting factors and the sites to which they bind play a critical role in the efficiency of HSV-1 DNA replication from oriS in transient-replication assays.

  12. ORiON

    African Journals Online (AJOL)

    ORSSA) and is published biannually. Papers in the following categories are typically published in ORiON: • Development of New Theory, which may be useful to Operations Research practitioners, or which may lead to the introduction of new ...

  13. Varicella-zoster virus (VZV) origin of DNA replication oriS influences origin-dependent DNA replication and flanking gene transcription.

    Science.gov (United States)

    Khalil, Mohamed I; Sommer, Marvin H; Hay, John; Ruyechan, William T; Arvin, Ann M

    2015-07-01

    The VZV genome has two origins of DNA replication (oriS), each of which consists of an AT-rich sequence and three origin binding protein (OBP) sites called Box A, C and B. In these experiments, the mutation in the core sequence CGC of the Box A and C not only inhibited DNA replication but also inhibited both ORF62 and ORF63 expression in reporter gene assays. In contrast the Box B mutation did not influence DNA replication or flanking gene transcription. These results suggest that efficient DNA replication enhances ORF62 and ORF63 transcription. Recombinant viruses carrying these mutations in both sites and one with a deletion of the whole oriS were constructed. Surprisingly, the recombinant virus lacking both copies of oriS retained the capacity to replicate in melanoma and HELF cells suggesting that VZV has another origin of DNA replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. ORiON: Journal Sponsorship

    African Journals Online (AJOL)

    ORiON: Journal Sponsorship. Journal Home > About the Journal > ORiON: Journal Sponsorship. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. Publisher. ORSSA. Sponsors.

  15. Multiple DNA binding proteins contribute to timing of chromosome replication in E. coli

    DEFF Research Database (Denmark)

    Riber, Leise; Frimodt-Møller, Jakob; Charbon, Godefroid

    2016-01-01

    Chromosome replication in Escherichia coli is initiated from a single origin, oriC. Initiation involves a number of DNA binding proteins, but only DnaA is essential and specific for the initiation process. DnaA is an AAA+ protein that binds both ATP and ADP with similar high affinities. Dna...... replication is initiated, or the time window in which all origins present in a single cell are initiated, i.e. initiation synchrony, or both. Overall, these DNA binding proteins modulate the initiation frequency from oriC by: (i) binding directly to oriC to affect DnaA binding, (ii) altering the DNA topology...... in or around oriC, (iii) altering the nucleotide bound status of DnaA by interacting with non-coding chromosomal sequences, distant from oriC, that are important for DnaA activity. Thus, although DnaA is the key protein for initiation of replication, other DNA-binding proteins act not only on ori...

  16. ORiON: Site Map

    African Journals Online (AJOL)

    Journal Home · Journals · ORiON · About · Log In · Register · Advanced Search · By Author · By Title. Issues. Current Issue · Archives · Open Journal Systems · Help. ISSN: 0529-191-X. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's ...

  17. Identification of the srtC1 Transcription Start Site and Catalytically Essential Residues Required for Actinomyces oris T14V SrtC1 Activity

    Science.gov (United States)

    2011-07-27

    report the identification of the tran scription starting site of the srtC1 determined by rapid amplification of cDNA ends (RACE) method and several...When needed, kanamycin and trimethoprim were included in growth media at concentra tions of 50 and 100mg mL1, respectively. RNA isolation and...tation, resuspended in a small volume of RNase free water and stored at 80 1C. To determine the transcription start site(s) of A. oris srtC1, 50RACE PCR

  18. Exercise to Support Indigenous Pregnant Women to Stop Smoking: Acceptability to Māori.

    Science.gov (United States)

    Roberts, Vaughan; Glover, Marewa; McCowan, Lesley; Walker, Natalie; Ussher, Michael; Heke, Ihirangi; Maddison, Ralph

    2017-11-01

    Objectives Smoking during pregnancy is harmful for the woman and the unborn child, and the harms raise risks for the child going forward. Indigenous women often have higher rates of smoking prevalence than non-indigenous. Exercise has been proposed as a strategy to help pregnant smokers to quit. Māori (New Zealand Indigenous) women have high rates of physical activity suggesting that an exercise programme to aid quitting could be an attractive initiative. This study explored attitudes towards an exercise programme to aid smoking cessation for Māori pregnant women. Methods Focus groups with Māori pregnant women, and key stakeholder interviews were conducted. Results Overall, participants were supportive of the idea of a physical activity programme for pregnant Māori smokers to aid smoking cessation. The principal, over-arching finding, consistent across all participants, was the critical need for a Kaupapa Māori approach (designed and run by Māori, for Māori people) for successful programme delivery, whereby Māori cultural values are respected and infused throughout all aspects of the programme. A number of practical and environmental barriers to attendance were raised including: cost, the timing of the programme, accessibility, transport, and childcare considerations. Conclusions A feasibility study is needed to design an intervention following the suggestions presented in this paper with effort given to minimising the negative impact of barriers to attendance.

  19. Understanding mercury binding on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Padak, B.; Wilcox, J. [Stanford University, Stanford, CA (United States)

    2009-10-15

    Understanding the mechanism by which mercury adsorbs on activated carbon is crucial to the design and fabrication of effective capture technologies. In this study, the possible binding mechanism of mercury (Hg) and its species, i.e., HgCl and HgCl{sub 2} on activated carbon is investigated using ab initio-based energetic calculations. The activated carbon surface is modeled by a single graphene layer in which the edge atoms on the upper side are unsaturated in order to simulate the active sites. in some cases, chlorine atoms are placed at the edge sites to examine the effect of chlorine on the binding of Hg, HgCl and HgCl{sub 2}. It has been concluded that both HgCl and HgCl{sub 2} can be adsorbed dissociatively or non-dissociatively. In the case of dissociative adsorption, it is energetically favorable for atomic Hg to desorb and energetically favorable for it to remain on the surface in the Hg{sup 1+} state, HgCl. The Hg{sup 2+}, oxidized compound, HgCl2 was not found to be stable on the surface. The most probable mercury species on the surface was found to be HgCl.

  20. The multi-dimensional model of Māori identity and cultural engagement: item response theory analysis of scale properties.

    Science.gov (United States)

    Sibley, Chris G; Houkamau, Carla A

    2013-01-01

    We argue that there is a need for culture-specific measures of identity that delineate the factors that most make sense for specific cultural groups. One such measure, recently developed specifically for Māori peoples, is the Multi-Dimensional Model of Māori Identity and Cultural Engagement (MMM-ICE). Māori are the indigenous peoples of New Zealand. The MMM-ICE is a 6-factor measure that assesses the following aspects of identity and cultural engagement as Māori: (a) group membership evaluation, (b) socio-political consciousness, (c) cultural efficacy and active identity engagement, (d) spirituality, (e) interdependent self-concept, and (f) authenticity beliefs. This article examines the scale properties of the MMM-ICE using item response theory (IRT) analysis in a sample of 492 Māori. The MMM-ICE subscales showed reasonably even levels of measurement precision across the latent trait range. Analysis of age (cohort) effects further indicated that most aspects of Māori identification tended to be higher among older Māori, and these cohort effects were similar for both men and women. This study provides novel support for the reliability and measurement precision of the MMM-ICE. The study also provides a first step in exploring change and stability in Māori identity across the life span. A copy of the scale, along with recommendations for scale scoring, is included.

  1. DNA Mismatch Binding and Antiproliferative Activity of Rhodium Metalloinsertors

    Science.gov (United States)

    Ernst, Russell J.; Song, Hang; Barton, Jacqueline K.

    2009-01-01

    Deficiencies in mismatch repair (MMR) are associated with carcinogenesis. Rhodium metalloinsertors bind to DNA base mismatches with high specificity and inhibit cellular proliferation preferentially in MMR-deficient cells versus MMR-proficient cells. A family of chrysenequinone diimine complexes of rhodium with varying ancillary ligands that serve as DNA metalloinsertors has been synthesized, and both DNA mismatch binding affinities and antiproliferative activities against the human colorectal carcinoma cell lines HCT116N and HCT116O, an isogenic model system for MMR deficiency, have been determined. DNA photocleavage experiments reveal that all complexes bind to the mismatch sites with high specificities; DNA binding affinities to oligonucleotides containing single base CA and CC mismatches, obtained through photocleavage titration or competition, vary from 104 to 108 M−1 for the series of complexes. Significantly, binding affinities are found to be inversely related to ancillary ligand size and directly related to differential inhibition of the HCT116 cell lines. The observed trend in binding affinity is consistent with the metalloinsertion mode where the complex binds from the minor groove with ejection of mismatched base pairs. The correlation between binding affinity and targeting of the MMR-deficient cell line suggests that rhodium metalloinsertors exert their selective biological effects on MMR-deficient cells through mismatch binding in vivo. PMID:19175313

  2. Flavonoids with M1 Muscarinic Acetylcholine Receptor Binding Activity

    Directory of Open Access Journals (Sweden)

    Meyyammai Swaminathan

    2014-06-01

    Full Text Available Muscarinic acetylcholine receptor-active compounds have potential for the treatment of Alzheimer’s disease. In this study, a series of natural and synthetic flavones and flavonols was assayed in vitro for their ability to inhibit radioligand binding at human cloned M1 muscarinic receptors. Several compounds were found to possess competitive binding affinity (Ki = 40–110 µM, comparable to that of acetylcholine (Ki = 59 µM. Despite the fact that these compounds lack a positively-charged ammonium group under physiological conditions, molecular modelling studies suggested that they bind to the orthosteric site of the receptor, mainly through non-polar interactions.

  3. Increased serum cortisol binding in chronic active hepatitis

    International Nuclear Information System (INIS)

    Orbach, O.; Schussler, G.C.

    1989-01-01

    A high serum cortisol concentration, apparently due to increased cortisol-binding globulin (CBG), was found in a patient (index case) with chronic active hepatitis (CAH). We therefore performed further studies to determine whether increased cortisol binding is generally associated with CAH. Serum samples were obtained from 15 hospitalized patients with long-term liver function test elevations but no evidence of cirrhosis, 15 normal subjects without a history of hepatitis, four healthy pregnant women, and 10 alcoholic patients with stigmata of cirrhosis. Serum cortisol binding was measured by an adaptation of a previously described charcoal uptake method. Thyroxine-binding globulin (TBG) and sex hormone-binding globulin were determined by radioimmunoassays. Charcoal uptake of 125I cortisol from sera of normal subjects and additional patients with CAH revealed that increased serum cortisol binding by a saturable site, presumably CBG, was associated with CAH. Cortisol binding was significantly correlated with immunoassayable TBG, suggesting that in CAH, similar mechanisms may be responsible for increasing the serum concentrations of CBG and TBG

  4. Eel calcitonin binding site distribution and antinociceptive activity in rats

    International Nuclear Information System (INIS)

    Guidobono, F.; Netti, C.; Sibilia, V.; Villa, I.; Zamboni, A.; Pecile, A.

    1986-01-01

    The distribution of binding site for [ 125 I]-eel-calcitonin (ECT) to rat central nervous system, studied by an autoradiographic technique, showed concentrations of binding in the diencephalon, the brain stem and the spinal cord. Large accumulations of grains were seen in the hypothalamus, the amygdala, in the fasciculus medialis prosencephali, in the fasciculus longitudinalis medialis, in the ventrolateral part of the periventricular gray matter, in the lemniscus medialis and in the raphe nuclei. The density of grains in the reticular formation and in the nucleus tractus spinalis nervi trigemini was more moderate. In the spinal cord, grains were scattered throughout the dorsal horns. Binding of the ligand was displaced equally by cold ECT and by salmon CT(sCT), indicating that both peptides bind to the same receptors. Human CT was much weaker than sCT in displacing [ 125 I]-ECT binding. The administration of ECT into the brain ventricles of rats dose-dependently induced a significant and long-lasting enhancement of hot-plate latencies comparable with that obtained with sCT. The antinociceptive activity induced by ECT is compatible with the topographical distribution of binding sites for the peptide and is a further indication that fish CTs are active in the mammalian brain

  5. Decorin binds myostatin and modulates its activity to muscle cells

    International Nuclear Information System (INIS)

    Miura, Takayuki; Kishioka, Yasuhiro; Wakamatsu, Jun-ichi; Hattori, Akihito; Hennebry, Alex; Berry, Carole J.; Sharma, Mridula; Kambadur, Ravi; Nishimura, Takanori

    2006-01-01

    Myostatin, a member of TGF-β superfamily of growth factors, acts as a negative regulator of skeletal muscle mass. The mechanism whereby myostatin controls the proliferation and differentiation of myogenic cells is mostly clarified. However, the regulation of myostatin activity to myogenic cells after its secretion in the extracellular matrix (ECM) is still unknown. Decorin, a small leucine-rich proteoglycan, binds TGF-β and regulates its activity in the ECM. Thus, we hypothesized that decorin could also bind to myostatin and participate in modulation of its activity to myogenic cells. In order to test the hypothesis, we investigated the interaction between myostatin and decorin by surface plasmon assay. Decorin interacted with mature myostatin in the presence of concentrations of Zn 2+ greater than 10 μM, but not in the absence of Zn 2+ . Kinetic analysis with a 1:1 binding model resulted in dissociation constants (K D ) of 2.02 x 10 -8 M and 9.36 x 10 -9 M for decorin and the core protein of decorin, respectively. Removal of the glycosaminoglycan chain by chondroitinase ABC digestion did not affect binding, suggesting that decorin could bind to myostatin with its core protein. Furthermore, we demonstrated that immobilized decorin could rescue the inhibitory effect of myostatin on myoblast proliferation in vitro. These results suggest that decorin could trap myostatin and modulate its activity to myogenic cells in the ECM

  6. Determinants Of Ori001 Type Government Bond

    OpenAIRE

    Yulius, Yosandi

    2011-01-01

    The need to build a strong bond market is amenable, especially after the 1997 crises. This paper analyzes the influence of deposit interest rate, foreign exchange rates, and Composite Stock Price Index on yield-to-maturity of Bond Series Retail ORI001, employing monthly data from Bloomberg information service, 2006(8) to 2008(12), using Generalized Autoregressive Conditional Heteroscedasticity type models. It finds the evidence that deposit interest rate and exchange rate have positive signif...

  7. Congenital Unilateral Hypoplasia of Depressor Anguli Oris

    Directory of Open Access Journals (Sweden)

    Seckin O. Ulualp

    2012-01-01

    Full Text Available Objectives. Asymmetric facial appearance may originate from abnormalities of facial musculature or facial innervation. We describe clinical features of congenital hypoplasia of depressor anguli oris muscle in a child. Material and Methods. Chart of a 10-month-old female referred to a tertiary care pediatric hospital for assessment of facial paralysis was reviewed. Data included relevant history and physical examination, diagnostic work up, and management. Results. The child presented with asymmetric movement of lower lip since birth. Asymmetry of lower lip was more pronounced when she smiled and cried. Rest of the face movement was symmetric. On examination, the face appeared symmetric at rest. The child had inward deviation of right lower lip when she smiled. Facial nerve function, as determined by frowning/forehead, wrinkling, eye closure, nasolabial fold depth, and tearing, was symmetric. Magnetic resonance imaging of the temporal bones and internal auditory canals were within normal limits. Echocardiogram did not show cardiac abnormality. Auditory brainstem response showed no abnormality. Conclusions. Congenital hypoplasia of depressor anguli oris is a rare anomaly that causes asymmetric crying face. Pediatricians and otolaryngologists need to be cognizant of cardiac, head and neck, and central nervous system anomalies associated with congenital unilateral hypoplasia of depressor anguli oris.

  8. Mapping EBNA-1 Domains Involved in Binding to Metaphase Chromosomes

    Science.gov (United States)

    Marechal, Vincent; Dehee, Axelle; Chikhi-Brachet, Roxane; Piolot, Tristan; Coppey-Moisan, Maité; Nicolas, Jean-Claude

    1999-01-01

    The Epstein-Barr virus (EBV) genome can persist in dividing human B cells as multicopy circular episomes. Viral episomes replicate in synchrony with host cell DNA and are maintained at a relatively constant copy number for a long time. Only two viral elements, the replication origin OriP and the EBNA-1 protein, are required for the persistence of viral genomes during latency. EBNA-1 activates OriP during the S phase and may also contribute to the partition and/or retention of viral genomes during mitosis. Indeed, EBNA-1 has been shown to interact with mitotic chromatin. Moreover, viral genomes are noncovalently associated with metaphase chromosomes. This suggests that EBNA-1 may facilitate the anchorage of viral genomes on cellular chromosomes, thus ensuring proper partition and retention. In the present paper, we have investigated the chromosome-binding activity of EBV EBNA-1, herpesvirus papio (HVP) EBNA-1, and various derivatives of EBV EBNA-1, fused to a variant of the green fluorescent protein. The results show that binding to metaphase chromosomes is a common property of EBV and HVP EBNA-1. Further studies indicated that at least three independent domains (CBS-1, -2, and -3) mediate EBNA-1 binding to metaphase chromosomes. In agreement with the anchorage model, two of these domains mapped to a region that has been previously demonstrated to be required for the long-term persistence of OriP-containing plasmids. PMID:10196336

  9. Identification of oriT and a recombination hot spot in the IncA/C plasmid backbone.

    Science.gov (United States)

    Hegyi, Anna; Szabó, Mónika; Olasz, Ferenc; Kiss, János

    2017-09-06

    Dissemination of multiresistance has been accelerating among pathogenic bacteria in recent decades. The broad host-range conjugative plasmids of the IncA/C family are effective vehicles of resistance determinants in Gram-negative bacteria. Although more than 150 family members have been sequenced to date, their conjugation system and other functions encoded by the conserved plasmid backbone have been poorly characterized. The key cis-acting locus, the origin of transfer (oriT), has not yet been unambiguously identified. We present evidence that IncA/C plasmids have a single oriT locus immediately upstream of the mobI gene encoding an indispensable transfer factor. The fully active oriT spans ca. 150-bp AT-rich region overlapping the promoters of mobI and contains multiple inverted and direct repeats. Within this region, the core domain of oriT with reduced but detectable transfer activity was confined to a 70-bp segment containing two inverted repeats and one copy of a 14-bp direct repeat. In addition to oriT, a second locus consisting of a 14-bp imperfect inverted repeat was also identified, which mimicked the function of oriT but which was found to be a recombination site. Recombination between two identical copies of these sites is RecA-independent, requires a plasmid-encoded recombinase and resembles the functioning of dimer-resolution systems.

  10. Detergent activation of the binding protein in the folate radioassay

    International Nuclear Information System (INIS)

    Hansen, S.I.; Holm, J.; Lyngbye, J.

    1982-01-01

    A minor cow's whey protein associated with β-lactoglobulin is used as binding protein in the competitive radioassay for serum and erythrocyte folate. Seeking to optimize the assay, we tested the performance of binder solutions of increasing purity. The folate binding protein was isolated from cow's whey by means of CM-Sepharose CL-6B cation-exchange chromatography, and further purified on a methotrexate-AH-Sepharose 4B affinity matrix. In contrast to β-lactoglobulin, the purified protein did not bind folate unless the detergents cetyltrimethylammonium (10 mmol/Ll) or Triton X-100 (1 g/L) were present. Such detergent activation was not needed in the presence of serum. There seems to be a striking analogy between these phenomena and the well-known reactivation of certain purified membrane-derived enzymes by surfactants

  11. Abnormal prefrontal and parietal activity linked to deficient active binding in working memory in schizophrenia.

    Science.gov (United States)

    Grot, Stéphanie; Légaré, Virginie Petel; Lipp, Olivier; Soulières, Isabelle; Dolcos, Florin; Luck, David

    2017-10-01

    Working memory deficits have been widely reported in schizophrenia, and may result from inefficient binding processes. These processes, and their neural correlates, remain understudied in schizophrenia. Thus, we designed an FMRI study aimed at investigating the neural correlates of both passive and active binding in working memory in schizophrenia. Nineteen patients with schizophrenia and 23 matched controls were recruited to perform a working memory binding task, in which they were instructed to memorize three letters and three spatial locations. In the passive binding condition, letters and spatial locations were directly presented as bound. Conversely, in the active binding condition, words and spatial locations were presented as separated, and participants were instructed to intentionally create associations between them. Patients exhibited a similar performance to the controls for the passive binding condition, but a significantly lower performance for the active binding. FMRI analyses revealed that this active binding deficit was related to aberrant activity in the posterior parietal cortex and the ventrolateral prefrontal cortex. This study provides initial evidence of a specific deficit for actively binding information in schizophrenia, which is linked to dysfunctions in the neural networks underlying attention, manipulation of information, and encoding strategies. Together, our results suggest that all these dysfunctions may be targets for neuromodulation interventions known to improve cognitive deficits in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Voices of Māori Sex Workers

    OpenAIRE

    Escaravage, Elise

    2016-01-01

    Aotearoa (New Zealand) is the only country in the world to have decriminalized sex work. The Prostitution Reform Act (PRA henceforth) was enacted in 2003 with the aim to safeguard the human rights of sex workers, and create a framework that is conducive to public health. Skeptics of this policy argue that the law reform was targeting indoor workers while the livelihood of street-based sex workers did not see significant improvements (Justice Acts, 2014). It is known that Māori sex workers are...

  13. ori identity signatures: A latent profile analysis of the types of Māori identity.

    Science.gov (United States)

    Greaves, Lara M; Houkamau, Carla; Sibley, Chris G

    2015-10-01

    ori are the indigenous peoples of New Zealand. However, the term 'Māori' can refer to a wide range of people of varying ethnic compositions and cultural identity. We present a statistical model identifying 6 distinct types, or 'Māori Identity Signatures,' and estimate their proportion in the Māori population. The model is tested using a Latent Profile Analysis of a national probability sample of 686 Māori drawn from the New Zealand Attitudes and Values Study. We identify 6 distinct signatures: Traditional Essentialists (22.6%), Traditional Inclusives (16%), High Moderates (31.7%), Low Moderates (18.7%), Spiritually Orientated (4.1%), and Disassociated (6.9%). These distinct Identity Signatures predicted variation in deprivation, age, mixed-ethnic affiliation, and religion. This research presents the first formal statistical model assessing how people's identity as Māori is psychologically structured, documents the relative proportion of these different patterns of structures, and shows that these patterns reliably predict differences in core demographics. We identify a range of patterns of Māori identity far more diverse than has been previously proposed based on qualitative data, and also show that the majority of Māori fit a moderate or traditional identity pattern. The application of our model for studying Māori health and identity development is discussed. (c) 2015 APA, all rights reserved).

  14. Cupryphans, metal-binding, redox-active, redesigned conopeptides.

    Science.gov (United States)

    Barba, Marco; Sobolev, Anatoli P; Romeo, Cristina; Schininà, M Eugenia; Pietraforte, Donatella; Mannina, Luisa; Musci, Giovanni; Polticelli, Fabio

    2009-03-01

    Contryphans are bioactive peptides, isolated from the venom of marine snails of the genus Conus, which are characterized by the short length of the polypeptide chain and the high degree of unusual post-translational modifications. The cyclization of the polypeptide chain through a single disulphide bond, the presence of two conserved Pro residues, and the epimerization of a Trp/Leu residue confer to Contryphans a stable and well-defined structure in solution, conserved in all members of the family, and tolerant to multiple substitutions. The potential of Contryphans as scaffolds for the design of redox-active (macro)molecules was tested by engineering a copper-binding site on two different variants of the natural peptide Contryphan-Vn. The binding site was designed by computational modeling, and the redesigned peptides were synthesized and characterized by optical, fluorescence, electron spin resonance, and nuclear magnetic resonance spectroscopy. The novel peptides, named Cupryphan and Arg-Cupryphan, bind Cu(2+) ions with a 1:1 stoichiometry and a K(d) in the 100 nM range. Other divalent metals (e.g., Zn(2+) and Mg(2+)) are bound with much lower affinity. In addition, Cupryphans catalyze the dismutation of superoxide anions with an activity comparable to other nonpeptidic superoxide dismutase mimics. We conclude that the Contryphan motif represents a natural robust scaffold which can be engineered to perform different functions, providing additional means for the design of catalytically active mini metalloproteins.

  15. Mannan-binding lectin activates C3 and the

    DEFF Research Database (Denmark)

    Selander, B.; Martensson, U.; Weintraub, A.

    2006-01-01

    Lectin pathway activation of C3 is known to involve target recognition by mannan-binding lectin (MBL) or ficolins and generation of classical pathway C3 convertase via cleavage of C4 and C2 by MBL-associated serine protease 2 (MASP-2). We investigated C3 activation in C2-deficient human sera...... and in sera with other defined defects of complement to assess other mechanisms through which MBL might recruit complement. The capacity of serum to support C3 deposition was examined by ELISA using microtiter plates coated with O antigen-specific oligosaccharides derived from Salmonella typhimurium, S...

  16. Indigenous Māori perspectives on urban transport patterns linked to health and wellbeing.

    Science.gov (United States)

    Raerino Ngāti Awa Te Arawa, K; Macmillan, Alex K; Jones Ngāti Kahungunu, Rhys G

    2013-09-01

    There is a growing body of research linking urban transport systems to inequities in health. However, there is a lack of research providing evidence of the effect of transport systems on indigenous family wellbeing. We examined the connections between urban transport and the health and wellbeing of Māori, the indigenous people of New Zealand. We provide an indigenous exploration of current urban transport systems, with a particular focus on the impacts of car dependence and the need for culturally relevant travel. We interviewed nineteen Māori participants utilising qualitative research techniques underpinned by an indigenous research methodology (Kaupapa Māori). The data highlighted the importance of accessing cultural activities and sites relevant to 'being Māori', and issues with affordability and safety of public transport. Understanding the relationship between indigenous wellbeing and transport systems that goes further than limited discourses of inequity is essential to improving transport for indigenous wellbeing. Providing an indigenous voice in transport decision-making will make it more likely that indigenous health and wellbeing is prioritised in transport planning. Copyright © 2013. Published by Elsevier Ltd.

  17. An oral health intervention for the Māori indigenous population of New Zealand: oranga niho Māori (Māori oral health) as a component of the undergraduate dental curriculum in New Zealand.

    Science.gov (United States)

    Broughton, John

    2010-06-01

    ori are the Indigenous people of New Zealand having migrated across the Pacific from Hawaiki over a 500 year period from 800AD to 1300AD establishing a society based on whānau (family), hapū (subtribe) and iwi (tribe). Today, like other Indigenous populations throughout the world, New Zealand Māori do not enjoy the same oral health status as non-Māori across all age groups. An intervention strategy to improve Māori oral health and to reduce disparities is to develop a dental health workforce that has an understanding of contemporary Māori society and Māori oral health. The Faculty of Dentistry (Te Kaupeka Pūniho) of the University of Otago has a well developed undergraduate programme in Māori culture and Māori oral health. This programme has been reinforced by the adoption of a new Māori Strategic Framework (MSF) which has been designed to be "a vibrant contributor to Māori development and the realisation of Māori aspirations." Goal 5 of the MSF, Ngā Whakahaerenga Pai (Quality Programmes) has the objective to develop and integrate Māori content in the undergraduate course. This paper will discuss the oranga niho Māori (Māori oral health) component of the undergraduate dental curriculum.

  18. A radioreceptor assay for measurement of plasma glucocorticoid binding activity

    International Nuclear Information System (INIS)

    Fan Jie

    1990-01-01

    A radioreceptor assay (RRA) for plasma glucocorticoid binding activity (GCBA) has been developed using glucocorticoid receptor in rat thymocytes. Unlike other assays for natural and certain synthetic corticosteroids, RRA measures the GCBA of all natural and synthetic GC in plasma. The range of standard curve was 0 ∼ 1.00 mg/L. The sensitivity was 0.01 mg/l. The recovery rate was 92.1%, and the intra and inter assay CV was 0.7% (n = 3) and 4.4% (n = 3) respectively. The level of corticosterone in 9 rat plasma samples was determined by RRA and CBG-isotope binding assay. There was a general correlation over a wide range between the values determined by the two assays (r = 0.95; P < 0.001). The measuring condition was described in detail

  19. Avidin/PSS membrane microcapsules with biotin-binding activity.

    Science.gov (United States)

    Endo, Yoshihiro; Sato, Katsuhiko; Sugimoto, Kentaro; Anzai, Jun-ichi

    2011-08-15

    Polyelectrolyte microcapsules with avidin-poly(styrene sulfonate) (PSS) membrane were prepared by a layer-by-layer deposition technique. The uptake and release of biotin-labeled fluorescein (b-FITC) as well as immobilization of biotin-labeled glucose oxidase (b-GOx) to the microcapsule were studied. The polyelectrolyte microcapsules were prepared by coating the surface of calcium carbonate (CaCO(3)) microparticles with an avidin/PSS multilayer membrane, followed by dissolution of CaCO(3) core in an ethylenediaminetetraacetic acid solution. Inner and outer poly(allylamine)/PSS films were required to isolate the microcapsules, whereas microcapsules could not be formed without the support. The uptake of b-FITC into the microcapsule was highly enhanced through a strong binding of b-FITC to avidin as compared with the uptake of biotin-free FITC. Release of b-FITC from the microcapsule was accelerated upon addition of biotin due to a competitive binding of the added biotin to the binding site of avidin. Similarly, the surface of microcapsule was modified with b-GOx with retaining its catalytic activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. DETERMINANTS OF ORI001 TYPE GOVERNMENT BOND

    Directory of Open Access Journals (Sweden)

    Yosandi Yulius

    2011-09-01

    Full Text Available The need to build a strong bond market is amenable, especially after the 1997 crises. This paper analyzes the influence of deposit interest rate, foreign exchange rates, and Composite Stock Price Index on yield-to-maturity of Bond Series Retail ORI001, employing monthly data from Bloomberg information service, 2006(8 to 2008(12, using Generalized Autoregressive Conditional Heteroscedasticity type models. It finds the evidence that deposit interest rate and exchange rate have positive significant influence on the bond, and that stock index has a negative significant influence on the bond. It also finds that Deposit Interest Rate, exchange rate, and the stock index significantly influence the bond altogether.Keywords: Interest rate, exchange rate, composite stock price index, yield-to-maturity, bondJEL classification numbers: G12, G15

  1. Volunteering predicts happiness among older Māori and non-Māori in the New Zealand health, work, and retirement longitudinal study.

    Science.gov (United States)

    Dulin, Patrick L; Gavala, Jhanitra; Stephens, Christine; Kostick, Marylynne; McDonald, Jennifer

    2012-01-01

    This study sought to understand the relationship between volunteer activity and happiness among a sample of older adult New Zealanders. It specifically sought to determine if ethnicity (Māori vs. non-Māori) and economic living standards (ELS) functioned as moderators of the relationship between volunteering and happiness. Data were garnered from the 2008 administration of the New Zealand Health, Work, and Retirement Longitudinal Study. Correlational and multiple regression procedures were employed to examine study hypotheses. Results from multiple regression analyses showed that the amount of volunteering per week was a unique predictor of the overall level of happiness. Moderation analyses indicated that ethnicity did not function as a moderator of the relationship between volunteering and happiness, but ELS did. Those with low ELS evidenced a stronger relationship between volunteering and happiness than those with high ELS. Results also indicated that Maori and those with low ELS volunteered more frequently than non-Māori and those with high ELS. This study provides evidence that volunteering is related to increased happiness, irrespective of ethnicity. It also provides further evidence that the relationship between volunteering and happiness is moderated by economic resources. Older individuals at the low end of the economic spectrum are likely to benefit more from volunteering than those at the high end.

  2. The design and relevance of a computerized gamified depression therapy program for indigenous māori adolescents.

    Science.gov (United States)

    Shepherd, Matthew; Fleming, Theresa; Lucassen, Mathijs; Stasiak, Karolina; Lambie, Ian; Merry, Sally N

    2015-03-03

    Depression is a major health issue among Māori indigenous adolescents, yet there has been little investigation into the relevance or effectiveness of psychological treatments for them. Further, consumer views are critical for engagement and adherence to therapy. However, there is little research regarding indigenous communities' opinions about psychological interventions for depression. The objective of this study was to conduct semistructured interviews with Māori (indigenous New Zealand) young people (taitamariki) and their families to find out their opinions of a prototype computerized cognitive behavioral therapy (cCBT) program called Smart, Positive, Active, Realistic, X-factor thoughts (SPARX), a free online computer game intended to help young persons with mild to moderate depression, feeling down, stress or anxiety. The program will teach them how to resolve their issues on their own using Cognitive Behavioural Therapy as psychotherapeutic approach. There were seven focus groups on the subject of the design and cultural relevance of SPARX that were held, with a total of 26 participants (19 taitamarki, 7 parents/caregivers, all Māori). There were five of the groups that were with whānau (family groups) (n=14), one group was with Māori teenage mothers (n=4), and one group was with taitamariki (n=8). The general inductive approach was used to analyze focus group data. SPARX computerized therapy has good face validity and is seen as potentially effective and appealing for Māori people. Cultural relevance was viewed as being important for the engagement of Māori young people with SPARX. Whānau are important for young peoples' well-being. Participants generated ideas for improving SPARX for Māori and for the inclusion of whānau in its delivery. SPARX computerized therapy had good face validity for indigenous young people and families. In general, Māori participants were positive about the SPARX prototype and considered it both appealing and applicable

  3. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical...

  4. Antioxidant activity and calcium binding of isomeric hydroxybenzoates

    Directory of Open Access Journals (Sweden)

    Zichen Zhao

    2018-04-01

    Full Text Available The association constant for calcium binding to hydroxybenzoates in aqueous 0.16 M NaCl at 25 °C was found electrochemically to have the value Kass = 280 mol L−1 with ΔHo = −51 kJ mol−1, ΔSo = −122 J mol−1 K−1 for the 2-isomer (salicylate, Kass = 7 mol L−1 with ΔHo = −39 kJ mol−1, ΔSo = −116 J mol−1 K−1 for the 3-isomer, and Kass = 8 mol L−1 with ΔHo = −51 kJ mol−1, ΔSo = −155 J mol−1 K−1 for the 4-isomer. The 3- and 4-isomers were found more efficient as antioxidants than the 2-isomer in decreasing oxygen consumption rate in a peroxidating methyl linoleate emulsion and less sensitive to presence of calcium. All isomers were found prooxidative for iron-catalyzed initiation of oxidation due to enhanced radical formation as shown by electron spin resonance spectroscopy. Calcium salicylate was found to have low solubility with a solubility product Ksp = 4.49·10−6 based on activity with ΔHo = 67 kJ mol−1, ΔSo = 123 J mol−1 K−1 for dissolution in water, when corrected for the strong complex formation. Calcium in food and beverages may thus lower antioxidant activity of plant phenols through complexation or by precipitation. Keywords: Antioxidant activity, Calcium binding, 2-Hydroxybenzoate, 3-Hydroxybenzoate, 4-Hydroxybenzoate

  5. ori Customary Law: A Relational Approach to Justice

    Directory of Open Access Journals (Sweden)

    Stephanie Vieille

    2012-03-01

    Full Text Available This research paper examines the philosophy of justice embodied in tikanga Mãori, the Mãori traditional mechanism and approach to doing justice. Based on several months of fieldwork in New Zealand, this study contends that the Mãori approach to justice adopts a holistic and relational lens, which requires that justice be seen in the context of relationships and crimes dealt with in terms of the relationships they have affected. As a result, justice must be carried out within the community and the process owned by community members. Further discussion draws attention to the response of Mãori communities to the New Zealand government’s attempt to accommodate their traditions and warns against the global tendency to render traditional Indigenous approaches to justice ahistorical through their representation as restorative justice mechanisms.

  6. Electromyographic characteristic of orbicularis oris in patients with dental crowding in permanent occlusion.

    Science.gov (United States)

    Dmytrenko, Maryna I; Kuroiedowa, Vira D

    2016-01-01

    electromyographic indices were developed for complex analysis of functional condition of orbicularis oris. to study electromyographic indices of orbicularis oris in patients with dental crowding in permanent occlusion. thirty four patients with malocclusion and a severe degree of severity of dental crowding (15 males, 19 females, aged 16-29 years) who underwent orthodontic examination. The treatment group was divided into three: Group Ia comprised 11 subjects with mandibular crowding (mean age 19,27 ± 1,08 years); group Ib, 10 patients with maxillary dental crowding (mean age 20,10 ± 1,60 years) and group Ic, 13 subjects with both maxillary and mandibular crowding (mean age 20,15 ± 1,45 years). The control group consisted of 10 patients with malocclusions but without dental crowding (mean age 20,70 ± 1,32 years). The findings were compared with similar indices in subjects with normal occlusion (mean age 21,3 ± 1,25 years). The index of orbicularis oris activity (ACTIV,%) was determined for each patient. A Student's t-test was used to analyze statistical difference between different groups. patients having crowding of maxillary teeth showed greater activity of muscles of the upper lip during maximum voluntary clenching (АCTІV= -0,99±7,44%). Activity of the muscles of the lower lip in patients with crowding of mandibular teeth (АСTІV=20,52±4,22%) and crowding of maxillary and mandibular teeth (АСTІV=17,93±4,33%) is prevailing. аctivity of the orbicularis oris in patients with malocclusion, complicated by dental crowding depend on clinical localization of crowding.

  7. LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding.

    Directory of Open Access Journals (Sweden)

    Jean-Marc Taymans

    Full Text Available Leucine rich repeat kinase 2 (LRRK2 is a Parkinson's disease (PD gene that encodes a large multidomain protein including both a GTPase and a kinase domain. GTPases often regulate kinases within signal transduction cascades, where GTPases act as molecular switches cycling between a GTP bound "on" state and a GDP bound "off" state. It has been proposed that LRRK2 kinase activity may be increased upon GTP binding at the LRRK2 Ras of complex proteins (ROC GTPase domain. Here we extensively test this hypothesis by measuring LRRK2 phosphorylation activity under influence of GDP, GTP or non-hydrolyzable GTP analogues GTPγS or GMPPCP. We show that autophosphorylation and lrrktide phosphorylation activity of recombinant LRRK2 protein is unaltered by guanine nucleotides, when co-incubated with LRRK2 during phosphorylation reactions. Also phosphorylation activity of LRRK2 is unchanged when the LRRK2 guanine nucleotide binding pocket is previously saturated with various nucleotides, in contrast to the greatly reduced activity measured for the guanine nucleotide binding site mutant T1348N. Interestingly, when nucleotides were incubated with cell lysates prior to purification of LRRK2, kinase activity was slightly enhanced by GTPγS or GMPPCP compared to GDP, pointing to an upstream guanine nucleotide binding protein that may activate LRRK2 in a GTP-dependent manner. Using metabolic labeling, we also found that cellular phosphorylation of LRRK2 was not significantly modulated by nucleotides, although labeling is significantly reduced by guanine nucleotide binding site mutants. We conclude that while kinase activity of LRRK2 requires an intact ROC-GTPase domain, it is independent of GDP or GTP binding to ROC.

  8. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    International Nuclear Information System (INIS)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-01-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. 14 C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell

  9. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    Energy Technology Data Exchange (ETDEWEB)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-05-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. /sup 14/C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell.

  10. ANALOGIES ENTRE LA THÉORIE STOCHASTIQUE ET LA THÉORIE QUANTIQUE

    Directory of Open Access Journals (Sweden)

    I BENDAHMANE

    2011-12-01

    Full Text Available Des analogies ont été faites entre la théorie quantique et la théorie stochastique qui décrivent des modèles d’évolution complètement différents dans des statuts mathématiques semblables ; Les processus stochastiques markoviens permettent une description acceptable des problèmes de la physique quantique. L’équation quantique de Schrödinger et l’équation stochastique de Chapman-Kolmogorov ont la même forme différentielle et peuvent par conséquent partager les mêmes solutions. Un lien profond existe entre l’intégrale de chemin de Feynman et l’intégrale de chemin stochastique de Wiener. Néanmoins, l’expression du propagateur de Wiener est mieux définie ; la constante de proportionnalité imposée par Feynman en raison de la normalisation a été naturellement déduite dans l’intégrale de chemin de Wiener. Ce résultat constitue la contribution originale de ce travail.

  11. Antimicrobial activity, cytotoxicity and DNA binding studies of carbon dots

    Science.gov (United States)

    Jhonsi, Mariadoss Asha; Ananth, Devanesan Arul; Nambirajan, Gayathri; Sivasudha, Thilagar; Yamini, Rekha; Bera, Soumen; Kathiravan, Arunkumar

    2018-05-01

    In recent years, quantum dots (QDs) are one of the most promising nanomaterials in life sciences community due to their unexploited potential in biomedical applications; particularly in bio-labeling and sensing. In the advanced nanomaterials, carbon dots (CDs) have shown promise in next generation bioimaging and drug delivery studies. Therefore the knowledge of the exact nature of interaction with biomolecules is of great interest to designing better biosensors. In this study, the interaction between CDs derived from tamarind and calf thymus DNA (ct-DNA) has been studied by vital spectroscopic techniques, which revealed that the CDs could interact with DNA via intercalation. The apparent association constant has been deduced from the absorption spectral changes of ct-DNA-CDs using the Benesi-Hildebrand equation. From the DNA induced emission quenching experiments the apparent DNA binding constant of the CDs (Kapp) have also been evaluated. Furthermore, we have analyzed the antibacterial and antifungal activity of CDs using disc diffusion assay method which exhibited excellent activity against E. coli and C. albicans with inhibition zone in the range of 7-12 mm. The biocompatible nature of CDs was confirmed by an in vitro cytotoxicity test on L6 normal rat myoblast cells by using MTT assay. The cell viability is not affected till the high dosage of CDs (200 μg/mL) for >48 h. As a consequence of the work, future development of CDs for microbial control and DNA sensing among the various biomolecules is possible in view of emerging biofields.

  12. Transthyretin-binding activity of contaminants in blood from polar bear (Ursus maritimus) cubs.

    Science.gov (United States)

    Bytingsvik, Jenny; Simon, Eszter; Leonards, Pim E G; Lamoree, Marja; Lie, Elisabeth; Aars, Jon; Derocher, Andrew E; Wiig, Oystein; Jenssen, Bjørn M; Hamers, Timo

    2013-05-07

    We determined the transthyretin (TTR)-binding activity of blood-accumulating contaminants in blood plasma samples of approximately 4-months-old polar bear (Ursus maritimus) cubs from Svalbard sampled in 1998 and 2008. The TTR-binding activity was measured as thyroxine (T4)-like equivalents (T4-EQMeas). Our findings show that the TTR-binding activity related to contaminant levels was significantly lower (45%) in 2008 than in 1998 (mean ± standard error of mean: 1998, 2265 ± 231 nM; 2008, 1258 ± 170 nM). Although we cannot exclude a potential influence of between-year differences in capture location and cub body mass, our findings most likely reflect reductions of TTR-binding contaminants or their precursors in the arctic environment (e.g., polychlorinated biphenyls [PCBs]). The measured TTR-binding activity correlated positively with the cubs' plasma levels of hydroxylated PCBs (OH-PCBs). No such association was found between TTR-binding activity and the plasma levels of perfluoroalkyl substances (PFASs). The OH-PCBs explained 60 ± 7% and 54 ± 4% of the TTR-binding activity in 1998 and 2008, respectively, and PFASs explained ≤1.2% both years. Still, almost half the TTR-binding activity could not be explained by the contaminants we examined. The considerable levels of TTR-binding contaminants warrant further effect directed analysis (EDA) to identify the contaminants responsible for the unexplained part of the observed TTR-binding activity.

  13. Effects of heparin on insulin binding and biological activity

    International Nuclear Information System (INIS)

    Kriauciunas, K.M.; Grigorescu, F.; Kahn, C.R.

    1987-01-01

    The effect of heparin, a polyanionic glycosaminoglycan known to alter the function of many proteins, on insulin binding and bioactivity was studied. Cultured human lymphocytes (IM-9) were incubated with varying concentrations of heparin, then extensively washed, and 125 I-labeled insulin binding was measured. Heparin at concentrations used clinically for anticoagulation (1-50 U/ml) inhibited binding in a dose-dependent manner; 50% inhibition of binding occurred with 5-10 U/ml. Scatchard analysis indicated that the decrease in binding was due to a decrease in both the affinity and the apparent number of available insulin receptors. The effect occurred within 10 min at 22 degrees C and persisted even after the cells were extensively washed. Inhibition of insulin binding also occurred when cells were preincubated with heparinized plasma or heparinized serum but not when cells were incubated with normal serum or plasma from blood anticoagulated with EDTA. By contrast, other polyanions and polycations, e.g., poly-L-glutamic acid, poly-L-lysine, succinylated poly-L-lysine, and histone, did not inhibit binding. Heparin also inhibited insulin binding in Epstein-Barr (EB) virus-transformed lymphocytes but had no effect on insulin binding to isolated adipocytes, human erythrocytes, or intact hepatoma cells. When isolated adipocytes were incubated with heparin, there was a dose-dependent inhibition of insulin-stimulated glucose oxidation and, to a lesser extent, of basal glucose oxidation. Although heparin has no effect on insulin binding to intact hepatoma cells, heparin inhibited both insulin binding and insulin-stimulated autophosphorylation in receptors solubilized from these cells

  14. Zinc ions bind to and inhibit activated protein C

    DEFF Research Database (Denmark)

    Zhu, Tianqing; Ubhayasekera, Wimal; Nickolaus, Noëlle

    2010-01-01

    fold enhanced, presumably due to the Ca2+-induced conformational change affecting the conformation of the Zn2+-binding site. The inhibition mechanism was non-competitive both in the absence and presence of Ca2+. Comparisons of sequences and structures suggested several possible sites for zinc binding...

  15. Retro-binding thrombin active site inhibitors: identification of an orally active inhibitor of thrombin catalytic activity.

    Science.gov (United States)

    Iwanowicz, Edwin J; Kimball, S David; Lin, James; Lau, Wan; Han, W-C; Wang, Tammy C; Roberts, Daniel G M; Schumacher, W A; Ogletree, Martin L; Seiler, Steven M

    2002-11-04

    A series of retro-binding inhibitors of human alpha-thrombin was prepared to elucidate structure-activity relationships (SAR) and optimize in vivo performance. Compounds 9 and 11, orally active inhibitors of thrombin catalytic activity, were identified to be efficacious in a thrombin-induced lethality model in mice.

  16. Characterization of breakpoint cluster region kinase and SH2-binding activities.

    Science.gov (United States)

    Afar, D E; Witte, O N

    1995-01-01

    BCR is an interesting signaling protein, whose cellular function is currently unknown. Its biochemical properties include serine kinase activity, SH2-binding activity, and a GTPase-activating activity. The SH2-binding activity is particularly interesting because it may link BCR to signaling pathways involving SH2-containing molecules. Since tyrosine phosphorylation of BCR has been detected in CML-derived cell lines and since tyrosine-phosphorylated BCR shows increased affinity toward certain SH2 domains, it seems particularly important to further characterize this activity. This chapter described a simple purification scheme for partial purification of BCR, which can be used to assess in vitro kinase and SH2-binding activities.

  17. Changes in the binding of concanavalin A after mouse lymphocyte activation

    Energy Technology Data Exchange (ETDEWEB)

    Draber, P; Draber, P [Czechoslovak Academy of Sciences, Prague. Institute of Molecular Genetics

    1982-01-01

    Binding /sup 63/Ni-concanavalin A (/sup 63/Ni-Con A) to the cell surface of freshly prepared (non-activated) and Con A-activated spleen cells and the inhibitory effect of pea lectin (PsA) on this binding was investigated. Binding of /sup 63/Ni-Con A to activated cells was much greater as compared with non-activated cells. In the presence of PsA the binding of /sup 63/Ni-Con A was inhibited. 51% of non-activated cells, 3a% of Con A-activated cells and 7 to 14% of permanently transformed cells (myeloma cells NS-1, cells of sarcoma Sa-1 and fibroblasts L-A9) were inhibited by PsA. The results indicate changes (either qualitative or topographic) in the binding sites for Con A in the course of cell activation.

  18. Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor γ

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lianying [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China); College of Life Science, Dezhou University, Dezhou 253023 (China); Ren, Xiao-Min; Wan, Bin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China); Guo, Liang-Hong, E-mail: LHGuo@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China)

    2014-09-15

    Perfluorinated compounds (PFCs) have been shown to disrupt lipid metabolism and even induce cancer in rodents through activation of peroxisome proliferator-activated receptors (PPARs). Lines of evidence showed that PPARα was activated by PFCs. However, the information on the binding interactions between PPARγ and PFCs and subsequent alteration of PPARγ activity is still limited and sometimes inconsistent. In the present study, in vitro binding of 16 PFCs to human PPARγ ligand binding domain (hPPARγ-LBD) and their activity on the receptor in cells were investigated. The results showed that the binding affinity was strongly dependent on their carbon number and functional group. For the eleven perfluorinated carboxylic acids (PFCAs), the binding affinity increased with their carbon number from 4 to 11, and then decreased slightly. The binding affinity of the three perfluorinated sulfonic acids (PFSAs) was stronger than their PFCA counterparts. No binding was detected for the two fluorotelomer alcohols (FTOHs). Circular dichroim spectroscopy showed that PFC binding induced distinctive structural change of the receptor. In dual luciferase reporter assays using transiently transfected Hep G2 cells, PFCs acted as hPPARγ agonists, and their potency correlated with their binding affinity with hPPARγ-LBD. Molecular docking showed that PFCs with different chain length bind with the receptor in different geometry, which may contribute to their differences in binding affinity and transcriptional activity. - Highlights: • Binding affinity between PFCs and PPARγ was evaluated for the first time. • The binding strength was dependent on fluorinated carbon chain and functional group. • PFC binding induced distinctive structural change of the receptor. • PFCs could act as hPPARγ agonists in Hep G2 cells.

  19. Unusual binding of ursodeoxycholic acid to ileal bile acid binding protein: role in activation of FXRα[S

    Science.gov (United States)

    Fang, Changming; Filipp, Fabian V.; Smith, Jeffrey W.

    2012-01-01

    Ursodeoxycholic acid (UDCA, ursodiol) is used to prevent damage to the liver in patients with primary biliary cirrhosis. The drug also prevents the progression of colorectal cancer and the recurrence of high-grade colonic dysplasia. However, the molecular mechanism by which UDCA elicits its beneficial effects is not entirely understood. The aim of this study was to determine whether ileal bile acid binding protein (IBABP) has a role in mediating the effects of UDCA. We find that UDCA binds to a single site on IBABP and increases the affinity for major human bile acids at a second binding site. As UDCA occupies one of the bile acid binding sites on IBABP, it reduces the cooperative binding that is often observed for the major human bile acids. Furthermore, IBABP is necessary for the full activation of farnesoid X receptor α (FXRα) by bile acids, including UDCA. These observations suggest that IBABP may have a role in mediating some of the intestinal effects of UDCA. PMID:22223860

  20. Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A.

    Science.gov (United States)

    Maurer, Manuela; de Beer, Stephanie B A; Oostenbrink, Chris

    2016-04-15

    The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data.

  1. Rehabilitation and indigenous peoples: the Māori experience.

    Science.gov (United States)

    Harwood, Matire

    2010-01-01

    Indigenous peoples often have the worst health status in comparison to non-indigenous people in their own nations; urgent action to address the health inequities for indigenous people is required. The role of rehabilitation in addressing health and disability inequities is particularly important due to the health need of indigenous peoples; the unequal distribution of health determinants; and disparities in access to, quality of care through and outcomes following rehabilitation. This article will present a perspective for Māori, the indigenous peoples of New Zealand, on a framework for improving rehabilitation services for Māori and ultimately their health and wellbeing.

  2. Transthyretin-Binding Activity of Contaminants in Blood from Polar Bear (Ursus maritimus) Cubs

    NARCIS (Netherlands)

    Bytingsvik, J.; Simon, E.; Leonards, P.E.G.; Lamoree, M.H.; Lie, E.; Aars, J.; Derocher, A. E.; Wiig, O.; Jenssen, B.M.; Hamers, T.

    2013-01-01

    We determined the transthyretin (TTR)-binding activity of blood-accumulating contaminants in blood plasma samples of approximately 4-months-old polar bear (Ursus maritimus) cubs from Svalbard sampled in 1998 and 2008. The TTR-binding activity was measured as thyroxine (T4)-like equivalents (T4-EQ

  3. Inequities in exposure to occupational risk factors between Māori and non-Māori workers in Aotearoa New Zealand.

    Science.gov (United States)

    Denison, Hayley J; Eng, Amanda; Barnes, Lucy A; Cheng, Soo; 't Mannetje, Andrea; Haddock, Katharine; Douwes, Jeroen; Pearce, Neil; Ellison-Loschmann, Lis

    2018-05-02

    Health inequities between indigenous and non-indigenous people are well documented. However, the contribution of differential exposure to risk factors in the occupational environment remains unclear. This study assessed differences in the prevalence of self-reported exposure to disease risk factors, including dust and chemicals, physical factors and organisational factors, between Māori and non-Māori workers in New Zealand. Potential participants were sampled from the New Zealand electoral rolls and invited to take part in a telephone interview, which included questions about current workplace exposures. Logistic regression, accounting for differences in age, socioeconomic status and occupational distribution between Māori and non-Māori, was used to assess differences in exposures. In total, 2344 Māori and 2710 non-Māori participants were included in the analyses. Māori had greater exposure to occupational risk factors than non-Māori. For dust and chemical exposures, the main differences related to Māori working in occupations where these exposures are more common. However, even within the same job, Māori were more likely to be exposed to physical factors such as heavy lifting and loud noise, and organisational factors such as carrying out repetitive tasks and working to tight deadlines compared with non-Māori. This is one of the first studies internationally to compare occupational risk factors between indigenous and non-indigenous people. These findings suggest that the contribution of the occupational environment to health inequities between Māori and non-Māori has been underestimated and that work tasks may be unequally distributed according to ethnicity. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Diacylglycerol kinase theta and zeta isoforms : regulation of activity, protein binding partners and physiological functions

    NARCIS (Netherlands)

    Los, Alrik Pieter

    2007-01-01

    Diacylglycerol kinases (DGKs) phosphorylate the second messenger diacylglycerol (DAG) yielding phosphatidic acid (PA). In this thesis, we investigated which structural domains of DGKtheta are required for DGK activity. Furthermore, we showed that DGKzeta binds to and is activated by the

  5. The Waikato river: Changing properties of a living Māori ancestor

    NARCIS (Netherlands)

    Meijl, A.H.M. van

    2015-01-01

    In Māori cosmology, rivers and other waterways are conceptualised as living ancestors, who have their own life force and spiritual strength. The special status of rivers in Māori society also explains why they are sometimes separated from other Māori claims to natural resources of which they were

  6. Aminoglycosylation can enhance the G-quadruplex binding activity of epigallocatechin.

    Directory of Open Access Journals (Sweden)

    Li-Ping Bai

    Full Text Available With the aim of enhancing G-quadruplex binding activity, two new glucosaminosides (16, 18 of penta-methylated epigallocatechin were synthesized by chemical glycosylation. Subsequent ESI-TOF-MS analysis demonstrated that these two glucosaminoside derivatives exhibit much stronger binding activity to human telomeric DNA and RNA G-quadruplexes than their parent structure (i.e., methylated EGC (14 as well as natural epigallocatechin (EGC, 6. The DNA G-quadruplex binding activity of 16 and 18 is even more potent than strong G-quadruplex binder quercetin, which has a more planar structure. These two synthetic compounds also showed a higher binding strength to human telomeric RNA G-quadruplex than its DNA counterpart. Analysis of the structure-activity relationship revealed that the more basic compound, 16, has a higher binding capacity with DNA and RNA G-quadruplexes than its N-acetyl derivative, 18, suggesting the importance of the basicity of the aminoglycoside for G-quadruplex binding activity. Molecular docking simulation predicted that the aromatic ring of 16 π-stacks with the aromatic ring of guanine nucleotides, with the glucosamine moiety residing in the groove of G-quadruplex. This research indicates that glycosylation of natural products with aminosugar can significantly enhance their G-quadruplex binding activities, thus is an effective way to generate small molecules targeting G-quadruplexes in nucleic acids. In addition, this is the first report that green tea catechin can bind to nucleic acid G-quadruplex structures.

  7. Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor.

    Science.gov (United States)

    Yin, Donghua; He, Yali; Perera, Minoli A; Hong, Seoung Soo; Marhefka, Craig; Stourman, Nina; Kirkovsky, Leonid; Miller, Duane D; Dalton, James T

    2003-01-01

    The purposes of the present studies were to examine the androgen receptor (AR) binding ability and in vitro functional activity of multiple series of nonsteroidal compounds derived from known antiandrogen pharmacophores and to investigate the structure-activity relationships (SARs) of these nonsteroidal compounds. The AR binding properties of sixty-five nonsteroidal compounds were assessed by a radioligand competitive binding assay with the use of cytosolic AR prepared from rat prostates. The AR agonist and antagonist activities of high-affinity ligands were determined by the ability of the ligand to regulate AR-mediated transcriptional activation in cultured CV-1 cells, using a cotransfection assay. Nonsteroidal compounds with diverse structural features demonstrated a wide range of binding affinity for the AR. Ten compounds, mainly from the bicalutamide-related series, showed a binding affinity superior to the structural pharmacophore from which they were derived. Several SARs regarding nonsteroidal AR binding were revealed from the binding data, including stereoisomeric conformation, steric effect, and electronic effect. The functional activity of high-affinity ligands ranged from antagonist to full agonist for the AR. Several structural features were found to be determinative of agonist and antagonist activities. The nonsteroidal AR agonists identified from the present studies provided a pool of candidates for further development of selective androgen receptor modulators (SARMs) for androgen therapy. Also, these studies uncovered or confirmed numerous important SARs governing AR binding and functional properties by nonsteroidal molecules, which would be valuable in the future structural optimization of SARMs.

  8. THE HERBIG BE STAR V1818 ORI AND ITS ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Hsin-Fang; Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii at Manoa, 640 North Aohoku Place, Hilo, HI 96720 (United States); Hillenbrand, Lynne, E-mail: hchiang@ifa.hawaii.edu, E-mail: reipurth@ifa.hawaii.edu [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-03-15

    The little-studied Herbig Be star V1818 Ori is located in the direction of the southern L1641 cloud and the Mon R2 star-forming complex, and is most likely associated with the latter at a distance of ∼900 pc. A high-resolution spectrum is consistent with a spectral type around B7 V, with lines of Hα, the red Ca ii triplet, and several forbidden lines in emission. An All Sky Automated Survey V-band light curve spanning 9 yr reveals major variability with deep absorption episodes reminiscent of the UX Orionis stars. We have searched for additional young stars clustering around V1818 Ori using grism images and the 2MASS and Wide-field Infrared Survey Explorer catalogs, and have found almost two dozen fainter stars with evidence of youth. Direct images show that the bright star IRAS 05510–1025, only about 3 arcmin from V1818 Ori, is surrounded by a reflection nebula, indicating its association with a molecular cloud. A spectrum of the star shows no emission-lines, and it is found to be a close binary with late B and early G type components. Its radial velocity indicates that it is an interloper, accidentally passing through the cloud and not physically associated with V1818 Ori.

  9. Thermodynamic compensation upon binding to exosite 1 and the active site of thrombin.

    Science.gov (United States)

    Treuheit, Nicholas A; Beach, Muneera A; Komives, Elizabeth A

    2011-05-31

    Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethyl ketone to the active site serine, as well as noncovalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1; however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-l-arginine-(3-methyl-1,5-pantanediyl)amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause a similar reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or exosite 1.

  10. Smoking in pregnancy a key factor for sudden infant death among Māori.

    Science.gov (United States)

    MacFarlane, M; Mitchell, E A; Thompson, J M D; Lawton, B; Zuccollo, J; Elder, D; Taylor, B; McDonald, G; Stewart, A W; Percival, T; Baker, N; Schlaud, M; Fleming, P

    2018-06-05

    To examine the Sudden Unexpected Death in Infancy (SUDI) disparity between Māori and non-Māori in New Zealand. A nationwide prospective case-control study ran from March 2012-February 2015. Exposure to established SUDI risk factors was analysed to investigate the disparity experienced by Māori. Infant ethnicity was based on mother's ethnicity. Māori ethnicity was prioritised. Non-Māori includes Pacific, Asian, NZ European and Other. There were 137 cases and 649 controls. The Māori SUDI rate was 1.41/1,000 live births compared to 0.53/1,000 for non-Māori. Parents/caregivers of 133 cases (97%) and 258 controls (40%) were interviewed. Smoking in pregnancy was associated with an equally-increased SUDI risk for Māori (adjusted OR=8.11, 95%CI=2.64, 24.93) and non-Māori (aOR=5.09, 95% CI=1.79, 14.47), as was bed-sharing (aOR=3.66, 95% CI=1.49, 9.00 versus aOR=11.20, 95% CI=3.46, 36.29). Bed-sharing prevalence was similar, however more Māori controls smoked during pregnancy (46.7%) than non-Māori (22.8%). The main contributor relating to increased SUDI risk for Māori/non-Māori infants is the combination of smoking in pregnancy and bed-sharing. The association between known SUDI risk factors, including bed-sharing and/or smoking in pregnancy and SUDI risk, is the same regardless of ethnicity. Māori infants are exposed more frequently to both behaviours because of the higher Māori smoking rate. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. In vivo dynamics of EBNA1-oriP interaction during latent and lytic replication of Epstein-Barr virus.

    Science.gov (United States)

    Daikoku, Tohru; Kudoh, Ayumi; Fujita, Masatoshi; Sugaya, Yutaka; Isomura, Hiroki; Tsurumi, Tatsuya

    2004-12-24

    The Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is required for maintenance of the viral genome DNA during the latent phase of EBV replication but continues to be synthesized after the induction of viral productive replication. An EBV genome-wide chromatin immunoprecipitation assay revealed that EBNA1 constantly binds to oriP of the EBV genome during not only latent but also lytic infection. Although the total levels of EBNA1 proved constant throughout the latter, the levels of the oriP-bound form were increased as lytic infection proceeded. EBV productive DNA replication occurs at discrete sites in nuclei, called replication compartments, where viral replication proteins are clustered. Confocal laser microscopic analyses revealed that whereas EBNA1 was distributed broadly in nuclei as fine punctate dots during the latent phase of infection, the protein became redistributed to the viral replication compartments and localized as distinct spots within and/or nearby the compartments after the induction of lytic replication. Taking these findings into consideration, oriP regions of the EBV genome might be organized by EBNA1 into replication domains that may set up scaffolding for lytic replication and transcription.

  12. Binding of Nickel to Testicular Glutamate–Ammonia Ligase Inhibits Its Enzymatic Activity

    Science.gov (United States)

    SUN, YINGBIAO; OU, YOUNG; CHENG, MIN; RUAN, YIBING; VAN DER HOORN, FRANS A.

    2016-01-01

    SUMMARY Exposure to nickel has been shown to cause damage to the testis in several animal models. It is not known if the testis expresses protein(s) that can bind nickel. To test this, we used a nickel-binding assay to isolate testicular nickel-binding proteins. We identified glutamate–ammonia ligase (GLUL) as a prominent nickel-binding protein by mass spectrometry. Protein analysis and reverse transcriptase polymerase chain reaction showed that GLUL is expressed in the testis, predominantly in interstitial cells. We determined that GLUL has a higher affinity for nickel than for its regular co-factor manganese. We produced an enzymatically active, recombinant GLUL protein. Upon binding, nickel interferes with the manganese-catalyzed enzymatic activity of recombinant GLUL protein. We also determined that GLUL activity in testes of animals exposed to nickel sulfate is reduced. Our results identify testicular GLUL as the first testicular protein shown to be affected by nickel exposure. PMID:21254280

  13. Surface binding sites in carbohydrate active enzymes: An emerging picture of structural and functional diversity

    DEFF Research Database (Denmark)

    Svensson, Birte; Cockburn, Darrell

    2013-01-01

    is not universal and is in fact rare among some families of enzymes. In some cases an alternative to possessing a CBM is for the enzyme to bind to the substrate at a site on the catalytic domain, but away from the active site. Such a site is termed a surface (or secondary) binding site (SBS). SBSs have been...

  14. Complementary three-dimensional quantitative structure-activity relationship modeling of binding affinity and functional potency

    DEFF Research Database (Denmark)

    Tosco, Paolo; Ahring, Philip K; Dyhring, Tino

    2009-01-01

    Complementary 3D-QSAR modeling of binding affinity and functional potency is proposed as a tool to pinpoint the molecular features of the ligands, and the corresponding amino acids in the receptor, responsible for high affinity binding vs those driving agonist behavior and receptor activation. Th...

  15. Regulation of activity of the yeast TATA-binding protein through intra ...

    Indian Academy of Sciences (India)

    Unknown

    Abbreviations used: BMH, Bismaleimidohexane; TBP, TATA-binding protein; yTBP, yeast TBP. J. Biosci. | Vol. ... Therefore for full-length TBP, intra-molecular interactions can regulate its activity via a similar ..... simulations (Miaskeiwicz and Ornstein 1996). .... box binding protein (TBP): A molecular dynamics computa-.

  16. Aluminium fluoride and magnesium, activators of heterotrimeric GTP-binding proteins, affect high-affinity binding of the fungal toxin fusicoccin to the fusicoccin-binding protein in oat root plasma membranes.

    NARCIS (Netherlands)

    de Boer, A.H.; Van der Molen, G.W.; Prins, H.B.A.; Korthout, H.A.A.J.; van der Hoeven, P.C.J.

    1994-01-01

    The fusicoccin-binding protein was solubilised from purified oat root plasma membranes. The solubilised protein retained full binding activity, provided that protease inhibitors were included. Sodium fluoride reduced the high-affinity [H-3]fusicoccin binding to almost zero in a

  17. Isolation of potential probiotic Lactobacillus oris HMI68 from mother's milk with cholesterol-reducing property.

    Science.gov (United States)

    Anandharaj, Marimuthu; Sivasankari, Balayogan

    2014-08-01

    The objective of this study was to evaluate the probiotic properties of Lactobacillus strains isolated from mother's milk and their effects on cholesterol assimilation. In this study 120 isolates from mother's milk were phenotypically and genotypically characterized. Among these, only 6 predominant strains were identified as Lactobacillus spp. The following parameters were selected as important test variables in model stomach passage survival trials: acid and bile tolerance, antimicrobial activity, antibiotic susceptibility and cholesterol reduction. Results showed that the considerable variation existed among six strains. Moreover, the strain HMI68 is the most acid-tolerant and the HMI28 and HMI74 is the most acid-sensitive of all strains tested. HMI118 did not grow at 0.5% and 1% bile concentration after 5 h but the HMI68 and HMI43 showed some tolerance to such bile concentration. The differences found in the growth rate were not significant (P > 0.05). HMI68 showed resistance to most of the antibiotics as well as antagonistic activity against the tested pathogens. The amount of cholesterol reduction is increased when the media supplemented with bile salts. HMI68 assimilate 61.05 ± 0.05 μg/ml cholesterol with the presence of 0.3% bile salt this could be significantly decreased by 25.41 ± 1.09 μg/ml without bile salt. HMI68 was identified to be Lactobacillus oris HMI68 and 16S rRNA sequence was deposited in the National Center for Biotechnological Information (GenBank). For the first time the cholesterol-reducing property of L. oris isolated from mother's milk were investigated in this study. Therefore the effective L. oris HMI68 strain was regarded as a candidate probiotic. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Platelet-activating factor (PAF) receptor-binding antagonist activity of Malaysian medicinal plants.

    Science.gov (United States)

    Jantan, I; Rafi, I A A; Jalil, J

    2005-01-01

    Forty-nine methanol extracts of 37 species of Malaysian medicinal plants were investigated for their inhibitory effects on platelet-activating factor (PAF) binding to rabbit platelets, using 3H-PAF as a ligand. Among them, the extracts of six Zingiberaceae species (Alpinia galanga Swartz., Boesenbergia pandurata Roxb., Curcuma ochorrhiza Val., C. aeruginosa Roxb., Zingiber officinale Rosc. and Z. zerumbet Koenig.), two Cinnamomum species (C. altissimum Kosterm. and C. pubescens Kochummen.), Goniothalamus malayanus Hook. f. Momordica charantia Linn. and Piper aduncum L. are potential sources of new PAF antagonists, as they showed significant inhibitory effects with IC50 values ranging from 1.2 to 18.4 microg ml(-1).

  19. Increased activity of the mannan-binding lectin complement activation pathway in patients with colorectal cancer

    DEFF Research Database (Denmark)

    Ytting, H; Jensenius, Jens Christian; Christensen, I J

    2004-01-01

    BACKGROUND: Postoperative bacterial infectious complications are frequent in patients with colorectal cancer (CRC), with subsequent increased recurrence rates and poor prognosis. Deficiency of the mannan-binding lectin (MBL) complement activation pathway may cause increased risk of infection......: Serum MBL concentrations and MBL/MASP activity were determined using immunofluorometric assays. The levels are presented as the median, inter-quartile range and range. RESULTS: Serum MBL levels were significantly (P cancer (1384 (400-2188) ng/mL) (median...... in the colon or rectum, and disease stages according to Dukes' classification. No statistical difference (P=0.20) in frequency of MBL deficiency was found between the patients (20%) and the donors (27%). CONCLUSIONS: Overall, the MBL complement activation pathway is significantly increased in patients...

  20. Monoclonal antibodies to meningococcal factor H binding protein with overlapping epitopes and discordant functional activity.

    Science.gov (United States)

    Giuntini, Serena; Beernink, Peter T; Reason, Donald C; Granoff, Dan M

    2012-01-01

    Meningococcal factor H binding protein (fHbp) is a promising vaccine candidate. Anti-fHbp antibodies can bind to meningococci and elicit complement-mediated bactericidal activity directly. The antibodies also can block binding of the human complement down-regulator, factor H (fH). Without bound fH, the organism would be expected to have increased susceptibility to bacteriolysis. Here we describe bactericidal activity of two anti-fHbp mAbs with overlapping epitopes in relation to their different effects on fH binding and bactericidal activity. Both mAbs recognized prevalent fHbp sequence variants in variant group 1. Using yeast display and site-specific mutagenesis, binding of one of the mAbs (JAR 1, IgG3) to fHbp was eliminated by a single amino acid substitution, R204A, and was decreased by K143A but not by R204H or D142A. The JAR 1 epitope overlapped that of previously described mAb (mAb502, IgG2a) whose binding to fHbp was eliminated by R204A or R204H substitutions, and was decreased by D142A but not by K143A. Although JAR 1 and mAb502 appeared to have overlapping epitopes, only JAR 1 inhibited binding of fH to fHbp and had human complement-mediated bactericidal activity. mAb502 enhanced fH binding and lacked human complement-mediated bactericidal activity. To control for confounding effects of different mouse IgG subclasses on complement activation, we created chimeric mAbs in which the mouse mAb502 or JAR 1 paratopes were paired with human IgG1 constant regions. While both chimeric mAbs showed similar binding to fHbp, only JAR 1, which inhibited fH binding, had human complement-mediated bactericidal activity. The lack of human complement-mediated bactericidal activity by anti-fHbp mAb502 appeared to result from an inability to inhibit binding of fH. These results underscore the importance of inhibition of fH binding for anti-fHbp mAb bactericidal activity.

  1. Synthesis, X-ray crystal structure, DNA binding and Nuclease activity ...

    Indian Academy of Sciences (India)

    s12039-016-1125-x. Synthesis, X-ray crystal structure, DNA binding and Nuclease activity of lanthanide(III) complexes of 2-benzoylpyridine acetylhydrazone. KARREDDULA RAJA, AKKILI SUSEELAMMA and KATREDDI HUSSAIN REDDY. ∗.

  2. Labelling of pneumococcal penicillin-binding proteins with [3H]propionyl-ampicillin. A rapid method for monitoring penicillin-binding activity

    International Nuclear Information System (INIS)

    Hakenbeck, R.; Kohiyama, M.

    1982-01-01

    Penicillin-binding proteins (PBPs) are membrane components ubiquitous to all bacteria examined so far. Some of them are present in only a few copies per cell. The conventional method of visualizing these proteins consists in binding of radioactive penicillin to the fractions containing PBPs followed by SDS-PAGE and finally fluorography. Although this procedure is laborious, it is necessary for the determination of the identity as well as for the quantification of each PBP. On the other hand, when penicillin-binding conditions are to be examined or binding activity has to be followed through fractionation and purification of PBPs, no fast monitoring device for these proteins has been available. The authors developed a rapid and easy assay for penicillin-binding activity with a filter-binding technique using [ 3 H]propionyl ampicillin ( 3 H-PA) of high specific activity. As little 2μg of crude membranes obtained from the highly penicillin-sensitive, β-lactamase-negative organism Streptococcus pneumoniae, are sufficient to detect binding activity. In this paper they describe optimum conditions for the assay of PBPs and show that this binding activity correlates with the presence of native penicillin-binding proteins. (Auth.)

  3. ori oral histories and the impact of tsunamis in Aotearoa-New Zealand

    Directory of Open Access Journals (Sweden)

    D. N. King

    2018-03-01

    Full Text Available Māori oral histories from the northern South Island of Aotearoa-New Zealand provide details of ancestral experience with tsunami(s on, and surrounding, Rangitoto (D'Urville Island. Applying an inductive-based methodology informed by collaborative storytelling, exchanges with key informants from the Māori kin groups of Ngāti Koata and Ngāti Kuia reveal that a folk tale, published in 1907, could be compared to and combined with active oral histories to provide insights into past catastrophic saltwater inundations. Such histories reference multiple layers of experience and meaning, from memorials to ancestral figures and their accomplishments to claims about place, authority and knowledge. Members of Ngāti Koata and Ngāti Kuia, who permitted us to record some of their histories, share the view that there are multiple benefits to be gained by learning from differences in knowledge, practice and belief. This work adds to scientific as well as Maōri understandings about tsunami hazards (and histories. It also demonstrates that to engage with Māori oral histories (and the people who genealogically link to such stories requires close attention to a politics of representation, in both past recordings and current ways of retelling, as well as sensitivities to the production of new and plural knowledges. This paper makes these narratives available to a new audience, including those families who no longer have access to them, and recites these in ways that might encourage plural knowledge development and co-existence.

  4. ori oral histories and the impact of tsunamis in Aotearoa-New Zealand

    Science.gov (United States)

    King, Darren N.; Shaw, Wendy S.; Meihana, Peter N.; Goff, James R.

    2018-03-01

    ori oral histories from the northern South Island of Aotearoa-New Zealand provide details of ancestral experience with tsunami(s) on, and surrounding, Rangitoto (D'Urville Island). Applying an inductive-based methodology informed by collaborative storytelling, exchanges with key informants from the Māori kin groups of Ngāti Koata and Ngāti Kuia reveal that a folk tale, published in 1907, could be compared to and combined with active oral histories to provide insights into past catastrophic saltwater inundations. Such histories reference multiple layers of experience and meaning, from memorials to ancestral figures and their accomplishments to claims about place, authority and knowledge. Members of Ngāti Koata and Ngāti Kuia, who permitted us to record some of their histories, share the view that there are multiple benefits to be gained by learning from differences in knowledge, practice and belief. This work adds to scientific as well as Maōri understandings about tsunami hazards (and histories). It also demonstrates that to engage with Māori oral histories (and the people who genealogically link to such stories) requires close attention to a politics of representation, in both past recordings and current ways of retelling, as well as sensitivities to the production of new and plural knowledges. This paper makes these narratives available to a new audience, including those families who no longer have access to them, and recites these in ways that might encourage plural knowledge development and co-existence.

  5. ORIS: the Oak Ridge Imaging System program listings

    International Nuclear Information System (INIS)

    Bell, P.R.; Dougherty, J.M.

    1978-04-01

    The Oak Ridge Imaging System (ORIS) is a general purpose access, storage, processing and display system for nuclear medicine imaging with rectilinear scanner and gamma camera. This volume contains listings of the PDP-8/E version of ORIS Version 2. The system is designed to run under the Digital Equipment Corporation's OS/8 monitor in 16K or more words of core. System and image file mass storage is on RK8E disk; longer-time image file storage is provided on DECtape. Another version of this program exists for use with the RF08 disk, and a more limited version is for DECtape only. This latter version is intended for non-medical imaging

  6. La théorie quantique en images

    CERN Document Server

    McEvoy, J P

    2014-01-01

    La théorie quantique nous confronte avec les paradoxes bizarres qui contredisent les fondements de la physique classique. Au niveau subatomique, une particule semble savoir ce que font les autres, mais selon « le principe d'incertitude » de Heisenberg, il y a une limite sur la précision des observations. Pourtant, la théorie quantique est étonnamment précise et largement appliquée en chimie et en physique. Cet ouvrage nous emmène dans un voyage où vous rencontrerez Planck, Einstein, Bohr, Heisenberg et Schrödinger, chacun d'entre eux ayant contribué aux concepts de cette théorie révolutionnaire. La dualité onde-particule, l'interprétation de Copenhague, le chat de Schrödinger, le paradoxe EPR etc... sont autant d'expériences et de concepts qui sont décrits dans cet ouvrage.

  7. A versatile non-radioactive assay for DNA methyltransferase activity and DNA binding

    Science.gov (United States)

    Frauer, Carina; Leonhardt, Heinrich

    2009-01-01

    We present a simple, non-radioactive assay for DNA methyltransferase activity and DNA binding. As most proteins are studied as GFP fusions in living cells, we used a GFP binding nanobody coupled to agarose beads (GFP nanotrap) for rapid one-step purification. Immobilized GFP fusion proteins were subsequently incubated with different fluorescently labeled DNA substrates. The absolute amounts and molar ratios of GFP fusion proteins and bound DNA substrates were determined by fluorescence spectroscopy. In addition to specific DNA binding of GFP fusion proteins, the enzymatic activity of DNA methyltransferases can also be determined by using suicide DNA substrates. These substrates contain the mechanism-based inhibitor 5-aza-dC and lead to irreversible covalent complex formation. We obtained covalent complexes with mammalian DNA methyltransferase 1 (Dnmt1), which were resistant to competition with non-labeled canonical DNA substrates, allowing differentiation between methyltransferase activity and DNA binding. By comparison, the Dnmt1C1229W catalytic site mutant showed DNA-binding activity, but no irreversible covalent complex formation. With this assay, we could also confirm the preference of Dnmt1 for hemimethylated CpG sequences. The rapid optical read-out in a multi-well format and the possibility to test several different substrates in direct competition allow rapid characterization of sequence-specific binding and enzymatic activity. PMID:19129216

  8. An assay for the mannan-binding lectin pathway of complement activation

    DEFF Research Database (Denmark)

    Petersen, Steen Vang; Thiel, S; Jensen, L

    2001-01-01

    activation. Therefore, in a generally applicable complement activation assay specific for the MBL pathway, the activity of the classical pathway must be inhibited. This can be accomplished by exploiting the finding that high ionic strength buffers inhibit the binding of C1q to immune complexes and disrupt...

  9. short communication binding of nickel and zinc ions with activated

    African Journals Online (AJOL)

    a

    Equilibrium sorption of nickel and zinc ions by the activated carbon was studied using a range of ... their toxicity, accumulative behaviour and effects on human health, heavy metal pollution has become ... The determination of the total surface charge was made .... These values suggest high efficiency of the activated carbon,.

  10. Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives

    Directory of Open Access Journals (Sweden)

    Sinara Mônica Vitalino de Almeida

    2015-06-01

    Full Text Available In this work, the acridine nucleus was used as a lead-compound for structural modification by adding different substituted thiosemicarbazide moieties. Eight new (Z-2-(acridin-9-ylmethylene-N-phenylhydrazinecarbothioamide derivatives (3a–h were synthesized, their antiproliferative activities were evaluated, and DNA binding properties were performed with calf thymus DNA (ctDNA by electronic absorption and fluorescence spectroscopies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated by addition of ctDNA to the derivatives. The calculated binding constants ranged from 1.74 × 104 to 1.0 × 106 M−1 and quenching constants from −0.2 × 104 to 2.18 × 104 M−1 indicating high affinity to ctDNA base pairs. The most efficient compound in binding to ctDNA in vitro was (Z-2-(acridin-9-ylmethylene-N- (4-chlorophenyl hydrazinecarbothioamide (3f, while the most active compound in antiproliferative assay was (Z-2-(acridin-9-ylmethylene-N-phenylhydrazinecarbothioamide (3a. There was no correlation between DNA-binding and in vitro antiproliferative activity, but the results suggest that DNA binding can be involved in the biological activity mechanism. This study may guide the choice of the size and shape of the intercalating part of the ligand and the strategic selection of substituents that increase DNA-binding or antiproliferative properties.

  11. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for

  12. Aspirin and salicylate bind to immunoglobulin heavy chain binding protein (BiP) and inhibit its ATPase activity in human fibroblasts.

    Science.gov (United States)

    Deng, W G; Ruan, K H; Du, M; Saunders, M A; Wu, K K

    2001-11-01

    Salicylic acid (SA), an endogenous signaling molecule of plants, possesses anti-inflammatory and anti-neoplastic actions in human. Its derivative, aspirin, is the most commonly used anti-inflammatory and analgesic drug. Aspirin and sodium salicylate (salicylates) have been reported to have multiple pharmacological actions. However, it is unclear whether they bind to a cellular protein. Here, we report for the first time the purification from human fibroblasts of a approximately 78 kDa salicylate binding protein with sequence identity to immunoglobulin heavy chain binding protein (BiP). The Kd values of SA binding to crude extract and to recombinant BiP were 45.2 and 54.6 microM, respectively. BiP is a chaperone protein containing a polypeptide binding site recognizing specific heptapeptide sequence and an ATP binding site. A heptapeptide with the specific sequence displaced SA binding in a concentration-dependent manner whereas a control heptapeptide did not. Salicylates inhibited ATPase activity stimulated by this specific heptapeptide but did not block ATP binding or induce BiP expression. These results indicate that salicylates bind specifically to the polypeptide binding site of BiP in human cells that may interfere with folding and transport of proteins important in inflammation.

  13. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites

    Science.gov (United States)

    Brautigam, Chad A; Xing, Wenmin; Yang, Sheng; Henry, Lisa; Doolittle, Lynda K; Walz, Thomas

    2017-01-01

    The Rho GTPase Rac1 activates the WAVE regulatory complex (WRC) to drive Arp2/3 complex-mediated actin polymerization, which underpins diverse cellular processes. Here we report the structure of a WRC-Rac1 complex determined by cryo-electron microscopy. Surprisingly, Rac1 is not located at the binding site on the Sra1 subunit of the WRC previously identified by mutagenesis and biochemical data. Rather, it binds to a distinct, conserved site on the opposite end of Sra1. Biophysical and biochemical data on WRC mutants confirm that Rac1 binds to both sites, with the newly identified site having higher affinity and both sites required for WRC activation. Our data reveal that the WRC is activated by simultaneous engagement of two Rac1 molecules, suggesting a mechanism by which cells may sense the density of active Rac1 at membranes to precisely control actin assembly. PMID:28949297

  14. Complement-mediated bactericidal activity of anti-factor H binding protein monoclonal antibodies against the meningococcus relies upon blocking factor H binding.

    Science.gov (United States)

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2011-09-01

    Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.

  15. Activation of the ATR kinase by the RPA-binding protein ETAA1

    DEFF Research Database (Denmark)

    Haahr, Peter; Hoffmann, Saskia; Tollenaere, Maxim A X

    2016-01-01

    Activation of the ATR kinase following perturbations to DNA replication relies on a complex mechanism involving ATR recruitment to RPA-coated single-stranded DNA via its binding partner ATRIP and stimulation of ATR kinase activity by TopBP1. Here, we discovered an independent ATR activation pathway...... in vertebrates, mediated by the uncharacterized protein ETAA1 (Ewing's tumour-associated antigen 1). Human ETAA1 accumulates at DNA damage sites via dual RPA-binding motifs and promotes replication fork progression and integrity, ATR signalling and cell survival after genotoxic insults. Mechanistically...

  16. From DNA binding to transcriptional activation: Is the TALE complete?

    Science.gov (United States)

    Bobola, Nicoletta

    2017-09-04

    How transcription factors (TFs) control enhancer and promoter functions to effect changes in gene expression is an important question. In this issue, Hau et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201701154) show that the TALE TF MEIS recruits the histone modifier PARP1/ARTD1 at promoters to decompact chromatin and activate transcription. © 2017 Bobola.

  17. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    International Nuclear Information System (INIS)

    Shlomai, Amir; Shaul, Yosef

    2009-01-01

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1α coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1α coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4α and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1α coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhanced in the presence of PGC-1α, implying that FOXO1 is a target for PGC-1α coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.

  18. Binding among Select Episodic Elements Is Altered via Active Short-Term Retrieval

    Science.gov (United States)

    Bridge, Donna J.; Voss, Joel L.

    2015-01-01

    Of the many elements that comprise an episode, are any disproportionately bound to the others? We tested whether active short-term retrieval selectively increases binding. Individual objects from multiobject displays were retrieved after brief delays. Memory was later tested for the other objects. Cueing with actively retrieved objects facilitated…

  19. Increased anticoagulant activity of thrombin-binding DNA aptamers by nanoscale organization on DNA nanostructures

    DEFF Research Database (Denmark)

    Rangnekar, Abhijit; Zhang, Alex M.; Shiyuan Li, Susan

    2012-01-01

    Control over thrombin activity is much desired to regulate blood clotting in surgical and therapeutic situations. Thrombin-binding RNA and DNA aptamers have been used to inhibit thrombin activity and thus the coagulation cascade. Soluble DNA aptamers, as well as two different aptamers tethered by...

  20. Binding of tissue plasminogen activator to human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Beebe, D.P.

    1987-01-01

    The binding of purified, recombinant tissue plasminogen activator (tPA) to human umbilical vein endothelial cells (HUVEC) was studied in vitro using immunofluorescence as well as radiolabeled tPA. Immunofluorescence was performed on HUVEC grown on round glass coverslips using rabbit anti-human tPA and fluorescein-conjugated anti-rabbit immunoglobulin. Positive fluorescence was observed only after incubation of HUVEC with tPA. HUVEC were grown to confluence in 24-well tissue culture plates, washed, and incubated with a constant amount of 125 I-tPA and various concentrations of unlabeled tPA. The binding of tPA to HUVEC was found to be specific, saturable, and reversible. Scatchard analysis yielded as equilibrium constant (K/sub eq/) of 4.2 x 10 6 M -1 and 1.2 x 10 7 binding sites per cell. Binding was inhibited by positively charged amino acids and by D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone but not by carbohydrates including mannose, galactose, N-acetyl glucosamine and N-acetyl galactosamine. Neat human plasma abrogates but does not totally inhibit binding of tPA to HUVEC. Binding was neither enhanced nor inhibited by fibronectin. Although the affinity of binding of tPA to HUVEC is low, the endothelial cell may be involved in regulating plasma levels of tPA in vivo which may have therapeutic significance

  1. Eléments de théorie des graphes

    CERN Document Server

    Bretto, Alain; Hennecart, François

    2012-01-01

    Ce livre est une introduction d velopp e la th orie des graphes. Autour de cette th orie se d veloppe aujourd'hui l'un des domaines les plus f conds et les plus dynamiques des mah matiques et de l'informatique. La th orie des graphes permet de r pr senter un ensemble complexe d'objets en exprimant les relations entre les l ments: r seaux de communication, circuits lectriques, etc. Le livre pr sente le langage et les notions l mentaires de cette th orie, les diff rents types de graphes (bipartis, arbres, arborescences, graphes eul riens et hamiltoniens, etc.); il tudie les relations entre les g

  2. Structural insights into human peroxisome proliferator activated receptor delta (PPAR-delta selective ligand binding.

    Directory of Open Access Journals (Sweden)

    Fernanda A H Batista

    Full Text Available Peroxisome proliferator activated receptors (PPARs δ, α and γ are closely related transcription factors that exert distinct effects on fatty acid and glucose metabolism, cardiac disease, inflammatory response and other processes. Several groups developed PPAR subtype specific modulators to trigger desirable effects of particular PPARs without harmful side effects associated with activation of other subtypes. Presently, however, many compounds that bind to one of the PPARs cross-react with others and rational strategies to obtain highly selective PPAR modulators are far from clear. GW0742 is a synthetic ligand that binds PPARδ more than 300-fold more tightly than PPARα or PPARγ but the structural basis of PPARδ:GW0742 interactions and reasons for strong selectivity are not clear. Here we report the crystal structure of the PPARδ:GW0742 complex. Comparisons of the PPARδ:GW0742 complex with published structures of PPARs in complex with α and γ selective agonists and pan agonists suggests that two residues (Val312 and Ile328 in the buried hormone binding pocket play special roles in PPARδ selective binding and experimental and computational analysis of effects of mutations in these residues confirms this and suggests that bulky substituents that line the PPARα and γ ligand binding pockets as structural barriers for GW0742 binding. This analysis suggests general strategies for selective PPARδ ligand design.

  3. Structural insights into Cydia pomonella pheromone binding protein 2 mediated prediction of potentially active semiochemicals

    Science.gov (United States)

    Tian, Zhen; Liu, Jiyuan; Zhang, Yalin

    2016-03-01

    Given the advantages of behavioral disruption application in pest control and the damage of Cydia pomonella, due progresses have not been made in searching active semiochemicals for codling moth. In this research, 31 candidate semiochemicals were ranked for their binding potential to Cydia pomonella pheromone binding protein 2 (CpomPBP2) by simulated docking, and this sorted result was confirmed by competitive binding assay. This high predicting accuracy of virtual screening led to the construction of a rapid and viable method for semiochemicals searching. By reference to binding mode analyses, hydrogen bond and hydrophobic interaction were suggested to be two key factors in determining ligand affinity, so is the length of molecule chain. So it is concluded that semiochemicals of appropriate chain length with hydroxyl group or carbonyl group at one head tended to be favored by CpomPBP2. Residues involved in binding with each ligand were pointed out as well, which were verified by computational alanine scanning mutagenesis. Progress made in the present study helps establish an efficient method for predicting potentially active compounds and prepares for the application of high-throughput virtual screening in searching semiochemicals by taking insights into binding mode analyses.

  4. Molecular modeling studies of novel retro-binding tripeptide active-site inhibitors of thrombin.

    Science.gov (United States)

    Lau, W F; Tabernero, L; Sack, J S; Iwanowicz, E J

    1995-08-01

    A novel series of retro-binding tripeptide thrombin active-site inhibitors was recently developed (Iwanowicz, E. I. et al. J. Med. Chem. 1994, 37, 2111(1)). It was hypothesized that the binding mode for these inhibitors is similar to that of the first three N-terminal residues of hirudin. This binding hypothesis was subsequently verified when the crystal structure of a member of this series, BMS-183,507 (N-[N-[N-[4-(Aminoiminomethyl)amino[-1-oxobutyl]-L- phenylalanyl]-L-allo-threonyl]-L-phenylalanine, methyl ester), was determined (Taberno, L.J. Mol. Biol. 1995, 246, 14). The methodology for developing the binding models of these inhibitors, the structure-activity relationships (SAR) and modeling studies that led to the elucidation of the proposed binding mode is described. The crystal structure of BMS-183,507/human alpha-thrombin is compared with the crystal structure of hirudin/human alpha-thrombin (Rydel, T.J. et al. Science 1990, 249,227; Rydel, T.J. et al. J. Mol Biol. 1991, 221, 583; Grutter, M.G. et al. EMBO J. 1990, 9, 2361) and with the computational binding model of BMS-183,507.

  5. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    Science.gov (United States)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  6. Transcriptional activation of the mouse obese (ob) gene by CCAAT/enhancer binding protein alpha

    DEFF Research Database (Denmark)

    Hwang, C S; Mandrup, S; MacDougald, O A

    1996-01-01

    Like other adipocyte genes that are transcriptionally activated by CCAAT/enhancer binding protein alpha (C/EBP alpha) during preadipocyte differentiation, expression of the mouse obese (ob) gene is immediately preceded by the expression of C/EBP alpha. While the 5' flanking region of the mouse ob...... gene contains several consensus C/EBP binding sites, only one of these sites appears to be functional. DNase I cleavage inhibition patterns (footprinting) of the ob gene promoter revealed that recombinant C/EBP alpha, as well as a nuclear factor present in fully differentiated 3T3-L1 adipocytes...... to a consensus C/EBP binding site at nucleotides -55 to -47 generated a specific protein-oligonucleotide complex that was supershifted by antibody against C/EBP alpha. Probes corresponding to two upstream consensus C/EBP binding sites failed to generate protein-oligonucleotide complexes. Cotransfection of a C...

  7. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    International Nuclear Information System (INIS)

    Niles, L.P.; Hashemi, F.

    1990-01-01

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, [ 125 I]iodomelatonin, was examined using an incubation temperature (30 degree C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing [ 125 I]iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus

  8. Preparation, Characterization, and In Vitro and Vivo Antitumor Activity of Oridonin-Conjugated Multiwalled Carbon Nanotubes Functionalized with Carboxylic Group

    Directory of Open Access Journals (Sweden)

    Chuanjin Wang

    2016-01-01

    Full Text Available Carbon nanotubes have shown great potential in tumor therapy. Oridonin (ORI is a poorly water-soluble diterpenoid compound (C20H28O6 used in the treatment of esophageal and hepatic carcinoma for decades. For the purpose of enhancing the antitumor potency and reducing cytotoxicity of ORI, multiwalled carbon nanotubes functionalized with carboxylic group (MWCNTs-COOH were used as ORI carrier. ORI was noncovalently encapsulated into (or onto the functionalized carbon nanotubes (MWCNTs-ORI. The obtained MWCNTs-ORI has been characterized. The ORI loading efficiency in MWCNTs-COOH carrier was studied to be about 82.6% (w/w. In vitro cytotoxicity assay on MWCNTs-ORI gave IC50 of 7.29±0.5 μg/mL and ORI-F gave IC50 of 14.5±1.4 μg/mL. The antitumor effect studies in vivo showed that MWCNTs-ORI improved antitumor activity of ORI in comparison with ORI-F. The tumor inhibition ratio for MWCNTs-ORI (1.68×10-2 g·Kg−1·d−1 was 86.4%, higher than that of ORI-F (1.68×10-2 g·Kg−1·d−1 which was 39.2%. This can greatly improve the pharmaceutical efficiency and reduce potential side effects.

  9. Orbicularis oris musculomucosal flap for anterior palatal fistula

    Directory of Open Access Journals (Sweden)

    Tiwari V

    2006-01-01

    Full Text Available Anterior palatal fistulae or residual anterior clefts are a frequent problem following palatoplasty. Various techniques have been used to repair such fistulae, each having its own advantages and disadvantages. We have successfully used orbicularis oris musculomucosal flap to close anterior fistula and residual clefts in 25 patients. This study shows the superiority of this flap over other techniques because of its reliable blood supply, easy elevation and transfer to fistula site and finally because it is a single-stage procedure.

  10. Tetranectin Binds to the Kringle 1-4 Form of Angiostatin and Modifies Its Functional Activity

    DEFF Research Database (Denmark)

    Mogues, Tirsit; Etzerodt, Michael; Hall, Crystal

    2004-01-01

    influence cancer progression is by altering activities of plasminogen or the plasminogen fragment, angiostatin. Tetranectin was found to bind to the kringle 1-4 form of angiostatin (AST $;{\\text{K1-4}}$ ). In addition, tetranectin inhibited binding of plasminogen or AST $;{\\text{K1-4}}$ to extracellular...... matrix (ECM) deposited by endothelial cells. Finally, tetranectin partially counteracted the ability of AST $;{\\text{K1-4}}$ to inhibit proliferation of endothelial cells. This latter effect of tetranectin was specific for AST $;{\\text{K1-4}}$ since it did not counteract the antiproliferative activities...

  11. Adenovirus DNA binding protein inhibits SrCap-activated CBP and CREB-mediated transcription

    International Nuclear Information System (INIS)

    Xu Xiequn; Tarakanova, Vera; Chrivia, John; Yaciuk, Peter

    2003-01-01

    The SNF2-related CBP activator protein (SrCap) is a potent activator of transcription mediated by CBP and CREB. We have previously demonstrated that the Adenovirus 2 DNA Binding Protein (DBP) binds to SrCap and inhibits the transcription mediated by the carboxyl-terminal region of SrCap (amino acids 1275-2971). We report here that DBP inhibits the ability of full-length SrCap (1-2971) to activate transcription mediated by Gal-CREB and Gal-CBP. In addition, DBP also inhibits the ability of SrCap to enhance Protein Kinase A (PKA) activated transcription of the enkaphalin promoter. DBP was found to dramatically inhibit transcription of a mammalian two-hybrid system that was dependent on the interaction of SrCap and CBP binding domains. We also found that DBP has no effect on transcription mediated by a transcriptional activator that is not related to SrCap, indicating that our reported transcriptional inhibition is specific for SrCap and not due to nonspecific effects of DBP's DNA binding activity on the CAT reporter plasmid. Taken together, these results suggest a model in which DBP inhibits cellular transcription mediated by the interaction between SrCap and CBP

  12. Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study

    Science.gov (United States)

    Ariyaeifar, Mahnaz; Amiri Rudbari, Hadi; Sahihi, Mehdi; Kazemi, Zahra; Kajani, Abolghasem Abbasi; Zali-Boeini, Hassan; Kordestani, Nazanin; Bruno, Giuseppe; Gharaghani, Sajjad

    2018-06-01

    Eight enantiomerically pure halogenated Schiff base compounds were synthesized by reaction of halogenated salicylaldehydes with 3-Amino-1,2-propanediol (R or S) in water as green solvent at ambient temperature. All compounds were characterized by elemental analyses, NMR (1H and 13C), circular dichroism (CD) and FT-IR spectroscopy. FS-DNA binding studies of these compounds carried out by fluorescence quenching and UV-vis spectroscopy. The obtained results revealed that the ligands bind to DNA as: (Rsbnd ClBr) > (Rsbnd Cl2) > (Rsbnd Br2) > (Rsbnd I2) and (Ssbnd ClBr) > (Ssbnd Cl2) > (Ssbnd Br2) > (Ssbnd I2), indicating the effect of halogen on binding constant. In addition, DNA-binding constant of the Ssbnd and R-enantiomers are different from each other. The ligands can form halogen bonds with DNA that were confirmed by molecular docking. This method was also measured the bond distances and bond angles. The study of obtained data can have concluded that binding affinity of the ligands to DNA depends on strength of halogen bonds. The potential anticancer activity of ligands were also evaluated on MCF-7 and HeLa cancer cell lines by using MTT assay. The results showed that the anticancer activity and FS-DNA interaction is significantly dependent on the stereoisomers of Schiff base compounds as R-enantiomers displayed significantly higher activity than S-enantiomers. The molecular docking was also used to illustrate the specific DNA-binding of synthesized compounds and groove binding mode of DNA interaction was proposed for them. In addition, molecular docking results indicated that there are three types of bonds (Hsbnd and X-bond and hX-bond) between synthesized compounds and base pairs of DNA.

  13. Lipid-binding proteins modulate ligand-dependent trans-activation by peroxisome proliferator-activated receptors and localize to the nucleus as well as the cytoplasm

    DEFF Research Database (Denmark)

    Helledie, T; Antonius, M; Sorensen, R V

    2000-01-01

    Peroxisome proliferator-activated receptors (PPARs) are activated by a variety of fatty acids, eicosanoids, and hypolipidemic and insulin-sensitizing drugs. Many of these compounds bind avidly to members of a family of small lipid-binding proteins, the fatty acid-binding proteins (FABPs). Fatty...

  14. The Duffy binding protein (PkDBPαII) of Plasmodium knowlesi from Peninsular Malaysia and Malaysian Borneo show different binding activity level to human erythrocytes.

    Science.gov (United States)

    Lim, Khai Lone; Amir, Amirah; Lau, Yee Ling; Fong, Mun Yik

    2017-08-11

    The zoonotic Plasmodium knowlesi is a major cause of human malaria in Malaysia. This parasite uses the Duffy binding protein (PkDBPαII) to interact with the Duffy antigen receptor for chemokines (DARC) receptor on human and macaque erythrocytes to initiate invasion. Previous studies on P. knowlesi have reported distinct Peninsular Malaysia and Malaysian Borneo PkDBPαII haplotypes. In the present study, the differential binding activity of these haplotypes with human and macaque (Macaca fascicularis) erythrocytes was investigated. The PkDBPαII of Peninsular Malaysia and Malaysian Borneo were expressed on the surface of COS-7 cells and tested with human and monkey erythrocytes, with and without anti-Fy6 (anti-Duffy) monoclonal antibody treatment. Binding activity level was determined by counting the number of rosettes formed between the transfected COS-7 cells and the erythrocytes. Anti-Fy6 treatment was shown to completely block the binding of human erythrocytes with the transfected COS-7 cells, thus verifying the specific binding of human DARC with PkDBPαII. Interestingly, the PkDBPαII of Peninsular Malaysia displayed a higher binding activity with human erythrocytes when compared with the Malaysian Borneo PkDBPαII haplotype (mean number of rosettes formed = 156.89 ± 6.62 and 46.00 ± 3.57, respectively; P < 0.0001). However, no difference in binding activity level was seen in the binding assay using M. fascicularis erythrocytes. This study is the first report of phenotypic difference between PkDBPαII haplotypes. The biological implication of this finding is yet to be determined. Therefore, further studies need to be carried out to determine whether this differential binding level can be associated with severity of knowlesi malaria in human.

  15. Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, K.M.; Alderete, J.F.

    1984-08-01

    Lactoferrin acquisition and iron uptake by pathogenic Trichomonas vaginalis was examined. Saturation binding kinetics were obtained for trichomonads using increasing amounts of radioiodinated lactoferrin, while no significant binding by transferrin under similar conditions was achieved. Only unlabeled lactoferrin successfully and stoichiometrically competed with 125I-labeled lactoferrin binding. Time course studies showed maximal lactoferrin binding by 30 min at 37 degrees C. Data suggest no internalization of bound lactoferrin. The accumulation of radioactivity in supernatants after incubation of T. vaginalis with 125I-labeled lactoferrin and washing in PBS suggested the presence of low affinity sites for this host macromolecule. Scatchard analysis indicated the presence of 90,000 receptors per trichomonad with an apparent Kd of 1.0 microM. Two trichomonad lactoferrin binding proteins were identified by affinity chromatography and immunoprecipitation of receptor-ligand complexes. A 30-fold accumulation of iron was achieved using 59Fe-lactoferrin when compared to the steady state concentration of bound lactoferrin. The activity of pyruvate/ferrodoxin oxidoreductase, an enzyme involved in trichomonal energy metabolism, increased more than sixfold following exposure of the parasites to lactoferrin, demonstrating a biologic response to the receptor-mediated binding of lactoferrin. These data suggest that T. vaginalis possesses specific receptors for biologically relevant host proteins and that these receptors contribute to the metabolic processes of the parasites.

  16. Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors

    International Nuclear Information System (INIS)

    Peterson, K.M.; Alderete, J.F.

    1984-01-01

    Lactoferrin acquisition and iron uptake by pathogenic Trichomonas vaginalis was examined. Saturation binding kinetics were obtained for trichomonads using increasing amounts of radioiodinated lactoferrin, while no significant binding by transferrin under similar conditions was achieved. Only unlabeled lactoferrin successfully and stoichiometrically competed with 125I-labeled lactoferrin binding. Time course studies showed maximal lactoferrin binding by 30 min at 37 degrees C. Data suggest no internalization of bound lactoferrin. The accumulation of radioactivity in supernatants after incubation of T. vaginalis with 125I-labeled lactoferrin and washing in PBS suggested the presence of low affinity sites for this host macromolecule. Scatchard analysis indicated the presence of 90,000 receptors per trichomonad with an apparent Kd of 1.0 microM. Two trichomonad lactoferrin binding proteins were identified by affinity chromatography and immunoprecipitation of receptor-ligand complexes. A 30-fold accumulation of iron was achieved using 59Fe-lactoferrin when compared to the steady state concentration of bound lactoferrin. The activity of pyruvate/ferrodoxin oxidoreductase, an enzyme involved in trichomonal energy metabolism, increased more than sixfold following exposure of the parasites to lactoferrin, demonstrating a biologic response to the receptor-mediated binding of lactoferrin. These data suggest that T. vaginalis possesses specific receptors for biologically relevant host proteins and that these receptors contribute to the metabolic processes of the parasites

  17. Photo-Activated Localization Microscopy of Single Carbohydrate Binding Modules on Cellulose Nanofibers

    Science.gov (United States)

    Hor, Amy; Dagel, Daryl; Luu, Quocanh; Savaikar, Madhusudan; Ding, Shi-You; Smith, Steve

    2015-03-01

    Photo Activated Localization Microscopy (PALM) is used to conduct an in vivo study of the binding affinity of polysaccharide-specific Carbohydrate Binding Modules (CBMs) to insoluble cellulose substrates. Two families of CBMs, namely TrCBM1 and CtCBM3, were modified to incorporate photo-activatable mCherry fluorescent protein (PAmCherry), and exposed to highly crystalline Valonia cellulose nano-fibrils. The resulting PALM images show CBMs binding along the nano-fibril long axis in a punctuated linear array, localized with, on average, 10 nm precision. Statistical analysis of the binding events results in nearest neighbor distributions between CBMs. A comparison between TrCBM1 and CtCBM3 reveals a similarity in the nearest neighbor distribution peaks but differences in the overall binding density. The former is attributed to steric hindrance among the CBMs on the nano-fibril whereas the latter is attributed to differences in the CBMs' binding strength. These results are compared to similar distributions derived from TEM measurements of dried samples of CtCBM3-CdSs quantum dot bioconjugates and AFM images of CtCBM3-GFP bound to similar Valonia nano-fibrils. Funding provided by NSF MPS/DMR/BMAT Award # 1206908.

  18. DNA-binding activity of TNF-α inducing protein from Helicobacter pylori

    International Nuclear Information System (INIS)

    Kuzuhara, T.; Suganuma, M.; Oka, K.; Fujiki, H.

    2007-01-01

    Tumor necrosis factor-α (TNF-α) inducing protein (Tipα) is a carcinogenic factor secreted from Helicobacter pylori (H. pylori), mediated through both enhanced expression of TNF-α and chemokine genes and activation of nuclear factor-κB. Since Tipα enters gastric cancer cells, the Tipα binding molecules in the cells should be investigated. The direct DNA-binding activity of Tipα was observed by pull down assay using single- and double-stranded genomic DNA cellulose. The surface plasmon resonance assay, indicating an association between Tipα and DNA, revealed that the affinity of Tipα for (dGdC)10 is 2400 times stronger than that of del-Tipα, an inactive Tipα. This suggests a strong correlation between DNA-binding activity and carcinogenic activity of Tipα. And the DNA-binding activity of Tipα was first demonstrated with a molecule secreted from H. pylori

  19. LH-RH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation.

    Science.gov (United States)

    Clayton, R N; Shakespear, R A; Marshall, J C

    1978-06-01

    Purified bovine pituitary plasma membranes possess two specific LH-RH binding sites. The high affinity site (2.5 X 10(9) l/mol) has low capacity (9 X 10(-15) mol/mg membrane protein) while the low affinity site 6.1 X 10(5) l/mol) has a much higher capacity (1.1 X 10(-10) mol/mg). Specific LH-RH binding to plasma membranes is increased 8.5-fold during purification from homogenate whilst adenylate cyclase activity is enriched 7--8-fold. Distribution of specific LH-RH binding to sucrose density gradient interface fractions parallels that of adenylate cyclase activity. Mg2+ and Ca2+ inhibit specific [125I]LH-RH binding at micromolar concentrations. Synthetic LH-RH, up to 250 microgram/ml, failed to stimulate adenylase cyclase activity of the purified bovine membranes. Using a crude 10,800 g rat pituitary membrane preparation, LH-RH similarly failed to activate adenylate cyclase even in the presence of guanyl nucleotides. These data confirm the presence of LH-RH receptor sites on pituitary plasma membranes and suggest that LH-RH-induced gonadotrophin release may be mediated by mechanisms other than activation of adenylate cyclase.

  20. Antihelminthic benzimidazoles are novel HIF activators that prevent oxidative neuronal death via binding to tubulin.

    Science.gov (United States)

    Aleyasin, Hossein; Karuppagounder, Saravanan S; Kumar, Amit; Sleiman, Sama; Basso, Manuela; Ma, Thong; Siddiq, Ambreena; Chinta, Shankar J; Brochier, Camille; Langley, Brett; Haskew-Layton, Renee; Bane, Susan L; Riggins, Gregory J; Gazaryan, Irina; Starkov, Anatoly A; Andersen, Julie K; Ratan, Rajiv R

    2015-01-10

    Pharmacological activation of the adaptive response to hypoxia is a therapeutic strategy of growing interest for neurological conditions, including stroke, Huntington's disease, and Parkinson's disease. We screened a drug library with known safety in humans using a hippocampal neuroblast line expressing a reporter of hypoxia-inducible factor (HIF)-dependent transcription. Our screen identified more than 40 compounds with the ability to induce hypoxia response element-driven luciferase activity as well or better than deferoxamine, a canonical activator of hypoxic adaptation. Among the chemical entities identified, the antihelminthic benzimidazoles represented one pharmacophore that appeared multiple times in our screen. Secondary assays confirmed that antihelminthics stabilized the transcriptional activator HIF-1α and induced expression of a known HIF target gene, p21(cip1/waf1), in post-mitotic cortical neurons. The on-target effect of these agents in stimulating hypoxic signaling was binding to free tubulin. Moreover, antihelminthic benzimidazoles also abrogated oxidative stress-induced death in vitro, and this on-target effect also involves binding to free tubulin. These studies demonstrate that tubulin-binding drugs can activate a component of the hypoxic adaptive response, specifically the stabilization of HIF-1α and its downstream targets. Tubulin-binding drugs, including antihelminthic benzimidazoles, also abrogate oxidative neuronal death in primary neurons. Given their safety in humans and known ability to penetrate into the central nervous system, antihelminthic benzimidazoles may be considered viable candidates for treating diseases associated with oxidative neuronal death, including stroke.

  1. Binding of ferric ions is essential for the biological activity of glycine-extended gastrin

    International Nuclear Information System (INIS)

    Baldwin, G.S.; Pannequin, J.; Hollande, F.; Shulkes, A.

    2002-01-01

    Full text: Non-amidated gastrins, such as glycine-extended gastrin17 (Ggly), are now known to be biologically active. Ggly stimulates cell proliferation and migration, and was recently shown to bind two ferric ions with high affinity. The objective of the present work was to define the structure of Ggly for the first time, and to investigate the role of ferric ions in biological activity. Methods: The structure of Ggly, and the identity of the ammo acids that act as ferric ion ligands, were determined by NMR and fluorescence spectroscopy. The effect on the gastric epithelial cell line IMGE-5 of Ggly fragments, and of Ggy mutants with some or all of the five consecutive glutamate residues replaced by alanine, was measured in terms of cell proliferation, cell migration and phosphorylation of focal adhesion kinase. Results: Ggly adopts a well-defined loop stabilised by hydrophobic interactions between Leu5, Tyrl2, Trp 14 and Phe17. Studies with Ggly fragments indicated that ferric ions bind via the pentaglutamate sequence, which is necessary but not sufficient for full activity Selective replacement of some or all of the glutamates results in a reduction in ferric ion binding, and complete loss of biological activity. Conclusion: Our results are consistent with the hypothesis that ferric ion binding is necessary for biological activity

  2. Cholesterol Crystals Activate the Lectin Complement Pathway via Ficolin-2 and Mannose-Binding Lectin

    DEFF Research Database (Denmark)

    Pilely, Katrine; Rosbjerg, Anne; Genster, Ninette

    2016-01-01

    Cholesterol crystals (CC) play an essential role in the formation of atherosclerotic plaques. CC activate the classical and the alternative complement pathways, but the role of the lectin pathway is unknown. We hypothesized that the pattern recognition molecules (PRMs) from the lectin pathway bind...... CC and function as an upstream innate inflammatory signal in the pathophysiology of atherosclerosis. We investigated the binding of the PRMs mannose-binding lectin (MBL), ficolin-1, ficolin-2, and ficolin-3, the associated serine proteases, and complement activation products to CC in vitro using...... recognize CC and provides evidence for an important role for this pathway in the inflammatory response induced by CC in the pathophysiology of atherosclerosis....

  3. Characterization of tissue plasminogen activator binding proteins isolated from endothelial cells and other cell types

    International Nuclear Information System (INIS)

    Beebe, D.P.; Wood, L.L.; Moos, M.

    1990-01-01

    Human tissue plasminogen activator (t-PA) was shown to bind specifically to human osteosarcoma cells (HOS), and human epidermoid carcinoma cells (A-431 cells). Crosslinking studies with DTSSP demonstrated high molecular weight complexes (130,000) between 125 I-t-PA and cell membrane protein on human umbilical vein endothelial cells (HUVEC), HOS, and A-431 cells. A 48-65,000 molecular weight complex was demonstrated after crosslinking t-PA peptide (res. 7-20) to cells. Ligand blotting of cell lysates which had been passed over a t-PA affinity column revealed binding of t-PA to 54,000 and 95,000 molecular weight proteins. Several t-PA binding proteins were identified in immunopurified cell lysates, including tubulin beta chain, plasminogen activator inhibitor type 1 and single chain urokinase

  4. Molecular characterization of the receptor binding structure-activity relationships of influenza B virus hemagglutinin.

    Science.gov (United States)

    Carbone, V; Kim, H; Huang, J X; Baker, M A; Ong, C; Cooper, M A; Li, J; Rockman, S; Velkov, T

    2013-01-01

    Selectivity of α2,6-linked human-like receptors by B hemagglutinin (HA) is yet to be fully understood. This study integrates binding data with structure-recognition models to examine the impact of regional-specific sequence variations within the receptor-binding pocket on selectivity and structure activity relationships (SAR). The receptor-binding selectivity of influenza B HAs corresponding to either B/Victoria/2/1987 or the B/Yamagata/16/88 lineages was examined using surface plasmon resonance, solid-phase ELISA and gel-capture assays. Our SAR data showed that the presence of asialyl sugar units is the main determinant of receptor preference of α2,6 versus α2,3 receptor binding. Changes to the type of sialyl-glycan linkage present on receptors exhibit only a minor effect upon binding affinity. Homology-based structural models revealed that structural properties within the HA pocket, such as a glyco-conjugate at Asn194 on the 190-helix, sterically interfere with binding to avian receptor analogs by blocking the exit path of the asialyl sugars. Similarly, naturally occurring substitutions in the C-terminal region of the 190-helix and near the N-terminal end of the 140-loop narrows the horizontal borders of the binding pocket, which restricts access of the avian receptor analog LSTa. This study helps bridge the gap between ligand structure and receptor recognition for influenza B HA; and provides a consensus SAR model for the binding of human and avian receptor analogs to influenza B HA.

  5. Number of active transcription factor binding sites is essential for the Hes7 oscillator

    Directory of Open Access Journals (Sweden)

    de Angelis Martin

    2006-02-01

    Full Text Available Abstract Background It is commonly accepted that embryonic segmentation of vertebrates is regulated by a segmentation clock, which is induced by the cycling genes Hes1 and Hes7. Their products form dimers that bind to the regulatory regions and thereby repress the transcription of their own encoding genes. An increase of the half-life of Hes7 protein causes irregular somite formation. This was shown in recent experiments by Hirata et al. In the same work, numerical simulations from a delay differential equations model, originally invented by Lewis, gave additional support. For a longer half-life of the Hes7 protein, these simulations exhibited strongly damped oscillations with, after few periods, severely attenuated the amplitudes. In these simulations, the Hill coefficient, a crucial model parameter, was set to 2 indicating that Hes7 has only one binding site in its promoter. On the other hand, Bessho et al. established three regulatory elements in the promoter region. Results We show that – with the same half life – the delay system is highly sensitive to changes in the Hill coefficient. A small increase changes the qualitative behaviour of the solutions drastically. There is sustained oscillation and hence the model can no longer explain the disruption of the segmentation clock. On the other hand, the Hill coefficient is correlated with the number of active binding sites, and with the way in which dimers bind to them. In this paper, we adopt response functions in order to estimate Hill coefficients for a variable number of active binding sites. It turns out that three active transcription factor binding sites increase the Hill coefficient by at least 20% as compared to one single active site. Conclusion Our findings lead to the following crucial dichotomy: either Hirata's model is correct for the Hes7 oscillator, in which case at most two binding sites are active in its promoter region; or at least three binding sites are active, in which

  6. Ligand binding reduces SUMOylation of the peroxisome proliferator-activated receptor γ (PPARγ activation function 1 (AF1 domain.

    Directory of Open Access Journals (Sweden)

    Rolf Diezko

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPARγ is a ligand-activated nuclear receptor regulating adipogenesis, glucose homeostasis and inflammatory responses. The activity of PPARγ is controlled by post-translational modifications including SUMOylation and phosphorylation that affects its biological and molecular functions. Several important aspects of PPARγ SUMOylation including SUMO isoform-specificity and the impact of ligand binding on SUMOylation remain unresolved or contradictory. Here, we present a comprehensive study of PPARγ1 SUMOylation. We show that PPARγ1 can be modified by SUMO1 and SUMO2. Mutational analyses revealed that SUMOylation occurs exclusively within the N-terminal activation function 1 (AF1 domain predominantly at lysines 33 and 77. Ligand binding to the C-terminal ligand-binding domain (LBD of PPARγ1 reduces SUMOylation of lysine 33 but not of lysine 77. SUMOylation of lysine 33 and lysine 77 represses basal and ligand-induced activation by PPARγ1. We further show that lysine 365 within the LBD is not a target for SUMOylation as suggested in a previous report, but it is essential for full LBD activity. Our results suggest that PPARγ ligands negatively affect SUMOylation by interdomain communication between the C-terminal LBD and the N-terminal AF1 domain. The ability of the LBD to regulate the AF1 domain may have important implications for the evaluation and mechanism of action of therapeutic ligands that bind PPARγ.

  7. The sialic acid binding activity of the S protein facilitates infection by porcine transmissible gastroenteritis coronavirus

    Directory of Open Access Journals (Sweden)

    Enjuanes Luis

    2011-09-01

    Full Text Available Abstract Background Transmissible gastroenteritis virus (TGEV has a sialic acid binding activity that is believed to be important for enteropathogenicity, but that has so far appeared to be dispensable for infection of cultured cells. The aims of this study were to determine the effect of sialic acid binding for the infection of cultured cells under unfavorable conditions, and comparison of TGEV strains and mutants, as well as the avian coronavirus IBV concerning their dependence on the sialic acid binding activity. Methods The infectivity of different viruses was analyzed by a plaque assay after adsorption times of 5, 20, and 60 min. Prior to infection, cultured cells were either treated with neuraminidase to deplete sialic acids from the cell surface, or mock-treated. In a second approach, pre-treatment of the virus with porcine intestinal mucin was performed, followed by the plaque assay after a 5 min adsorption time. A student's t-test was used to verify the significance of the results. Results Desialylation of cells only had a minor effect on the infection by TGEV strain Purdue 46 when an adsorption period of 60 min was allowed for initiation of infection. However, when the adsorption time was reduced to 5 min the infectivity on desialylated cells decreased by more than 60%. A TGEV PUR46 mutant (HAD3 deficient in sialic acid binding showed a 77% lower titer than the parental virus after a 5 min adsorption time. After an adsorption time of 60 min the titer of HAD3 was 58% lower than that of TGEV PUR46. Another TGEV strain, TGEV Miller, and IBV Beaudette showed a reduction in infectivity after neuraminidase treatment of the cultured cells irrespective of the virion adsorption time. Conclusions Our results suggest that the sialic acid binding activity facilitates the infection by TGEV under unfavorable environmental conditions. The dependence on the sialic acid binding activity for an efficient infection differs in the analyzed TGEV strains.

  8. Iron-dependent gene expression in Actinomyces oris

    Directory of Open Access Journals (Sweden)

    Matthew P. Mulé

    2015-12-01

    Results: When A. oris was grown under iron-limiting conditions, the genes encoding iron/siderophore transporters fetA and sidD showed increased expression. One of these genes (sidD was mutated, and the sidD::Km strain exhibited a 50% reduction in growth in late log and stationary phase cells in media that contained iron. This growth defect was restored when the sidD gene was provided in a complemented strain. We were able to isolate the AmdR-encoding gene in seven clinical isolates of Actinomyces. When these protein sequences were aligned to the laboratory strain, there was a high degree of sequence similarity. Conclusions: The growth of the sidD::Km mutant in iron-replete medium mirrored the growth of the wild-type strain grown in iron-limiting medium, suggesting that the sidD::Km mutant was compromised in iron uptake. The known iron regulator AmdR is well conserved in clinical isolates of A. oris. This work provides additional insight into iron metabolism in this important oral microbe.

  9. Autolytic Activity and Plasma Binding Study of Aap, a Novel Minor Autolysin of Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Ramina Mahboobi

    2016-04-01

    Full Text Available Pneumococcal autolysins are enzymes involved in cell wall turnover and cellular division physiologically. They have been found to be involved in the pneumococcus pathogenesis. The aim of this study was to identify the autolytic activity of Spr1754 as a novel protein of Streptococcus pneumoniae. Moreover, the binding of the recombinant protein to plasma proteins was also determined. The spr1754 gene was amplified by PCR and cloned into the pET21a(+ prokaryotic expression vector. The constructed pET21a(+/spr1754 recombinant plasmid was transformed into E. coli Origami (DE3 and induced using IPTG. The recombinant protein of Spr1754 was purified by Ni-NTA affinity chromatography and confirmed by SDS-PAGE and Western blot analysis using anti-His tag monoclonal antibody. Autolytic activity and the ability of the recombinant protein in binding to plasma proteins were performed using zymogram analysis and western blot, respectively. The spr1754 with expected size was cloned and overexpressed in Escherichia coli Origami (DE3, successfully. After purification of the Spr1754 recombinant protein, the autolytic activity was observed by zymography. Of the four plasma proteins used in this study, binding of lactoferrin to Spr1754 recombinant protein was shown. The Spr1754 recombinant protein has a bifunctional activity, i.e., as being autolysin and lactoferrin binding and designated as Aap (autolytic/ adhesion/ pneumococcus. Nevertheless, characterization of the Aap needs to be followed using gene inactivation and cell wall localization.

  10. The minor binding pocket: a major player in 7TM receptor activation

    DEFF Research Database (Denmark)

    Rosenkilde, Mette Marie; Benned-Jensen, Tau; Frimurer, Thomas M.

    2010-01-01

    residue located in one of two adjacent positions. Here we argue that this minor binding pocket is important for receptor activation. Functional coupling of the receptors seems to be mediated through the hydrogen bond network located between the intracellular segments of these TMs, with the allosteric...... targeted in the development of functionally biased drugs....

  11. REPLACEMENT OF TRYPTOPHAN RESIDUES IN HALOALKANE DEHALOGENASE REDUCES HALIDE BINDING AND CATALYTIC ACTIVITY

    NARCIS (Netherlands)

    KENNES, C; PRIES, F; KROOSHOF, GH; BOKMA, E; Kingma, Jacob; JANSSEN, DB

    1995-01-01

    Haloalkane dehalogenase catalyzes the hydrolytic cleavage of carbon-halogen bonds in short-chain haloalkanes. Two tryptophan residues of the enzyme (Trp125 and Trp175) form a halide-binding site in the active-site cavity, and were proposed to play a role in catalysis. The function of these residues

  12. Substrate binding in the active site of cytochrome P450cam

    NARCIS (Netherlands)

    Swart, M.; Groenhof, A.R.; Ehlers, A.W.; Lammertsma, K.

    2005-01-01

    We have studied the binding of camphor in the active site of cytochrome P450cam with density functional theory (DFT) calculations. A strong hydrogen bond (>6 kcal/mol) to a tyrosine residue (Tyr96) is observed, that may account for the high specificity of the reaction taking place. The DFT

  13. Patterns of privilege: A total cohort analysis of admission and academic outcomes for Māori, Pacific and non-Māori non-Pacific health professional students.

    Science.gov (United States)

    Wikaire, Erena; Curtis, Elana; Cormack, Donna; Jiang, Yannan; McMillan, Louise; Loto, Rob; Reid, Papaarangi

    2016-10-07

    Tertiary institutions are struggling to ensure equitable academic outcomes for indigenous and ethnic minority students in health professional study. This demonstrates disadvantaging of ethnic minority student groups (whereby Indigenous and ethnic minority students consistently achieve academic outcomes at a lower level when compared to non-ethnic minority students) whilst privileging non-ethnic minority students and has important implications for health workforce and health equity priorities. Understanding the reasons for academic inequities is important to improve institutional performance. This study explores factors that impact on academic success for health professional students by ethnic group. Kaupapa Māori methodology was used to analyse data for 2686 health professional students at the University of Auckland in 2002-2012. Data were summarised for admission variables: school decile, Rank Score, subject credits, Auckland school, type of admission, and bridging programme; and academic outcomes: first-year grade point average (GPA), first-year passed all courses, year 2 - 4 programme GPA, graduated, graduated in the minimum time, and composite completion for Māori, Pacific, and non-Māori non-Pacific (nMnP) students. Statistical tests were used to identify significant differences between the three ethnic groupings. Māori and Pacific students were more likely to attend low decile schools (27 % Māori, 33 % Pacific vs. 5 % nMnP, p workforce and health equity goals, tertiary institution staff should understand the realities and challenges faced by Māori and Pacific students and ensure programme delivery meets the unique needs of these students. Ethnic disparities in academic outcomes show patterns of privilege and should be alarming to tertiary institutions. If institutions are serious about achieving equitable outcomes for Māori and Pacific students, major institutional changes are necessary that ensure the unique needs of Māori and Pacific students

  14. Characterization of DNA binding, transcriptional activation, and regulated nuclear association of recombinant human NFATp

    Directory of Open Access Journals (Sweden)

    Seto Anita G

    2000-11-01

    Full Text Available Abstract Background NFATp is one member of a family of transcriptional activators whose nuclear accumulation and hence transcriptional activity is regulated in mammalian cells. Human NFATp exists as a phosphoprotein in the cytoplasm of naive T cells. Upon antigen stimulation, NFATp is dephosphorylated, accumulates in nuclei, and functions to regulate transcription of genes including those encoding cytokines. While the properties of the DNA binding domain of NFATp have been investigated in detail, biochemical studies of the transcriptional activation and regulated association with nuclei have remained unexplored because of a lack of full length, purified recombinant NFATp. Results We developed methods for expressing and purifying full length recombinant human NFATp that has all of the properties known to be associated with native NFATp. The recombinant NFATp binds DNA on its own and cooperatively with AP-1 proteins, activates transcription in vitro, is phosphorylated, can be dephosphorylated by calcineurin, and exhibits regulated association with nuclei in vitro. Importantly, activation by recombinant NFATp in a reconstituted transcription system required regions of the protein outside of the central DNA binding domain. Conclusions We conclude that NFATp is a bona fide transcriptional activator. Moreover, the reagents and methods that we developed will facilitate future studies on the mechanisms of transcriptional activation and nuclear accumulation by NFATp, a member of an important family of transcriptional regulatory proteins.

  15. Development concepts of a Smart Cyber Operating Theater (SCOT) using ORiN technology.

    Science.gov (United States)

    Okamoto, Jun; Masamune, Ken; Iseki, Hiroshi; Muragaki, Yoshihiro

    2018-02-23

    Currently, networking has not progressed in the treatment room. Almost every medical device in the treatment room operates as a stand-alone device. In this project, we aim to develop a networked operating room called "Smart Cyber Operating Theater (SCOT)". Medical devices are connected using Open Resource interface for the Network (ORiN) technology. In this paper, we describe the concept of the SCOT project. SCOT is integrated using the communication interface ORiN, which was originally developed for industry. One feature of ORiN is that the system can be constructed flexibly. ORiN creates abstracts of the same type of devices and increases the robustness of the system for device exchange. By using ORiN technology, we are developing new applications, such as decision-making navigation or a precision guided treatment system.

  16. Selective metal binding to Cys-78 within endonuclease V causes an inhibition of catalytic activities without altering nontarget and target DNA binding

    International Nuclear Information System (INIS)

    Prince, M.A.; Friedman, B.; Gruskin, E.A.; Schrock, R.D. III; Lloyd, R.S.

    1991-01-01

    T4 endonuclease V is a pyrimidine dimer-specific DNA repair enzyme which has been previously shown not to require metal ions for either of its two catalytic activities or its DNA binding function. However, we have investigated whether the single cysteine within the enzyme was able to bind metal salts and influence the various activities of this repair enzyme. A series of metals (Hg2+, Ag+, Cu+) were shown to inactivate both endonuclease Vs pyrimidine dimer-specific DNA glycosylase activity and the subsequent apurinic nicking activity. The binding of metal to endonuclease V did not interfere with nontarget DNA scanning or pyrimidine dimer-specific binding. The Cys-78 codon within the endonuclease V gene was changed by oligonucleotide site-directed mutagenesis to Thr-78 and Ser-78 in order to determine whether the native cysteine was directly involved in the enzyme's DNA catalytic activities and whether the cysteine was primarily responsible for the metal binding. The mutant enzymes were able to confer enhanced ultraviolet light (UV) resistance to DNA repair-deficient Escherichia coli at levels equal to that conferred by the wild type enzyme. The C78T mutant enzyme was purified to homogeneity and shown to be catalytically active on pyrimidine dimer-containing DNA. The catalytic activities of the C78T mutant enzyme were demonstrated to be unaffected by the addition of Hg2+ or Ag+ at concentrations 1000-fold greater than that required to inhibit the wild type enzyme. These data suggest that the cysteine is not required for enzyme activity but that the binding of certain metals to that amino acid block DNA incision by either preventing a conformational change in the enzyme after it has bound to a pyrimidine dimer or sterically interfering with the active site residue's accessibility to the pyrimidine dimer

  17. RPA-Binding Protein ETAA1 Is an ATR Activator Involved in DNA Replication Stress Response.

    Science.gov (United States)

    Lee, Yuan-Cho; Zhou, Qing; Chen, Junjie; Yuan, Jingsong

    2016-12-19

    ETAA1 (Ewing tumor-associated antigen 1), also known as ETAA16, was identified as a tumor-specific antigen in the Ewing family of tumors. However, the biological function of this protein remains unknown. Here, we report the identification of ETAA1 as a DNA replication stress response protein. ETAA1 specifically interacts with RPA (Replication protein A) via two conserved RPA-binding domains and is therefore recruited to stalled replication forks. Interestingly, further analysis of ETAA1 function revealed that ETAA1 participates in the activation of ATR signaling pathway via a conserved ATR-activating domain (AAD) located near its N terminus. Importantly, we demonstrate that both RPA binding and ATR activation are required for ETAA1 function at stalled replication forks to maintain genome stability. Therefore, our data suggest that ETAA1 is a new ATR activator involved in replication checkpoint control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Sulfhydryl group content of chicken progesterone receptor: effect of oxidation on DNA binding activity

    International Nuclear Information System (INIS)

    Peleg, S.; Schrader, W.T.; O'Malley, B.W.

    1988-01-01

    DNA binding activity of chicken progesterone receptor B form (PRB) and A form (PRA) has been examined. This activity is strongly dependent upon the presence of thiols in the buffer. Stability studies showed that PRB was more sensitive to oxidation that was PRA. Receptor preparations were fractionated by DNA-cellulose chromatography to DNA-positive and DNA-negative subpopulations, and sulfhydryl groups were quantified on immunopurified receptor by labeling with [ 3 H]-N-ethylmaleimide. Labeling of DNA-negative receptors with [ 3 H]-N-ethylmaleimide showed 21-23 sulfhydryl groups on either PRA or PRB form when the proteins were reduced and denatured. A similar number was seen without reduction if denatured DNA-positive receptor species were tested. In contrast, the DNA-negative PRB had only 10-12 sulfhydryl groups detectable without reduction. A similar number (12-13 sulfhydryl groups) was found for PRA species that lost DNA binding activity after exposure to a nonreducing environment in vitro. The authors conclude that the naturally occurring receptor forms unable to bind to DNA, as well as receptor forms that have lost DNA binding activity due to exposure to nonreducing environment in vitro, contain 10-12 oxidized cysteine residues, likely present as disulfide bonds. Since they were unable to reduce the disulfide bonds when the native DNA-negative receptor proteins were treated with dithiothreitol (DTT), they speculate that irreversible loss of DNA binding activity of receptor in vitro is due to oxidation of cysteine residues that are not accessible to DTT in the native state

  19. General description and first results with the ORIS-LMRI 4 π γ metering chamber

    International Nuclear Information System (INIS)

    Tejera R, A.; Becerril V, A.; Cortes P, A.

    1990-04-01

    A problem that present the ionization chambers is that the response for the radiation is global, that is to say that it cannot discriminate against selectively the relating responses at different energies, if these impact simultaneously in the active volume. This is a reason to calibrate the chambers, if is possible, with gamma monoenergetic emitting and by average calculations to complete the response curve with gamma emitting of well-known yields. To obtain the calibration coefficients and may used them, it is necessary that so much the standardized radioisotopes as the solutions by calibrating, are contained in vessels with the same geometry and the same quantity. In the exposed case, pattern solutions of 5 ml were used contained in glass cruets of 10 ml. The problem solutions are contained in same cruets to those of the patterns. The first results obtained with the ORIS-LMRI 4 π γ metering chamber are presented. (Author)

  20. Allosteric activation of cytochrome P450 3A4 by efavirenz facilitates midazolam binding.

    Science.gov (United States)

    Ichikawa, Tomohiko; Tsujino, Hirofumi; Miki, Takahiro; Kobayashi, Masaya; Matsubara, Chiaki; Miyata, Sara; Yamashita, Taku; Takeshita, Kohei; Yonezawa, Yasushige; Uno, Tadayuki

    2017-12-18

    1. The purpose of this study is to investigate the heteroactivation mechanism of CYP3A4 by efavirenz, which enhances metabolism of midazolam in vivo, in terms of its binding to CYP3A4 with in vitro spectroscopic methods. 2. Efavirenz exhibited a type II spectral change with binding to CYP3A4 indicating a possible inhibitor. Although dissociation constant (K d ) was approximated as 520 μM, efavirenz enhanced binding affinity of midazolam as a co-existing drug with an estimated iK d value of 5.6 µM which is comparable to a clinical concentration. 3. Efavirenz stimulated the formation of 1'-hydroxymidazolam, and the product formation rate (V max ) concentration-dependently increased without changing the K m . Besides, an efavirenz analogue, [6-chloro-1,4-dihydro-4-(1-pentynyl)-4-(trifluoromethyl)-2H-3,1-benzoxazin-2-one] (efavirenz impurity) slightly facilitated the binding affinity of midazolam in a concentration-dependent manner. These results propose that efavirenz affects midazolam-binding via binding to the peripheral site which is apart from the active site of CYP3A4. 4. A molecular dynamics simulation also suggested the bound-efavirenz was repositioned to effector-binding site. As a consequence, our spectroscopic studies clarified the heteroactivation of CYP3A4 caused by efavirenz with a proper affinity to the peripheral site, and we concluded the method can be a useful tool for characterising the potential for drug-drug interactions.

  1. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity.

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H; Miller, Katherine H; Marqusee, Susan; Keck, James L

    2015-06-05

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity*

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L.

    2015-01-01

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. PMID:25903123

  3. Protein S binding to human endothelial cells is required for expression of cofactor activity for activated protein C

    NARCIS (Netherlands)

    Hackeng, T. M.; Hessing, M.; van 't Veer, C.; Meijer-Huizinga, F.; Meijers, J. C.; de Groot, P. G.; van Mourik, J. A.; Bouma, B. N.

    1993-01-01

    An important feedback mechanism in blood coagulation is supplied by the protein C/protein S anticoagulant pathway. In this study we demonstrate that the binding of human protein S to cultured human umbilical vein endothelial cells (HUVECs) is required for the expression of cofactor activity of

  4. M-ficolin, an innate immune defence molecule, binds patterns of acetyl groups and activates complement

    DEFF Research Database (Denmark)

    Frederiksen, Pernille Dorthea; Thiel, Steffen; Larsen, Claus Bindslev

    2005-01-01

    Ficolins play a role in the innate immune defence as pathogen-associated molecular pattern recognition molecules. Three ficolins are found in humans: H-ficolin, L-ficolin and M-ficolin. L-ficolin and H-ficolin circulate in blood in complexes with mannan-binding lectin-associated serine proteases...... (MASPs) and are capable of activating the complement system. L-ficolin shows affinity for acetylated compounds and binds to various capsulated strains of bacteria. H-ficolin has been shown to bind Aerococcus viridans. Less is known about M-ficolin, but it is thought to be present only on monocytes. We...... system. We developed a monoclonal rat anti-human-M/L-ficolin antibody and verified by flow cytometric analysis the presence of ficolin on the surface of peripheral blood monocytes....

  5. Locomotor activity and catecholamine receptor binding in adult normotensive and spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Hellstrand, K.; Engel, J.

    1980-01-01

    The binding of 3 H-WB 4101, an α 1 -adrenoceptor antagonist, the membranes of the cerebral cortex, the hypothalamus, and the lower brainstem was examined in adult spontaneously hypertensive (SH) rats and in normotensive Wistar Kyoto (WK) controls. The specific binding of 3 H-WB 4101 (0.33 nM) was significantly higher in homogenates from the cerebral cortex of SH rats as compared to WK rats. No differences were detected between SH and WK rats in the specific binding of 3 H-spiroperidol (0.25 nM), a dopamine receptor antagonist, to membranes from the corpus striatum and the limbic forebrain. The locomotor activity was significantly higher in SH rats as compared to WK controls, in all probability due to a lack of habituation to environmental change. It is suggested that the high reactivity of SH rats is related to a disfunction in the noradrenergic neurons in the central nervous system. (author)

  6. Characterizing Active Pharmaceutical Ingredient Binding to Human Serum Albumin by Spin-Labeling and EPR Spectroscopy.

    Science.gov (United States)

    Hauenschild, Till; Reichenwallner, Jörg; Enkelmann, Volker; Hinderberger, Dariush

    2016-08-26

    Drug binding to human serum albumin (HSA) has been characterized by a spin-labeling and continuous-wave (CW) EPR spectroscopic approach. Specifically, the contribution of functional groups (FGs) in a compound on its albumin-binding capabilities is quantitatively described. Molecules from different drug classes are labeled with EPR-active nitroxide radicals (spin-labeled pharmaceuticals (SLPs)) and in a screening approach CW-EPR spectroscopy is used to investigate HSA binding under physiological conditions and at varying ratios of SLP to protein. Spectral simulations of the CW-EPR spectra allow extraction of association constants (KA ) and the maximum number (n) of binding sites per protein. By comparison of data from 23 SLPs, the mechanisms of drug-protein association and the impact of chemical modifications at individual positions on drug uptake can be rationalized. Furthermore, new drug modifications with predictable protein binding tendency may be envisaged. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Quantitative ligand and receptor binding studies reveal the mechanism of interleukin-36 (IL-36) pathway activation.

    Science.gov (United States)

    Zhou, Li; Todorovic, Viktor; Kakavas, Steve; Sielaff, Bernhard; Medina, Limary; Wang, Leyu; Sadhukhan, Ramkrishna; Stockmann, Henning; Richardson, Paul L; DiGiammarino, Enrico; Sun, Chaohong; Scott, Victoria

    2018-01-12

    IL-36 cytokines signal through the IL-36 receptor (IL-36R) and a shared subunit, IL-1RAcP (IL-1 receptor accessory protein). The activation mechanism for the IL-36 pathway is proposed to be similar to that of IL-1 in that an IL-36R agonist (IL-36α, IL-36β, or IL-36γ) forms a binary complex with IL-36R, which then recruits IL-1RAcP. Recent studies have shown that IL-36R interacts with IL-1RAcP even in the absence of an agonist. To elucidate the IL-36 activation mechanism, we considered all possible binding events for IL-36 ligands/receptors and examined these events in direct binding assays. Our results indicated that the agonists bind the IL-36R extracellular domain with micromolar affinity but do not detectably bind IL-1RAcP. Using surface plasmon resonance (SPR), we found that IL-1RAcP also does not bind IL-36R when no agonist is present. In the presence of IL-36α, however, IL-1RAcP bound IL-36R strongly. These results suggested that the main pathway to the IL-36R·IL-36α·IL-1RAcP ternary complex is through the IL-36R·IL-36α binary complex, which recruits IL-1RAcP. We could not measure the binding affinity of IL-36R to IL-1RAcP directly, so we engineered a fragment crystallizable-linked construct to induce IL-36R·IL-1RAcP heterodimerization and predicted the binding affinity during a complete thermodynamic cycle to be 74 μm The SPR analysis also indicated that the IL-36R antagonist IL-36Ra binds IL-36R with higher affinity and a much slower off rate than the IL-36R agonists, shedding light on IL-36 pathway inhibition. Our results reveal the landscape of IL-36 ligand and receptor interactions, improving our understanding of IL-36 pathway activation and inhibition. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    Energy Technology Data Exchange (ETDEWEB)

    Matthew, E.; Parfitt, A.G.; Sugden, D.; Engelhardt, D.L.; Zimmerman, E.A.; Klein, D.C.

    1984-02-01

    Studies of (/sup 3/H)diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot (Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture). Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the (/sup 3/H)diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT.

  9. Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Rosenkilde, Mette Marie

    2014-01-01

    and surveillance. Chemokines are a group of 8-12 kDa large peptides with a secondary structure consisting of a flexible N-terminus and a core-domain usually stabilized by two conserved disulfide bridges. They mainly interact with the extracellular domains of their cognate 7TM receptors. Affinityand activity......-contributing interactions are attributed to different domains and known to occur in two steps. Here, knowledge on chemokine and receptor domains involved in the first binding-step and the second activation-step is reviewed. A mechanism comprising at least two steps seems consistent; however, several intermediate...... interactions possibly occur, resulting in a multi-step process, as recently proposed for other 7TM receptors. Overall, the N-terminus of chemokine receptors is pivotal for binding of all chemokines. During receptor activation, differences between the two major chemokine subgroups occur, as CC-chemokines mainly...

  10. 4-Aminoquinoline-pyrimidine hybrids: synthesis, antimalarial activity, heme binding and docking studies.

    Science.gov (United States)

    Kumar, Deepak; Khan, Shabana I; Tekwani, Babu L; Ponnan, Prija; Rawat, Diwan S

    2015-01-07

    A series of novel 4-aminoquinoline-pyrimidine hybrids has been synthesized and evaluated for their antimalarial activity. Several compounds showed promising in vitro antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. Selected compound 7g exhibited significant suppression of parasitemia in the in vivo assay. The heme binding studies were conducted to determine the mode of action of these hybrid molecules. These compounds form a stable 1:1 complex with hematin suggesting that heme may be one of the possible targets of these hybrids. The interaction of these conjugate hybrids was also investigated by the molecular docking studies in the binding site of PfDHFR. The pharmacokinetic property analysis of best active compounds was also studied using ADMET prediction. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Direct binding and activation of protein kinase C isoforms by steroid hormones.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2008-10-01

    The non-genomic action of steroid hormones regulates a wide variety of cellular responses including regulation of ion transport, cell proliferation, migration, death and differentiation. In order to achieve such plethora of effects steroid hormones utilize nearly all known signal transduction pathways. One of the key signalling molecules regulating the non-genomic action of steroid hormones is protein kinase C (PKC). It is thought that rapid action of steroids hormones results from the activation of plasma membrane receptors; however, their molecular identity remains elusive. In recent years, an increasing number of studies have pointed at the selective binding and activation of specific PKC isoforms by steroid hormones. This has led to the hypothesis that PKC could act as a receptor as well as a transducer of the non-genomic effects of these hormones. In this review we summarize the current knowledge of the direct binding and activation of PKC by steroid hormones.

  12. TAF(II)170 interacts with the concave surface of TATA-binding protein to inhibit its DNA binding activity.

    Science.gov (United States)

    Pereira, L A; van der Knaap, J A; van den Boom, V; van den Heuvel, F A; Timmers, H T

    2001-11-01

    The human RNA polymerase II transcription factor B-TFIID consists of TATA-binding protein (TBP) and the TBP-associated factor (TAF) TAF(II)170 and can rapidly redistribute over promoter DNA. Here we report the identification of human TBP-binding regions in human TAF(II)170. We have defined the TBP interaction domain of TAF(II)170 within three amino-terminal regions: residues 2 to 137, 290 to 381, and 380 to 460. Each region contains a pair of Huntington-elongation-A subunit-Tor repeats and exhibits species-specific interactions with TBP family members. Remarkably, the altered-specificity TBP mutant (TBP(AS)) containing a triple mutation in the concave surface is defective for binding the TAF(II)170 amino-terminal region of residues 1 to 504. Furthermore, within this region the TAF(II)170 residues 290 to 381 can inhibit the interaction between Drosophila TAF(II)230 (residues 2 to 81) and TBP through competition for the concave surface of TBP. Biochemical analyses of TBP binding to the TATA box indicated that TAF(II)170 region 290-381 inhibits TBP-DNA complex formation. Importantly, the TBP(AS) mutant is less sensitive to TAF(II)170 inhibition. Collectively, our results support a mechanism in which TAF(II)170 induces high-mobility DNA binding by TBP through reversible interactions with its concave DNA binding surface.

  13. Autodisplay of an avidin with biotin-binding activity on the surface of Escherichia coli.

    Science.gov (United States)

    Pardavé-Alejandre, H D; Alvarado-Yaah, J E; Pompa-Mera, E N; Muñoz-Medina, J E; Sárquiz-Martínez, B; Santacruz-Tinoco, C E; Manning-Cela, R G; Ortíz-Navarrete, V; López-Macías, C; González-Bonilla, C R

    2018-03-01

    To display a recombinant avidin fused to the autotransporter ShdA to bind biotinylated molecules on the surface of Escherichia coli. Two chimeric protein constructs containing avidin fused to the autotransporter ShdA were expressed on the surface of Escherichia coli DH5α. One fusion protein contained 476 amino acids of the ShdA α and β domains, whereas the second consisted of a 314 amino acid from α and truncated β domains. Protein production was verified by SDS-PAGE using an antibody to the molecular FLAG-tag. The surface display of the avidin-shdA fusion protein was confirmed by confocal microscopy and flow cytometry analysis, and the biotin-binding activity was evaluated by fluorescence microscopy and flow cytometry using biotin-4-fluorescein and biotinylated-ovalbumin (OVA). Expression of a recombinant avidin with biotin-binding activity on the surface of E. coli was achieved using the autotransporter ShdA. This system is an alternative to bind biotinylated molecules to E. coli.

  14. CINPA1 binds directly to constitutive androstane receptor and inhibits its activity.

    Science.gov (United States)

    Cherian, Milu T; Chai, Sergio C; Wright, William C; Singh, Aman; Alexandra Casal, Morgan; Zheng, Jie; Wu, Jing; Lee, Richard E; Griffin, Patrick R; Chen, Taosheng

    2018-03-31

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that regulate the expression of drug-metabolizing enzymes and efflux transporters. CAR activation promotes drug elimination, thereby reducing therapeutic effectiveness, or causes adverse drug effects via toxic metabolites. CAR inhibitors could be used to attenuate these adverse drug effects. CAR and PXR share ligands and target genes, confounding the understanding of the regulation of receptor-specific activity. We previously identified a small-molecule inhibitor, CINPA1, that inhibits CAR (without activating PXR at lower concentrations) by altering CAR-coregulator interactions and reducing CAR recruitment to DNA response elements of regulated genes. However, solid evidence was not presented for the direct binding of CINPA1 to CAR. In this study, we demonstrate direct interaction of CINPA1 with the CAR ligand-binding domain (CAR-LBD) and identify key residues involved in such interactions through a combination of biophysical and computational methods. We found that CINPA1 resides in the ligand-binding pocket to stabilize the CAR-LBD in a more rigid, less fluid state. Molecular dynamics simulations, together with our previously reported docking model, enabled us to predict which CAR residues were critical for interactions with CINPA1. The importance of these residues for CINPA1 binding were then validated by directed mutations and testing the mutant CAR proteins in transcription reporter and coregulatory interaction assays. We demonstrated strong hydrogen bonding of CINPA1 with N165 and H203 and identified other residues involved in hydrophobic contacts with CINPA1. Overall, our data confirm that CINPA1 directly binds to CAR. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Functional importance of the DNA binding activity of Candida albicans Czf1p.

    Directory of Open Access Journals (Sweden)

    Ivana Petrovska

    Full Text Available The human opportunistic pathogen Candida albicans undergoes a reversible morphological transition between the yeast and hyphal states in response to a variety of signals. One such environmental trigger is growth within a semisolid matrix such as agar medium. This growth condition is of interest because it may mimic the growth of C. albicans in contact with host tissue during infection. During growth within a semisolid matrix, hyphal growth is positively regulated by the transcriptional regulator Czf1p and negatively by a second key transcriptional regulator, Efg1p. Genetic studies indicate that Czf1p, a member of the zinc-cluster family of transcriptional regulators, exerts its function by opposing the inhibitory influence of Efg1p on matrix-induced filamentous growth. We examined the importance of the two known activities of Czf1p, DNA-binding and interaction with Efg1p. We found that the two activities were separable by mutation allowing us to demonstrate that the DNA-binding activity of Czf1p was essential for its role as a positive regulator of morphogenesis. Surprisingly, however, interactions with Efg1p appeared to be largely dispensable. Our studies provide the first evidence of a key role for the DNA-binding activity of Czf1p in the morphological yeast-to-hyphal transition triggered by matrix-embedded growth.

  16. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity.

    Science.gov (United States)

    Nagasawa, Hideko; Uto, Yoshihiro; Sasaki, Hideyuki; Okamura, Natsuko; Murakami, Aya; Kubo, Shinichi; Kirk, Kenneth L; Hori, Hitoshi

    2005-01-01

    The Gc protein (human group-specific component (Gc), a vitamin D-binding protein or Gc globulin), has important physiological functions that include involvement in vitamin D transport and storage, scavenging of extracellular G-actin, enhancement of the chemotactic activity of C5a for neutrophils in inflammation and macrophage activation (mediated by a GalNAc-modified Gc protein (GcMAF)). In this review, the structure and function of the Gc protein is focused on especially with regard to Gc genotyping and GcMAF precursor activity. A discussion of the research strategy "GcMAF as a target for drug discovery" is included, based on our own research.

  17. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP)

    International Nuclear Information System (INIS)

    Li, Ming V.; Chen, Weiqin; Harmancey, Romain N.; Nuotio-Antar, Alli M.; Imamura, Minako; Saha, Pradip; Taegtmeyer, Heinrich; Chan, Lawrence

    2010-01-01

    Carbohydrate response element binding protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here, we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressed GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose-phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP.

  18. DnaA protein DNA-binding domain binds to Hda protein to promote inter-AAA+ domain interaction involved in regulatory inactivation of DnaA.

    Science.gov (United States)

    Keyamura, Kenji; Katayama, Tsutomu

    2011-08-19

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis.

  19. DnaA Protein DNA-binding Domain Binds to Hda Protein to Promote Inter-AAA+ Domain Interaction Involved in Regulatory Inactivation of DnaA*

    Science.gov (United States)

    Keyamura, Kenji; Katayama, Tsutomu

    2011-01-01

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis. PMID:21708944

  20. Electromyographic analysis of superior orbicularis oris muscle function in children surgically treated for unilateral complete cleft lip and palate.

    Science.gov (United States)

    Szyszka-Sommerfeld, Liliana; Woźniak, Krzysztof; Matthews-Brzozowska, Teresa; Kawala, Beata; Mikulewicz, Marcin

    2017-09-01

    The aim of this study was to assess the electrical activity of the superior orbicularis oris muscle in children surgically treated for unilateral complete cleft lip and palate (UCCLP). The sample comprised 45 patients 6.38-12.68 years of age with UCCLP and 40 subjects 6.61-11.71 years of age with no clefts. Electromyographical (EMG) recordings were taken with a DAB-Bluetooth Instrument (Zebris Medical GmbH, Germany) in the rest position and during saliva swallowing, lip protrusion and reciprocal compression of the lips, as well as while producing the phonemes /p/, /b/, and /m/ combined with the vowel /a/. The electrical activity of the upper lip during saliva swallowing and lip compression was significantly greater in the cleft group. Similar resting level activity was observed in both groups. During the production of the /p/, /b/, and /m/ phonemes combined with the vowel /a/ the results showed no significant differences in the EMG activity between children with UCCLP and noncleft subjects. Patients with UCCLP have abnormal upper lip function characterized by increased activity of the superior orbicularis oris muscle during saliva swallowing and lip compression, and this may affect facial morphology. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Grades of 43 Fish Species in Japan Based on IgE-binding Activity

    Directory of Open Access Journals (Sweden)

    Harumi Koyama

    2006-01-01

    Conclusions: A correlation was observed between IgE levels and expression of symptoms after fish ingestion. High consumption of salmon, tuna, scad (including saurel, skipper, yellowtail, sardine, bonita and mackerel in Japan might be the cause of the high IgE-binding activity of these species. The grades of fish species consumed widely in Japan are likely to be useful for nutritional instruction of fish-allergic patients.

  2. Enhanced exo-inulinase activity and stability by fusion of an inulin-binding module.

    Science.gov (United States)

    Zhou, Shun-Hua; Liu, Yuan; Zhao, Yu-Juan; Chi, Zhe; Chi, Zhen-Ming; Liu, Guang-Lei

    2016-09-01

    In this study, an inulin-binding module from Bacillus macerans was successfully fused to an exo-inulinase from Kluyveromyces marxianus, creating a hybrid functional enzyme. The recombinant exo-inulinase (rINU), the hybrid enzyme (rINUIBM), and the recombinant inulin-binding module (rIBM) were, respectively, heterologously expressed and biochemically characterized. It was found that both the inulinase activity and the catalytic efficiency (k cat/K m(app)) of the rINUIBM were considerably higher than those of rINU. Though the rINU and the rINUIBM shared the same optimum pH of 4.5, the optimum temperature of the rINUIBM (60 °C) was 5 °C higher than that of the rINU. Notably, the fused IBM significantly enhanced both the pH stability and the thermostability of the rINUIBM, suggesting that the rINUIBM obtained would have more extensive potential applications. Furthermore, the fusion of the IBM could substantially improve the inulin-binding capability of the rINUIBM, which was consistent with the determination of the K m(app). This meant that the fused IBM could play a critical role in the recognition of polysaccharides and enhanced the hydrolase activity of the associated inulinase by increasing enzyme-substrate proximity. Besides, the extra supplement of the independent non-catalytic rIBM could also improve the inulinase activity of the rINU. However, this improvement was much better in case of the fusion. Consequently, the IBM could be designated as a multifunctional domain that was responsible for the activity enhancement, the stabilization, and the substrate binding of the rINUIBM. All these features obtained in this study make the rINUIBM become an attractive candidate for an efficient inulin hydrolysis.

  3. Annexin A5 binds to lipopolysaccharide and reduces its endotoxin activity.

    Science.gov (United States)

    Rand, Jacob H; Wu, Xiao-Xuan; Lin, Elaine Y; Griffel, Alexander; Gialanella, Philip; McKitrick, John C

    2012-01-01

    Annexin A5 (AnxA5) has a high affinity for phosphatidylserine. The protein is widely used to detect apoptotic cells because phosphatidylserine, a phospholipid that is normally present in the inner leaflets of cytoplasmic membranes, becomes translocated to the outer leaflets during programmed cell death. Here we report the novel observation that AnxA5 binds to Gram-negative bacteria via the lipid A domain of lipopolysaccharide (LPS). Binding of AnxA5 to bacteria was measured quantitatively, confirmed by fluorescence microscopy, and found to be inhibited by antibodies against lipid A. AnxA5 also bound to purified dot-blotted LPS and lipid A. Through ellipsometry, we found that the binding of AnxA5 to purified LPS was calcium dependent and rapid and showed a high affinity-characteristics similar to those of AnxA5 binding to phosphatidylserine. Initial functional studies indicated that AnxA5 can affect LPS activities. AnxA5 inhibited LPS-mediated gelation in the Limulus amebocyte lysate assay. Incubation of LPS with the protein reduced the quantity of tumor necrosis factor alpha (TNF-α) released by cultured monocytes compared to that released upon incubation with LPS alone. Initial in vivo experiments indicated that injection of mice with LPS preincubated with AnxA5 produced serum TNF-α levels lower than those seen after injection of LPS alone. These data demonstrate that AnxA5 binds to LPS and open paths to investigation of the potential biological and therapeutic implications of this interaction. AnxA5 is highly expressed in cells that have a barrier function-including, among others, vascular endothelium, placental trophoblasts, and epithelial cells lining bile ducts, renal tubules, mammary ducts, and nasal epithelium. The protein has been well characterized for its binding to phospholipid bilayers that contain phosphatidylserine. This report of a previously unrecognized activity of AnxA5 opens the door to investigation of the possibility that this binding may have

  4. Synthesis, DNA Binding and Topoisomerase I Inhibition Activity of Thiazacridine and Imidazacridine Derivatives

    Directory of Open Access Journals (Sweden)

    Elizabeth Almeida Lafayette

    2013-12-01

    Full Text Available Thiazacridine and imidazacridine derivatives have shown promising results as tumors suppressors in some cancer cell lines. For a better understanding of the mechanism of action of these compounds, binding studies of 5-acridin-9-ylmethylidene-3-amino-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-imidazolidin-4-one and 3-acridin-9-ylmethyl-thiazolidin-2,4-dione with calf thymus DNA (ctDNA by electronic absorption and fluorescence spectroscopy and circular dichroism spectroscopy were performed. The binding constants ranged from 1.46 × 104 to 6.01 × 104 M−1. UV-Vis, fluorescence and circular dichroism measurements indicated that the compounds interact effectively with ctDNA, both by intercalation or external binding. They demonstrated inhibitory activities to human topoisomerase I, except for 5-acridin-9-ylmethylidene-2-thioxo-1,3-thiazolidin-4-one. These results provide insight into the DNA binding mechanism of imidazacridines and thiazacridines.

  5. CacyBP/SIP binds ERK1/2 and affects transcriptional activity of Elk-1

    International Nuclear Information System (INIS)

    Kilanczyk, Ewa; Filipek, Slawomir; Jastrzebska, Beata; Filipek, Anna

    2009-01-01

    In this work we showed for the first time that mouse CacyBP/SIP interacts with extracellular signal regulated kinases 1 and 2 (ERK1/2). We also established that a calcium binding protein, S100A6, competes for this interaction. Moreover, the E217K mutant of CacyBP/SIP does not bind significantly to ERK1/2 although it retains the ability to interact with S100A6. Molecular modeling shows that the E217K mutation in the 189-219 CacyBP/SIP fragment markedly changes its electrostatic potential, suggesting that the binding with ERK1/2 might have an electrostatic character. We also demonstrate that CacyBP/SIP-ERK1/2 interaction inhibits phosphorylation of the Elk-1 transcription factor in vitro and in the nuclear fraction of NB2a cells. Altogether, our data suggest that the binding of CacyBP/SIP with ERK1/2 might regulate Elk-1 phosphorylation/transcriptional activity and that S100A6 might further modulate this effect via Ca 2+ -dependent interaction with CacyBP/SIP and competition with ERK1/2.

  6. The artificial zinc finger coding gene 'Jazz' binds the utrophin promoter and activates transcription.

    Science.gov (United States)

    Corbi, N; Libri, V; Fanciulli, M; Tinsley, J M; Davies, K E; Passananti, C

    2000-06-01

    Up-regulation of utrophin gene expression is recognized as a plausible therapeutic approach in the treatment of Duchenne muscular dystrophy (DMD). We have designed and engineered new zinc finger-based transcription factors capable of binding and activating transcription from the promoter of the dystrophin-related gene, utrophin. Using the recognition 'code' that proposes specific rules between zinc finger primary structure and potential DNA binding sites, we engineered a new gene named 'Jazz' that encodes for a three-zinc finger peptide. Jazz belongs to the Cys2-His2 zinc finger type and was engineered to target the nine base pair DNA sequence: 5'-GCT-GCT-GCG-3', present in the promoter region of both the human and mouse utrophin gene. The entire zinc finger alpha-helix region, containing the amino acid positions that are crucial for DNA binding, was specifically chosen on the basis of the contacts more frequently represented in the available list of the 'code'. Here we demonstrate that Jazz protein binds specifically to the double-stranded DNA target, with a dissociation constant of about 32 nM. Band shift and super-shift experiments confirmed the high affinity and specificity of Jazz protein for its DNA target. Moreover, we show that chimeric proteins, named Gal4-Jazz and Sp1-Jazz, are able to drive the transcription of a test gene from the human utrophin promoter.

  7. Phosphopeptide binding by Sld3 links Dbf4-dependent kinase to MCM replicative helicase activation.

    Science.gov (United States)

    Deegan, Tom D; Yeeles, Joseph Tp; Diffley, John Fx

    2016-05-02

    The initiation of eukaryotic DNA replication requires the assembly of active CMG (Cdc45-MCM-GINS) helicases at replication origins by a set of conserved and essential firing factors. This process is controlled during the cell cycle by cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), and in response to DNA damage by the checkpoint kinase Rad53/Chk1. Here we show that Sld3, previously shown to be an essential CDK and Rad53 substrate, is recruited to the inactive MCM double hexamer in a DDK-dependent manner. Sld3 binds specifically to DDK-phosphorylated peptides from two MCM subunits (Mcm4, 6) and then recruits Cdc45. MCM mutants that cannot bind Sld3 or Sld3 mutants that cannot bind phospho-MCM or Cdc45 do not support replication. Moreover, phosphomimicking mutants in Mcm4 and Mcm6 bind Sld3 without DDK and facilitate DDK-independent replication. Thus, Sld3 is an essential "reader" of DDK phosphorylation, integrating signals from three distinct protein kinase pathways to coordinate DNA replication during S phase. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  8. Activator Protein-1: redox switch controlling structure and DNA-binding.

    Science.gov (United States)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby

    2017-11-02

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Activator Protein-1: redox switch controlling structure and DNA-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J.; Rudenko, Gabby (Texas-MED); (Icahn)

    2017-09-07

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.

  10. Synthesis of an 125I analog of MK-0591 and characterization of a 5-lipoxygenase activating protein binding assay

    International Nuclear Information System (INIS)

    Eggler, J.F.; Cheng, J.B.; Cooper, K.; Hanak, L.M.; Pillar, J.S.

    1994-01-01

    The 125 I analog of MK-0591,1, has been prepared for use as a radioligand for developing a 5-lipoxygenase activating protein (FLAP) binding assay. The radiosynthesis involves a two step oxidative iododestannylation-saponification procedure. A FLAP binding assay has been developed in human neutrophil membranes. The binding of 1 to human neutrophil FLAP is rapid, reversible, of high affinity, saturable and selective for FLAP inhibitors. (author)

  11. The Pseudomonas aeruginosa catabolite repression control protein Crc is devoid of RNA binding activity.

    Science.gov (United States)

    Milojevic, Tetyana; Grishkovskaya, Irina; Sonnleitner, Elisabeth; Djinovic-Carugo, Kristina; Bläsi, Udo

    2013-01-01

    The Crc protein has been shown to mediate catabolite repression control in Pseudomonas, leading to a preferential assimilation of carbon sources. It has been suggested that Crc acts as a translational repressor of mRNAs, encoding functions involved in uptake and breakdown of different carbon sources. Moreover, the regulatory RNA CrcZ, the level of which is increased in the presence of less preferred carbon sources, was suggested to bind to and sequester Crc, resulting in a relief of catabolite repression. Here, we determined the crystal structure of Pseudomonas aeruginosa Crc, a member of apurinic/apyrimidinic (AP) endonuclease family, at 1.8 Å. Although Crc displays high sequence similarity with its orthologs, there are amino acid alterations in the area corresponding to the active site in AP proteins. Unlike typical AP endonuclease family proteins, Crc has a reduced overall positive charge and the conserved positively charged amino-acid residues of the DNA-binding surface of AP proteins are partially substituted by negatively charged, polar and hydrophobic residues. Crc protein purified to homogeneity from P. aeruginosa did neither display DNase activity, nor did it bind to previously identified RNA substrates. Rather, the RNA chaperone Hfq was identified as a contaminant in His-tagged Crc preparations purified by one step Ni-affinity chromatography from Escherichia coli, and was shown to account for the RNA binding activity observed with the His-Crc preparations. Taken together, these data challenge a role of Crc as a direct translational repressor in carbon catabolite repression in P. aeruginosa.

  12. Analysis of fluorescently labeled substance P analogs: binding, imaging and receptor activation

    Directory of Open Access Journals (Sweden)

    Simmons Mark A

    2001-06-01

    Full Text Available Abstract Background Substance P (SP is a peptide neurotransmitter found in central and peripheral nerves. SP is involved in the control of smooth muscle, inflammation and nociception. The amino acid sequence of SP is Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2. Five different forms of fluorescently labeled SP have recently been synthesized, in which Alexa 488, BODIPY Fl, fluorescein, Oregon Green 488 or tetramethylrhodamine has been covalently linked to SP at Lys3. Here, these novel analogs are characterized as to their ligand binding, receptor activation and fluorescence labeling properties. Results Competition binding studies, using radiolabeled [125I] SP, revealed that all of the labeled forms of SP, except for Alexa 488-SP, effectively competed with radiolabeled SP for binding at the rat SP receptor. With the exception of Alexa 488-SP, all of the SP analogs produced Ca++ elevations and fluorescence labeling of the SP receptor expressed in Chinese hamster ovary cells. In SP-responsive neurons, BODIPY Fl-SP and Oregon Green 488-SP were as effective as unlabeled SP in producing a reduction of the M-type K+ current. Fluorescein-SP produced variable results, while tetramethylrhodamine-SP was less potent and Alexa 488-SP was less effective on intact neurons. Conclusions The above results show that fluorescent labeling of SP altered the biological activity and the binding properties of the parent peptide. Oregon Green 488 and BODIPY FL-SP are the most useful fluorophores for labeling SP without affecting its biological activity. Given these results, these probes can now be utilized in further investigations of the mechanisms of SPR function, including receptor localization, internalization and recycling.

  13. A Nucleotide Phosphatase Activity in the Nucleotide Binding Domain of an Orphan Resistance Protein from Rice*

    Science.gov (United States)

    Fenyk, Stepan; de San Eustaquio Campillo, Alba; Pohl, Ehmke; Hussey, Patrick J.; Cann, Martin J.

    2012-01-01

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack. PMID:22157756

  14. A nucleotide phosphatase activity in the nucleotide binding domain of an orphan resistance protein from rice.

    Science.gov (United States)

    Fenyk, Stepan; Campillo, Alba de San Eustaquio; Pohl, Ehmke; Hussey, Patrick J; Cann, Martin J

    2012-02-03

    Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack.

  15. Active site - a site of binding of affinity inhibitors in baker's yeast inorganic pyrophosphatase

    International Nuclear Information System (INIS)

    Svyato, I.E.; Sklyankina, V.A.; Avaeva, S.M.

    1986-01-01

    The interaction of the enzyme-substrate complex with methyl phosphate, O-phosphoethanolamine, O-phosphopropanolamine, N-acetylphosphoserine, and phosphoglyolic acid, as well as pyrophosphatase, modified by monoesters of phosphoric acid, with pyrophosphate and tripolyphosphate, was investigated. It was shown that the enzyme containing the substrate in the active site does not react with monophosphates, but modified pyrophosphatase entirely retains the ability to bind polyanions to the regulatory site. It is concluded that the inactivation of baker's yeast inorganic pyrophosphatase by monoesters of phosphoric acid, which are affinity inhibitors of it, is the result of modification of the active site of the enzyme

  16. New perspectives on mannan-binding lectin-mediated complement activation

    DEFF Research Database (Denmark)

    Degn, Søren Egedal; Thiel, Steffen; Jensenius, Jens Christian

    2007-01-01

    The complement system is an important part of the innate immune system, mediating several major effector functions and modulating adaptive immune responses. Three complement activation pathways exist: the classical pathway (CP), the alternative pathway (AP), and the lectin pathway (LP). The LP......, allowing C3 activation in the absence of components otherwise believed critical. The classical bypass pathways are dependent on C1 and components of the AP. A recent study has shown the existence also of a lectin bypass pathway dependent on mannan-binding lectin (MBL) and AP components. The emerging...

  17. Silver nanoparticles-loaded activated carbon fibers using chitosan as binding agent: Preparation, mechanism, and their antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chengli, E-mail: tcl-lily@mail.zjxu.edu.cn [College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing 314001 (China); Hu, Dongmei [College of Mechanical Science and Engineering, Jilin University, Changchun 130022 (China); Cao, Qianqian [College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing 314001 (China); Yan, Wei [Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xing, Bo [College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing 314001 (China)

    2017-02-01

    Highlights: • Chitosan was firstly introduced as binding agent for AgNPs loading on ACF surface. • Molecular dynamics simulation was used to explore the AgNPs loading mechanism. • Loading mechanism was proposed based on the experimental and simulation results. • Antibacterial AgNPs-loaded ACF showed use potential for water disinfection. - Abstract: The effective and strong adherence of silver nanoparticles (AgNPs) to the substrate surface is pivotal to the practical application of those AgNPs-modified materials. In this work, AgNPs were synthesized through a green and facile hydrothermal method. Chitosan was introduced as the binding agent for the effective loading of AgNPs on activated carbon fibers (ACF) surface to fabricate the antibacterial material. Apart from conventional instrumental characterizations, i. e., scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), zeta potential and Brunauer-Emmett-Teller (BET) surface area measurement, molecular dynamics simulation method was also applied to explore the loading mechanism of AgNPs on the ACF surface. The AgNPs-loaded ACF material showed outstanding antibacterial activity for S. aureus and E. coli. The combination of experimental and theoretical calculation results proved chitosan to be a promising binding agent for the fabrication of AgNPs-loaded ACF material with excellent antibacterial activity.

  18. Phospho-Pon Binding-Mediated Fine-Tuning of Plk1 Activity.

    Science.gov (United States)

    Zhu, Kang; Shan, Zelin; Zhang, Lu; Wen, Wenyu

    2016-07-06

    In Drosophila neuroblasts (NBs), the asymmetrical localization and segregation of the cell-fate determinant Numb are regulated by its adaptor Partner of Numb (Pon) and the cell-cycle kinase Polo. Polo phosphorylates the Pon localization domain, thus leading to its basal distribution together with Numb, albeit through an unclear mechanism. Here, we find that Cdk1 phosphorylates Pon at Thr63, thus creating a docking site for the Polo-box domain (PBD) of Polo-like kinase 1 (Plk1). The crystal structure of the Plk1 PBD/phospho-Pon complex reveals that two phospho-Pon bound PBDs associate to form a dimer of dimers. We provide evidence that phospho-Pon binding-induced PBD dimerization relieves the autoinhibition of Plk1. Moreover, we demonstrate that the priming Cdk1 phosphorylation of Pon is important for sequential Plk1 phosphorylation. Our results not only provide structural insight into how phosphoprotein binding activates Plk1 but also suggest that binding to different phosphoproteins might mediate the fine-tuning of Plk1 activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Identification of a polyoxometalate inhibitor of the DNA binding activity of Sox2.

    Science.gov (United States)

    Narasimhan, Kamesh; Pillay, Shubhadra; Bin Ahmad, Nor Rizal; Bikadi, Zsolt; Hazai, Eszter; Yan, Li; Kolatkar, Prasanna R; Pervushin, Konstantin; Jauch, Ralf

    2011-06-17

    Aberrant expression of transcription factors is a frequent cause of disease, yet drugs that modulate transcription factor protein-DNA interactions are presently unavailable. To this end, the chemical tractability of the DNA binding domain of the stem cell inducer and oncogene Sox2 was explored in a high-throughput fluorescence anisotropy screen. The screening revealed a Dawson polyoxometalate (K(6)[P(2)Mo(18)O(62)]) as a direct and nanomolar inhibitor of the DNA binding activity of Sox2. The Dawson polyoxometalate (Dawson-POM) was found to be selective for Sox2 and related Sox-HMG family members when compared to unrelated paired and zinc finger DNA binding domains. [(15)N,(1)H]-Transverse relaxation optimized spectroscopy (TROSY) experiments coupled with docking studies suggest an interaction site of the POM on the Sox2 surface that enabled the rationalization of its inhibitory activity. The unconventional molecular scaffold of the Dawson-POM and its inhibitory mode provides strategies for the development of drugs that modulate transcription factors.

  20. Integrin activation dynamics between the RGD-binding site and the headpiece hinge.

    Science.gov (United States)

    Puklin-Faucher, Eileen; Vogel, Viola

    2009-12-25

    Integrins form mechanical links between the extracellular matrix and the cytoskeleton. Although integrin activation is known to be regulated by an allosteric conformational change, which can be induced from the extracellular or intracellular end of the molecule, little is known regarding the sequence of structural events by which signals propagate between distant sites. Here, we reveal with molecular dynamics simulations of the FnIII(10)-bound alpha(V)beta(3) integrin headpiece how the binding pocket and interdomain betaA/hybrid domain hinge on the distal end of the betaA domain are allosterically linked via a hydrophobic T-junction between the middle of the alpha1 helix and top of the alpha7 helix. The key results of this study are: 1) that this T-junction is induced by ligand binding and hinge opening, and thus displays bidirectionality; 2) that formation of this junction can be accelerated by ligand-mediated force; and 3) how formation of this junction is inhibited by Ca(2+) in place of Mg(2+) at the site adjacent to the metal ion-dependent adhesion site ("ADMIDAS"). Together with recent experimental evidence that integrin complexes can form catch bonds (i.e. become strengthened under force), as well as earlier evidence that Ca(2+) at the ADMIDAS results in lower binding affinity, these simulations provide a common structural model for the dynamic process by which integrins become activated.

  1. Integrin Activation Dynamics between the RGD-binding Site and the Headpiece Hinge*

    Science.gov (United States)

    Puklin-Faucher, Eileen; Vogel, Viola

    2009-01-01

    Integrins form mechanical links between the extracellular matrix and the cytoskeleton. Although integrin activation is known to be regulated by an allosteric conformational change, which can be induced from the extracellular or intracellular end of the molecule, little is known regarding the sequence of structural events by which signals propagate between distant sites. Here, we reveal with molecular dynamics simulations of the FnIII10-bound αVβ3 integrin headpiece how the binding pocket and interdomain βA/hybrid domain hinge on the distal end of the βA domain are allosterically linked via a hydrophobic T-junction between the middle of the α1 helix and top of the α7 helix. The key results of this study are: 1) that this T-junction is induced by ligand binding and hinge opening, and thus displays bidirectionality; 2) that formation of this junction can be accelerated by ligand-mediated force; and 3) how formation of this junction is inhibited by Ca2+ in place of Mg2+ at the site adjacent to the metal ion-dependent adhesion site (“ADMIDAS”). Together with recent experimental evidence that integrin complexes can form catch bonds (i.e. become strengthened under force), as well as earlier evidence that Ca2+ at the ADMIDAS results in lower binding affinity, these simulations provide a common structural model for the dynamic process by which integrins become activated. PMID:19762919

  2. Galactose-binding lectin from mulberry (Morus alba L. seeds with growth hormone-like activity

    Directory of Open Access Journals (Sweden)

    E. Khurtsidze

    2017-03-01

    Full Text Available Plant lectins are well documented to participate in multiple physiological activities based on selective binding to the carbohydrate structures. They have been reported to play significant roles in various processes such as growth and development, differentiation and plant protection. Nevertheless, the intrinsic roles of plant lectins still remain undefined. We purified a galactose-binding lectin, named MAL, from mulberry (M. alba L. seeds and analyzed its properties. The lectin is composed of one polypeptide of 17 kDa, which is abundant in the seed protein fraction. MAL interacted with GalNAc and galactose residues of saccharides with high binding ability. Western blotting analysis suggested that MAL is deposited in the mulberry leaves and inflorescence. MAL was examined for growth stimulatory activity on mulberry hypocotyls and internodal sections of in vitro grown P. euphratica cultures. Elongation of mulberry hypocotyls was detected in the apical parts of the hypocotyl, where the growth increment was 58%. MAL had no significant effect on the stem elongation and induction of new leaves. Our results suggest that MAL may be involved in the growth and cell elongation at initial stages of tissue development.

  3. The nucleotide-binding domain of NLRC5 is critical for nuclear import and transactivation activity

    International Nuclear Information System (INIS)

    Meissner, Torsten B.; Li, Amy; Liu, Yuen-Joyce; Gagnon, Etienne; Kobayashi, Koichi S.

    2012-01-01

    Highlights: ► NLRC5 requires an intact NLS for its function as MHC class I transactivator. ► Nuclear presence of NLRC5 is required for MHC class I induction. ► Nucleotide-binding controls nuclear import and transactivation activity of NLRC5. -- Abstract: Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. A member of the NLR (nucleotide-binding domain, leucine-rich repeat) protein family, NLRC5, has recently been identified as a transcriptional regulator of MHC class I and related genes. While a ‘master regulator’ of MHC class II genes, CIITA, has long been known, NLRC5 specifically associates with and transactivates the proximal promoters of MHC class I genes. In this study, we analyzed the molecular requirements of NLRC5 nuclear import and transactivation activity. We show that NLRC5-mediated MHC class I gene induction requires an intact nuclear localization signal and nuclear distribution of NLRC5. In addition, we find that the nucleotide-binding domain (NBD) of NLRC5 is critical not only for nuclear translocation but also for the transactivation of MHC class I genes. Changing the cellular localization of NLRC5 is likely to immediately impact MHC class I expression as well as MHC class I-mediated antigen presentation. NLRC5 may thus provide a promising target for the modulation of MHC class I antigen presentation, especially in the setting of transplant medicine.

  4. An essential GT motif in the lamin A promoter mediates activation by CREB-binding protein

    International Nuclear Information System (INIS)

    Janaki Ramaiah, M.; Parnaik, Veena K.

    2006-01-01

    Lamin A is an important component of nuclear architecture in mammalian cells. Mutations in the human lamin A gene lead to highly degenerative disorders that affect specific tissues. In studies directed towards understanding the mode of regulation of the lamin A promoter, we have identified an essential GT motif at -55 position by reporter gene assays and mutational analysis. Binding of this sequence to Sp transcription factors has been observed in electrophoretic mobility shift assays and by chromatin immunoprecipitation studies. Further functional analysis by co-expression of recombinant proteins and ChIP assays has shown an important regulatory role for CREB-binding protein in promoter activation, which is mediated by the GT motif

  5. Measurement of biologically active interleukin-1 by a soluble receptor binding assay

    International Nuclear Information System (INIS)

    Riske, F.; Chizzonite, R.; Nunes, P.; Stern, A.S.

    1990-01-01

    A soluble receptor binding assay has been developed for measuring human interleukin-1 alpha (IL-1 alpha), human IL-1 beta, and mouse IL-1 alpha. The assay is based on a competition between unlabeled IL-1 and 125I-labeled mouse recombinant IL-1 alpha for binding to soluble IL-1 receptor prepared from mouse EL-4 cells. The assay measures only biologically active IL-1 folded in its native conformation. The ratio of human IL-1 alpha to human IL-1 beta can be measured in the same sample by a pretreatment step which removes human IL-1 beta from samples prior to assay. This technique has been used to monitor the purification of recombinant IL-1, and may be utilized to specifically and accurately measure bioactive IL-1 in human serum and cell culture supernatants

  6. Covalent glycoinositolphospholipid (GPI binding to hemoglobin is associated with insulin-activation of erythrocyte membrane protease

    Directory of Open Access Journals (Sweden)

    VESNA NIKETIC

    2004-05-01

    Full Text Available Recently, it was demonstrated that prolonged hyperinsulinism associated with hypoglycemia, both in vivo and in vitro, caused covalent glycoinositolphospholipid (GPI binding to the C termini of both hemoglobin b-chains, which resulted in the formation of a novel, hitherto unrecognized, minor hemoglobin fraction (GPI-Hb (Niketic et al., Biochem. Biophys. Res. Commun. 239 (1997 435. In this study it was demonstrated that exposure of erythrocyte membranes to insulin causes the activation of membrane protease as well as that the formation of GPI-Hb parallels its activity. It is suggested that the insulin-activated protease is able to catalyze, albeit slowly, the transpeptidation, i.e., the replacement of the carboxy-terminal amino acid(s residues of the Hb b-chains with GPI as an exogenous nucleophile. To our knowledge the present results show for the first time that insulin stimulates protease activity in erythrocyte membranes, as well as that insulin-activated protease may be involved in post-translational GPI binding to proteins.

  7. Plant carbohydrate binding module enhances activity of hybrid microbial cellulase enzyme

    Directory of Open Access Journals (Sweden)

    Caitlin Siobhan Byrt

    2012-11-01

    Full Text Available A synthetic, highly active cellulase enzyme suitable for in planta production may be a valuable tool for biotechnological approaches to develop transgenic biofuel crops with improved digestibility. Here, we demonstrate that the addition of a plant derived carbohydrate binding module (CBM to a synthetic glycosyl hydrolase (GH improved the activity of the hydrolase in releasing sugar from plant biomass. A CEL-HYB1-CBM enzyme was generated by fusing a hybrid microbial cellulase, CEL-HYB1, with the carbohydrate-binding module (CBM of the tomato (Solanum lycopersicum SlCel9C1 cellulase. CEL-HYB1 and CEL-HYB1-CBM enzymes were produced in vitro using Pichia pastoris and the activity of these enzymes was tested using CMC, MUC and native crystalline cellulose assays. The presence of the CBM substantially improved the endo-glucanase activity of CEL-HYB1, especially against the native crystalline cellulose encountered in Sorghum plant cell walls. These results indicate that addition of an endogenous plant derived CBM to cellulase enzymes may enhance hydrolytic activity.

  8. Nuclear AP4A-binding activity of sea urchin embryos changes in relation to the initiation of S phase

    International Nuclear Information System (INIS)

    Morioka, M.; Shimada, H.

    1986-01-01

    The AP 4 A-binding activity of sea urchin embryos was studied using radioactively labelled diadenosine 5', 5'''-P 1 ,P 4 -tetraphosphate (Ap 4 A). Among various subcellular components that can bind [ 3 H]AP 4 A, nuclei alone showed the highly specific Ap 4 A-binding activity which was not influenced by the presence of AP 4 A, AP 5 A and GP 4 G. The addition of an excess amount of ATP only slightly reduced the binding of [ 3 H]AP 4 A to the nuclei. It was found that AP 4 A binds to the residual proteinaceous structure of nuclei which was resistant to the extraction with 2 M NaCl. The nuclear AP 4 A-binding activity fluctuated cyclically during each cell cycle, with at transient increase at the beginning of S phase followed by an abrupt-decrease within 10 min. When the initiation of S phase was blocked, the increase in the AP 4 A-binding activity was also prevented. It seems that the binding of AP 4 A to the nuclear structural protein is involved in the initiation of S phase

  9. Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Ruzanski, Christian

    2014-01-01

    Surface binding sites (SBSs) interact with carbohydrates outside of the enzyme active site. They are frequently situated on catalytic domains and are distinct from carbohydrate binding modules (CBMs). SBSs are found in a variety of enzymes and often seen in crystal structures. Notably about half ...

  10. Introduction of lysine and clot binding properties in the kringle one domain of tissue-type plasminogen activator

    NARCIS (Netherlands)

    Bakker, A.H.F.; Greef, W. van der; Rehberg, E.F.; Marotti, K.R.; Verheijen, J.H.

    1993-01-01

    Despite the high overall similarity in primary structure between kringle one (K1) and kringle two (K2) of tissue-type plasminogen activator (t-PA) there exists an enormous functional difference. It is thought that, in contrast to K1, K2 mediates lysine binding and fibrin binding and is involved in

  11. Abscisic Acid Regulates Inflammation via Ligand-binding Domain-independent Activation of Peroxisome Proliferator-activated Receptor γ*

    Science.gov (United States)

    Bassaganya-Riera, Josep; Guri, Amir J.; Lu, Pinyi; Climent, Montse; Carbo, Adria; Sobral, Bruno W.; Horne, William T.; Lewis, Stephanie N.; Bevan, David R.; Hontecillas, Raquel

    2011-01-01

    Abscisic acid (ABA) has shown efficacy in the treatment of diabetes and inflammation; however, its molecular targets and the mechanisms of action underlying its immunomodulatory effects remain unclear. This study investigates the role of peroxisome proliferator-activated receptor γ (PPAR γ) and lanthionine synthetase C-like 2 (LANCL2) as molecular targets for ABA. We demonstrate that ABA increases PPAR γ reporter activity in RAW 264.7 macrophages and increases ppar γ expression in vivo, although it does not bind to the ligand-binding domain of PPAR γ. LANCL2 knockdown studies provide evidence that ABA-mediated activation of macrophage PPAR γ is dependent on lancl2 expression. Consistent with the association of LANCL2 with G proteins, we provide evidence that ABA increases cAMP accumulation in immune cells. ABA suppresses LPS-induced prostaglandin E2 and MCP-1 production via a PPAR γ-dependent mechanism possibly involving activation of PPAR γ and suppression of NF-κB and nuclear factor of activated T cells. LPS challenge studies in PPAR γ-expressing and immune cell-specific PPAR γ null mice demonstrate that ABA down-regulates toll-like receptor 4 expression in macrophages and T cells in vivo through a PPAR γ-dependent mechanism. Global transcriptomic profiling and confirmatory quantitative RT-PCR suggest novel candidate targets and demonstrate that ABA treatment mitigates the effect of LPS on the expression of genes involved in inflammation, metabolism, and cell signaling, in part, through PPAR γ. In conclusion, ABA decreases LPS-mediated inflammation and regulates innate immune responses through a bifurcating pathway involving LANCL2 and an alternative, ligand-binding domain-independent mechanism of PPAR γ activation. PMID:21088297

  12. Abscisic acid regulates inflammation via ligand-binding domain-independent activation of peroxisome proliferator-activated receptor gamma.

    Science.gov (United States)

    Bassaganya-Riera, Josep; Guri, Amir J; Lu, Pinyi; Climent, Montse; Carbo, Adria; Sobral, Bruno W; Horne, William T; Lewis, Stephanie N; Bevan, David R; Hontecillas, Raquel

    2011-01-28

    Abscisic acid (ABA) has shown efficacy in the treatment of diabetes and inflammation; however, its molecular targets and the mechanisms of action underlying its immunomodulatory effects remain unclear. This study investigates the role of peroxisome proliferator-activated receptor γ (PPAR γ) and lanthionine synthetase C-like 2 (LANCL2) as molecular targets for ABA. We demonstrate that ABA increases PPAR γ reporter activity in RAW 264.7 macrophages and increases ppar γ expression in vivo, although it does not bind to the ligand-binding domain of PPAR γ. LANCL2 knockdown studies provide evidence that ABA-mediated activation of macrophage PPAR γ is dependent on lancl2 expression. Consistent with the association of LANCL2 with G proteins, we provide evidence that ABA increases cAMP accumulation in immune cells. ABA suppresses LPS-induced prostaglandin E(2) and MCP-1 production via a PPAR γ-dependent mechanism possibly involving activation of PPAR γ and suppression of NF-κB and nuclear factor of activated T cells. LPS challenge studies in PPAR γ-expressing and immune cell-specific PPAR γ null mice demonstrate that ABA down-regulates toll-like receptor 4 expression in macrophages and T cells in vivo through a PPAR γ-dependent mechanism. Global transcriptomic profiling and confirmatory quantitative RT-PCR suggest novel candidate targets and demonstrate that ABA treatment mitigates the effect of LPS on the expression of genes involved in inflammation, metabolism, and cell signaling, in part, through PPAR γ. In conclusion, ABA decreases LPS-mediated inflammation and regulates innate immune responses through a bifurcating pathway involving LANCL2 and an alternative, ligand-binding domain-independent mechanism of PPAR γ activation.

  13. Differences in patients' perceptions of Schizophrenia between Māori and New Zealand Europeans.

    Science.gov (United States)

    Sanders, Deanna; Kydd, Robert; Morunga, Eva; Broadbent, Elizabeth

    2011-06-01

    ori (the Indigenous people of New Zealand) are disproportionately affected by mental illness and experience significantly poorer mental health compared to New Zealand Europeans. It is important to understand cultural differences in patients' ideas about mental illness in treatment settings. The aim of the present study was to investigate differences in illness perceptions between Māori and New Zealand Europeans diagnosed with schizophrenia. A total of 111 users of mental health services (68 Māori, 43 New Zealand European) in the greater Auckland and Northland areas who had been diagnosed with schizophrenia or other psychotic disorder were interviewed using the Brief Illness Perception Questionnaire and the Drug Attitude Inventory. District Health Board staff completed the Global Assessment of Functioning for each patient. Māori with schizophrenia believed that their illness would continue significantly less time than New Zealand European patients did. Chance or spiritual factors were listed as causes of mental illness by only five Māori patients and no New Zealand European patients. Other illness perceptions, as well as attitudes towards medication, were comparable between groups. Across groups, the top perceived causes were drugs/alcohol, family relationships/abuse, and biological causes. Illness perceptions provide a framework to assess patients' beliefs about their mental illness. Differences between Māori and New Zealand European patients' beliefs about their mental illness may be related to traditional Māori beliefs about mental illness. Knowledge of differences in illness perceptions provides an opportunity to design effective clinical interventions for both Māori and New Zealand Europeans.

  14. Sequence of ligand binding and structure change in the diphtheria toxin repressor upon activation by divalent transition metals.

    Science.gov (United States)

    Rangachari, Vijayaraghavan; Marin, Vedrana; Bienkiewicz, Ewa A; Semavina, Maria; Guerrero, Luis; Love, John F; Murphy, John R; Logan, Timothy M

    2005-04-19

    The diphtheria toxin repressor (DtxR) is an Fe(II)-activated transcriptional regulator of iron homeostatic and virulence genes in Corynebacterium diphtheriae. DtxR is a two-domain protein that contains two structurally and functionally distinct metal binding sites. Here, we investigate the molecular steps associated with activation by Ni(II)Cl(2) and Cd(II)Cl(2). Equilibrium binding energetics for Ni(II) were obtained from isothermal titration calorimetry, indicating apparent metal dissociation constants of 0.2 and 1.7 microM for two independent sites. The binding isotherms for Ni(II) and Cd(II) exhibited a characteristic exothermic-endothermic pattern that was used to infer the metal binding sequence by comparing the wild-type isotherm with those of several binding site mutants. These data were complemented by measuring the distance between specific backbone amide nitrogens and the first equivalent of metal through heteronuclear NMR relaxation measurements. Previous studies indicated that metal binding affects a disordered to ordered transition in the metal binding domain. The coupling between metal binding and structure change was investigated using near-UV circular dichroism spectroscopy. Together, the data show that the first equivalent of metal is bound by the primary metal binding site. This binding orients the DNA binding helices and begins to fold the N-terminal domain. Subsequent binding at the ancillary site completes the folding of this domain and formation of the dimer interface. This model is used to explain the behavior of several mutants.

  15. Wavelet to predict bacterial ori and ter: a tendency towards a physical balance

    Directory of Open Access Journals (Sweden)

    Ware Antony

    2003-05-01

    Full Text Available Abstract Background Chromosomal DNA replication in bacteria starts at the origin (ori and the two replicores propagate in opposite directions up to the terminus (ter region. We hypothesize that the two replicores need to reach ter at the same time to maintain a physical balance; DNA insertion would disrupt such a balance, requiring chromosomal rearrangements to restore the balance. To test this hypothesis, we needed to demonstrate that ori and ter are in a physical balance in bacterial chromosomes. Using wavelet analysis, we documented GC skew, AT skew, purine excess and keto excess on the published bacterial genomic sequences to locate the turning (minimum and maximum points on the curves. Previously, the minimum point had been supposed to correlate with ori and the maximum to correlate with ter. Results We observed a strong tendency of the bacterial chromosomes towards a physical balance, with the minima and maxima corresponding to the known or putative ori and ter and being about half chromosome separated in most of the bacteria studied. A nonparametric method based on wavelet transformation was employed to perform significance tests for the predicted loci. Conclusions The wavelet approach can reliably predict the ori and ter regions and the bacterial chromosomes have a strong tendency towards a physical balance between ori and ter.

  16. Dependence on place: A source of autonomy in later life for older Māori.

    Science.gov (United States)

    Butcher, Elizabeth; Breheny, Mary

    2016-04-01

    Attachment to place is an important component of ageing. Although the importance of place for older people's well-being is known, the ways in which different conceptions of place and expectations for what later life may hold depend upon cultural beliefs, values, and expectations is underexplored. This study examined the ways that place influences experiences of ageing for older Māori in New Zealand. Eight interviews with older Māori were analysed thematically alongside field notes from a research visit. Attachment to place provided the foundation for experiences of ageing for older Māori. Through their connection to place, the participants drew on a comforting and comfortable dependence on land and family to enable autonomy in later life. Rather than seeking to maintain independence in terms of avoiding reliance on others, older Māori conceptualised older age through autonomy and freedom to live in accordance with Māori values encapsulated by whakawhanaungatanga. A good old age depended on balancing competing demands of living in wider society with attachment to place and Māori identity in later life. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Understanding the role of culture in pain: Māori practitioner perspectives of pain descriptors.

    Science.gov (United States)

    Magnusson, Jane E; Fennell, Joyce A

    2011-01-21

    There is growing interest in the role of cultural diversity within healthcare settings yet minority ethnic groups are underrepresented in the healthcare literature, including the literature on pain. To better assess and treat pain in different cultures the perspectives and experiences of that culture must be taken into consideration and therefore the present study was undertaken to better understand Māori perspectives of pain. Māori healthcare providers and kaumātua (tribal leaders/elders) completed questionnaires relating to the experience of pain and were asked to provide feedback regarding the suitability of words and phrases typically used to describe symptoms of pain and pain-related disability. Participants were also asked to provide words, or phrases (in te reo Māori or English) representing characteristics of pain which had not been provided but would be useful in the assessment of pain in a Māori population. All of the pain descriptors, and 92% of the phrases regarding the experience of pain, provided were endorsed by the majority of participants demonstrating that, as in many cultures, Māori perceive pain as a multidimensional experience impacting them on physiological, psychological, and social dimensions and that the terms and phrases of measures commonly used to assess pain appropriately capture their pain experiences. The implications of these findings are that established measures can be used when assessing pain in Māori. However, it is beneficial to confirm that the descriptors used in those measures accurately capture the experiences being measured.

  18. Oro-facial gangrene (noma/cancrum oris): pathogenetic mechanisms.

    Science.gov (United States)

    Enwonwu, C O; Falkler, W A; Idigbe, E O

    2000-01-01

    Cancrum oris (Noma) is a devastating infectious disease which destroys the soft and hard tissues of the oral and para-oral structures. The dehumanizing oro-facial gangrenous lesion affects predominantly children ages 2 to 16 years, particularly in sub-Saharan Africa, where the estimated frequency in some communities varies from 1 to 7 cases per 1000 population. The risk factors are poverty, malnutrition, poor oral hygiene, residential proximity to livestock in unsanitary environments, and infectious diseases, particularly measles and those due to the herpesviridae. Infections and malnutrition impair the immune system, and this is the common denominator for the occurrence of noma. Acute necrotizing gingivitis (ANG) and oral herpetic ulcers are considered the antecedent lesions, and ongoing studies suggest that the rapid progression of these precursor lesions to noma requires infection by a consortium of micro-organisms, with Fusobacterium necrophorum (Fn) and Prevotella intermedia (Pi) as the suspected key players. Additional to production of a growth-stimulating factor for Pi, Fn displays a classic endotoxin, a dermonecrotic toxin, a cytoplasmic toxin, and a hemolysin. Without appropriate treatment, the mortality rate from noma is 70-90%. Survivors suffer the two-fold afflictions of oro-facial mutilation and functional impairment, which require a time-consuming, financially prohibitive surgical reconstruction.

  19. Promoter activity of polypyrimidine tract-binding protein genes of potato responds to environmental cues.

    Science.gov (United States)

    Butler, Nathaniel M; Hannapel, David J

    2012-12-01

    Polypyrimidine tract-binding (PTB) proteins are RNA-binding proteins that target specific RNAs for post-transcriptional processing by binding cytosine/uracil motifs. PTBs have established functions in a range of RNA processes including splicing, translation, stability and long-distance transport. Six PTB-like genes identified in potato have been grouped into two clades based on homology to other known plant PTBs. StPTB1 and StPTB6 are closely related to a PTB protein discovered in pumpkin, designated CmRBP50, and contain four canonical RNA-recognition motifs. CmRBP50 is expressed in phloem tissues and functions as the core protein of a phloem-mobile RNA/protein complex. Sequence from the potato genome database was used to clone the upstream sequence of these two PTB genes and analyzed to identify conserved cis-elements. The promoter of StPTB6 was enriched for regulatory elements for light and sucrose induction and defense. Upstream sequence of both PTB genes was fused to β-glucuronidase and monitored in transgenic potato lines. In whole plants, the StPTB1 promoter was most active in leaf veins and petioles, whereas StPTB6 was most active in leaf mesophyll. Both genes are active in new tubers and tuber sprouts. StPTB6 expression was induced in stems and stolon sections in response to sucrose and in leaves or petioles in response to light, heat, drought and mechanical wounding. These results show that CmRBP50-like genes of potato exhibit distinct expression patterns and respond to both developmental and environmental cues.

  20. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression

    International Nuclear Information System (INIS)

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X.; Walterscheid, Jeffrey P.; Ullrich, Stephen E.

    2004-01-01

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependant manner. The release of biological response modifiers, particularly prostaglandin E 2 (PGE 2 ), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE 2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE 2 secretion. Jet fuel-induced PGE 2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin

  1. The DNA binding and activation domains of Gal4p are sufficient for conveying its regulatory signals.

    OpenAIRE

    Ding, W V; Johnston, S A

    1997-01-01

    The transcriptional activation function of the Saccharomyces cerevisiae activator Gal4p is known to rely on a DNA binding activity at its amino terminus and an activation domain at its carboxy terminus. Although both domains are required for activation, truncated forms of Gal4p containing only these domains activate poorly in vivo. Also, mutations in an internal conserved region of Gal4p inactivate the protein, suggesting that this internal region has some function critical to the activity of...

  2. Super-resolution binding activated localization microscopy through reversible change of DNA conformation.

    Science.gov (United States)

    Szczurek, Aleksander; Birk, Udo; Knecht, Hans; Dobrucki, Jurek; Mai, Sabine; Cremer, Christoph

    2018-01-01

    Methods of super-resolving light microscopy (SRM) have found an exponentially growing range of applications in cell biology, including nuclear structure analyses. Recent developments have proven that Single Molecule Localization Microscopy (SMLM), a type of SRM, is particularly useful for enhanced spatial analysis of the cell nucleus due to its highest resolving capability combined with very specific fluorescent labeling. In this commentary we offer a brief review of the latest methodological development in the field of SMLM of chromatin designated DNA Structure Fluctuation Assisted Binding Activated Localization Microscopy (abbreviated as fBALM) as well as its potential future applications in biology and medicine.

  3. Insulin receptor binding and protein kinase activity in muscles of trained rats

    International Nuclear Information System (INIS)

    Dohm, G.L.; Sinha, M.K.; Caro, J.F.

    1987-01-01

    Exercise has been shown to increase insulin sensitivity, and muscle is quantitatively the most important tissue of insulin action. Since the first step in insulin action is the binding to a membrane receptor, the authors postulated that exercise training would change insulin receptors in muscle and in this study they have investigated this hypothesis. Female rats initially weighing ∼ 100 g were trained by treadmill running for 2 h/day, 6 days/wk for 4 wk at 25 m/min (0 grade). Insulin receptors from vastus intermedius muscles were solubilized by homogenizing in a buffer containing 1% Triton X-100 and then partially purified by passing the soluble extract over a wheat germ agglutinin column. The 4 wk training regimen resulted in a 65% increase in citrate synthase activity in red vastus lateralis muscle, indicating an adaptation to exercise [ 125 I]. Insulin binding by the partially purified receptor preparations was approximately doubled in muscle of trained rats at all insulin concentrations, suggesting an increase in the number of receptors. Training did not alter insulin receptor structure as evidenced by electrophoretic mobility under reducing and nonreducing conditions. Basal insulin receptor protein kinase activity was higher in trained than untrained animals and this was likely due to the greater number of receptors. However, insulin stimulation of the protein kinase activity was depressed by training. These results demonstrate that endurance training does alter receptor number and function in muscle and these changes may be important in increasing insulin sensitivity after exercise training

  4. The Effects of Dietary Calcium and/or Iron Deficiency upon Murine Intestinal Calcium Binding Protein Activity and Calcium Absorption

    OpenAIRE

    McDonald, Catherine M.

    1980-01-01

    Iron deficiency has been shown to impair calcium absorption, leading to decreased bone mass. Vitamin D3-dependent calcium binding protein (CaBP) has been demonstrated to be necessary for the active transport of calcium in the intestine of numerous species. Iron deficiency might affect the activity of the calcium binding protein. Four experimental diets were formulated as follows: Diet 1, iron adequate, calcium adequate; Diet 2, iron deficient, calcium adequate; Diet 3, iron adequate, calci...

  5. Regulatory Interactions of Csr Components: the RNA Binding Protein CsrA Activates csrB Transcription in Escherichia coli

    OpenAIRE

    Gudapaty, Seshagirirao; Suzuki, Kazushi; Wang, Xin; Babitzke, Paul; Romeo, Tony

    2002-01-01

    The global regulator CsrA (carbon storage regulator) of Escherichia coli is a small RNA binding protein that represses various metabolic pathways and processes that are induced in the stationary phase of growth, while it activates certain exponential phase functions. Both repression and activation by CsrA involve posttranscriptional mechanisms, in which CsrA binding to mRNA leads to decreased or increased transcript stability, respectively. CsrA also binds to a small untranslated RNA, CsrB, f...

  6. The binding of activated Gαq to phospholipase C-β exhibits anomalous affinity.

    Science.gov (United States)

    Navaratnarajah, Punya; Gershenson, Anne; Ross, Elliott M

    2017-10-06

    Upon activation by the G q family of Gα subunits, Gβγ subunits, and some Rho family GTPases, phospholipase C-β (PLC-β) isoforms hydrolyze phosphatidylinositol 4,5-bisphosphate to the second messengers inositol 1,4,5-trisphosphate and diacylglycerol. PLC-β isoforms also function as GTPase-activating proteins, potentiating G q deactivation. To elucidate the mechanism of this mutual regulation, we measured the thermodynamics and kinetics of PLC-β3 binding to Gα q FRET and fluorescence correlation spectroscopy, two physically distinct methods, both yielded K d values of about 200 nm for PLC-β3-Gα q binding. This K d is 50-100 times greater than the EC 50 for Gα q -mediated PLC-β3 activation and for the Gα q GTPase-activating protein activity of PLC-β. The measured K d was not altered either by the presence of phospholipid vesicles, phosphatidylinositol 4,5-bisphosphate and Ca 2+ , or by the identity of the fluorescent labels. FRET-based kinetic measurements were also consistent with a K d of 200 nm We determined that PLC-β3 hysteresis, whereby PLC-β3 remains active for some time following either Gα q -PLC-β3 dissociation or PLC-β3-potentiated Gα q deactivation, is not sufficient to explain the observed discrepancy between EC 50 and K d These results indicate that the mechanism by which Gα q and PLC-β3 mutually regulate each other is far more complex than a simple, two-state allosteric model and instead is probably kinetically determined. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    Energy Technology Data Exchange (ETDEWEB)

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.; Vazquez-Laslop, N.; Neyfakh, A.A.; Brennan, R.G.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.

  8. A qualitative Kaupapa Māori approach to understanding infant and young child feeding practices of Māori and Pacific grandparents in Auckland, New Zealand.

    Science.gov (United States)

    Tapera, Rachel; Harwood, Matire; Anderson, Anneka

    2017-04-01

    The present research sought to better understand the barriers, facilitators, attitudes and beliefs that influence the way Māori and Samoan grandparents feed their grandchildren in a deprived urban neighbourhood in New Zealand. The research adopted a qualitative methodology that was consistent with a Kaupapa Māori research approach. Seven semi-structured interviews were conducted with grandparents to collect narrative data. Sampling occurred in one Auckland suburb. The suburb was selected because of its high level of socio-economic deprivation and ethnic diversity. Seven grandparents participated in the study (five Māori and two Samoan). Each participant met the inclusion criteria (i.e. they had provided at least five meals per week over the previous three months to grandchildren aged less than 24 months). Marae (i.e. meeting houses and areas used by local Māori tribes/sub-tribes) and community organisations were used to recruit participants. A general inductive thematic analysis identified four key themes: (i) grandparents' understanding of optimal feeding practices; (ii) economic and material factors; (iii) previous experiences and customary norms; and (iv) social support and societal pressure. The study showed that grandparents' complementary feeding practices in caring for infant grandchildren were influenced by upstream structural elements such as government policies related to welfare and pensions, employment, income and cultural knowledge. Frameworks that seek to achieve social justice and support cultural practices should be employed and promoted in the development of future policy and research in this area.

  9. Characterization of Lactic Acid Bacteria as Poultry Probiotic Candidates with Aflatoxin B1 Binding Activities

    Science.gov (United States)

    Damayanti, E.; Istiqomah, L.; Saragih, J. E.; Purwoko, T.; Sardjono

    2017-12-01

    Our previous studies have selected lactic acid bacteria (LAB) with antifungal activities from traditional fermented foods made from cassava (G7) and silage feed palm leaf (PDS5 and PDS3). In this study we evaluated their ability to bind aflatoxin B1 (AFB1) and probiotic characteristic. The probiotic characteristic assays of LAB consisted of resistance to acidic conditions (pH 3), gastric juice and bile salts 0.3%. We also carried out an in vitro evaluation of LAB aflatoxin binding ability in viable and non-viable cell for 24 and 48 hours of incubation. The measurement of aflatoxin content was performed by ELISA method using AgraQuant Total Aflatoxin Assay kit. The results showed that all isolates were potential as probiotics and the G7 isolate had the highest viability among other isolates in pH 3 (92.61 %) and the bile salts assay (97.71 %). The percentage of aflatoxin reduction between viable and non-viable cell from each LAB isolate were different. The highest aflatoxin reduction in viable cell assay was performed by G7 isolate (69.11 %) whereas in non-viable cell assay was performed by PDS3 isolate (73.75 %) during incubation time 48 hours. In this study, G7 isolate performed the best probiotic characteristics with the highest viability in acid pH assay, bile salt 0.3% assay and percentage of aflatoxin B1 reduction in viable cell condition. Molecular identification using 16S rRNA sequence analysis showed that G7 isolate had homology with Lactobacillus plantarum (99.9%). It was concluded that Lactobacillus plantarum G7 was potential as probiotic with aflatoxin binding activities.

  10. Human Adenosine A2A Receptor: Molecular Mechanism of Ligand Binding and Activation

    Directory of Open Access Journals (Sweden)

    Byron Carpenter

    2017-12-01

    Full Text Available Adenosine receptors (ARs comprise the P1 class of purinergic receptors and belong to the largest family of integral membrane proteins in the human genome, the G protein-coupled receptors (GPCRs. ARs are classified into four subtypes, A1, A2A, A2B, and A3, which are all activated by extracellular adenosine, and play central roles in a broad range of physiological processes, including sleep regulation, angiogenesis and modulation of the immune system. ARs are potential therapeutic targets in a variety of pathophysiological conditions, including sleep disorders, cancer, and dementia, which has made them important targets for structural biology. Over a decade of research and innovation has culminated with the publication of more than 30 crystal structures of the human adenosine A2A receptor (A2AR, making it one of the best structurally characterized GPCRs at the atomic level. In this review we analyze the structural data reported for A2AR that described for the first time the binding of mode of antagonists, including newly developed drug candidates, synthetic and endogenous agonists, sodium ions and an engineered G protein. These structures have revealed the key conformational changes induced upon agonist and G protein binding that are central to signal transduction by A2AR, and have highlighted both similarities and differences in the activation mechanism of this receptor compared to other class A GPCRs. Finally, comparison of A2AR with the recently solved structures of A1R has provided the first structural insight into the molecular determinants of ligand binding specificity in different AR subtypes.

  11. The ALMA early science view of FUor/EXor objects - IV. Misaligned outflows in the complex star-forming environment of V1647 Ori and McNeil's Nebula

    Science.gov (United States)

    Principe, David A.; Cieza, Lucas; Hales, Antonio; Zurlo, Alice; Williams, Jonathan; Ruíz-Rodríguez, Dary; Canovas, Hector; Casassus, Simon; Mužić, Koraljka; Perez, Sebastian; Tobin, John J.; Zhu, Zhaohuan

    2018-01-01

    We present Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of the star-forming environment surrounding V1647 Ori, an outbursting FUor/EXor pre-main sequence star. Dust continuum and the (J = 2 - 1) 12CO, 13CO, C18O molecular emission lines were observed to characterize the V1647 Ori circumstellar disc and any large scale molecular features present. We detect continuum emission from the circumstellar disc and determine a radius r = 40 au, inclination i = 17°+6-9 and total disc mass of Mdisc of ∼0.1 M⊙. We do not identify any disc structures associated with nearby companions, massive planets or fragmentation. The molecular cloud environment surrounding V1647 Ori is both structured and complex. We confirm the presence of an excavated cavity north of V1647 Ori and have identified dense material at the base of the optical reflection nebula (McNeil's Nebula) that is actively shaping its surrounding environment. Two distinct outflows have been detected with dynamical ages of ∼11 700 and 17 200 yr. These outflows are misaligned suggesting disc precession over ∼5500 yr as a result of anisotropic accretion events is responsible. The collimated outflows exhibit velocities of ∼2 km s-1, similar in velocity to that of other FUor objects presented in this series, but significantly slower than previous observations and model predictions. The V1647 Ori system is seemingly connected by an 'arm' of material to a large unresolved structure located ∼20 arcsec to the west. The complex environment surrounding V1647 Ori suggests it is in the early stages of star formation, which may relate to its classification as both a FUor and EXor type object.

  12. pUL34 binding near the human cytomegalovirus origin of lytic replication enhances DNA replication and viral growth.

    Science.gov (United States)

    Slayton, Mark; Hossain, Tanvir; Biegalke, Bonita J

    2018-05-01

    The human cytomegalovirus (HCMV) UL34 gene encodes sequence-specific DNA-binding proteins (pUL34) which are required for viral replication. Interactions of pUL34 with DNA binding sites represses transcription of two viral immune evasion genes, US3 and US9. 12 additional predicted pUL34-binding sites are present in the HCMV genome (strain AD169) with three binding sites concentrated near the HCMV origin of lytic replication (oriLyt). We used ChIP-seq analysis of pUL34-DNA interactions to confirm that pUL34 binds to the oriLyt region during infection. Mutagenesis of the UL34-binding sites in an oriLyt-containing plasmid significantly reduced viral-mediated oriLyt-dependent DNA replication. Mutagenesis of these sites in the HCMV genome reduced the replication efficiencies of the resulting viruses. Protein-protein interaction analyses demonstrated that pUL34 interacts with the viral proteins IE2, UL44, and UL84, that are essential for viral DNA replication, suggesting that pUL34-DNA interactions in the oriLyt region are involved in the DNA replication cascade. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Mua (HP0868) Is a Nickel-Binding Protein That Modulates Urease Activity in Helicobacter pylori

    Science.gov (United States)

    Benoit, Stéphane L.; Maier, Robert J.

    2011-01-01

    A novel mechanism aimed at controlling urease expression in Helicobacter pylori in the presence of ample nickel is described. Higher urease activities were observed in an hp0868 mutant (than in the wild type) in cells supplemented with nickel, suggesting that the HP0868 protein (herein named Mua for modulator of urease activity) represses urease activity when nickel concentrations are ample. The increase in urease activity in the Δmua mutant was linked to an increase in urease transcription and synthesis, as shown by quantitative real-time PCR, SDS-PAGE, and immunoblotting against UreAB. Increased urease synthesis was also detected in a Δmua ΔnikR double mutant strain. The Δmua mutant was more sensitive to nickel toxicity but more resistant to acid challenge than was the wild-type strain. Pure Mua protein binds 2 moles of Ni2+ per mole of dimer. Electrophoretic mobility shift assays did not reveal any binding of Mua to the ureA promoter or other selected promoters (nikR, arsRS, 5′ ureB-sRNAp). Previous yeast two-hybrid studies indicated that Mua and RpoD may interact; however, only a weak interaction was detected via cross-linking with pure components and this could not be verified by another approach. There was no significant difference in the intracellular nickel level between wild-type and mua mutant cells. Taken together, our results suggest the HP0868 gene product represses urease transcription when nickel levels are high through an as-yet-uncharacterized mechanism, thus counterbalancing the well-described NikR-mediated activation. PMID:21505055

  14. Carrageenan activates monocytes via type-specific binding with interleukin-8: an implication for design of immuno-active biomaterials.

    Science.gov (United States)

    Chan, Weng-I; Zhang, Guangpan; Li, Xin; Leung, Chung-Hang; Ma, Dik-Lung; Dong, Lei; Wang, Chunming

    2017-02-28

    Polymers that can activate the immune system may become useful biomaterials tools, given that the mechanisms underlying their actions are well understood. Herein, we report a novel type of interaction between polymers and immune cells - in studying the influence of the three major types of carrageenan (CGN) polysaccharides on monocyte behaviour in vitro, we found only the λ-type induced monocyte adhesion and this action requires the presence of an adequate amount of serum. Further analyses indicated λ-CGN bound interleukin-8 (IL-8) in the serum and activated the cultured monocytes through an IL-8-dependent pathway. This is the first demonstration that a polymer, with a renowned immunostimulatory effect, activates the immune system via binding and harnessing the function of a specific cytokine in the microenvironment. This is a new mechanism underlying polymer-immunity interactions that may shed light on future design and application of biomaterials tools targeting the immune system for a wide variety of therapeutic applications.

  15. Oridonin Loaded Solid Lipid Nanoparticles Enhanced Antitumor Activity in MCF-7 Cells

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2014-01-01

    Full Text Available Oridonin (ORI, a famous diterpenoid from Chinese herbal medicine, has drawn rising attention for its remarkable apoptosis and autophagy-inducing activity in human cancer therapy, while clinical application of ORI is limited by its strong hydrophobicity and rapid plasma clearance. The purpose of this study was to evaluate whether the antitumor activity of ORI could be enhanced by loading into solid lipid nanoparticles (SLNs. ORI-loaded SLNs were prepared by hot high pressure homogenization with narrow size distribution and good entrapment efficacy. MTT assay indicated that ORI-loaded SLNs enhanced the inhibition of proliferation against several human cancer cell lines including breast cancer MCF-7 cells, hepatocellular carcinoma HepG 2 cells, and lung carcinoma A549 cells compared with free ORI, while no significant enhancement of toxicity to human mammary epithelial MCF-10A cells was shown. Meanwhile, flow cytometric analysis demonstrated that ORI-SLNs induced more significant cell cycle arrest at S and decreased cell cycle arrest at G1/G0 phase in MCF-7 cells than bulk ORI solution. Hoechst 33342 staining and Annexin V/PI assay indicated that apoptotic rates of cells treated with ORI-loaded SLNs were higher compared with free ORI. In summary, our data indicated that SLNs may be a potential carrier for enhancing the antitumor effect of hydrophobic drug ORI.

  16. Acetylation Increases EWS-FLI1 DNA Binding and Transcriptional Activity

    International Nuclear Information System (INIS)

    Schlottmann, Silke; Erkizan, Hayriye V.; Barber-Rotenberg, Julie S.; Knights, Chad; Cheema, Amrita; Üren, Aykut; Avantaggiati, Maria L.; Toretsky, Jeffrey A.

    2012-01-01

    Ewing Sarcoma (ES) is associated with a balanced chromosomal translocation that in most cases leads to the expression of the oncogenic fusion protein and transcription factor EWS-FLI1. EWS-FLI1 has been shown to be crucial for ES cell survival and tumor growth. However, its regulation is still enigmatic. To date, no functionally significant post-translational modifications of EWS-FLI1 have been shown. Since ES are sensitive to histone deacetylase inhibitors (HDI), and these inhibitors are advancing in clinical trials, we sought to identify if EWS-FLI1 is directly acetylated. We convincingly show acetylation of the C-terminal FLI1 (FLI1-CTD) domain, which is the DNA binding domain of EWS-FLI1. In vitro acetylation studies showed that acetylated FLI1-CTD has higher DNA binding activity than the non-acetylated protein. Over-expression of PCAF or treatment with HDI increased the transcriptional activity of EWS-FLI1, when co-expressed in Cos7 cells. However, our data that evaluates the acetylation of full-length EWS-FLI1 in ES cells remains unclear, despite creating acetylation specific antibodies to four potential acetylation sites. We conclude that EWS-FLI1 may either gain access to chromatin as a result of histone acetylation or undergo regulation by direct acetylation. These data should be considered when patients are treated with HDAC inhibitors. Further investigation of this phenomenon will reveal if this potential acetylation has an impact on tumor response.

  17. Intensive fibrosarcoma-binding capability of the reconstituted analog and its antitumor activity.

    Science.gov (United States)

    Xu, Jian; Du, Yue; Liu, Wen-Juan; Li, Liang; Li, Yi; Wang, Xiao-Fei; Yi, Hong-Fei; Shan, Chuan-Kun; Xia, Gui-Min; Liu, Xiu-Jun; Zhen, Yong-Su

    2018-11-01

    Fibrosarcomas are highly aggressive malignant tumors. It is urgently needed to explore targeted drugs and modalities for more effective therapy. Matrix metalloproteinases (MMPs) play important roles in tumor progression and metastasis, while several MMPs are highly expressed in fibrosarcomas. In addition, tissue inhibitor of metalloproteinase 2 (TIMP2) displays specific interaction with MMPs. Therefore, TIMP2 may play an active role in the development of fibrosarcoma-targeting agents. In the current study, a TIMP2-based recombinant protein LT and its enediyne-integrated analog LTE were prepared; furthermore, the fibrosarcoma-binding intensity and antitumor activity were investigated. As shown, intense and selective binding capability of the protein LT to human fibrosarcoma specimens was confirmed by tissue microarray. Moreover, LTE, the enediyne-integrated analog of LT, exerted highly potent cytotoxicity to fibrosarcoma HT1080 cells, induced apoptosis, and caused G2/M arrest. LTE at 0.1 nM markedly suppressed the migration and invasion of HT1080 cells. LTE at tolerated dose of 0.6 mg/kg inhibited the tumor growth of fibrosarcoma xenograft in athymic mice. The study provides evidence that the TIMP2-based reconstituted analog LTE may be useful as a targeted drug for fibrosarcome therapy.

  18. Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting.

    Science.gov (United States)

    Wu, Shwu-Yuan; Lee, A-Young; Lai, Hsien-Tsung; Zhang, Hong; Chiang, Cheng-Ming

    2013-03-07

    Bromodomain-containing protein 4 (Brd4) is an epigenetic reader and transcriptional regulator recently identified as a cancer therapeutic target for acute myeloid leukemia, multiple myeloma, and Burkitt's lymphoma. Although chromatin targeting is a crucial function of Brd4, there is little understanding of how bromodomains that bind acetylated histones are regulated, nor how the gene-specific activity of Brd4 is determined. Via interaction screen and domain mapping, we identified p53 as a functional partner of Brd4. Interestingly, Brd4 association with p53 is modulated by casein kinase II (CK2)-mediated phosphorylation of a conserved acidic region in Brd4 that selectively contacts either a juxtaposed bromodomain or an adjacent basic region to dictate the ability of Brd4 binding to chromatin and also the recruitment of p53 to regulated promoters. The unmasking of bromodomains and activator recruitment, concurrently triggered by the CK2 phospho switch, provide an intriguing mechanism for gene-specific targeting by a universal epigenetic reader. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Binding activity of patterned concanavalin A studied by atomic force microscopy

    International Nuclear Information System (INIS)

    Lebed, Kateryna; Pyka-Fosciak, Grazyna; Raczkowska, Joanna; Lekka, Malgorzata; Styczen, Jan

    2005-01-01

    The mode of protein immobilization plays a crucial role in the preparation of protein microarrays used for a wide spectrum of applications in analytical biochemistry. The microcontact printing technique was used to form a protein pattern using concanavalin A (Con A) since Con A belongs to a group of proteins widely used in analytical assays due to their selectivity as regards different kinds of carbohydrates. Atomic force microscopy was used to image surface topography, delivering information about the quality of the protein pattern. The force spectroscopy mode was used to verify the functional activity of deposited proteins via determination of the forces of interaction between Con A and carboxypeptidase Y bearing carbohydrate structure recognized by Con A. The calculated binding force between Con A and CaY was 105 ± 2 pN and it was compared with that measured for Con A deposited directly from the protein solution. The similarity of the value obtained for the interaction force was independent of the mode of protein deposition, thereby verifying that the microcontact printing technique did not influence the carbohydrate binding activity of Con A. The correlation between the surface topography of patterned samples and adhesion maps obtained showed the possible use of AFM for studying the chemical properties of different regions of the micropatterns produced

  20. Superparamagnetic nickel colloidal nanocrystal clusters with antibacterial activity and bacteria binding ability

    Science.gov (United States)

    Peng, Bo; Zhang, Xinglin; Aarts, Dirk G. A. L.; Dullens, Roel P. A.

    2018-06-01

    Recent progress in synthetic nanotechnology and the ancient use of metals in food preservation and the antibacterial treatment of wounds have prompted the development of nanometallic materials for antimicrobial applications1-4. However, the materials designed so far do not simultaneously display antimicrobial activity and the capability of binding and capturing bacteria and spores. Here, we develop a one-step pyrolysis procedure to synthesize monodisperse superparamagnetic nickel colloidal nanocrystal clusters (SNCNCs), which show both antibacterial activity and the ability to bind Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, as well as bacterial spores. The SNCNCs are formed from a rapid burst of nickel nanoparticles, which self-assemble slowly into clusters. The clusters can magnetically extract 99.99% of bacteria and spores and provide a promising approach for the removal of microbes, including hard-to-treat microorganisms. We believe that our work illustrates the exciting opportunities that nanotechnology offers for alternative antimicrobial strategies and other applications in microbiology.

  1. A profile of prognostic and molecular factors in European and Māori breast cancer patients

    International Nuclear Information System (INIS)

    Dachs, Gabi U; Wells, J Elisabeth; Robinson, Bridget A; Kano, Maiko; Volkova, Ekaterina; Morrin, Helen R; Davey, Valerie CL; Harris, Gavin C; Cheale, Michelle; Frampton, Christopher; Currie, Margaret J

    2010-01-01

    New Zealand Māori have a poorer outcome from breast cancer than non-Māori, yet prognostic data are sparse. The objective of this study was to quantify levels of prognostic factors in a cohort of self-declared Māori and European breast cancer patients from Christchurch, New Zealand. Clinicopathological and survival data from 337 consecutive breast cancer patients (27 Māori, 310 European) were evaluated. Fewer tumours were high grade in Māori women than European women (p = 0.027). No significant ethnic differences were detected for node status, tumour type, tumour size, human epidermal growth factor receptor, oestrogen and progesterone receptor (ER/PR) status, or survival. In addition, tumour and serum samples from a sub-cohort of 14 Māori matched to 14 NZ European patients were analyzed by immunohistochemistry and enzyme linked immunosorbent assay for molecular prognostic factors. Significant correlations were detected between increased grade and increased levels of hypoxia inducible factor-1 (HIF-1α), glucose transporter-1 (GLUT-1), microvessel density (MVD) and cytokeratins CK5/6 (p < 0.05). High nodal status correlated with reduced carbonic anhydrase IX (CA-IX). Negative ER/PR status correlated with increased GLUT-1, CA-IX and MVD. Within the molecular factors, increased HIF-1α correlated with raised GLUT-1, MVD and CK5/6, and CK5/6 with GLUT-1 and MVD (p < 0.05). The small number of patients in this sub-cohort limited discrimination of ethnic differences. In this Christchurch cohort of breast cancer patients, Māori women were no more likely than European women to have pathological or molecular factors predictive of poor prognosis. These data contrast with data from the North Island NZ, and suggest potential regional differences

  2. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2.

    Science.gov (United States)

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V 1 ) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys 8 ]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg 8 ]-vasopressin (AVP) at V 1 and vasopressin-2 (V 2 ) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V 1 and V 2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [ 3 H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V 1 ) and cyclic adenosine monophosphate (V 2 ). Binding potency at V 1 and V 2 was AVP>LVP>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V 1 than for V 2 . Cellular activity potency was also AVP>LVP>terlipressin. Terlipressin was a partial agonist at V 1 and a full agonist at V 2 ; LVP was a full agonist at both V 1 and V 2 . The in vivo response to terlipressin is likely due to the partial V 1 agonist activity of terlipressin and full V 1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors.

  3. Bark Extracts of Ceylon Cinnamon Possess Antilipidemic Activities and Bind Bile Acids In Vitro

    Directory of Open Access Journals (Sweden)

    Walimuni Prabhashini Kaushalya Mendis Abeysekera

    2017-01-01

    Full Text Available Ethanol (95% and dichloromethane : methanol (1 : 1 bark extracts of authenticated Ceylon cinnamon were investigated for range of antilipidemic activities (ALA: HMG-CoA reductase, lipase, cholesterol esterase, and cholesterol micellization inhibitory activities and bile acids binding in vitro. Individual compounds in bark extracts were also evaluated. Bark extracts showed ALA in all the assays studied. The IC50 (μg/mL values ranged within 153.07±8.38–277.13±32.18, 297.57±11.78–301.09±4.05, 30.61±0.79–34.05±0.41, and 231.96±9.22–478.89±9.27, respectively, for HMG-CoA reductase, lipase, cholesterol esterase, and cholesterol micellization inhibitory activities. The bile acids binding (3 mg/mL for taurocholate, glycodeoxycholate, and chenodeoxycholate ranged within 19.74±0.31–20.22±0.31, 21.97±2.21–26.97±1.61, and 16.11±1.42–19.11±1.52%, respectively. The observed ALA were moderate compared to the reference drugs studied. Individual compounds in bark extracts ranged within 2.14±0.28–101.91±3.61 and 0.42±0.03–49.12±1.89 mg/g of extract. Cinnamaldehyde and gallic acid were the highest and the lowest among the tested compounds. The ethanol extract had highest quantity of individual compounds and ALA investigated. Properties observed indicate usefulness of Ceylon cinnamon bark in managing hyperlipidemia and obesity worldwide. Further, this study provides scientific evidence for the traditional claim that Ceylon cinnamon has antilipidemic activities.

  4. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    International Nuclear Information System (INIS)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun; Nishina, Hiroshi

    2014-01-01

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription

  5. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun, E-mail: hirayama.dbio@mri.tmd.ac.jp; Nishina, Hiroshi, E-mail: nishina.dbio@mri.tmd.ac.jp

    2014-01-17

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.

  6. A Disulfide Bond-forming Machine Is Linked to the Sortase-mediated Pilus Assembly Pathway in the Gram-positive Bacterium Actinomyces oris*

    Science.gov (United States)

    Reardon-Robinson, Melissa E.; Osipiuk, Jerzy; Chang, Chungyu; Wu, Chenggang; Jooya, Neda; Joachimiak, Andrzej; Das, Asis; Ton-That, Hung

    2015-01-01

    Export of cell surface pilins in Gram-positive bacteria likely occurs by the translocation of unfolded precursor polypeptides; however, how the unfolded pilins gain their native conformation is presently unknown. Here, we present physiological studies to demonstrate that the FimA pilin of Actinomyces oris contains two disulfide bonds. Alanine substitution of cysteine residues forming the C-terminal disulfide bridge abrogates pilus assembly, in turn eliminating biofilm formation and polymicrobial interaction. Transposon mutagenesis of A. oris yielded a mutant defective in adherence to Streptococcus oralis, and revealed the essential role of a vitamin K epoxide reductase (VKOR) gene in pilus assembly. Targeted deletion of vkor results in the same defects, which are rescued by ectopic expression of VKOR, but not a mutant containing an alanine substitution in its conserved CXXC motif. Depletion of mdbA, which encodes a membrane-bound thiol-disulfide oxidoreductase, abrogates pilus assembly and alters cell morphology. Remarkably, overexpression of MdbA or a counterpart from Corynebacterium diphtheriae, rescues the Δvkor mutant. By alkylation assays, we demonstrate that VKOR is required for MdbA reoxidation. Furthermore, crystallographic studies reveal that A. oris MdbA harbors a thioredoxin-like fold with the conserved CXXC active site. Consistently, each MdbA enzyme catalyzes proper disulfide bond formation within FimA in vitro that requires the catalytic CXXC motif. Because the majority of signal peptide-containing proteins encoded by A. oris possess multiple Cys residues, we propose that MdbA and VKOR constitute a major folding machine for the secretome of this organism. This oxidative protein folding pathway may be a common feature in Actinobacteria. PMID:26170452

  7. A Disulfide Bond-forming Machine Is Linked to the Sortase-mediated Pilus Assembly Pathway in the Gram-positive Bacterium Actinomyces oris.

    Science.gov (United States)

    Reardon-Robinson, Melissa E; Osipiuk, Jerzy; Chang, Chungyu; Wu, Chenggang; Jooya, Neda; Joachimiak, Andrzej; Das, Asis; Ton-That, Hung

    2015-08-28

    Export of cell surface pilins in Gram-positive bacteria likely occurs by the translocation of unfolded precursor polypeptides; however, how the unfolded pilins gain their native conformation is presently unknown. Here, we present physiological studies to demonstrate that the FimA pilin of Actinomyces oris contains two disulfide bonds. Alanine substitution of cysteine residues forming the C-terminal disulfide bridge abrogates pilus assembly, in turn eliminating biofilm formation and polymicrobial interaction. Transposon mutagenesis of A. oris yielded a mutant defective in adherence to Streptococcus oralis, and revealed the essential role of a vitamin K epoxide reductase (VKOR) gene in pilus assembly. Targeted deletion of vkor results in the same defects, which are rescued by ectopic expression of VKOR, but not a mutant containing an alanine substitution in its conserved CXXC motif. Depletion of mdbA, which encodes a membrane-bound thiol-disulfide oxidoreductase, abrogates pilus assembly and alters cell morphology. Remarkably, overexpression of MdbA or a counterpart from Corynebacterium diphtheriae, rescues the Δvkor mutant. By alkylation assays, we demonstrate that VKOR is required for MdbA reoxidation. Furthermore, crystallographic studies reveal that A. oris MdbA harbors a thioredoxin-like fold with the conserved CXXC active site. Consistently, each MdbA enzyme catalyzes proper disulfide bond formation within FimA in vitro that requires the catalytic CXXC motif. Because the majority of signal peptide-containing proteins encoded by A. oris possess multiple Cys residues, we propose that MdbA and VKOR constitute a major folding machine for the secretome of this organism. This oxidative protein folding pathway may be a common feature in Actinobacteria. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Nitric Oxide Binds to and Modulates the Activity of a Pollen Specific Arabidopsis Diacylglycerol Kinase

    KAUST Repository

    Wong, Aloysius Tze

    2014-06-01

    Nitric oxide (NO) is an important signaling molecule in plants. In the pollen of Arabidopsis thaliana, NO causes re-orientation of the growing tube and this response is mediated by 3′,5′-cyclic guanosine monophosphate (cGMP). However, in plants, NO-sensors have remained somewhat elusive. Here, the findings of an NO-binding candidate, Arabidopsis thaliana DIACYLGLYCEROL KINASE 4 (ATDGK4; AT5G57690) is presented. In addition to the annotated diacylglycerol kinase domain, this molecule also harbors a predicted heme-NO/oxygen (H-NOX) binding site and a guanylyl cyclase (GC) catalytic domain which have been identified based on the alignment of functionally conserved amino acid residues across species. A 3D model of the molecule was constructed, and from which the locations of the kinase catalytic center, the ATP-binding site, the GC and H-NOX domains were estimated. Docking of ATP to the kinase catalytic center was also modeled. The recombinant ATDGK4 demonstrated kinase activity in vitro, catalyzing the ATP-dependent conversion of sn-1,2-diacylglycerol (DAG) to phosphatidic acid (PA). This activity was inhibited by the mammalian DAG kinase inhibitor R59949 and importantly also by the NO donors diethylamine NONOate (DEA NONOate) and sodium nitroprusside (SNP). Recombinant ATDGK4 also has GC activity in vitro, catalyzing the conversion of guanosine-5\\'-triphosphate (GTP) to cGMP. The catalytic domains of ATDGK4 kinase and GC may be independently regulated since the kinase but not the GC, was inhibited by NO while Ca2+ only stimulates the GC. It is likely that the DAG kinase product, PA, causes the release of Ca2+ from the intracellular stores and Ca2+ in turn activates the GC domain of ATDGK4 through a feedback mechanism. Analysis of publicly available microarray data has revealed that ATDGK4 is highly expressed in the pollen. Here, the pollen tubes of mis-expressing atdgk4 recorded slower growth rates than the wild-type (Col-0) and importantly, they showed altered

  9. Effects of saw palmetto extract on micturition reflex of rats and its autonomic receptor binding activity.

    Science.gov (United States)

    Oki, Tomomi; Suzuki, Mayumi; Nishioka, Yasuhiko; Yasuda, Akio; Umegaki, Keizo; Yamada, Shizuo

    2005-04-01

    We examined the effects of saw palmetto extract (SPE) on the rat micturition reflex and on autonomic receptors in the lower urinary tract. The effect of SPE was examined on cystometrograms of anesthetized rats induced by intravesical infusion of saline or 0.1% acetic acid. SHR/NDmc-cp (cp/cp) rats received repeat oral administration of SPE and nighttime urodynamic function was determined. The autonomic receptor binding activity of SPE in the rat bladder and prostate was examined by radioligand binding assay. Intraduodenal administration of SPE (60 mg/kg) in anesthetized rat cystometry caused a significant increase in the micturition interval, micturition volume and bladder capacity during intravesical saline infusion. Also, similar administration of SPE at doses of 12 and 20 mg/kg significantly reversed the shortened micturition interval as well as the decreased micturition volume and bladder capacity due to 0.1% acetic acid infusion in a dose dependent manner. In conscious SHR/NDmc-cp (cp/cp) rats repeat oral administration of SPE (6 mg/kg daily) constantly increased the micturition interval and concomitantly decreased voiding frequency. SPE inhibited specific binding of [H]NMS ([N-methyl-H]scopolamine methyl chloride) (bladder) and [H]prazosin (prostate) with IC50 values of 46.1 and 183 microg/ml, respectively. SPE significantly alleviates urodynamic symptoms in hyperactive rat bladders by increasing bladder capacity and subsequently prolonging the micturition interval. Our data may support the clinical efficacy of SPE for the treatment of lower urinary tract symptoms.

  10. RNA-binding properties and RNA chaperone activity of human peroxiredoxin 1

    International Nuclear Information System (INIS)

    Kim, Ji-Hee; Lee, Jeong-Mi; Lee, Hae Na; Kim, Eun-Kyung; Ha, Bin; Ahn, Sung-Min; Jang, Ho Hee; Lee, Sang Yeol

    2012-01-01

    Highlights: ► hPrx1 has RNA-binding properties. ► hPrx1 exhibits helix-destabilizing activity. ► Cold stress increases hPrx1 level in the nuclear fraction. ► hPrx1 enhances the viability of cells exposed to cold stress. -- Abstract: Human peroxiredoxin 1 (hPrx1), a member of the peroxiredoxin family, detoxifies peroxide substrates and has been implicated in numerous biological processes, including cell growth, proliferation, differentiation, apoptosis, and redox signaling. To date, Prx1 has not been implicated in RNA metabolism. Here, we investigated the ability of hPrx1 to bind RNA and act as an RNA chaperone. In vitro, hPrx1 bound to RNA and DNA, and unwound nucleic acid duplexes. hPrx1 also acted as a transcription anti-terminator in an assay using an Escherichia coli strain containing a stem–loop structure upstream of the chloramphenicol resistance gene. The overall cellular level of hPrx1 expression was not increased at low temperatures, but the nuclear level of hPrx1 was increased. In addition, hPrx1 overexpression enhanced the survival of cells exposed to cold stress, whereas hPrx1 knockdown significantly reduced cell survival under the same conditions. These findings suggest that hPrx1 may perform biological functions as a RNA-binding protein, which are distinctive from known functions of hPrx1 as a reactive oxygen species scavenger.

  11. Combinatorial binding in human and mouse embryonic stem cells identifies conserved enhancers active in early embryonic development.

    Directory of Open Access Journals (Sweden)

    Jonathan Göke

    2011-12-01

    Full Text Available Transcription factors are proteins that regulate gene expression by binding to cis-regulatory sequences such as promoters and enhancers. In embryonic stem (ES cells, binding of the transcription factors OCT4, SOX2 and NANOG is essential to maintain the capacity of the cells to differentiate into any cell type of the developing embryo. It is known that transcription factors interact to regulate gene expression. In this study we show that combinatorial binding is strongly associated with co-localization of the transcriptional co-activator Mediator, H3K27ac and increased expression of nearby genes in embryonic stem cells. We observe that the same loci bound by Oct4, Nanog and Sox2 in ES cells frequently drive expression in early embryonic development. Comparison of mouse and human ES cells shows that less than 5% of individual binding events for OCT4, SOX2 and NANOG are shared between species. In contrast, about 15% of combinatorial binding events and even between 53% and 63% of combinatorial binding events at enhancers active in early development are conserved. Our analysis suggests that the combination of OCT4, SOX2 and NANOG binding is critical for transcription in ES cells and likely plays an important role for embryogenesis by binding at conserved early developmental enhancers. Our data suggests that the fast evolutionary rewiring of regulatory networks mainly affects individual binding events, whereas "gene regulatory hotspots" which are bound by multiple factors and active in multiple tissues throughout early development are under stronger evolutionary constraints.

  12. Glucostatic regulation of (+)-[3H]amphetamine binding in the hypothalamus: correlation with Na+, K+-ATPase activity

    International Nuclear Information System (INIS)

    Angel, I.; Hauger, R.L.; Luu, M.D.; Giblin, B.; Skolnick, P.; Paul, S.M.

    1985-01-01

    Preincubation of rat hypothalamic slices in glucose-free Krebs-Ringer buffer (37 0 C) resulted in a time-dependent decrease in specific (+)-[ 3 H]amphetamine binding in the crude synaptosomal fraction prepared from these slices. The addition of D-glucose resulted in a dose- and time-dependent stimulation of (+)-[ 3 H]amphetamine binding, whereas incubations with L-glucose, 2-deoxy-D-glucose, or 3-O-methyl-D-glucose failed to increase the number of (+)-[ 3 H]amphetamine binding sites. Ouabain potently inhibited the glucose-induced stimulation of (+)-[ 3 H]amphetamine binding, suggesting the involvement of Na + , K + -ATPase. Preincubation of hypothalamic slices with glucose also resulted in an increase in Na + ,K + -ATPase activity and the number of specific high-affinity binding sites for [ 3 H]ouabain, and a good correlation was observed between the glucose-stimulated increase in (+)-[ 3 H]amphetamine and [ 3 H]ouabain binding. These data suggest that the (+)-[ 3 H]amphetamine binding site in hypothalamus, previously linked to the anorectic actions of various phenylethylamines, is regulated both in vitro and in vivo by physiological concentrations of glucose. Glucose and amphetamine appear to interact at common sites in the hypothalamus to stimulate Na + ,K + -ATPase activity, and the latter may be involved in the glucostatic regulation of appetite

  13. Increased activity of the mannan-binding lectin complement activation pathway in patients with colorectal cancer

    DEFF Research Database (Denmark)

    Ytting, H; Jensenius, Jens Christian; Christensen, I J

    2004-01-01

    in certain patient groups. It is hypothesized that a deficient MBL pathway might be more frequent among patients with CRC than in healthy individuals. The MBL pathway was therefore evaluated in serum obtained preoperatively from 193 patients with primary CRC and in serum from 150 healthy volunteers. METHODS......: Serum MBL concentrations and MBL/MASP activity were determined using immunofluorometric assays. The levels are presented as the median, inter-quartile range and range. RESULTS: Serum MBL levels were significantly (P ..., inter-quartile range) compared with levels in healthy blood donors (924 (230-1476) ng/mL). Similarly, the MBL/MASP activity was significantly (P age, gender, tumour location...

  14. Biological activity of cloned mammary tumor virus DNA fragments that bind purified glucocorticoid receptor protein in vitro

    International Nuclear Information System (INIS)

    Yamamoto, K.R.; Payvar, F.; Firestone, G.L.; Maler, B.A.; Wrange, O.; Carlstedt-Duke, J.; Gustafsson, J.A.; Chandler, V.L.; Karolinska Institutet, Stockholm, Sweden)

    1983-01-01

    To test whether high-affinity receptor:DNA interactions can be correlated with receptor effects on promoter function in vivo, we have mapped in greater detail the receptor-binding regions on murine mammary tumor virus DNA, using both nitrocellulose-filter binding and electron microscopy. Recombinant plasmids bearing these receptor-binding domains have been transfected into cultured cells, and the expression of the plasmid sequences has been monitored for hormonal regulation. The results are considered in terms of a speculative proposal that the glucocorticoid receptor may effect changes in promoter activity via specific alteration of chromatin and/or DNA structure. 37 references, 6 figures, 2 tables

  15. Perceptions of New Zealand nutrition labels by Māori, Pacific and low-income shoppers.

    Science.gov (United States)

    Signal, Louise; Lanumata, Tolotea; Robinson, Jo-Ani; Tavila, Aliitasi; Wilton, Jenny; Ni Mhurchu, Cliona

    2008-07-01

    In New Zealand the burden of nutrition-related disease is greatest among Māori, Pacific and low-income peoples. Nutrition labels have the potential to promote healthy food choices and eating behaviours. To date, there has been a noticeable lack of research among indigenous peoples, ethnic minorities and low-income populations regarding their perceptions, use and understanding of nutrition labels. Our aim was to evaluate perceptions of New Zealand nutrition labels by Māori, Pacific and low-income peoples and to explore improvements or alternatives to current labelling systems. Māori, Samoan and Tongan researchers recruited participants who were regular food shoppers. Six focus groups were conducted which involved 158 people in total: one Māori group, one Samoan, one Tongan, and three low-income groups. Māori, Pacific and low-income New Zealanders rarely use nutrition labels to assist them with their food purchases for a number of reasons, including lack of time to read labels, lack of understanding, shopping habits and relative absence of simple nutrition labels on the low-cost foods they purchase. Current New Zealand nutrition labels are not meeting the needs of those who need them most. Possible improvements include targeted social marketing and education campaigns, increasing the number of low-cost foods with voluntary nutrition labels, a reduction in the price of 'healthy' food, and consideration of an alternative mandatory nutrition labelling system that uses simple imagery like traffic lights.

  16. Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes

    International Nuclear Information System (INIS)

    Csermely, P.; Szamel, M.; Resch, K.; Somogyi, J.

    1988-01-01

    In the primary structure of protein kinase C, the presence of a putative metal-binding site has been suggested. In the present report, the authors demonstrate that the most abundant intracellular heavy metal, zinc, can increase the activity of cytosolic protein kinase C. Zinc reversibly binds the enzyme to plasma membranes,and it may contribute to the calcium-induced binding as well. The intracellular heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine prevents the phorbol ester- and antigen-induced translocation of protein kinase C. This effect can be totally reversed by the concomitant addition of Zn 2+ , while Fe 2+ and Mn 2+ are only partially counteractive. The results suggest that zinc can activate protein kinase C and contributes to its binding to plasma membranes in T lymphocytes induced by Ca 2+ , phorbol ester, or antigen

  17. Functional characterization of a conserved archaeal viral operon revealing single-stranded DNA binding, annealing and nuclease activities

    DEFF Research Database (Denmark)

    Guo, Yang; Kragelund, Birthe Brandt; White, Malcolm F.

    2015-01-01

    encoding proteins of unknown function and forming an operon with ORF207 (gp19). SIRV2 gp17 was found to be a single-stranded DNA (ssDNA) binding protein different in structure from all previously characterized ssDNA binding proteins. Mutagenesis of a few conserved basic residues suggested a U......-shaped binding path for ssDNA. The recombinant gp18 showed an ssDNA annealing activity often associated with helicases and recombinases. To gain insight into the biological role of the entire operon, we characterized SIRV2 gp19 and showed it to possess a 5'→3' ssDNA exonuclease activity, in addition...... for rudiviruses and the close interaction among the ssDNA binding, annealing and nuclease proteins strongly point to a role of the gene operon in genome maturation and/or DNA recombination that may function in viral DNA replication/repair....

  18. Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Csermely, P.; Szamel, M.; Resch, K.; Somogyi, J.

    1988-05-15

    In the primary structure of protein kinase C, the presence of a putative metal-binding site has been suggested. In the present report, the authors demonstrate that the most abundant intracellular heavy metal, zinc, can increase the activity of cytosolic protein kinase C. Zinc reversibly binds the enzyme to plasma membranes,and it may contribute to the calcium-induced binding as well. The intracellular heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine prevents the phorbol ester- and antigen-induced translocation of protein kinase C. This effect can be totally reversed by the concomitant addition of Zn/sup 2 +/, while Fe/sup 2 +/ and Mn/sup 2 +/ are only partially counteractive. The results suggest that zinc can activate protein kinase C and contributes to its binding to plasma membranes in T lymphocytes induced by Ca/sup 2 +/, phorbol ester, or antigen.

  19. Zinc binding activity of human metapneumovirus M2-1 protein is indispensable for viral replication and pathogenesis in vivo.

    Science.gov (United States)

    Cai, Hui; Zhang, Yu; Ma, Yuanmei; Sun, Jing; Liang, Xueya; Li, Jianrong

    2015-06-01

    Human metapneumovirus (hMPV) is a member of the Pneumovirinae subfamily in the Paramyxoviridae family that causes respiratory tract infections in humans. Unlike members of the Paramyxovirinae subfamily, the polymerase complex of pneumoviruses requires an additional cofactor, the M2-1 protein, which functions as a transcriptional antitermination factor. The M2-1 protein was found to incorporate zinc ions, although the specific role(s) of the zinc binding activity in viral replication and pathogenesis remains unknown. In this study, we found that the third cysteine (C21) and the last histidine (H25) in the zinc binding motif (CCCH) of hMPV M2-1 were essential for zinc binding activity, whereas the first two cysteines (C7 and C15) play only minor or redundant roles in zinc binding. In addition, the zinc binding motif is essential for the oligomerization of M2-1. Subsequently, recombinant hMPVs (rhMPVs) carrying mutations in the zinc binding motif were recovered. Interestingly, rhMPV-C21S and -H25L mutants, which lacked zinc binding activity, had delayed replication in cell culture and were highly attenuated in cotton rats. In contrast, rhMPV-C7S and -C15S strains, which retained 60% of the zinc binding activity, replicated as efficiently as rhMPV in cotton rats. Importantly, rhMPVs that lacked zinc binding activity triggered high levels of neutralizing antibody and provided complete protection against challenge with rhMPV. Taken together, these results demonstrate that zinc binding activity is indispensable for viral replication and pathogenesis in vivo. These results also suggest that inhibition of zinc binding activity may serve as a novel approach to rationally attenuate hMPV and perhaps other pneumoviruses for vaccine purposes. The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute

  20. Maternal celiac disease autoantibodies bind directly to syncytiotrophoblast and inhibit placental tissue transglutaminase activity

    Directory of Open Access Journals (Sweden)

    Robinson Nicola J

    2009-02-01

    Full Text Available Abstract Background Celiac disease (CD occurs in as many as 1 in 80 pregnant women and is associated with poor pregnancy outcome, but it is not known if this is an effect on maternal nutrient absorption or, alternatively, if the placenta is an autoimmune target. The major autoantigen, tissue transglutaminase (tTG, has previously been shown to be present in the maternal-facing syncytiotrophoblast plasma membrane of the placenta. Methods ELISA was used to demonstrate the presence of antibodies to tissue transglutaminase in a panel of CD sera. Immunohistochemistry was used to evaluate the binding of IgA autoantibodies from CD serum to term placenta. In addition, novel direct binding and activity assays were developed to mimic the in vivo exposure of the villous placenta to maternal autoantibody. Results and Discussion CD IgA autoantibodies located to the syncytial surface of the placenta significantly more than IgA antibodies in control sera (P Conclusion These data indicate that direct immune effects in untreated CD women may compromise placental function.

  1. Thioredoxin-1 Negatively Modulates ADAM17 Activity Through Direct Binding and Indirect Reductive Activity.

    Science.gov (United States)

    Granato, Daniela C; E Costa, Rute A P; Kawahara, Rebeca; Yokoo, Sami; Aragão, Annelize Z; Domingues, Romênia R; Pauletti, Bianca A; Honorato, Rodrigo V; Fattori, Juliana; Figueira, Ana Carolina M; Oliveira, Paulo S L; Consonni, Silvio R; Fernandes, Denise; Laurindo, Francisco; Hansen, Hinrich P; Paes Leme, Adriana F

    2018-02-27

    A disintegrin and metalloprotease 17 (ADAM17) modulates signaling events by releasing surface protein ectodomains such as TNFa and the EGFR-ligands. We have previously characterized cytoplasmic thioredoxin-1 (Trx-1) as a partner of ADAM17 cytoplasmic domain. Still, the mechanism of ADAM17 regulation by Trx-1 is unknown, and it has become of paramount importance to assess the degree of influence that Trx-1 has on metalloproteinase ADAM17. Combining discovery and targeted proteomic approaches, we uncovered that Trx-1 negatively regulates ADAM17 by direct and indirect effect. We performed cell-based assays with synthetic peptides and site-directed mutagenesis, and we demonstrated that the interaction interface of Trx-1 and ADAM17 is important for the negative regulation of ADAM17 activity. However, both Trx-1 K72A and catalytic site mutant Trx-1 C32/35S rescued ADAM17 activity, although the interaction with Trx-1 C32/35S was unaffected, suggesting an indirect effect of Trx-1. We confirmed that the Trx-1 C32/35S mutant showed diminished reductive capacity, explaining this indirect effect on increasing ADAM17 activity through oxidant levels. Interestingly, Trx-1 K72A mutant showed similar oxidant levels to Trx-1 C32/35S , even though its catalytic site was preserved. We further demonstrated that the general reactive oxygen species inhibitor, Nacetylcysteine (NAC), maintained the regulation of ADAM17 dependent of Trx-1 reductase activity levels; whereas the electron transport chain modulator, rotenone, abolished Trx-1 effect on ADAM17 activity. We show for the first time that the mechanism of ADAM17 regulation, Trx-1 dependent, can be by direct interaction and indirect effect, bringing new insights into the cross-talk between isomerases and mammalian metalloproteinases. This unexpected Trx-1 K72A behavior was due to more dimer formation and, consequently, the reduction of its Trx-1 reductase activity, evaluated through dimer verification, by gel filtration and mass

  2. The evaluation of anoxia responsive E2F DNA binding activity in the red eared slider turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Biggar, Kyle K; Storey, Kenneth B

    2018-01-01

    In many cases, the DNA-binding activity of a transcription factor does not change, while its transcriptional activity is greatly influenced by the make-up of bound proteins. In this study, we assessed the protein composition and DNA-binding ability of the E2F transcription factor complex to provide insight into cell cycle control in an anoxia tolerant turtle through the use of a modified ELISA protocol. This modification also permits the use of custom DNA probes that are tailored to a specific DNA binding region, introducing the ability to design capture probes for non-model organisms. Through the use of EMSA and ELISA DNA binding assays, we have successfully determined the in vitro DNA binding activity and complex dynamics of the Rb/E2F cell cycle regulatory mechanisms in an anoxic turtle, Trachemys scripta elegans . Repressive cell cycle proteins (E2F4, Rb, HDAC4 and Suv39H1) were found to significantly increase at E2F DNA-binding sites upon anoxic exposure in anoxic turtle liver. The lack of p130 involvement in the E2F DNA-bound complex indicates that anoxic turtle liver may maintain G 1 arrest for the duration of stress survival.

  3. The evaluation of anoxia responsive E2F DNA binding activity in the red eared slider turtle, Trachemys scripta elegans

    Directory of Open Access Journals (Sweden)

    Kyle K. Biggar

    2018-05-01

    Full Text Available In many cases, the DNA-binding activity of a transcription factor does not change, while its transcriptional activity is greatly influenced by the make-up of bound proteins. In this study, we assessed the protein composition and DNA-binding ability of the E2F transcription factor complex to provide insight into cell cycle control in an anoxia tolerant turtle through the use of a modified ELISA protocol. This modification also permits the use of custom DNA probes that are tailored to a specific DNA binding region, introducing the ability to design capture probes for non-model organisms. Through the use of EMSA and ELISA DNA binding assays, we have successfully determined the in vitro DNA binding activity and complex dynamics of the Rb/E2F cell cycle regulatory mechanisms in an anoxic turtle, Trachemys scripta elegans. Repressive cell cycle proteins (E2F4, Rb, HDAC4 and Suv39H1 were found to significantly increase at E2F DNA-binding sites upon anoxic exposure in anoxic turtle liver. The lack of p130 involvement in the E2F DNA-bound complex indicates that anoxic turtle liver may maintain G1 arrest for the duration of stress survival.

  4. Photosynthetic water oxidation: binding and activation of substrate waters for O-O bond formation.

    Science.gov (United States)

    Vinyard, David J; Khan, Sahr; Brudvig, Gary W

    2015-01-01

    Photosynthetic water oxidation occurs at the oxygen-evolving complex (OEC) of Photosystem II (PSII). The OEC, which contains a Mn4CaO5 inorganic cluster ligated by oxides, waters and amino-acid residues, cycles through five redox intermediates known as S(i) states (i = 0-4). The electronic and structural properties of the transient S4 intermediate that forms the O-O bond are not well understood. In order to gain insight into how water is activated for O-O bond formation in the S4 intermediate, we have performed a detailed analysis of S-state dependent substrate water binding kinetics taking into consideration data from Mn coordination complexes. This analysis supports a model in which the substrate waters are both bound as terminal ligands and react via a water-nucleophile attack mechanism.

  5. Binding of the Ras activator son of sevenless to insulin receptor substrate-1 signaling complexes.

    Science.gov (United States)

    Baltensperger, K; Kozma, L M; Cherniack, A D; Klarlund, J K; Chawla, A; Banerjee, U; Czech, M P

    1993-06-25

    Signal transmission by insulin involves tyrosine phosphorylation of a major insulin receptor substrate (IRS-1) and exchange of Ras-bound guanosine diphosphate for guanosine triphosphate. Proteins containing Src homology 2 and 3 (SH2 and SH3) domains, such as the p85 regulatory subunit of phosphatidylinositol-3 kinase and growth factor receptor-bound protein 2 (GRB2), bind tyrosine phosphate sites on IRS-1 through their SH2 regions. Such complexes in COS cells were found to contain the heterologously expressed putative guanine nucleotide exchange factor encoded by the Drosophila son of sevenless gene (dSos). Thus, GRB2, p85, or other proteins with SH2-SH3 adapter sequences may link Sos proteins to IRS-1 signaling complexes as part of the mechanism by which insulin activates Ras.

  6. Mechanical Control of ATP Synthase Function: Activation Energy Difference between Tight and Loose Binding Sites

    KAUST Repository

    Beke-Somfai, Tamás

    2010-01-26

    Despite exhaustive chemical and crystal structure studies, the mechanistic details of how FoF1-ATP synthase can convert mechanical energy to chemical, producing ATP, are still not fully understood. On the basis of quantum mechanical calculations using a recent highresolution X-ray structure, we conclude that formation of the P-O bond may be achieved through a transition state (TS) with a planar PO3 - ion. Surprisingly, there is a more than 40 kJ/mol difference between barrier heights of the loose and tight binding sites of the enzyme. This indicates that even a relatively small change in active site conformation, induced by the γ-subunit rotation, may effectively block the back reaction in βTP and, thus, promote ATP. © 2009 American Chemical Society.

  7. Heme-binding activity of methoxyflavones from Pentzia monodiana Maire (Asteraceae).

    Science.gov (United States)

    Ortiz, Sergio; Dali-Yahia, Kamel; Vasquez-Ocmin, Pedro; Grougnet, Raphaël; Grellier, Philippe; Michel, Sylvie; Maciuk, Alexandre; Boutefnouchet, Sabrina

    2017-04-01

    A heme-binding assay based on mass spectrometry was performed on P. monodiana Maire (Asteraceae) extracts to identify metabolites able to form adducts with heminic part of haemoglobin, as potential antimalarial drugs. Main adducts were characterized and their stability was measured. Isolation of main constituents of P. monodiana Maire lead to identification of the two methoxyflavones 3'-O-methyleupatorin (7) and artemetin (8) involved in the adducts formation. Four seco-tanapartholides (1-4), a guaianolide (5), a germacranolide (6) and two other methoxyflavones (9, 10) were also characterized. Evaluation of isolated compounds on P. falciparum and T. brucei brucei showed a moderate antiprotozoal activity of the two methoxyflavones. Copyright © 2017. Published by Elsevier B.V.

  8. Expression, purification, and DNA-binding activity of the Herbaspirillum seropedicae RecX protein.

    Science.gov (United States)

    Galvão, Carolina W; Pedrosa, Fábio O; Souza, Emanuel M; Yates, M Geoffrey; Chubatsu, Leda S; Steffens, Maria Berenice R

    2004-06-01

    The Herbaspirillum seropedicae RecX protein participates in the SOS response: a process in which the RecA protein plays a central role. The RecX protein of the H. seropedicae, fused to a His-tag sequence (RecX His-tagged), was over-expressed in Escherichia coli and purified by metal-affinity chromatography to yield a highly purified and active protein. DNA band-shift assays showed that the RecX His-tagged protein bound to both circular and linear double-stranded DNA and also to circular single-stranded DNA. The apparent affinity of RecX for DNA decreased in the presence of Mg(2+) ions. The ability of RecX to bind DNA may be relevant to its function in the SOS response.

  9. Correlation of pharmacological activity and receptor binding of guanabenz during development

    International Nuclear Information System (INIS)

    Zoltoski, R.K.

    1989-01-01

    Many studies to elucidate the pharmacokinetic, pharmacodynamic, and molecular pharmacological profile of guanabenz, an α 2 -adrenergic receptor agonist, have been reported; however, the effects of this drug on the developing fetus have been largely ignored. The ability of a drug to alter fetal cardiovascular activity is dependent upon both the penetration of the drug across the placenta and upon maturation of the system(s) through which the drug exerts its effects. Consequently, it is hypothesized that the pharmacological activity of guanabenz on the fetus is influenced both by placenta actions on drug transfer and the time course of development of the central and/or peripheral α 2 adrenergic receptor system(s) through which the drug exerts its effects. Guanabenz (GB) when administered to the maternal sheep elicited a cardiovascular response similar to that observed in rats, dogs, and humans. An initial, transient increase in mean arterial pressure (MAP) was followed by a sustained decrease in MAP. This decrease in MAP was accompanied by a prolonged decrease in heart rate (HR). No cardiovascular response to maternally administered GB was observed in the fetal lamb. Pharmacokinetic studies revealed that GB is widely distributed in the pregnant ewe; however, the placenta appears to act as a relative barrier to the transfer of GB into the fetal compartment. In order to ascertain if the mature fetal lamb had developed functional α 2 -adrenergic receptors, GB was administered directly to the fetus. A transient increase in MAP was elicited; however, no prolonged decrease in either MAP or HR occurred. Following validation of [ 3 H]guanabenz ([ 3 H]GB) binding assay in rat cerebral cortex, studies to correlate [ 3 H]GB binding in sheep cortex with pharmacodynamic response was conducted

  10. Factors affecting the educational achievement of mature Māori information technology students: A case study

    Directory of Open Access Journals (Sweden)

    Blain Harre Rakena

    Full Text Available This paper reports on the results of an investigation into the experiences of academically successful adult Māori students undertaking the Bachelor of Information Technology (BIT programme at the Waikato Institute of Technology (Wintec. This research looked at the participants\\' motivation for attending Wintec, the barriers (such as financial, social and family hardships they encountered as they made the transition back to full time study, and their experiences at Wintec. The paper considers the reasons why the participants have achieved well, identifies the support systems they called on, and explores the challenges that they experienced while studying in a tertiary learning environment. Its significance lies in the focus on factors that affect Māori academic success, specifically in information technology, so that teaching approaches and support systems, particularly in the institute of technology and polytechnic (ITP sector, can enhance the success of Māori in the field of IT.

  11. Radial-velocity variations in Alpha Ori, Alpha Sco, and Alpha Her

    International Nuclear Information System (INIS)

    Smith, M.A.; Patten, B.M.; Goldberg, L.

    1989-01-01

    Radial-velocity observations of Alpha Ori, Alpha Sco A, and Alpha Her A are used to study radial-velocity periodicities in M supergiants. The data refer to several metallic lines in the H-alpha region and to H-alpha itself. It is shown that Alpha Ori and Alpha Sco A have cycle lengths of about 1 yr and semiamplitudes of 2 km/s. It is suggested that many semiregular red supergiant varibles such as Alpha Ori may be heading toward chaos. All three stars show short-term stochastic flucutations with an amplitude of 1-2 km/s. It is found that the long-term variability of H-alpha velocities may be a consequence of intermittent failed ejections. 58 refs

  12. Application of quantitative structure-activity relationship to the determination of binding constant based on fluorescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Wen Yingying [Department of Applied Chemistry, Yantai University, Yantai 264005 (China); Liu Huitao, E-mail: liuht-ytu@163.co [Department of Applied Chemistry, Yantai University, Yantai 264005 (China); Luan Feng; Gao Yuan [Department of Applied Chemistry, Yantai University, Yantai 264005 (China)

    2011-01-15

    Quantitative structure-activity relationship (QSAR) model was used to predict and explain binding constant (log K) determined by fluorescence quenching. This method allowed us to predict binding constants of a variety of compounds with human serum albumin (HSA) based on their structures alone. Stepwise multiple linear regression (MLR) and nonlinear radial basis function neural network (RBFNN) were performed to build the models. The statistical parameters provided by the MLR model (R{sup 2}=0.8521, RMS=0.2678) indicated satisfactory stability and predictive ability while the RBFNN predictive ability is somewhat superior (R{sup 2}=0.9245, RMS=0.1736). The proposed models were used to predict the binding constants of two bioactive components in traditional Chinese medicines (isoimperatorin and chrysophanol) whose experimental results were obtained in our laboratory and the predicted results were in good agreement with the experimental results. This QSAR approach can contribute to a better understanding of structural factors of the compounds responsible for drug-protein interactions, and can be useful in predicting the binding constants of other compounds. - Research Highlights: QSAR models for binding constants of some compounds to HSA were developed. The models provide a simple and straightforward way to predict binding constant. QSAR can give some insight into structural features related to binding behavior.

  13. Pathways to ambulatory sensitive hospitalisations for Māori in the Auckland and Waitemata regions.

    Science.gov (United States)

    Barker, Carol; Crengle, Sue; Bramley, Dale; Bartholomew, Karen; Bolton, Patricia; Walsh, Michael; Wignall, Jean

    2016-10-28

    Ambulatory Sensitive Hospitalisations (ASH) are a group of conditions potentially preventable through interventions delivered in the primary health care setting. ASH rates are consistently higher for Māori compared with non-Māori. This study aimed to establish Māori experience of factors driving the use of hospital services for ASH conditions, including barriers to accessing primary care. A telephone questionnaire exploring pathways to ASH was administered to Māori (n=150) admitted to Auckland and Waitemata District Health Board (DHB) hospitals with an ASH condition between January 1st-June 30th 2015. A cohort of 1,013 participants were identified; 842 (83.1%) were unable to be contacted. Of the 171 people contactable, 150 agreed to participate, giving an overall response rate of 14.8% and response rate of contactable patients of 87.7%. Results demonstrated high rates of self-reported enrolment, utilisation and preference for primary care. Many participants demonstrated appropriate health seeking behaviour and accurate recall of diagnoses. While financial barriers to accessing primary care were reported, non-financial barriers including lack of after-hours provision (12.6% adults, 37.7% children), appointment availability (7.4% adults, 17.0% children) and lack of transport (13.7% adults, 20.8% children) also featured in participant responses. Interventions to reduce Māori ASH include: timely access to primary care through electronic communications, increased appointment availability, extended opening hours, low cost after-hours care and consistent best management of ASH conditions in general practice through clinical pathways. Facilitated enrolment of ASH patients with no general practitioner could also reduce ASH. Research into transport barriers and enablers for Māori accessing primary care is required to support future interventions.

  14. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells.

    Science.gov (United States)

    Kampourakis, Thomas; Yan, Ziqian; Gautel, Mathias; Sun, Yin-Biao; Irving, Malcolm

    2014-12-30

    Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility.

  15. Structural Basis of Binding and Rationale for the Potent Urease Inhibitory Activity of Biscoumarins

    Science.gov (United States)

    Lodhi, Muhammad Arif; Choudhary, Muhammad Iqbal; Lodhi, Atif; Ul-Haq, Zaheer; Jalil, Saima; Nawaz, Sarfraz Ahmad; Khan, Khalid Mohammed; Iqbal, Sajid; Rahman, Atta-ur

    2014-01-01

    Urease belongs to a family of highly conserved urea-hydrolyzing enzymes. A common feature of these enzymes is the presence of two Lewis acid nickel ions and reactive cysteine residue in the active sites. In the current study we examined a series of biscoumarins 1–10 for their mechanisms of inhibition with the nickel containing active sites of Jack bean and Bacillus pasteurii ureases. All these compounds competitively inhibited Jack bean urease through interaction with the nickel metallocentre, as deduced from Michaelis-Menten kinetics, UV-visible absorbance spectroscopic, and molecular docking simulation studies. Some of the compounds behaved differently in case of Bacillus pasteurii urease. We conducted the enzyme kinetics, UV-visible spectroscopy, and molecular docking results in terms of the known protein structure of the enzyme. We also evaluated possible molecular interpretations for the site of biscoumarins binding and found that phenyl ring is the major active pharmacophore. The excellent in vitro potency and selectivity profile of the several compounds described combined with their nontoxicity against the human cells and plants suggest that these compounds may represent a viable lead series for the treatment of urease associated problems. PMID:25295281

  16. Neutron activation analysis of heavy metal binding by fungal cell walls

    International Nuclear Information System (INIS)

    Crusberg, T.C.; Mayer, J.A.

    1994-01-01

    Aqueous effluents are produced during nuclear power and nuclear weapons development activities which frequently contain low levels of dissolved radioactive nuclides. A number of laboratories are now focusing attention to renewable biological materials to provide traps for low concentrations of dissolved radioactive metal ions in wastewater effluents. The term BIOTRAP can be used to describe such materials, and in this laboratory cell wall preparations of the fungus Penicillium ochro-chloron have been employed to demonstrate their capacity and affinity to reversibly bind and remove copper(2). Since neutron activation analysis (NAA) was readily available, that method was one of several applied to this problem as a suitable analytical methodology to study heavy metal-to-BIOTRAP interactions. Copper and mercury provide good examples of metals which are capable of undergoing activation by thermal neutrons. In NAA, 63 Cu (69.1% natural abundance) is converted to 64 Cu which has a half live of 12.7 hr, and 202 Hg (29.7 % natural abundance) is converted to 203 Hg which has a half life of 46.,6 d

  17. Bioactive compounds, antioxidant and binding activities and spear yield of Asparagus officinalis L.

    Science.gov (United States)

    Lee, Jong Won; Lee, Jeong Hyun; Yu, In Ho; Gorinstein, Shela; Bae, Jong Hyang; Ku, Yang Gyu

    2014-06-01

    The aim of this investigation was to find a proper harvesting period and establishing fern number, which effects the spear yield, bioactive compounds and antioxidant activities of Asparagus officinalis L. Spears were harvested at 2, 4, and 6 weeks after sprouting. Control for comparison was used without harvest. Spears and total yield increased with prolonged spear harvest period. In harvest of 6 weeks long optimum spear yield was the highest and fern numbers were 5 ~ 8. Bioactive compounds (polyphenols, flavonoids, flavanols, tannins and ascorbic acid) and the levels of antioxidant activities by ferric-reducing/antioxidant power (FRAP) and cupric reducing antioxidant capacity (CUPRAC) assays in asparagus ethanol extracts significantly differed in the investigated samples and were the highest at 6 weeks harvest period (P asparagus were studied by the interaction of polyphenol ethanol extracts with HSA, using 3D- FL. In conclusion, antioxidant status (bioactive compounds, binding and antioxidant activities) improved with the harvesting period and the first segment from spear tip. Appropriate harvesting is effective for higher asparagus yield and its bioactivity.

  18. Synthesis of isatin thiosemicarbazones derivatives: in vitro anti-cancer, DNA binding and cleavage activities.

    Science.gov (United States)

    Ali, Amna Qasem; Teoh, Siang Guan; Salhin, Abdussalam; Eltayeb, Naser Eltaher; Khadeer Ahamed, Mohamed B; Abdul Majid, A M S

    2014-05-05

    New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (k(b)=5.03-33.00×10(5) M(-1)) for L1-L3 and L5 and (6.14-9.47×10(4) M(-1)) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Association of the macrophage activating factor (MAF) precursor activity with polymorphism in vitamin D-binding protein.

    Science.gov (United States)

    Nagasawa, Hideko; Sasaki, Hideyuki; Uto, Yoshihiro; Kubo, Shinichi; Hori, Hitoshi

    2004-01-01

    Serum vitamin D-binding protein (Gc protein or DBP) is a highly expressed polymorphic protein, which is a precursor of the inflammation-primed macrophage activating factor, GcMAF, by a cascade of carbohydrate processing reactions. In order to elucidate the relationship between Gc polymorphism and GcMAF precursor activity, we estimated the phagocytic ability of three homotypes of Gc protein, Gc1F-1F, Gc1S-1S and Gc2-2, through processing of their carbohydrate moiety. We performed Gc typing of human serum samples by isoelectric focusing (IEF). Gc protein from human serum was purified by affinity chromatography with 25-hydroxyvitamin D3-sepharose. A phagocytosis assay of Gc proteins, modified using beta-glycosidase and sialidase, was carried out. The Gc1F-1F phenotype was revealed to possess Galbeta1-4GalNAc linkage by the analysis of GcMAF precursor activity using beta1-4 linkage-specific galactosidase from jack bean. The GcMAF precursor activity of the Gc1F-1F phenotype was highest among three Gc homotypes. The Gc polymorphism and carbohydrate diversity of Gc protein are significant for its pleiotropic effects.

  20. General description and first results with the ORIS-LMRI 4 {pi} {gamma} metering chamber; Descripcion general y primeros resultados con la camara 4 {pi} {gamma} metrologica ORIS-LMRI

    Energy Technology Data Exchange (ETDEWEB)

    Tejera R, A; Becerril V, A; Cortes P, A

    1990-04-15

    A problem that present the ionization chambers is that the response for the radiation is global, that is to say that it cannot discriminate against selectively the relating responses at different energies, if these impact simultaneously in the active volume. This is a reason to calibrate the chambers, if is possible, with gamma monoenergetic emitting and by average calculations to complete the response curve with gamma emitting of well-known yields. To obtain the calibration coefficients and may used them, it is necessary that so much the standardized radioisotopes as the solutions by calibrating, are contained in vessels with the same geometry and the same quantity. In the exposed case, pattern solutions of 5 ml were used contained in glass cruets of 10 ml. The problem solutions are contained in same cruets to those of the patterns. The first results obtained with the ORIS-LMRI 4 {pi} {gamma} metering chamber are presented. (Author)

  1. Combined roles of human IgG subclass, alternative complement pathway activation, and epitope density in the bactericidal activity of antibodies to meningococcal factor h binding protein.

    Science.gov (United States)

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2012-01-01

    Meningococcal vaccines containing factor H binding protein (fHbp) are in clinical development. fHbp binds human fH, which enables the meningococcus to resist complement-mediated bacteriolysis. Previously, we found that chimeric human IgG1 mouse anti-fHbp monoclonal antibodies (MAbs) had human complement-mediated bactericidal activity only if the MAb inhibited fH binding. Since IgG subclasses differ in their ability to activate complement, we investigated the role of human IgG subclasses on antibody functional activity. We constructed chimeric MAbs in which three different murine fHbp-specific binding domains were each paired with human IgG1, IgG2, or IgG3. Against a wild-type group B isolate, all three IgG3 MAbs, irrespective of their ability to inhibit fH binding, had bactericidal activity that was >5-fold higher than the respective IgG1 MAbs, while the IgG2 MAbs had the least activity. Against a mutant with increased fHbp expression, the anti-fHbp MAbs elicited greater C4b deposition (classical pathway) and greater bactericidal activity than against the wild-type strain, and the IgG1 MAbs had similar or greater activity than the respective IgG3 MAbs. The bactericidal activity against both wild-type and mutant strains also was dependent, in part, on activation of the alternative complement pathway. Thus, at lower epitope density in the wild-type strain, the IgG3 anti-fHbp MAbs had the greatest bactericidal activity. At a higher epitope density in the mutant, the IgG1 MAbs had similar or greater bactericidal activity than the IgG3 MAbs, and the activity was less dependent on the inhibition of fH binding than at a lower epitope density.

  2. Involvement of histidine residues in the pH-dependent β-galactoside binding activity of human galectin-1.

    Science.gov (United States)

    Hiramatsu, Hirotsugu; Takeuchi, Katsuyuki; Takeuchi, Hideo

    2013-04-02

    The pH dependence of the β-galactoside binding activity of human galectin-1 (hGal-1) was investigated by fluorescence spectroscopy using lactose as a ligand. The obtained binding constant Kb was 2.94 ± 0.10 mM(-1) at pH 7.5. The Kb value decreased at acidic pH with a midpoint of transition at pH 6.0 ± 0.1. To elucidate the molecular mechanism of the pH dependence, we investigated the structures of hGal-1 and its two His mutants (H44Q and H52Q) using fluorescence, circular dichroism, UV absorption, and UV resonance Raman spectroscopy. Analysis of the spectra has shown that the pKa values of His44 and His52 are 5.7 ± 0.2 and 6.3 ± 0.1, respectively. The protonation of His52 below pH 6.3 induces a small change in secondary structure and partly reduces the galactoside binding activity. On the other hand, the protonation of His44 below pH 5.7 exerts a cation-π interaction with Trp68 and largely diminishes the galactoside binding activity. With reference to the literature X-ray structures at pH 7.0 and 5.6, protonated His52 is proposed to move slightly away from the galactoside-binding region with a partial unfolding of the β-strand containing His52. On the other hand, protonated His44 becomes unable to form a hydrogen bond with galactoside and additionally induces a reorientation and/or displacement of Trp68 through cation-π interaction, leading to a loosening of the galactoside-binding pocket. These structural changes associated with His protonation are likely to be the origin of the pH dependence of the galactoside binding activity of hGal-1.

  3. Manipulation of EphB2 regulatory motifs and SH2 binding sites switches MAPK signaling and biological activity.

    Science.gov (United States)

    Tong, Jiefei; Elowe, Sabine; Nash, Piers; Pawson, Tony

    2003-02-21

    Signaling by the Eph family of receptor tyrosine kinases (RTKs) is complex, because they can interact with a variety of intracellular targets, and can potentially induce distinct responses in different cell types. In NG108 neuronal cells, activated EphB2 recruits p120RasGAP, in a fashion that is associated with down-regulation of the Ras-Erk mitogen-activated kinase (MAPK) pathway and neurite retraction. To pursue the role of the Ras-MAPK pathway in EphB2-mediated growth cone collapse, and to explore the biochemical and biological functions of Eph receptors, we sought to re-engineer the signaling properties of EphB2 by manipulating its regulatory motifs and SH2 binding sites. An EphB2 mutant that retained juxtamembrane (JM) RasGAP binding sites but incorporated a Grb2 binding motif at an alternate RasGAP binding site within the kinase domain had little effect on basal Erk MAPK activation. In contrast, elimination of all RasGAP binding sites, accompanied by the addition of a Grb2 binding site within the kinase domain, led to an increase in phospho-Erk levels in NG108 cells following ephrin-B1 stimulation. Functional assays indicated a correlation between neurite retraction and the ability of the EphB2 mutants to down-regulate Ras-Erk MAPK signaling. These data suggest that EphB2 can be designed to repress, stabilize, or activate the Ras-Erk MAPK pathway by the manipulation of RasGAP and Grb2 SH2 domain binding sites and support the notion that Erk MAPK regulation plays a significant role in axon guidance. The behavior of EphB2 variants with mutations in the JM region and kinase domains suggests an intricate pattern of regulation and target recognition by Eph receptors.

  4. Looking Māori predicts decreased rates of home ownership: institutional racism in housing based on perceived appearance.

    Science.gov (United States)

    Houkamau, Carla A; Sibley, Chris G

    2015-01-01

    This study examined differences in rates of home ownership among Māori (the indigenous peoples of New Zealand). We identified systematic factors that predicted why some Māori were more likely to own their own home (partially or fully) relative to other Māori. Data were drawn from a large national postal sample of 561 self-identified Māori collected as part of the New Zealand Attitudes and Values Study. As predicted, our analyses indicated that self-reported appearance as Māori, or the extent to which people thought they personally displayed features which visibly identified them as Māori to others, significantly predicted decreased rates of home ownership. This association held when adjusting for numerous demographic covariates, such as education, level of deprivation of the immediate area, household income, age, relationship status, region of residence, and so forth. Our analyses suggest there is, or at least has been in the recent past, institutional racism against Māori in New Zealand's home lending industry based on merely appearing more Māori.

  5. In vivo binding properties of SH2 domains from GTPase-activating protein and phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Cooper, J A; Kashishian, A

    1993-01-01

    We have used a transient expression system and mutant platelet-derived growth factor (PDGF) receptors to study the binding specificities of the Src homology 2 (SH2) regions of the Ras GTPase-activator protein (GAP) and the p85 alpha subunit of phosphatidylinositol 3-kinase (PI3 kinase). A number of fusion proteins, each tagged with an epitope allowing recognition by a monoclonal antibody, were expressed at levels comparable to those of endogenous GAP. Fusion proteins containing the central SH2-SH3-SH2 region of GAP or the C-terminal region of p85 alpha, which includes two SH2 domains, bound to PDGF receptors in response to PDGF stimulation. Both fusion proteins showed the same requirements for tyrosine phosphorylation sites in the PDGF receptor as the full-length proteins from which they were derived, i.e., binding of the GAP fusion protein was reduced by mutation of Tyr-771, and binding of the p85 fusion protein was reduced by mutation of Tyr-740, Tyr-751, or both residues. Fusion proteins containing single SH2 domains from either GAP or p85 alpha did not bind detectably to PDGF receptors in this system, suggesting that two SH2 domains in a single polypeptide cooperate to raise the affinity of binding. The sequence specificities of individual SH2 domains were deduced from the binding properties of fusion proteins containing one SH2 domain from GAP and another from p85. The results suggest that the C-terminal GAP SH2 domain specifies binding to Tyr-771, the C-terminal p85 alpha SH2 domain binds to either Tyr-740 or Tyr-751, and each protein's N-terminal SH2 domain binds to unidentified phosphorylation sites.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8382774

  6. Double Properties of Novel Acylhydrazone Nanomaterials Based on a Conjugated System: Anion Binding Ability and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Xuefang Shang

    2015-10-01

    Full Text Available A series of new compounds (1–12 containing 1,5-diaza-fluorenone, 1,10-phenanthroline-5,6-dione, ferrocene-1,1ʹ-dione, anthracene-9-carbaldehyde have been synthesized and optimized. The nanomaterials were also developed successfully. The binding properties were evaluated for biologically important anions (F−, Cl−, Br−, I−, AcO−, and H2PO4− by theoretical investigation, UV-vis, and fluorescence experiments, and compound 6 displayed the strongest binding ability for AcO− ion among the synthesized compounds. Theoretical investigation analysis revealed that the intramolecular hydrogen bond existed in the structure of compound 6 and the roles of molecular frontier orbitals in molecular interplay. In addition, compound 6 showed wide antibacterial activity for colon bacillus, typhoid bacillus, and Pseudomonas aeruginosa, and inferior activity for hay bacillus and Staphylococcus aureus. This series of acylhydrazone nanomaterials showed double properties, anion binding ability, and antibacterial activity.

  7. Functional analysis of the citrate activator CitO from Enterococcus faecalis implicates a divalent metal in ligand binding

    Directory of Open Access Journals (Sweden)

    Victor S. Blancato

    2016-02-01

    Full Text Available The regulator of citrate metabolism, CitO, from Enterococcus faecalis belongs to the FCD family within the GntR superfamily. In the presence of citrate, CitO binds to cis-acting sequences located upstream of the cit promoters inducing the expression of genes involved in citrate utilization. The quantification of the molecular binding affinities, performed by isothermal titration calorimetry (ITC, indicated that CitO has a high affinity for citrate (KD= 1.2±0.2 µM, while it did not recognize other metabolic intermediates. Based on a structural model of CitO where a putative small molecule and a metal binding site were identified, it was hypothesized that the metal ion is required for citrate binding. In agreement with this model, citrate binding to CitO sharply decreased when the protein was incubated with EDTA. This effect was reverted by the addition of Ni2+, and Zn2+ to a lesser extent. Structure-based site-directed mutagenesis was conducted and it was found that changes to alanine in residues Arg97 and His191 resulted in decreased binding affinities for citrate, as determined by EMSA and ITC. Further assays using lacZ fusions confirmed that these residues in CitO are involved in sensing citrate in vivo. These results indicate that the molecular modifications induced by a ligand and a metal binding in the C-terminal domain of CitO are required for optimal DNA binding activity, and consequently, transcriptional activation.

  8. Characteristics of chemical binding to alpha 2u-globulin in vitro--evaluating structure-activity relationships

    International Nuclear Information System (INIS)

    Borghoff, S.J.; Miller, A.B.; Bowen, J.P.; Swenberg, J.A.

    1991-01-01

    alpha 2u-Globulin (alpha 2u) has been shown to accumulate in the kidneys of male rats treated with 2,2,4-trimethylpentane (TMP). 2,4,4-Trimethyl-2-pentanol (TMP-2-OH), a metabolite of TMP, is found reversibly bound to alpha 2u isolated from the kidneys of these treated rats. The objectives of the following study were to characterize the ability of [3H]TMP-2-OH to bind to alpha 2u in vitro and to determine whether other compounds that cause this protein to accumulate have the same binding characteristics. Although compounds that have been shown to cause the accumulation of alpha 2u in male rat kidneys compete in vitro with [3H]TMP-2-OH for binding to alpha 2u, they do so to varying degrees. The binding affinity (Kd) of the [3H]TMP-2-OH-alpha 2u complex was calculated to be on the order of 10(-7) M. The inhibition constant values (Ki) determined for d-limonene, 1,4-dichlorobenzene, and 2,5-dichlorophenol were all in the range 10(-4) M, whereas the Ki values for isophorone, 2,4,4- or 2,2,4-trimethyl-1-pentanol, and d-limonene oxide were determined to be in the range 10(-6) and 10(-7) M, respectively. TMP and 2,4,4- and 2,2,4-trimethylpentanoic acid did not compete for binding. This suggests that other factors, besides binding, are involved in the accumulation of alpha 2u. In this study the ability of a chemical to bind to alpha 2u was used as a measure of biological activity to assess structure-activity relationships among the chemicals tested and known to cause the accumulation of alpha 2u. The results so far suggest that binding is dependent on both hydrophobic interactions and hydrogen bonding

  9. Specific phosphopeptide binding regulates a conformational change in the PI 3-kinase SH2 domain associated with enzyme activation.

    Science.gov (United States)

    Shoelson, S E; Sivaraja, M; Williams, K P; Hu, P; Schlessinger, J; Weiss, M A

    1993-01-01

    SH2 (src-homology 2) domains define a newly recognized binding motif that mediates the physical association of target phosphotyrosyl proteins with downstream effector enzymes. An example of such phosphoprotein-effector coupling is provided by the association of phosphatidylinositol 3-kinase (PI 3-kinase) with specific phosphorylation sites within the PDGF receptor, the c-Src/polyoma virus middle T antigen complex and the insulin receptor substrate IRS-1. Notably, phosphoprotein association with the SH2 domains of p85 also stimulates an increase in catalytic activity of the PI 3-kinase p110 subunit, which can be mimicked by phosphopeptides corresponding to targeted phosphoprotein phosphorylation sites. To investigate how phosphoprotein binding to the p85 SH2 domain stimulates p110 catalytic activation, we have examined the differential effects of phosphotyrosine and PDGF receptor-, IRS-1- and c-Src-derived phosphopeptides on the conformation of an isolated SH2 domain of PI 3-kinase. Although phosphotyrosine and both activating and non-activating phosphopeptides bind to the SH2 domain, activating phosphopeptides bind with higher affinity and induce a qualitatively distinct conformational change as monitored by CD and NMR spectroscopy. Amide proton exchange and protease protection assays further show that high affinity, specific phosphopeptide binding induces non-local dynamic SH2 domain stabilization. Based on these findings we propose that specific phosphoprotein binding to the p85 subunit induces a change in SH2 domain structure which is transmitted to the p110 subunit and regulates enzymatic activity by an allosteric mechanism. Images PMID:8382612

  10. Insanity and ethnicity in New Zealand: Māori encounters with the Auckland Mental Hospital, 1860-1900.

    Science.gov (United States)

    Barry, Lorelle; Coleborne, Catharine

    2011-09-01

    This article examines Māori patients at the Auckland Mental Hospital between 1860 and 1900.We argue that the patient case notes reveal 'European' categories in which Māori were situated, and demonstrate the extent to which the authorities at the hospital grappled with their appearance, their language and their culture, all of which were elements of their ethnicity. We argue that the use of institutional case records is highly suggestive of some of the historical meanings of insanity for Māori, including the lack of detailed or sustained collection of information about patients' tribal affiliations, the interest shown in their rights to land in maintenance payment inquiries, the experiences of cultural alienation or mate Māori, and the sad outcomes for Māori.

  11. The arginine residue within the C-terminal active core of Bombyx mori pheromone biosynthesis-activating neuropeptide (PBAN is essential for receptor binding and activation

    Directory of Open Access Journals (Sweden)

    Takeshi eKawai

    2012-03-01

    Full Text Available In most lepidopteran insects, the biosynthesis of sex pheromones is regulated by pheromone biosynthesis activating neuropeptide (PBAN. Bombyx mori PBAN (BomPBAN consists of 33 amino acid residues and contains a C-terminus FSPRLamide motif as the active core. Among neuropeptides containing the FXPRLamide motif, the arginine (Arg, R residue two positions from the C-terminus is highly conserved across several neuropeptides, which can be designated as RXamide peptides. The purpose of this study was to reveal the role of the Arg residue in the BomPBAN active core. We synthesized a ten-residue peptide corresponding to the C-terminal part of BomPBAN with a series of point mutants at the 2nd position (ie, Arg from the C-terminus, termed the C2 position, and measured their efficacy in stimulating Ca2+ influx in insect cells concomitantly expressing a fluorescent PBAN receptor chimera (PBANR-EGFP and loaded with the fluorescent Ca2+ indicator, Fura Red-AM. PBAN analogs with the C2 position replaced with alanine (Ala, A, aspartic acid (Asp, D, serine (Ser, S or L-2-aminooctanoic acid (Aoc decreased PBAN-like activity. RC2A (SKTRYFSPALamide and RC2D (SKTRYFSPDLamide had the lowest activity and could not inhibit the activity of PBAN C10 (SKTRYFSPRLamide. We also prepared Rhodamine Red-labeled PBAN analogs of the mutants and examined their ability to bind PBANR. In contrast to 100 nM Rhodamine Red-PBAN C10, none of the mutants at the same concentration exhibited PBANR binding. Taken together, our results demonstrate that the C2 Arg residue in BomPBAN is essential for PBANR binding and activation.

  12. Biological activity and binding of estradiol to SK-Mel 23 human melanoma cells

    Directory of Open Access Journals (Sweden)

    Sarti M.S.M.V.

    2004-01-01

    Full Text Available Patients expressing estradiol receptors in melanoma cells have been reported to have a better prognosis. We therefore decided to investigate the in vitro effects of ß-estradiol and tamoxifen on the growth and tyrosinase activity of SK-Mel 23 human melanoma cells. Twenty-four-hour treatment with 0.4 nM ß-estradiol inhibited cell proliferation in 30% (0.70 ± 0.03 x 10(5 cells and increased tyrosinase activity in 50% (7130.5 ± 376.5 cpm/10(5 cells, as compared to untreated cells (1.0 ± 0.05 x 10(5 cells and 4769 ± 25.5 cpm/10(5 cells, respectively. Both responses were completely (100% blocked by 1 µM tamoxifen. Higher concentrations (up to 1.6 nM or longer treatments (up to 72 h did not result in a larger effect of the hormone on proliferation or tyrosinase activity. Competition binding assays demonstrated the presence of binding sites to [2,4,6,7-³H]-ß-estradiol, and that the tritiated analogue was displaced by the unlabeled hormone (1 nM to 100 µM, Kd = 0.14 µM, maximal displacement of 93% or by 10 µM tamoxifen (displacement of 60%. ß-estradiol also increased the phosphorylated state of two proteins of 16 and 46 kDa, after 4-h treatment, as determined by Western blot. The absorbance of each band was 1.9- and 4-fold the controls, respectively, as determined with Image-Pro Plus software. Shorter incubation periods with ß-estradiol did not enhance phosporylation; after 6-h treatment with the hormone, the two proteins returned to the control phosphorylation levels. The growth inhibition promoted by estradiol may explain the better prognosis of melanoma-bearing women as compared to men, and open new perspectives for drug therapy.

  13. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity

    Science.gov (United States)

    Tien, Jason; Peters, Christian J; Wong, Xiu Ming; Cheng, Tong; Jan, Yuh Nung; Jan, Lily Yeh; Yang, Huanghe

    2014-01-01

    TMEM16A forms calcium-activated chloride channels (CaCCs) that regulate physiological processes such as the secretions of airway epithelia and exocrine glands, the contraction of smooth muscles, and the excitability of neurons. Notwithstanding intense interest in the mechanism behind TMEM16A-CaCC calcium-dependent gating, comprehensive surveys to identify and characterize potential calcium sensors of this channel are still lacking. By aligning distantly related calcium-activated ion channels in the TMEM16 family and conducting systematic mutagenesis of all conserved acidic residues thought to be exposed to the cytoplasm, we identify four acidic amino acids as putative calcium-binding residues. Alterations of the charge, polarity, and size of amino acid side chains at these sites alter the ability of different divalent cations to activate the channel. Furthermore, TMEM16A mutant channels containing double cysteine substitutions at these residues are sensitive to the redox potential of the internal solution, providing evidence for their physical proximity and solvent accessibility. DOI: http://dx.doi.org/10.7554/eLife.02772.001 PMID:24980701

  14. The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor.

    Science.gov (United States)

    Townsend, Philip D; Dixon, Christopher H; Slootweg, Erik J; Sukarta, Octavina C A; Yang, Ally W H; Hughes, Timothy R; Sharples, Gary J; Pålsson, Lars-Olof; Takken, Frank L W; Goverse, Aska; Cann, Martin J

    2018-03-02

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable the immune system to recognize and respond to pathogen attack. An early consequence of immune activation is transcriptional reprogramming, and some NLRs have been shown to act in the nucleus and interact with transcription factors. The Rx1 NLR protein of potato is further able to bind and distort double-stranded DNA. However, Rx1 host targets that support a role for Rx1 in transcriptional reprogramming at DNA are unknown. Here, we report a functional interaction between Rx1 and Nb Glk1, a Golden2-like transcription factor. Rx1 binds to Nb Glk1 in vitro and in planta. Nb Glk1 binds to known Golden2-like consensus DNA sequences. Rx1 reduces the binding affinity of Nb Glk1 for DNA in vitro. Nb Glk1 activates cellular responses to potato virus X, whereas Rx1 associates with Nb Glk1 and prevents its assembly on DNA in planta unless activated by PVX. This study provides new mechanistic insight into how an NLR can coordinate an immune signaling response at DNA following pathogen perceptions. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Hsp70-GlcNAc-binding activity is released by stress, proteasome inhibition, and protein misfolding

    International Nuclear Information System (INIS)

    Guinez, Celine; Mir, Anne-Marie; Leroy, Yves; Cacan, Rene; Michalski, Jean-Claude; Lefebvre, Tony

    2007-01-01

    Numerous recent works strengthen the idea that the nuclear and cytosolic-specific O-GlcNAc glycosylation protects cells against injuries. We have first investigated O-GlcNAc level and Hsp70-GlcNAc-binding activity (HGBA) behaviour after exposure of HeLa and HepG 2 cells to a wide variety of stresses. O-GlcNAc and HGBA responses were different according to the stress and according to the cell. HGBA was released for almost all stresses, while O-GlcNAc level was modified either upwards or downwards, depending to the stress. Against all expectations, we demonstrated that energy charge did not significantly vary with stress whereas UDP-GlcNAc pools were more dramatically affected even if differences in UDP-GlcNAc contents were not correlated with O-GlcNAc variations suggesting that O-GlcNAc transferase is itself finely regulated during cell injury. Finally, HGBA could be triggered by proteasome inhibition and by L-azetidine-2-carboxylic acid (a proline analogue) incorporation demonstrating that protein misfolding is one of the key-activator of this Hsp70 property

  16. The role of the lysyl binding site of tissue-type plasminogen activator in the interaction with a forming fibrin clot

    NARCIS (Netherlands)

    Bakker, A.H.F.; Weening-Verhoeff, E.J.D.; Verheijen, J.H.

    1995-01-01

    To describe the role of the lysyl binding site in the interaction of tissue-type plasminogen activator (t-PA, FGK1K2P) with a forming fibrin clot, we performed binding experiments with domain deletion mutants GK1K2P, K2P, and the corresponding point mutants lacking the lysyl binding site in the

  17. Specificity of the Cyclic GMP-Binding Activity and of a Cyclic GMP-Dependent Cyclic GMP Phosphodiesterase in Dictyostelium discoideum

    NARCIS (Netherlands)

    Haastert, Peter J.M. van; Walsum, Hans van; Meer, Rob C. van der; Bulgakov, Roman; Konijn, Theo M.

    1982-01-01

    The nucleotide specificity of the cyclic GMP-binding activity in a homogenate of Dictyostelium discoideum was determined by competition of cyclic GMP derivatives with [8-3H] cyclic GMP for the binding sites. The results indicate that cyclic GMP is bound to the binding proteins by hydrogen bonds at

  18. Differential Mechanisms for SHP2 Binding and Activation Are Exploited by Geographically Distinct Helicobacter pylori CagA Oncoproteins

    Directory of Open Access Journals (Sweden)

    Takeru Hayashi

    2017-09-01

    Full Text Available Helicobacter pylori East Asian CagA is more closely associated with gastric cancer than Western CagA. Here we show that, upon tyrosine phosphorylation, the East Asian CagA-specific EPIYA-D segment binds to the N-SH2 domain of pro-oncogenic SHP2 phosphatase two orders of magnitude greater than Western CagA-specific EPIYA-C. This high-affinity binding is achieved via cryptic interaction between Phe at the +5 position from phosphotyrosine in EPIYA-D and a hollow on the N-SH2 phosphopeptide-binding floor. Also, duplication of EPIYA-C in Western CagA, which increases gastric cancer risk, enables divalent high-affinity binding with SHP2 via N-SH2 and C-SH2. These strong CagA bindings enforce enzymatic activation of SHP2, which endows cells with neoplastic traits. Mechanistically, N-SH2 in SHP2 is in an equilibrium between stimulatory “relaxed” and inhibitory “squeezed” states, which is fixed upon high-affinity CagA binding to the “relaxed” state that stimulates SHP2. Accordingly, East Asian CagA and Western CagA exploit distinct mechanisms for SHP2 deregulation.

  19. Analysis of long-chain fatty acid binding activity in vesicles of the outer membrane generated from Escherchia coli

    International Nuclear Information System (INIS)

    Black, P.N.

    1987-01-01

    Escherichia coli transports long-chain fatty acids across the dual membrane by a high affinity, saturable, energy-dependent process. The fadL gene codes for an outer membrane protein which appears to act specifically as a long-chain fatty acid binding protein when fatty acid utilization is blocked by mutation. In an effort to understand the function of the fadL gene product, FLP, membranes have been isolated from fadL + and fadL - strains following osmotic lysis. Following isolation, total membranes were separated into inner and outer membrane fractions and assayed for long-chain fatty acid binding activity. Outer membrane vesicles were incubated 2-5 min at 37 0 C with 3 H oleate (C/sub 18:1/), cooled to 0 0 C, and centrifuged through a Lipidex 100 column for 3 min to remove the unbound fatty acid. The level of fatty acid binding was quantitated by scintillation counting of the eluate. Outer membrane vesicles generated from a fadL + strain bind 325 pmol fatty acid/mg protein whereas vesicles generated for a mutant strain bind 175 pmol fatty acid/mg protein. These data suggest that FLP acts at least as a long-chain fatty acid binding protein on the surface of the cell

  20. Evaluation of DNA, BSA binding, and antimicrobial activity of new synthesized neodymium complex containing 29-dimethyl 110-phenanthroline.

    Science.gov (United States)

    Moradi, Zohreh; Khorasani-Motlagh, Mozhgan; Rezvani, Ali Reza; Noroozifar, Meissam

    2018-02-01

    In order to evaluate biological potential of a novel synthesized complex [Nd(dmp) 2 Cl 3 .OH 2 ] where dmp is 29-dimethyl 110-phenanthroline, the DNA-binding, cleavage, BSA binding, and antimicrobial activity properties of the complex are investigated by multispectroscopic techniques study in physiological buffer (pH 7.2).The intrinsic binding constant (K b ) for interaction of Nd(III) complex and FS-DNA is calculated by UV-Vis (K b  = 2.7 ± 0.07 × 10 5 ) and fluorescence spectroscopy (K b  = 1.13 ± 0.03 × 10 5 ). The Stern-Volmer constant (K SV ), thermodynamic parameters including free energy change (ΔG°), enthalpy change (∆H°), and entropy change (∆S°), are calculated by fluorescent data and Vant' Hoff equation. The experimental results show that the complex can bind to FS-DNA and the major binding mode is groove binding. Meanwhile, the interaction of Nd(III) complex with protein, bovine serum albumin (BSA), has also been studied by using absorption and emission spectroscopic tools. The experimental results show that the complex exhibits good binding propensity to BSA. The positive ΔH° and ∆S° values indicate that the hydrophobic interaction is main force in the binding of the Nd(III) complex to BSA, and the complex can quench the intrinsic fluorescence of BSA remarkably through a static quenching process. Also, DNA cleavage was investigated by agarose gel electrophoresis that according to the results cleavage of DNA increased with increasing of concentration of the complex. Antimicrobial screening test gives good results in the presence of Nd(III) complex system.

  1. Specific binding of an immunoreactive and biologically active 125I-labeled substance P derivative to mouse mesencephalic cells in primary culture

    International Nuclear Information System (INIS)

    Beaujouan, J.C.; Torrens, Y.; Herbet, A.; Daguet, M.C.; Glowinski, J.; Prochiantz, A.

    1982-01-01

    Binding characteristics of 125 I-labeled Bolton-Hunter substance P ([ 125 I]BHSP), a radioactive analogue of substance P, were studied with mesencephalic primary cultures prepared from embryonic mouse brain. Nonspecific binding represented no more than 20% of the total binding observed on the cells. In contrast, significant specific binding--saturable, reversible, and temperature-dependent--was demonstrated. Scatchard analysis of concentration-dependent binding saturation indicates a single population of noninteracting sites with a high affinity (Kd . 169 pM). Substance P and different substance P analogues were tested for their competitive potencies with regard to [ 125 I]BHSP binding. BHSP itself, substance P, (Tyr8)-substance P, and (nor-Leu11)-substance P strongly inhibited the binding. Good inhibition was also obtained with physalaemin and eledoisin, two peptides structurally related to substance P. When substance P C-terminal fragments were tested for their ability to compete with [ 125 I]BHSP binding, a good relationship was found between competitive activity and peptide length. Regional distribution of [ 125 I]BHSP binding sites was found using primary cultures obtained from different regions of embryonic mouse brain. Mesencephalic, hypothalamic, and striatal cultures had the highest [ 125 I]BHSP binding capacities, whereas cortical, hippocampal, and cerebellar cells shared only little binding activity. Finally, when mesencephalic cells were grown under conditions impairing glial development, [ 125 I]BHSP binding was not affected, demonstrating that binding sites are located on neuronal cells

  2. Synthesis, antimalarial activity, heme binding and docking studies of N-substituted 4-aminoquinoline-pyrimidine molecular hybrids.

    Science.gov (United States)

    Maurya, Shiv Shyam; Khan, Shabana I; Bahuguna, Aparna; Kumar, Deepak; Rawat, Diwan S

    2017-03-31

    A series of novel N-substituted 4-aminoquinoline-pyrimidine hybrids have been synthesized via simple and economic route and evaluated for their antimalarial activity. Most compounds showed potent antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. The most active compound 7b was analysed for heme binding activity using UV-spectrophotometer. Compound was found to interact with heme and a complex formation between compound and heme in a 1:1 stoichiometry ratio was determined using job plots. The interaction of these hybrids was also investigated by the molecular docking studies in the binding site of wild type Pf-DHFR-TS and quadruple mutant Pf-DHFR-TS. The pharmacokinetic property analysis of best active compounds was also studied by ADMET prediction. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Versatility of the Angularis Oris Axial Pattern Flap for Facial Reconstruction.

    Science.gov (United States)

    Losinski, Sara L; Stanley, Bryden J; Schallberger, Sandra P; Nelson, Laura L; Towle Millard, Heather A M

    2015-11-01

    To describe the versatility of the axial pattern flap based on the cutaneous perforating branch of the angularis oris artery for reconstruction of large facial defects in dogs, including complications and clinical outcomes. Retrospective clinical case series. Client-owned dogs (n = 8). Facial flaps (n = 9) based at the commissure of the lip with a caudodorsal orientation were utilized, with established anatomical borders. Flaps were elevated deep to the panniculus carnosus in a caudal to rostral direction, preserving the angularis oris artery, its cutaneous perforator, and surrounding cutaneous vasculature. Flaps were rotated dorsally or ventrally to cover the defect. Primary closure of the donor site was by direct apposition in all cases. Angularis oris axial pattern flaps were most commonly used to close large defects of the nasomaxillary area rostral to the eyes (6 dogs), followed by orbital (2) and intermandibular (1) defects. Defects occurred because of tumor resection (6 dogs), trauma (2), and a chronic, non-healing wounding (1). All flaps healed with acceptable functional and cosmetic outcomes without major complications. Followup ranged from 10 days to 16 months. Minor postoperative complications included flap edema (8 dogs), partial incisional dehiscence (3), distal tip necrosis (2), and oroantral fistula recurrence (1). Angularis oris axial pattern flaps provided hirsute, full-thickness skin coverage of a variety of large facial defects with minor complications, and should be considered when restructuring large defects of the rostral face or chin. © Copyright 2015 by The American College of Veterinary Surgeons.

  4. High incidence of medulloblastoma in Māori and Pacific populations in New Zealand.

    Science.gov (United States)

    Elwood, J Mark; Aye, Phyu Sin

    2017-02-17

    In New Zealand from 1995-2010, the incidence of medulloblastoma at ages 1-19 years was significantly higher in Māori (relative risk 2.0) and in Pacific peoples (RR 2.1) than in New Zealand Europeans.

  5. De verankering van oriëntatie op studie en beroep in de schoolpraktijk

    NARCIS (Netherlands)

    Dr Jan Reinartz; M. Goris

    2001-01-01

    Op zes scholen in Oost-Brabant werd het afgelopen schooljaar een netwerkproject uitgevoerd onder de titel osb-verankeringsproject. Doel van het netwerk was om ideeën en materialen rond oriëntatie op studie en beroep in de vakken daadwerkelijk te verankeren in de praktijk van alledag. Het bleek een

  6. Increased dopamine D1 receptor binding in the human mesocortical system following central cholinergic activation

    International Nuclear Information System (INIS)

    Fedi, M.; Berkovic, S.F.; Tochon-Danguy, H.J.; Reutens, D.C.

    2002-01-01

    Full text: The interaction between the cholinergic and dopaminergic system has been implicated in many pathological processes including, Alzheimer's disease, schizophrenia and drug addiction. Little is known about the control of dopamine (DA) release following central cholinergic activation in humans, but experimental studies suggest that endogenously released Acetylcholine (ACh) achieved by the administration of cholinesterase inhibitors, can increase dopamine efflux in different regions of the brain. This leads to the activation of different types of post-synaptic dopaminergic receptors which belong to the family of G-protein coupled receptors (GPCRs). A common paradigm of the GPCRs desensitization is that agonist-induced receptor signaling is rapidly attenuated by receptor internalisation. Several experiments have shown that the activation of Dl receptors in acute conditions leads, within minutes, to translocation of the receptor from the surface of the neurons to the endosomal compartment in the cytoplasm and increased receptor turnover. To assess changes in Dl receptor density following an intravenous infusion of the selective cholinesterase inhibitor physostigmine salicylate (PHY), we studied eleven normal subjects (10 male and 1 female, mean age 36.1 and 61617; 9.9) using [11C]-SCH23390 and PET The binding potential (BP) for SCH23390 was significantly (p 0.05). There was no statistically significant difference between baseline and physostigmine Kl ratio (p>0.05) suggesting that BP changes observed were not secondary to regional blood flow changes or to an order effect of the scans. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  7. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulate Myelination in Zebrafish

    Directory of Open Access Journals (Sweden)

    Yuhei Nishimura

    2016-07-01

    Full Text Available Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS, and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs. Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation

  8. Biochemical investigation of yttrium(III) complex containing 1,10-phenanthroline: DNA binding and antibacterial activity.

    Science.gov (United States)

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Moodi, Asieh; Niroomand, Sona

    2013-03-05

    Characterization of the interaction between yttrium(III) complex containing 1,10-phenanthroline as ligand, [Y(phen)2Cl(OH2)3]Cl2⋅H2O, and DNA has been carried out by UV absorption, fluorescence spectra and viscosity measurements in order to investigate binding mode. The experimental results indicate that the yttrium(III) complex binds to DNA and absorption is decreasing in charge transfer band with the increase in amount of DNA. The binding constant (Kb) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°), were calculated according to relevant fluorescent data and Vant' Hoff equation. The results of interaction mechanism studies, suggested that groove binding plays a major role in the binding of the complex and DNA. The activity of yttrium(III) complex against some bacteria was tested and antimicrobial screening tests shown growth inhibitory activity in the presence of yttrium(III) complex. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. The adenovirus oncoprotein E1a stimulates binding of transcription factor ETF to transcriptionally activate the p53 gene.

    Science.gov (United States)

    Hale, T K; Braithwaite, A W

    1999-08-20

    Expression of the tumor suppressor protein p53 plays an important role in regulating the cellular response to DNA damage. During adenovirus infection, levels of p53 protein also increase. It has been shown that this increase is due not only to increased stability of the p53 protein but to the transcriptional activation of the p53 gene during infection. We demonstrate here that the E1a proteins of adenovirus are responsible for activating the mouse p53 gene and that both major E1a proteins, 243R and 289R, are required for complete activation. E1a brings about the binding of two cellular transcription factors to the mouse p53 promoter. One of these, ETF, binds to three upstream sites in the p53 promoter and one downstream site, whereas E2F binds to one upstream site in the presence of E1a. Our studies indicate that E2F binding is not essential for activation of the p53 promoter but that ETF is. Our data indicate the ETF site located downstream of the start site of transcription is the key site in conferring E1a responsiveness on the p53 promoter.

  10. Identification of B. anthracis N(5)-carboxyaminoimidazole ribonucleotide mutase (PurE) active site binding compounds via fragment library screening.

    Science.gov (United States)

    Lei, Hao; Jones, Christopher; Zhu, Tian; Patel, Kavankumar; Wolf, Nina M; Fung, Leslie W-M; Lee, Hyun; Johnson, Michael E

    2016-02-15

    The de novo purine biosynthesis pathway is an attractive target for antibacterial drug design, and PurE from this pathway has been identified to be crucial for Bacillus anthracis survival in serum. In this study we adopted a fragment-based hit discovery approach, using three screening methods-saturation transfer difference nucleus magnetic resonance (STD-NMR), water-ligand observed via gradient spectroscopy (WaterLOGSY) NMR, and surface plasmon resonance (SPR), against B. anthracis PurE (BaPurE) to identify active site binding fragments by initially testing 352 compounds in a Zenobia fragment library. Competition STD NMR with the BaPurE product effectively eliminated non-active site binding hits from the primary hits, selecting active site binders only. Binding affinities (dissociation constant, KD) of these compounds varied between 234 and 301μM. Based on test results from the Zenobia compounds, we subsequently developed and applied a streamlined fragment screening strategy to screen a much larger library consisting of 3000 computationally pre-selected fragments. Thirteen final fragment hits were confirmed to exhibit binding affinities varying from 14μM to 700μM, which were categorized into five different basic scaffolds. All thirteen fragment hits have ligand efficiencies higher than 0.30. We demonstrated that at least two fragments from two different scaffolds exhibit inhibitory activity against the BaPurE enzyme. Published by Elsevier Ltd.

  11. Alkylated hydroxylamine derivatives eliminate peripheral retinylidene Schiff bases but cannot enter the retinal binding pocket of light-activated rhodopsin.

    Science.gov (United States)

    Piechnick, Ronny; Heck, Martin; Sommer, Martha E

    2011-08-23

    Besides Lys-296 in the binding pocket of opsin, all-trans-retinal forms adducts with peripheral lysine residues and phospholipids, thereby mimicking the spectral and chemical properties of metarhodopsin species. These pseudophotoproducts composed of nonspecific retinylidene Schiff bases have long plagued the investigation of rhodopsin deactivation and identification of decay products. We discovered that, while hydroxylamine can enter the retinal binding pocket of light-activated rhodopsin, the modified hydroxylamine compounds o-methylhydroxylamine (mHA), o-ethylhydroxylamine (eHA), o-tert-butylhydroxylamine (t-bHA), and o-(carboxymethyl)hydroxylamine (cmHA) are excluded. However, the alkylated hydroxylamines react quickly and efficiently with exposed retinylidene Schiff bases to form their respective retinal oximes. We further investigated how t-bHA affects light-activated rhodopsin and its interaction with binding partners. We found that both metarhodopsin II (Meta II) and Meta III are resistant to t-bHA, and neither arrestin nor transducin binding is affected by t-bHA. This discovery suggests that the hypothetical solvent channel that opens in light-activated rhodopsin is extremely stringent with regard to size and/or polarity. We believe that alkylated hydroxylamines will prove to be extremely useful reagents for the investigation of rhodopsin activation and decay mechanisms. Furthermore, the use of alkylated hydroxylamines should not be limited to in vitro studies and could help elucidate visual signal transduction mechanisms in the living cells of the retina. © 2011 American Chemical Society

  12. Activity of cAMP-dependent protein kinases and cAMP-binding proteins of rat kidney cytosol during dehydration

    International Nuclear Information System (INIS)

    Zelenina, M.N.; Solenov, E.I.; Ivanova, L.N.

    1985-01-01

    The activity of cAMP-dependent protein kinases, the binding of cAMP, and the spectrum of cAMP-binding proteins in the cytosol of the renal papilla was studied in intact rats and in rats after 24 h on a water-deprived diet. It was found that the activation of protein kinases by 10 -6 M cAMP is significantly higher in the experimental animals than in the intact animals. In chromatography on DEAE-cellulose, the positions of the peaks of specific reception of cAMP corresponded to the peaks of the regulatory subunits of cAMP-dependent protein kinases of types I and II. In this case, in intact animals more than 80% of the binding activity was detected in peaks II, whereas in rats subjected to water deprivation, more than 60% of the binding was observed in peak I. The general regulatory activity of the cytosol was unchanged in the experimental animals in comparison with intact animals. It is suggested that during dehydration there is an induction of the synthesis of the regulatory subunit of type I cAMP-dependent protein kinase in the renal papilla

  13. Semisynthetic Lipopeptides Derived from Nisin Display Antibacterial Activity and Lipid II Binding on Par with That of the Parent Compound

    NARCIS (Netherlands)

    Koopmans, Timo; Wood, Thomas M.; 't Hart, Peter; Kleijn, Laurens H. J.; Hendrickx, Antoni P. A.; Willems, Rob J. L.; Breukink, Eefjan; Martin, Nathaniel I.

    2015-01-01

    The lipid II-binding N-terminus of nisin, comprising the so-called A/B ring system, was synthetically modified to provide antibacterially active and proteolytically stable derivatives. A variety of lipids were coupled to the C-terminus of the nisin A/B ring system to generate semisynthetic

  14. Protein C Inhibitor (PCI) Binds to Phosphatidylserine Exposing Cells with Implications in the Phagocytosis of Apoptotic Cells and Activated Platelets

    Science.gov (United States)

    Rieger, Daniela; Assinger, Alice; Einfinger, Katrin; Sokolikova, Barbora; Geiger, Margarethe

    2014-01-01

    Protein C Inhibitor (PCI) is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS) is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10–30% of cells). PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with time of phorbol ester treatment/macrophage differentiation. The results of this study suggest a role of PCI not only for the function and/or maturation of macrophages, but also as a negative regulator of apoptotic cell and activated platelets removal. PMID:25000564

  15. Interaction of the phosphorylated DNA-binding domain in nuclear receptor CAR with its ligand-binding domain regulates CAR activation.

    Science.gov (United States)

    Shizu, Ryota; Min, Jungki; Sobhany, Mack; Pedersen, Lars C; Mutoh, Shingo; Negishi, Masahiko

    2018-01-05

    The nuclear protein constitutive active/androstane receptor (CAR or NR1I3) regulates several liver functions such as drug and energy metabolism and cell growth or death, which are often involved in the development of diseases such as diabetes and hepatocellular carcinoma. CAR undergoes a conversion from inactive homodimers to active heterodimers with retinoid X receptor α (RXRα), and phosphorylation of the DNA-binding domain (DBD) at Thr-38 in CAR regulates this conversion. Here, we uncovered the molecular mechanism by which this phosphorylation regulates the intramolecular interaction between CAR's DBD and ligand-binding domain (LBD), enabling the homodimer-heterodimer conversion. Phosphomimetic substitution of Thr-38 with Asp increased co-immunoprecipitation of the CAR DBD with CAR LBD in Huh-7 cells. Isothermal titration calorimetry assays also revealed that recombinant CAR DBD-T38D, but not nonphosphorylated CAR DBD, bound the CAR LBD peptide. This DBD-LBD interaction masked CAR's dimer interface, preventing CAR homodimer formation. Of note, EGF signaling weakened the interaction of CAR DBD T38D with CAR LBD, converting CAR to the homodimer form. The DBD-T38D-LBD interaction also prevented CAR from forming a heterodimer with RXRα. However, this interaction opened up a CAR surface, allowing interaction with protein phosphatase 2A. Thr-38 dephosphorylation then dissociated the DBD-LBD interaction, allowing CAR heterodimer formation with RXRα. We conclude that the intramolecular interaction of phosphorylated DBD with the LBD enables CAR to adapt a transient monomer configuration that can be converted to either the inactive homodimer or the active heterodimer.

  16. Evaluation of DNA binding, DNA cleavage, protein binding, radical scavenging and in vitro cytotoxic activities of ruthenium(II) complexes containing 2,4-dihydroxy benzylidene ligands

    Energy Technology Data Exchange (ETDEWEB)

    Mohanraj, Maruthachalam; Ayyannan, Ganesan; Raja, Gunasekaran; Jayabalakrishnan, Chinnasamy, E-mail: drcjbstar@gmail.com

    2016-12-01

    The new ruthenium(II) complexes with hydrazone ligands, 4-Methyl-benzoic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL{sup 1}), 4-Methoxy-benzoic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL{sup 2}), 4-Bromo-benzoic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL{sup 3}), were synthesized and characterized by various spectro analytical techniques. The molecular structures of the ligands were confirmed by single crystal X-ray diffraction technique. The DNA binding studies of the ligands and complexes were examined by absorption, fluorescence, viscosity and cyclic voltammetry methods. The results indicated that the ligands and complexes could interact with calf thymus DNA (CT-DNA) through intercalation. The DNA cleavage activity of the complexes was evaluated by gel electrophoresis assay, which revealed that the complexes are good DNA cleaving agents. The binding interaction of the ligands and complexes with bovine serum albumin (BSA) was investigated using fluorescence spectroscopic method. Antioxidant studies showed that the complexes have a strong radical scavenging properties. Further, the cytotoxic effect of the complexes examined on cancerous cell lines showed that the complexes exhibit significant anticancer activity. - Highlights: • Synthesis of ruthenium(II) hydrazone complexes • Molecular structure of the ligands was elucidated by single crystal X-ray diffraction method. • The ligands and complexes interact with CT-DNA via intercalation. • The complexes possess significant antioxidant activity against DPPH, OH and NO radicals. • The complex 6 shows higher IC{sub 50} value than the other complexes against cancer cells.

  17. DNA-binding studies and biological activities of new nitrosubstituted acyl thioureas

    Science.gov (United States)

    Tahir, Shaista; Badshah, Amin; Hussain, Raja Azadar; Tahir, Muhammad Nawaz; Tabassum, Saira; Patujo, Jahangir Ali; Rauf, Muhammad Khawar

    2015-11-01

    Four new nitrosubstituted acylthioureas i.e. 1-acetyl-3-(4-nitrophenyl)thiourea (TU1), 1-acetyl-3-(2-methyl-4-nitrophenyl)thiourea (TU2), 1-acetyl-3-(2-methoxy-4-nitrophenyl)thiourea (TU3) and 1-acetyl-3-(4-chloro-3-nitrophenyl)thiourea (TU4) have been synthesized and characterized (by C13 and H1 nuclear magnetic resonance, Fourier transform infrared spectroscopy and single crystal X-ray diffraction). As a preliminary investigation of the anti-cancer potencies of the said compounds, DNA interaction studies have been carried out using cyclic voltammetry and UV-vis spectroscopy along with verification from computational studies. The drug-DNA binding constants are found to be in the order, KTU3 9.04 × 106 M-1 > KTU4 8.57 × 106 M-1 > KTU2 6.05 × 106 M-1 > KTU1 1.16 × 106 M-1. Furthermore, the antioxidant, cytotoxic, antibacterial and antifungal activities have been carried out against DPPH (1,1-diphenyl-2-dipicrylhydrazyl), Brine shrimp eggs, gram positive (Micrococcus luteus, Staphylococcus aureus) and gram negative (Bordetella bronchiseptica, Salmonella typhimurium, Enterobacter aerogens) and fungal cultures (Aspergillus fumigatus, Mucor species, Aspergillus niger, Aspergillus flavus) respectively.

  18. Preparation of biologically active 32P-labeled human relaxin. Displaceable binding to rat uterus, cervix, and brain

    International Nuclear Information System (INIS)

    Osheroff, P.L.; Ling, V.T.; Vandlen, R.L.; Cronin, M.J.; Lofgren, J.A.

    1990-01-01

    Relaxin is a member of the insulin family of polypeptide hormones and is known to exert its biological effects on various parts of the mammalian reproductive system. Biologically active human relaxin has been chemically synthesized based on the nucleotide sequence obtained from an ovarian cDNA clone. In the present study synthetic human relaxin was radiolabled by phosphorylation with cAMP-dependent protein kinase and [gamma-32P]ATP to a specific activity of 5000 Ci/mmol. The phosphorylated relaxin was purified on cation exchange high performance liquid chromatography and was shown to co-migrate with relaxin on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Mass spectrometry revealed a single phosphorylated site on the B chain of relaxin. The 32P-relaxin was able to bind to a goat anti-relaxin antibody, and this binding could be displaced by unlabeled relaxin in a concentration-dependent manner. A comparison of the concentration responses of cellular cAMP production stimulated by relaxin and phosphorylated relaxin in a primary human uterine cell line showed that phosphorylation did not affect the in vitro biological efficacy of relaxin. This made it suitable for in situ autoradiographic localization of relaxin binding sites in rat uterine, cervical, and brain tissue sections. Displacement of the binding of 100 pM 32P-relaxin by 100, 10, and 3 nM unlabeled relaxin, but not by 100 nM insulin, insulin-like growth factor-I, and an insulin-like growth factor-I analog, demonstrated the high affinity and specificity of such binding. We conclude that 32P-labeled human relaxin is biologically and immunologically active and that this novel probe binds reversibly and with high affinity to classical (e.g. uterus) and unpredicted (e.g. brain) tissues

  19. Mediator, TATA-binding Protein, and RNA Polymerase II Contribute to Low Histone Occupancy at Active Gene Promoters in Yeast*

    Science.gov (United States)

    Ansari, Suraiya A.; Paul, Emily; Sommer, Sebastian; Lieleg, Corinna; He, Qiye; Daly, Alexandre Z.; Rode, Kara A.; Barber, Wesley T.; Ellis, Laura C.; LaPorta, Erika; Orzechowski, Amanda M.; Taylor, Emily; Reeb, Tanner; Wong, Jason; Korber, Philipp; Morse, Randall H.

    2014-01-01

    Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction. PMID:24727477

  20. Activated α2-macroglobulin binding to human prostate cancer cells triggers insulin-like responses.

    Science.gov (United States)

    Misra, Uma Kant; Pizzo, Salvatore Vincent

    2015-04-10

    Ligation of cell surface GRP78 by activated α2-macroglobulin (α2M*) promotes cell proliferation and suppresses apoptosis. α2M*-treated human prostate cancer cells exhibit a 2-3-fold increase in glucose uptake and lactate secretion, an effect similar to insulin treatment. In both α2M* and insulin-treated cells, the mRNA levels of SREBP1-c, SREBP2, fatty-acid synthase, acetyl-CoA carboxylase, ATP citrate lyase, and Glut-1 were significantly increased together with their protein levels, except for SREBP2. Pretreatment of cells with α2M* antagonist antibody directed against the carboxyl-terminal domain of GRP78 blocks these α2M*-mediated effects, and silencing GRP78 expression by RNAi inhibits up-regulation of ATP citrate lyase and fatty-acid synthase. α2M* induces a 2-3-fold increase in lipogenesis as determined by 6-[(14)C]glucose or 1-[(14)C]acetate incorporation into free cholesterol, cholesterol esters, triglycerides, free fatty acids, and phosphatidylcholine, which is blocked by inhibitors of fatty-acid synthase, PI 3-kinase, mTORC, or an antibody against the carboxyl-terminal domain of GRP78. We also assessed the incorporation of [(14)CH3]choline into phosphatidylcholine and observed similar effects. Lipogenesis is significantly affected by pretreatment of prostate cancer cells with fatostatin A, which blocks sterol regulatory element-binding protein proteolytic cleavage and activation. This study demonstrates that α2M* functions as a growth factor, leading to proliferation of prostate cancer cells by promoting insulin-like responses. An antibody against the carboxyl-terminal domain of GRP78 may have important applications in prostate cancer therapy. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Interfacial binding of cutinase rather than its catalytic activity determines the steady state interfacial tension during oil drop lipid hydrolysis.

    Science.gov (United States)

    Flipsen, J A; van Schaick, M A; Dijkman, R; van der Hijden, H T; Verheij, H M; Egmond, M R

    1999-02-01

    Hydrolysis of triglycerides by cutinase from Fusarium solani pisi causes in oil drop tensiometer experiments a decrease of the interfacial tension. A series of cutinase variants with amino acid substitutions at its molecular surface yielded different values of the steady state interfacial tension. This tension value poorly correlated with the specific activity as such nor with the total activity (defined as the specific activity multiplied by the amount of enzyme bound) of the cutinase variants. Moreover, it appeared that at activity levels above 15% of that of wild type cutinase the contribution of hydrolysis to the decrease of the tension is saturating. A clear positive correlation was found between the interfacial tension plateau value and the interfacial binding of cutinase, as determined with attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR). These results indicate that the interfacial steady state level is not determined by the rate of hydrolysis, but mainly by the interfacial binding of cutinase.

  2. Inhibition and Larvicidal Activity of Phenylpropanoids from Piper sarmentosum on Acetylcholinesterase against Mosquito Vectors and Their Binding Mode of Interaction.

    Directory of Open Access Journals (Sweden)

    Arshia Hematpoor

    Full Text Available Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are vectors of dengue fever and West Nile virus diseases. This study was conducted to determine the toxicity, mechanism of action and the binding interaction of three active phenylpropanoids from Piper sarmentosum (Piperaceae toward late 3rd or early 4th larvae of above vectors. A bioassay guided-fractionation on the hexane extract from the roots of Piper sarmentosum led to the isolation and identification of three active phenylpropanoids; asaricin 1, isoasarone 2 and trans-asarone 3. The current study involved evaluation of the toxicity and acetylcholinesterase (AChE inhibition of these compounds against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae. Asaricin 1 and isoasarone 2 were highly potent against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae causing up to 100% mortality at ≤ 15 μg/mL concentration. The ovicidal activity of asaricin 1, isoasarone 2 and trans-asarone 3 were evaluated through egg hatching. Asaricin 1 and isoasarone 2 showed potent ovicidal activity. Ovicidal activity for both compounds was up to 95% at 25μg/mL. Asaricin 1 and isoasarone 2 showed strong inhibition on acetylcholinesterase with relative IC50 values of 0.73 to 1.87 μg/mL respectively. These findings coupled with the high AChE inhibition may suggest that asaricin 1 and isoasarone 2 are neuron toxic compounds toward Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. Further computational docking with Autodock Vina elaborates the possible interaction of asaricin 1 and isoasarone 2 with three possible binding sites of AChE which includes catalytic triads (CAS: S238, E367, H480, the peripheral sites (PAS: E72, W271 and anionic binding site (W83. The binding affinity of asaricin 1 and isoasarone 2 were relatively strong with asaricin 1 showed a higher binding affinity in the anionic pocket.

  3. Mutational analysis of an archaeal minichromosome maintenance protein exterior hairpin reveals critical residues for helicase activity and DNA binding

    Directory of Open Access Journals (Sweden)

    Brewster Aaron S

    2010-08-01

    Full Text Available Abstract Background The mini-chromosome maintenance protein (MCM complex is an essential replicative helicase for DNA replication in Archaea and Eukaryotes. While the eukaryotic complex consists of six homologous proteins (MCM2-7, the archaeon Sulfolobus solfataricus has only one MCM protein (ssoMCM, six subunits of which form a homohexamer. We have recently reported a 4.35Å crystal structure of the near full-length ssoMCM. The structure reveals a total of four β-hairpins per subunit, three of which are located within the main channel or side channels of the ssoMCM hexamer model generated based on the symmetry of the N-terminal Methanothermobacter thermautotrophicus (mtMCM structure. The fourth β-hairpin, however, is located on the exterior of the hexamer, near the exit of the putative side channels and next to the ATP binding pocket. Results In order to better understand this hairpin's role in DNA binding and helicase activity, we performed a detailed mutational and biochemical analysis of nine residues on this exterior β-hairpin (EXT-hp. We examined the activities of the mutants related to their helicase function, including hexamerization, ATPase, DNA binding and helicase activities. The assays showed that some of the residues on this EXT-hp play a role for DNA binding as well as for helicase activity. Conclusions These results implicate several current theories regarding helicase activity by this critical hexameric enzyme. As the data suggest that EXT-hp is involved in DNA binding, the results reported here imply that the EXT-hp located near the exterior exit of the side channels may play a role in contacting DNA substrate in a manner that affects DNA unwinding.

  4. Inhibition and Larvicidal Activity of Phenylpropanoids from Piper sarmentosum on Acetylcholinesterase against Mosquito Vectors and Their Binding Mode of Interaction.

    Science.gov (United States)

    Hematpoor, Arshia; Liew, Sook Yee; Chong, Wei Lim; Azirun, Mohd Sofian; Lee, Vannajan Sanghiran; Awang, Khalijah

    2016-01-01

    Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are vectors of dengue fever and West Nile virus diseases. This study was conducted to determine the toxicity, mechanism of action and the binding interaction of three active phenylpropanoids from Piper sarmentosum (Piperaceae) toward late 3rd or early 4th larvae of above vectors. A bioassay guided-fractionation on the hexane extract from the roots of Piper sarmentosum led to the isolation and identification of three active phenylpropanoids; asaricin 1, isoasarone 2 and trans-asarone 3. The current study involved evaluation of the toxicity and acetylcholinesterase (AChE) inhibition of these compounds against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae. Asaricin 1 and isoasarone 2 were highly potent against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae causing up to 100% mortality at ≤ 15 μg/mL concentration. The ovicidal activity of asaricin 1, isoasarone 2 and trans-asarone 3 were evaluated through egg hatching. Asaricin 1 and isoasarone 2 showed potent ovicidal activity. Ovicidal activity for both compounds was up to 95% at 25μg/mL. Asaricin 1 and isoasarone 2 showed strong inhibition on acetylcholinesterase with relative IC50 values of 0.73 to 1.87 μg/mL respectively. These findings coupled with the high AChE inhibition may suggest that asaricin 1 and isoasarone 2 are neuron toxic compounds toward Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. Further computational docking with Autodock Vina elaborates the possible interaction of asaricin 1 and isoasarone 2 with three possible binding sites of AChE which includes catalytic triads (CAS: S238, E367, H480), the peripheral sites (PAS: E72, W271) and anionic binding site (W83). The binding affinity of asaricin 1 and isoasarone 2 were relatively strong with asaricin 1 showed a higher binding affinity in the anionic pocket.

  5. The effectiveness of television advertising campaigns on generating calls to a national Quitline by Māori.

    Science.gov (United States)

    Wilson, N; Grigg, M; Graham, L; Cameron, G

    2005-08-01

    To examine the effectiveness of four mass media campaigns on calls to a national Quitline by Māori (the indigenous people of New Zealand). Monthly Quitline call data and calls within one hour of a television commercial (TVC) being shown were analysed for the 2002-2003 period. Data on target audience rating points (TARPs) and expenditure on TVCs were also used (n = 2319 TVC placements). Māori were found to register with the Quitline at higher rates during the most intense six campaign months (15% more registrations compared to less intense months). The most effective campaign generated 115 calls per 100 TARPs by Māori callers within one hour of TVC airing (the "Every cigarette" campaign). A more Māori orientated campaign with both health and cultural themes generated 91 calls per 100 TARPs from Māori callers. For these two campaigns combined, the advertising cost per new registration with the Quitline by a Māori caller was NZD 30-48. Two second hand smoke campaigns that did not show the Quitline number were much less effective at 25 and 45 calls per 100 TARPs. These television advertising campaigns were effective and cost effective in generating calls to a national Quitline by Māori. Health authorities should continue to explore the use of both "threat appeal" style media campaigns and culturally appropriate campaigns to support Quitline use by indigenous peoples.

  6. In silico engineering and optimization of Transcription Activator-Like Effectors and their derivatives for improved DNA binding predictions.

    KAUST Repository

    Piatek, Marek J.

    2015-12-01

    Transcription Activator-Like Effectors (TALEs) can be used as adaptable DNAbinding modules to create site-specific chimeric nucleases or synthetic transcriptional regulators. The central repeat domain mediates specific DNA binding via hypervariable repeat di-residues (RVDs). This DNA-Binding Domain can be engineered to bind preferentially to any user-selected DNA sequence if engineered appropriately. Therefore, TALEs and their derivatives have become indispensable molecular tools in site-specific manipulation of genes and genomes. This thesis revolves around two problems: in silico design and improved binding site prediction of TALEs. In the first part, a study is shown where TALEs are successfully designed in silico and validated in laboratory to yield the anticipated effects on selected genes. Software is developed to accompany the process of designing and prediction of binding sites. I expanded the functionality of the software to be used as a more generic set of tools for the design, target and offtarget searching. Part two contributes a method and associated toolkit developed to allow users to design in silico optimized synthetic TALEs with user-defined specificities for various experimental purposes. This method is based on a mutual relationship of three consecutive tandem repeats in the DNA-binding domain. This approach revealed positional and compositional bias behind the binding of TALEs to DNA. In conclusion, I developed methods, approaches, and software to enhance the functionality of synthetic TALEs, which should improve understanding of TALEs biology and will further advance genome-engineering applications in various organisms and cell types.

  7. Binding Mode and Structure-Activity Relationships of ITE as an Aryl Hydrocarbon Receptor (AhR) Agonist.

    Science.gov (United States)

    Dolciami, Daniela; Gargaro, Marco; Cerra, Bruno; Scalisi, Giulia; Bagnoli, Luana; Servillo, Giuseppe; Fazia, Maria Agnese Della; Puccetti, Paolo; Quintana, Francisco J; Fallarino, Francesca; Macchiarulo, Antonio

    2018-02-06

    Discovered as a modulator of the toxic response to environmental pollutants, aryl hydrocarbon receptor (AhR) has recently gained attention for its involvement in various physiological and pathological pathways. AhR is a ligand-dependent transcription factor activated by a large array of chemical compounds, which include metabolites of l-tryptophan (l-Trp) catabolism as endogenous ligands of the receptor. Among these, 2-(1'H-indole-3'-carbonyl)thiazole-4-carboxylic acid methyl ester (ITE) has attracted interest in the scientific community, being endowed with nontoxic, immunomodulatory, and anticancer AhR-mediated functions. So far, no information about the binding mode and interactions of ITE with AhR is available. In this study, we used docking and molecular dynamics to propose a putative binding mode of ITE into the ligand binding pocket of AhR. Mutagenesis studies were then instrumental in validating the proposed binding mode, identifying His 285 and Tyr 316 as important key residues for ligand-dependent receptor activation. Finally, a set of ITE analogues was synthesized and tested to further probe molecular interactions of ITE to AhR and characterize the relevance of specific functional groups in the chemical structure for receptor activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L. (UW-MED); (UCB)

    2015-04-22

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.

  9. Binding of Mn-deoxyribonucleoside Triphosphates to the Active Site of the DNA Polymerase of Bacteriophage T7

    Energy Technology Data Exchange (ETDEWEB)

    B Akabayov; C Richardson

    2011-12-31

    Divalent metal ions are crucial as cofactors for a variety of intracellular enzymatic activities. Mg{sup 2+}, as an example, mediates binding of deoxyribonucleoside 5'-triphosphates followed by their hydrolysis in the active site of DNA polymerase. It is difficult to study the binding of Mg{sup 2+} to an active site because Mg{sup 2+} is spectroscopically silent and Mg{sup 2+} binds with low affinity to the active site of an enzyme. Therefore, we substituted Mg{sup 2+} with Mn{sup 2+}:Mn{sup 2+} that is not only visible spectroscopically but also provides full activity of the DNA polymerase of bacteriophage T7. In order to demonstrate that the majority of Mn{sup 2+} is bound to the enzyme, we have applied site-directed titration analysis of T7 DNA polymerase using X-ray near edge spectroscopy. Here we show how X-ray near edge spectroscopy can be used to distinguish between signal originating from Mn{sup 2+} that is free in solution and Mn{sup 2+} bound to the active site of T7 DNA polymerase. This method can be applied to other enzymes that use divalent metal ions as a cofactor.

  10. Membrane-associated 41-kDa GTP-binding protein in collagen-induced platelet activation

    International Nuclear Information System (INIS)

    Walker, G.; Bourguignon, L.Y.

    1990-01-01

    Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation

  11. Membrane-associated 41-kDa GTP-binding protein in collagen-induced platelet activation

    Energy Technology Data Exchange (ETDEWEB)

    Walker, G.; Bourguignon, L.Y. (Univ. of Miami Medical School, FL (USA))

    1990-08-01

    Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation.

  12. DNA binding-independent transcriptional activation of the vascular endothelial growth factor gene (VEGF) by the Myb oncoprotein

    International Nuclear Information System (INIS)

    Lutwyche, Jodi K.; Keough, Rebecca A.; Hunter, Julie; Coles, Leeanne S.; Gonda, Thomas J.

    2006-01-01

    Myb is a key transcription factor that can regulate proliferation, differentiation, and apoptosis, predominantly in the haemopoietic system. Abnormal expression of Myb is associated with a number of cancers, both haemopoietic and non-haemopoietic. In order to better understand the role of Myb in normal and tumorigenic processes, we undertook a cDNA array screen to identify genes that are regulated by this factor. In this way, we identified the gene encoding vascular endothelial growth factor (VEGF) as being potentially regulated by the Myb oncoprotein in myeloid cells. To determine whether this was a direct effect on VEGF gene transcription, we examined the activity of the murine VEGF promoter in the presence of either wild-type (WT) or mutant forms of Myb. It was found that WT Myb was able to activate the VEGF promoter and that a minimal promoter region of 120 bp was sufficient to confer Myb responsiveness. Surprisingly, activation of the VEGF promoter was independent of DNA binding by Myb. This was shown by the use of DNA binding-defective Myb mutants and by mutagenesis of a potential Myb-binding site in the minimal promoter. Mutation of Sp1 sites within this region abolished Myb-mediated regulation of a reporter construct, suggesting that Myb DNA binding-independent activation of VEGF expression occurs via these Sp1 binding elements. Regulation of VEGF production by Myb has implications for the potential role of Myb in myeloid leukaemias and in solid tumours where VEGF may be functioning as an autocrine growth factor

  13. Confidence and connectedness: Indigenous Māori women's views on personal safety in the context of intimate partner violence.

    Science.gov (United States)

    Wilson, Denise; Jackson, Debra; Herd, Ruth

    2016-07-01

    ori (New Zealand) women, similar to women belonging to Indigenous and minority groups globally, have high levels of lifetime abuse, assault, and homicide, and are over-represented in events that compromise their safety. We sought insights into how Māori women view safety. Twenty Māori women's narratives revealed safety as a holistic concept involving a number of different elements. We found women had developed an acute sense of the concept of safety. They had firm views and clear strategies to maintain their own safety and that of their female family and friends. These women also provided insights into their experiences of feeling unsafe.

  14. A DFT approach to discriminate the antagonist and partial agonist activity of ligands binding to the NMDA receptor

    Science.gov (United States)

    Haslak, Zeynep Pinar; Bozkurt, Esra; Dutagaci, Bercem; De Proft, Frank; Aviyente, Viktorya; De Vleeschouwer, Freija

    2018-02-01

    The activation of N-methyl-D-aspartate receptors is found to be intimately associated with neurodegenerative diseases which make them promising therapeutic targets. Despite the significantly increasing multidisciplinary interests centred on this ionotropic channel, design of new ligands with intended functional activity remains a great challenge. In this article, a computational study based on density functional theory is presented to understand the structural factors of ligands determining their function as antagonists and partial agonists. With this aim, the GluN1 subunit is chosen as being one of the essential components in the activation mechanism, and quantum chemical calculations are implemented for 30 antagonists and 30 partial agonists known to bind to this subunit with different binding affinities. Several quantum chemical descriptors are investigated which might unlock the difference between antagonists and partial agonists.

  15. Mutations that silence constitutive signaling activity in the allosteric ligand-binding site of the thyrotropin receptor.

    Science.gov (United States)

    Haas, Ann-Karin; Kleinau, Gunnar; Hoyer, Inna; Neumann, Susanne; Furkert, Jens; Rutz, Claudia; Schülein, Ralf; Gershengorn, Marvin C; Krause, Gerd

    2011-01-01

    The thyrotropin receptor (TSHR) exhibits elevated cAMP signaling in the basal state and becomes fully activated by thyrotropin. Previously we presented evidence that small-molecule ligands act allosterically within the transmembrane region in contrast to the orthosteric extracellular hormone-binding sites. Our goal in this study was to identify positions that surround the allosteric pocket and that are sensitive for inactivation of TSHR. Homology modeling combined with site-directed mutagenesis and functional characterization revealed seven mutants located in the allosteric binding site that led to a decrease of basal cAMP signaling activity. The majority of these silencing mutations, which constrain the TSHR in an inactive conformation, are found in two clusters when mapped onto the 3D structural model. We suggest that the amino acid positions identified herein are indicating locations where small-molecule antagonists, both neutral antagonists and inverse agonists, might interfere with active TSHR conformations.

  16. Frontotemporal dementia with trans-activation response DNA-binding protein 43 presenting with catatonic syndrome.

    Science.gov (United States)

    Watanabe, Ryohei; Kawakami, Ito; Onaya, Mitsumoto; Higashi, Shinji; Arai, Nobutaka; Akiyama, Haruhiko; Hasegawa, Masato; Arai, Tetsuaki

    2017-11-07

    Catatonia is a clinical syndrome characterized by symptoms such as immobility, mutism, stupor, stereotypy, echophenomena, catalepsy, automatic obedience, posturing, negativism, gegenhalten and ambitendency. This syndrome occurs mostly in mood disorder and schizophrenic patients, and is related to neuronal dysfunction involving the frontal lobe. Some cases of frontotemporal dementia (FTD) with catatonia have been reported, but these cases were not examined by autopsy. Here, we report on a FTD case which showed catatonia after the first episode of brief psychotic disorder. At the age of 58, the patient had a sudden onset of disorganized behavior and meaningless speech. Psychotropic drugs were effective for catatonic symptoms. However, after remission apathy, hyperorality, socially inappropriate behavior, hoarding, and an instinctive grasp reaction appeared and persisted. Brain MRI showed significant atrophy of the bilateral fronto-temporal lobes. A neuropathological examination revealed extensive trans-activation response DNA-binding protein 43 (TDP-43) positive neurocytoplasmic inclusions and dystrophic neurites in the brain, including the cerebral cortex, basal ganglia, and brainstem. Pathological diagnosis was frontotemporal lobar degeneration (FTLD) with TDP-43 (FTLD-TDP) type C, which was also confirmed by the band pattern of C-terminal fragments of TDP-43 on western blotting of sarkosyl-insoluble fractions extracted from the frozen brain. Dysfunction of the thalamus, globus pallidus, supplementary motor area, amygdala and cingulate cortex have been said to be related to the catatonic syndrome. In this case, these areas were affected, showing abnormal TDP-43-positive structures. Further studies are expected to confirm further clinical - pathological correlations to FTLD. © 2017 Japanese Society of Neuropathology.

  17. Insight into temperature dependence of GTPase activity in human guanylate binding protein-1.

    Directory of Open Access Journals (Sweden)

    Anjana Rani

    Full Text Available Interferon-γ induced human guanylate binding protein-1(hGBP1 belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37°C but GDP became significant when the hydrolysis reaction was carried out at 15°C. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1.

  18. Scaffold protein enigma homolog 1 overcomes the repression of myogenesis activation by inhibitor of DNA binding 2

    Energy Technology Data Exchange (ETDEWEB)

    Nakatani, Miyuki [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Ito, Jumpei [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Japan Society for the Promotion of Science, Tokyo, 102-0083 (Japan); Koyama, Riko [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Iijima, Masumi; Yoshimoto, Nobuo [The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 (Japan); Niimi, Tomoaki [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Kuroda, Shun' ichi [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 (Japan); Maturana, Andrés D., E-mail: maturana@agr.nagoya-u.ac.jp [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan)

    2016-05-27

    Enigma Homolog 1 (ENH1) is a scaffold protein for signaling proteins and transcription factors. Previously, we reported that ENH1 overexpression promotes the differentiation of C2C12 myoblasts. However, the molecular mechanism underlying the role of ENH1 in the C2C12 cells differentiation remains elusive. ENH1 was shown to inhibit the proliferation of neuroblastoma cells by sequestering Inhibitor of DNA binding protein 2 (Id2) in the cytosol. Id2 is a repressor of basic Helix-Loop-Helix transcription factors activity and prevents myogenesis. Here, we found that ENH1 overcome the Id2 repression of C2C12 cells myogenic differentiation and that ENH1 overexpression promotes mice satellite cells activation, the first step toward myogenic differentiation. In addition, we show that ENH1 interacted with Id2 in C2C12 cells and mice satellite cells. Collectively, our results suggest that ENH1 plays an important role in the activation of myogenesis through the repression of Id2 activity. -- Highlights: •Enigma Homolog 1 (ENH1) is a scaffold protein. •ENH1 binds to inhibitor of DNA binding 2 (Id2) in myoblasts. •ENH1 overexpression overcomes the Id2's repression of myogenesis. •The Id2-ENH1 complex play an important role in the activation of myogenesis.

  19. The changes in drug binding activity of GABA receptor and animal neural-behavior after gamma irradiation

    International Nuclear Information System (INIS)

    Zheng Hui; Zhen Rong; Zhao Naikun; Xue Hong; Wang Zihui

    2004-01-01

    Objective: The purpose of this study was to investigate the effect of irradiation on gamma-aminobutyric-acid receptor (GABA-R) as well as behavioral changes after brain 60 Co γ-irradiation. Methods: The mice were irradiated with gamma rays (20 Gy; 10 Gy and 5 Gy) . The drug binding activity of GABA receptor in brain receptor was measured by fluorescence anisotropy (FA) and equilibrium dissociation constants. The behavioral changes were observed by the locomotor activity test, elevated plus-maze test and hole-board test at 1, 10, 24 and 48 hr after irradiation. Results: 1. The drug binding activity of the GABA receptor was decreased and the equilibrium dissociation constant (K d ) was significantly increased compared with the negative control group 2 hr after irradiation, and a spike value appeared at 24 hr. It showed that the irradiation might damage or decrease the binding activity and the bio-activity of GABA receptor. 2. The animal experiment confirmed that the irradiated animal model showed neural-behavioral changes of anxiety or depression. 3. The decreased binding activity of GABA receptor and changes in behavior of irradiated animal were dependent on radiation intensity. 4. The changes of behavior was similar to the blocked GABA receptor group. It suggests the relationship of radiation and GABA receptor. Conclusion: These results suggest that GABA receptor may be involved in radiation injury. The functional changes of GABA receptor may be an induction factor of behavioral disorder. The article also discussed the effect of anxiety and results obtained from the point of view of GABA receptor system involvement in the changes observed after irradiation. (authors)

  20. Binding assay and preliminary X-ray crystallographic analysis of ACTIBIND, a protein with anticarcinogenic and antiangiogenic activities

    International Nuclear Information System (INIS)

    Leeuw, Marina de; Roiz, Levava; Smirnoff, Patricia; Schwartz, Betty; Shoseyov, Oded; Almog, Orna

    2007-01-01

    Native ACTIBIND was successfully crystallized and it was shown that the interaction between ACTIBIND and actin is in a molar ratio of 1:2, with a binding constant of 16.17 × 10 4 M −1 . ACTIBIND is a T2 RNase extracellular glycoprotein produced by the mould Aspergillus niger B1 (CMI CC 324626) that possesses anticarcinogenic and antiangiogenic activities. ACTIBIND was found to be an actin-binding protein that interacts with rabbit muscle actin in a 1:2 molar ratio (ACTIBIND:actin) with a binding constant of 16.17 × 10 4 M −1 . Autoclave-treated ACTIBIND (EI-ACTIBIND) lost its RNase activity, but its actin-binding ability was conserved. ACTIBIND crystals were grown using 20% PEG 3350, 0.2 M ammonium dihydrogen phosphate solution at room temperature (293 K). One to four single crystals appeared in each droplet within a few days and grew to approximate dimensions of 0.5 × 0.5 × 0.5 mm after about two weeks. Diffraction studies of these crystals at low temperature (100 K) indicated that they belong to the P3 1 21 space group, with unit-cell parameters a = 78, b = 78, c = 104 Å

  1. Binding assay and preliminary X-ray crystallographic analysis of ACTIBIND, a protein with anticarcinogenic and antiangiogenic activities

    Energy Technology Data Exchange (ETDEWEB)

    Leeuw, Marina de [Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva 84105 (Israel); Roiz, Levava [The Institute of Plant Sciences and Genetics in Agriculture, The Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100 (Israel); Smirnoff, Patricia; Schwartz, Betty [The Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem (Israel); Shoseyov, Oded [The Institute of Plant Sciences and Genetics in Agriculture, The Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100 (Israel); Almog, Orna, E-mail: almogo@bgu.ac.il [Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva 84105 (Israel)

    2007-08-01

    Native ACTIBIND was successfully crystallized and it was shown that the interaction between ACTIBIND and actin is in a molar ratio of 1:2, with a binding constant of 16.17 × 10{sup 4} M{sup −1}. ACTIBIND is a T2 RNase extracellular glycoprotein produced by the mould Aspergillus niger B1 (CMI CC 324626) that possesses anticarcinogenic and antiangiogenic activities. ACTIBIND was found to be an actin-binding protein that interacts with rabbit muscle actin in a 1:2 molar ratio (ACTIBIND:actin) with a binding constant of 16.17 × 10{sup 4} M{sup −1}. Autoclave-treated ACTIBIND (EI-ACTIBIND) lost its RNase activity, but its actin-binding ability was conserved. ACTIBIND crystals were grown using 20% PEG 3350, 0.2 M ammonium dihydrogen phosphate solution at room temperature (293 K). One to four single crystals appeared in each droplet within a few days and grew to approximate dimensions of 0.5 × 0.5 × 0.5 mm after about two weeks. Diffraction studies of these crystals at low temperature (100 K) indicated that they belong to the P3{sub 1}21 space group, with unit-cell parameters a = 78, b = 78, c = 104 Å.

  2. Calculation of vibrational shifts of nitrile probes in the active site of ketosteroid isomerase upon ligand binding.

    Science.gov (United States)

    Layfield, Joshua P; Hammes-Schiffer, Sharon

    2013-01-16

    The vibrational Stark effect provides insight into the roles of hydrogen bonding, electrostatics, and conformational motions in enzyme catalysis. In a recent application of this approach to the enzyme ketosteroid isomerase (KSI), thiocyanate probes were introduced in site-specific positions throughout the active site. This paper implements a quantum mechanical/molecular mechanical (QM/MM) approach for calculating the vibrational shifts of nitrile (CN) probes in proteins. This methodology is shown to reproduce the experimentally measured vibrational shifts upon binding of the intermediate analogue equilinen to KSI for two different nitrile probe positions. Analysis of the molecular dynamics simulations provides atomistic insight into the roles that key residues play in determining the electrostatic environment and hydrogen-bonding interactions experienced by the nitrile probe. For the M116C-CN probe, equilinen binding reorients an active-site water molecule that is directly hydrogen-bonded to the nitrile probe, resulting in a more linear C≡N--H angle and increasing the CN frequency upon binding. For the F86C-CN probe, equilinen binding orients the Asp103 residue, decreasing the hydrogen-bonding distance between the Asp103 backbone and the nitrile probe and slightly increasing the CN frequency. This QM/MM methodology is applicable to a wide range of biological systems and has the potential to assist in the elucidation of the fundamental principles underlying enzyme catalysis.

  3. Forskolin- and dihydroalprenolol (DHA) binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    International Nuclear Information System (INIS)

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1987-01-01

    The purpose of the present investigation was to determine if dietary lipids can induce changes in the adenylate cyclase system in rat heart. Three groups of male young Sprague-Dawley rats were fed for 6 weeks diets containing 10% corn oil (I), 8% coconut oil + 2% corn oil (II) or 10% menhaden oil (III). Adenylate cyclase activity (basal, fluoride-, isoproterenol-, and forskolin-stimulated) was higher in heart homogenates of rats in group III than in the other two groups. Concentration of the [ 3 H]-forskolin binding sites in the cardiac membranes were significantly higher in rats fed menhaden oil. The values (pmol/mg protein) were 4.8 +/- 0.2 (I), 4.5 +/- 0.7 (II) and 8.4 +/- 0.5 (III). There was no significant difference in the affinity of the forskolin binding sites among the 3 dietary groups. When measured at different concentrations of forskolin, the adenylate cyclase activity in cardiac membranes of rats fed menhaden oil was higher than in the other 2 groups. Concentrations of the [ 3 H]DHA binding sites were slightly higher but their affinity was lower in cardiac membranes of rats fed menhaden oil. The results suggest that diets containing fish oil increase the concentration of the forskolin binding sites and may also affect the characteristics of the β-adrenergic receptor in rat heart

  4. Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes.

    Science.gov (United States)

    Csermely, P; Szamel, M; Resch, K; Somogyi, J

    1988-05-15

    In the primary structure of protein kinase C, the presence of a putative metal-binding site has been suggested (Parker, P.J., Coussens, L., Totty, N., Rhee, L., Young, S., Chen, E., Stabel, S., Waterfield, M.D., and Ullrich, A. (1986) Science 233, 853-859). In the present report, we demonstrate that the most abundant intracellular heavy metal, zinc, can increase the activity of cytosolic protein kinase C. Zinc reversibly binds the enzyme to plasma membranes, and it may contribute to the calcium-induced binding as well. The intracellular heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine prevents the phorbol ester- and antigen-induced translocation of protein kinase C. This effect can be totally reversed by the concomitant addition of Zn2+, while Fe2+ and Mn2+ are only partially counteractive. Our results suggest that zinc can activate protein kinase C and contributes to its binding to plasma membranes in T lymphocytes induced by Ca2+, phorbol ester, or antigen.

  5. Equol is more active than soy isoflavone itself to compete for binding to thromboxane A(2) receptor in human platelets.

    Science.gov (United States)

    Muñoz, Yenny; Garrido, Argelia; Valladares, Luis

    2009-03-01

    Several dietary intervention studies examining the health effect of soy isoflavones allude to the importance of equol in establishing the cardiovascular response to soy protein. Although, the specific mechanism by which this action occurs has not been established. The aim of this study was to investigate the inhibitory effect of soy-isoflavones and the metabolite of daidzein, equol, on agonist-induced platelet responses dependent on thromboxane A(2) (TxA(2)) receptor. Competitive radioligand binding assay was used to screen for affinity of these compounds to the TxA(2) receptor. The effect of equol on platelet activation, evaluate through of release of the ATP, by analogs of TxA(2) was analyzed. The effect of equol on platelet aggregation was investigated with ADP, U46619 (a TxA(2) mimic) and the calcium ionophore A23187. The data showed that aglycone isoflavones and equol bind to TxA(2) receptor in the micromol/L range, whereas their glucoside derivates had very low binding activity for this receptor. Under equilibrium conditions, the following order of the relative affinity in inhibiting [(3)H]-SQ29585 binding was: equol>genistein>daidzein>glycitein>genistin, daidzin, glycitin. Equol interaction was reversible and competitive for labeled-SQ29548 with not apparent decrease in the number of TxA(2) binding sites. In addition, from platelet activation studies, equol effectively inhibited ATP secretion elicited by the TxA(2) analog U46619. On the other hand, equol inhibited the platelet aggregation induced by U46619 and A23187, while it failed to inhibit that induced by ADP. The aglycone isoflavones from soy, and particularly equol, have been found to have biological effects attributable to thromboxane A(2) receptor antagonism. These findings may help elucidate how dietary isoflavone modulate platelet function and explain why soy-rich foods are claimed to have beneficial effects in the prevention of thrombotic events.

  6. A Single-Domain Llama Antibody Potently Inhibits the Enzymatic Activity of Botulinum Neurotoxin by Binding to the Non-Catalytic [alpha]-Exosite Binding Region

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jianbo; Thompson, Aaron A.; Fan, Yongfeng; Lou, Jianlong; Conrad, Fraser; Ho, Mengfei; Pires-Alves, Melissa; Wilson, Brenda A.; Stevens, Raymond C.; Marks, James D. (UIUC); (Scripps); (UCSF)

    2010-08-13

    Ingestion or inhalation of botulinum neurotoxin (BoNT) results in botulism, a severe and frequently fatal disease. Current treatments rely on antitoxins, which, while effective, cannot reverse symptoms once BoNT has entered the neuron. For treatments that can reverse intoxication, interest has focused on developing inhibitors of the enzymatic BoNT light chain (BoNT Lc). Such inhibitors typically mimic substrate and bind in or around the substrate cleavage pocket. To explore the full range of binding sites for serotype A light chain (BoNT/A Lc) inhibitors, we created a library of non-immune llama single-domain VHH (camelid heavy-chain variable region derived from heavy-chain-only antibody) antibodies displayed on the surface of the yeast Saccharomyces cerevisiae. Library selection on BoNT/A Lc yielded 15 yeast-displayed VHH with equilibrium dissociation constants (K{sub d}) from 230 to 0.03 nM measured by flow cytometry. Eight of 15 VHH inhibited the cleavage of substrate SNAP25 (synaptosome-associated protein of 25,000 Da) by BoNT/A Lc. The most potent VHH (Aa1) had a solution K{sub d} for BoNT/A Lc of 1.47 x 10{sup -10} M and an IC{sub 50} (50% inhibitory concentration) of 4.7 x 10{sup -10} M and was resistant to heat denaturation and reducing conditions. To understand the mechanism by which Aa1 inhibited catalysis, we solved the X-ray crystal structure of the BoNT/A Lc-Aa1 VHH complex at 2.6 {angstrom} resolution. The structure reveals that the Aa1 VHH binds in the {alpha}-exosite of the BoNT/A Lc, far from the active site for catalysis. The study validates the utility of non-immune llama VHH libraries as a source of enzyme inhibitors and identifies the BoNT/A Lc {alpha}-exosite as a target for inhibitor development.

  7. Trans-Binding Mechanism of Ubiquitin-like Protein Activation Revealed by a UBA5-UFM1 Complex

    Directory of Open Access Journals (Sweden)

    Walaa Oweis

    2016-09-01

    Full Text Available Modification of proteins by ubiquitin or ubiquitin-like proteins (UBLs is a critical cellular process implicated in a variety of cellular states and outcomes. A prerequisite for target protein modification by a UBL is the activation of the latter by activating enzymes (E1s. Here, we present the crystal structure of the non-canonical homodimeric E1, UBA5, in complex with its cognate UBL, UFM1, and supporting biochemical experiments. We find that UBA5 binds to UFM1 via a trans-binding mechanism in which UFM1 interacts with distinct sites in both subunits of the UBA5 dimer. This binding mechanism requires a region C-terminal to the adenylation domain that brings UFM1 to the active site of the adjacent UBA5 subunit. We also find that transfer of UFM1 from UBA5 to the E2, UFC1, occurs via a trans mechanism, thereby requiring a homodimer of UBA5. These findings explicitly elucidate the role of UBA5 dimerization in UFM1 activation.

  8. Replication origins oriGNAI3 and oriB of the mammalian AMPD2 locus nested in a region of straight DNA flanked by intrinsically bent DNA sites.

    Science.gov (United States)

    Balani, Valério Américo; de Lima Neto, Quirino Alves; Takeda, Karen Izumi; Gimenes, Fabrícia; Fiorini, Adriana; Debatisse, Michelle; Fernandez, Maria Aparecida

    2010-11-01

    The aim of this work was to determine whether intrinsically bent DNA sites are present at, or close to, the mammalian replication origins oriGNAI3 and oriB in the Chinese hamster AMPD2 locus. Using an electrophoretic mobility shift assay and in silico analysis, we located four intrinsically bent DNA sites (b1 to b4) in a fragment that contains the oriGNAI3 and one site (b5) proximal to oriB. The helical parameters show that each bent DNA site is curved in a left-handed superhelical writhe. A 2D projection of 3D fragment trajectories revealed that oriGNAI3 is located in a relatively straight segment flanked by bent sites b1 and b2, which map in previously identified Scaffold/Matrix Attachment Region. Sites b3 and b4 are located approximately 2 kb downstream and force the fragment into a strong closed loop structure. The b5 site is also located in an S/MAR that is found just downstream of oriB.

  9. CD and MCD studies of the effects of component B variant binding on the biferrous active site of methane monooxygenase.

    Science.gov (United States)

    Mitić, Natasa; Schwartz, Jennifer K; Brazeau, Brian J; Lipscomb, John D; Solomon, Edward I

    2008-08-12

    The multicomponent soluble form of methane monooxygenase (sMMO) catalyzes the oxidation of methane through the activation of O 2 at a nonheme biferrous center in the hydroxylase component, MMOH. Reactivity is limited without binding of the sMMO effector protein, MMOB. Past studies show that mutations of specific MMOB surface residues cause large changes in the rates of individual steps in the MMOH reaction cycle. To define the structural and mechanistic bases for these observations, CD, MCD, and VTVH MCD spectroscopies coupled with ligand-field (LF) calculations are used to elucidate changes occurring near and at the MMOH biferrous cluster upon binding of MMOB and the MMOB variants. Perturbations to both the CD and MCD are observed upon binding wild-type MMOB and the MMOB variant that similarly increases O 2 reactivity. MMOB variants that do not greatly increase O 2 reactivity fail to cause one or both of these changes. LF calculations indicate that reorientation of the terminal glutamate on Fe2 reproduces the spectral perturbations in MCD. Although this structural change allows O 2 to bridge the diiron site and shifts the redox active orbitals for good overlap, it is not sufficient for enhanced O 2 reactivity of the enzyme. Binding of the T111Y-MMOB variant to MMOH induces the MCD, but not CD changes, and causes only a small increase in reactivity. Thus, both the geometric rearrangement at Fe2 (observed in MCD) coupled with a more global conformational change that may control O 2 access (probed by CD), induced by MMOB binding, are critical factors in the reactivity of sMMO.

  10. Insulin receptor binding and tyrosine kinase activity in skeletal muscle from normal pregnant women and women with gestational diabetes

    DEFF Research Database (Denmark)

    Damm, P.; Handberg, A.; Kühl, C.

    1993-01-01

    OBJECTIVE: To ascertain whether the decreased glucose tolerance and insulin resistance found in normal and gestational diabetic pregnancy might be associated with changes in insulin receptor function. METHODS: Eight nonpregnant healthy women (nonpregnant controls), eight healthy pregnant women...... (pregnant controls), and eight women with gestational diabetes were investigated. All were non-obese. Muscle biopsies were obtained from the vastus lateralis muscle, and insulin binding and tyrosine kinase activities in partially purified skeletal muscle insulin receptors were studied. The pregnant controls...... with gestational diabetes compared to nonpregnant controls (P pregnant women did not differ from the other two groups. Postpartum, no differences in insulin binding were found between the groups. Basal and maximal tyrosine kinase activities toward the exogenous substrate poly(Glu4Tyr1) were...

  11. Chorion gene activation and repression is dependent on BmC/EBP expression and binding to cognate cis-elements.

    Science.gov (United States)

    Papantonis, Argyris; Sourmeli, Sissy; Lecanidou, Rena

    2008-05-09

    From the different cis-elements clustered on silkmoth chorion gene promoters, C/EBP binding sites predominate. Their sequence composition and dispersal vary amongst promoters of diverse developmental specificity. Occupancy of these sites by BmC/EBP was examined through Southwestern and ChIP assays modified to suit ovarian follicular cells. For the genes studied, binding of BmC/EBP coincided with the respective stages of transcriptional activation. However, the factor was reloaded on promoter sequences long after individual gene repression. Furthermore, suppression of BmC/EBP transcription in developing follicles resulted in de-regulation of chorion gene expression. A biphasic function of BmC/EBP, according to which it may act as both an activator and a repressor during silkmoth choriogenesis, is considered under the light of the presented data.

  12. Complement activating soluble pattern recognition molecules with collagen-like regions, mannan-binding lectin, ficolins and associated proteins

    DEFF Research Database (Denmark)

    Thiel, Steffen

    2007-01-01

    Mannan-binding lectin (MBL), L-ficolin, M-ficolin and H-ficolin are all complement activating soluble pattern recognition molecules with recognition domains linked to collagen-like regions. All four may form complexes with four structurally related proteins, the three MBL-associated serine...... proteases (MASPs), MASP-1, MASP-2 and MASP-3, and a smaller MBL-associated protein (MAp19). The four recognition molecules recognize patterns of carbohydrate or acetyl-group containing ligands. After binding to the relevant targets all four are able to activate the complement system. We thus have a system...... where four different and/or overlapping patterns of microbial origin or patterns of altered-self may be recognized, but in all cases the signalling molecules, the MASPs, are shared. MASP-1 and MASP-3 are formed from one gene, MASP1/3, by alternative splicing generating two different mRNAs from a single...

  13. Language Image in National Minority Language Television Idents. TG4 (Teilifís na Gaeilge, Ireland and Whakaata Māori (Māori Television, New Zealand

    Directory of Open Access Journals (Sweden)

    Ruth Lysaght

    2009-03-01

    Full Text Available Born of community and political action, Teilifis na Gaeilge (TG4 began in 1996, and Whakaata Māori/ Māori Television Service (MTS in 2004. Despite obvious differences between the two broadcasting environments, both stations attempt to reclaim a national (but minority language (Ó Ruairc 1996; Moring 2007 and compete with other broadcasters (Horrocks and Perry 2004 to attract an audience (Smith and Abel 2008 by an appeal to identity (Cormack 2000; 2007; Delap 2007. This paper investigates idents from TG4 and MTS. What image or brand have the language and culture in these mini-advertisements? Thornley’s (2004 discussion of “transculturation” is useful in examining the often inventive approach taken to elements of the dominant culture. Indeed, the motto ‘Súil eile’ [another perspective] is the criterion for many TG4 projects, and there is a clear awareness of multiple audiences in the MTS logline, ‘mā mātou, mā rātou, mā koutou, mā tātou’ [just for us, for them, for all of you, for all of us]. In the symbiotic relationship between a minority station and other larger stations in terms of the depiction/creation of local and national identity, language is used as another marketing tool. TG4 and MTS idents respond to and celebrate current sociolinguistic changes (Romaine 2006; Ó Tuathaigh 2008, making them visible.

  14. Neoliberalism and indigenous knowledge: Māori health research and the cultural politics of New Zealand's "National Science Challenges".

    Science.gov (United States)

    Prussing, Erica; Newbury, Elizabeth

    2016-02-01

    In 2012-13 the Ministry of Business, Innovation and Employment (MBIE) in New Zealand rapidly implemented a major restructuring of national scientific research funding. The "National Science Challenges" (NSC) initiative aims to promote greater commercial applications of scientific knowledge, reflecting ongoing neoliberal reforms in New Zealand. Using the example of health research, we examine the NSC as a key moment in ongoing indigenous Māori advocacy against neoliberalization. NSC rhetoric and practice through 2013 moved to marginalize participation by Māori researchers, in part through constructing "Māori" and "science" as essentially separate arenas-yet at the same time appeared to recognize and value culturally distinctive forms of Māori knowledge. To contest this "neoliberal multiculturalism," Māori health researchers reasserted the validity of culturally distinctive knowledge, strategically appropriated NSC rhetoric, and marshalled political resources to protect Māori research infrastructure. By foregrounding scientific knowledge production as an arena of contestation over neoliberal values and priorities, and attending closely to how neoliberalizing tactics can include moves to acknowledge cultural diversity, this analysis poses new questions for social scientific study of global trends toward reconfiguring the production of knowledge about health. Study findings are drawn from textual analysis of MBIE documents about the NSC from 2012 to 2014, materials circulated by Māori researchers in the blogosphere in 2014, and ethnographic interviews conducted in 2013 with 17 Māori health researchers working at 7 sites that included university-based research centers, government agencies, and independent consultancies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity

    Science.gov (United States)

    Bollmann, Franziska; Art, Julia; Henke, Jenny; Schrick, Katharina; Besche, Verena; Bros, Matthias; Li, Huige; Siuda, Daniel; Handler, Norbert; Bauer, Florian; Erker, Thomas; Behnke, Felix; Mönch, Bettina; Härdle, Lorena; Hoffmann, Markus; Chen, Ching-Yi; Förstermann, Ulrich; Dirsch, Verena M.; Werz, Oliver; Kleinert, Hartmut; Pautz, Andrea

    2014-01-01

    Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol. PMID:25352548

  16. [Inhibition by cysteine of the carbohydrate-binding activity of lectins from Ricinus communis, Canavalia ensiformis and Euonymus europaeus].

    Science.gov (United States)

    Dvorkin, V M

    1985-10-01

    Precipitation induced by different lectins has been studied in the presence of some aminoacids. It was shown that precipitates formed by lectins from Ricinus communis (RCA1), Canavalia ensiformis (Con A), Euonymus europaeus (Eel) in the presence of appropriate carbohydrate-containing molecules disappeared after cysteine addition, like after addition of specific carbohydrate precipitation inhibitors. It is assumed that cysteine residues of RCA1, Con A and Eel lectins are essential for their carbohydrate binding activity.

  17. Akt Phosphorylation and PI (3, 4, 5) P3 Binding Coordinately Inhibit the Tumor Suppressive Activity of Merlin

    Science.gov (United States)

    2010-02-01

    GSK3h and merlin S315 phosphorylation tightly correlated with Akt1 expression and activation profiles (Fig. 3B, right). Compared with wild-type NTD...Fig. S4 for a bigger image). (f) Akt phosphorylates merlin in mammalian cells. Akt and merlin protein levels in cell lysates were confirmed (top...II (contains 1-590 residues) had a low level of binding to Akt. Interestingly, neither full-length merlin I nor merlin II interacted with Akt (Fig

  18. Binding of the urokinase-type plasminogen activator to its cell surface receptor is inhibited by low doses of suramin

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Danø, K

    1993-01-01

    micrograms/ml when using U937 cells and a ligand concentration of 0.3 nM. This concentration of the drug is well below the serum levels found in suramin-treated patients. Inhibition of binding was also demonstrated at the molecular level, using chemical cross-linking or an enzyme-linked immunosorbent assay...... to the anti-invasive properties of suramin by destroying the cellular potential for localized plasminogen activation and proteolytic matrix degradation....

  19. Schatgraven in 'de mijnen van het Oosten'. Europa's eerste tijdschrift voor oriëntaalse studies

    Directory of Open Access Journals (Sweden)

    Peter Rietbergen

    1999-06-01

    Full Text Available Tussen 1809 en 1818 verscheen Fundgruben des Orients. Dit eerste Europese tijdschrift voor oriëntaalse studies was een spreekbuis voor liefhebbers van de cultuur van het Oosten. De redactie wilde de nadruk leggen op het Nabije Oosten. De groeiende koloniale invloed van Engeland in Azië, met name in India, weerspiegelde zich echter ook in de kolommen van het tijdschrift. Een politiek gevoelig artikel maakte waarschijnlijk een einde aan het blad.

  20. La théorie de la diplomatie dans le Saint Empire Romain

    OpenAIRE

    Weber, Wolfgang E. J.

    2016-01-01

    Principes Dans ce que l’on nomme officiellement, depuis 1500 environ jusqu’à sa fin en 1806, le Saint Empire romain de la nation allemande (Heiliges Römisches Reich Deutscher Nation), le développement de la théorie de la diplomatie, autrement dit de conceptions relatives aux diplomates et à la diplomatie, est le fait d’élites soucieuses de mieux comprendre des problèmes posé...

  1. Introduction à la théorie quantique concepts, pratiques et applications

    CERN Document Server

    Desouter, Michèle; Chapuisat, Xavier

    2017-01-01

    Introduction à la théorie quantique avec exercices corrigés pour les niveaux licence et master en physique, physico-chimie et chimie, permet d'atteindre une base solide en Mécanique Quantique et le niveau indispensable pour aborder les sujets multidisciplinaires de la recherche actuelle. En complément optionnel sur un site compagnon, des applications interactives.

  2. Théorie de jauge et groupoïdes

    OpenAIRE

    Hausmann, Jean-Claude

    2002-01-01

    Les résultats de cet article concernent le problème de l'existence de représentations d'un groupoïde topologique sur un fibre principal et leur classification à transformation de jauge près. De telles représentations interviennent naturellement dans divers contextes (théories de jauge classiques ou sur graphe, fibrés équivariants, etc).

  3. Fabrication, characterization, and heuristic trade space exploration of magnetically actuated Miura-Ori origami structures

    Science.gov (United States)

    Cowan, Brett; von Lockette, Paris R.

    2017-04-01

    The authors develop magnetically actuated Miura-Ori structures through observation, experiment, and computation using an initially heuristic strategy followed by trade space visualization and optimization. The work is novel, especially within origami engineering, in that beyond final target shape approximation, Miura-Ori structures in this work are additionally evaluated for the shape approximation while folding and for their efficient use of their embedded actuators. The structures consisted of neodymium magnets placed on the panels of silicone elastomer substrates cast in the Miura-Ori folding pattern. Initially four configurations, arrangements of magnets on the panels, were selected based on heuristic arguments that (1) maximized the amount of magnetic torque applied to the creases and (2) reduced the number of magnets needed to affect all creases in the pattern. The results of experimental and computational performance metrics were used in a weighted sum model to predict the optimum configuration, which was then fabricated and experimentally characterized for comparison to the initial prototypes. As expected, optimization of magnet placement and orientation was effective at increasing the degree of theoretical useful work. Somewhat unexpectedly, however, trade space results showed that even after optimization, the configuration with the most number of magnets was least effective, per magnet, at directing its actuation to the structure’s creases. Overall, though the winning configuration experimentally outperformed its initial, non-optimal counterparts, results showed that the choice of optimum configuration was heavily dependent on the weighting factors. These results highlight both the ability of the Miura-Ori to be actuated with external magnetic stimuli, the effectiveness of a heuristic design approach that focuses on the actuation mechanism, and the need to address path-dependent metrics in assessing performance in origami folding structures.

  4. VizieR Online Data Catalog: sigma Ori low-mass stars (Kenyon+, 2005)

    Science.gov (United States)

    Kenyon, M. J.; Jeffries, R. D.; Naylor, T.; Oliveira, J. M.; Maxted, P. F. L.

    2005-04-01

    We observed the field around sigma Ori with the Wide Field Camera (WFC) on the 2.5-m Isaac Newton Telescope using Harris R and Sloan i filters on the nights of 1999 September 2730. Spectra were obtained with the Wide Field Fiber Optic Spectrograph (WYFFOS) mounted at the Nasmyth focus of the 4.2-m William Herschel Telescope during the nights of 1999 December 11 and 12. (5 data files).

  5. Cloning retinoid and peroxisome proliferator-activated nuclear receptors of the Pacific oyster and in silico binding to environmental chemicals.

    Directory of Open Access Journals (Sweden)

    Susanne Vogeler

    Full Text Available Disruption of nuclear receptors, a transcription factor superfamily regulating gene expression in animals, is one proposed mechanism through which pollution causes effects in aquatic invertebrates. Environmental pollutants have the ability to interfere with the receptor's functions through direct binding and inducing incorrect signals. Limited knowledge of invertebrate endocrinology and molecular regulatory mechanisms, however, impede the understanding of endocrine disruptive effects in many aquatic invertebrate species. Here, we isolated three nuclear receptors of the Pacific oyster, Crassostrea gigas: two isoforms of the retinoid X receptor, CgRXR-1 and CgRXR-2, a retinoic acid receptor ortholog CgRAR, and a peroxisome proliferator-activated receptor ortholog CgPPAR. Computer modelling of the receptors based on 3D crystal structures of human proteins was used to predict each receptor's ability to bind to different ligands in silico. CgRXR showed high potential to bind and be activated by 9-cis retinoic acid and the organotin tributyltin (TBT. Computer modelling of CgRAR revealed six residues in the ligand binding domain, which prevent the successful interaction with natural and synthetic retinoid ligands. This supports an existing theory of loss of retinoid binding in molluscan RARs. Modelling of CgPPAR was less reliable due to high discrepancies in sequence to its human ortholog. Yet, there are suggestions of binding to TBT, but not to rosiglitazone. The effect of potential receptor ligands on early oyster development was assessed after 24h of chemical exposure. TBT oxide (0.2μg/l, all-trans retinoic acid (ATRA (0.06 mg/L and perfluorooctanoic acid (20 mg/L showed high effects on development (>74% abnormal developed D-shelled larvae, while rosiglitazone (40 mg/L showed no effect. The results are discussed in relation to a putative direct (TBT disruption effect on nuclear receptors. The inability of direct binding of ATRA to CgRAR suggests

  6. Comparative Effects of Oral Chlorpyrifos Exposure on Cholinesterase Activity and Muscarinic Receptor Binding in Neonatal and Adult Rat Heart

    Science.gov (United States)

    Howard, Marcia D.; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N.

    2010-01-01

    Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M2 muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M2 receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor–mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M2 receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac ChE activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1 × LD10: neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1 × LD10, relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (≈ 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC50 values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that differential A-esterase activity was not

  7. A Rat α-Fetoprotein Binding Activity Prediction Model to Facilitate Assessment of the Endocrine Disruption Potential of Environmental Chemicals.

    Science.gov (United States)

    Hong, Huixiao; Shen, Jie; Ng, Hui Wen; Sakkiah, Sugunadevi; Ye, Hao; Ge, Weigong; Gong, Ping; Xiao, Wenming; Tong, Weida

    2016-03-25

    Endocrine disruptors such as polychlorinated biphenyls (PCBs), diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT) are agents that interfere with the endocrine system and cause adverse health effects. Huge public health concern about endocrine disruptors has arisen. One of the mechanisms of endocrine disruption is through binding of endocrine disruptors with the hormone receptors in the target cells. Entrance of endocrine disruptors into target cells is the precondition of endocrine disruption. The binding capability of a chemical with proteins in the blood affects its entrance into the target cells and, thus, is very informative for the assessment of potential endocrine disruption of chemicals. α-fetoprotein is one of the major serum proteins that binds to a variety of chemicals such as estrogens. To better facilitate assessment of endocrine disruption of environmental chemicals, we developed a model for α-fetoprotein binding activity prediction using the novel pattern recognition method (Decision Forest) and the molecular descriptors calculated from two-dimensional structures by Mold² software. The predictive capability of the model has been evaluated through internal validation using 125 training chemicals (average balanced accuracy of 69%) and external validations using 22 chemicals (balanced accuracy of 71%). Prediction confidence analysis revealed the model performed much better at high prediction confidence. Our results indicate that the model is useful (when predictions are in high confidence) in endocrine disruption risk assessment of environmental chemicals though improvement by increasing number of training chemicals is needed.

  8. Mononuclear Pd(II) complex as a new therapeutic agent: Synthesis, characterization, biological activity, spectral and DNA binding approaches

    Science.gov (United States)

    Saeidifar, Maryam; Mirzaei, Hamidreza; Ahmadi Nasab, Navid; Mansouri-Torshizi, Hassan

    2017-11-01

    The binding ability between a new water-soluble palladium(II) complex [Pd(bpy)(bez-dtc)]Cl (where bpy is 2,2‧-bipyridine and bez-dtc is benzyl dithiocarbamate), as an antitumor agent, and calf thymus DNA was evaluated using various physicochemical methods, such as UV-Vis absorption, Competitive fluorescence studies, viscosity measurement, zeta potential and circular dichroism (CD) spectroscopy. The Pd(II) complex was synthesized and characterized using elemental analysis, molar conductivity measurements, FT-IR, 1H NMR, 13C NMR and electronic spectra studies. The anticancer activity against HeLa cell lines demonstrated lower cytotoxicity than cisplatin. The binding constants and the thermodynamic parameters were determined at different temperatures (300 K, 310 K and 320 K) and shown that the complex can bind to DNA via electrostatic forces. Furthermore, this result was confirmed by the viscosity and zeta potential measurements. The CD spectral results demonstrated that the binding of Pd(II) complex to DNA induced conformational changes in DNA. We hope that these results will provide a basis for further studies and practical clinical use of anticancer drugs.

  9. GCR1, a transcriptional activator in Saccharomyces cerevisiae, complexes with RAP1 and can function without its DNA binding domain.

    Science.gov (United States)

    Tornow, J; Zeng, X; Gao, W; Santangelo, G M

    1993-01-01

    In Saccharomyces cerevisiae, efficient expression of glycolytic and translational component genes requires two DNA binding proteins, RAP1 (which binds to UASRPG) and GCR1 (which binds to the CT box). We generated deletions in GCR1 to test the validity of several different models for GCR1 function. We report here that the C-terminal half of GCR1, which includes the domain required for DNA binding to the CT box in vitro, can be removed without affecting GCR1-dependent transcription of either the glycolytic gene ADH1 or the translational component genes TEF1 and TEF2. We have also identified an activation domain within a segment of the GCR1 protein (the N-terminal third) that is essential for in vivo function. RAP1 and GCR1 can be co-immunoprecipitated from whole cell extracts, suggesting that they form a complex in vivo. The data are most consistent with a model in which GCR1 is attracted to DNA through contact with RAP1. Images PMID:8508768

  10. Binding of dicamba to soluble and bound extracellular polymeric substances (EPS) from aerobic activated sludge: a fluorescence quenching study.

    Science.gov (United States)

    Pan, Xiangliang; Liu, Jing; Zhang, Daoyong; Chen, Xi; Song, Wenjuan; Wu, Fengchang

    2010-05-15

    Binding of dicamba to soluble EPS (SEPS) and bound EPS (BEPS) from aerobic activated sludge was investigated using fluorescence spectroscopy. Two protein-like fluorescence peaks (peak A with Ex/Em=225 nm/342-344 nm and peak B with Ex/Em=275/340-344 nm) were identified in SEPS and BEPS. Humic-like fluorescence peak C (Ex/Em=270-275 nm/450-460 nm) was only found in BEPS. Fluorescence of the peaks A and B for SEPS and peak A for BEPS were markedly quenched by dicamba at all temperatures whereas fluorescence of peaks B and C for BEPS was quenched only at 298 K. A dynamic process dominated the fluorescence quenching of peak A of both SEPS and BEPS. Fluorescence quenching of peak B and C was governed a static process. The effective quenching constants (logK(a)) were 4.725-5.293 for protein-like fluorophores of SEPS and 4.23-5.190 for protein-like fluorophores of BEPS, respectively. LogK(a) for humic-like substances was 3.85. Generally, SEPS had greater binding capacity for dicamba than BEPS, and protein-like substances bound dicamba more strongly than humic-like substances. Binding of dicamba to SEPS and BEPS was spontaneous and exothermic. Electrostatic force and hydrophobic interaction forces play a crucial role in binding of dicamba to EPS. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Morphological variability, lectin binding and Na+,K+-activated adenosine triphosphatase activity of isolated Müller (glial) cells from the rabbit retina.

    Science.gov (United States)

    Reichenbach, A; Dettmer, D; Brückner, G; Neumann, M; Birkenmeyer, G

    1985-03-22

    Rabbit retinal Müller cells were isolated by means of papaine and mechanical dissociation. These cells were shown to have a well preserved morphology and to preserve viability for many hours. Intense wheat germ agglutinin binding occurs on the photoreceptor side of Müller cells, especially in the microvillous region. Rabbit retinal Müller cells have a Na+,K+-activated adenosine triphosphatase activity in the same order of magnitude as brain astroglial cells.

  12. Structure of Bacillus subtilis γ-glutamyltranspeptidase in complex with acivicin: diversity of the binding mode of a classical and electrophilic active-site-directed glutamate analogue

    International Nuclear Information System (INIS)

    Ida, Tomoyo; Suzuki, Hideyuki; Fukuyama, Keiichi; Hiratake, Jun; Wada, Kei

    2014-01-01

    The binding modes of acivicin, a classical and an electrophilic active-site-directed glutamate analogue, to bacterial γ-glutamyltranspeptidases were found to be diverse. γ-Glutamyltranspeptidase (GGT) is an enzyme that plays a central role in glutathione metabolism, and acivicin is a classical inhibitor of GGT. Here, the structure of acivicin bound to Bacillus subtilis GGT determined by X-ray crystallography to 1.8 Å resolution is presented, in which it binds to the active site in a similar manner to that in Helicobacter pylori GGT, but in a different binding mode to that in Escherichia coli GGT. In B. subtilis GGT, acivicin is bound covalently through its C3 atom with sp 2 hybridization to Thr403 O γ , the catalytic nucleophile of the enzyme. The results show that acivicin-binding sites are common, but the binding manners and orientations of its five-membered dihydroisoxazole ring are diverse in the binding pockets of GGTs

  13. Stable replication of the EBNA1/OriP-mediated baculovirus vector and its application to anti-HCV gene therapy

    Directory of Open Access Journals (Sweden)

    Chang Myint OO

    2009-10-01

    Full Text Available Abstract Background Hepatitis C virus (HCV is one of the main causes of liver-related morbidity and mortality. Although combined interferon-α-ribavirin therapy is effective for about 50% of the patients with HCV, better therapies are needed and preventative vaccines have yet to be developed. Short-hairpin RNAs (shRNAs inhibit gene expression by RNA interference. The application of transient shRNA expression is limited, however, due to the inability of the shRNA to replicate in mammalian cells and its inefficient transduction. The duration of transgene (shRNA expression in mammalian cells can be significantly extended using baculovirus-based shRNA-expressing vectors that contain the latent viral protein Epstein-Barr nuclear antigen 1 (EBNA1 and the origin of latent viral DNA replication (OriP sequences. These recombinant vectors contain compatible promoters and are highly effective for infecting primary hepatocyte and hepatoma cell lines, making them very useful tools for studies of hepatitis B and hepatitis C viruses. Here, we report the use of these baculovirus-based vector-derived shRNAs to inhibit core-protein expression in full-length hepatitis C virus (HCV replicon cells. Results We constructed a long-term transgene shRNA expression vector that contains the EBV EBNA1 and OriP sequences. We also designed baculovirus vector-mediated shRNAs against the highly conserved core-protein region of HCV. HCV core protein expression was inhibited by the EBNA1/OriP baculovirus vector for at least 14 days, which was considerably longer than the 3 days of inhibition produced by the wild-type baculovirus vector. Conclusion These findings indicate that we successfully constructed a long-term transgene (shRNA expression vector (Ac-EP-shRNA452 using the EBNA1/OriP system, which was propagated in Escherichia coli and converted into mammalian cells. The potential anti-HCV activity of the long-term transgene (shRNA expression vector was evaluated with the view

  14. Studies on Aryl-Substituted Phenylalanines: Synthesis, Activity, and Different Binding Modes at AMPA Receptors

    DEFF Research Database (Denmark)

    Szymanska, Ewa; Frydenvang, Karla Andrea; Pickering, Darryl S

    2016-01-01

    , not previously seen for amino acid-based AMPA receptor antagonists, X-ray crystal structures of both eutomers in complex with the GluA2 ligand binding domain were solved. The cocrystal structures of (S)-37 and (R)-38 showed similar interactions of the amino acid parts but unexpected and different orientations...

  15. ACYLTRANSFERASE ACTIVITIES OF THE HIGH-MOLECULAR-MASS ESSENTIAL PENICILLIN-BINDING PROTEINS

    NARCIS (Netherlands)

    ADAM, M; DAMBLON, C; JAMIN, M; ZORZI, W; DUSART, [No Value; GALLENI, M; ELKHARROUBI, A; PIRAS, G; SPRATT, BG; KECK, W; COYETTE, J; GHUYSEN, JM; NGUYENDISTECHE, M; FRERE, JM

    1991-01-01

    The high-molecular-mass penicillin-binding proteins (HMM-PBPs), present in the cytoplasmic membranes of all eubacteria, are involved in important physiological events such as cell elongation, septation or shape determination. Up to now it has, however, been very difficult or impossible to study the

  16. Analysis of binding energy activity of TIBO and HIV-RT based on ...

    African Journals Online (AJOL)

    Tetrahydro-imidazo[4,5,l-jk][1,4]-benzodiazepin-2 (1 H)one (TIBO) is a noncompetitive non nucleotide antiretroviral drug with a specific allosteric binding site of HIV-1 RT. The conformational analysis shows that the effect of the drug depends on the potential energy which varied due to the beta rotatable dihedral angles (N6 ...

  17. The ligand-binding domain of the cell surface receptor for urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Behrendt, N; Ploug, M; Patthy, L

    1991-01-01

    with the internal repeats of u-PAR constitute the extracellular part of Ly-6 antigens and of the squid glycoprotein Sgp-2. Like u-PAR, these proteins are attached to the membrane by a glycosyl-phosphatidylinositol anchor. The hydrophilic, ligand-binding u-PAR domain identified in the present study has potential...

  18. Ligand binding and activation mechanism og the glucagon-like peptide-1 receptor

    DEFF Research Database (Denmark)

    Underwood, Christina Rye

    GLP-1R interacts with receptor agonists. The thesis includes four studies, which investigate different aspects of these interactions. The first study elucidates GLP-1 binding to the extracellular domain of GLP-1R (ECD) (Study I), whereas the second study identifies receptor domains important for small...

  19. Narratives of four Māori ex-inmates about their experiences and perspectives of rehabilitation programmes.

    Science.gov (United States)

    Nakhid, Camille; Shorter, Lily Tairiri

    2014-06-01

    ori are overrepresented in the criminal justice system in Aotearoa New Zealand. Māori offenders comprise 53% of those serving custodial sentences and 48% serving community-based sentences. The majority of Māori offenders reoffended within 2 years of serving their sentence. A number of programmes aimed at reducing recidivism among Māori have been implemented, and there is considerable debate around the effectiveness of these programmes. This qualitative study focuses on the narratives of four Māori male ex-inmates about their reoffending and their experiences of the rehabilitation programmes during their incarceration. Using a narrative approach, the study sought to hear the shared stories from the men and to determine what they believe would have reduced their reoffending. The stories revealed that a lack of financial resources and gang connections influenced reoffending; the value of prison rehabilitation programmes varied depending on their appropriateness to the inmate and to their intended outcomes; and healing programmes incorporating kaupapa Māori principles and practices assisted the participants in understanding their cultural heritage and communicating with society in more acceptable ways.

  20. Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast.

    Science.gov (United States)

    Ansari, Suraiya A; Paul, Emily; Sommer, Sebastian; Lieleg, Corinna; He, Qiye; Daly, Alexandre Z; Rode, Kara A; Barber, Wesley T; Ellis, Laura C; LaPorta, Erika; Orzechowski, Amanda M; Taylor, Emily; Reeb, Tanner; Wong, Jason; Korber, Philipp; Morse, Randall H

    2014-05-23

    Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Ginseng gintonin activates the human cardiac delayed rectifier K+ channel: involvement of Ca2+/calmodulin binding sites.

    Science.gov (United States)

    Choi, Sun-Hye; Lee, Byung-Hwan; Kim, Hyeon-Joong; Jung, Seok-Won; Kim, Hyun-Sook; Shin, Ho-Chul; Lee, Jun-Hee; Kim, Hyoung-Chun; Rhim, Hyewhon; Hwang, Sung-Hee; Ha, Tal Soo; Kim, Hyun-Ji; Cho, Hana; Nah, Seung-Yeol

    2014-09-01

    Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits [Ca(2+)]i transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier K(+) (I(Ks)) channel is a cardiac K(+) channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating I(Ks) channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human I(Ks) channel activity by expressing human I(Ks) channels in Xenopus oocytes. We found that gintonin enhances IKs channel currents in concentration- and voltage-dependent manners. The EC50 for the I(Ks) channel was 0.05 ± 0.01 μg/ml. Gintonin-mediated activation of the I(Ks) channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an IP3 receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the I(Ks) channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 [Ca(2+)]i/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on I(Ks) channel. However, gintonin had no effect on hERG K(+) channel activity. These results show that gintonin-mediated enhancement of I(Ks) channel currents is achieved through binding of the [Ca(2+)]i/CaM complex to the C terminus of KCNQ1 subunit.

  2. Evoked electromyography to rocuronium in orbicularis oris and gastrocnemius in facial nerve injury in rabbits.

    Science.gov (United States)

    Xing, Yian; Chen, Lianhua; Li, Shitong

    2013-11-01

    Muscles innervated by the facial nerve show different sensitivities to muscle relaxants than muscles innervated by somatic nerves, especially in the presence of facial nerve injury. We compared the evoked electromyography (EEMG) response of orbicularis oris and gastrocnemius in with and without a non-depolarizing muscle relaxant in a rabbit model of graded facial nerve injury. Differences in EEMG response and inhibition by rocuronium were measured in the orbicularis oris and gastrocnemius muscles 7 to 42 d after different levels of facial nerve crush injuries in adult rabbits. Baseline EEMG of orbicularis oris was significantly smaller than those of the gastrocnemius. Gastrocnemius was more sensitive to rocuronium than the facial muscles (P rocuronium was negatively correlated with the magnitude of facial nerve injury but the sensitivity to rocuronium was not. No significant difference was found in the onset time and the recovery time of rocuronium among gastrocnemius and normal or damaged facial muscles. Muscles innervated by somatic nerves are more sensitive to rocuronium than those innervated by the facial nerve, but while facial nerve injury reduced EEMG responses, the sensitivity to rocuronium is not altered. Partial neuromuscular blockade may be a suitable technique for conducting anesthesia and surgery safely when EEMG monitoring is needed to preserve and protect the facial nerve. Additional caution should be used if there is a risk of preexisting facial nerve injury. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. A Correlation between the Activity of Candida antarctica Lipase B and Differences in Binding Free Energies of Organic Solvent and Substrate

    DEFF Research Database (Denmark)

    Banik, Sindrila Dutta; Nordblad, Mathias; Woodley, John

    2016-01-01

    in an inhibitory effect which is also confirmed by the binding free energies for the solvent and substrate molecules estimated from the simulations. Consequently, the catalytic activity of CALB decreases in polar solvents. This effect is significant, and CALB is over 10 orders of magnitude more active in nonpolar...... of the enzyme may be ascribed to binding of solvent molecules to the enzyme active site region and the solvation energy of substrate molecules in the different solvents. Polar solvent molecules interact strongly with CALB and compete with the substrate to bind to the active site region, resulting...

  4. The DnaA Cycle in Escherichia coli: Activation, Function and Inactivation of the Initiator Protein

    Directory of Open Access Journals (Sweden)

    Tsutomu Katayama

    2017-12-01

    Full Text Available This review summarizes the mechanisms of the initiator protein DnaA in replication initiation and its regulation in Escherichia coli. The chromosomal origin (oriC DNA is unwound by the replication initiation complex to allow loading of DnaB helicases and replisome formation. The initiation complex consists of the DnaA protein, DnaA-initiator-associating protein DiaA, integration host factor (IHF, and oriC, which contains a duplex-unwinding element (DUE and a DnaA-oligomerization region (DOR containing DnaA-binding sites (DnaA boxes and a single IHF-binding site that induces sharp DNA bending. DiaA binds to DnaA and stimulates DnaA assembly at the DOR. DnaA binds tightly to ATP and ADP. ATP-DnaA constructs functionally different sub-complexes at DOR, and the DUE-proximal DnaA sub-complex contains IHF and promotes DUE unwinding. The first part of this review presents the structures and mechanisms of oriC-DnaA complexes involved in the regulation of replication initiation. During the cell cycle, the level of ATP-DnaA level, the active form for initiation, is strictly regulated by multiple systems, resulting in timely replication initiation. After initiation, regulatory inactivation of DnaA (RIDA intervenes to reduce ATP-DnaA level by hydrolyzing the DnaA-bound ATP to ADP to yield ADP-DnaA, the inactive form. RIDA involves the binding of the DNA polymerase clamp on newly synthesized DNA to the DnaA-inactivator Hda protein. In datA-dependent DnaA-ATP hydrolysis (DDAH, binding of IHF at the chromosomal locus datA, which contains a cluster of DnaA boxes, results in further hydrolysis of DnaA-bound ATP. SeqA protein inhibits untimely initiation at oriC by binding to newly synthesized oriC DNA and represses dnaA transcription in a cell cycle dependent manner. To reinitiate DNA replication, ADP-DnaA forms oligomers at DnaA-reactivating sequences (DARS1 and DARS2, resulting in the dissociation of ADP and the release of nucleotide-free apo-DnaA, which then

  5. [3H]52770 RP, a platelet-activating factor receptor antagonist, and tritiated platelet-activating factor label a common specific binding site in human polymorphonuclear leukocytes

    International Nuclear Information System (INIS)

    Marquis, O.; Robaut, C.; Cavero, I.

    1988-01-01

    In human polymorphonuclear leukocytes (PMNs), the tritiated platelet activating factor ([ 3 H]PAF) labels in a saturable manner a single class of binding sites with a Kd of 3.5 +/- 0.5 nM (n = 7) and a maximum binding capacity (Bmax) of 206 +/- 13 fmol/2.5 X 10(6) PMNs (n = 7). 52770 RP, a nonphospholipid antagonist of PAF receptors, fully and competitively displaced the [ 3 H]PAF from its binding sites with a Ki of 7.0 +/- 0.7 nM (n = 4). The high potency and the low solubility in cellular membranes of this compound led us to prepare [ 3 H]52770 RP. This ligand was characterized by a binding which was rapid, reversible, confined to a single site, saturable, specific and stereoselective. Its Kd and Bmax were 4.2 +/- 0.3 nM and 181 +/- 11 fmol/2.5 X 10(6) PMNs, respectively. The stereoselectivity of the binding was suggested by the 600- and 1050-fold higher potency of the d-enantiomer with respect to l-52770 RP in displacing [ 3 H]52770 RP or [ 3 H]PAF, respectively. Several PAF analogs (e.g., lyso-PAF, 2-O-methyl-lyso-PAF), which are poorly active as PAF receptor agonists in functional tests, were weak displacers of [ 3 H]PAF and [ 3 H]52770 RP. Furthermore, for a series of 14 known PAF receptor agonists or antagonists belonging to different chemical families, there was an excellent correlation (r = 0.98) between their ability to displace [ 3 H]PAF and [ 3 H]52770 RP. Thus, [ 3 H]52770 RP and [ 3 H]PAF appear to interact with the same binding site on human PMNs which is proposed to be the PAF receptor mediating functional responses

  6. Establishment and characterization of a new and stable collagen-binding assay for the assessment of von Willebrand factor activity

    Science.gov (United States)

    Ni, Y; Nesrallah, J; Agnew, M; Geske, F J; Favaloro, E J

    2013-01-01

    Introduction Laboratory diagnosis of von Willebrand disease (VWD) requires determination of both von Willebrand factor (VWF) protein levels and activity. Current VWF activity tests include the ristocetin cofactor assay and the collagen-binding assay (VWF:CB). The goal of this investigation is to characterize a new collagen-binding assay and to determine its effectiveness in identifying VWD. Methods Analytical studies were carried out to characterize the performance of a new VWF:CB ELISA. Additionally, samples from a normal population were tested as were well-characterized type 1 and type 2 VWD samples. Results Repeatability and within-laboratory precision studies resulted in coefficients of variation (CVs) of ≤11%. A linear range of 1–354% (0.01–3.54 IU/mL) was determined, along with a limit of detection and a lower limit of quantitation of 1.6% and 4.0% (0.016 and 0.04 IU/mL), respectively. Samples tested from apparently healthy individuals resulted in a normal range of 54–217% (0.54–2.17 IU/mL). Known VWD type 1 and type 2 samples were also analyzed by the ELISA, with 99% of samples having VWF:CB below the normal reference range and an estimated 96% sensitivity and 87% specificity using a VWF collagen-binding/antigen cutoff ratio of 0.50. Conclusion This new VWF:CB ELISA provides an accurate measure of collagen-binding activity that aids in the diagnosis and differentiation of type 1 from type 2 VWD. PMID:23107512

  7. Heparin (GAG-hed) inhibits LCR activity of Human Papillomavirus type 18 by decreasing AP1 binding

    International Nuclear Information System (INIS)

    Villanueva, Rita; Morales-Peza, Néstor; Castelán-Sánchez, Irma; García-Villa, Enrique; Tapia, Rocio; Cid-Arregui, Ángel; García-Carrancá, Alejandro; López-Bayghen, Esther; Gariglio, Patricio

    2006-01-01

    High risk HPVs are causative agents of anogenital cancers. Viral E6 and E7 genes are continuously expressed and are largely responsible for the oncogenic activity of these viruses. Transcription of the E6 and E7 genes is controlled by the viral Long Control Region (LCR), plus several cellular transcription factors including AP1 and the viral protein E2. Within the LCR, the binding and activity of the transcription factor AP1 represents a key regulatory event in maintaining E6/E7 gene expression and uncontrolled cell proliferation. Glycosaminoglycans (GAGs), such as heparin, can inhibit tumour growth; they have also shown antiviral effects and inhibition of AP1 transcriptional activity. The purpose of this study was to test the heparinoid GAG-hed, as a possible antiviral and antitumoral agent in an HPV18 positive HeLa cell line. Using in vivo and in vitro approaches we tested GAG-hed effects on HeLa tumour cell growth, cell proliferation and on the expression of HPV18 E6/E7 oncogenes. GAG-hed effects on AP1 binding to HPV18-LCR-DNA were tested by EMSA. We were able to record the antitumoral effect of GAG-hed in vivo by using as a model tumours induced by injection of HeLa cells into athymic female mice. The antiviral effect of GAG-hed resulted in the inhibition of LCR activity and, consequently, the inhibition of E6 and E7 transcription. A specific diminishing of cell proliferation rates was observed in HeLa but not in HPV-free colorectal adenocarcinoma cells. Treated HeLa cells did not undergo apoptosis but the percentage of cells in G 2 /M phase of the cell cycle was increased. We also detected that GAG-hed prevents the binding of the transcription factor AP1 to the LCR. Direct interaction of GAG-hed with the components of the AP1 complex and subsequent interference with its ability to correctly bind specific sites within the viral LCR may contribute to the inhibition of E6/E7 transcription and cell proliferation. Our data suggest that GAG-hed could have

  8. The ability of AIF-1 to activate human vascular smooth muscle cells is lost by mutations in the EF-hand calcium-binding region

    International Nuclear Information System (INIS)

    Autieri, Michael V.; Chen Xing

    2005-01-01

    Allograft Inflammatory Factor-1 (AIF-1) is a cytoplasmic calcium-binding protein expressed in vascular smooth muscle cells (VSMC) in response to injury or cytokine stimulation. AIF-1 contains a partially conserved EF-hand calcium-binding domain, and participates in VSMC activation by activation of Rac1 and induction of Granulocyte-Colony Stimulating Factor (G-CSF) expression; however, the mechanism whereby AIF-1 mediates these effects is presently uncharacterized. To determine if calcium binding plays a functional role in AIF-1 activity, a single site-specific mutation was made in the EF-hand calcium-binding domain to abrogate binding of calcium (AIF-1ΔA), which was confirmed by calcium overlay. Functionally, similar to wild-type AIF-1, AIF-1ΔA was able to polymerize F-actin in vitro. However, in contrast to wild-type AIF-1, over-expression of AIF-1ΔA was unable to increase migration or proliferation of primary human VSMC. Further, it was unable to activate Rac1, or induce G-CSF expression to the degree as wild-type AIF-1. Taken together, modification of the wild-type EF-hand domain and native calcium-binding activity results in a loss of AIF-1 function. We conclude that appropriate calcium-binding potential is critical in AIF-1-mediated effects on VSMC pathophysiology, and that AIF-1 activity is mediated by Rac1 activation and G-CSF expression

  9. Identification of the functional binding pocket for compounds targeting small-conductance Ca²⁺-activated potassium channels.

    Science.gov (United States)

    Zhang, Miao; Pascal, John M; Schumann, Marcel; Armen, Roger S; Zhang, Ji-Fang

    2012-01-01

    Small- and intermediate-conductance Ca(2+)-activated potassium channels, activated by Ca(2+)-bound calmodulin, have an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potential for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-ethyl-2-benzimidazolinone (1-EBIO) class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class.

  10. Identification of the functional binding pocket for compounds targeting small-conductance Ca2+-activated potassium channels

    Science.gov (United States)

    Zhang, Miao; Pascal, John M.; Schumann, Marcel; Armen, Roger S.; Zhang, Ji-fang

    2012-01-01

    Small- and intermediate-conductance Ca2+-activated potassium channels, activated by Ca2+-bound calmodulin, play an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potentials for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-EBIO class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class. PMID:22929778

  11. Prevalence of mental disorders among Māori in Te Rau Hinengaro: the New Zealand Mental Health Survey.

    Science.gov (United States)

    Baxter, Joanne; Kingi, Te Kani; Tapsell, Rees; Durie, Mason; McGee, Magnus A

    2006-10-01

    To describe the prevalence of mental disorders (period prevalence across aggregated disorders, 12 month and lifetime prevalence) among Māori in Te Rau Hinengaro: The New Zealand Mental Health Survey. Te Rau Hinengaro: The New Zealand Mental Health Survey, undertaken between 2003 and 2004, was a nationally representative face-to-face household survey of 12,992 New Zealand adults aged 16 years and over, including 2,595 Māori. Ethnicity was measured using the 2001 New Zealand census ethnicity question. A fully structured diagnostic interview, the World Health Organization World Mental Health Survey Initiative version of the Composite International Diagnostic Interview (CIDI 3.0), was used to measure disorder. The overall response rate was 73.3%. This paper presents selected findings for the level and pattern of mental disorder prevalence among Māori. Māori lifetime prevalence of any disorder was 50.7%, 12 month prevalence 29.5% and 1 month prevalence 18.3%. The most common 12 month disorders were anxiety (19.4%), mood (11.4%) and substance (8.6%) disorders and the most common lifetime disorders were anxiety (31.3%), substance (26.5%) and mood (24.3%) disorders. Levels of lifetime comorbidity were high with 12 month prevalence showing 16.4% of Māori with one disorder, 7.6% with two disorders and 5.5% with three or more disorders. Twelve-month disorders were more common in Māori females than in males (33.6%vs 24.8%) and in younger age groups: 16-24 years, 33.2%; 25-44 years, 32.9%; 45-64 years, 23.7%; and 65 years and over, 7.9%. Disorder prevalence was greatest among Māori with the lowest equivalized household income and least education. However, differences by urbanicity and region were not significant. Of Māori with any 12 month disorder, 29.6% had serious, 42.6% had moderate and 27.8% had mild disorders. Mental disorders overall and specific disorder groups (anxiety, mood and substance) are common among Māori and measures of severity indicate that disorders

  12. Aggregated forms of bull seminal plasma proteins and their heparin-binding activity

    Czech Academy of Sciences Publication Activity Database

    Jelínková, Petra; Ryšlavá, H.; Liberda, J.; Jonáková, Věra; Tichá, M.

    2004-01-01

    Roč. 69, - (2004), s. 616-630 ISSN 0010-0765 R&D Projects: GA ČR GA303/02/0433; GA ČR GP303/02/P069; GA MZd NJ7463 Institutional research plan: CEZ:AV0Z5052915; CEZ:MSM 113100001 Keywords : bull seminal plasma proteins * heparin-binding proteins * aggregated forms of proteins Subject RIV: CE - Biochemistry Impact factor: 1.062, year: 2004

  13. Binding in haptics: integration of "what" and "where" information in working memory for active touch.

    Directory of Open Access Journals (Sweden)

    Franco Delogu

    Full Text Available Information about the identity and the location of perceptual objects can be automatically integrated in perception and working memory (WM. Contrasting results in visual and auditory WM studies indicate that the characteristics of feature-to-location binding can vary according to the sensory modality of the input. The present study provides first evidence of binding between "what" and "where" information in WM for haptic stimuli. In an old-new recognition task, blindfolded participants were presented in their peripersonal space with sequences of three haptic stimuli varying in texture and location. They were then required to judge if a single probe stimulus was previously included in the sequence. Recall was measured both in a condition in which both texture and location were relevant for the task (Experiment 1 and in two conditions where only one feature had to be recalled (Experiment 2. Results showed that when both features were task-relevant, even if the association of location and texture was neither necessary nor required to perform the task, participants exhibited a recall advantage in conditions in which the location and the texture of the target probe was kept unaltered between encoding and recall. By contrast, when only one feature was task-relevant, the concurrent feature did not influence the recall of the target feature. We conclude that attention to feature binding is not necessary for the emergence of feature integration in haptic WM. For binding to take place, however, it is necessary to encode and maintain in memory both the identity and the location of items.

  14. The mannan-binding lectin pathway of complement activation: biology and disease association

    DEFF Research Database (Denmark)

    Petersen, Steen Vang; Thiel, S; Jensenius, J C

    2001-01-01

    Mannan-binding lectin (MBL) is a plasma protein found in association with several serine proteases (MASPs) forming the MBL complex. MBL recognises carbohydrate structures arranged in a particular geometry, such as those found on the surface of micro-organisms. When bound to e.g. bacteria the MBL...... as an initiator of the host response against potential pathogenic micro-organisms. Udgivelsesdato: 2001-Aug...

  15. Substrate binding activates the designed triple mutant of the colicin E7 metallonuclease

    Czech Academy of Sciences Publication Activity Database

    Németh, E.; Körtvélyesi, T.; Kožíšek, Milan; Thulstrup, P. W.; Christensen, H. E. M.; Asaka, M. N.; Nagata, K.; Gyurcsik, B.

    2014-01-01

    Roč. 19, č. 8 (2014), s. 1295-1303 ISSN 0949-8257 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24016; Seventh Framework Programme of the European Union(XE) FP7-312284 Institutional support: RVO:61388963 Keywords : binding affinity * calorimetry * zinc nuclease * substrate induced folding * protein engineering Subject RIV: CE - Biochemistry Impact factor: 2.538, year: 2014

  16. A single, specific thymine mutation in the ComK-Binding site severely decreases binding and transcription activation by the competence transcription factor ComK of Bacillus subtilis

    NARCIS (Netherlands)

    Susanna, Kim A.; Mironczuk, Aleksandra M.; Smits, Wiep Klaas; Hamoen, Leendert W.; Kuipers, Oscar P.

    The competence transcription factor ComK plays a central role in competence development in Bacillus subtilis by activating the transcription of the K regulon. ComK-activated genes are characterized by the presence of a specific sequence to which ComK binds, a K-box, in their upstream DNA region.

  17. Water-soluble Manganese and Iron Mesotetrakis(carboxyl)porphyrin: DNA Binding, Oxidative Cleavage, and Cytotoxic Activities.

    Science.gov (United States)

    Shi, Lei; Jiang, Yi-Yu; Jiang, Tao; Yin, Wei; Yang, Jian-Ping; Cao, Man-Li; Fang, Yu-Qi; Liu, Hai-Yang

    2017-06-29

    Two new water-soluble metal carboxyl porphyrins, manganese (III) meso -tetrakis (carboxyl) porphyrin and iron (III) meso -tetrakis (carboxyl) porphyrin, were synthesized and characterized. Their interactions with ct-DNA were investigated by UV-Vis titration, fluorescence spectra, viscosity measurement and CD spectra. The results showed they can strongly bind to ct-DNA via outside binding mode. Electrophoresis experiments revealed that both complexes can cleave pBR322 DNA efficiently in the presence of hydrogen peroxide, albeit 2-Mn exhibited a little higher efficiency. The inhibitor tests suggest the oxidative DNA cleavage by these two complexes may involve hydroxyl radical active intermediates. Notably, 2-Mn exhibited considerable photocytotoxicity against Hep G2 cell via triggering a significant generation of ROS and causing disruption of MMP after irradiation.

  18. Effect of X-irradiation on DNA binding activity of NF-kB in EL-4 cells

    International Nuclear Information System (INIS)

    He Shujie; Jin Shunzi; Liu Shuzheng

    2002-01-01

    Changes in time course of the DNA-binding activity of NF-κB as well as the subcellular localization of p65 subunit and expression of IκBα in EL-4 cells after irradiation with 2 Gy and 0.075 Gy X-rays were examined using electrophoresis mobility shift assay (EMSA) and immunohistochemistry (IHC), respectively. Results showed that the increases in DNA-binding activity of NF-κB p50/p50 and p50/p65 were induced by both 0.075 Gy and 2 Gy X-rays. However, the amplitude of the increase in activity of the two dimers was different after irradiation with the two doses of X-rays. After irradiation with 0.075 Gy, the increase in p50/p65 activity was higher than that of p50/p50 activity. After irradiation with 2 Gy, the situation was reversed. Irradiation with both 2 Gy and 0.075 Gy induced an increase in the rate of p65 nuclear translocation and the degradation of IκBα before the increase of its expression, but the degree of these changes after different dose irradiation was different. These results suggest that the transcriptional regulation of NF-κB changes with irradiation dose, resulted in the difference in responses of cells

  19. Mannose-binding lectin impairs Leptospira activity through the inhibitory effect on the motility of cell.

    Science.gov (United States)

    Xu, Jun; Guo, Yijie; Nakamura, Shuichi; Islam, Md Shafiqul; Tomioka, Rintaro; Yoneyama, Hiroshi; Isogai, Emiko

    2015-02-01

    Mannose-binding lectin (MBL) plays key role in lectin pathway of innate immunity, and shows the ability of triggering opsonization intermediately. Substantial increase in the serum level of MBL has been confirmed during leptospirosis, which caused by a pathogenic spirochete, Leptospira. Leptospira has a fascinating locomotion pattern, which simultaneously gyrating and swimming forward, such motility enables that Leptospira is difficult to be captured by immune cells if without any assistance. In this study, the effect of mannose-binding lectin to Leptospira was quantitatively investigated by measuring some kinematic parameters, to discover the mechanism behind MBL-mediated immune responses during leptospiral infection. The results showed that mannose-binding lectin is capable of inhibiting the motility of Leptospira by transforming free swimming cells to tumbled rotating cells, resulted in the increase number of rotating cells. Otherwise, decrease in rotation rate of rotating cell has been observed. However, the swimming speed of swimming Leptospira cells showed no observable change under the effect of MBL. The inhibitory effect were only valid in a relatively short period, Leptospira cells regained their original motility after 2 h. This raises an interesting topic that Leptospira is somehow able to escape from the inhibitory effect of MBL by dragging such unfavorable molecules toward to the cell end and eventually throwing it out. The inhibitory effect of MBL on the motility of Leptospira is expected to provide a new insight into lectin pathway. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Evaluation of the intestinal absorption of deoxynivalenol and nivalenol by an in vitro gastrointestinal model, and the binding efficacy of activated carbon and other adsorbent materials

    NARCIS (Netherlands)

    Avantaggiato, G.; Havenaar, R.; Visconti, A.

    2004-01-01

    In vitro screening of 14 adsorbent materials, including some commercial products used to detoxify Fusarium-mycotoxins, were tested in the pH range of 3-8 for deoxynivalenol (DON)- and nivalenol (NIV)-binding ability. Only activated carbon showed to be effective with binding capacities of 35.1 μmol

  1. Crystallization and preliminary crystallographic characterization of the origin-binding domain of the bacteriophage λ O replication initiator

    International Nuclear Information System (INIS)

    Struble, E. B.; Gittis, A. G.; Bianchet, M. A.; McMacken, R.

    2007-01-01

    Crystallization and preliminary diffraction data of the N-terminal 19–139 fragment of the origin-binding domain of bacteriophage λ O replication initiator are reported. The bacteriophage λ O protein binds to the λ replication origin (oriλ) and serves as the primary replication initiator for the viral genome. The binding energy derived from the binding of O to oriλ is thought to help drive DNA opening to facilitate initiation of DNA replication. Detailed understanding of this process is severely limited by the lack of high-resolution structures of O protein or of any lambdoid phage-encoded paralogs either with or without DNA. The production of crystals of the origin-binding domain of λ O that diffract to 2.5 Å is reported. Anomalous dispersion methods will be used to solve this structure

  2. Spectroscopic study of drug-binding characteristics of unmodified and pNPA-based acetylated human serum albumin: Does esterase activity affect microenvironment of drug binding sites on the protein?

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Nastaran [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Faculty of Pharmaceutical Sciences, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ashrafi-Kooshk, Mohammad Reza [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ghobadi, Sirous [Department of Biology, Faculty of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Shahlaei, Mohsen [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Faculty of Pharmaceutical Sciences, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Khodarahmi, Reza, E-mail: rkhodarahmi@mbrc.ac.ir [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Faculty of Pharmaceutical Sciences, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2015-04-15

    Human serum albumin (HSA) is the most prominent extracellular protein in blood plasma. There are several binding sites on the protein which provide accommodation for structurally-unrelated endogenous and exogenous ligands and a wide variety of drugs. “Esterase-like” activity (hydrolysis of p-nitrophenyl esters) by the protein has been also reported. In the current study, we set out to investigate the interaction of indomethacin and ibuprofen with the unmodified and modified HSA (pNPA-modified HSA) using various spectroscopic techniques. Fluorescence data showed that 1:1 binding of drug to HSA is associated with quenching of the protein intrinsic fluorescence. Decrease of protein surface hydrophobicity (PSH), alteration in drug binding affinity and change of the protein stability, after esterase-like activity and permanent acetylation of HSA, were also documented. Analysis of the quenching and thermodynamic parameters indicated that forces involved in drug–HSA interactions change upon the protein modification. - Highlights: • Binding propensity of indomethacin extremely decreased upon the protein acetylation. • There is no ibuprofen binding after protein acetylation. • Protein stability changes upon drug binding as well as protein acetylation. • Drug pharmacokinetics may be influenced under co-administration of HSA-modifier drugs.

  3. Spectroscopic study of drug-binding characteristics of unmodified and pNPA-based acetylated human serum albumin: Does esterase activity affect microenvironment of drug binding sites on the protein?

    International Nuclear Information System (INIS)

    Moradi, Nastaran; Ashrafi-Kooshk, Mohammad Reza; Ghobadi, Sirous; Shahlaei, Mohsen; Khodarahmi, Reza

    2015-01-01

    Human serum albumin (HSA) is the most prominent extracellular protein in blood plasma. There are several binding sites on the protein which provide accommodation for structurally-unrelated endogenous and exogenous ligands and a wide variety of drugs. “Esterase-like” activity (hydrolysis of p-nitrophenyl esters) by the protein has been also reported. In the current study, we set out to investigate the interaction of indomethacin and ibuprofen with the unmodified and modified HSA (pNPA-modified HSA) using various spectroscopic techniques. Fluorescence data showed that 1:1 binding of drug to HSA is associated with quenching of the protein intrinsic fluorescence. Decrease of protein surface hydrophobicity (PSH), alteration in drug binding affinity and change of the protein stability, after esterase-like activity and permanent acetylation of HSA, were also documented. Analysis of the quenching and thermodynamic parameters indicated that forces involved in drug–HSA interactions change upon the protein modification. - Highlights: • Binding propensity of indomethacin extremely decreased upon the protein acetylation. • There is no ibuprofen binding after protein acetylation. • Protein stability changes upon drug binding as well as protein acetylation. • Drug pharmacokinetics may be influenced under co-administration of HSA-modifier drugs

  4. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity.

    Science.gov (United States)

    Xia, Pengyan; Ye, Buqing; Wang, Shuo; Zhu, Xiaoxiao; Du, Ying; Xiong, Zhen; Tian, Yong; Fan, Zusen

    2016-04-01

    Cyclic GMP-AMP synthase (cGAS) senses cytosolic DNA during viral infection and catalyzes synthesis of the dinucleotide cGAMP, which activates the adaptor STING to initiate antiviral responses. Here we found that deficiency in the carboxypeptidase CCP5 or CCP6 led to susceptibility to DNA viruses. CCP5 and CCP6 were required for activation of the transcription factor IRF3 and interferons. Polyglutamylation of cGAS by the enzyme TTLL6 impeded its DNA-binding ability, whereas TTLL4-mediated monoglutamylation of cGAS blocked its synthase activity. Conversely, CCP6 removed the polyglutamylation of cGAS, whereas CCP5 hydrolyzed the monoglutamylation of cGAS, which together led to the activation of cGAS. Therefore, glutamylation and deglutamylation of cGAS tightly modulate immune responses to infection with DNA viruses.

  5. Activity of the rat osteocalcin basal promoter in osteoblastic cells is dependent upon homeodomain and CP1 binding motifs.

    Science.gov (United States)

    Towler, D A; Bennett, C D; Rodan, G A

    1994-05-01

    A detailed analysis of the transcriptional machinery responsible for osteoblast-specific gene expression should provide tools useful for understanding osteoblast commitment and differentiation. We have defined three cis-elements important for basal activity of the rat osteocalcin (OC) promoter, located at about -200 to -180, -170 to -138, and -121 to -64 relative to the transcription initiation site. A motif (TCTGATTGTGT) present in the region between -200 and -170 that binds a multisubunit CP1/NFY/CBF-like CAAT factor complex contributes significantly to high level basal activity and presumably functions as the CAAT box for the rat OC promoter. We show that the region -121 to 32 is sufficient to confer osteoblastic cell type specificity in transient transfection assays of cultured cell lines using luciferase as a reporter. The basal promoter is active in rodent osteoblastic cell lines, but not in rodent fibroblastic or muscle cell lines. Although the rat OC box (-100 to -74) contains a CAAT motif, we could not detect CP1-like CAAT factor binding to this region. In fact, we demonstrate that a Msx-1 (Hox 7.1) homeodomain binding motif (ACTAATTG; bottom strand) in the 3'-end of the rat OC box is necessary for high level activity of the rat OC basal promoter in osteoblastic cells. A nuclear factor that recognizes this motif appears to be present in osteoblastic ROS 17/2.8 cells, which produce OC, but not in fibroblastic ROS 25/1 cells, which fail to express OC. This ROS 17/2.8 nuclear factor also recognizes the A/T-rich DNA cognates of the homeodomain-containing POU family of transcription factors. Taken together, these data suggest that a ubiquitous CP1-like CAAT factor and a cell type-restricted homeodomain containing (Msx or POU family) transcription factor interact with the proximal rat OC promoter to direct appropriate basal OC transcription in osteoblastic cells.

  6. Identification of the Genes Involved in the Biofilm-like Structures on Actinomyces oris K20, a Clinical Isolate from an Apical Lesion

    Science.gov (United States)

    2013-01-01

    bacteria in clinically asymptomatic periapical pathosis. J Endod 1990;16:534–8. 5. Nair PNR. On the causes of persistent apical periodontitis : a review...Identification of the Genes Involved in the Biofilm-like Structures on Actinomyces oris K20, a Clinical Isolate from an Apical Lesion Chiho Mashimo...Actinomyces oris K20. (J Endod 2013;39:44–48) Key Words Actinomyces oris, apical abscess, biofilm, polysac- charide deacetylase, transposon mutagenesis

  7. The thermodynamic signature of ligand binding to histone deacetylase-like amidohydrolases is most sensitive to the flexibility in the L2-loop lining the active site pocket.

    Science.gov (United States)

    Meyners, Christian; Krämer, Andreas; Yildiz, Özkan; Meyer-Almes, Franz-Josef

    2017-07-01

    The analysis of the thermodynamic driving forces of ligand-protein binding has been suggested to be a key component for the selection and optimization of active compounds into drug candidates. The binding enthalpy as deduced from isothermal titration calorimetry (ITC) is usually interpreted assuming single-step binding of a ligand to one conformation of the target protein. Although successful in many cases, these assumptions are oversimplified approximations of the reality with flexible proteins and complicated binding mechanism in many if not most cases. The relationship between protein flexibility and thermodynamic signature of ligand binding is largely understudied. Directed mutagenesis, X-ray crystallography, enzyme kinetics and ITC methods were combined to dissect the influence of loop flexibility on the thermodynamics and mechanism of ligand binding to histone deacetylase (HDAC)-like amidohydrolases. The general ligand-protein binding mechanism comprises an energetically demanding gate opening step followed by physical binding. Increased flexibility of the L2-loop in HDAC-like amidohydrolases facilitates access of ligands to the binding pocket resulting in predominantly enthalpy-driven complex formation. The study provides evidence for the great importance of flexibility adjacent to the active site channel for the mechanism and observed thermodynamic driving forces of molecular recognition in HDAC like enzymes. The flexibility or malleability in regions adjacent to binding pockets should be given more attention when designing better drug candidates. The presented case study also suggests that the observed binding enthalpy of protein-ligand systems should be interpreted with caution, since more complicated binding mechanisms may obscure the significance regarding potential drug likeness. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5

    International Nuclear Information System (INIS)

    Goda, Natsuko; Tenno, Takeshi; Inomata, Kosuke; Shirakawa, Masahiro; Tanaka, Toshiki; Hiroaki, Hidekazu

    2008-01-01

    Insulin-like growth factor binding proteins (IGFBPs) have various IGF-independent cellular activities, including receptor-independent cellular uptake followed by transcriptional regulation, although mechanisms of cellular entry remain unclear. Herein, we focused on their receptor-independent cellular entry mechanism in terms of protein transduction domain (PTD) activity, which is an emerging technique useful for clinical applications. The peptides of 18 amino acid residues derived from IGFBP-3 and IGFBP-5, which involve heparin-binding regions, mediated cellular delivery of an exogenous protein into NIH3T3 and HeLa cells. Relative protein delivery activities of IGFBP-3/5-derived peptides were approximately 20-150% compared to that of the HIV-Tat peptide, a potent PTD. Heparin inhibited the uptake of the fusion proteins with IGFBP-3 and IGFBP-5, indicating that the delivery pathway is heparin-dependent endocytosis, similar to that of HIV-Tat. The delivery of GST fused to HIV-Tat was competed by either IGFBP-3 or IGFBP-5-derived synthetic peptides. Therefore, the entry pathways of the three PTDs are shared. Our data has shown a new approach for designing protein delivery systems using IGFBP-3/5 derived peptides based on the molecular mechanisms of IGF-independent activities of IGFBPs

  9. Transcriptional switching by the MerR protein: Activation and repression mutants implicate distinct DNA and mercury(II) binding domains

    International Nuclear Information System (INIS)

    Shewchuk, L.M.; Helmann, J.D.; Ross, W.; Park, S.J.; Summers, A.O.; Walsh, C.T.

    1989-01-01

    Bacterial resistance to mercuric compounds is controlled by the MerR metalloregulatory protein. The MerR protein functions as both a transcriptional repressor and a mercuric ion dependent transcriptional activator. Chemical mutagenesis of the cloned merR structural gene has led to the identification of mutant proteins that are specifically deficient in transcriptional repression, activation, or both. Five mutant proteins have been overproduced, purified to homogeneity, and assayed for ability to dimerize, bind mer operator DNA, and bind mercuric ion. A mutation in the recognition helix of a proposed helix-turn-helix DNA binding motif (E22K) yields protein deficient in both activation and repression in vivo (a - r - ) and deficient in operator binding in vitro. In contrast, mutations in three of the four MerR cysteine residues are repression competent but activation deficient (a - r + ) in vivo. In vitro, the purified cysteine mutant proteins bind to the mer operator site with near wild-type affinity but are variable deficient in binding the in vivo inducer mercury(II) ion. A subset of the isolated proteins also appears compromised in their ability to form dimers at low protein concentrations. These data support a model in which DNA-bound MerR dimer binds one mercuric ion and transmits this occupancy information to a protein region involved in transcriptional activation

  10. ct-DNA Binding and Antibacterial Activity of Octahedral Titanium (IV Heteroleptic (Benzoylacetone and Hydroxamic Acids Complexes

    Directory of Open Access Journals (Sweden)

    Raj Kaushal

    2016-01-01

    Full Text Available Five structurally related titanium (IV heteroleptic complexes, [TiCl2(bzac(L1–4] and [TiCl3(bzac(HL5]; bzac = benzoylacetonate; L1–5 = benzohydroximate (L1, salicylhydroximate (L2, acetohydroximate (L3, hydroxyurea (L4, and N-benzoyl-N-phenyl hydroxylamine (L5, were used for the assessment of their antibacterial activities against ten pathogenic bacterial strains. The titanium (IV complexes (1–5 demonstrated significant level of antibacterial properties as measured using agar well diffusion method. UV-Vis absorption spectroscopic technique was applied, to get a better insight into the nature of binding between titanium (IV complexes with calf thymus DNA (ct-DNA. On the basis of the results of UV-Vis absorption spectroscopy, the interaction between ct-DNA and the titanium (IV complexes is likely to occur through the same mode. Results indicated that titanium (IV complex can bind to calf thymus DNA (ct-DNA via an intercalative mode. The intrinsic binding constant (Kb was calculated by absorption spectra by using Benesi-Hildebrand equation. Further, Gibbs free energy was also calculated for all the complexes.

  11. Construction of multifunctional proteins for tissue engineering: epidermal growth factor with collagen binding and cell adhesive activities.

    Science.gov (United States)

    Hannachi Imen, Elloumi; Nakamura, Makiko; Mie, Masayasu; Kobatake, Eiry

    2009-01-01

    The development of different techniques based on natural and polymeric scaffolds are useful for the design of different biomimetic materials. These approaches, however, require supplementary steps for the chemical or physical modification of the biomaterial. To avoid such steps, in the present study, we constructed a new multifunctional protein that can be easily immobilized onto hydrophobic surfaces, and at the same time helps enhance specific cell adhesion and proliferation onto collagen substrates. A collagen binding domain was fused to a previously constructed protein, which had an epidermal growth factor fused to a hydrophobic peptide that allows for cell adhesion. The new fusion protein, designated fnCBD-ERE-EGF is produced in Escherichia coli, and its abilities to bind to collagen and promote cell proliferation were investigated. fnCBD-ERE-EGF was shown to keep both collagen binding and cell growth-promoting activities comparable to those of the corresponding unfused proteins. The results obtained in this study also suggest the use of a fnCBD-ERE-EGF as an alternative for the design of multifunctional ECM-bound growth factor based materials.

  12. Base substitutions at scissile bond sites are sufficient to alter RNA-binding and cleavage activity of RNase III.

    Science.gov (United States)

    Kim, Kyungsub; Sim, Se-Hoon; Jeon, Che Ok; Lee, Younghoon; Lee, Kangseok

    2011-02-01

    RNase III, a double-stranded RNA-specific endoribonuclease, degrades bdm mRNA via cleavage at specific sites. To better understand the mechanism of cleavage site selection by RNase III, we performed a genetic screen for sequences containing mutations at the bdm RNA cleavage sites that resulted in altered mRNA stability using a transcriptional bdm'-'cat fusion construct. While most of the isolated mutants showed the increased bdm'-'cat mRNA stability that resulted from the inability of RNase III to cleave the mutated sequences, one mutant sequence (wt-L) displayed in vivo RNA stability similar to that of the wild-type sequence. In vivo and in vitro analyses of the wt-L RNA substrate showed that it was cut only once on the RNA strand to the 5'-terminus by RNase III, while the binding constant of RNase III to this mutant substrate was moderately increased. A base substitution at the uncleaved RNase III cleavage site in wt-L mutant RNA found in another mutant lowered the RNA-binding affinity by 11-fold and abolished the hydrolysis of scissile bonds by RNase III. Our results show that base substitutions at sites forming the scissile bonds are sufficient to alter RNA cleavage as well as the binding activity of RNase III. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. One amino acid in mouse activated factor VII defines its endothelial protein C receptor (EPCR) binding and modulates its EPCR-dependent hemostatic activity in vivo.

    Science.gov (United States)

    Pavani, G; Zintner, S M; Ivanciu, L; Small, J C; Stafford, K A; Szeto, J H; Margaritis, P

    2017-03-01

    Essentials The lack of factor (F) VIIa-endothelial protein C receptor (EPCR) binding in mice is unresolved. A single substitution of Leu4 to Phe in mouse FVIIa (mFVIIa) enables its interaction with EPCR. mFVIIa with a Phe4 shows EPCR binding-dependent enhanced hemostatic function in vivo vs. mFVIIa. Defining the FVIIa-EPCR interaction in mice allows for further investigating its biology in vivo. Background Human activated factor VII (hFVIIa), which is used in hemophilia treatment, binds to the endothelial protein C (PC) receptor (EPCR) with unclear hemostatic consequences. Interestingly, mice lack the activated FVII (FVIIa)-EPCR interaction. Therefore, to investigate the hemostatic consequences of this interaction in hemophilia, we previously engineered a mouse FVIIa (mFVIIa) molecule that bound mouse EPCR (mEPCR) by using three substitutions from mouse PC (mPC), i.e. Leu4→Phe, Leu8→Met, and Trp9→Arg. The resulting molecule, mFVIIa-FMR, modeled the EPCR-binding properties of hFVIIa and showed enhanced hemostatic capacity in hemophilic mice versus mFVIIa. These data implied a role of EPCR in the action of hFVIIa in hemophilia treatment. However, the substitutions in mFVIIa-FMR only broadly defined the sequence determinants for its mEPCR interaction and enhanced function in vivo. Objectives To determine the individual contributions of mPC Phe4, Met8 and Arg9 to the in vitro/in vivo properties of mFVIIa-FMR. Methods The mEPCR-binding properties of single amino acid variants of mFVIIa or mPC at position 4, 8 or 9 were investigated. Results and conclusions Phe4 in mFVIIa or mPC was solely critical for interaction with mEPCR. In hemophilic mice, administration of mFVIIa harboring a Phe4 resulted in a 1.9-2.5-fold increased hemostatic capacity versus mFVIIa that was EPCR binding-dependent. This recapitulated previous observations made with triple-mutant mFVIIa-FMR. As Leu8 is crucial for hFVIIa-EPCR binding, we describe the sequence divergence of this interaction in

  14. Working with racism: a qualitative study of the perspectives of Māori (indigenous peoples of Aotearoa New Zealand) registered nurses on a global phenomenon.

    Science.gov (United States)

    Huria, Tania; Cuddy, Jessica; Lacey, Cameron; Pitama, Suzanne

    2014-10-01

    Substantial health disparities exist between Māori--the indigenous people of Aotearoa New Zealand--and non-Māori New Zealanders. This article explores the experience and impact of racism on Māori registered nurses within the New Zealand health system. The narratives of 15 Māori registered nurses were analyzed to identify the effects of racism. This Māori nursing cohort and the data on racism form a secondary analysis drawn from a larger research project investigating the experiences of indigenous health workers in New Zealand and Canada. Jones's levels of racism were utilized as a coding frame for the structural analysis of the transcribed Māori registered nurse interviews. Participants experienced racism on institutional, interpersonal, and internalized levels, leading to marginalization and being overworked yet undervalued. Māori registered nurses identified a lack of acknowledgement of dual nursing competencies: while their clinical skills were validated, their cultural skills-their skills in Hauora Māori--were often not. Experiences of racism were a commonality. Racism--at every level--can be seen as highly influential in the recruitment, training, retention, and practice of Māori registered nurses. The nursing profession in New Zealand and other countries of indigenous peoples needs to acknowledge the presence of racism within training and clinical environments as well as supporting indigenous registered nurses to develop and implement indigenous dual cultural-clinical competencies. © The Author(s) 2014.

  15. Mycobacterium tuberculosis cAMP Receptor Protein (Rv3676) Differs from the Escherichia coli Paradigm in Its cAMP Binding and DNA Binding Properties and Transcription Activation Properties*

    Science.gov (United States)

    Stapleton, Melanie; Haq, Ihtshamul; Hunt, Debbie M.; Arnvig, Kristine B.; Artymiuk, Peter J.; Buxton, Roger S.; Green, Jeffrey

    2010-01-01

    The pathogen Mycobacterium tuberculosis produces a burst of cAMP upon infection of macrophages. Bacterial cyclic AMP receptor proteins (CRP) are transcription factors that respond to cAMP by binding at target promoters when cAMP concentrations increase. Rv3676 (CRPMt) is a CRP family protein that regulates expression of genes (rpfA and whiB1) that are potentially involved in M. tuberculosis persistence and/or emergence from the dormant state. Here, the CRPMt homodimer is shown to bind two molecules of cAMP (one per protomer) at noninteracting sites. Furthermore, cAMP binding by CRPMt was relatively weak, entropy driven, and resulted in a relatively small enhancement in DNA binding. Tandem CRPMt-binding sites (CRP1 at −58.5 and CRP2 at −37.5) were identified at the whiB1 promoter (PwhiB1). In vitro transcription reactions showed that CRP1 is an activating site and that CRP2, which was only occupied in the presence of cAMP or at high CRPMt concentrations in the absence of cAMP, is a repressing site. Binding of CRPMt to CRP1 was not essential for open complex formation but was required for transcription activation. Thus, these data suggest that binding of CRPMt to the PwhiB1 CRP1 site activates transcription at a step after open complex formation. In contrast, high cAMP concentrations allowed occupation of both CRP1 and CRP2 sites, resulting in inhibition of open complex formation. Thus, M. tuberculosis CRP has evolved several distinct characteristics, compared with the Escherichia coli CRP paradigm, to allow it to regulate gene expression against a background of high concentrations of cAMP. PMID:20028978

  16. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools*

    Science.gov (United States)

    Goto, Asako; Charman, Mark; Ridgway, Neale D.

    2016-01-01

    Oxysterol-binding protein (OSBP) exchanges cholesterol and phosphatidylinositol 4-phosphate (PI-4P) at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi/trans-Golgi network. 25-Hydroxycholesterol (25OH) competitively inhibits this exchange reaction in vitro and causes the constitutive localization of OSBP at the ER/Golgi interface and PI-4P-dependent recruitment of ceramide transfer protein (CERT) for sphingomyelin synthesis. We used PI-4P probes and mass analysis to determine how OSBP controls the availability of PI-4P for this metabolic pathway. Treatment of fibroblasts or Chinese hamster ovary (CHO) cells with 25OH caused a 50–70% reduction in Golgi-associated immunoreactive PI-4P that correlated with Golgi localization of OSBP. In contrast, 25OH caused an OSBP-dependent enrichment in Golgi PI-4P that was detected with a pleckstrin homology domain probe. The cellular mass of phosphatidylinositol monophosphates and Golgi PI-4P measured with an unbiased PI-4P probe (P4M) was unaffected by 25OH and OSBP silencing, indicating that OSBP shifts the distribution of PI-4P upon localization to ER-Golgi contact sites. The PI-4P and sterol binding activities of OSBP were both required for 25OH activation of sphingomyelin synthesis, suggesting that 25OH must be exchanged for PI-4P to be concentrated at contact sites. We propose a model wherein 25OH activation of OSBP promotes the binding and retention of PI-4P at ER-Golgi contact sites. This pool of PI-4P specifically recruits pleckstrin homology domain-containing proteins involved in lipid transfer and metabolism, such as CERT. PMID:26601944

  17. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools.

    Science.gov (United States)

    Goto, Asako; Charman, Mark; Ridgway, Neale D

    2016-01-15

    Oxysterol-binding protein (OSBP) exchanges cholesterol and phosphatidylinositol 4-phosphate (PI-4P) at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi/trans-Golgi network. 25-Hydroxycholesterol (25OH) competitively inhibits this exchange reaction in vitro and causes the constitutive localization of OSBP at the ER/Golgi interface and PI-4P-dependent recruitment of ceramide transfer protein (CERT) for sphingomyelin synthesis. We used PI-4P probes and mass analysis to determine how OSBP controls the availability of PI-4P for this metabolic pathway. Treatment of fibroblasts or Chinese hamster ovary (CHO) cells with 25OH caused a 50-70% reduction in Golgi-associated immunoreactive PI-4P that correlated with Golgi localization of OSBP. In contrast, 25OH caused an OSBP-dependent enrichment in Golgi PI-4P that was detected with a pleckstrin homology domain probe. The cellular mass of phosphatidylinositol monophosphates and Golgi PI-4P measured with an unbiased PI-4P probe (P4M) was unaffected by 25OH and OSBP silencing, indicating that OSBP shifts the distribution of PI-4P upon localization to ER-Golgi contact sites. The PI-4P and sterol binding activities of OSBP were both required for 25OH activation of sphingomyelin synthesis, suggesting that 25OH must be exchanged for PI-4P to be concentrated at contact sites. We propose a model wherein 25OH activation of OSBP promotes the binding and retention of PI-4P at ER-Golgi contact sites. This pool of PI-4P specifically recruits pleckstrin homology domain-containing proteins involved in lipid transfer and metabolism, such as CERT. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family.

    Science.gov (United States)

    Dai, Qi; Ren, Aiming; Westholm, Jakub O; Duan, Hong; Patel, Dinshaw J; Lai, Eric C

    2015-01-01

    Recently, the BEN (BANP, E5R, and NAC1) domain was recognized as a new class of conserved DNA-binding domain. The fly genome encodes three proteins that bear only a single BEN domain ("BEN-solo" factors); namely, Insensitive (Insv), Bsg25A (Elba1), and CG9883 (Elba2). Insv homodimers preferentially bind CCAATTGG palindromes throughout the genome to mediate transcriptional repression, whereas Bsg25A and Elba2 heterotrimerize with their obligate adaptor, Elba3 (i.e., the ELBA complex), to recognize a CCAATAAG motif in the Fab-7 insulator. While these data suggest distinct DNA-binding properties of BEN-solo proteins, we performed reporter assays that indicate that both Bsg25A and Elba2 can individually recognize Insv consensus sites efficiently. We confirmed this by solving the structure of Bsg25A complexed to the Insv site, which showed that key aspects of the BEN:DNA recognition strategy are similar between these proteins. We next show that both Insv and ELBA proteins are competent to mediate transcriptional repression via Insv consensus sequences but that the ELBA complex appears to be selective for the ELBA site. Reciprocally, genome-wide analysis reveals that Insv exhibits significant cobinding to class I insulator elements, indicating that it may also contribute to insulator function. Indeed, we observed abundant Insv binding within the Hox complexes with substantial overlaps with class I insulators, many of which bear Insv consensus sites. Moreover, Insv coimmunoprecipitates with the class I insulator factor CP190. Finally, we observed that Insv harbors exclusive activity among fly BEN-solo factors with respect to regulation of Notch-mediated cell fate choices in the peripheral nervous system. This in vivo activity is recapitulated by BEND6, a mammalian BEN-solo factor that conserves the Notch corepressor function of Insv but not its capacity to bind Insv consensus sites. Altogether, our data define an array of common and distinct biochemical and functional

  19. Synthesis, Characterization and DNA Binding Activity of a Potential DNA Intercalator

    International Nuclear Information System (INIS)

    Siti Norain Harun; Yaakob Razak; Haslina Ahmad

    2016-01-01

    A novel complex, (Ru(dppz) 2 (p-MOPIP)) 2+ (dppz = dipyrido-(3,2-a:20,30-c]phenazine, p-MOPIP = 2-(4-methoxyphenyl) imidazo(4,5-f)(1,10]phenanthroline) has been synthesized and characterized by elemental analysis, 1 H Nuclear Magnetic Resonance spectroscopy, mass spectrometry, Fourier Transform Infrared analysis, Ultra Violet visible and fluorescence spectroscopy. Herein, the complex was designed by adding p-MOPIP as an intercalating ligand and dppz as the ancillary ligand. The DNA binding properties of the complex with Calf Thymus DNA (CT-DNA) were investigated using spectroscopic methods. The UV-visible absorption band observed at 460 nm corresponded to the metal-to-ligand charge transfer (MLCT) while bands at 358 and 281 nm corresponded to intra-ligand (IL) π-π * transitions of the ligand scaffold in p-MOPIP and dppz. The intrinsic binding constant, K b for this complex was 1.67x10 6 M -1 and this suggested that this complex, (Ru(dppz) 2 (p-MOPIP)) 2+ bound to DNA via the intercalative mode. Interestingly, the interaction of this complex with CT-DNA also had a molecular light switch effect. (author)

  20. The spacing between adjacent binding sites in the family of repeats affects the functions of Epstein-Barr nuclear antigen 1 in transcription activation and stable plasmid maintenance.

    Science.gov (United States)

    Hebner, Christy; Lasanen, Julie; Battle, Scott; Aiyar, Ashok

    2003-07-05

    Epstein-Barr virus (EBV) and the closely related Herpesvirus papio (HVP) are stably replicated as episomes in proliferating latently infected cells. Maintenance and partitioning of these viral plasmids requires a viral sequence in cis, termed the family of repeats (FR), that is bound by a viral protein, Epstein-Barr nuclear antigen 1 (EBNA1). Upon binding FR, EBNA1 maintains viral genomes in proliferating cells and activates transcription from viral promoters required for immortalization. FR from either virus encodes multiple binding sites for the viral maintenance protein, EBNA1, with the FR from the prototypic B95-8 strain of EBV containing 20 binding sites, and FR from HVP containing 8 binding sites. In addition to differences in the number of EBNA1-binding sites, adjacent binding sites in the EBV FR are typically separated by 14 base pairs (bp), but are separated by 10 bp in HVP. We tested whether the number of binding sites, as well as the distance between adjacent binding sites, affects the function of EBNA1 in transcription activation or plasmid maintenance. Our results indicate that EBNA1 activates transcription more efficiently when adjacent binding sites are separated by 10 bp, the spacing observed in HVP. In contrast, using two separate assays, we demonstrate that plasmid maintenance is greatly augmented when adjacent EBNA1-binding sites are separated by 14 bp, and therefore, presumably lie on the same face of the DNA double helix. These results provide indication that the functions of EBNA1 in transcription activation and plasmid maintenance are separable.

  1. The spacing between adjacent binding sites in the family of repeats affects the functions of Epstein-Barr nuclear antigen 1 in transcription activation and stable plasmid maintenance

    International Nuclear Information System (INIS)

    Hebner, Christy; Lasanen, Julie; Battle, Scott; Aiyar, Ashok

    2003-01-01

    Epstein-Barr virus (EBV) and the closely related Herpesvirus papio (HVP) are stably replicated as episomes in proliferating latently infected cells. Maintenance and partitioning of these viral plasmids requires a viral sequence in cis, termed the family of repeats (FR), that is bound by a viral protein, Epstein-Barr nuclear antigen 1 (EBNA1). Upon binding FR, EBNA1 maintains viral genomes in proliferating cells and activates transcription from viral promoters required for immortalization. FR from either virus encodes multiple binding sites for the viral maintenance protein, EBNA1, with the FR from the prototypic B95-8 strain of EBV containing 20 binding sites, and FR from HVP containing 8 binding sites. In addition to differences in the number of EBNA1-binding sites, adjacent binding sites in the EBV FR are typically separated by 14 base pairs (bp), but are separated by 10 bp in HVP. We tested whether the number of binding sites, as well as the distance between adjacent binding sites, affects the function of EBNA1 in transcription activation or plasmid maintenance. Our results indicate that EBNA1 activates transcription more efficiently when adjacent binding sites are separated by 10 bp, the spacing observed in HVP. In contrast, using two separate assays, we demonstrate that plasmid maintenance is greatly augmented when adjacent EBNA1-binding sites are separated by 14 bp, and therefore, presumably lie on the same face of the DNA double helix. These results provide indication that the functions of EBNA1 in transcription activation and plasmid maintenance are separable

  2. [The effect of hypoxia preconditioning no binding activity of HIF-1 on the HRE with EPO in the hippocampus of mice].

    Science.gov (United States)

    Shao, Guo; Zhou, Wei-Hua; Gao, Cui-Ying; Zhang, Ran; Lu, Guo-Wei

    2007-02-01

    To observe change of binding activity of HIF-1 with erythropoietin (EPO) hypoxia response element (HRE) in the hippocampus of mice preconditioned to hypoxia and explore relationship between the changes and the preconditioning. The hippocampus was removed from mice exposed to hypoxia for 0 run (control group), 1 run (H1 group) and 4 runs(H4 group). Electrophoretic mobility shift assays (EMSA), chromatin immunoprecipitation (ChIP)and real time PCR were used to detect the change of activity of HIF-1 on HRE of EPO. Both in vitro and in vivo binding tests showed that the HIF-1 DNA-binding activities were increased in group H1 and markedly increased in group H4. The increase of HIF-1 and HRE of EPO binding activities is thought be involved in hypoxic preconditioning.

  3. Fibrinogen-binding and platelet-aggregation activities of a Lactobacillus salivarius septicaemia isolate are mediated by a novel fibrinogen-binding protein.

    Science.gov (United States)

    Collins, James; van Pijkeren, Jan-Peter; Svensson, Lisbeth; Claesson, Marcus J; Sturme, Mark; Li, Yin; Cooney, Jakki C; van Sinderen, Douwe; Walker, Alan W; Parkhill, Julian; Shannon, Oonagh; O'Toole, Paul W

    2012-09-01

    The marketplace for probiotic foods is burgeoning, measured in billions of euro per annum. It is imperative, however, that all bacterial strains are fully assessed for human safety. The ability to bind fibrinogen is considered a potential pathogenicity trait that can lead to platelet aggregation, serious medical complications, and in some instances, death. Here we examined strains from species frequently used as probiotics for their ability to bind human fibrinogen. Only one strain (CCUG 47825), a Lactobacillus salivarius isolate from a case of septicaemia, was found to strongly adhere to fibrinogen. Furthermore, this strain was found to aggregate human platelets at a level comparable to the human pathogen Staphylococcus aureus. By sequencing the genome of CCUG 47825, we were able to identify candidate genes responsible for fibrinogen binding. Complementing the genetic analysis with traditional molecular microbiological techniques enabled the identification of the novel fibrinogen receptor, CCUG_2371. Although only strain CCUG 47825 bound fibrinogen under laboratory conditions, homologues of the novel fibrinogen binding gene CCUG_2371 are widespread among L. salivarius strains, maintaining their potential to bind fibrinogen if expressed. We highlight the fact that without a full genetic analysis of strains for human consumption, potential pathogenicity traits may go undetected. © 2012 Blackwell Publishing Ltd.

  4. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3

    OpenAIRE

    Halfter, Ursula; Ishitani, Manabu; Zhu, Jian-Kang

    2000-01-01

    The Arabidopsis thaliana SOS2 and SOS3 genes are required for intracellular Na+ and K+ homeostasis and plant tolerance to high Na+ and low K+ environments. SOS3 is an EF hand type calcium-binding protein having sequence similarities with animal neuronal calcium sensors and the yeast calcineurin B. SOS2 is a serine/threonine protein kinase in the SNF1/AMPK family. We report here that SOS3 physically interacts with and activates SOS2 protein kinase. Genetically, sos2sos3 double mutant analysis ...

  5. Differential Regulation of Receptor Activation and Agonist Selectivity by Highly Conserved Tryptophans in the Nicotinic Acetylcholine Receptor Binding Site

    OpenAIRE

    Williams, Dustin K.; Stokes, Clare; Horenstein, Nicole A.; Papke, Roger L.

    2009-01-01

    We have shown previously that a highly conserved Tyr in the nicotinic acetylcholine receptor (nAChR) ligand-binding domain (LBD) (α7 Tyr188 or α4 Tyr195) differentially regulates the activity of acetylcholine (ACh) and the α7-selective agonist 3-(4-hydroxy,2-methoxybenzylidene)anabaseine (4OH-GTS-21) in α4β2 and α7 nAChR. In this study, we mutated two highly conserved LBD Trp residues in human α7 and α4β2 and expressed the receptors in Xenopus laevis oocytes. α7 Re...

  6. HuR/ELAVL1 RNA binding protein modulates interleukin-8 induction by muco-active ribotoxin deoxynivalenol

    International Nuclear Information System (INIS)

    Choi, Hye Jin; Yang, Hyun; Park, Seong Hwan; Moon, Yuseok

    2009-01-01

    HuR/Elav-like RNA binding protein 1 (ELAVL1) positively regulates mRNA stability of AU-rich elements (ARE)-containing transcript such as pro-inflammatory cytokines. Ribotoxic stresses can trigger the production of pro-inflammatory mediators by enhancing mRNA stability and the transcriptional activity. We investigated the effects of ribotoxin deoxynivalenol (DON) on HuR translocation and its involvement in the regulation of the pro-inflammatory interleukin-8 (IL-8) mRNA stability. Exposure to the muco-active DON induced nuclear export of both endogenous and exogenous HuR RNA binding protein in human intestinal epithelial cells. Moreover, the interference with HuR protein production suppressed ribotoxic DON-induced IL-8 secretion and its mRNA stability. Cytoplasmic HuR protein interacted with IL-8 mRNA and the complex stabilization was due to the presence of 3'-untranslated region of the transcript. Partly in terms of IL-8-modulating transcription factors, HuR protein was demonstrated to be positively and negatively associated with DON-induced early growth response gene 1 (EGR-1) and activating transcription factor 3 (ATF3), respectively. HuR was a critical mechanistic link between ribotoxic stress and the pro-inflammatory cytokine production, and may have a broader functional significance with regard to mucosal insults since ribotoxic stress responses are also produced upon interactions with the diverse environment of gut.

  7. Lipid binding defects and perturbed synaptogenic activity of a Collybistin R290H mutant that causes epilepsy and intellectual disability.

    Science.gov (United States)

    Papadopoulos, Theofilos; Schemm, Rudolf; Grubmüller, Helmut; Brose, Nils

    2015-03-27

    Signaling at nerve cell synapses is a key determinant of proper brain function, and synaptic defects--or synaptopathies--are at the basis of many neurological and psychiatric disorders. In key areas of the mammalian brain, such as the hippocampus or the basolateral amygdala, the clustering of the scaffolding protein Gephyrin and of γ-aminobutyric acid type A receptors at inhibitory neuronal synapses is critically dependent upon the brain-specific guanine nucleotide exchange factor Collybistin (Cb). Accordingly, it was discovered recently that an R290H missense mutation in the diffuse B-cell lymphoma homology domain of Cb, which carries the guanine nucleotide exchange factor activity, leads to epilepsy and intellectual disability in human patients. In the present study, we determined the mechanism by which the Cb(R290H) mutation perturbs inhibitory synapse formation and causes brain dysfunction. Based on a combination of biochemical, cell biological, and molecular dynamics simulation approaches, we demonstrate that the R290H mutation alters the strength of intramolecular interactions between the diffuse B-cell lymphoma homology domain and the pleckstrin homology domain of Cb. This defect reduces the phosphatidylinositol 3-phosphate binding affinity of Cb, which limits its normal synaptogenic activity. Our data indicate that impairment of the membrane lipid binding activity of Cb and a consequent defect in inhibitory synapse maturation represent a likely molecular pathomechanism of epilepsy and mental retardation in humans. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Increased Autoreactivity of the Complement-Activating Molecule Mannan-Binding Lectin in a Type 1 Diabetes Model

    Directory of Open Access Journals (Sweden)

    Jakob Appel Østergaard

    2016-01-01

    Full Text Available Background. Diabetic kidney disease is the leading cause of end-stage renal failure despite intensive treatment of modifiable risk factors. Identification of new drug targets is therefore of paramount importance. The complement system is emerging as a potential new target. The lectin pathway of the complement system, initiated by the carbohydrate-recognition molecule mannan-binding lectin (MBL, is linked to poor kidney prognosis in diabetes. We hypothesized that MBL activates complement upon binding within the diabetic glomerulus. Methods. We investigated this by comparing complement deposition and activation in kidneys from streptozotocin-induced diabetic mice and healthy control mice. Results. After 20 weeks of diabetes, glomerular deposition of MBL was significantly increased. Diabetic animals had 2.0-fold higher (95% CI 1.6–2.5 immunofluorescence intensity from anti-MBL antibodies compared with controls (P<0.001. Diabetes and control groups did not differ in glomerular immunofluorescence intensity obtained by antibodies against complement factors C4, C3, and C9. However, the circulating complement activation product C3a was increased in diabetes as compared to control mice (P=0.04. Conclusion. 20 weeks of diabetes increased MBL autoreactivity in the kidney and circulating C3a concentration. Together with previous findings, these results indicate direct effects of MBL within the kidney in diabetes.

  9. Glucose 6P binds and activates HlyIIR to repress Bacillus cereus haemolysin hlyII gene expression.

    Directory of Open Access Journals (Sweden)

    Elisabeth Guillemet

    Full Text Available Bacillus cereus is a Gram-positive spore-forming bacterium causing food poisoning and serious opportunistic infections. These infections are characterized by bacterial accumulation despite the recruitment of phagocytic cells. We have previously shown that B. cereus Haemolysin II (HlyII induces macrophage cell death by apoptosis. In this work, we investigated the regulation of the hlyII gene. We show that HlyIIR, the negative regulator of hlyII expression in B. cereus, is especially active during the early bacterial growth phase. We demonstrate that glucose 6P directly binds to HlyIIR and enhances its activity at a post-transcriptional level. Glucose 6P activates HlyIIR, increasing its capacity to bind to its DNA-box located upstream of the hlyII gene, inhibiting its expression. Thus, hlyII expression is modulated by the availability of glucose. As HlyII induces haemocyte and macrophage death, two cell types that play a role in the sequestration of nutrients upon infection, HlyII may induce host cell death to allow the bacteria to gain access to carbon sources that are essential components for bacterial growth.

  10. First functional polymorphism in CFTR promoter that results in decreased transcriptional activity and Sp1/USF binding

    International Nuclear Information System (INIS)

    Taulan, M.; Lopez, E.; Guittard, C.; Rene, C.; Baux, D.; Altieri, J.P.; DesGeorges, M.; Claustres, M.; Romey, M.C.

    2007-01-01

    Growing evidences show that functionally relevant polymorphisms in various promoters alter both transcriptional activity and affinities of existing protein-DNA interactions, and thus influence disease progression in humans. We previously reported the -94G>T CFTR promoter variant in a female CF patient in whom any known disease-causing mutation has been detected. To investigate whether the -94G>T could be a regulatory variant, we have proceeded to in silico analyses and functional studies including EMSA and reporter gene assays. Our data indicate that the promoter variant decreases basal CFTR transcriptional activity in different epithelial cells and alters binding affinities of both Sp1 and USF nuclear proteins to the CFTR promoter. The present report provides evidence for the first functional polymorphism that negatively affects the CFTR transcriptional activity and demonstrates a cooperative role of Sp1 and USF transcription factors in transactivation of the CFTR gene promoter

  11. Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity

    DEFF Research Database (Denmark)

    Bindesbøll, Christian; Fan, Qiong; Nørgaard, Rikke C

    2015-01-01

    in response to feeding, which is believed to be mediated by insulin. We have previously shown that LXRs are targets for glucose-hexosamine-derived O-linked β-N-acetylglucosamine (O-GlcNAc) modification enhancing their ability to regulate SREBP-1c promoter activity in vitro. To elucidate insulin...... of glycolytic and lipogenic enzymes, including glucokinase (GK), SREBP-1c, ChREBPα, and the newly identified shorter isoform ChREBPβ. Furthermore, glucose-dependent increases in LXR/retinoid X receptor-regulated luciferase activity driven by the ChREBPα promoter was mediated, at least in part, by O-GlcNAc...... transferase (OGT) signaling in Huh7 cells. Moreover, we show that LXR and OGT interact and colocalize in the nucleus and that loss of LXRs profoundly reduced nuclear O-GlcNAc signaling and ChREBPα promoter binding activity in vivo. In summary, our study provides evidence that LXRs act as nutrient and glucose...

  12. Deficiency of toxin-binding protein activity in mutants of sugarcane clone H54-775 as it relates to disease resistance

    International Nuclear Information System (INIS)

    Strobel, G.A.; Steiner, G.W.; Byther, R.

    1975-01-01

    Three mutants selected from a population of sugarcane clone H54-775 that had been irradiated with 3 kR γ-radiation all lacked toxin-binding protein activity. This activity previously had been shown to be essential for eye spot disease susceptibility and was demonstrated in the susceptible parent clone H54-775. In one mutant, the biochemical, immunochemical, and electrophoretic mobilities of the toxin-binding protein were all modified

  13. Estrogen receptor-independent catechol estrogen binding activity: protein binding studies in wild-type, Estrogen receptor-alpha KO, and aromatase KO mice tissues.

    Science.gov (United States)

    Philips, Brian J; Ansell, Pete J; Newton, Leslie G; Harada, Nobuhiro; Honda, Shin-Ichiro; Ganjam, Venkataseshu K; Rottinghaus, George E; Welshons, Wade V; Lubahn, Dennis B

    2004-06-01

    Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.

  14. Kidney in potassium depletion. I. Na+-K+-ATPase activity and [3H]ouabain binding in MCT

    International Nuclear Information System (INIS)

    Hayashi, M.; Katz, A.I.

    1987-01-01

    The effect of potassium depletion on renal Na + K + -ATPase was studied in rats. K depletion produced a striking, time-dependent increase in Na + -K + -ATPase activity of the outer medullary collecting tubules (inner stripe; MCT/sub is/). After 3 wk on the K-free diet, when the urine was almost potassium-free, Na + -K + -ATPase activity in MCT/sub is/ was over fourfold higher than in control animals. Repletion of potassium restored enzyme activity to base line within 7 days which corresponds to the catabolic rate of the renal enzyme, suggesting the cessation of enhanced synthesis that took place during K deprivation. Changes in Na + -K + -ATPase activity and aldosterone levels during both K depletion and repletion occurred in opposite directions and were therefore independent of each other. [ 3 H]Ouabain binding to intact MCT/sub is/, reflecting the number of pump sites on the basolateral membrane, was similar in K-depleted and control animals; in contrast, tubule permeabilization that exposes additional pump units to the ligand, unmasked a nearly fourfold increase in [ 3 H]ouabain binding in K-depleted rats, comparable to the increment in Na + -K + -ATPase activity. These results show that K depletion leads to a marked increase in Na + -K + -ATPase activity of MCT/sub is/, and suggest that the new enzyme units are located at a ouabain-inaccessible site in the intact tubule, i.e., either in an intracellular compartment or at the luminal membrane, where they may be involved in potassium reabsorption

  15. Une théorie pour penser les industries culturelles et informationnelles ?

    Directory of Open Access Journals (Sweden)

    Pierre Mœglin

    2012-09-01

    Full Text Available Cet article traite de la naissance et du développement de la théorie des industries culturelles et informationnelles. Il procède des deux questions suivantes : pourquoi une théorie unifiée, plutôt que la juxtaposition de toutes les théorisations ayant accompagné les étapes successives de l’histoire de ces industries et le développement de chacun de leurs secteurs ? Pourquoi une théorie originale, au lieu des approches industrielles proposées, par exemple, par l’économie ou la sociologie ? À ces questions la réponse est, d’une part, que la diversité des appréciations sur les enjeux des industries culturelles et informationnelles et leurs contradictions, d’un auteur à l’auteur, illustre la dimension dialectique du développement des industries culturelles et informationnelles elles-mêmes. D’autre part, la singularité de ces industries justifie le recours à un modèle d’analyse différent du modèle industriel standard.This paper deals with the birth and development of the cultural and informational industries theory. It arises from two questions. First, why one unified theory, rather than juxtaposing the different attempts to understand these industries step by step and sector by sector ? Second, why a specific theory, instead of borrowing from economy or sociology, for instance ? The answer is on the one hand that the contradictions among researchers about the issues of the cultural and informational industries demonstrate in themselves the dialectical nature of their development ; on the other hand, that the specificity of these industries requires an analysis model quite different from the standard model.

  16. Transcription Factors Bind Thousands of Active and InactiveRegions in the Drosophila Blastoderm

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-Yong; MacArthur, Stewart; Bourgon, Richard; Nix, David; Pollard, Daniel A.; Iyer, Venky N.; Hechmer, Aaron; Simirenko, Lisa; Stapleton, Mark; Luengo Hendriks, Cris L.; Chu, Hou Cheng; Ogawa, Nobuo; Inwood, William; Sementchenko, Victor; Beaton, Amy; Weiszmann, Richard; Celniker, Susan E.; Knowles, David W.; Gingeras, Tom; Speed, Terence P.; Eisen, Michael B.; Biggin, Mark D.

    2008-01-10

    Identifying the genomic regions bound by sequence-specific regulatory factors is central both to deciphering the complex DNA cis-regulatory code that controls transcription in metazoans and to determining the range of genes that shape animal morphogenesis. Here, we use whole-genome tiling arrays to map sequences bound in Drosophila melanogaster embryos by the six maternal and gap transcription factors that initiate anterior-posterior patterning. We find that these sequence-specific DNA binding proteins bind with quantitatively different specificities to highly overlapping sets of several thousand genomic regions in blastoderm embryos. Specific high- and moderate-affinity in vitro recognition sequences for each factor are enriched in bound regions. This enrichment, however, is not sufficient to explain the pattern of binding in vivo and varies in a context-dependent manner, demonstrating that higher-order rules must govern targeting of transcription factors. The more highly bound regions include all of the over forty well-characterized enhancers known to respond to these factors as well as several hundred putative new cis-regulatory modules clustered near developmental regulators and other genes with patterned expression at this stage of embryogenesis. The new targets include most of the microRNAs (miRNAs) transcribed in the blastoderm, as well as all major zygotically transcribed dorsal-ventral patterning genes, whose expression we show to be quantitatively modulated by anterior-posterior factors. In addition to these highly bound regions, there are several thousand regions that are reproducibly bound at lower levels. However, these poorly bound regions are, collectively, far more distant from genes transcribed in the blastoderm than highly bound regions; are preferentially found in protein-coding sequences; and are less conserved than highly bound regions. Together these observations suggest that many of these poorly-bound regions are not involved in early

  17. Role of metabolic activation by cytochrome P-450 in covalent binding of VP 16-213 to rat liver and HeLa cell microsomal proteins

    Energy Technology Data Exchange (ETDEWEB)

    van Maanen, J.M.; de Ruiter, C.; de Vries, J.; Kootstra, P.R.; Gobas, F.; Pinedo, H.M.

    1985-09-01

    Covalent binding of /sup 3/H-labeled VP 16-213 to rat liver and HeLa cell microsomal proteins was studied in vitro. Metabolic activation by cytochrome P-450 was found to play a role in the covalent binding of VP 16-213 to rat liver microsomal proteins, as shown by the need of NADPH cofactor, the increased binding after phenobarbital pretreatment and the inhibition by SFK-525A. Addition of ascorbic acid or alpha-phenyl-N-tert. butylnitrone to the incubation mixture depressed covalent binding by about 85%, suggesting that formation of a reactive metabolite from the phenolic structure may be involved in the binding process. VP 16-213 did not inhibit aminopyrine N-demethylase at the concentration used in the binding experiments (17 microM), indicating that metabolism of its methylenedioxy group does not play a role in binding to microsomal proteins. HeLa cell microsomes were found to possess aminopyrine N-demethylase activity. Covalent binding of radiolabeled VP 16-213 to HeLa cell microsomes decreased by about 64% if NADPH was omitted.

  18. "Ode Ori": a culture-bound disorder with prominent somatic features in Yoruba Nigerian patients.

    Science.gov (United States)

    Makanjuola, R O

    1987-03-01

    Thirty patients diagnosed by Nigerian Yoruba traditional healers as suffering from a condition termed "Ode Ori" are described. The chief complaints were of a crawling sensation in the head and body, noises in the ears, palpitations and various other somatic complaints. Anxiety and depressive symptoms were prominent in all the patients and indeed the most common DSM-III diagnoses were of depressive and anxiety disorders. The significance of the disorder and its features is discussed in the context of the socio-cultural background of the patients.

  19. Genome-wide identification of hypoxia-inducible factor-1 and -2 binding sites in hypoxic human macrophages alternatively activated by IL-10.

    Science.gov (United States)

    Tausendschön, Michaela; Rehli, Michael; Dehne, Nathalie; Schmidl, Christian; Döring, Claudia; Hansmann, Martin-Leo; Brüne, Bernhard

    2015-01-01

    Macrophages (MΦ) often accumulate in hypoxic areas, where they significantly influence disease progression. Anti-inflammatory cytokines, such as IL-10, generate alternatively activated macrophages that support tumor growth. To understand how alternative activation affects the transcriptional profile of hypoxic macrophages, we globally mapped binding sites of hypoxia-inducible factor (HIF)-1α and HIF-2α in primary human monocyte-derived macrophages prestimulated with IL-10. 713 HIF-1 and 795 HIF-2 binding sites were identified under hypoxia. Pretreatment with IL-10 altered the binding pattern, with 120 new HIF-1 and 188 new HIF-2 binding sites emerging. HIF-1 binding was most prominent in promoters, while HIF-2 binding was more abundant in enhancer regions. Comparison of ChIP-seq data obtained in other cells revealed a highly cell type specific binding of HIF. In MΦ HIF binding occurred preferentially in already active enhancers or promoters. To assess the roles of HIF on gene expression, primary human macrophages were treated with siRNA against HIF-1α or HIF-2α, followed by genome-wide gene expression analysis. Comparing mRNA expression to the HIF binding profile revealed a significant enrichment of hypoxia-inducible genes previously identified by ChIP-seq. Analysis of gene expression under hypoxia alone and hypoxia/IL-10 showed the enhanced induction of a set of genes including PLOD2 and SLC2A3, while another group including KDM3A and ADM remained unaffected or was reduced by IL-10. Taken together IL-10 influences the DNA binding pattern of HIF and the level of gene induction. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Discovery and Characterization of a Potent Interleukin-6 Binding Peptide with Neutralizing Activity In Vivo.

    Directory of Open Access Journals (Sweden)

    Sheila Ranganath

    Full Text Available Interleukin-6 (IL-6 is an important member of the cytokine superfamily, exerting pleiotropic actions on many physiological processes. Over-production of IL-6 is a hallmark of immune-mediated inflammatory diseases such as Castleman's Disease (CD and rheumatoid arthritis (RA. Antagonism of the interleukin IL-6/IL-6 receptor (IL-6R/gp130 signaling complex continues to show promise as a therapeutic target. Monoclonal antibodies (mAbs directed against components of this complex have been approved as therapeutics for both CD and RA. To potentially provide an additional modality to antagonize IL-6 induced pathophysiology, a peptide-based antagonist approach was undertaken. Using a combination of molecular design, phage-display, and medicinal chemistry, disulfide-rich peptides (DRPs directed against IL-6 were developed with low nanomolar potency in inhibiting IL-6-induced pSTAT3 in U937 monocytic cells. Targeted PEGylation of IL-6 binding peptides resulted in molecules that retained their potency against IL-6 and had a prolongation of their pharmacokinetic (PK profiles in rodents and monkeys. One such peptide, PN-2921, contained a 40 kDa polyethylene glycol (PEG moiety and inhibited IL-6-induced pSTAT3 in U937 cells with sub-nM potency and possessed 23, 36, and 59 h PK half-life values in mice, rats, and cynomolgus monkeys, respectively. Parenteral administration of PN-2921 to mice and cynomolgus monkeys potently inhibited IL-6-induced biomarker responses, with significant reductions in the acute inflammatory phase proteins, serum amyloid A (SAA and C-reactive protein (CRP. This potent, PEGylated IL-6 binding peptide offers a new approach to antagonize IL-6-induced signaling and associated pathophysiology.

  1. Binding of nickel and zinc ions with activated carbon prepared from ...

    African Journals Online (AJOL)

    Activated carbon was prepared from sugar cane fibre by carbonizing at 500 oC for 30 minutes. This was followed by activation with ammonium chloride. The activated carbon was characterised in terms of pH, bulk density, ash content, surface area and surface charge. Equilibrium sorption of nickel and zinc ions by the ...

  2. The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats

    Directory of Open Access Journals (Sweden)

    Xu Yu-Dong

    2010-08-01

    Full Text Available Abstract Background The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR, which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma. Methods In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism. Results In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses. Conclusions Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma.

  3. Dishevelled binds the Discs large 'Hook' domain to activate GukHolder-dependent spindle positioning in Drosophila.

    Directory of Open Access Journals (Sweden)

    Joshua D Garcia

    Full Text Available Communication between cortical cell polarity cues and the mitotic spindle ensures proper orientation of cell divisions within complex tissues. Defects in mitotic spindle positioning have been linked to various developmental disorders and have recently emerged as a potential contributor to tumorigenesis. Despite the importance of this process to human health, the molecular mechanisms that regulate spindle orientation are not fully understood. Moreover, it remains unclear how diverse cortical polarity complexes might cooperate to influence spindle positioning. We and others have demonstrated spindle orientation roles for Dishevelled (Dsh, a key regulator of planar cell polarity, and Discs large (Dlg, a conserved apico-basal cell polarity regulator, effects which were previously thought to operate within distinct molecular pathways. Here we identify a novel direct interaction between the Dsh-PDZ domain and the alternatively spliced "I3-insert" of the Dlg-Hook domain, thus establishing a potential convergent Dsh/Dlg pathway. Furthermore, we identify a Dlg sequence motif necessary for the Dsh interaction that shares homology to the site of Dsh binding in the Frizzled receptor. Expression of Dsh enhanced Dlg-mediated spindle positioning similar to deletion of the Hook domain. This Dsh-mediated activation was dependent on the Dlg-binding partner, GukHolder (GukH. These results suggest that Dsh binding may regulate core interdomain conformational dynamics previously described for Dlg. Together, our results identify Dlg as an effector of Dsh signaling and demonstrate a Dsh-mediated mechanism for the activation of Dlg/GukH-dependent spindle positioning. Cooperation between these two evolutionarily-conserved cell polarity pathways could have important implications to both the development and maintenance of tissue homeostasis in animals.

  4. Profiling of Concanavalin A-Binding Glycoproteins in Human Hepatic Stellate Cells Activated with Transforming Growth Factor-β1

    Directory of Open Access Journals (Sweden)

    Yannan Qin

    2014-11-01

    Full Text Available Glycoproteins play important roles in maintaining normal cell functions depending on their glycosylations. Our previous study indicated that the abundance of glycoproteins recognized by concanavalin A (ConA was increased in human hepatic stellate cells (HSCs following activation by transforming growth factor-β1 (TGF-β1; however, little is known about the ConA-binding glycoproteins (CBGs of HSCs. In this study, we employed a targeted glycoproteomics approach using lectin-magnetic particle conjugate-based liquid chromatography-tandem mass spectrometry to compare CBG profiles between LX-2 HSCs with and without activation by TGF-β1, with the aim of discovering novel CBGs and determining their possible roles in activated HSCs. A total of 54 and 77 proteins were identified in the quiescent and activated LX-2 cells, respectively. Of the proteins identified, 14.3% were glycoproteins and 73.3% were novel potential glycoproteins. Molecules involved in protein processing in the endoplasmic reticulum (e.g., calreticulin and calcium signaling (e.g., 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase β-2 [PLCB2] were specifically identified in activated LX-2 cells. Additionally, PLCB2 expression was upregulated in the cytoplasm of the activated LX-2 cells, as well as in the hepatocytes and sinusoidal cells of liver cirrhosis tissues. In conclusion, the results of this study may aid future investigations to find new molecular mechanisms involved in HSC activation and antifibrotic therapeutic targets.

  5. The prevalence of symptoms of depression and anxiety, and the level of life stress and worry in New Zealand Māori and non-Māori women in late pregnancy.

    Science.gov (United States)

    Signal, T Leigh; Paine, Sarah-Jane; Sweeney, Bronwyn; Muller, Diane; Priston, Monique; Lee, Kathryn; Gander, Philippa; Huthwaite, Mark

    2017-02-01

    To describe the prevalence of symptoms of depression and anxiety, and the level of life stress and worry in late pregnancy for Māori and non-Māori women. In late pregnancy, women completed a questionnaire recording their prior history of mood disorders; self-reported current depressive symptoms (⩾13 on the Edinburgh Postnatal Depression Scale), current anxiety symptoms (⩾6 on the anxiety items from the Edinburgh Postnatal Depression Scale), significant life stress (⩾2 items on life stress scale) and dysfunctional worry (>12 on the Brief Measure of Worry Scale). Data were obtained from 406 Māori women (mean age = 27.6 years, standard deviation=6.3 years) and 738 non-Māori women (mean age = 31.6 years, standard deviation=5.3 years). Depressive symptoms (22% vs 15%), anxiety symptoms (25% vs 20%), significant life stress (55% vs 30%) and a period of poor mood during the current pregnancy (18% vs 14%) were more prevalent for Māori than non-Maori women. Less than 50% of women who had experienced ⩾2 weeks of poor mood during the current pregnancy had sought help. Being young was an independent risk factor for depressive symptoms, significant life stress and dysfunctional worry. A prior history of depression was also consistently associated with a greater risk of negative affect in pregnancy. Antenatal mental health requires at least as much attention and resourcing as mental health in the postpartum period. Services need to specifically target Māori women, young women and women with a prior history of depression.

  6. DNA-binding proteins regulating pIP501 transfer and replication

    Directory of Open Access Journals (Sweden)

    Elisabeth Grohmann

    2016-08-01

    Full Text Available pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently found in clinical Enterococcus faecalis and Enterococcus faecium isolates. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMβ1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual role: It acts as transcriptional repressor at the repR promoter and prevents convergent transcription of RNAIII and repR mRNA (RNAII, thereby indirectly increasing RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII. Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including filamentous streptomycetes and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter, which overlaps with the origin of transfer (oriT. The T4SS operon encodes the DNA-binding proteins TraJ (VirD4

  7. Estrogenic activity and estrogen receptor β binding of the UV filter 3-benzylidene camphor Comparison with 4-methylbenzylidene camphor

    International Nuclear Information System (INIS)

    Schlumpf, Margret; Jarry, Hubert; Wuttke, Wolfgang; Ma, Risheng; Lichtensteiger, Walter

    2004-01-01

    UV filters represent new classes of estrogenic [Environ. Health Perspect. 109 (2001) 239] or antiandrogenic [Toxicol. Sci. 74 (2003) 43] chemicals. We tested 3-benzylidene camphor (3-BC), reported as estrogenic in fish [Pharmacol. Toxicol. 91 (2002) 204], and mammalian systems in comparison to 4-methylbenzylidene camphor (4-MBC), shown to be active in rats, and analyzed binding to estrogen receptor subtypes. 3-BC and 4-MBC stimulated MCF-7 cell proliferation (EC 50 : 0.68 and 3.9 μM). The uterotrophic assay of 3-BC (oral gavage) in immature rats showed unexpected potency with ED50 45.3 mg/kg per day; lowest effective dose 2 mg/kg per day, and maximum effect with 70% of ethinylestradiol. After comparing with literature data, we found that the oral 3-BC was considerably more potent than oral bisphenol A and almost as active as subcutaneous genistein. 3-BC and 4-MBC displaced 16α 125 I-estradiol from porcine uterine cytosolic receptors (IC 50 : 14.5 and 112 μM), and from recombinant human estrogen receptor β (hERβ) (IC 50 : 3-BC, 11.8 μM; 4-MBC, 35.3 μM), whereas no displacement was detected at human estrogen receptor α (hERα) up to 3 mM. This subtype selectivity makes the two camphor derivatives interesting model compounds. Their activity on immature rat uterus is not easily explained by ERβ activation. It cannot be excluded that active metabolites with possibly different receptor binding characteristics are formed in vivo

  8. Whakawhanaungatanga: the importance of culturally meaningful connections to improve uptake of pulmonary rehabilitation by Māori with COPD - a qualitative study.

    Science.gov (United States)

    Levack, William Mm; Jones, Bernadette; Grainger, Rebecca; Boland, Pauline; Brown, Melanie; Ingham, Tristram R

    2016-01-01

    Pulmonary rehabilitation is known to improve function and quality of life for people with chronic obstructive pulmonary disease (COPD). However, little research has been conducted on the influence of culture on experiences of pulmonary rehabilitation. This study examined factors influencing uptake of pulmonary rehabilitation by Māori with COPD in New Zealand. Grounded theory nested within kaupapa Māori methodology. Transcripts were analyzed from interviews and focus groups with 15 Māori and ten New Zealand non-Māori invited to attend pulmonary rehabilitation for COPD. Māori participants had either attended a mainstream hospital-based program, a community-based program designed "by Māori, for Māori", or had experienced both. Several factors influencing uptake of pulmonary rehabilitation were common to all participants regardless of ethnicity: 1) participants' past experiences (eg, of exercise; of health care systems), 2) attitudes and expectations, 3) access issues (eg, time, transport, and conflicting responsibilities), and 4) initial program experiences. These factors were moderated by the involvement of family and peers, interactions with health professionals, the way information on programs was presented, and by new illness events. For Māori, however, several additional factors were also identified relating to cultural experiences of pulmonary rehabilitation. In particular, Māori participants placed high value on whakawhanaungatanga: the making of culturally meaningful connections with others. Culturally appropriate communication and relationship building was deemed so important by some Māori participants that when it was absent, they felt strongly discouraged to attend pulmonary rehabilitation. Only the more holistic services offered a program in which they felt culturally safe and to which they were willing to return for ongoing rehabilitation. Lack of attention to cultural factors in the delivery of pulmonary rehabilitation may be a barrier to its

  9. The voyage to McDonalds--short and long-term factors in the etiology of obesity in Mäori children in Aotearoa.

    Science.gov (United States)

    Gray, George

    2003-09-01

    In Aotearoa, it has been revealed that 14.7% of European adults are obese, compared with 27.5% for Mäori adults. It has been difficult to elucidate the recent trends in children and adolescents without large-scale population analysis, but a recent study of obesity in Auckland schoolchildren revealed a prevalence rate of 15.8% for Mäori children, compared with 8.6% for European children. This essay will review factors affecting the etiology of obesity in Mäori children. The classification of obesity will be examined before a discussion of short-term and long-term factors leading to obesity in this ethnic group. Measuring Obesity in Children It has been recommended that the BMI range for overweight in Mäori be increased to 27-32, and obesity a BMI greater than 32. Unfortunately though, there is no consensus among researchers and some studies may use the conventional obesity range of a BMI greater than 30 for both Mäori and non-Mäori children. Mäori disproportionately occupy low socioeconomic strata in Aotearoa. The significant discrepancy between obesity prevalence rates for Mäori and European children indicates that other factors are involved. Dietary fat intake, and by extension obesity, tend to be more prevalent for people in low socioeconomic groups, as numerous studies have shown. Therefore, the Mäori-European obesity discrepancy can be further explained by the discrepancy in socioeconomic status between these two groups, as national census data reveal that Mäori are disproportionately represented in all negative socioeconomic indices. However, for completeness, it is necessary to understand exactly why Mäori dominate these indices.

  10. A point mutation in the DNA-binding domain of HPV-2 E2 protein increases its DNA-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter

    Directory of Open Access Journals (Sweden)

    Gao Chen

    2012-02-01

    Full Text Available Abstract Background The human papillomavirus (HPV E2 protein is a multifunctional DNA-binding protein. The transcriptional activity of HPV E2 is mediated by binding to its specific binding sites in the upstream regulatory region of the HPV genomes. Previously we reported a HPV-2 variant from a verrucae vulgaris patient with huge extensive clustered cutaneous, which have five point mutations in its E2 ORF, L118S, S235P, Y287H, S293R and A338V. Under the control of HPV-2 LCR, co-expression of the mutated HPV E2 induced an increased activity on the viral early promoter. In the present study, a series of mammalian expression plasmids encoding E2 proteins with one to five amino acid (aa substitutions for these mutations were constructed and transfected into HeLa, C33A and SiHa cells. Results CAT expression assays indicated that the enhanced promoter activity was due to the co-expressions of the E2 constructs containing A338V mutation within the DNA-binding domain. Western blots analysis demonstrated that the transiently transfected E2 expressing plasmids, regardless of prototype or the A338V mutant, were continuously expressed in the cells. To study the effect of E2 mutations on its DNA-binding activity, a serial of recombinant E2 proteins with various lengths were expressed and purified. Electrophoresis mobility shift assays (EMSA showed that the binding affinity of E2 protein with A338V mutation to both an artificial probe with two E2 binding sites or HPV-2 and HPV-16 promoter-proximal LCR sequences were significantly stronger than that of the HPV-2 prototype E2. Furthermore, co-expression of the construct containing A338V mutant exhibited increased activities on heterologous HPV-16 early promoter P97 than that of prototype E2. Conclusions These results suggest that the mutation from Ala to Val at aa 338 is critical for E2 DNA-binding and its transcriptional regulation.

  11. Binding of Dumbbell Oligonucleotides to MoMuLV Reverse Transcriptase: Inhibitory Properties of RNase H Activity

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2010-01-01

    Full Text Available Dumbbell oligonucleotides with loops of various chemistry were synthesized. Incubation of dumbbell oligonucleotides containing phosphorothioate bonds or trimethylene phosphate linkages in loops with S1 nuclease did not result in significant cleavage under conditions which led to the degradation of dumbbell oligonucleotide containing phophodiester bonds in the loops. The binding of reverse transcriptase of Moloney Murine Leukemia Virus (MoMuLV was evaluated with all the five oligonucleotides. The protein binds to all the dumbbell oligonucleotides with similar affinity. The dissociation constants evaluated using PAGE band mobility shift assays were of the order of 10-7. The inhibitory properties of the retroviral RNase H activity was evaluated using 3H –UTP-labeled RNA:RNA-DNA hybrid. It was found that the best dumbbell oligonucleotide, inhibitor contained phosphorothioate residues in both the loops. Our value studies demonstrated that this particularly designed oligonucleotide displays an IC50 of 18 nM in its inhibition on the reverse transcriptase RNase H activity, a magnitude lower than that of first nucleotide reverse transcriptase of HIV-1, tenofovir, introduced by Gilead Science in the market.

  12. GABAA receptor activity modulating piperine analogs: In vitro metabolic stability, metabolite identification, CYP450 reaction phenotyping, and protein binding.

    Science.gov (United States)

    Zabela, Volha; Hettich, Timm; Schlotterbeck, Götz; Wimmer, Laurin; Mihovilovic, Marko D; Guillet, Fabrice; Bouaita, Belkacem; Shevchenko, Bénédicte; Hamburger, Matthias; Oufir, Mouhssin

    2018-01-01

    In a screening of natural products for allosteric modulators of GABA A receptors (γ-aminobutyric acid type A receptor), piperine was identified as a compound targeting a benzodiazepine-independent binding site. Given that piperine is also an activator of TRPV1 (transient receptor potential vanilloid type 1) receptors involved in pain signaling and thermoregulation, a series of piperine analogs were prepared in several cycles of structural optimization, with the aim of separating GABA A and TRPV1 activating properties. We here investigated the metabolism of piperine and selected analogs in view of further cycles of lead optimization. Metabolic stability of the compounds was evaluated by incubation with pooled human liver microsomes, and metabolites were analyzed by UHPLC-Q-TOF-MS. CYP450 isoenzymes involved in metabolism of compounds were identified by reaction phenotyping with Silensomes™. Unbound fraction in whole blood was determined by rapid equilibrium dialysis. Piperine was the metabolically most stable compound. Aliphatic hydroxylation, and N- and O-dealkylation were the major routes of oxidative metabolism. Piperine was exclusively metabolized by CYP1A2, whereas CYP2C9 contributed significantly in the oxidative metabolism of all analogs. Extensive binding to blood constituents was observed for all compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. PsB multiprotein complex of Dictyostelium discoideum. Demonstration of cellulose binding activity and order of protein subunit assembly.

    Science.gov (United States)

    McGuire, V; Alexander, S

    1996-06-14

    The differentiated spores of Dictyostelium are surrounded by an extracellular matrix, the spore coat, which protects them from environmental factors allowing them to remain viable for extended periods of time. This presumably is a major evolutionary advantage. This unique extracellular matrix is composed of cellulose and glycoproteins. Previous work has shown that some of these spore coat glycoproteins exist as a preassembled multiprotein complex (the PsB multiprotein complex) which is stored in the prespore vesicles (Watson, N., McGuire, V., and Alexander, S (1994) J. Cell Sci. 107, 2567-2579). Later in development, the complex is synchronously secreted from the prespore vesicles and incorporated into the spore coat. We now have shown that the PsB complex has a specific in vitro cellulose binding activity. The analysis of mutants lacking individual subunits of the PsB complex revealed the relative order of assembly of the subunit proteins and demonstrated that the protein subunits must be assembled for cellulose binding activity. These results provide a biochemical explanation for the localization of this multiprotein complex in the spore coat.

  14. Activation of M1 macrophages in sepsis-induced acute kidney injury in response to heparin-binding protein.

    Directory of Open Access Journals (Sweden)

    Li Xing

    Full Text Available In the early stage of sepsis, M1 macrophages result in the production of inflammatory mediators and AKI. Heparin-binding protein (HBP have been shown to play important roles in sepsis-induced AKI. In this study, we investigate the association of HBP with M1 macrophages in sepsis-induced AKI.Male C57BL6 mice were subjected to cecal ligation and puncture (CLP or sham surgery. Biochemical and histological renal damage was assessed. Macrophage infiltration was assessed by immunohistochemistry. RT-PCR was used to investigate the expression of heparin-binding protein (HBP, the inducible nitric oxide synthase (iNOS and arginase 1 (Arg-1 mRNAs. Western blots were performed to assay the tissue levels of HBP, tumor necrosis factor alpha (TNF-α and interleukin-6 (IL-6.High levels of HBP were obviously detected 24 h after sepsis-induced AKI. Heparin inhibited HBP expression during sepsis-induced AKI. The suppression of HBP expression by heparin injection after the establishment of sepsis-induced AKI resulted in a reduction in renal injury severity accompanied with a significant repression of M1 macrophage activation and expression of TNF-α and IL-6.HBP plays an important role in the initial inflammatory reaction associated with sepsis-induced AKI, presumably by activating M1 macrophages and suppressing TNF-α and IL-6 secretion.

  15. Inhibition of 125I-labeled ristocetin binding to Micrococcus luteus cells by the peptides related to bacterial cell wall mucopeptide precursors: quantitative structure-activity relationships

    International Nuclear Information System (INIS)

    Kim, K.H.; Martin, Y.; Otis, E.; Mao, J.

    1989-01-01

    Quantitative structure-activity relationships (QSAR) of N-Ac amino acids, N-Ac dipeptides, and N-Ac tripeptides in inhibition of 125 I-labeled ristocetin binding to Micrococcus luteus cell wall have been developed to probe the details of the binding between ristocetin and N-acetylated peptides. The correlation equations indicate that (1) the binding is stronger for peptides in which the side chain of the C-terminal amino acid has a large molar refractivity (MR) value, (2) the binding is weaker for peptides with polar than for those with nonpolar C-terminal side chains, (3) the N-terminal amino acid in N-Ac dipeptides contributes 12 times that of the C-terminal amino acid to binding affinity, and (4) the interactions between ristocetin and the N-terminal amino acid of N-acetyl tripeptides appear to be much weaker than those with the first two amino acids

  16. Endettement, accords implicites et capital organisationnel : vers une théorie organisationnelle de la structure financière

    OpenAIRE

    Christophe Moussu

    2000-01-01

    L'objectif de cet article est d'appréhender le choix d'une structure financière dans une théorie de la firme reposant sur la formation de capital organisationnel, associé à la relation d'emploi. Après avoir défini la notion de capital organisationnel, une modélisation des liens entre la structure financière et les accords implicites est proposée. La théorie organisationnelle proposée est confrontée aux théories alternatives de la structure financière. Ses implications empiriques sont égalemen...

  17. Addition of Kinesio Taping of the orbicularis oris muscles to speech therapy rapidly improves drooling in children with neurological disorders.

    Science.gov (United States)

    Mikami, Denise Lica Yoshimura; Furia, Cristina Lemos Barbosa; Welker, Alexis Fonseca

    2017-09-21

    To evaluate the effects of Kinesio Taping (KT) of the orbicularis oris muscles as an adjunct to standard therapy for drooling. Fifteen children with neurological disorders and drooling received speech therapy and twice-weekly KT of the orbicularis muscles over a 30-day period. Drooling was assessed by six parameters: impact on the life of the child and caregiver; severity of drooling; frequency of drooling; drooling volume (estimated by number of bibs used); salivary leak; and interlabial gap. Seven markers of oral motor skills were also assessed. KT of the orbicularis oris region reduced the interlabial gap. All oral motor skills and almost all markers of drooling improved after 15 days of treatment. In this sample of children with neurological disorders, adding KT of the orbicularis oris muscles to speech therapy caused rapid improvement in oral motor skills and drooling.

  18. A matrix-focused structure-activity and binding site flexibility study of quinolinol inhibitors of botulinum neurotoxin serotype A.

    Science.gov (United States)

    Harrell, William A; Vieira, Rebecca C; Ensel, Susan M; Montgomery, Vicki; Guernieri, Rebecca; Eccard, Vanessa S; Campbell, Yvette; Roxas-Duncan, Virginia; Cardellina, John H; Webb, Robert P; Smith, Leonard A

    2017-02-01

    Our initial discovery of 8-hydroxyquinoline inhibitors of BoNT/A and separation/testing of enantiomers of one of the more active leads indicated considerable flexibility in the binding site. We designed a limited study to investigate this flexibility and probe structure-activity relationships; utilizing the Betti reaction, a 36 compound matrix of quinolinol BoNT/A LC inhibitors was developed using three 8-hydroxyquinolines, three heteroaromatic amines, and four substituted benzaldehydes. This study has revealed some of the most effective quinolinol-based BoNT/A inhibitors to date, with 7 compounds displaying IC 50 values ⩽1μM and 11 effective at ⩽2μM in an ex vivo assay. Published by Elsevier Ltd.

  19. High-mobility group (HMG) protein HMG-1 and TATA-binding protein-associated factor TAF(II)30 affect estrogen receptor-mediated transcriptional activation.

    Science.gov (United States)

    Verrier, C S; Roodi, N; Yee, C J; Bailey, L R; Jensen, R A; Bustin, M; Parl, F F

    1997-07-01

    The estrogen receptor (ER) belongs to a family of ligand-inducible nuclear receptors that exert their effects by binding to cis-acting DNA elements in the regulatory region of target genes. The detailed mechanisms by which ER interacts with the estrogen response element (ERE) and affects transcription still remain to be elucidated. To study the ER-ERE interaction and transcription initiation, we employed purified recombinant ER expressed in both the baculovirus-Sf9 and his-tagged bacterial systems. The effect of high-mobility group (HMG) protein HMG-1 and purified recombinant TATA-binding protein-associated factor TAF(II)30 on ER-ERE binding and transcription initiation were assessed by electrophoretic mobility shift assay and in vitro transcription from an ERE-containing template (pERE2LovTATA), respectively. We find that purified, recombinant ER fails to bind to ERE in spite of high ligand-binding activity and electrophoretic and immunological properties identical to ER in MCF-7 breast cancer cells. HMG-1 interacts with ER and promotes ER-ERE binding in a concentration- and time-dependent manner. The effectiveness of HMG-1 to stimulate ER-ERE binding in the electrophoretic mobility shift assay depends on the sequence flanking the ERE consensus as well as the position of the latter in the oligonucleotide. We find that TAF(II)30 has no effect on ER-ERE binding either alone or in combination with ER and HMG-1. Although HMG-1 promotes ER-ERE binding, it fails to stimulate transcription initiation either in the presence or absence of hormone. In contrast, TAF(II)30, while not affecting ER-ERE binding, stimulates transcription initiation 20-fold in the presence of HMG-1. These results indicate that HMG-1 and TAF(II)30 act in sequence, the former acting to promote ER-ERE binding followed by the latter to stimulate transcription initiation.

  20. Identification of a novel A20-binding inhibitor of nuclear factor-kappa B activation termed ABIN-2.

    Science.gov (United States)

    Van Huffel, S; Delaei, F; Heyninck, K; De Valck, D; Beyaert, R

    2001-08-10

    The nuclear factor kappaB (NF-kappaB) plays a central role in the regulation of genes implicated in immune responses, inflammatory processes, and apoptotic cell death. The zinc finger protein A20 is a cellular inhibitor of NF-kappaB activation by various stimuli and plays a critical role in terminating NF-kappaB responses. The underlying mechanism for NF-kappaB inhibition by A20 is still unknown. A20 has been shown to interact with several proteins including tumor necrosis factor (TNF) receptor-associated factors 2 and 6, as well as the inhibitory protein of kappaB kinase (IKK) gamma protein. Here we report the cloning and characterization of ABIN-2, a previously unknown protein that binds to the COOH-terminal zinc finger domain of A20. NF-kappaB activation induced by TNF and interleukin-1 is inhibited by overexpression of ABIN-2. The latter also inhibits NF-kappaB activation induced by overexpression of receptor-interacting protein or TNF receptor-associated factor 2. In contrast, NF-kappaB activation by overexpression of IKKbeta or direct activators of the IKK complex, such as Tax, cannot be inhibited by ABIN-2. These results indicate that ABIN-2 interferes with NF-kappaB activation upstream of the IKK complex and that it might contribute to the NF-kappaB-inhibitory function of A20.

  1. Comprehensive meta-analysis of Signal Transducers and Activators of Transcription (STAT genomic binding patterns discerns cell-specific cis-regulatory modules

    Directory of Open Access Journals (Sweden)

    Kang Keunsoo

    2013-01-01

    Full Text Available Abstract Background Cytokine-activated transcription factors from the STAT (Signal Transducers and Activators of Transcription family control common and context-specific genetic programs. It is not clear to what extent cell-specific features determine the binding capacity of seven STAT members and to what degree they share genetic targets. Molecular insight into the biology of STATs was gained from a meta-analysis of 29 available ChIP-seq data sets covering genome-wide occupancy of STATs 1, 3, 4, 5A, 5B and 6 in several cell types. Results We determined that the genomic binding capacity of STATs is primarily defined by the cell type and to a lesser extent by individual family members. For example, the overlap of shared binding sites between STATs 3 and 5 in T cells is greater than that between STAT5 in T cells and non-T cells. Even for the top 1,000 highly enriched STAT binding sites, ~15% of STAT5 binding sites in mouse female liver are shared by other STATs in different cell types while in T cells ~90% of STAT5 binding sites are co-occupied by STAT3, STAT4 and STAT6. In addition, we identified 116 cis-regulatory modules (CRM, which are recognized by all STAT members across cell types defining a common JAK-STAT signature. Lastly, in liver STAT5 binding significantly coincides with binding of the cell-specific transcription factors HNF4A, FOXA1 and FOXA2 and is associated with cell-type specific gene transcription. Conclusions Our results suggest that genomic binding of STATs is primarily determined by the cell type and further specificity is achieved in part by juxtaposed binding of cell-specific transcription factors.

  2. Loss of Interdependent Binding by the FoxO1 and FoxA1/A2 Forkhead Transcription Factors Culminates in Perturbation of Active Chromatin Marks and Binding of Transcriptional Regulators at Insulin-sensitive Genes*

    OpenAIRE

    Yalley, Akua; Schill, Daniel; Hatta, Mitsutoki; Johnson, Nicole; Cirillo, Lisa Ann

    2016-01-01

    FoxO1 binds to insulin response elements located in the promoters of insulin-like growth factor-binding protein 1 (IGFBP1) and glucose-6-phosphatase (G6Pase), activating their expression. Insulin-mediated phosphorylation of FoxO1 promotes cytoplasmic translocation, inhibiting FoxO1-mediated transactivation. We have previously demonstrated that FoxO1 opens and remodels chromatin assembled from the IGFBP1 promoter via a highly conserved winged helix motif. This finding, which established FoxO1 ...

  3. Fucosylated chondroitin sulfates from the body wall of the sea cucumber Holothuria forskali: conformation, selectin binding, and biological activity.

    Science.gov (United States)

    Panagos, Charalampos G; Thomson, Derek S; Moss, Claire; Hughes, Adam D; Kelly, Maeve S; Liu, Yan; Chai, Wengang; Venkatasamy, Radhakrishnan; Spina, Domenico; Page, Clive P; Hogwood, John; Woods, Robert J; Mulloy, Barbara; Bavington, Charlie D; Uhrín, Dušan

    2014-10-10

    Fucosylated chondroitin sulfate (fCS) extracted from the sea cucumber Holothuria forskali is composed of the following repeating trisaccharide unit: → 3)GalNAcβ4,6S(1 → 4) [FucαX(1 → 3)]GlcAβ(1 →, where X stands for different sulfation patterns of fucose (X = 3,4S (46%), 2,4S (39%), and 4S (15%)). As revealed by NMR and molecular dynamics simulations, the fCS repeating unit adopts a conformation similar to that of the Le(x) blood group determinant, bringing several sulfate groups into close proximity and creating large negative patches distributed along the helical skeleton of the CS backbone. This may explain the high affinity of fCS oligosaccharides for L- and P-selectins as determined by microarray binding of fCS oligosaccharides prepared by Cu(2+)-catalyzed Fenton-type and photochemical depolymerization. No binding to E-selectin was observed. fCS poly- and oligosaccharides display low cytotoxicity in vitro, inhibit human neutrophil elastase activity, and inhibit the migration of neutrophils through an endothelial cell layer in vitro. Although the polysaccharide showed some anti-coagulant activity, small oligosaccharide fCS fragments had much reduced anticoagulant properties, with activity mainly via heparin cofactor II. The fCS polysaccharides showed prekallikrein activation comparable with dextran sulfate, whereas the fCS oligosaccharides caused almost no effect. The H. forskali fCS oligosaccharides were also tested in a mouse peritoneal inflammation model, where they caused a reduction in neutrophil infiltration. Overall, the data presented support the action of fCS as an inhibitor of selectin interactions, which play vital roles in inflammation and metastasis progression. Future studies of fCS-selectin interaction using fCS fragments or their mimetics may open new avenues for therapeutic intervention. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophage-activating factor, GcMAF.

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Nakazato, Hiroaki; Yamamoto, Nobuyuki; Koga, Yoshihiko

    2008-07-01

    Serum vitamin D binding protein (Gc protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of colorectal cancer patients was lost or reduced because Gc protein is deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Deglycosylated Gc protein cannot be converted to MAF, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage-activating factor (GcMAF) ever discovered, but it produces no side effect in humans. Macrophages treated with GcMAF (100 microg/ml) develop an enormous variation of receptors and are highly tumoricidal to a variety of cancers indiscriminately. Administration of 100 nanogram (ng)/ human maximally activates systemic macrophages that can kill cancerous cells. Since the half-life of the activated macrophages is approximately 6 days, 100 ng GcMAF was administered weekly to eight nonanemic colorectal cancer patients who had previously received tumor-resection but still carried significant amounts of metastatic tumor cells. As GcMAF therapy progressed, the MAF precursor activities of all patients increased and conversely their serum Nagalase activities decreased. Since serum Nagalase is proportional to tumor burden, serum Nagalase activity was used as a prognostic index for time course analysis of GcMAF therapy. After 32-50 weekly administrations of 100 ng GcMAF, all colorectal cancer patients exhibited healthy control levels of the serum Nagalase activity, indicating eradication of metastatic tumor cells. During 7 years after the completion of GcMAF therapy, their serum Nagalase activity did not increase, indicating no recurrence of cancer, which was also supported by the annual CT scans of these patients.

  5. Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain

    DEFF Research Database (Denmark)

    Adari, H; Lowy, D R; Willumsen, B M

    1988-01-01

    A cytoplasmic protein that greatly enhances the guanosine triphosphatase (GTPase) activity of N-ras protein but does not affect the activity of oncogenic ras mutants has been recently described. This protein (GAP) is shown here to be ubiquitous in higher eukaryotes and to interact with H-ras as w...

  6. GTPase ROP2 binds and promotes activation of target of rapamycin, TOR, in response to auxin.

    Science.gov (United States)

    Schepetilnikov, Mikhail; Makarian, Joelle; Srour, Ola; Geldreich, Angèle; Yang, Zhenbiao; Chicher, Johana; Hammann, Philippe; Ryabova, Lyubov A

    2017-04-03

    Target of rapamycin (TOR) promotes reinitiation at upstream ORFs (uORFs) in genes that play important roles in stem cell regulation and organogenesis in plants. Here, we report that the small GTPase ROP2, if activated by the phytohormone auxin, promotes activation of TOR, and thus translation reinitiation of uORF-containing mRNAs. Plants with high levels of active ROP2, including those expressing constitutively active ROP2 (CA-ROP2), contain high levels of active TOR ROP2 physically interacts with and, when GTP-bound, activates TOR in vitro TOR activation in response to auxin is abolished in ROP-deficient rop2 rop6 ROP4 RNAi plants. GFP-TOR can associate with endosome-like structures in ROP2-overexpressing plants, indicating that endosomes mediate ROP2 effects on TOR activation. CA-ROP2 is efficient in loading uORF-containing mRNAs onto polysomes and stimulates translation in protoplasts, and both processes are sensitive to TOR inhibitor AZD-8055. TOR inactivation abolishes ROP2 regulation of translation reinitiation, but not its effects on cytoskeleton or intracellular trafficking. These findings imply a mode of translation control whereby, as an upstream effector of TOR, ROP2 coordinates TOR function in translation reinitiation pathways in response to auxin. © 2017 The Authors.

  7. Relationship between binding activity of sup 67 Ga and low sulfated acid glycosaminoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yasuhito; Tsukada, Fumitake; Kohno, Hiroyuki (Tohoku Coll. of Pharmacy, Sendai (Japan)); Kubodera, Akiko (Science Univ. of Tokyo (Japan). School of Pharmaceutical Sciences)

    1989-01-01

    Sulfate content of acid glycosaminoglycan (AGAG) extracted from granuloma which had been produced by turpentine oil was inversely proportional to the amount of {sub 67}Ga accumulation in the granuloma. Additionally, the lowest sulfation occurred in granuloma at a peak of inflammation when the uptake of {sub 67}Ga had reached a maximum. On the basis of electrophoretic pattern, sulfate content, and specific optical rotation, it was concluded that acid glycosaminoglycans obtained from granuloma are mainly composed of chondroitin sulfate-A, -B, and desulfated heparin, while haparan sulfate was a minor component. From in vitro assays, desulfated acid glycosaminoglycans, especially desulfated-heparin and desulfated-heparan sulfate, were found to have a high affinity to {sub 67}Ga. These results suggest that low- or de-sulfation of AGAG is related to the accumulation of {sub 67}Ga in inflammatory lesions such as granuloma. Moreover, these results suggest that {sub 67}Ga does not bind to glycosaminoglycans via sulfuric acid residues. (author).

  8. La conception des environnements d’apprentissage : de la théorie à la pratique / de la pratique à la théorie La conception des environnements d’apprentissage : de la théorie à la pratique / de la pratique à la théorie

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Quintin

    2000-06-01

    Full Text Available Cet article présente une approche en matière de conception d’environnements d’apprentissage multimédia qualifiée d’incrémentielle et d’itérative en ce sens qu’elle repose sur un affinage progressif du produit dans le cadre d’un partenariat étroit entre concepteur et client. L’approche proposée implique notamment la mise au point de prototypes qui feront l’objet de validations systématiques afin d’assurer l’adéquation avec les exigences et les contraintes du milieu d’accueil. S’appuyant sur une double posture de chercheur et de concepteur, l’approche se nourrit de la théorie en s’appuyant sur des modèles mais elle nourrit également la théorie à travers l’effort de modélisation qui l’accompagne.This paper describes a method of developing multimedia learning environments based on a close collaboration between the client and the team of developers. This approach uses different tools ans techniques (prototype, storyboard, concept maps... to progressively elaborate a product adequate to the client requirements and to ensure sufficient quality. Taking advantage of our specific situation of researchers and designers, the method is based on a coming and going between the pedagogical model and the development of a practical learning environment.

  9. DM ORI: A YOUNG STAR OCCULTED BY A DISTURBANCE IN ITS PROTOPLANETARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Joseph E.; Stassun, Keivan G.; Lund, Michael B.; Weintraub, David A. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 (United States); Cargile, Phillip [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Shappee, Benjamin J. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Siverd, Robert J. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Pepper, Joshua [Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015 (United States); Kochanek, Christopher S.; Gaudi, B. Scott; Stanek, Krzysztof Z.; Holoien, Thomas W.-S. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); James, David [Cerro Tololo InterAmerican Observatory, Casilla 603, La Serena (Chile); Kuhn, Rudolf B. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Beatty, Thomas G. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Prieto, Jose L. [Nucleo de Astronoma de la Facultad de Ingeniera, Universidad Diego Portales, Av. Ejercito 441, Santiago (Chile); Feldman, Daniel M.; Espaillat, Catherine C. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2016-11-01

    In some planet formation theories, protoplanets grow gravitationally within a young star’s protoplanetary disk, a signature of which may be a localized disturbance in the disk’s radial and/or vertical structure. Using time-series photometric observations by the Kilodegree Extremely Little Telescope South project and the All-Sky Automated Survey for SuperNovae, combined with archival observations, we present the discovery of two extended dimming events of the young star, DM Ori. This young system faded by ∼1.5 mag from 2000 March to 2002 August and then again in 2013 January until 2014 September (depth ∼1.7 mag). We constrain the duration of the 2000–2002 dimming to be < 860 days, and the event in 2013–2014 to be < 585 days, separated by ∼12.5 years. A model of the spectral energy distribution indicates a large infrared excess consistent with an extensive circumstellar disk. Using basic kinematic arguments, we propose that DM Ori is likely being periodically occulted by a feature (possibly a warp or perturbation) in its circumstellar disk. In this scenario, the occulting feature is located >6 au from the host star, moving at ∼14.6 km s{sup −1} and is ∼4.9 au in width. This localized structure may indicate a disturbance such as that which may be caused by a protoplanet early in its formation.

  10. A qualitative analysis of Māori and Pacific smokers' views on informed choice and smoking

    Science.gov (United States)

    Gifford, Heather; Tautolo, El-Shadan; Erick, Stephanie; Hoek, Janet; Gray, Rebecca; Edwards, Richard

    2016-01-01

    Objectives Tobacco companies frame smoking as an informed choice, a strategy that holds individuals responsible for harms they incur. Few studies have tested this argument, and even fewer have examined how informed indigenous smokers or those from minority ethnicities are when they start smoking. We explored how young adult Māori and Pacific smokers interpreted ‘informed choice’ in relation to smoking. Participants Using recruitment via advertising, existing networks and word of mouth, we recruited and undertook qualitative in-depth interviews with 20 Māori and Pacific young adults aged 18–26 years who smoked. Analyses Data were analysed using an informed-choice framework developed by Chapman and Liberman. We used a thematic analysis approach to identify themes that extended this framework. Results Few participants considered themselves well informed and none met more than the framework's initial two criteria. Most reflected on their unthinking uptake and subsequent addiction, and identified environmental factors that had facilitated uptake. Nonetheless, despite this context, most agreed that they had made an informed choice to smoke. Conclusions The discrepancy between participants' reported knowledge and understanding of smoking's risks, and their assessment of smoking as an informed choice, reflects their view of smoking as a symbol of adulthood. Policies that make tobacco more difficult to use in social settings could help change social norms around smoking and the ease with which initiation and addiction currently occur. PMID:27188813

  11. Narratives and traits in personality development among New Zealand Māori, Chinese, and European adolescents.

    Science.gov (United States)

    Reese, Elaine; Chen, Yan; McAnally, Helena M; Myftari, Ella; Neha, Tia; Wang, Qi; Jack, Fiona

    2014-07-01

    Narrative and trait levels of personality were assessed in a sample of 268 adolescents from age 12 to 21 from New Zealand Māori, Chinese, and European cultures. Adolescents narrated three critical events and completed a Big Five personality inventory. Each narrative was coded for causal and thematic coherence. NZ Chinese adolescents reported lower levels of extraversion, agreeableness, conscientiousness, and openness, and higher levels of neuroticism, than NZ Māori or European adolescents. Cultural differences were also evident in narrative coherence. Adolescents in all three groups demonstrated age-related increases in thematic coherence, but only NZ European adolescents demonstrated the expected age-related increases in causal coherence. Narrative identity and traits were distinct aspects of personality for younger adolescents, but were linked for middle and older adolescents. These findings support the importance of both narrative identity and traits in understanding personality development in adolescents across cultures. Copyright © 2014 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  12. The significance of socially-assigned ethnicity for self-identified Māori accessing and engaging with primary healthcare in New Zealand.

    Science.gov (United States)

    Reid, Jennifer; Cormack, Donna; Crowe, Marie

    2016-03-01

    Despite increased focus in New Zealand on reducing health inequities between Māori and New Zealand European ethnic groups, research on barriers and facilitators to primary healthcare access for Māori remains limited. In particular, there has been little interrogation of the significance of social-assignment of ethnicity for Māori in relation to engagement with predominantly non-Māori primary healthcare services and providers. A qualitative study was undertaken with a subsample (n = 40) of the broader Hauora Manawa Study to examine experiences of accessing and engaging with primary healthcare among adult urban Māori. Thematic analysis of in-depth interviews identified that participants perceived social-assignment as New Zealand European as an efficacious form of capital when interacting with predominantly non-Māori health professionals. Skin colour that was 'white' or was perceived to identify Māori as belonging to the 'dominant' New Zealand European ethnic group was reported as broadly advantageous and protective. In contrast, social-assignment as Māori was seen to be associated with risk of exposure to differential and discriminatory healthcare. Reducing the negative impacts of racialisation in a (neo)colonial society where 'White' cultural capital dominates requires increased recognition of the health-protective advantages of 'White' privilege and concomitant risks associated with socially-assigned categorisation of ethnicity as non-'White'. © The Author(s) 2015.

  13. TATA-binding protein-associated factor 7 regulates polyamine transport activity and polyamine analog-induced apoptosis.

    Science.gov (United States)

    Fukuchi, Junichi; Hiipakka, Richard A; Kokontis, John M; Nishimura, Kazuhiro; Igarashi, Kazuei; Liao, Shutsung

    2004-07-16

    Identification of the polyamine transporter gene will be useful for modulating polyamine accumulation in cells and should be a good target for controlling cell proliferation. Polyamine transport activity in mammalian cells is critical for accumulation of the polyamine analog methylglyoxal bis(guanylhydrazone) (MGBG) that induces apoptosis, although a gene responsible for transport activity has not been identified. Using a retroviral gene trap screen, we generated MGBG-resistant Chinese hamster ovary (CHO) cells to identify genes involved in polyamine transport activity. One gene identified by the method encodes TATA-binding protein-associated factor 7 (TAF7), which functions not only as one of the TAFs, but also a coactivator for c-Jun. TAF7-deficient cells had decreased capacity for polyamine uptake (20% of CHO cells), decreased AP-1 activation, as well as resistance to MGBG-induced apoptosis. Stable expression of TAF7 in TAF7-deficient cells restored transport activity (55% of CHO cells), AP-1 gene transactivation (100% of CHO cells), and sensitivity to MGBG-induced apoptosis. Overexpression of TAF7 in CHO cells did not increase transport activity, suggesting that TAF7 may be involved in the maintenance of basal activity. c-Jun NH2-terminal kinase inhibitors blocked MGBG-induced apoptosis without alteration of polyamine transport. Decreased TAF7 expression, by RNA interference, in androgen-independent human prostate cancer LN-CaP104-R1 cells resulted in lower polyamine transport activity (25% of control) and resistance to MGBG-induced growth arrest. Taken together, these results reveal a physiological function of TAF7 as a basal regulator for mammalian polyamine transport activity and MGBG-induced apoptosis.

  14. Immunotherapy of metastatic breast cancer patients with vitamin D-binding protein-derived macrophage activating factor (GcMAF).

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki; Ushijima, Naofumi

    2008-01-15

    Serum vitamin D3-binding protein (Gc protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of breast cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Patient serum Nagalase activity is proportional to tumor burden. The deglycosylated Gc protein cannot be converted to MAF, resulting in no macrophage activation and immunosuppression. Stepwise incubation of purified Gc protein with immobilized beta-galactosidase and sialidase generated probably the most potent macrophage activating factor (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages treated in vitro with GcMAF (100 pg/ml) are highly tumoricidal to mammary adenocarcinomas. Efficacy of GcMAF for treatment of metastatic breast cancer was investigated with 16 nonanemic patients who received weekly administration of GcMAF (100 ng). As GcMAF therapy progresses, the MAF precursor activity of patient Gc protein increased with a concomitant decrease in serum Nagalase. Because of proportionality of serum Nagalase activity to tumor burden, the time course progress of GcMAF therapy was assessed by serum Nagalase activity as a prognostic index. These patients had the initial Nagalase activities ranging from 2.32 to 6.28 nmole/min/mg protein. After about 16-22 administrations (approximately 3.5-5 months) of GcMAF, these patients had insignificantly low serum enzyme levels equivalent to healthy control enzyme levels, ranging from 0.38 to 0.63 nmole/min/mg protein, indicating eradication of the tumors. This therapeutic procedure resulted in no recurrence for more than 4 years. Copyright 2007 Wiley-Liss, Inc.

  15. Proton-binding capacity of Staphylococcus aureus wall teichoic acid and its role in controlling autolysin activity.

    Directory of Open Access Journals (Sweden)

    Raja Biswas

    Full Text Available Wall teichoic acid (WTA or related polyanionic cell wall glycopolymers are produced by most gram-positive bacterial species and have been implicated in various cellular functions. WTA and the proton gradient across bacterial membranes are known to control the activity of autolysins but the molecular details of these interactions are poorly understood. We demonstrate that WTA contributes substantially to the proton-binding capacity of Staphylococcus aureus cell walls and controls autolysis largely via the major autolysin AtlA whose activity is known to decline at acidic pH values. Compounds that increase or decrease the activity of the respiratory chain, a main source of protons in the cell wall, modulated autolysis rates in WTA-producing cells but did not affect the augmented autolytic activity observed in a WTA-deficient mutant. We propose that WTA represents a cation-exchanger like mesh in the gram-positive cell envelopes that is required for creating a locally acidified milieu to govern the pH-dependent activity of autolysins.

  16. BART Inhibits Pancreatic Cancer Cell Invasion by Rac1 Inactivation through Direct Binding to Active Rac1

    Directory of Open Access Journals (Sweden)

    Keisuke Taniuchi

    2012-05-01

    Full Text Available We report that Binder of Arl Two (BART plays a role in inhibiting cell invasion by regulating the activity of the Rho small guanosine triphosphatase protein Rac1 in pancreatic cancer cells. BART was originally identified as a binding partner of ADP-ribosylation factor-like 2, a small G protein implicated as a regulator of microtubule dynamics and folding. BART interacts with active forms of Rac1, and the BART-Rac1 complex localizes at the leading edges of migrating cancer cells. Suppression of BART increases active Rac1, thereby increasing cell invasion. Treatment of pancreatic cancer cells in which BART is stably knocked down with a Rac1 inhibitor decreases invasiveness. Thus, BART-dependent inhibition of cell invasion is likely associated with decreased active Rac1. Suppression of BART induces membrane ruffling and lamellipodial protrusion and increases peripheral actin structures in membrane ruffles at the edges of lamellipodia. The Rac1 inhibitor inhibits the lamellipodia formation that is stimulated by suppression of BART. Our results imply that BART regulates actin-cytoskeleton rearrangements at membrane ruffles through modulation of the activity of Rac1, which, in turn, inhibits pancreatic cancer cell invasion.

  17. Global Autorecognition and Activation of Complement by Mannan-Binding Lectin in a Mouse Model of Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Esben Axelgaard

    2017-01-01

    Full Text Available Increasing evidence links mannan-binding lectin (MBL to late vascular complications of diabetes. MBL is a complement-activating pattern recognition molecule of the innate immune system that can mediate an inflammation response through activation of the lectin pathway. In two recent animal studies, we have shown that autoreactivity of MBL is increased in the kidney in diabetic nephropathy. We hypothesize that long-term exposure to uncontrolled high blood glucose in diabetes may mediate formation of neoepitopes in several tissues and that MBL is able to recognize these structures and thus activate the lectin pathway. To test this hypothesis, we induced diabetes by injection of low-dose streptozotocin in MBL double-knockout (MBL/DKO mice. Development of diabetes was followed by measurements of blood glucose and urine albumin-to-creatinine ratio. Fluorophore-labelled recombinant MBL was injected intravenously in diabetic and nondiabetic mice followed by ex vivo imaging of several organs. We observed that MBL accumulated in the heart, liver, brain, lung, pancreas, and intestines of diabetic mice. We furthermore detected increased systemic complement activation after administration of MBL, thus indicating MBL-mediated systemic complement activation in these animals. These new findings indicate a global role of MBL during late diabetes-mediated vascular complications in various tissues.

  18. Complement binding to erythrocytes is associated with macrophage activation and reduced haemoglobin in Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Goka, B Q; Kwarko, H; Kurtzhals, J A

    2001-01-01

    parameters were significantly higher in DAT-positive than in DAT-negative patients (P macrophage activation. Plasma levels of haptoglobin, interleukin-10 and tumour necrosis factor-alpha did not vary between the groups...

  19. Synthesis, structure, DNA binding and anticancer activity of mixed ligand ruthenium(II) complex

    Science.gov (United States)

    Gilewska, Agnieszka; Masternak, Joanna; Kazimierczuk, Katarzyna; Trynda, Justyna; Wietrzyk, Joanna; Barszcz, Barbara

    2018-03-01

    In order to obtain a potential chemotherapeutic which is not affected on the normal BALB/3T3 cell line, a new arene ruthenium(II) complex {[RuCl(L1)(η6-p-cymene)]PF6}2 · H2O has been synthesized by a direct reaction of precursor, [{(η6-p-cymene)Ru(μ-Cl)}2Cl2], with N,N-chelating ligand (L1 - 2,2‧-bis(4,5-dimethylimidazole). The compound has been fully characterized by elemental analysis, X-ray diffraction, IR, UV-Vis and 1H, 13C NMR spectroscopies. X-ray analysis have confirmed that the compound crystallized in the monoclinic group Cc as an inversion twin. The asymmetric unit contains two symmetrically independent cationic complexes [RuCl(L1)(η6-p-cymene)]+ whose charge is balanced by two PF6- counterions. The shape of each cationic coordination polyhedral can be described as a distorted dodecahedron and shows a typical piano-stool geometry. In addition, an analysis of the crystal structure and the Hirshfeld surface analysis were used to detect and visualize important hydrogen bonds and intermolecular interaction. Moreover, the antiproliferative behavior of the obtained complex was assayed against three human cells: MV-4-11, LoVo, MCF-7 and BALB/3T3 - normal mice fibroblast cells. To predict a binding mode, a potential interaction of ruthenium complex with calf thymus DNA (CT-DNA) has been explored using UV absorption and circular dichroism (CD).

  20. Pro j 2 is mesquite profilin: molecular characteristics and specific IgE binding activity.

    Science.gov (United States)

    Ali-Sadeghi, Hosein; Khodadadi, Ali; Amini, Akram; Assarehzadegan, Mohammad-Ali; Sepahi, Najmeh; Zarinhadideh, Farnoosh

    2015-06-01

    Pollens from mesquite (Prosopis juliflora) are potent allergen responsible in causing immediate hypersensitivity reactions in susceptible people in tropical countries. This study aimed to clone, express and purify the mesquite pollen profilin (Pro j 2) as well as evaluating its nucleotide sequence homology in order to predict allergenic cross-reactivity with profilins of common allergenic plants. Immunoblotting assay and specific ELISA were applied to determine the immunoreactivity of sera from 35 patients who were allergic to mesquite pollen. The mesquite profilin-coding sequence was cloned into PTZ57R/T vector and amplified. The cDNA of mesquite pollen profilin was then expressed in Escherichia coli using pET-21b (+) vector and puri?ed by one-step Ni2+ a?nity chromatography. IgE binding capacity of the recombinant mesquite profiling (rPro j 2) was analyzed by specific ELISA, immunoblotting, and inhibition assays. cDNA nucleotide sequencing revealed an open reading frame of 399bp encoding for 133 amino acids which belongs to the profilin family. Seventeen patients (17/35, 48.57%) had significant specific IgE level for rPro j 2. Immunodetection and inhibition assays indicated that puri?ed rPro j 2 might be similar as that in the crude extract. Pro j 2, as a new allergen from mesquite pollen, was produced in E. coli with an IgE-reactivity similar to that of its natural counterpart. The amino acid sequences homology analysis of mesquite profilin and several profilin molecules from other plants showed high degree of cross-reactivity among plant-derived profilins from unrelated families.

  1. Effect of hypoxia on the activity and binding of glycolytic and associated enzymes in sea scorpion tissues

    Directory of Open Access Journals (Sweden)

    Lushchak V.I.

    1998-01-01

    Full Text Available The effect of hypoxia on the levels of glycogen, glucose and lactate as well as the activities and binding of glycolytic and associated enzymes to subcellular structures was studied in brain, liver and white muscle of the teleost fish, Scorpaena porcus. Hypoxia exposure decreased glucose levels in liver from 2.53 to 1.70 µmol/g wet weight and in muscle led to its increase from 3.64 to 25.1 µmol/g wet weight. Maximal activities of several enzymes in brain were increased by hypoxia: hexokinase by 23%, phosphoglucoisomerase by 47% and phosphofructokinase (PFK by 56%. However, activities of other enzymes in brain as well as enzymes in liver and white muscle were largely unchanged or decreased during experimental hypoxia. Glycolytic enzymes in all three tissues were partitioned between soluble and particulate-bound forms. In several cases, the percentage of bound enzymes was reduced during hypoxia; bound aldolase in brain was reduced from 36.4 to 30.3% whereas glucose-6-phosphate dehydrogenase fell from 55.7 to 28.7% bound. In muscle PFK was reduced from 57.4 to 41.7% bound. Oppositely, the proportion of bound aldolase and triosephosphate isomerase increased in hypoxic muscle. Phosphoglucomutase did not appear to occur in a bound form in liver and bound phosphoglucomutase disappeared in muscle during hypoxia exposure. Anoxia exposure also led to the disappearance of bound fructose-1,6-bisphosphatase in liver, whereas a bound fraction of this enzyme appeared in white muscle of anoxic animals. The possible function of reversible binding of glycolytic enzymes to subcellular structures as a regulatory mechanism of carbohydrate metabolism is discussed.

  2. Borreliacidal activity of Borrelia metal transporter A (BmtA binding small molecules by manganese transport inhibition

    Directory of Open Access Journals (Sweden)

    Wagh D

    2015-02-01

    Full Text Available Dhananjay Wagh,* Venkata Raveendra Pothineni,* Mohammed Inayathullah, Song Liu, Kwang-Min Kim, Jayakumar Rajadas Biomaterials and Advanced Drug Delivery Laboratory, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA *These authors contributed equally to this work  Abstract: Borrelia burgdorferi, the causative agent of Lyme disease, utilizes manganese (Mn for its various metabolic needs. We hypothesized that blocking Mn transporter could be a possible approach to inhibit metabolic activity of this pathogen and eliminate the infection. We used a combination of in silico protein structure prediction together with molecular docking to target the Borrelia metal transporter A (BmtA, a single known Mn transporter in Borrelia and screened libraries of FDA approved compounds that could potentially bind to the predicted BmtA structure with high affinity. Tricyclic antihistamines such as loratadine, desloratadine, and 3-hydroxydesloratadine as well as yohimbine and tadalafil demonstrated a tight binding to the in silico folded BmtA transporter. We, then, tested borreliacidal activity and dose response of the shortlisted compounds from this screen using a series of in vitro assays. Amongst the probed compounds, desloratadine exhibited potent borreliacidal activity in vitro at and above 78 µg/mL (250 µM. Borrelia treated with lethal doses of desloratadine exhibited a significant loss of intracellular Mn specifically and a severe structural damage to the bacterial cell wall. Our results support the possibility of developing a novel, targeted therapy to treat Lyme disease by targeting specific metabolic needs of Borrelia.  Keywords: Lyme disease, BmtA, Borrelia burgdorferi, desloratadine, Bac Titer-Glo assay

  3. The C-terminal domain of the Arabidopsis AtMBD7 protein confers strong chromatin binding activity

    International Nuclear Information System (INIS)

    Zemach, Assaf; Paul, Laju K.; Stambolsky, Perry; Efroni, Idan; Rotter, Varda; Grafi, Gideon

    2009-01-01

    The Arabidopsis MBD7 (AtMBD7) - a naturally occurring poly MBD protein - was previously found to be functional in binding methylated-CpG dinucleotides in vitro and localized to highly methylated chromocenters in vivo. Furthermore, AtMBD7 has significantly lower mobility within the nucleus conferred by cooperative activity of its three MBD motifs. Here we show that besides the MBD motifs, AtMBD7 possesses a strong chromatin binding domain located at its C-terminus designated sticky-C (StkC). Mutational analysis showed that a glutamic acid residue near the C-terminus is essential though not sufficient for the StkC function. Further analysis demonstrated that this motif can render nuclear proteins highly immobile both in plant and animal cells, without affecting their native subnuclear localization. Thus, the C-terminal, StkC motif plays an important role in fastening AtMBD7 to its chromosomal, CpG-methylated sites. It may be possible to utilize this motif for fastening nuclear proteins to their chromosomal sites both in plant and animal cells for research and gene therapy applications.

  4. Loss of the xeroderma pigmentosum group B protein binding site impairs p210 BCR/ABL1 leukemogenic activity

    International Nuclear Information System (INIS)

    Pannucci, N L; Li, D; Sahay, S; Thomas, E K; Chen, R; Tala, I; Hu, T; Ciccarelli, B T; Megjugorac, N J; Adams III, H C; Rodriguez, P L; Fitzpatrick, E R; Lagunoff, D; Williams, D A; Whitehead, I P

    2013-01-01

    Previous studies have demonstrated that p210 BCR/ABL1 interacts directly with the xeroderma pigmentosum group B (XPB) protein, and that XPB is phosphorylated on tyrosine in cells that express p210 BCR/ABL1. In the current study, we have constructed a p210 BCR/ABL1 mutant that can no longer bind to XPB. The mutant has normal kinase activity and interacts with GRB2, but can no longer phosphorylate XPB. Loss of XPB binding is associated with reduced expression of c-MYC and reduced transforming potential in ex-vivo clonogenicity assays, but does not affect nucleotide excision repair in lymphoid or myeloid cells. When examined in a bone marrow transplantation (BMT) model for chronic myelogenous leukemia, mice that express the mutant exhibit attenuated myeloproliferation and lymphoproliferation when compared with mice that express unmodified p210 BCR/ABL1. Thus, the mutant-transplanted mice show predominantly neutrophilic expansion and altered progenitor expansion, and have significantly extended lifespans. This was confirmed in a BMT model for B-cell acute lymphoblastic leukemia, wherein the majority of the mutant-transplanted mice remain disease free. These results suggest that the interaction between p210 BCR/ABL1 and XPB can contribute to disease progression by influencing the lineage commitment of lymphoid and myeloid progenitors

  5. Release of overexpressed CypB activates ERK signaling through CD147 binding for hepatoma cell resistance to oxidative stress.

    Science.gov (United States)

    Kim, Kiyoon; Kim, Hunsung; Jeong, Kwon; Jung, Min Hyung; Hahn, Bum-Soo; Yoon, Kyung-Sik; Jin, Byung Kwan; Jahng, Geon-Ho; Kang, Insug; Ha, Joohun; Choe, Wonchae

    2012-08-01

    Cyclophilin, a cytosolic receptor for the immunosuppressive drug cyclosporin A, plays a role in diverse pathophysiologies along with its receptor, CD147. Although the interaction between cyclophilin A and CD147 is well established in inflammatory disease, that of cyclophilin B (CypB) with CD147 has not been fully explored, especially in cancer cell biology, and the exact molecular mechanism underlying such an association is poorly understood. In this study, we first identified high expression levels of CypB in 54 % of hepatocellular carcinoma patient tissues but in only 12.5 % of normal liver tissues. Then, we demonstrated that CypB overexpression protects human hepatoma cells against oxidative stress through its binding to CD147; this protective effect depends on the peptidyl prolyl isomerase activity of CypB. siRNA-mediated knockdown of CypB expression rendered hepatoma cells more vulnerable to ROS-mediated apoptosis. Furthermore, we also determined that a direct interaction between secreted CypB and CD147 regulates the extracellular signal-regulated kinase intracellular signaling pathway and is indispensible for the protective functions of CypB. For the first time, we demonstrated that CypB has an essential function in protecting hepatoma cells against oxidative stress through binding to CD147 and regulating the ERK pathway.

  6. Expression, purification, and DNA-binding activity of the solubilized NtrC protein of Herbaspirillum seropedicae.

    Science.gov (United States)

    Twerdochlib, Adriana L; Chubatsu, Leda S; Souza, Emanuel M; Pedrosa, Fábio O; Steffens, M Berenice R; Yates, M Geoffrey; Rigo, Liu U

    2003-07-01

    NtrC is a bacterial enhancer-binding protein (EBP) that activates transcription by the sigma54 RNA polymerase holoenzyme. NtrC has a three domain structure typical of EBP family. In Herbaspirillum seropedicae, an endophytic diazotroph, NtrC regulates several operons involved in nitrogen assimilation, including glnAntrBC. In order to over-express and purify the NtrC protein, DNA fragments containing the complete structural gene for the whole protein, and for the N-terminal+Central and Central+C-terminal domains were cloned into expression vectors. The NtrC and NtrC(N-terminal+Central) proteins were over-expressed as His-tag fusion proteins upon IPTG addition, solubilized using N-lauryl-sarcosyl and purified by metal affinity chromatography. The over-expressed His-tag-NtrC(Central+C-terminal) fusion protein was partially soluble and was also purified by affinity chromatography. DNA band-shift assays showed that the NtrC protein and the Central+C-terminal domains bound specifically to the H. seropedicae glnA promoter region. The C-terminal domain is presumably necessary for DNA-protein interaction and DNA-binding does not require a phosphorylated protein.

  7. The single-strand DNA binding activity of human PC4 preventsmutagenesis and killing by oxidative DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jen-Yeu; Sarker, Altaf Hossain; Cooper, Priscilla K.; Volkert, Michael R.

    2004-02-01

    Human positive cofactor 4 (PC4) is a transcriptional coactivator with a highly conserved single-strand DNA (ssDNA) binding domain of unknown function. We identified PC4 as a suppressor of the oxidative mutator phenotype of the Escherichia coli fpg mutY mutant and demonstrate that this suppression requires its ssDNA binding activity. Yeast mutants lacking their PC4 ortholog Sub1 are sensitive to hydrogen peroxide and exhibit spontaneous and peroxide induced hypermutability. PC4 expression suppresses the peroxide sensitivity of the yeast sub l{Delta} mutant, suggesting that the human protein has a similar function. A role for yeast and human proteins in DNA repair is suggested by the demonstration that Sub1 acts in a peroxide-resistance pathway involving Rad2 and by the physical interaction of PC4 with the human Rad2 homolog XPG. We show XPG recruits PC4 to a bubble-containing DNA substrate with resulting displacement of XPG and formation of a PC4-DNA complex. We discuss the possible requirement for PC4 in either global or transcription-coupled repair of oxidative DNA damage to mediate the release of XPG bound to its substrate.

  8. Changes to smoking habits and addiction following tobacco excise tax increases: a comparison of Māori, Pacific and New Zealand European smokers.

    Science.gov (United States)

    Tucker, Megan R; Kivell, Bronwyn M; Laugesen, Murray; Grace, Randolph C

    2017-02-01

    To compare changes in smoking habit and psychological addiction in Māori/Pacific and NZ European smokers in response to two annual excise tax increases from 2012 to 2014. Smokers from New Zealand cities completed questionnaires at three time points before and after two excise tax increases. There were no significant differences in cigarettes per day or psychological addiction at baseline, but a linear decline in both measures was observed in Māori/Pacific and NZ European smokers. Cigarettes per day reduced at a greater rate for Māori/Pacific than NZ European smokers but dependence did not. Results indicated that Māori/Pacific smokers' demand for cigarettes may be more price sensitive than NZ European smokers. Implications for Public Health: Tobacco excise tax may be particularly effective for Māori/Pacific smokers and may contribute to reductions in smoking-related health inequalities in NZ. © 2016 The Authors.

  9. Identification of an estrogen receptor α non covalent ubiquitin-binding surface: role in 17β-estradiol-induced transcriptional activity.

    Science.gov (United States)

    Pesiri, Valeria; La Rosa, Piergiorgio; Stano, Pasquale; Acconcia, Filippo

    2013-06-15

    Ubiquitin (Ub)-binding domains (UBDs) located in Ub receptors decode the ubiquitination signal by non-covalently engaging the Ub modification on their binding partners and transduce the Ub signalling through Ub-based molecular interactions. In this way, inducible protein ubiquitination regulates diverse biological processes. The estrogen receptor alpha (ERα) is a ligand-activated transcription factor that mediates the pleiotropic effects of the sex hormone 17β-estradiol (E2). Fine regulation of E2 pleiotropic actions depends on E2-dependent ERα association with a plethora of binding partners and/or on the E2 modulation of receptor ubiquitination. Indeed, E2-induced ERα polyubiquitination triggers receptor degradation and transcriptional activity, and E2-dependent reduction in ERα monoubiquitination is crucial for E2 signalling. Monoubiquitinated proteins often contain UBDs, but whether non-covalent Ub-ERα binding could occur and play a role in E2-ERα signalling is unknown. Here, we report an Ub-binding surface within the ERα ligand binding domain that directs in vitro the receptor interaction with both ubiquitinated proteins and recombinant Ub chains. Mutational analysis reveals that ERα residues leucine 429 and alanine 430 are involved in Ub binding. Moreover, impairment of ERα association to ubiquitinated species strongly affects E2-induced ERα transcriptional activity. Considering the importance of UBDs in the Ub-based signalling network and the central role of different ERα binding partners in the modulation of E2-dependent effects, our discoveries provide novel insights into ERα activity that could also be relevant for ERα-dependent diseases.

  10. Acetylcholine-Binding Protein Engineered to Mimic the α4-α4 Binding Pocket in α4β2 Nicotinic Acetylcholine Receptors Reveals Interface Specific Interactions Important for Binding and Activity

    DEFF Research Database (Denmark)

    Shahsavar, Azadeh; Ahring, Philip K; Olsen, Jeppe A

    2015-01-01

    Neuronal α4β2 nicotinic acetylcholine receptors are attractive drug targets for psychiatric and neurodegenerative disorders and smoking cessation aids. Recently, a third agonist binding site between two α4 subunits in the (α4)(3)(β2)(2) receptor subpopulation was discovered. In particular, three......-yl)-1,4-diazepane], highlights the roles of the three residues in determining binding affinities and functional properties of ligands at the α4-α4 interface. Confirmed by mutational studies, our structures suggest a unique ligand-specific role of residue H142 on the α4 subunit. In the cocrystal...... that could not be predicted based on wild-type Ls-AChBP structures in complex with the same agonists. The results show that an unprecedented correlation between binding in engineered AChBPs and functional receptors can be obtained and provide new opportunities for structure-based design of drugs targeting...

  11. Structurally well-defined macrophage activating factor derived from vitamin D3-binding protein has a potent adjuvant activity for immunization.

    Science.gov (United States)

    Yamamoto, N; Naraparaju, V R

    1998-06-01

    Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice.

  12. Structure-activity studies of dicationically substituted bis-benzimidazoles against Giardia lamblia: correlation of antigiardial activity with DNA binding affinity and giardial topoisomerase II inhibition.

    Science.gov (United States)

    Bell, C A; Dykstra, C C; Naiman, N A; Cory, M; Fairley, T A; Tidwell, R R

    1993-01-01

    Nine dicationically substituted bis-benzimidazoles were examined for their in vitro activities against Giardia lamblia WB (ATCC 30957). The potential mechanisms of action of these compounds were evaluated by investigating the relationship among in vitro antigiardial activity and the affinity of the molecules for DNA and their ability to inhibit the activity of giardial topoisomerase II. Each compound demonstrated antigiardial activity, as measured by assessing the incorporation of [methyl-3H]thymidine by giardial trophozoites exposed to the test agents. Three compounds exhibited excellent in vitro antigiardial activities, with 50% inhibitory concentrations which compared very favorably with those of two currently used drugs, quinacrine HCl and metronidazole. Putative mechanisms of action for these compounds were suggested by the strong correlation observed among in vitro antigiardial activity and the affinity of the molecules for natural and synthetic DNA and their ability to inhibit the relaxation activity of giardial topoisomerase II. A strong correlation between the DNA binding affinity of these compounds and their inhibition of giardial topoisomerase II activity was also observed. Images PMID:8109934

  13. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Vowinckel, E; Reutens, D; Becher, B

    1997-01-01

    Activated glial cells are implicated in regulating and effecting the immune response that occurs within the CNS as part of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). The peripheral benzodiazepine receptor (PBR) is expressed in glial cells. We...... examined the utility of using in vitro and in vivo ligand binding to the PBR as a measure of lesion activity in autoimmune CNS demyelinating diseases. Applying a combined autoradiography and immunohistochemical approach to spinal cord and brain tissues from mice with EAE, we found a correlation at sites...... of inflammatory lesions between [3H]-PK11195 binding and immunoreactivity for the activated microglial/macrophage marker Mac-1/CD11b. In MS tissues, [3H]-PK11195 binding correlated with sites of immunoreactivity for the microglial/macrophage marker CD68, at the edges of chronic active plaques. Positron emission...

  14. N(epsilon)-carboxymethyllysine-modified proteins are unable to bind to RAGE and activate an inflammatory response.

    Science.gov (United States)

    Buetler, Timo M; Leclerc, Estelle; Baumeyer, Alexandra; Latado, Helia; Newell, John; Adolfsson, Oskar; Parisod, Véronique; Richoz, Janique; Maurer, Sarah; Foata, Francis; Piguet, Dominique; Junod, Sylviane; Heizmann, Claus W; Delatour, Thierry

    2008-03-01

    Advanced glycation endproducts (AGEs) containing carboxymethyllysine (CML) modifications are generally thought to be ligands of the receptor for AGEs, RAGEs. It has been argued that this results in the activation of pro-inflammatory pathways and diseases. However, it has not been shown conclusively that a CML-modified protein can interact directly with RAGE. Here, we have analyzed whether beta-lactoglobulin (bLG) or human serum albumin (HSA) modified chemically to contain only CML (10-40% lysine modification) can (i) interact with RAGE in vitro and (ii) interact with and activate RAGE in lung epithelial cells. Our results show that CML-modified b