WorldWideScience

Sample records for organically contaminated sandy

  1. Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapour extraction.

    Science.gov (United States)

    Albergaria, José Tomás; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2012-08-15

    This paper presents the study of the remediation of sandy soils containing six of the most common contaminants (benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene) using soil vapour extraction (SVE). The influence of soil water content on the process efficiency was evaluated considering the soil type and the contaminant. For artificially contaminated soils with negligible clay contents and natural organic matter it was concluded that: (i) all the remediation processes presented efficiencies above 92%; (ii) an increase of the soil water content led to a more time-consuming remediation; (iii) longer remediation periods were observed for contaminants with lower vapour pressures and lower water solubilities due to mass transfer limitations. Based on these results an easy and relatively fast procedure was developed for the prediction of the remediation times of real soils; 83% of the remediation times were predicted with relative deviations below 14%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Remediation of Diesel Fuel Contaminated Sandy Soil using Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Wulandari P.S.

    2010-01-01

    Full Text Available Ultrasonic cleaning has been used in industry for some time, but the application of ultrasonic cleaning in contaminated soil is just recently received considerable attention, it is a very new technique, especially in Indonesia. An ultrasonic cleaner works mostly by energy released from the collapse of millions of microscopic cavitations near the dirty surface. This paper investigates the use of ultrasonic wave to enhance remediation of diesel fuel contaminated sandy soil considering the ultrasonic power, soil particle size, soil density, water flow rate, and duration of ultrasonic waves application.

  3. Characterization of microbial and metal contamination in flooded New York City neighborhoods following Superstorm Sandy

    Science.gov (United States)

    Dueker, M.; O'Mullan, G. D.; Sahajpal, R.

    2013-12-01

    Large scale flooding of waterfront neighborhoods occurred in New York City (NYC) during Superstorm Sandy. While NYC waterways commonly experience combined sewer overflow (CSO) and associated water quality degradation during rain storms, Superstorm Sandy was unique in that these potentially contaminated waters were transported over the banks and into city streets and buildings. Sampling of waterways, storm debris on city streets, and flood water trapped in building basements occurred in the days following Sandy, including in neighborhoods bordering the Gowanus Canal and Newtown Creek, which are both Superfund sites known to frequently contain high levels of sewage associated bacteria and metal contamination. Samples enumerated for the sewage indicating bacterium, Enterococcus, suggest that well-flushed waterways recovered quickly from sewage contamination in the days following the storm, with Enterococci concentrations similar to background levels measured before flooding occurred. In contrast, storm debris on city streets and waters from flooded basements had much higher levels of sewage-associated bacteria days after flooding occurred. Analysis of 180,000 bacterial 16S rRNA gene sequences obtained from flood water samples and flood debris confirmed the presence of bacterial genera often associated with sewage impacted samples (e.g. Escherichia, Streptococcus, Clostridium, Trichococcus, Aeromonas) and a community composition similar to CSO discharge. Elemental analysis suggests low levels of metal contamination in most flood water, but much higher levels of Cu, Pb, and Cr were found in leach from some storm debris samples found adjacent to the Newtown Creek and Gowanus Canal superfund sites. These data suggest a rapid recovery of water quality in local waterways after Superstorm Sandy, but that trapped flood water and debris samples in urban neighborhoods retained elevated levels of microbial sewage pollution, and in some cases metal pollution, days after that

  4. Regional variability in bed-sediment concentrations of wastewater compounds, hormones and PAHs for portions of coastal New York and New Jersey impacted by hurricane Sandy

    Science.gov (United States)

    Phillips, Patrick J.; Gibson, Cathy A; Fisher, Shawn C.; Fisher, Irene; Reilly, Timothy J.; Smalling, Kelly L.; Romanok, Kristin M.; Foreman, William T.; ReVello, Rhiannon C.; Focazio, Michael J.; Jones, Daniel K.

    2016-01-01

    Bed sediment samples from 79 coastal New York and New Jersey, USA sites were analyzed for 75 compounds including wastewater associated contaminants, PAHs, and other organic compounds to assess the post-Hurricane Sandy distribution of organic contaminants among six regions. These results provide the first assessment of wastewater compounds, hormones, and PAHs in bed sediment for this region. Concentrations of most wastewater contaminants and PAHs were highest in the most developed region (Upper Harbor/Newark Bay, UHNB) and reflected the wastewater inputs to this area. Although the lack of pre-Hurricane Sandy data for most of these compounds make it impossible to assess the effect of the storm on wastewater contaminant concentrations, PAH concentrations in the UHNB region reflect pre-Hurricane Sandy conditions in this region. Lower hormone concentrations than predicted by the total organic carbon relation occurred in UHNB samples, suggesting that hormones are being degraded in the UHNB region.

  5. Controlled release fertilizer increased phytoremediation of petroleum-contaminated sandy soil.

    Science.gov (United States)

    Cartmill, Andrew D; Cartmill, Donita L; Alarcón, Alejandro

    2014-01-01

    A greenhouse experiment was conducted to determine the effect of the application of controlled release fertilizer [(CRF) 0, 4,6, or 8 kg m(-3)] on Lolium multiflorum Lam. survival and potential biodegradation of petroleum hydrocarbons (0, 3000, 6000, or 15000 mg kg(-1)) in sandy soil. Plant adaptation, growth, photosynthesis, total chlorophyll, and proline content as well as rhizosphere microbial population (culturable heterotrophic fungal and bacterial populations) and total petroleum hydrocarbon (TPH)-degradation were determined. Petroleum induced-toxicity resulted in reduced plant growth, photosynthesis, and nutrient status. Plant adaptation, growth, photosynthesis, and chlorophyll content were enhanced by the application of CRF in contaminated soil. Proline content showed limited use as a physiological indicator of petroleum induced-stress in plants. Bacterial and filamentous fungi populations were stimulated by the petroleum concentrations. Bacterial populations were stimulated by CRF application. At low petroleum contamination, CRF did not enhance TPH-degradation. However, petroleum degradation in the rhizosphere was enhanced by the application of medium rates of CRF, especially when plants were exposed to intermediate and high petroleum contamination. Application of CRF allowed plants to overcome the growth impairment induced by the presence of petroleum hydrocarbons in soils.

  6. Organisms associated with the sandy-beach bivalve Donax serra ...

    African Journals Online (AJOL)

    57: 134-136. BROWN, AC. & WEBB, S.c. 1994. Organisms associated \\.,.,ith burrowing whelks of the genus Bullia. S Afr. 1. Zool. 29: 144-151. BROWN, A.C., STENTON-DOZEY, J.~.E. & TRUEMAN, E.R.. 1989. Sandy-beach bivalves and gastropods; a comparison between Donax serra and Ruilia digitalis. Adv. mar. Bioi. 25:.

  7. Enhancing the biodegradation of oil in sandy sediments with choline: A naturally methylated nitrogen compound

    International Nuclear Information System (INIS)

    Mortazavi, Behzad; Horel, Agota; Anders, Jennifer S.; Mirjafari, Arsalan; Beazley, Melanie J.; Sobecky, Patricia A.

    2013-01-01

    We investigated how additions of choline, a naturally occurring methylated nitrogen-containing compound, accelerated hydrocarbon degradation in sandy sediments contaminated with moderately weathered crude oil (4000 mg kg −1 sediment). Addition of lauroylcholine chloride (LCC) and tricholine citrate (TCC) to oil contaminated sediments resulted in 1.6 times higher hydrocarbon degradation rates compared to treatments without added choline derivatives. However, the degradation rate constant for the oil contaminated sediments amended with LCC was similar to that in contaminated sediments amended with inorganic nitrogen, phosphorus, and glucose. Additions of LLC and TCC to sediments containing extensively weathered oil also resulted in enhanced mineralization rates. Cultivation-free 16S rRNA analysis revealed the presence of an extant microbial community with clones closely related to known hydrocarbon degraders from the Gammaproteobacteria, Alphaproteobacteria, and Firmicutes phyla. The results demonstrate that the addition of minimal amounts of organic compounds to oil contaminated sediments enhances the degradation of hydrocarbons. -- Highlights: •Aerobic degradation of weathered crude oil in sandy sediments was determined. •The effect of input of choline on degradation rates was determined. •16S rRNA clone library analyses were used to examine the microbial phylogeny. •The bacterial community was consisted of clones related to hydrocarbon degraders. •Hydrocarbon degradation in sandy sediments was accelerated by addition of choline. -- Choline, a naturally occurring methylated nitrogen-containing compound, accelerated hydrocarbon degradation in sandy sediments by an extant microbial community

  8. EFFECT OF IRRIGATION INTERVAL AND SOIL AMENDMENTS ON SOIL ORGANIC C, NITROGEN AND POTASSIUM OF SANDY SOIL AND GROWTH OF Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    Djajadi

    2013-06-01

    Full Text Available Inherently, sandy soil is the unfertile soil with low in all aspects of soil fertility and has a low capacity to retain water applied nutrients. To improve the fertility of sandy soil as media growth of Jatropha curcas, clay and organic matter may have important role when they are incorporated to the sandy soil. This study investigated the effect of irrigation interval and incorporation of clay together with organic matter to sandy soil on soil organic C, N, and K and growth of J. curcas. The rates of clay and organic matter incorporated to top sandy soil were 5% clay + 0.8% organic matter and 10% clay + 1.6% organic matter. Two irrigation intervals tested were 10 day and 20 day. The results found that incorporation of 10% clay + 1.6% organic matter to sandy soil increased soil C organic, N total and exchangeable K which in turn increased number of leaves and number of lateral branches of J curcas. Irrigation intervals had no effect on all parameters observed.

  9. Microbial sewage contamination associated with Superstorm Sandy flooding in New York City

    Science.gov (United States)

    O'Mullan, G.; Dueker, M.; Sahajpal, R.; Juhl, A. R.

    2013-05-01

    The lower Hudson River Estuary commonly experiences degraded water quality following precipitation events due to the influence of combined sewer overflows. During Super-storm Sandy large scale flooding occurred in many waterfront areas of New York City, including neighborhoods bordering the Gowanus Canal and Newtown Creek Superfund sites known to frequently contain high levels of sewage associated bacteria. Water, sediment, and surface swab samples were collected from Newtown Creek and Gowanus Canal flood impacted streets and basements in the days following the storm, along with samples from the local waterways. Samples were enumerated for the sewage indicating bacterium, Enterococcus, and DNA was extracted and amplified for 16S ribosomal rRNA gene sequence analysis. Waterways were found to have relatively low levels of sewage contamination in the days following the storm. In contrast, much higher levels of Enterococci were detected in basement and storm debris samples and these bacteria were found to persist for many weeks in laboratory incubations. These data suggest that substantial sewage contamination occurred in some flood impacted New York City neighborhoods and that the environmental persistence of flood water associated microbes requires additional study and management attention.

  10. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site

    International Nuclear Information System (INIS)

    Lu, Zhe; Zeng, Fangang; Xue, Nandong; Li, Fasheng

    2012-01-01

    The occurrence and the distribution of 16 USEPA priority pollutants polycyclic aromatic hydrocarbons (PAHs) were investigated in two alluvial sandy soil profiles and in their four sizes of organo-mineral particles ( 200 μm coarse sand) beside a typical oil sludge storage site in eastern China. PAHs were mainly enriched in the surface soil (0–20 cm) and the concentrations declined in deeper soils, from 3.68 to 0.128 μg/g in profile 1 and 10.8 to 0.143 μg/g in profile 2 (dry wt.). The PAHs in the upper soil layers of this study site mainly came from combustion pollution, whereas in the lower soil layers petroleum contamination became the major source of PAHs. The content of different sized organo-mineral particles of this alluvial sandy soil decreased in the following order: fine sand > coarse sand > silt > clay. X-ray diffraction (XRD) results showed that all the different sized soil fractions of this study site were dominated by quartz, calcite and feldspar. The particle surface became smoother with size increasing as shown by scanning electron microscope (SEM) images. PAH concentrations varied largely in different sized soil fractions. The highest PAH concentration was associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. Soil organic matter (SOM) content, mineral composition and particle surface characteristics were suggested as three main factors affecting the distribution of PAHs in different sized organo-mineral particles. This study will help to understand the distribution and transport characteristics of PAHs in soil profiles at petroleum-contaminated sites. -- Highlights: ► PAH concentrations varied largely in different sized fractions. ► The highest PAH concentrations were associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. ► Soil organic matter (SOM) is an important factor to dominate the distribution of PAHs in this study site.

  11. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhe [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Anwai, Dayangfang 8, Beijing 100012 (China); Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (Canada); School of Environment, Renmin University of China, Zhongguancun Street 59, Beijing 100872 (China); Zeng, Fangang [School of Environment, Renmin University of China, Zhongguancun Street 59, Beijing 100872 (China); Xue, Nandong [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Anwai, Dayangfang 8, Beijing 100012 (China); Li, Fasheng, E-mail: ligulax@vip.sina.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Anwai, Dayangfang 8, Beijing 100012 (China)

    2012-09-01

    The occurrence and the distribution of 16 USEPA priority pollutants polycyclic aromatic hydrocarbons (PAHs) were investigated in two alluvial sandy soil profiles and in their four sizes of organo-mineral particles (< 2 {mu}m clay, 2-20 {mu}m silt, 20-200 {mu}m fine sand, and > 200 {mu}m coarse sand) beside a typical oil sludge storage site in eastern China. PAHs were mainly enriched in the surface soil (0-20 cm) and the concentrations declined in deeper soils, from 3.68 to 0.128 {mu}g/g in profile 1 and 10.8 to 0.143 {mu}g/g in profile 2 (dry wt.). The PAHs in the upper soil layers of this study site mainly came from combustion pollution, whereas in the lower soil layers petroleum contamination became the major source of PAHs. The content of different sized organo-mineral particles of this alluvial sandy soil decreased in the following order: fine sand > coarse sand > silt > clay. X-ray diffraction (XRD) results showed that all the different sized soil fractions of this study site were dominated by quartz, calcite and feldspar. The particle surface became smoother with size increasing as shown by scanning electron microscope (SEM) images. PAH concentrations varied largely in different sized soil fractions. The highest PAH concentration was associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. Soil organic matter (SOM) content, mineral composition and particle surface characteristics were suggested as three main factors affecting the distribution of PAHs in different sized organo-mineral particles. This study will help to understand the distribution and transport characteristics of PAHs in soil profiles at petroleum-contaminated sites. -- Highlights: Black-Right-Pointing-Pointer PAH concentrations varied largely in different sized fractions. Black-Right-Pointing-Pointer The highest PAH concentrations were associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. Black-Right-Pointing-Pointer Soil organic

  12. Fine organic particles in a sandy beach system (Puck Bay, Baltic Sea

    Directory of Open Access Journals (Sweden)

    Lech Kotwicki

    2005-06-01

    Full Text Available A total of over 550 samples of particulate organic matter (POM were obtained from swash and groundwater samples taken on a monthly basis from seven localities on the sandy shores of Puck Bay in 2002 and 2003. Sandy sediment cores from the swash zone were collected to assess the amount of POM in the pore waters. The mean annual concentrations of POM varied between localities from 20 to 500 mg in groundwater and from 6 to 200 mg dm-3 in swash water. The carbon/nitrogen (C/N ratio in suspended matter was always higher in groundwater (annual mean 12 than in swash water (annual mean 7. The C/N ratio indicates a local, algal origin of POM in the shallow coastal zone.

  13. Experimental Investigation of Phenanthrene Pollutant Removal Efficiency for Contaminated Sandy Soil by Enhanced Soil Washing

    Directory of Open Access Journals (Sweden)

    Saif salah Alquzweeni

    2016-12-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are environmental concerns that must be removed to acceptable level. This research assesses two agents (Na2EDTA and SDS to remediate contaminated sandy soil, spiked with 500mg/kg phenanthrene. Five sets of experiments (batch are applied to investigate the optimal of five influencing factors on soil remediation: Na2EDTA-SDS concentration, liquid/Solid ratio, stirring speed, pH value of flushing solution and mixing time. The results of batch experiments showed that SDS has high phenanthrene removal efficiency (90%, while Na2EDTA shows no phenanthrene removal. pH has no effect on phenanthrene removal. To study the influence of flow rates on the removal efficiency of contaminants, two column tests with hydraulic gradient of 0.2 and 1.2 conducted by SDS solution. The results illustrate that high phenanthrene removal from soil obtained by 1.2 hydraulic gradient condition. The SDS flushing solution removed approximately 69% and 81% of phenanthrene from soil under low and high hydraulic gradients, respectively. It was concluded that phenanthrene removal depend on surfactant micelles formation. Overall, the study showed that soil flushing removal efficiency for contaminants depends on the flushing agents selectivity and affinity to the contaminants and the condition of hydraulic gradient.

  14. Bibliography of sandy beaches and sandy beach organisms on the African continent

    CSIR Research Space (South Africa)

    Bally, R

    1986-01-01

    Full Text Available This bibliography covers the literature relating to sandy beaches on the African continent and outlying islands. The bibliography lists biological, chemical, geographical and geological references and covers shallow marine sediments, surf zones off...

  15. Effect of soil texture on phytoremediation of arsenic-contaminated soils

    Science.gov (United States)

    Pallud, C. E.; Matzen, S. L.; Olson, A.

    2015-12-01

    Soil arsenic (As) contamination is a global problem, resulting in part from anthropogenic activities, including the use of arsenical pesticides and treated wood, mining, and irrigated agriculture. Phytoextraction using the hyperaccumulating fern Pteris vittata is a promising new technology to remediate soils with shallow arsenic contamination with minimal site disturbance. However, many challenges still lie ahead for a global application of phytoremediation. For example, remediation times using P. vittata are on the order of decades. In addition, most research on As phytoextraction with P. vittata has examined As removal from sandy soils, where As is more available, with little research focusing on As removal from clayey soils, where As is less available. The objective of this study is to determine the effects of soil texture and soil fertilization on As extraction by P. vittata, to optimize remediation efficiency and decrease remediation time under complex field conditions. A field study was established 2.5 years ago in an abandoned railroad grade contaminated with As (average 85.5 mg kg-1) with texture varying from sandy loam to silty clay loam. Organic N, inorganic N, organic P, inorganic P, and compost were applied to separate sub-plots; control ferns were grown in untreated soil. In a parallel greenhouse experiment, ferns were grown in sandy loam soil extracted from the field (180 mg As kg-1), with similar treatments as those used at the field site, plus a high phosphate treatment and treatments with arbuscular mycorrhizal fungi. In the field study, fern mortality was 24% higher in clayey soil than in sandy soil due to waterlogging, while As was primarily associated with sandy soil. Results from the sandy loam soil indicate that soil treatments did not significantly increase As phytoextraction, which was lower in phosphate-treated ferns than in control ferns, both in the field and greenhouse study. Under greenhouse conditions, ferns treated with organic N were

  16. Distribution of transformed organic matter in structural units of loamy sandy soddy-podzolic soil

    Science.gov (United States)

    Kogut, B. M.; Yashin, M. A.; Semenov, V. M.; Avdeeva, T. N.; Markina, L. G.; Lukin, S. M.; Tarasov, S. I.

    2016-01-01

    The effect of land use types and fertilizing systems on the structural and aggregate composition of loamy sandy soddy-podzolic soil and the quantitative parameters of soil organic matter has been studied. The contribution of soil aggregates 2-1 mm in size to the total Corg reserve in the humus horizon is higher than the contributions of other aggregates by 1.3-4.2 times. Reliable correlations have been revealed between the contents of total (Corg), labile (Clab), and active (C0) organic matter in the soil. The proportion of C0 is 44-70% of Clab extractable by neutral sodium pyrophosphate solution. The contributions of each of the 2-1, 0.5-0.25, and fractions to the total C0 reserve are 14-21%; the contributions of each of the other fractions are 4-12%. The chemically labile and biologically active components of humic substances reflect the quality changes of soil organic matter under agrogenic impacts. A conceptual scheme has been proposed for the subdivision of soil organic matter into the active, slow (intermediate), and passive pools. In the humus horizon of loamy sandy soddy-podzolic soil, the active, slow, and passive pools contain 6-11, 34-65, and 26-94% of the total Corg, respectively.

  17. Hydrogen peroxide treatment of TCE contaminated soil

    International Nuclear Information System (INIS)

    Hurst, D.H.; Robinson, K.G.; Siegrist, R.L.

    1993-01-01

    Solvent contaminated soils are ubiquitous in the industrial world and represent a significant environmental hazard due to their persistence and potentially negative impacts on human health and the environment. Environmental regulations favor treatment of soils with options which reduce the volume and toxicity of contaminants in place. One such treatment option is the in-situ application of hydrogen peroxide to soils contaminated with chlorinated solvents such as trichloroethylene (TCE). This study investigated hydrogen peroxide mass loading rates on removal of TCE from soils of varying organic matter content. Batch experiments conducted on contaminated loam samples using GC headspace analysis showed up to 80% TCE removal upon peroxide treatment. Column experiments conducted on sandy loam soils with high organic matter content showed only 25% TCE removal, even at hydrogen peroxide additions of 25 g peroxide per kg soil

  18. COSOLVENT EFFECTS ON SORPTION AND MOBILITY OF ORGANIC CONTAMINANTS IN SOILS

    Science.gov (United States)

    Batch equilibrium and column miscible displacement techniques were used to investigate the influence of an organic cosolvent (methanol) on the sorption and transport of three hydrophobic organic chemicals (HOCs) — naphthalene, phenanthrene, and diuron herbicide — in a sandy surfa...

  19. Responses of soil fungal community to the sandy grassland restoration in Horqin Sandy Land, northern China.

    Science.gov (United States)

    Wang, Shao-Kun; Zuo, Xiao-An; Zhao, Xue-Yong; Li, Yu-Qiang; Zhou, Xin; Lv, Peng; Luo, Yong-Qing; Yun, Jian-Ying

    2016-01-01

    Sandy grassland restoration is a vital process including re-structure of soils, restoration of vegetation, and soil functioning in arid and semi-arid regions. Soil fungal community is a complex and critical component of soil functioning and ecological balance due to its roles in organic matter decomposition and nutrient cycling following sandy grassland restoration. In this study, soil fungal community and its relationship with environmental factors were examined along a habitat gradient of sandy grassland restoration: mobile dunes (MD), semi-fixed dunes (SFD), fixed dunes (FD), and grassland (G). It was found that species abundance, richness, and diversity of fungal community increased along with the sandy grassland restoration. The sequences analysis suggested that most of the fungal species (68.4 %) belonged to the phylum of Ascomycota. The three predominant fungal species were Pleospora herbarum, Wickerhamomyces anomalus, and Deconica Montana, accounting for more than one fourth of all the 38 species. Geranomyces variabilis was the subdominant species in MD, Pseudogymnoascus destructans and Mortierella alpine were the subdominant species in SFD, and P. destructans and Fungi incertae sedis were the dominant species in FD and G. The result from redundancy analysis (RDA) and stepwise regression analysis indicated that the vegetation characteristics and soil properties explain a significant proportion of the variation in the fungal community, and aboveground biomass and C:N ratio are the key factors to determine soil fungal community composition during sandy grassland restoration. It was suggested that the restoration of sandy grassland combined with vegetation and soil properties improved the soil fungal diversity. Also, the dominant species was found to be alternative following the restoration of sandy grassland ecosystems.

  20. Investigation of plutonium behaviour in artificially contaminated soil

    International Nuclear Information System (INIS)

    Lukshiene, B.; Druteikiene, R.

    2006-01-01

    The vertical migration and transformation of plutonium chemical forms artificially supplied to sandy loam columns after its exposure to natural conditions for about one year was investigated. An analysis of artificially contaminated samples after one year had shown that 81% of 239 Pu 4+ and 44% of 239 Pu 3+ were accumulated in the 0-5 cm layer of sandy loam. The data of sequential analysis of the same type of soil at the adequate artificial contamination level after one month exposure under laboratory conditions are presented as well. Pu 239 binding to soil geochemical fractions was rather uneven. The largest amount of Pu 239 (60 %) was determined in the residual fraction. Consequently, it can be assumed that organic substances and some inorganic compounds, which usually are the main components of a residual fraction, affects the retention and migration of plutonium in the soil. (authors)

  1. Investigation of plutonium behaviour in artificially contaminated soil

    International Nuclear Information System (INIS)

    Luksiene, B.; Druteikiene, R.

    2006-01-01

    The vertical migration and transformation of plutonium chemical forms artificially supplied to sandy loam columns after its exposure to natural conditions for about one year was investigated. An analysis of artificially contaminated samples after one year had shown that 81% of 239 Pu 4+ and 44% of 239 Pu 3+ were accumulated in the 0-5 cm layer of sandy loam. The data of sequential analysis of the same type of soil at the adequate artificial contamination level after one month exposure under laboratory conditions are presented as well. Pu 239 binding to soil geochemical fractions was rather uneven. The largest amount of Pu 239 (60%) was determined in the residual fraction. Consequently, it can be assumed that organic substances and some inorganic compounds, which usually are the main components of a residual fraction, affects the retention and migration of plutonium in the soil. (authors)

  2. The effect of vadose zone heterogeneities on vapor phase migration and aquifer contamination by volatile organics

    Energy Technology Data Exchange (ETDEWEB)

    Seneviratne, A.; Findikakis, A.N. [Bechtel Corporation, San Francisco, CA (United States)

    1995-03-01

    Organic vapors migrating through the vadose zone and inter-phase transfer can contribute to the contamination of larger portions of aquifers than estimated by accounting only for dissolved phase transport through the saturated zone. Proper understanding of vapor phase migration pathways is important for the characterization of the extent of both vadose zone and the saturated zone contamination. The multiphase simulation code T2VOC is used to numerically investigate the effect of heterogeneties on the vapor phase migration of chlorobenzene at a hypothetical site where a vapor extraction system is used to remove contaminants. Different stratigraphies consisting of alternate layers of high and low permeability materials with soil properties representative of gravel, sandy silt and clays are evaluated. The effect of the extent and continuity of low permeability zones on vapor migration is evaluated. Numerical simulations are carried out for different soil properties and different boundary conditions. T2VOC simulations with zones of higher permeability were made to assess the role of how such zones in providing enhanced migration pathways for organic vapors. Similarly, the effect of the degree of saturation of the porous medium on vapor migration was for a range of saturation values. Increased saturation reduces the pore volume of the medium available for vapor diffusion. Stratigraphic units with higher aqueous saturation can retard the vapor phase migration significantly.

  3. 40 CFR 141.61 - Maximum contaminant levels for organic contaminants.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant levels for organic contaminants. 141.61 Section 141.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.61 Maximum contaminant...

  4. Phytovolatilization of Organic Contaminants.

    Science.gov (United States)

    Limmer, Matt; Burken, Joel

    2016-07-05

    Plants can interact with a variety of organic compounds, and thereby affect the fate and transport of many environmental contaminants. Volatile organic compounds may be volatilized from stems or leaves (direct phytovolatilization) or from soil due to plant root activities (indirect phytovolatilization). Fluxes of contaminants volatilizing from plants are important across scales ranging from local contaminant spills to global fluxes of methane emanating from ecosystems biochemically reducing organic carbon. In this article past studies are reviewed to clearly differentiate between direct- and indirect-phytovolatilization and we discuss the plant physiology driving phytovolatilization in different ecosystems. Current measurement techniques are also described, including common difficulties in experimental design. We also discuss reports of phytovolatilization in the literature, finding that compounds with low octanol-air partitioning coefficients are more likely to be phytovolatilized (log KOA < 5). Reports of direct phytovolatilization at field sites compare favorably to model predictions. Finally, future research needs are presented that could better quantify phytovolatilization fluxes at field scale.

  5. Partitioning of organic matter and heavy metals in a sandy soil: Effects of extracting solution, solid to liquid ratio and pH

    NARCIS (Netherlands)

    Fest, P.M.J.; Temminghoff, E.J.M.; Comans, R.N.J.; Riemsdijk, van W.H.

    2008-01-01

    In sandy soils the behavior of heavy metals is largely controlled by soil organic matter (solid and dissolved organic matter; SOC and DOC). Therefore, knowledge of the partitioning of organic matter between the solid phase and soil solution is essential for adequate predictions of the total

  6. 15N Isotopic Study on Decomposition of Organic Residues Incorporated into Alluvial and Sandy Saline Soils

    International Nuclear Information System (INIS)

    El-Kholi, A. F.; Galal, Y. G. M.

    2004-01-01

    Incubation experiment was conducted to study the effect of the nitrogenous fertilizer on the decomposition and mineralization of organic residues (soybean powdered forage) as well as the release of the soil inorganic nitrogen. This technique was carried out using two types of soils, one is alluvial and the other is saline sandy soil collected from Fayoum governorate. Soybean forage has an organic carbon 23.1%, total N 1.6% and C/N ratio 14.4. Regarding the effect of incubation period on the two soil samples, the evolved NH 4 -N was generally reached its highest peak after 30-45 days, in the presence of either the added 15 No3-fertilizer solely or in combination with soybean forage. Reversible trend was occurred with regard to the evolved No3-N. The highest peak of evolved No3-N recorded in unfertilized control, as compared to 15 No3-N treatment, at 30 day incubation period indicated that the addition of labeled mineral fertilizer had appreciably enhanced the immobilization process. Net nitrification revealed that it was the highest in unfertilized control soil where it was significantly decreased in the treated two soil samples. Gross mineralization as affected by the addition of soybean forage in combination with labeled mineral fertilizer had been promoted by 75% in the alluvial soil and by 18% in the sandy saline soil, as compared with the soil samples received 15 No3-fertilizer only. Gross immobilization, in soil samples received 15 No3-fertilizer plus soybean forage had surpassed those received 15 No3-fertilizer only by 16% in the alluvial soil and by 25% in the sandy saline soil. (Authors)

  7. Superfund record of decision (EPA Region 4): Potter's septic tank service pits site, Brunswick County, Sandy Creek, NC. (First remedial action), August 1992. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    The 5-acre Potter's Septic Tank Service Pits (Potter's Pits) is located in a rural section of Brunswick County, North Carolina. The site is situated within a residential community known as the Town of Sandy Creek. Disposal practices consisted of placing petroleum waste products and septic tank sludges either in shallow unlined pits or directly on the land surface. The ROD addresses the ground water treatment and contaminated soils at the site. Primary contaminants of concern affecting surface and subsurface soil are VOCs and semi-VOCs, including napthalene, metals, and pesticides. Ground water is contaminated with VOCs, including benzene, ethyl benzene, toluene; other organics including naphthalene, and xylenes; and metals, including chromium and lead. The selected remedial action for the site includes excavating all soils that exceed the soil clean-up standards; treating contaminated soils by using an onsite ex-situ thermal desorption process; performing secondary treatment of the concentrated organic contaminants, and sampling and analyzing the treatment residue

  8. 40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant level goals for organic contaminants. 141.50 Section 141.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level...

  9. Different Behavior of Enteric Bacteria and Viruses in Clay and Sandy Soils after Biofertilization with Swine Digestate

    Science.gov (United States)

    Fongaro, Gislaine; García-González, María C.; Hernández, Marta; Kunz, Airton; Barardi, Célia R. M.; Rodríguez-Lázaro, David

    2017-01-01

    Enteric pathogens from biofertilizer can accumulate in the soil, subsequently contaminating water and crops. We evaluated the survival, percolation and leaching of model enteric pathogens in clay and sandy soils after biofertilization with swine digestate: PhiX-174, mengovirus (vMC0), Salmonella enterica Typhimurium and Escherichia coli O157:H7 were used as biomarkers. The survival of vMC0 and PhiX-174 in clay soil was significantly lower than in sandy soil (iT90 values of 10.520 ± 0.600 vs. 21.270 ± 1.100 and 12.040 ± 0.010 vs. 43.470 ± 1.300, respectively) and PhiX-174 showed faster percolation and leaching in sandy soil than clay soil (iT90 values of 0.46 and 2.43, respectively). S. enterica Typhimurium was percolated and inactivated more slowly than E. coli O157:H7 (iT90 values of 9.340 ± 0.200 vs. 6.620 ± 0.500 and 11.900 ± 0.900 vs. 10.750 ± 0.900 in clay and sandy soils, respectively), such that E. coli O157:H7 was transferred more quickly to the deeper layers of both soils evaluated (percolation). Our findings suggest that E. coli O157:H7 may serve as a useful microbial biomarker of depth contamination and leaching in clay and sandy soil and that bacteriophage could be used as an indicator of enteric pathogen persistence. Our study contributes to development of predictive models for enteric pathogen behavior in soils, and for potential water and food contamination associated with biofertilization, useful for risk management and mitigation in swine digestate recycling. PMID:28197137

  10. Cadastral valuation of land contaminated with radionuclides

    Science.gov (United States)

    Ratnikov, A. N.; Sapozhnikov, P. M.; Sanzharova, N. I.; Sviridenko, D. G.; Zhigareva, T. L.; Popova, G. I.; Panov, A. V.; Kozlova, I. Yu.

    2016-01-01

    The methodology and procedure for cadastral valuation of land in the areas contaminated with radionuclides are presented. The efficiency of rehabilitation measures applied to decrease crop contamination to the levels satisfying sanitary-hygienic norms is discussed. The differentiation of cadastral value of radioactively contaminated agricultural lands for the particular farms and land plots is suggested. An example of cadastral valuation of agricultural land contaminated during the Chernobyl Nuclear Power Plant accident is given. It is shown that the use of sandy and loamy sandy soddy-podzolic soils with the 137Cs contamination of 37-185 and >185 kBq/m2 for crop growing is unfeasible. The growing of grain crops and potatoes on clay loamy soddy-podzolic soils with the 137Cs contamination of 555-740 kBq/m2 is unprofitable. The maximum cadastral value of radioactively contaminated lands is typical of leached chernozems.

  11. Organic contaminants in onsite wastewater treatment systems

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  12. Hurricane Sandy science plan: impacts of environmental quality and persisting contaminant exposure

    Science.gov (United States)

    Caskie, Sarah A.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry

  13. Science and Sandy: Lessons Learned

    Science.gov (United States)

    Werner, K.

    2013-12-01

    Following Hurricane Sandy's impact on the mid-Atlantic region, President Obama established a Task Force to '...ensure that the Federal Government continues to provide appropriate resources to support affected State, local, and tribal communities to improve the region's resilience, health, and prosperity by building for the future.' The author was detailed from NOAA to the Task Force between January and June 2013. As the Task Force and others began to take stock of the region's needs and develop plans to address them, many diverse approaches emerged from different areas of expertise including: infrastructure, management and construction, housing, public health, and others. Decision making in this environment was complex with many interests and variables to consider and balance. Although often relevant, science and technical expertise was not always at the forefront of this process. This talk describes the author's experience with the Sandy Task Force focusing on organizing scientific expertise to support the work of the Task Force. This includes a description of federal activity supporting Sandy recovery efforts, the role of the Task Force, and lessons learned from developing a science support function within the Task Force.

  14. INTERACTION’S EFFECT OF ORGANIC MATERIAL AND AGGREGATION ON EXTRACTION EFFICIENCY OF TPHS FROM PETROLEUM CONTAMINATED SOILS WITH MAE

    Directory of Open Access Journals (Sweden)

    H. Ganjidoust and Gh. Naghizadeh

    2005-10-01

    Full Text Available Microwave-Assisted Extraction (MAE is a type of low-temperature thermal desorption process that its numerous advantages have caused a wide spread use of it. Microwave heating is a potentially attractive technique as it provides volumetric heating process to improve heating efficiencies as compared with conventional techniques. The ability to rapidly heat the sample solvent mixture is inherent to MAE and the main advantage of this technique. Presently MAE has been shown to be one of the best technologies for removing environmental pollutants specially PAHs, phenols and PCBs from soils and sediments. Five different mixtures and types of aggregation (Sand, Top soil, Kaolinite besides three concentrations of crude oil as a contaminant (1000, 5000 and 10000 mg/L were considered. The results indicated that regardless of aggregation, the presence of humus component in soil reduces the efficiency. Minimum and maximum efficiencies were for sandy soil (containing organic components and kaolinite (without any organic content, respectively. According to the results of this research when some amount of humus and organic materials are available in the matrix, it causes the extraction efficiency to perform as a function of just humus materials but not aggregation. Increasing the concentration of crude oil reduced the efficiency with a sharp steep for higher concentration (5000-10000 mg/L and less steeper for lower concentration (1000-5000 mg/L. The concentration of the contaminant, works just as an independent function with extraction time and aggregation factors. The extraction period of 10 min. can be suggested as an optimum extraction time in FMAE for PAHs contaminated soils.

  15. Young of the year bluefish (Pomatomus saltatrix) as a bioindicator of estuarine health: Establishing a new baseline for persistent organic pollutants after Hurricane Sandy for selected estuaries in New Jersey and New York.

    Science.gov (United States)

    Smalling, Kelly L; Deshpande, Ashok D; Blazer, Vicki S; Dockum, Bruce W; Timmons, DeMond; Sharack, Beth L; Baker, Ronald J; Samson, Jennifer; Reilly, Timothy J

    2016-06-30

    Atlantic coastal bays of the US are essential habitat for young of year bluefish (Pomatomus saltatrix). Their residence in these estuaries during critical life stages, high lipid content, and piscivory make bluefish an ideal bioindicator species for evaluating estuarine health. Individual whole fish from four estuaries impacted by Hurricane Sandy were collected in August 2013, analyzed for a suite of persistent organic pollutants (POPs) including polychlorinated biphenyls, polybrominated diphenyl ethers and organochlorine pesticides and evaluated using health metrics. Concentrations in whole bluefish differed by estuary; however, concentrations for many POPs decreased or were similar to those observed prior to the hurricane. Prevalence of the ectoparasitic gill isopod (Lironeca ovalis) varied by estuary and no relationships between contaminants and lesions were observed. Bluefish should be considered for monitoring programs and, if sampled frequently, could be an effective bioindicator of incremental and episodic changes in contaminants within aquatic food webs. Published by Elsevier Ltd.

  16. Factors influencing the contamination rate of human organ-cultured corneas.

    Science.gov (United States)

    Röck, Daniel; Wude, Johanna; Bartz-Schmidt, Karl U; Yoeruek, Efdal; Thaler, Sebastian; Röck, Tobias

    2017-12-01

    To assess the influence of donor, environment and storage factors on the contamination rate of organ-cultured corneas, to consider the microbiological species causing corneal contamination and to investigate the corresponding sensitivities. Data from 1340 consecutive donor corneas were analysed retrospectively. Logistic regression analysis was used to assess the influence of different factors on the contamination rate of organ-cultured corneas for transplantation. The mean annual contamination rate was 1.8 ± 0.4% (range: 1.3-2.1%); 50% contaminations were of fungal origin with exclusively Candida species, and 50% contaminations were of bacterial origin with Staphylococcus species being predominant. The cause of donor death including infection and multiple organ dysfunction syndrome increased the risk of bacterial or fungal contamination during organ culture (p = 0.007 and p = 0.014, respectively). Differentiating between septic and aseptic donors showed an increased risk of contamination for septic donors (p = 0.0020). Mean monthly temperature including warmer months increased the risk of contamination significantly (p = 0.0031). Sex, donor age, death to enucleation, death to corneoscleral disc excision and storage time did not increase the risk of contamination significantly. The genesis of microbial contamination in organ-cultured donor corneas seems to be multifactorial. The main source of fungal or bacterial contamination could be resident species from the skin flora. The rate of microbial contamination in organ-cultured donor corneas seems to be dependent on the cause of donor death and mean monthly temperature. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  17. Organic contaminants in soil : desorption kinetics and microbial degradation

    NARCIS (Netherlands)

    Schlebaum, W.

    1999-01-01

    The availability of organic contaminants in soils or sediments for microbial degradation or removal by physical means (e.g.) soil washing or soil venting) depends on the desorption kinetics of these contaminants from the soil matrix. When the organic contaminants desorb very slow from the

  18. Nitrate reduction in an unconfined sandy aquifer

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Boesen, Carsten; Kristiansen, Henning

    1991-01-01

    of total dissolved ions in the NO3- free anoxic zone indicates the downward migration of contaminants and that active nitrate reduction is taking place. Nitrate is apparently reduced to N2 because both nitrite and ammonia are absent or found at very low concentrations. Possible electron donors......Nitrate distribution and reduction processes were investigated in an unconfined sandy aquifer of Quaternary age. Groundwater chemistry was studied in a series of eight multilevel samplers along a flow line, deriving water from both arable and forested land. Results show that plumes of nitrate...... processes of O2 and NO3- occur at rates that are fast compared to the rate of downward water transport. Nitrate-contaminated groundwater contains total contents of dissolved ions that are two to four times higher than in groundwater derived from the forested area. The persistence of the high content...

  19. Inorganic and organic contaminants in Alaskan shorebird eggs.

    Science.gov (United States)

    Saalfeld, David T; Matz, Angela C; McCaffery, Brian J; Johnson, Oscar W; Bruner, Phil; Lanctot, Richard B

    2016-05-01

    Many shorebird populations throughout North America are thought to be declining, with potential causes attributed to habitat loss and fragmentation, reduced prey availability, increased predation, human disturbance, and increased exposure to environmental pollutants. Shorebirds may be particularly vulnerable to contaminant exposure throughout their life cycle, as they forage primarily on invertebrates in wetlands, where many contaminants accumulate disproportionately in the sediments. Therefore, it is important to document and monitor shorebird populations thought to be at risk and assess the role that environmental contaminants may have on population declines. To investigate potential threats and provide baseline data on shorebird contaminant levels in Alaskan shorebirds, contaminant concentrations were evaluated in shorebird eggs from 16 species residing in seven geographic distinct regions of Alaska. Similar to previous studies, low levels of most inorganic and organic contaminants were found, although concentrations of several inorganic and organic contaminants were higher than those of previous studies. For example, elevated strontium levels were observed in several species, especially black oystercatcher (Haematopus bachmani) sampled in Prince William Sound, Alaska. Additionally, contaminant concentrations varied among species, with significantly higher concentrations of inorganic contaminants found in eggs of pectoral sandpiper (Calidris melanotos), semipalmated sandpiper (Calidris pusilla), black oystercatcher, and bar-tailed godwit (Limosa lapponica). Similarly, significantly higher concentrations of some organic contaminants were found in the eggs of American golden plover (Pluvialis dominica), black-bellied plover (Pluvialis squatarola), pacific golden plover (Pluvialis fulva), bar-tailed godwit, and semipalmated sandpiper. Despite these elevated levels, current concentrations of contaminants in shorebird eggs suggest that breeding environments are

  20. A Coordinated USGS Science Response to Hurricane Sandy

    Science.gov (United States)

    Jones, S.; Buxton, H. T.; Andersen, M.; Dean, T.; Focazio, M. J.; Haines, J.; Hainly, R. A.

    2013-12-01

    enhancing our work with other agencies. The data, information, and tools that are being produced by implementing this plan will: (1) further characterize impacts and changes, (2) guide mitigation and restoration of impacted communities and ecosystems, (3) inform a redevelopment strategy aimed at developing resilient coastal communities and ecosystems, (4) improve preparedness and responsiveness to the next hurricane or similar coastal disaster, and (5) enable improved hazard assessment, response, and recovery for future storms along the hurricane prone shoreline of the United States. The activities outlined in the plan are organized in five themes based on impact types and information needs. These USGS science themes are: Theme 1: Coastal topography and bathymetry. Theme 2: Impacts to coastal beaches and barriers. Theme 3: Impacts of storm surge and estuarine and bay hydrology. Theme 4: Impacts on environmental quality and persisting contaminant exposures. Theme 5: Impacts to coastal ecosystems, habitats, and fish and wildlife. The major emphases in the implementation of this plan are interacting with stakeholders to better understand their specific data and information needs, engaging with other Federal agencies and non-governmental agencies to encourage collaboration and avoid duplication, defining the best way to make information available, and providing applications of USGS science and expertise to support decision-making.

  1. Hurricane Sandy science plan: coastal impact assessments

    Science.gov (United States)

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: coastal topography and bathymetry, impacts to coastal beaches and barriers, impacts of storm surge, including disturbed estuarine and bay hydrology, impacts on environmental quality and persisting contaminant exposures, impacts to coastal ecosystems, habitats, and fish and wildlife. This fact sheet focuses assessing impacts to coastal beaches and barriers.

  2. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel

    NARCIS (Netherlands)

    Rietkerk, M.G.; Ouedraogo, T.; Kumar, L.; Sanou, S.; Langevelde, F. van; Kiema, A.; Koppel, J. van de; Andel, J. van; Hearne, J.; Skidmore, A.K.; Ridder, N. de; Stroosnijder, L.; Prins, H.H.T.

    2002-01-01

    We studied fine-scale spatial plant distribution in relation to the spatial distribution of erodible soil particles, organic matter, nutrients and soil water on a sandy to sandy loam soil in the Sahel. We hypothesized that the distribution of annual plants would be highly spatially autocorrelated

  3. Studies on Thiobacilli spp. isolated from sandy beaches of Kerala

    Digital Repository Service at National Institute of Oceanography (India)

    Gore, P.S.; Raveendran, O.; Unnithan, R.V.

    Occurrence, isolation and oxidative activity of Thiobacilli spp. from some sandy beaches of Kerala are reported. These organisms were encountered in polluted beaches and were dominant during monsoon in all the beaches...

  4. Removal of trace organic chemical contaminants by a membrane bioreactor.

    Science.gov (United States)

    Trinh, T; van den Akker, B; Stuetz, R M; Coleman, H M; Le-Clech, P; Khan, S J

    2012-01-01

    Emerging wastewater treatment processes such as membrane bioreactors (MBRs) have attracted a significant amount of interest internationally due to their ability to produce high quality effluent suitable for water recycling. It is therefore important that their efficiency in removing hazardous trace organic contaminants be assessed. Accordingly, this study investigated the removal of trace organic chemical contaminants through a full-scale, package MBR in New South Wales, Australia. This study was unique in the context of MBR research because it characterised the removal of 48 trace organic chemical contaminants, which included steroidal hormones, xenoestrogens, pesticides, caffeine, pharmaceuticals and personal care products (PPCPs). Results showed that the removal of most trace organic chemical contaminants through the MBR was high (above 90%). However, amitriptyline, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, omeprazole, sulphamethoxazole and trimethoprim were only partially removed through the MBR with the removal efficiencies of 24-68%. These are potential indicators for assessing MBR performance as these chemicals are usually sensitive to changes in the treatment systems. The trace organic chemical contaminants detected in the MBR permeate were 1 to 6 orders of magnitude lower than guideline values reported in the Australian Guidelines for Water Recycling. The outcomes of this study enhanced our understanding of the levels and removal of trace organic contaminants by MBRs.

  5. Contaminated environments in the subsurface and bioremediation: organic contaminants.

    Science.gov (United States)

    Holliger, C; Gaspard, S; Glod, G; Heijman, C; Schumacher, W; Schwarzenbach, R P; Vazquez, F

    1997-07-01

    Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low biomass production and good electron acceptor availability, and they are sometimes the only possible solution. This review will focus on three important groups of environmental organic contaminants: hydrocarbons, chlorinated and nitroaromatic compounds. Whereas hydrocarbons are oxidized and completely mineralized under anaerobic conditions in the presence of electron acceptors such as nitrate, iron, sulfate and carbon dioxide, chlorinated and nitroaromatic compounds are reductively transformed. For the aerobic often persistent polychlorinated compounds, reductive dechlorination leads to harmless products or to compounds that are aerobically degradable. The nitroaromatic compounds are first reductively transformed to the corresponding amines and can subsequently be bound to the humic fraction in an aerobic process. Such new findings and developments give hope that in the near future contaminated aquifers can efficiently be remediated, a prerequisite for a sustainable use of the precious-subsurface drinking water resources.

  6. Legal Considerations for Health Care Practitioners After Superstorm Sandy.

    Science.gov (United States)

    Hershey, Tina Batra; Van Nostrand, Elizabeth; Sood, Rishi K; Potter, Margaret

    2016-06-01

    During disaster response and recovery, legal issues often arise related to the provision of health care services to affected residents. Superstorm Sandy led to the evacuation of many hospitals and other health care facilities and compromised the ability of health care practitioners to provide necessary primary care. This article highlights the challenges and legal concerns faced by health care practitioners in the aftermath of Sandy, which included limitations in scope of practice, difficulties with credentialing, lack of portability of practitioner licenses, and concerns regarding volunteer immunity and liability. Governmental and nongovernmental entities employed various strategies to address these concerns; however, legal barriers remained that posed challenges throughout the Superstorm Sandy response and recovery period. We suggest future approaches to address these legal considerations, including policies and legislation, additional waivers of law, and planning and coordination among multiple levels of governmental and nongovernmental organizations. (Disaster Med Public Health Preparedness. 2016;10:518-524).

  7. Microseisms from Superstorm Sandy

    Science.gov (United States)

    Sufri, Oner; Koper, Keith D.; Burlacu, Relu; de Foy, Benjamin

    2014-09-01

    We analyzed and visualized the microseisms generated by Superstorm Sandy as recorded by the Earthscope Transportable Array (TA) during late October through early November of 2012. We applied continuous, frequency-dependent polarization analysis to the data and were able to track the course of Sandy as it approached the Florida coastline and, later, the northeastern coast of the U.S. The energy level of Sandy was roughly comparable to the background microseism level generated by wave-wave interactions in the North Atlantic and North Pacific oceans. The maximum microseismic power and degree of polarization were observed across the TA when Sandy sharply changed its direction to the west-northwest (specifically, towards Long Island, New York) on October 29. The westward turn also briefly changed the dominant microseism period from 5 s to 8 s. We identified three other microseismic source regions during the 18 day observation period. In particular, peak-splitting in the double frequency band and the orientation of the 5 s and 8 s polarization vectors revealed two contemporaneous microseism sources, one in the North Atlantic and one in the Northeast Pacific, for the dates of November 3-4. Predictions of microseismic excitation based on ocean wave models showed consistency with the observed microseismic energy generated by Sandy and other storms.

  8. Biochar: a green sorbent to sequester acidic organic contaminants

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2015-04-01

    Biochar is a carbon rich product of biomass pyrolysis that exhibits a high sorption potential towards a wide variety of inorganic and organic contaminants. Because it is a valuable soil additive and a potential carbon sink that can be produced from renewable resources, biochar has gained growing attention for the development of more sustainable remediation strategies. A lot of research efforts have been dedicated to the sorption of hydrophobic contaminants and metals to biochar. Conversely, the understanding of the sorption of acidic organic contaminants remains limited, and questions remain on the influence of biochar characteristics (e.g. ash content) on the sorption behaviour of acidic organic contaminants. To address this knowledge gap, sorption batch experiments were conducted with a series of structurally similar acidic organic contaminants covering a range of dissociation constant (2,4-D, MCPA, 2,4-DB and triclosan). The sorbents selected for experimentation included a series of 10 biochars covering a range of characteristics, multiwalled carbon nanotubes as model for pure carbonaceous phases, and an activated carbon as benchmark. Overall, sorption coefficient [L/kg] covered six orders of magnitude and generally followed the order 2,4-D pH dependent lipophilicity ratio (i.e. D instead of Kow), ash content and ionic strength are key factors influencing the sorption of acidic organic contaminants to biochars. Overall, the identified factors, as well as the environmental matrix, should be carefully considered when selecting the type of biochar for sequestration purposes.

  9. Aqueous adsorption and removal of organic contaminants by carbon nanotubes

    International Nuclear Information System (INIS)

    Yu, Jin-Gang; Zhao, Xiu-Hui; Yang, Hua; Chen, Xiao-Hong; Yang, Qiaoqin; Yu, Lin-Yan; Jiang, Jian-Hui; Chen, Xiao-Qing

    2014-01-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. - Highlights: • We summarize the most recent research progress of CNTs for removal of organics. • Adsorption mechanisms between CNTs and organics were elucidated in detail. • The developing trends and prospects of CNTs for removal of organics were discussed

  10. Aqueous adsorption and removal of organic contaminants by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jin-Gang, E-mail: yujg@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Zhao, Xiu-Hui; Yang, Hua [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Chen, Xiao-Hong [Collaborative Innovation Center of Resource-conserving and Environment-friendly Society and Ecological Civilization, Changsha, Hunan 410083 (China); Yang, Qiaoqin [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada); Yu, Lin-Yan [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Jiang, Jian-Hui [College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Chen, Xiao-Qing, E-mail: xqchen@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China)

    2014-06-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. - Highlights: • We summarize the most recent research progress of CNTs for removal of organics. • Adsorption mechanisms between CNTs and organics were elucidated in detail. • The developing trends and prospects of CNTs for removal of organics were discussed.

  11. Radioactive contamination of aquatic media and organisms

    International Nuclear Information System (INIS)

    Fontaine, Y.

    1960-01-01

    After a brief account of the radioactive wastes produced by peaceful or military uses of Atomic Industry, the author first describes a series of observations carried out 'in the field' on the extent of contamination in aquatic organisms with respect to that of the medium. The experimental studies are then analysed, with reference both to the radioisotope metabolism and to the factors and types of contamination of aquatic organisms by wastes from atomic industry. A precise experimental project is presented at the end of the paper, including almost 300 references. (author) [fr

  12. For successfully completed clean-ups treating different kinds of contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, A.; Bentz, R.; Huerzeler, R.A.; Matter, B. [Ciba Specialty Chemicals Inc., Basel (Switzerland)

    2003-07-01

    In this Special Session 4 remediation projects are presented, that were run in different environments and under different constraints. The projects / sites showed the following characteristics: Amponville (F) This project represents a successful clean up of an uncontrolled dump by drums containing Chlorophenol-wastes from an old agrochemical production site. Contaminated sandy soil had to be excavated and treated in a Thermal Desorption unit on site. An interactive CD-ROM data medium was created for documentation. Niederglatt (CH) A old industrial area contaminated by organics (hydrocarbons, polyaromatics) as well as by chromium Cr(VI) was remediated by soil-excavation. The soil had to be analysed, separated and treated accordingly. Chromium-contaminated material had to be treated physically and chemically. The soil affected by organic pollutants had to be washed off-site. Special attention was given to the water flowing off the site, groundwater control and to dust deposit measures in the near environment. Dielsdorf (CH) This site contained wastes from former Lindane-production, containing HCH, Dinitro-o-Cresol and metals like As, Cu and Pb. The contaminated soil and the wastes had to be excavated, analysed, partly backfilled and the rest treated in different ways. Residual pollutants concentration was calculated following a risk-analysis/mobility-calculation and agreed upon with the authorities before starting the remediation work. Schweizerhalle (CH) A huge fire left an area of contaminated soil that was affected by argo-chemicals and their incineration-products. The most harmful pollutants were mercury and phosphoric esters. After coverage by a tent and lowering of the groundwater level the gravel and the sandy soil was excavated and treated in an on-site large-scale Soil Washing and Treating installation by using surfactants and other reagents to separate the pollutants. Most of the soil could be backfilled on-site. Less than 5% of the soil volume containing

  13. Soil contamination with cadmium, consequences and remediation using organic amendments.

    Science.gov (United States)

    Khan, Muhammad Amjad; Khan, Sardar; Khan, Anwarzeb; Alam, Mehboob

    2017-12-01

    Cadmium (Cd) contamination of soil and food crops is a ubiquitous environmental problem that has resulted from uncontrolled industrialization, unsustainable urbanization and intensive agricultural practices. Being a toxic element, Cd poses high threats to soil quality, food safety, and human health. Land is the ultimate source of waste disposal and utilization therefore, Cd released from different sources (natural and anthropogenic), eventually reaches soil, and then subsequently bio-accumulates in food crops. The stabilization of Cd in contaminated soil using organic amendments is an environmentally friendly and cost effective technique used for remediation of moderate to high contaminated soil. Globally, substantial amounts of organic waste are generated every day that can be used as a source of nutrients, and also as conditioners to improve soil quality. This review paper focuses on the sources, generation, and use of different organic amendments to remediate Cd contaminated soil, discusses their effects on soil physical and chemical properties, Cd bioavailability, plant uptake, and human health risk. Moreover, it also provides an update of the most relevant findings about the application of organic amendments to remediate Cd contaminated soil and associated mechanisms. Finally, future research needs and directions for the remediation of Cd contaminated soil using organic amendments are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Sediment Chemistry and Toxicity in Barnegat Bay, New Jersey: Pre- and Post- Hurricane Sandy, 2012-2013.

    Science.gov (United States)

    Romanok, Kristin M.; Szabo, Zoltan; Reilly, Timothy J.; Defne, Zafer; Ganju, Neil K.

    2016-01-01

    Hurricane Sandy made landfall in Barnegat Bay, October, 29, 2012, damaging shorelines and infrastructure. Estuarine sediment chemistry and toxicity were investigated before and after to evaluate potential environmental health impacts and to establish post-event baseline sediment-quality conditions. Trace element concentrations increased throughout Barnegat Bay up to two orders of magnitude, especially north of Barnegat Inlet, consistent with northward redistribution of silt. Loss of organic compounds, clay, and organic carbon is consistent with sediment winnowing and transport through the inlets and sediment transport modeling results. The number of sites exceeding sediment quality guidance levels for trace elements tripled post-Sandy. Sediment toxicity post-Sandy was mostly unaffected relative to pre-Sandy conditions, but at the site with the greatest relative increase for trace elements, survival rate of the test amphipod decreased (indicating degradation). This study would not have been possible without comprehensive baseline data enabling the evaluation of storm-derived changes in sediment quality.

  15. EFFECTS OF ALKALINE SANDY LOAM ON SULFURIC SOIL ACIDITY AND SULFIDIC SOIL OXIDATION

    Directory of Open Access Journals (Sweden)

    Patrick S. Michael

    2015-08-01

    Full Text Available  In poor soils, addition of alkaline sandy loam containing an adequate proportion of sand, silt and clay would add value by improving the texture, structure and organic matter (OM for general use of the soils. In acid sulfate soils (ASS, addition of alkaline sandy would improve the texture and leach out salts as well as add a sufficient proportion of OM for vegetation establishment. In this study, addition of alkaline sandy loam into sulfuric soil effectively increased the pH, lowered the redox and reduced the sulfate content, the magnitude of the effects dependent on moisture content. Addition of alkaline sandy loam in combination with OM was highly effective than the effects of the lone alkaline sandy loam. When alkaline sandy was added alone or in combination with OM into sulfidic soil, the effects on pH and the redox were similar as in the sulfuric soil but the effect on sulfate content was variable. The effects under aerobic conditions were higher than under anaerobic conditions. The findings of this study have important implications for the general management of ASS where lime availability is a concern and its application is limited.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 42-54

  16. Reducing Organic Contamination in NASA JSC Astromaterial Curation Facility

    Science.gov (United States)

    Calaway, M. J.; Allen, C. C.; Allton, J. H.

    2013-01-01

    Future robotic and human spaceflight missions to the Moon, Mars, asteroids and comets will require handling and storing astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. Much was learned from the rigorous attempts to minimize and monitor organic contamination during Apollo, but it was not adequate for current analytical requirements; thus [1]. OSIRIS-REx, Hayabusa-2, and future Mars sample return will require better protocols for reducing organic contamination. Future isolation con-tainment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study established the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs [2, 3]. After standard ultra-pure water (UPW) cleaning, the majority of organic contaminates found were hydrocarbons, plasticizers, silicones, and solvents. Hydro-carbons loads (> C7) ranged from 1.9 to 11.8 ng/cm2 for TD-GC-MS wafer exposure analyses and 5.0 to 19.5 ng/L for TD-GC-MS adsorbent tube exposure. Plasticizers included peracetic acid sterilization were used in the atmospheric de-contamination (R) cabinets. Later, Lunar curation gloveboxes were degreased with a pressurized Freon 113 wash. Today, UPW has replaced Freon as the standard cleaning procedure, but does not have the degreasing solvency power of Freon. Future Cleaning Studies: Cleaning experiments are cur-rently being orchestrated to study how to degrease and reduce organics in a JSC curation glovebox lower than the established baseline. Several new chemicals in the industry have replaced traditional degreasing solvents such as Freon and others that are now federally restricted. However, these new suites of chemicals remain untested for lowering organics in curation gloveboxes. 3M's HFE-7100DL and Du

  17. Microbial interactions with organic contaminants in soil: Definitions, processes and measurement

    International Nuclear Information System (INIS)

    Semple, Kirk T.; Doick, Kieron J.; Wick, Lukas Y.; Harms, Hauke

    2007-01-01

    There has been and continues to be considerable scientific interest in predicting bioremediation rates and endpoints. This requires the development of chemical techniques capable of reliably predicting the bioavailability of organic compounds to catabolically active soil microbes. A major issue in understanding the link between chemical extraction and bioavailability is the problem of definition; there are numerous definitions, of varying degrees of complexity and relevance, to the interaction between organic contaminants and microorganisms in soil. The aim of this review is to consider the bioavailability as a descriptor for the rate and extent of biodegradation and, in an applied sense, bioremediation of organic contaminants in soil. To address this, the review will (i) consider and clarify the numerous definitions of bioavailability and discuss the usefulness of the term 'bioaccessibility'; (ii) relate definition to the microbiological and chemical measurement of organic contaminants' bioavailability in soil, and (iii) explore the mechanisms employed by soil microorganisms to attack organic contaminants in soil. - Understanding organic contaminant's behaviour in soil is key to chemically predicting biodegradation

  18. [Dynamic changes of surface soil organic carbon and light-fraction organic carbon after mobile dune afforestation with Mongolian pine in Horqin Sandy Land].

    Science.gov (United States)

    Shang, Wen; Li, Yu-qiang; Wang, Shao-kun; Feng, Jing; Su, Na

    2011-08-01

    This paper studied the dynamic changes of surface (0-15 cm) soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in 25- and 35-year-old sand-fixing Mongolian pine (Pinus sylvestris var. mongolica) plantations in Horqin Sandy Land, with a mobile dune as a comparison site. After the afforestation on mobile dune, the content of coarse sand in soil decreased, while that of fine sand and clay-silt increased significantly. The SOC and LFOC contents also increased significantly, but tended to decrease with increasing soil depth. Afforestation increased the storages of SOC and LFOC in surface soil, and the increment increased with plantation age. In the two plantations, the increment of surface soil LFOC storage was much higher than that of SOC storage, suggesting that mobile dune afforestation had a larger effect on surface soil LFOC than on SOC.

  19. Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: Consequences on biodegradation

    International Nuclear Information System (INIS)

    Cébron, Aurélie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Leyval, Corinne

    2013-01-01

    Although high PAH content and detection of PAH-degraders, the PAH biodegradation is limited in aged-contaminated soils due to low PAH availability (i.e., 1%). Here, we tried to experimentally increase the soil PAH availability by keeping both soil properties and contamination composition. Organic extract was first removed and then re-incorporated in the raw soil as fresh contaminants. Though drastic, this procedure only allowed a 6-time increase in the PAH availability suggesting that the organic constituents more than ageing were responsible for low availability. In the re-contaminated soil, the mineralization rate was twice more important, the proportion of 5–6 cycles PAH was higher indicating a preferential degradation of lower molecular weight PAH. The extraction treatment induced bacterial and fungal community structures modifications, Pseudomonas and Fusarium solani species were favoured, and the relative quantity of fungi increased. In re-contaminated soil the percentage of PAH-dioxygenase gene increased, with 10 times more Gram negative representatives. -- Highlights: ► Re-incorporation of soil organic extract increased 6-times the PAH availability. ► Complexity of organic contamination is the main driver of PAH availability. ► Biodegradation of PAH with less than 5-cycles increased with increasing PAH availability. ► Pseudomonas and Fusarium species are favoured when PAH availability increased. -- More than ageing, the complexity of organic contamination is the main driver of PAH availability

  20. Organic Contamination Baseline Study on NASA JSC Astromaterial Curation Gloveboxes

    Science.gov (United States)

    Calaway, Michael J.; Allton, J. H.; Allen, C. C.; Burkett, P. J.

    2013-01-01

    Future planned sample return missions to carbon-rich asteroids and Mars in the next two decades will require strict handling and curation protocols as well as new procedures for reducing organic contamination. After the Apollo program, astromaterial collections have mainly been concerned with inorganic contamination [1-4]. However, future isolation containment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs.

  1. The organic geochemistry of a sanitary landfill leachate plume

    Science.gov (United States)

    Barker, J. F.; Tessmann, J. S.; Plotz, P. E.; Reinhard, M.

    1986-02-01

    Leachate from the North Bay municipal landfill has contaminated an unconfined, sandy aquifer throughout the 700 m flow system from the site to a discharge zone at a creek. The major organic contaminants identified are aromatic hydrocarbons, especially substituted benzenes. The high groundwater velocity of about 75 m yr -1 and the low organic sorption properties of the sand have permitted non-transformed contaminants to spread throughout the total flow system. There is considerable temporal and spatial variability in groundwater chemistry. Most of the aqueous organic carbon has a nominal molecular weight of anarobic segment of the flow system 1,2,4-trimethylbenzene and 1,4-dichlorobenzene are equally persistent, but in the final, less anaerobic segment, the former appears to be degraded more rapidly than the latter. Contaminant distributions in aquifers reflect the results of a number of processes integrated in a complex manner and so are difficult to interpret in terms of specific processes. However, they do provide evidence for what processes are most significant in real groundwater systems and they will also provide critical tests of how well laboratory-derived information relates to real groundwater contamination situations.

  2. Organic contaminants in thermal plume resident brown trout

    International Nuclear Information System (INIS)

    Romberg, G.P.; Bourne, S.

    1978-01-01

    A pilot study was conducted to identify possible contaminants accumulated by thermal plume-resident fish in Lake Michigan. Brown trout were maintained in tanks receiving intake and discharge (less than or equal to 21 0 C) water from a power plant and were fed a diet of frozen alewife. Fish were sampled over a period of 127 days in order to estimate uptake rates and equilibrium levels for toxic organic and inorganic materials occurring in Lake Michigan fish and water. Experimental fish and natural samples were analyzed to determine the distribution of contaminants in various tissues and the corresponding pollutant levels in similar size brown trout from Lake Michigan. The quantitative analyses for the major organic contaminants are summarized. Without exception, the pyloric caecum of brown trout contained the highest concentration of lipids, PCB's, and chlorinated pesticides. Gill and kidney samples contained lower concentrations of contaminants than the caecum, while liver and muscle values were lowest

  3. Ni adsorption and Ni-Al LDH precipitation in a sandy aquifer: An experimental and mechanistic modeling study

    NARCIS (Netherlands)

    Regelink, I.C.; Temminghoff, E.J.M.

    2011-01-01

    Mining activities and industries have created nickel (Ni) contaminations in many parts of the world. The objective of this study is to increase our understanding of Ni adsorption and Nickel-Aluminium Layered Double Hydroxide (Ni-Al LDH) precipitation to reduce Ni mobility in a sandy soil aquifer. At

  4. CONTRIBUTIONS TO IMPROVING CULTURE TEHNOLOGIES OF PEACHES GROWN ON SANDY SOILS THE SOUTH OF OLTENIA

    Directory of Open Access Journals (Sweden)

    Anica Durau

    2013-12-01

    Full Text Available Technological factors with major implications in obtaining high yields and quality in peaches grown on sandy soils are planting row distance and shape of the crown, soil maintenance system, chemical, organic and foliar fertilzation. A smal size combined with the flatening of the crowns of the tres alows a dense planting, also ensure proper mechanization of work and easy penetration of light to the leaves and fruits. Crown form vertical belt proved to be suitable for al planting distances studied, easily made and maintained, having fruit production ranged betwen 15.9 t / ha at a distance of 2 m, 10.3 t / ha at a distance of 2.5 m and 7.9 t / ha at a distance of 3 m. The state of soil nutrient supply influence sucesful peach crop on sandy soils. The fertilzer dose of technology to N10 P80 K10 kg s.a / ha production was 34.9 t / ha. Organic fertilzation also contributes to obtaining high yields of peach. In sandy soil conditions most fruit production of 9.6 t / ha was obtained by fertilzation with organic manure 60t/ha. Besides fertilzation, soil maintenance system is one important link in the technology peach crop on sandy soils. The results found that the biggest peach fruit production was obtained from field maintenance system black-8,2t/ha. Using technology in foliar peaches culture on sandy soils, is an important means of providing nutrients that lead to improved proceses of growth and fructification. The best way is with foliar fertilzation Folibor in dose 5l/ha, the production obtained was 12.4 t /ha.

  5. Method of processing radiation-contaminated organic polymer materials

    International Nuclear Information System (INIS)

    Kobayashi, Yoshii.

    1980-01-01

    Purpose: To process radiation contaminated organic high polymer materials with no evolution of toxic gases, at low temperature and with safety by hot-acid immersion process using sulfuric acid-hydrogen peroxide. Method: Less flammable or easily flammable organic polymers contaminated with radioactive substances, particularly with long life actinoid are heated and carbonized in concentrated sulfuric acid. Then, aqueous 30% H 2 O 2 solution is continuously added dropwise as an oxidizing agent till the solution turns colourless. If the carbonization was insufficient, addition of H 2 O 2 solution is stopped temporarily and the carbonization is conducted again. Thus, the organic polymers are completely decomposed by the wet oxidization. Then, the volume of the organic materials to be discharged is decreased and the radioactive substances contained are simultaneously concentrated and collected. (Seki, T.)

  6. Respirable dust and quartz exposure from three South African farms with sandy, sandy loam, and clay soils.

    Science.gov (United States)

    Swanepoel, Andrew J; Kromhout, Hans; Jinnah, Zubair A; Portengen, Lützen; Renton, Kevin; Gardiner, Kerry; Rees, David

    2011-07-01

    To quantify personal time-weighted average respirable dust and quartz exposure on a sandy, a sandy loam, and a clay soil farm in the Free State and North West provinces of South Africa and to ascertain whether soil type is a determinant of exposure to respirable quartz. Three farms, located in the Free State and North West provinces of South Africa, had their soil type confirmed as sandy, sandy loam, and clay; and, from these, a total of 298 respirable dust and respirable quartz measurements were collected between July 2006-November 2009 during periods of major farming operations. Values below the limit of detection (LOD) (22 μg · m(-3)) were estimated using multiple 'imputation'. Non-parametric tests were used to compare quartz exposure from the three different soil types. Exposure to respirable quartz occurred on all three farms with the highest individual concentration measured on the sandy soil farm (626 μg · m(-3)). Fifty-seven, 59, and 81% of the measurements on the sandy soil, sandy loam soil, and clay soil farm, respectively, exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 25 μg · m(-3). Twelve and 13% of respirable quartz concentrations exceeded 100 μg · m(-3) on the sandy soil and sandy loam soil farms, respectively, but none exceeded this level on the clay soil farm. The proportions of measurements >100 μg · m(-3) were not significantly different between the sandy and sandy loam soil farms ('prop.test'; P = 0.65), but both were significantly larger than for the clay soil farm ('prop.test'; P = 0.0001). The percentage of quartz in respirable dust was determined for all three farms using measurements > the limit of detection. Percentages ranged from 0.5 to 94.4% with no significant difference in the median quartz percentages across the three farms (Kruskal-Wallis test; P = 0.91). This study demonstrates that there is significant potential for over-exposure to respirable quartz in

  7. Long-term fate of exogenous metals in a sandy Luvisol subjected to intensive irrigation with raw wastewater

    International Nuclear Information System (INIS)

    Dere, C.; Lamy, I.; Jaulin, A.; Cornu, S.

    2007-01-01

    From 1899 to 2002, sandy Luvisol in the Paris region has been intensively irrigated with raw wastewater, resulting in major soil pollution by metallic trace elements (MTE). To identify the soil phases implicated in retaining these metals, sequential extractions were performed on a solum irrigated with untreated wastewater and another reference solum. The endogenous and exogenous fractions of MTE in the contaminated soil were discriminated using correlations between MTE and major elements defined from unpolluted soils of the area. In the contaminated soil no exogenous lead and chromium are present below the surface horizon, whereas exogenous zinc and copper are found down to the base of the solum. The endogenous MTE are mainly found in the residual fraction. Exogenous MTE appear to be associated with organic matter in the surface horizon, and exogenous zinc seems to be readsorbed on iron and manganese oxyhydroxides in the underlying horizons. - After 100 years of intensive irrigation with wastewater, no exogenous Pb and Cr are found in the subsoil, while exogenous Zn and Cu are found down to the base of the solum, mostly readsorbed

  8. IMPLEMENTASI SANDI HILL UNTUK PENYANDIAN CITRA

    Directory of Open Access Journals (Sweden)

    JJ Siang

    2002-01-01

    Full Text Available Hill's code is one of text encoding technique. In this research, Hill's code is extended to image encoding. The image used is BMP 24 bit format. 2x2 and 3x3 matrices is used as a key. The results show that Hill's code is suitable for image whose RGB values vary highly. On the contrary, it is not suitable for less varied RGB images since its original pattern is still persisted in encrypted image. Hill's code for image encoding has also disadvantage in the case that the key matrix is not unique. However, for daily application, with good key matrix, Hill's code can be applied to encode image since it's process only deals with simple matrix operation so it become fast. Abstract in Bahasa Indonesia : Sandi Hill merupakan salah satu teknik penyandian teks. Dalam penelitian ini, pemakaian sandi Hill diperluas dari teks ke citra bertipe BMP 24 bit. Matriks yang dipakai berordo 2x2 dan 3x3. Hasil percobaan menunjukkan bahwa sandi Hill cocok untuk enkripsi citra dengan variasi nilai RGB antar piksel berdekatan yang tinggi (seperti foto, tapi tidak cocok untuk citra dengan variasi nilai RGB yang rendah (seperti gambar kartun karena pola citra asli masih tampak dalam citra sandi. Sandi Hill juga memiliki kelemahan dalam hal tidak tunggalnya matriks kunci yang dapat dipakai. Akan tetapi untuk pemakaian biasa, dengan pemilihan matriks kunci yang baik, sandi Hill dapat dipakai untuk penyandian karena hanya melibatkan operasi matriks biasa sehingga prosesnya relatif cepat. Kata kunci: Sandi Hill, Citra, Relatif Prima.

  9. Fate of the herbicide glufosinate-ammonium in the sandy, low-organic-carbon aquifer at CFB Borden, Ontario, Canada

    Science.gov (United States)

    Allen-King, Richelle M.; Butler, Barbara J.; Reichert, Barbara

    1995-04-01

    The herbicide glufosinate-ammonium was persistent in aerobic sandy aquifer material in laboratory batch and field in situ microcosms when added at concentrations of 50-400 μg L -1. In contrast, the compound is biotransformed relatively quickly in surface soil. Glufosinate transformation and metabolite (3-methylphosphinyl-propionic acid) production in carbonamended laboratory microcosms demonstrated that the aquifer system was carbon-limited with respect to glufosinate transformation. Microbiological test showed that flufosinateammonium and sodium-glufosinate was be used as a nitrogen source, in the presence of sufficient carbon. Glufosinate was not used by the native microorganisms as a source of phosphorus, nor metabolized as a sole carbon and energy source. Ammonium appeared to be preferred over glufosinate as a nitrogen source. When representative microbial strains isolated from the Borden aquifer were tested, most were glufosinate-ammonium tolerant. Complete inhibition of some isolates was demonstrated only at very high concentrations of 2-4 g L -1. The research suggests that in an aquifer with a relatively low clay content and little labile organic carbon, such as the sandy aquifer at the field site, glufosinate will be persistent and transport will be essentially unretarded. The availability of alternative nitrogen sources was also indicated as a parameter that can affect persistence.

  10. Microbial activities in boreal soils: Biodegradation of organic contaminants at low temperature and ammonia oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kurola, J. (University of Helsinki, Faculty of Biosciences, Department of Ecological and Environmental Sciences, Lahti (FI))

    2006-07-01

    This thesis deals with the response of biodegradation of selected anthropogenic organic contaminants and natural autochthonous organic matter to low temperature in boreal surface soils. Furthermore, the thesis describes activity, diversity and population size of autotrophic ammonia-oxidizing bacteria (AOB) in a boreal soil used for landfarming of oil-refinery wastes, and presents a new approach, in which the particular AOB were enriched and cultivated in situ from the landfarming soil onto cation exchange membranes. This thesis demonstrates that rhizosphere fraction of natural forest humus soil and agricultural clay loam soil from Helsinki Metropolitan area were capable of degrading of low to moderate concentrations (0.2 - 50 mug cm-3) of PCP, phenanthrene and 2,4,5-TCP at temperatures realistic to boreal climate (-2.5 to +15 deg C). At the low temperatures, the biodegradation of PCP, phenanthrene and 2,4,5-TCP was more effective (Q10-values from 1.6 to 7.6) in the rhizosphere fraction of the forest soil than in the agricultural soil. Q10-values of endogenous soil respiration (carbon dioxide evolution) and selected hydrolytic enzyme activities (acetate-esterase, butyrate-esterase and beta-glucosidase) in acid coniferous forest soil were 1.6 to 2.8 at temperatures from -3 to +30 deg C. The results indicated that the temperature dependence of decomposition of natural autochthonous soil organic matter in the studied coniferous forest was only moderate. The numbers of AOB in the landfarming (sandy clay loam) soil were determined with quantitative polymerase chain reaction (real-time PCR) and with Most Probable Number (MPN) methods, and potential ammonium oxidation activity was measured with the chlorate inhibition technique. The results indicated presence of large and active AOB populations in the heavily oil-contaminated and urea-fertilised landfarming soil. Assessment of the populations of AOB with denaturing gradient gel electrophoresis (DGGE) profiling and sequence

  11. The impact of onsite wastewater disposal systems on groundwater in areas inundated by Hurricane Sandy in New York and New Jersey

    Science.gov (United States)

    Fisher, Irene; Phillips, Patrick J.; Colella, Kaitlyn; Fisher, Shawn C.; Tagliaferri, Tristen N.; Foreman, William T.; Furlong, Edward T.

    2016-01-01

    Coastal onsite wastewater disposal systems (OWDS) were inundated by Hurricane Sandy's storm tide. This study compares the shallow groundwater quality (nutrients, pharmaceuticals, and hormones) downgradient of OWDS before and after Hurricane Sandy, where available, and establishes a baseline for wastewater influence on groundwater in coastal communities inundated by Hurricane Sandy. Nutrients and contaminants of emerging concern (CECs) were detected in shallow groundwater downgradient of OWDS in two settings along the New Jersey and New York coastlines: 1) a single, centralized OWDS in a park; and 2) multiple OWDS (cesspools) in low-density residential and mixed-use/medium density residential areas. The most frequently detected pharmaceuticals were lidocaine (40%), carbamazepine (36%), and fexofenadine, bupropion, desvenlafaxine, meprobamate, and tramadol (24–32%). Increases in the number and total concentration of pharmaceuticals after Hurricane Sandy may reflect other factors (seasonality, usage) besides inundation, and demonstrate the importance of analyzing for a wide variety of CECs in regional studies.

  12. Impacts of long-term waste-water irrigation on the development of sandy Luvisols: consequences for metal pollutant distributions

    NARCIS (Netherlands)

    Oort, van F.; Jongmans, A.G.; Lamy, I.; Baize, D.; Chevallier, P.

    2008-01-01

    Studies relating macro- and microscopic aspects of impacts of long-term contaminative practices on soils are scarce. We performed such an approach by assessing the fate of metal pollutants in an area close to Paris, where sandy Luvisols were irrigated for 100 years with urban waste water. As a

  13. Hydrothermal processing of actinide contaminated organic wastes

    International Nuclear Information System (INIS)

    Worl, A.; Buelow, S.J.; Le, L.A.; Padilla, D.D.; Roberts, J.H.

    1997-01-01

    Hydrothermal oxidation is an innovative process for the destruction of organic wastes, that occurs above the critical temperature and pressure of water. The process provides high destruction and removal efficiencies for a wide variety of organic and hazardous substances. For aqueous/organic mixtures, organic materials, and pure organic liquids hydrothermal processing removes most of the organic and nitrate components (>99.999%) and facilitates the collection and separation of the actinides. We have designed, built and tested a hydrothermal processing unit for the removal of the organic and hazardous substances from actinide contaminated liquids and solids. Here we present results for the organic generated at the Los Alamos National Laboratory Plutonium Facility

  14. Milk and serum standard reference materials for monitoring organic contaminants in human samples.

    Science.gov (United States)

    Schantz, Michele M; Eppe, Gauthier; Focant, Jean-François; Hamilton, Coreen; Heckert, N Alan; Heltsley, Rebecca M; Hoover, Dale; Keller, Jennifer M; Leigh, Stefan D; Patterson, Donald G; Pintar, Adam L; Sharpless, Katherine E; Sjödin, Andreas; Turner, Wayman E; Vander Pol, Stacy S; Wise, Stephen A

    2013-02-01

    Four new Standard Reference Materials (SRMs) have been developed to assist in the quality assurance of chemical contaminant measurements required for human biomonitoring studies, SRM 1953 Organic Contaminants in Non-Fortified Human Milk, SRM 1954 Organic Contaminants in Fortified Human Milk, SRM 1957 Organic Contaminants in Non-Fortified Human Serum, and SRM 1958 Organic Contaminants in Fortified Human Serum. These materials were developed as part of a collaboration between the National Institute of Standards and Technology (NIST) and the Centers for Disease Control and Prevention (CDC) with both agencies contributing data used in the certification of mass fraction values for a wide range of organic contaminants including polychlorinated biphenyl (PCB) congeners, chlorinated pesticides, polybrominated diphenyl ether (PBDE) congeners, and polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners. The certified mass fractions of the organic contaminants in unfortified samples, SRM 1953 and SRM 1957, ranged from 12 ng/kg to 2200 ng/kg with the exception of 4,4'-DDE in SRM 1953 at 7400 ng/kg with expanded uncertainties generally <14 %. This agreement suggests that there were no significant biases existing among the multiple methods used for analysis.

  15. Hurricane Sandy Poster (October 29, 2012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hurricane Sandy poster. Multi-spectral image from Suomi-NPP shows Hurricane Sandy approaching the New Jersey Coast on October 29, 2012. Poster size is approximately...

  16. Contaminated environments in the subsurface and bioremediation: organic contaminants

    OpenAIRE

    Holliger, Christof; Gaspard, Sarra; Glod, Guy; Heijman, Cornelis; Schumacher, Wolfram; Schwarzenbach, René P.; Vazquez, Francisco

    2017-01-01

    Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low ...

  17. Bioavailability and mobility of organic contaminants in soil: new three-step ecotoxicological evaluation.

    Science.gov (United States)

    Prokop, Zbyněk; Nečasová, Anežka; Klánová, Jana; Čupr, Pavel

    2016-03-01

    A novel approach was developed for rapid assessment of bioavailability and potential mobility of contaminants in soil. The response of the same test organism to the organic extract, water extract and solid phase of soil was recorded and compared. This approach was designed to give an initial estimate of the total organic toxicity (response to organic extractable fraction), as well as the mobile (response to water extract) and bioavailable fraction (response to solid phase) of soil samples. Eighteen soil samples with different levels of pollution and content of organic carbon were selected to validate the novel three-step ecotoxicological evaluation approach. All samples were chemically analysed for priority contaminants, including aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), hexachlorocyclohexane (HCH) and dichlordiphenyltrichloroethane (DDT). The ecotoxicological evaluation involved determination of toxicity of the organic, mobile and bioavailable fractions of soil to the test organism, bacterium Bacillus cereus. We found a good correlation between the chemical analysis and the toxicity of organic extract. The low toxicity of water extracts indicated low water solubility, and thus, low potential mobility of toxic contaminants present in the soil samples. The toxicity of the bioavailable fraction was significantly greater than the toxicity of water-soluble (mobile) fraction of the contaminants as deduced from comparing untreated samples and water extracts. The bioavailability of the contaminants decreased with increasing concentrations of organic carbon in evaluated soil samples. In conclusion, the three-step ecotoxicological evaluation utilised in this study can give a quick insight into soil contamination in context with bioavailability and mobility of the contaminants present. This information can be useful for hazard identification and risk assessment of soil-associated contaminants. Graphical Abstract New three-step ecotoxicological

  18. Modelling the fate of oxidisable organic contaminants in groundwater

    DEFF Research Database (Denmark)

    Barry, D.A.; Prommer, H.; Miller, C.T.

    2002-01-01

    modelling framework is illustrated by pertinent examples, showing the degradation of dissolved organics by microbial activity limited by the availability of nutrients or electron acceptors (i.e., changing redox states), as well as concomitant secondary reactions. Two field-scale modelling examples......Subsurface contamination by organic chemicals is a pervasive environmental problem, susceptible to remediation by natural or enhanced attenuation approaches or more highly engineered methods such as pump-and-treat, amongst others. Such remediation approaches, along with risk assessment...... are discussed, the Vejen landfill (Denmark) and an example where metal contamination is remediated by redox changes wrought by injection of a dissolved organic compound. A summary is provided of current and likely future challenges to modelling of oxidisable organics in the subsurface. (C) 2002 Elsevier Science...

  19. Bioavailability of sediment-bound contaminants to marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B. [Battelle/Marine Sciences Lab., Sequim, WA (United States)]|[Colby Coll., Waterville, ME (United States); Neff, J. [Battelle/Marine Sciences Lab., Sequim, WA (United States)]|[Battelle Ocean Sciences, Duxbury, MA (United States)

    1993-09-01

    The bioavailability of sediment-bound contaminants to marine organisms indicates that there exists a potential for transfer of these contaminants through marine food webs to commercial fisheries products consumed by humans. However, there has been relatively little effort to combine and synthesize data on chemical/biological interactions between benthic animals and seagrasses and the sediments in which they reside on the one hand, and on the chemistry of bioaccumulation on the other. This report provides a conceptual basis for an approach to bioavailability and biomagnification of sediment-bound contaminants that reviews biological and chemical approaches.

  20. Contaminant monitoring programmes using marine organisms: Quality assurance and good laboratory practice

    International Nuclear Information System (INIS)

    1990-01-01

    This publication provides guidelines for obtaining reliable and relevant data during monitoring programmes in which contaminants are measured in marine organisms. It describes the precautions to be taken in each of the procedural steps from planning and sampling to the publication of data reports. The purpose of this document is to provide general guidance on quality assurance and to outline the approach that could be taken by laboratories to achieve the specific aims(s) for each marine pollution monitoring programme. Since most laboratories are currently focussing on programmes involving marine organisms, this document will be confined to this aspect. Four main aims can be identified for programmes involving the collection and analysis of marine organisms for the three main groups of contaminants (metals, organochlorine compounds and petroleum hydrocarbons), these are: (i) The measurement of contaminant levels in edible marine organisms in relation to public health; (ii) The identification of heavily contaminated areas of the sea (''hot spots'') where levels of contaminants are at least an order of magnitude higher than levels in clean or uncontaminated areas; (iii) The establishment of present levels of contaminants in marine organisms (i.e., a ''baseline''); (iv) The assessment of changes in concentrations of contaminants in organisms over a period of time (trends). The selection of organisms will be dictated by the eating patterns of the population. These can be identified by a survey of the species sold at the market, by obtaining information from colleagues in government departments who deal with such matters or in the absence of such information, by distributing a questionnaire to a representative section of the general public. 9 refs, 4 figs

  1. Chemometric Analysis of Selected Organic Contaminants in Surface Water of Langat River Basin

    International Nuclear Information System (INIS)

    Mohamad Rafaie Mohamed Zubir; Rozita Osman; Norashikin Saim

    2016-01-01

    Chemometric techniques namely hierarchical agglomerative cluster analysis (HACA), discriminant analysis (DA), principal component analysis (PCA) and factor analysis (FA) were applied to the distribution of selected organic contaminants (polycyclic aromatic hydrocarbons (PAHs), sterols, pesticides (chloropyrifos), and phenol) to assess the potential of using these organic contaminants as chemical markers in Langat River Basin. Water samples were collected from February 2012 to January 2013 on a monthly basis for nine monitoring sites along Langat River Basin. HACA was able to classify the sampling sites into three clusters which can be correlated to the level of contamination (low, moderate and high contamination sites). DA was used to discriminate the sources of contamination using the selected organic contaminants and relate to the existing DOE local activities groupings. Forward and backward stepwise DA was able to discriminate two and five organic contaminants variables, respectively, from the original 13 selected variables. The five significant variables identified using backward stepwise DA were fluorene, pyrene, stigmastanol, stigmasterol and phenol. PCA and FA (varimax functionality) were used to identify the possible sources of each organic contaminant based on the inventory of local activities. Five principal components were obtained with 66.5 % of the total variation. Result from FA indicated that PAHs (pyrene, fluorene, acenaphthene, benzo[a]anthracene) originated from industrial activity and socio-economic activities; while sterols (coprostanol, stigmastanol and stigmasterol) were associated to domestic sewage and local socio-economic activities. The occurrence of chloropyrifos was correlated to agricultural activities, urban and domestic discharges. This study showed that the application of chemometrics on the distribution of selected organic contaminants was able to trace the sources of contamination in surface water. (author)

  2. Broad spectrum screening of 463 organic contaminants in rivers in Macedonia.

    Science.gov (United States)

    Stipaničev, Draženka; Dragun, Zrinka; Repec, Siniša; Rebok, Katerina; Jordanova, Maja

    2017-01-01

    Target screening of 463 organic contaminants in surface water using ultra high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) with direct injection was performed in spring of 2015 in northern Macedonia, at six sampling sites in four rivers belonging to Vardar basin: Kriva, Zletovska, Bregalnica and Vardar. The aim of the study was to differentiate between various types of organic contamination characteristic for different types of anthropogenic activities, such as mining, agriculture, and urbanization. Depending on the studied river, 9-16% of analyzed compounds were detected. The highest total levels of organic contaminants were recorded in agriculturally impacted Bregalnica River (1839-1962ngL -1 ) and Vardar River downstream from the city of Skopje (1945ngL -1 ), whereas the lowest level was found in the mining impacted Zletovska River (989ngL -1 ). The principal organic contaminants of the Bregalnica River were herbicides (45-55% of all detected compounds; 838-1094ngL -1 ), with the highest concentrations of bentazone (407-530ngL -1 ) and molinate (84-549ngL -1 ), common herbicides in rice cultivation. The main organic contaminants in the other rivers were drugs (70-80% of all detected compounds), with antibiotics as a predominant drug class. The highest drug concentrations were measured in the Vardar River, downstream from Skopje (1544ngL -1 ). Screening of surface water by UHPLC-QTOF-MS was proven as a practical tool for fast collection of comprehensive preliminary information on organic contamination of natural waters, which can present a significant contribution in the monitoring and preservation of good ecological status of freshwater ecosystems. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The Efficacy of Bioaugmentation on Remediating Oil Contaminated Sandy Beach Using Mesocosm Approach (Efikasi Tehnik Bioaugmentasi dalam Memulihkan Pantai Berpasir Tercemar Minyak Menggunakan Pendekatan Mesokosm

    Directory of Open Access Journals (Sweden)

    Yeti Darmayati

    2015-09-01

    Full Text Available Bioremediation is basically consists of two approaches, biostimulation and bioaugmentation. The efficacy of bioaugmentation for combating oil pollution in field application is still argued. The purpose of study was to evaluate the efficacy of bioaugmentation and to compare the affectivity of single strain and consortium application in remediating oil polluted sandy beach. Experimental study in a field has been conducted with two (2 treatments and one (1 control in three different plots. The treatmens were introduction of a single strain (Alcanivorax sp TE-9 and a consortium (Alcanivorax sp. TE-9, Pseudomonas balearica st 101 and RCO/B/08-015 cultures into oil contaminated sediment. The experiment in mesocosm approach was taken place in Cilacap coast. Arabian light crude oil was used in the concentration of 100.000 mg.kg-1 sediment. Changes of oil concentration, bacterial density and pore water quality have been monitored periodically for 3 months. The result showed that oil degradation percentage and bacterial growth in both treatments were higher than in control. After 3 months, the percentage of oil degradation experiment in control, single strain and formulated consortium treatments were observed at 60.4%, 74.5% and 73.5%. It proves that bioaugmentation tehnique can enhance significantly oil biodegradation in sandy beach. The applications of bacteria in single or consortium culture give no different impact on their affectivity for bioremediation in Cilacap sandy beach. By data extrapolation it can be predicted that both of treatments able to reduce remediation time from 210 days into 135–137 days. Bioaugmentation can be proposed as a good solution for finalizing oil removing in Cilacap sandy beach when oil spilled occurred in this environment. Keywords: Bioremediation, bioaugmentation, oil, sandy beach, Alcanivorax, mesocosm, Cilacap   Bioremediasi pada dasarnya terdiri dari dua pendekatan yaitu biostimulasi dan bioaugmentasi. Teknik

  4. Emerging organic contaminants in groundwater

    OpenAIRE

    Stuart, Marianne; Lapworth, Dan

    2013-01-01

    Emerging organic contaminants (ECs) are compounds now being found in groundwater from agricultural, urban sources that were previously not detectable, or thought to be significant. ECs include pesticides and degradates, pharmaceuticals, industrial compounds, personal care products, fragrances, water treatment by-products, flame retardants and surfactants, as well as ‘life-style’ compounds such as caffeine and nicotine. ECs may have adverse effects on aquatic ecosystems and human health. Freq...

  5. Contaminants in Liquid Organic Fertilizers Used for Agriculture in Japan.

    Science.gov (United States)

    Hai, Dao M; Qiu, Xuchun; Xu, Hai; Honda, Masato; Yabe, Mitsuyasu; Kadokami, Kiwao; Shimasaki, Yohei; Oshima, Yuji

    2017-07-01

    To provide an overview of anthropogenic contaminants in liquid organic fertilizers (LOFs), products from four biogas plants in Kyushu, Japan, were analyzed for a wide range of contaminants, including copper, cadmium, tributyltin (TBT), dibutyltin (DBT), perfluorooctane sulfonate, 952 semi-volatile organic compounds, and 89 antibiotics. The highest concentrations of copper (31.1 mg/L) and cadmium (0.08 mg/L) were found in LOFs from the Hita biogas plant. Only ofloxacin and sulfapyridine were detected in total 89 antibiotics screened. TBT, DBT, and perfluorooctane sulfonate were present at low concentrations in the LOFs from all four locations. Among the 952 semi-volatile organic compounds, 78 compounds were detected in at least one sample and were present at concentrations between 1.2 and 139.6 mg/L. On the basis of comparisons with previous studies and quality standards for the use of organic fertilizers, the concentrations of contaminants in the studied LOFs indicate that they might be safe for agricultural purposes.

  6. Organic contaminants in environmental atmospheres and waters

    OpenAIRE

    Ramírez González, Noelia

    2011-01-01

    This Doctoral Thesis focuses on the development of efficient and highly sensitive analytical methods for determining organic contaminants in atmospheric, aquatic and house dust samples. The proposed analytical methods are based on single and comprehensive gas chromatography followed by different detectors (including mass spectrometry and nitrogen chemiluminiscence detection) and different sample preparation methods that have the aim of minimising the consumption of organic solvents in the who...

  7. Interactions between eutrophication and contaminants - partitioning, bioaccumulation and effects on sediment-dwelling organisms

    Energy Technology Data Exchange (ETDEWEB)

    Hylland, Ketil; Schaanning, Morten; Skei, Jens; Berge, John Arthur; Eriksen, Dag Oe.; Skoeld, Mattias; Gunnarsson, Jonas

    1997-12-31

    This report describes an experiment on the interactions between eutrophication and contaminants in marine sediments. The experiment was performed in 24 continuously flushed glass aquaria within which three sediment-dwelling species were kept in a marine sediment. A filter-feeder, blue mussel, was kept in downstream aquaria. The experiment combined three environmental factors: oxygen availability, the presence or absence of contaminants, the addition of organic matter. The objectives were: (1) to quantify differences in the partitioning of contaminants between sediment, pore water and biota as a result of the treatment, (2) to quantify effects of treatments and interactions between treatments on sediment-dwelling organisms, (3) to identify differences, if any, in the release of contaminants from the sediment as the result of treatments. All three contaminants bio accumulated to higher levels in sediments with increased levels of organic material. Feeding directly or indirectly appeared to be the major route for bioaccumulation of benzo(a)pyrene and mercury. Cadmium was also controlled by the concentration in pore water. Sediment in enriched aquaria released more contaminants than sediment with low organic content. Organic enrichment strongly affected growth in the three sediment-dwelling organisms. Growth was less affected by decreased oxygen availability. The presence of contaminants had little effect on the three sediment-dwelling species at the concentrations used in the experiment. 103 refs., 14 figs., 12 tabs.

  8. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.

    Science.gov (United States)

    Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang

    2013-12-01

    Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.

  9. Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding

    Science.gov (United States)

    Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.

    2015-01-01

    Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.

  10. Fine natural aggregate replacement for sandy residue from itabirite exploitation in Portland cement mortar

    International Nuclear Information System (INIS)

    Melo, V.A.R.; Freire, C.B.; Pereira Junior, S.S.; Lameiras, F.S.; Tello, C.C.O.

    2011-01-01

    The fine natural aggregates are a material largely used by the civil construction for mortar and concrete production. Due to tightening legal restrictions imposed on their extraction, alternative materials are being considered. The use of sandy residue from BIF (banded iron formations) exploitation was investigated. It requires their grinding and flotation to concentrate iron oxides. Large amounts of sandy residue composed of quartz and iron oxides are generated in this process. The sandy residue was characterized relative to mineralogical composition, particle size distribution, presence of organic impurities, and particle shape. Mortar formulations were prepared by varying the type of cement, the cement to aggregate proportion and the water/cement ratio (a/c). The results of viscosity and density of fresh mortar, setting time, and compressive strength are presented. Compressive strength up to 19.5 MPa at 28 days were achieved with the use of cement CPV, a/c ratio of 0.80 and cement:aggregate proportion of 1:2. The results demonstrate the technical feasibility of using sandy residue as fine aggregate. (author)

  11. Review: Micro-organic contaminants in groundwater in China

    Science.gov (United States)

    Dong, Weihong; Xie, Wei; Su, Xiaosi; Wen, Chuanlei; Cao, Zhipeng; Wan, Yuyu

    2018-03-01

    Micro-organic contaminants (MOs) in groundwater, which may have adverse effects on human health and ecosystems worldwide, are gaining increased attention in China. A great deal of research has been conducted to investigate their sources, occurrences and behavior in aquifers. This paper reviews the main sources, distribution, concentrations and behavior of a wide range of MOs in groundwater in China. These MOs include well-established persistent organic pollutants—polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs), polychlorinated biphenyls (PCBs), endocrine disrupting chemicals (poly brominated diphenyl ethers (PBDEs), phthalic acid esters (PAEs), bisphenol A (BPA)—and some contaminants of emerging concern such as pharmaceutical and personal care products (antibiotics, caffeine, shampoos) and perfluorinated compounds (PFCs). The results reveal that the main MOs in groundwater are PAHs, organochlorine pesticides (OCPs), PBDEs, PAEs, and antibiotics. Moreover, some PFCs such as perfluorobutane sulfonic acid (PFBS), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) have only recently been observed in groundwater as emerging organic contaminants. Additionally, most MOs are distributed in populated and industrialized areas such as the southeast coast of China. Finally, industrial emissions, wastewater treatment plant effluents and agricultural wastewater are found to be dominant sources of MOs in groundwater. Based on the existing pollution levels, regulation and amelioration of MOs are warranted.

  12. A reactive transport model for mercury fate in contaminated soil--sensitivity analysis.

    Science.gov (United States)

    Leterme, Bertrand; Jacques, Diederik

    2015-11-01

    We present a sensitivity analysis of a reactive transport model of mercury (Hg) fate in contaminated soil systems. The one-dimensional model, presented in Leterme et al. (2014), couples water flow in variably saturated conditions with Hg physico-chemical reactions. The sensitivity of Hg leaching and volatilisation to parameter uncertainty is examined using the elementary effect method. A test case is built using a hypothetical 1-m depth sandy soil and a 50-year time series of daily precipitation and evapotranspiration. Hg anthropogenic contamination is simulated in the topsoil by separately considering three different sources: cinnabar, non-aqueous phase liquid and aqueous mercuric chloride. The model sensitivity to a set of 13 input parameters is assessed, using three different model outputs (volatilized Hg, leached Hg, Hg still present in the contaminated soil horizon). Results show that dissolved organic matter (DOM) concentration in soil solution and the binding constant to DOM thiol groups are critical parameters, as well as parameters related to Hg sorption to humic and fulvic acids in solid organic matter. Initial Hg concentration is also identified as a sensitive parameter. The sensitivity analysis also brings out non-monotonic model behaviour for certain parameters.

  13. The organic contamination level based on the total soil mass is not a proper index of the soil contamination intensity

    Science.gov (United States)

    Hung, H.-W.; Daniel, Sheng G.; Lin, T.-F.; Su, Y.; Chiou, C.T.

    2009-01-01

    Concentrations of organic contaminants in common productive soils based on the total soil mass give a misleading account of actual contamination effects. This is attributed to the fact that productive soils are essentially water-saturated, with the result that the soil uptake of organic compounds occurs principally by partition into the soil organic matter (SOM). This report illustrates that the soil contamination intensity of a compound is governed by the concentration in the SOM (Com) rather than by the concentration in whole soil (Cs). Supporting data consist of the measured levels and toxicities of many pesticides in soils of widely differing SOM contents and the related levels in in-situ crops that defy explanation by the Cs values. This SOM-based index is timely needed for evaluating the contamination effects of food crops grown in different soils and for establishing a dependable priority ranking for intended remediation of numerous contamination sites.

  14. 9 CFR 310.18 - Contamination of carcasses, organs, or other parts.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Contamination of carcasses, organs, or... AND VOLUNTARY INSPECTION AND CERTIFICATION POST-MORTEM INSPECTION § 310.18 Contamination of carcasses... prevent contamination with fecal material, urine, bile, hair, dirt, or foreign matter; however, if...

  15. Surveillance for previously unmonitored organic contaminants in the San Francisco Estuary.

    Science.gov (United States)

    Oros, Daniel R; Jarman, Walter M; Lowe, Theresa; David, Nicole; Lowe, Sarah; Davis, Jay A

    2003-09-01

    The San Francisco Estuary Regional Monitoring Program initiated surveillance monitoring to identify previously unmonitored synthetic organic contaminants in the San Francisco Estuary. Organic extracts of water samples were analyzed using gas chromatography-mass spectrometry in full scan mode. The major contaminant classes identified in the samples were fire retardants, pesticides, personal care product ingredients, and plasticizers. Evidence from the literature suggests that some of these contaminants can persist in the environment, induce toxicity, and accumulate in marine biota and in higher food chain consumers. The major sources of these contaminants into the marine environment are the discharge of municipal and industrial wastewater effluents, urban stormwater, and agricultural runoff. As a proactive effort, it is suggested that surveillance studies be used routinely in monitoring programs to identify and prevent potential problem contaminants from harming the marine environment.

  16. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil

    KAUST Repository

    Raddadi, Noura

    2018-05-31

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils.From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls.Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  17. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil

    KAUST Repository

    Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio

    2018-01-01

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils.From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls.Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  18. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil.

    Science.gov (United States)

    Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio

    2018-05-31

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils. From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls. Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  19. Effects of leachate on geotechnical characteristics of sandy clay soil

    Science.gov (United States)

    Harun, N. S.; Ali, Z. Rahman; Rahim, A. S.; Lihan, T.; Idris, R. M. W.

    2013-11-01

    Leachate is a hazardous liquid that poses negative impacts if leaks out into environments such as soil and ground water systems. The impact of leachate on the downgraded quality in terms of chemical characteristic is more concern rather than the physical or mechanical aspect. The effect of leachate on mechanical behaviour of contaminated soil is not well established and should be investigated. This paper presents the preliminary results of the effects of leachate on the Atterberg limit, compaction and shear strength of leachate-contaminated soil. The contaminated soil samples were prepared by mixing the leachate at ratiosbetween 0% and 20% leachate contents with soil samples. Base soil used was residual soil originated from granitic rock and classified as sandy clay soil (CS). Its specific gravity ranged between 2.5 and 2.64 with clay minerals of kaolinite, muscovite and quartz. The field strength of the studied soil ranged between 156 and 207 kN/m2. The effects of leachate on the Atterberg limit clearly indicated by the decrease in liquid and plastic limit values with the increase in the leachate content. Compaction tests on leachate-contaminated soil caused the dropped in maximum dry density, ρdry and increased in optimum moisture content, wopt when the amount of leachate was increased between 0% and 20%. The results suggested that leachate contamination capable to modify some geotechnical properties of the studied residual soils.

  20. Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test.

    Science.gov (United States)

    Ma, Yan; Shi, Yi; Hou, Deyi; Zhang, Xi; Chen, Jiaqi; Wang, Zhifen; Xu, Zhu; Li, Fasheng; Du, Xiaoming

    2017-04-01

    Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons (VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures (silty, clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform (TCM) and trichloroethylene (TCE). Mechanical soil aeration was effective for remediating VCHs (removal efficiency >98%). The volatilization process was described by an exponential kinetic function. In the early stage of treatment (0-7hr), rapid contaminant volatilization followed a pseudo-first order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner. Copyright © 2016. Published by Elsevier B.V.

  1. Case studies in organic contaminant hydrogeology

    International Nuclear Information System (INIS)

    Baker, J.A.

    1989-01-01

    The effective management of domestic solid waste and hazardous, toxic, and radioactive waste is a major problem in the area of environmental geology and water sciences throughout the world. A series of case studies is presented of organic contaminants from both solid and hazardous waste disposal facilities to provide examples of these problems. The facilities were investigated to determine risks and liabilities before acquisition, to determine the site hydrogeologic conditions for design of appropriate groundwater monitoring plans, and/or to determine the potential for groundwater contamination. The case studies are of disposal facilities located in glacial tills, carbonaceous weathered clay soils, weathered shale, limestone bedrock, dolomite bedrock, and alluvial and sedimentary deposits. The results of these studies and investigations show certain relationships in the distribution of organic pollutants to the different geologic and hydrogeologic characteristics of each facility. In each of the four case studies, all 129 priority pollutants were analyzed in private wells and/or monitoring wells. The 31 volatile organic compounds (VOCs) of the priority pollutant list were the majority of organic compounds detected. When VOCs are found in groundwater impacted by disposal facilities, they are present in groups and tend to be distributed in patterns based on their relative concentrations. It is rare to find only one or two VOCs from facilities where leakage has been detected. The ethylenes and ethanes appear to be more prevalent and mobile than aromatic VOCs. The aromatics are restricted primarily to leachates and wastes and in monitoring wells located adjacent to facilities. 2 refs., 15 figs

  2. REDUCTIVE DEHALOGENATION OF ORGANIC CONTAMINANTS IN SOILS AND GROUND WATER

    Science.gov (United States)

    Introduction and large scale production of synthetic halogenated organic chemicals over the last 50 years has resulted in a group of contaminants which tend to persist in the environment and resist both biotic and abiotic degradation. The low solubility of these types of contamin...

  3. Proposal of new convenient extractant for assessing phytoavailability of heavy metals in contaminated sandy soil.

    Science.gov (United States)

    Korzeniowska, Jolanta; Stanislawska-Glubiak, Ewa

    2017-06-01

    The aim of the study was to compare the usefulness of 1 M HCl with aqua regia, EDTA, and CaCl 2 for the extraction of phytoavailable forms of Cu, Ni, and Zn on coarse-textured soils contaminated with these metals. Two microplot experiments were used for the studies. Reed canary grass (Phalaris arundinacea), maize (Zea mays), willow (Salix viminalis), spartina (Spartina pectinata), and miscanthus (Miscanthus × giganteus) were used as test plants. They were grown on soil artificially spiked with Cu, Ni, and Zn. The experimental design included a control and three increasing doses of metals. Microplots (1 m 2  × 1 m deep) were filled with sandy soil (clay-6%, pH 5.5, Corg-0.8%). Metals in the form of sulfates were dissolved in water and applied to the plot using a hand liquid sprayer. During the harvest, samples were collected from aboveground parts, roots, and the soil and then tested for their Cu, Zn, and Ni contents. The metal content of the soil was determined using four tested extractants. It was found that Cu and Ni were accumulated in roots in bigger amounts than Zn. The usefulness of the extractants was evaluated based on the correlation between the content of metals in the soil and the plant (n = 32). This study demonstrated that 1 M HCl, aqua regia, and EDTA were more efficient or equally useful for the assessment of the phytoavailability of Cu, Ni, and Zn as CaCl 2 . Due to the ease of performing determinations and their low cost, 1 M HCl can be recommended to assess the excess of Cu, Ni, and Zn in the coarse-textured soils.

  4. Sorption of polar and nonpolar organic contaminants by oil-contaminated soil.

    Science.gov (United States)

    Chen, Hong; Chen, Shuo; Quan, Xie; Zhao, Huimin; Zhang, Yaobin

    2008-12-01

    Sorption of nonpolar (phenanthrene and butylate) and polar (atrazine and diuron) organic chemicals to oil-contaminated soil was examined to investigate oil effects on sorption of organic chemicals and to derive oil-water distribution coefficients (K(oil)). The resulting oil-contaminated soil-water distribution coefficients (K(d)) for phenanthrene demonstrated sorption-enhancing effects at both lower and higher oil concentrations (C(oil)) but sorption-reducing (competitive) effects at intermediate C(oil) (approximately 1 g kg(-1)). Rationalization of the different dominant effects was attempted in terms of the relative aliphatic carbon content which determines the accessibility of the aromatic cores to phenanthrene. Little or no competitive effect occurred for butylate because its sorption was dominated by partitioning. For atrazine and diuron, the changes in K(d) at C(oil) above approximately 1 g kg(-1) were negligible, indicating that the presently investigated oil has little or no effect on the two tested compounds even though the polarity of the oil is much less than soil organic matter (SOM). Therefore, specific interactions with the active groups (aromatic and polar domains) are dominantly responsible for the sorption of polar sorbates, and thus their sorption is controlled by available sorption sites. This study showed that the oil has the potential to be a dominant sorptive phase for nonpolar pollutants when compared to SOM, but hardly so for polar compounds. The results may aid in a better understanding of the role of the aliphatic and aromatic domains in sorption of nonpolar and polar organic pollutants.

  5. Lessons from Hurricane Sandy: a community response in Brooklyn, New York.

    Science.gov (United States)

    Schmeltz, Michael T; González, Sonia K; Fuentes, Liza; Kwan, Amy; Ortega-Williams, Anna; Cowan, Lisa Pilar

    2013-10-01

    The frequency and intensity of extreme weather events have increased in recent decades; one example is Hurricane Sandy. If the frequency and severity continue or increase, adaptation and mitigation efforts are needed to protect vulnerable populations and improve daily life under changed weather conditions. This field report examines the devastation due to Hurricane Sandy experienced in Red Hook, Brooklyn, New York, a neighborhood consisting of geographically isolated low-lying commercial and residential units, with a concentration of low-income housing, and disproportionate rates of poverty and poor health outcomes largely experienced by Black and Latino residents. Multiple sources of data were reviewed, including street canvasses, governmental reports, community flyers, and meeting transcripts, as well as firsthand observations by a local nonprofit Red Hook Initiative (RHI) and community members, and social media accounts of the effects of Sandy and the response to daily needs. These data are considered within existing theory, evidence, and practice on protecting public health during extreme weather events. Firsthand observations show that a community-based organization in Red Hook, RHI, was at the center of the response to disaster relief, despite the lack of staff training in response to events such as Hurricane Sandy. Review of these data underscores that adaptation and response to climate change and likely resultant extreme weather is a dynamic process requiring an official coordinated governmental response along with on-the-ground volunteer community responders.

  6. Sandy PMO Disaster Relief Appropriations Act of 2013 Financial Data

    Data.gov (United States)

    Department of Homeland Security — Sandy PMO: Disaster Relief Appropriations Act of 2013 (Sandy Supplemental Bill) Financial Data. This is the Sandy Supplemental Quarterly Financial Datasets that are...

  7. Organic Contamination Baseline Study: In NASA JSC Astromaterials Curation Laboratories. Summary Report

    Science.gov (United States)

    Calaway, Michael J.

    2013-01-01

    In preparation for OSIRIS-REx and other future sample return missions concerned with analyzing organics, we conducted an Organic Contamination Baseline Study for JSC Curation Labsoratories in FY12. For FY12 testing, organic baseline study focused only on molecular organic contamination in JSC curation gloveboxes: presumably future collections (i.e. Lunar, Mars, asteroid missions) would use isolation containment systems over only cleanrooms for primary sample storage. This decision was made due to limit historical data on curation gloveboxes, limited IR&D funds and Genesis routinely monitors organics in their ISO class 4 cleanrooms.

  8. Contamination of living environment and human organism with plutonium

    International Nuclear Information System (INIS)

    Benes, J.

    1981-01-01

    The applicability of 239 Pu in nuclear power is discussed. The radiotoxic properties of plutonium, its tissue distribution and the effects of internal and external contamination are described. The contamination of the atmosphere, water, and soil with plutonium isotopes is discussed. Dosimetry is described of plutonium in the living and working environments as is plutonium determination in the human organism. (H.S.)

  9. Correlation between landscape fragmentation and sandy desertification: a case study in Horqin Sandy Land, China.

    Science.gov (United States)

    Ge, Xiaodong; Dong, Kaikai; Luloff, A E; Wang, Luyao; Xiao, Jun; Wang, Shiying; Wang, Qian

    2016-01-01

    The exact roles of landscape fragmentation on sandy desertification are still not fully understood, especially with the impact of different land use types in spatial dimension. Taking patch size and shape into consideration, this paper selected the Ratio of Patch Size and the Fractal Dimension Index to establish a model that reveals the association between the area of bare sand land and the fragmentation of different land use types adjacent to bare sand land. Results indicated that (1) grass land and arable land contributed the most to landscape fragmentation processes in the regions adjacent to bare sand land during the period 1980 to 2010. Grass land occupied 54 % of the region adjacent to bare sand land in 1980. The Ratio of Patch Size of grass land decreased from 1980 to 2000 and increased after 2000. The Fractal Dimension Index of grass increased during the period 1980 to 1990 and decreased after 1990. Arable land expanded significantly during this period. The Ratio of Patch Size of arable land increased from 1980 to 1990 and decreased since 1990. The Fractal Dimension Index of arable land increased from 1990 to 2000 and decreased after 2000. (2) The Ratio of Patch Size and the Fractal Dimension Index were significantly related to the area of bare sand land. The role of landscape fragmentation was not linear to sandy desertification. There were both positive and negative effects of landscape fragmentation on sandy desertification. In 1980, the Ratio of Patch Size and the Fractal Dimension Index were negatively related to the area of bare sand land, showing that the landscape fragmentation and regularity of patches contributed to the expansion of sandy desertification. In 1990, 2000, and 2010, the Ratio of Patch Size and the Fractal Dimension Index were mostly positively related to the area of bare sand land, showing the landscape fragmentation and regularity of patches contributed to the reversion of sandy desertification in this phase. The absolute values of

  10. Importance of phytodetritus and microphytobenthos for heterotrophs in a shallow subtidal sandy sediment

    NARCIS (Netherlands)

    Evrard, V.; Huettel, M.; Cook, P.L.M.; Soetaert, K.; Heip, C.H.R.; Middelburg, J.J.

    2012-01-01

    The relative importance of allochthonous phytodetritus deposition and autochthonous microphytobenthos (MPB) production for benthic consumers in an organic carbon (C-org)-poor sandy sediment was assessed using a C-13-stable isotope natural abundance study combined with a dual C-13-tracer addition

  11. Phytoremediation of small organic contaminants using transgenic plants

    Science.gov (United States)

    James, C Andrew; Strand, Stuart E

    2010-01-01

    The efficacy of transgenic plants in the phytoremediation of small organic contaminants has been investigated. Two principal strategies have been pursued (1) the manipulation of phase I metabolic activity to enhance in planta degradation rates, or to impart novel metabolic activity, and (2) the enhanced secretion of reactive enzymes from roots leading to accelerated ex planta degradation of organic contaminants. A pair of dehalogenase genes from Xanthobacter autotrophicus was expressed in tobacco resulting in the dehalogenation of 1,2-dichloroethane, which was otherwise recalcitrant. A laccase gene from cotton was overexpressed in Arabidopsis thaliana resulting in increased secretory laccase activity and the enhanced resistance to trichlorophenol in soils. Although the results to date are promising, much of the work has been limited to laboratory settings; field demonstrations are needed. PMID:19342219

  12. Long-Term Effects of Legacy Copper Contamination on Microbial Activity and Soil Physical Properties

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Holmstrup, Martin

    Soils heavily contaminated with copper (Cu) are considered unsuitable for agricultural use due to adverse impacts on microbial activity, soil physical properties, and direct toxicity to crops. This study investigated effects of Cu pollution from timber preservation activities between 1911 and 1924...... on soil micro-organisms and subsequent effects on physical properties of a sandy loam soil. Tillage operations over the last 70 years have caused spreading of the initially localized contamination and have created a Cu concentration gradient from 20 to 3800 mg kg-1 across an agricultural field in Hygum......, Denmark. Soil samples obtained from the fallow field were used to determine total microbial activity using fluorescein diacetate and dehydrogenase assays. The physical properties measured included water-dispersible clay, bulk density, air permeability and air-filled porosity. Significant differences...

  13. Enteropathogenic bacterial contamination of a latosol following application of organic fertilizer

    Directory of Open Access Journals (Sweden)

    Pedro Alexandre Escosteguy

    2015-10-01

    Full Text Available Poultry manure is used as fertilizer in natura, but little is known about whether it contaminates the soil with pathogenic organisms. The aim of this study was to assess the effects of organic, organomineral and mineral fertilizers on soil contamination by enteric pathogens, using poultry manure as the organic fertilizer. Manure was applied in field experiments at rates of 7.0 ton. ha-1 (maize crop, 2008/2009, 8.0 ton. ha-1 (wheat crop, 2009 and 14 ton. ha-1 (maize crop, 2010/2011. Organomineral fertilizer was applied at the same rates but was comprised of 50% manure and 50% mineral fertilizer. At 30 and 70 days after fertilization, the organic fertilizer and the upper 0-5 cm layer of the soil were tested for the presence of helminth eggs and larvae and enteropathogenic bacteria. Fecal and non-fecal coliforms (Escherichia coli and Clostridium perfringes were found in the organic fertilizer, but neither Salmonella spp. nor enteroparasites were detected. The population of enteropathogenic bacteria in the soil was similar among the treatments for all crops at both evaluation times. The population of thermotolerant coliforms in the organic fertilizer was larger than the maximum level allowed in Brazil, but neither the organic or nor the organomineral fertilizer contaminated the soil.

  14. Influences of binding to dissolved organic matter on hydrophobic organic compounds in a multi-contaminant system: Coefficients, mechanisms and ecological risks.

    Science.gov (United States)

    Li, Yi-Long; He, Wei; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Xu, Fu-Liu

    2015-11-01

    The complexation flocculation (CF) method was successfully employed to identify binding coefficients (Kdoc) of specific organic contaminants to dissolved organic matter (DOM, often indicated by dissolved organic carbon, DOC) in a multi-contaminant hydrophobic organic contaminant (HOC) system. Kdoc values were obtained for most of the evaluated 33 HOCs, indicating the feasibility and applicability of the CF method in a multi-contaminant system. Significant positive correlations were observed between binding coefficients and octanol-water partition coefficients (Kow) for organic halogen compounds, such as polybrominated diphenyl ethers (PBDEs) (R(2) = 0.95, p mechanisms between PAHs and organic halogen compounds exist. These differences further result in discriminative competition partitions of HOCs between DOM and organisms. Assuming that only freely dissolved HOCs are bioconcentrative, the results of DOM-influenced bioconcentration factor (BCFDOM) and DOM-influenced lowest observed effect level (LOELDOM) indicate that the ecological risk of HOCs is decreased by DOM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Strength Characteristics of Reinforced Sandy Soil

    OpenAIRE

    S. N. Bannikov; Mahamed Al Fayez

    2005-01-01

    Laboratory tests on determination of reinforced sandy soil strength characteristics (angle of internal friction, specific cohesive force) have been carried out with the help of a specially designed instrument and proposed methodology. Analysis of the obtained results has revealed that cohesive forces are brought about in reinforced sandy soil and an angle of internal soil friction becomes larger in comparison with non-reinforced soil.

  16. Intrinsic rates of petroleum hydrocarbon biodegradation in Gulf of Mexico intertidal sandy sediments and its enhancement by organic substrates

    International Nuclear Information System (INIS)

    Mortazavi, Behzad; Horel, Agota; Beazley, Melanie J.; Sobecky, Patricia A.

    2013-01-01

    The rates of crude oil degradation by the extant microorganisms in intertidal sediments from a northern Gulf of Mexico beach were determined. The enhancement in crude oil degradation by amending the microbial communities with marine organic matter was also examined. Replicate mesocosm treatments consisted of: (i) controls (intertidal sand), (ii) sand contaminated with crude oil, (iii) sand plus organic matter, and (iv) sand plus crude oil and organic matter. Carbon dioxide (CO 2 ) production was measured daily for 42 days and the carbon isotopic ratio of CO 2 (δ 13 CO 2 ) was used to determine the fraction of CO 2 derived from microbial respiration of crude oil. Bacterial 16S rRNA clone library analyses indicated members of Actinobacteria, Bacteroidetes, and Chloroflexi occurred exclusively in control sediments whereas Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Firmicutes occurred in both control and oil contaminated sediments. Members of the hydrocarbon-degrading genera Hydrocarboniphaga, Pseudomonas, and Pseudoxanthomonas were found primarily in oil contaminated treatments. Hydrocarbon mineralization was 76% higher in the crude oil amended with organic matter treatment compared to the rate in the crude oil only treatment indicating that biodegradation of crude oil in the intertidal zone by an extant microbial community is enhanced by input of organic matter

  17. Intrinsic rates of petroleum hydrocarbon biodegradation in Gulf of Mexico intertidal sandy sediments and its enhancement by organic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, Behzad [University of Alabama, Department of Biological Sciences, Box 870344, University of Alabama, Tuscaloosa, AL 35487 (United States); Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, AL, 36528 (United States); Horel, Agota [University of Alabama, Department of Biological Sciences, Box 870344, University of Alabama, Tuscaloosa, AL 35487 (United States); Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, AL, 36528 (United States); Beazley, Melanie J.; Sobecky, Patricia A. [University of Alabama, Department of Biological Sciences, Box 870344, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2013-01-15

    The rates of crude oil degradation by the extant microorganisms in intertidal sediments from a northern Gulf of Mexico beach were determined. The enhancement in crude oil degradation by amending the microbial communities with marine organic matter was also examined. Replicate mesocosm treatments consisted of: (i) controls (intertidal sand), (ii) sand contaminated with crude oil, (iii) sand plus organic matter, and (iv) sand plus crude oil and organic matter. Carbon dioxide (CO{sub 2}) production was measured daily for 42 days and the carbon isotopic ratio of CO{sub 2} (δ{sup 13}CO{sub 2}) was used to determine the fraction of CO{sub 2} derived from microbial respiration of crude oil. Bacterial 16S rRNA clone library analyses indicated members of Actinobacteria, Bacteroidetes, and Chloroflexi occurred exclusively in control sediments whereas Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Firmicutes occurred in both control and oil contaminated sediments. Members of the hydrocarbon-degrading genera Hydrocarboniphaga, Pseudomonas, and Pseudoxanthomonas were found primarily in oil contaminated treatments. Hydrocarbon mineralization was 76% higher in the crude oil amended with organic matter treatment compared to the rate in the crude oil only treatment indicating that biodegradation of crude oil in the intertidal zone by an extant microbial community is enhanced by input of organic matter.

  18. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system

    OpenAIRE

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M.

    2016-01-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected wi...

  19. Evaluation of natural attenuation, bioventing, bioaugmentation and bioaugmentation-bioventing techniques, for the biodegradation of diesel in a sandy soil, through column experiments

    International Nuclear Information System (INIS)

    Muskus Morales, Angelica Maria; Santoyo Munoz, Claudia; Plata Quintero, Luijesmarth Silvia

    2013-01-01

    The present study was developed within an inter-institutional agreement between the Universidad Pontificia Bolivariana, UPB-BBGA and the Colombian Petroleum Institute-ICP, in order to provide a solution to an environmental problem that occurs in areas where hydrocarbons are handled and where sandy soils have been found to be contaminated with diesel fuel with concentrations up to 6% at a maximum depth of 80 cm. For this study, the soil samples were artificially contaminated with diesel fuel in order to evaluate Natural Attenuation, Bioventing, Bioaugmentation and Bioaugmentation-Bioventing soil remediation techniques through the use of column experiments. The design parameters, column dimensions, inflow, diesel concentration, dissolved oxygen, bacterial growth, and monitoring was defined. Bioaugmentation was performed inoculating a bacterial consortium produced by the ICP. The experimental setup was assembled in triplicate and was monitored through a period of four months. The experimental results showed that Bioventing technique was the most effective, reaching up to 97% diesel removal from the contaminated soil; with the Bioaugmentation - Bioventing, diesel fuel removal percentage was 75%, and the Natural Attenuation and Bioaugmentation techniques resulted in diesel fuel removal percentages not greater than 48%. This study showed that the microbial consortium evaluated and provided by the Colombian Petroleum Institute proved to be not efficient for potentializing bioremediation processes of sandy soils contaminated with diesel fuel.

  20. Axial compressive bearing capacity of piles in oil-contaminated sandy soil using FCV

    NARCIS (Netherlands)

    Mohammadi, Amirhossein; Ebadi, Taghi; Eslami, Abolfazl; Zee, van der S.E.A.T.M.

    2018-01-01

    Oil and its derivatives contaminate many soils and not only affect their chemical and biological properties but also their geotechnical properties. As oil contamination may deteriorate the functioning of piles, this paper addresses the effects of oil contamination on soil–pile interactions. Axial

  1. Landscape Visual Quality and Meiofauna Biodiversity on Sandy Beaches

    Science.gov (United States)

    Felix, Gabriela; Marenzi, Rosemeri C.; Polette, Marcos; Netto, Sérgio A.

    2016-10-01

    Sandy beaches are central economic assets, attracting more recreational users than other coastal ecosystems. However, urbanization and landscape modification can compromise both the functional integrity and the attractiveness of beach ecosystems. Our study aimed at investigating the relationship between sandy beach artificialization and the landscape perception by the users, and between sandy beach visual attractiveness and biodiversity. We conducted visual and biodiversity assessments of urbanized and semiurbanized sandy beaches in Brazil and Uruguay. We specifically examined meiofauna as an indicator of biodiversity. We hypothesized that urbanization of sandy beaches results in a higher number of landscape detractors that negatively affect user evaluation, and that lower-rated beach units support lower levels of biodiversity. We found that urbanized beach units were rated lower than semiurbanized units, indicating that visual quality was sensitive to human interventions. Our expectations regarding the relationship between landscape perception and biodiversity were only partially met; only few structural and functional descriptors of meiofauna assemblages differed among classes of visual quality. However, lower-rated beach units exhibited signs of lower environmental quality, indicated by higher oligochaete densities and significant differences in meiofauna structure. We conclude that managing sandy beaches needs to advance beyond assessment of aesthetic parameters to also include the structure and function of beach ecosystems. Use of such supporting tools for managing sandy beaches is particularly important in view of sea level rise and increasing coastal development.

  2. Radioactive contamination of aquatic media and organisms; La contamination radioactive des milieux et des organismes aquatiques

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, Y [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    After a brief account of the radioactive wastes produced by peaceful or military uses of Atomic Industry, the author first describes a series of observations carried out 'in the field' on the extent of contamination in aquatic organisms with respect to that of the medium. The experimental studies are then analysed, with reference both to the radioisotope metabolism and to the factors and types of contamination of aquatic organisms by wastes from atomic industry. A precise experimental project is presented at the end of the paper, including almost 300 references. (author) [French] Apres une courte etude des dechets radioactifs produits par les utilisations pacifiques ou militaires de l'Industrie Atomique, l'auteur fait etat d'abord des observations effectuees 'sur le terrain' concernant l'extension de la contamination des organismes aquatiques en rapport avec celle du milieu. L'auteur analyse ensuite les etudes experimentales se rapportant aussi bien au metabolisme des radioisotopes qu'aux facteurs et aux modalites de la contamination des organismes aquatiques par les dechets de l'industrie atomique. Un projet de travail experimental precis est presente a la fin de cette revue qui comporte pres de 300 references bibliographiques. (auteur)

  3. Leaching of human pathogens in repacked soil lysimeters and contamination of potato tubers under subsurface drip irrigation in Denmark

    DEFF Research Database (Denmark)

    Forslund, Anita; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    The risk for contamination of potatoes and groundwater through subsurface drip irrigation with low quality water was explored in 30 large-scale lysimeters containing repacked coarse sand and sandy loam soils. The human pathogens, Salmonella Senftenberg, Campylobacter jejuni and Escherichia coli O......, phage 28B was detected in low concentrations (2 pfu ml1) in leachate from both sandy loam soil and coarse sand lysimeters. After 27 days, phage 28B continued to be present in similar concentrations in leachate from lysimeters containing coarse sand, while no phage were found in lysimeters with sandy....... The findings of bacterial pathogens and phage 28 on all potato samples suggest that the main risk associated with subsurface drip irrigation with low quality water is faecal contamination of root crops, in particular those consumed raw....

  4. Contaminant risks from biosolids land application Contemporary organic contaminant levels in digested sewage sludge from five treatment plants in Greater Vancouver, British Columbia

    International Nuclear Information System (INIS)

    Bright, D.A.; Healey, N.

    2003-01-01

    The risks of organic contaminants in sewage sludges are evaluated. - This study examines the potential for environmental risks due to organic contaminants at sewage sludge application sites, and documents metals and various potential organic contaminants (volatile organics, chlorinated pesticides, PCBs, dioxins/furans, extractable petroleum hydrocarbons, PAHs, phenols, and others) in current production biosolids from five wastewater treatment plants (WWTPs) within the Greater Vancouver Regional District (GVRD). There has been greater focus in Europe, North America and elsewhere on metals accumulation in biosolids-amended soil than on organic substances, with the exception of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Another objective, therefore, was to evaluate the extent to which management of biosolids re-use based on metal/metalloid levels coincidentally minimizes environmental risks from organic contaminants. Historical-use contaminants such as chlorophenols, PCBs, and chlorinated pesticides were not detected at environmentally relevant concentrations in any of the 36 fresh biosolids samples, and appear to have virtually eliminated from sanitary collection system inputs. The few organic contaminants found in freshly produced biosolids samples that exhibited high concentrations relative to British Columbia and Canadian soil quality benchmarks included p-cresol, phenol, phenanthrene, pyrene, naphthalene, and heavy extractable petroleum hydrocarbons (HEPHs-nCl9-C34 effective carbon chain length). It was concluded that, with the exception of these petroleum hydrocarbon constituents or their microbial metabolites, the mixing of biosolids with uncontaminated soils during land application and based on the known metal concentrations in biosolids from the Greater Vancouver WWTPs investigated provides adequate protection against the environmental risks associated with organic substances such as dioxins and furans, phthalate esters, or volatile

  5. Geophysical Monitoring of Hydrocarbon-Contaminated Soils Remediated with a Bioelectrochemical System.

    Science.gov (United States)

    Mao, Deqiang; Lu, Lu; Revil, André; Zuo, Yi; Hinton, John; Ren, Zhiyong Jason

    2016-08-02

    Efficient noninvasive techniques are desired for monitoring the remediation process of contaminated soils. We applied the direct current resistivity technique to image conductivity changes in sandbox experiments where two sandy and clayey soils were initially contaminated with diesel hydrocarbon. The experiments were conducted over a 230 day period. The removal of hydrocarbon was enhanced by a bioelectrochemical system (BES) and the electrical potentials of the BES reactors were also monitored during the course of the experiment. We found that the variation in electrical conductivity shown in the tomograms correlate well with diesel removal from the sandy soil, but this is not the case with the clayey soil. The clayey soil is characterized by a larger specific surface area and therefore a larger surface conductivity. In sandy soil, the removal of the diesel and products from degradation leads to an increase in electrical conductivity during the first 69 days. This is expected since diesel is electrically insulating. For both soils, the activity of BES reactors is moderately imaged by the inverted conductivity tomogram of the reactor. An increase in current production by electrochemically active bacteria activity corresponds to an increase in conductivity of the reactor.

  6. Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2010-10-01

    For water reuse applications, " tight" nanofiltration (NF) membranes (of polyamide) as an alternative to reverse osmosis (RO) can be an effective barrier against pharmaceuticals, pesticides, endocrine disruptors and other organic contaminants. The use of RO in existing water reuse facilities is addressed and questioned, taking into consideration that tight NF can be a more cost-effective and efficient technology to target the problem of organic contaminants. It was concluded that tight NF is an acceptable barrier for organic contaminants because its removal performance approaches that of RO, and because of reduced operation and maintenance (O&M) costs in long-term project implementation. Average removal of neutral compounds (including 1,4-dioxane) was about 82% and 85% for NF and RO, respectively, and average removal of ionic compounds was about 97% and 99% for NF and RO, respectively. In addition, " loose" NF after aquifer recharge and recovery (ARR) can be an effective barrier against micropollutants with removals over 90%. When there is the presence of difficult to remove organic contaminants such as NDMA and 1,4-dioxane; for 1,4-dioxane, source control or implementation of treatment processes in wastewater treatment plants will be an option; for NDMA, a good strategy is to limit its formation during wastewater treatment, but there is evidence that biodegradation of NDMA can be achieved during ARR. © 2010 Elsevier B.V.

  7. Brazilian sandy beaches: characteristics, ecosystem services, impacts, knowledge and priorities

    Directory of Open Access Journals (Sweden)

    Antonia Cecília Zacagnini Amaral

    Full Text Available ABSTRACT Sandy beaches constitute a key ecosystem and provide socioeconomic goods and services, thereby playing an important role in the maintenance of human populations and in biodiversity conservation. Despite the ecological and social importance of these ecosytems, Brazilian sandy beaches are significantly impacted by human interference, chemical and organic pollution and tourism, as well as global climate change. These factors drive the need to better understand the environmental change and its consequences for biota. To promote the implementation of integrated studies to detect the effects of regional and global environmental change on beaches and on other benthic habitats of the Brazilian coast, Brazilian marine researchers have established The Coastal Benthic Habitats Monitoring Network (ReBentos. In order to provide input for sample planning by ReBentos, we have conducted an intensive review of the studies conducted on Brazilian beaches and summarized the current knowledge about this environment. In this paper, we present the results of this review and describe the physical, biological and socioeconomics features of Brazilian beaches. We have used these results, our personal experience and worldwide literature to identify research projects that should be prioritized in the assessment of regional and global change on Brazilian sandy beaches. We trust that this paper will provide insights for future studies and represent a significant step towards the conservation of Brazilian beaches and their biodiversity.

  8. The Opera Instrument: An Advanced Curation Development for Mars Sample Return Organic Contamination Monitoring

    Science.gov (United States)

    Fries, M. D.; Fries, W. D.; McCubbin, F. M.; Zeigler, R. A.

    2018-01-01

    Mars Sample Return (MSR) requires strict organic contamination control (CC) and contamination knowledge (CK) as outlined by the Mars 2020 Organic Contamination Panel (OCP). This includes a need to monitor surficial organic contamination to a ng/sq. cm sensitivity level. Archiving and maintaining this degree of surface cleanliness may be difficult but has been achieved. MSR's CK effort will be very important because all returned samples will be studied thoroughly and in minute detail. Consequently, accurate CK must be collected and characterized to best interpret scientific results from the returned samples. The CK data are not only required to make accurate measurements and interpretations for carbon-depleted martian samples, but also to strengthen the validity of science investigations performed on the samples. The Opera instrument prototype is intended to fulfill a CC/CK role in the assembly, cleaning, and overall contamination history of hardware used in the MSR effort, from initial hardware assembly through post-flight sample curation. Opera is intended to monitor particulate and organic contamination using quartz crystal microbalances (QCMs), in a self-contained portable package that is cleanroom-compliant. The Opera prototype is in initial development capable of approximately 100 ng/sq. cm organic contamination sensitivity, with additional development planned to achieve 1 ng/sq. cm. The Opera prototype was funded by the 2017 NASA Johnson Space Center Innovation Charge Account (ICA), which provides funding for small, short-term projects.

  9. Effect of soil contamination due to wastewater irrigation on total cesium as determined by destructive and nondestructive analytical techniques in some soils of egypt

    International Nuclear Information System (INIS)

    Abdel-Sabour, M.F.; Abdel-Lattif, A.

    2005-01-01

    Fifteen soil samples were chosen from different locations to represent different soils irrigated with different sources of contaminated wastewater (sewage and industrial effluent). Sequential extraction experiment was carried out to determine different forms of Cs in soils. Moreover, Soil samples were analyzed for total Cs using two analytical methods i.e. destructive wet digestion technique (Atomic Absorption Spectrometry, AAS or by summation of all sequential extracted fractions, SUM) and non-destructive technique (Neutron Activation Analysis, NAA). The aim of this study was to evaluate soil total Cs-forms (especially, bio-available fraction) as affected by soil pollution. Cesium was mostly concentrated in the residual fraction, and its values ranged from 57.4% to 82.9 % of total Cs in sandy soils and from 31.5% to 64.5 % of total Cs in tested clayey soil. Then organically bound Cs- fraction followed by Cs-occluded in Fe-Mn fraction, carbonate, exchangeable and water soluble fractions. Results suggested that, Cs level is affected by soil organic matter content, Fe-Mn oxides and clay content. The mobile Cs fraction (the sum of soluble and exchangeable fractions) ranged from 2% up to 9.9 % of total Cs in sandy soils. However, a higher value (9.82% to 15.31 %) could be observed in case of the tested clayey soils. Soils D and E were more contaminated than other tested soils. Data show obviously, that soil contaminated due to the irrigation with either sewage effluent or industrial wastewater has resulted in a drastic increase in both metal-organic and occluded in Fe and Mn oxide fractions followed by the carbonate fraction

  10. The ecology of sandy beaches in Natal

    African Journals Online (AJOL)

    The ecology of sandy beaches in Natal. A.H. Dye, A. Mclachlan and T. Wooldridge. Department of Zoology, University of Port Elizabeth, Port Elizabeth. Data from an ecological survey of four sandy beaches on the. Natal coast of South Africa are presented. Physical para· meters such as beach profile, particle size, moisture, ...

  11. Effects of organic contaminants in sewage sludge on soil fertility, plants and animals

    International Nuclear Information System (INIS)

    Hall, J.E.; Sauerbeck, D.R.; L'Hermite, P.

    1992-01-01

    Sewage sludge production in Europe will continue to rise as a result of higher environmental standards, making disposal increasingly difficult in the future. A considerable part of this sludge is spread beneficially on agricultural land as an organic fertilizer, however, this outlet is very sensitive to the problems associated with the inorganic and organic contaminants which sludge inevitably contains. Much research has been devoted to the problems of contaminants in sludge and their potential effects on soil, plants, animals and man in recent years, and the European Commission's Concerted Action COST 681 has provided a valuable forum for the exchange of views and progress of research on sludge treatment and disposal. This book contains 19 papers presented to a joint meeting of Working Party 4 (Agricultural Value) and Working Party 5 (Environmental Effects) of COST 681, held at the German Federal Research Centre of Agriculture (FAL), Braunschweig on 6-8 June 1990. The meeting addressed two areas of current concern; the occurrence, behaviour and transfer of sludge-derived organic contaminants (Session 1), and the influence of inorganic and organic contaminants on soil micro-organisms and their activities (Session 2)

  12. Model projections of atmospheric steering of Sandy-like superstorms.

    Science.gov (United States)

    Barnes, Elizabeth A; Polvani, Lorenzo M; Sobel, Adam H

    2013-09-17

    Superstorm Sandy ravaged the eastern seaboard of the United States, costing a great number of lives and billions of dollars in damage. Whether events like Sandy will become more frequent as anthropogenic greenhouse gases continue to increase remains an open and complex question. Here we consider whether the persistent large-scale atmospheric patterns that steered Sandy onto the coast will become more frequent in the coming decades. Using the Coupled Model Intercomparison Project, phase 5 multimodel ensemble, we demonstrate that climate models consistently project a decrease in the frequency and persistence of the westward flow that led to Sandy's unprecedented track, implying that future atmospheric conditions are less likely than at present to propel storms westward into the coast.

  13. Organic contamination of ground water at Gas Works Park, Seattle, Washington

    International Nuclear Information System (INIS)

    Turney, G.L.; Goerlitz, D.F.

    1990-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large

  14. Organic contamination of ground water at Gas Works Park, Seattle, Washington

    Science.gov (United States)

    Turney, G.L.; Goerlitz, D.F.

    1990-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.

  15. Radioactive contamination of aquatic media and organisms; La contamination radioactive des milieux et des organismes aquatiques

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, Y. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    After a brief account of the radioactive wastes produced by peaceful or military uses of Atomic Industry, the author first describes a series of observations carried out 'in the field' on the extent of contamination in aquatic organisms with respect to that of the medium. The experimental studies are then analysed, with reference both to the radioisotope metabolism and to the factors and types of contamination of aquatic organisms by wastes from atomic industry. A precise experimental project is presented at the end of the paper, including almost 300 references. (author) [French] Apres une courte etude des dechets radioactifs produits par les utilisations pacifiques ou militaires de l'Industrie Atomique, l'auteur fait etat d'abord des observations effectuees 'sur le terrain' concernant l'extension de la contamination des organismes aquatiques en rapport avec celle du milieu. L'auteur analyse ensuite les etudes experimentales se rapportant aussi bien au metabolisme des radioisotopes qu'aux facteurs et aux modalites de la contamination des organismes aquatiques par les dechets de l'industrie atomique. Un projet de travail experimental precis est presente a la fin de cette revue qui comporte pres de 300 references bibliographiques. (auteur)

  16. Reservoir architecture patterns of sandy gravel braided distributary channel

    Directory of Open Access Journals (Sweden)

    Senlin Yin

    2016-06-01

    Full Text Available The purpose of this study was to discuss shape, scale and superimposed types of sandy gravel bodies in sandy-gravel braided distributary channel. Lithofacies analysis, hierarchy bounding surface analysis and subsurface dense well pattern combining with outcrops method were used to examine reservoir architecture patterns of sandy gravel braided distributary channel based on cores, well logging, and outcrops data, and the reservoir architecture patterns of sandy gravel braided distributary channels in different grades have been established. The study shows: (1 The main reservoir architecture elements for sandy gravel braided channel delta are distributary channel and overbank sand, while reservoir flow barrier elements are interchannel and lacustrine mudstone. (2 The compound sand bodies in the sandy gravel braided delta distributary channel take on three shapes: sheet-like distributary channel sand body, interweave strip distributary channel sand body, single strip distributary channel sand body. (3 Identification marks of single distributary channel include: elevation of sand body top, lateral overlaying, “thick-thin-thick” feature of sand bodies, interchannel mudstone and overbank sand between distributary channels and the differences in well log curve shape of sand bodies. (4 Nine lithofacies types were distinguished in distributary channel unit interior, different channel units have different lithofacies association sequence.

  17. Process for the restoration of solids contaminated with hydrocarbons and heavy organic compounds

    International Nuclear Information System (INIS)

    Bala, G.A.; Thomas, C.P.; Jackson, J.D.; McMillin, R.A.

    1994-01-01

    Processes have been developed for the restoration of environments contaminated with hydrocarbons and heavy organics. The intended product is a field deployable materials handling system and phase separation process ranging in size from 1 yd 3 /hr to 50 yd 3 /hr for commercial application to environmental problems associated with the exploration, production, refining and transport of petroleum, petroleum products and organic chemicals. Effluents from contaminated sites will be clean solids (classified by size if appropriate), and the concentrated contaminant. The technology is based on biochemical solvation, liquid/liquid and liquid/solid extractions, materials classification, mechanical and hydraulic scrubbing, and phase separation of organic and aqueous phases. Fluid use is minimized through utilization of closed-loop (recycle) systems. Contaminants that are removed from the solid materials may be destroyed, disposed of using existing technologies, or used on-site for cogeneration of /power for plant operations. Additionally, if the contaminant is a valued product, the material may be recovered for application or sale. Clean solid material is not sterilized and may be returned to normal agricultural, commercial, residential or recreational use in most instances

  18. Effects of dissolved organic matter from a eutrophic lake on the freely dissolved concentrations of emerging organic contaminants.

    Science.gov (United States)

    Xiao, Yi-Hua; Huang, Qing-Hui; Vähätalo, Anssi V; Li, Fei-Peng; Chen, Ling

    2014-08-01

    The authors studied the effects of dissolved organic matter (DOM) on the bioavailability of bisphenol A (BPA) and chloramphenicol by measuring the freely dissolved concentrations of the contaminants in solutions containing DOM that had been isolated from a mesocosm in a eutrophic lake. The abundance and aromaticity of the chromophoric DOM increased over the 25-d mesocosm experiment. The BPA freely dissolved concentration was 72.3% lower and the chloramphenicol freely dissolved concentration was 56.2% lower using DOM collected on day 25 than using DOM collected on day 1 of the mesocosm experiment. The freely dissolved concentrations negatively correlated with the ultraviolent absorption coefficient at 254 nm and positively correlated with the spectral slope of chromophoric DOM, suggesting that the bioavailability of these emerging organic contaminants depends on the characteristics of the DOM present. The DOM-water partition coefficients (log KOC ) for the emerging organic contaminants positively correlated with the aromaticity of the DOM, measured as humic acid-like fluorescent components C1 (excitation/emission=250[313]/412 nm) and C2 (excitation/emission=268[379]/456 nm). The authors conclude that the bioavailability of emerging organic contaminants in eutrophic lakes can be affected by changes in the DOM. © 2014 SETAC.

  19. Content Analysis of Select YouTube Postings: Comparisons of Reactions to the Sandy Hook and Aurora Shootings and Hurricane Sandy.

    Science.gov (United States)

    Miller, Eric D

    2015-11-01

    This study details an innovative and methodical content analysis of 2,207 YouTube comments from four different YouTube videos (e.g., breaking news or memorials) related to the 2012 Sandy Hook Elementary School and Aurora theater mass shootings and the catastrophic Hurricane Sandy. As expected, YouTube comments associated with the Sandy Hook shootings (particularly those from a memorial video) were especially likely to feature compassion and grief with lessened hostility. This study highlights differing online contexts by which individuals show grief and related emotions following man-made and natural calamities and how-even in an online environment-powerful situational contexts greatly guide behavior.

  20. The role of sediment compaction and groundwater withdrawal in local sea-level rise, Sandy Hook, New Jersey, USA

    Science.gov (United States)

    Johnson, Christopher S.; Miller, Kenneth G.; Browning, James V.; Kopp, Robert E.; Khan, Nicole S.; Fan, Ying; Stanford, Scott D.; Horton, Benjamin P.

    2018-02-01

    The rate of relative sea-level (RSL) rise at Sandy Hook, NJ (4.0 ± 0.5 mm/yr) was higher than The Battery, NY (3.0 ± 0.3 mm/yr) from 1900 to 2012 despite being separated by just 26 km. The difference cannot be explained by differential glacial isostatic adjustment (GIA; 1.4 ± 0.4 and 1.3 ± 0.4 mm/yr RSL rise, respectively) alone. We estimate the contribution of sediment compaction to subsidence at Sandy Hook using high-resolution grain size, percent organic matter, and porosity data from three upper Quaternary (≤13,350 cal yr) cores. The organic matter content (indicates that compaction of deglacial silts likely reduced the column thickness by 10-20% over the past 13,350 cal yrs. While compaction rates were high immediately after the main silt deposition (13,350-13,150 cal yrs BP), rates decreased exponentially after deposition to an average 20th century rate of 0.16 mm/yr (90% Confidence Interval (C.I.), 0.06-0.32 mm/yr). The remaining ∼0.7 mm/yr (90% C.I. 0.3-1.2 mm/yr) difference in subsidence between Sandy Hook and The Battery is likely due to anthropogenic groundwater withdrawal. Historical data from Fort Hancock wells (2 km to the southeast of the Sandy Hook tide gauge) and previous regional work show that local and regional water extraction lowered the water levels in the aquifers underlying Sandy Hook. We suggest that the modern order of contribution to subsidence (highest to lowest) appears to be GIA, local/regional groundwater extraction, and compaction of thick Quaternary silts.

  1. The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers

    KAUST Repository

    Satyawali, Yamini

    2011-04-01

    Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)3) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)3), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs. © 2010 Elsevier B.V.

  2. Microbial Fuel Cells for Organic-Contaminated Soil Remedial Applications

    NARCIS (Netherlands)

    Li, Xiaojing; Wang, Xin; Weng, Liping; Zhou, Qixing; Li, Yongtao

    2017-01-01

    Efficient noninvasive techniques are desired for repairing organic-contaminated soils. Bioelectrochemical technology, especially microbial fuel cells (MFCs), has been widely used to promote a polluted environmental remediation approach, and applications include wastewater, sludge, sediment, and

  3. Hurricane Sandy Economic Impacts Assessment: A Computable General Equilibrium Approach and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Boero, Riccardo [Los Alamos National Laboratory; Edwards, Brian Keith [Los Alamos National Laboratory

    2017-08-07

    Economists use computable general equilibrium (CGE) models to assess how economies react and self-organize after changes in policies, technology, and other exogenous shocks. CGE models are equation-based, empirically calibrated, and inspired by Neoclassical economic theory. The focus of this work was to validate the National Infrastructure Simulation and Analysis Center (NISAC) CGE model and apply it to the problem of assessing the economic impacts of severe events. We used the 2012 Hurricane Sandy event as our validation case. In particular, this work first introduces the model and then describes the validation approach and the empirical data available for studying the event of focus. Shocks to the model are then formalized and applied. Finally, model results and limitations are presented and discussed, pointing out both the model degree of accuracy and the assessed total damage caused by Hurricane Sandy.

  4. Survey in organic contaminants content in sewage sludge from the Emilia Romagna region

    International Nuclear Information System (INIS)

    Mantovi, P.; Sassi, D.; Piccinini, S.; Rossi, L.

    2008-01-01

    Data was collected on the organic pollutants cited in the Working document on sludge, 3. draft (AOX, LAS, DEHP, NPE, PAH, PCB, PCDD/F), for sewage sludge deriving from 12 municipal-industrial wastewater treatment plants and 7 agro-industrial wastewater treatment plants located in the Emilia-Romagna region (Italy), taking samples in spring, summer and winter. The limit values given in the Working document were sporadically exceeded. The most frequent contamination was associated with LAS, in particular in the winter period. Results confirmed lower organic contaminant contents in sludge of agro-industrial origin, compared to sludge from municipal-industrial wastewater treatment plants, with generally not detectable values for the majority of organic pollutants. Comparison of the results collected in this survey with values recorded in other European countries shows that the organic contaminant content of sewage sludge obtained in plants in the Emilia-Romagna region, excepting LAS, is reasonable [it

  5. Pilot-scale UV/H2O2 study for emerging organic contaminants decomposition.

    Science.gov (United States)

    Chu, Xiaona; Xiao, Yan; Hu, Jiangyong; Quek, Elaine; Xie, Rongjin; Pang, Thomas; Xing, Yongjie

    2016-03-01

    Human behaviors including consumption of drugs and use of personal care products, climate change, increased international travel, and the advent of water reclamation for direct potable use have led to the introduction of significant amounts of emerging organic contaminants into the aqueous environment. In addition, the lower detection limits associated with improved scientific methods of chemical analysis have resulted in a recent increase in documented incidences of these contaminants which previously were not routinely monitored in water. Such contaminants may cause known or suspected adverse ecological and/or human health effects at very low concentrations. Conventional drinking water treatment processes may not effectively remove these organic contaminants. Advanced oxidation process (AOP) is a promising treatment process for the removal of most of these emerging organic contaminants, and has been accepted worldwide as a suitable treatment process. In this study, different groups of emerging contaminants were studied for decomposition efficiency using pilot-scale UV/H2O2 oxidation setup, including EDCs, PPCPs, taste and odor (T&O), and perfluorinated compounds. Results found that MP UV/H2O2 AOP was efficient in removing all the selected contaminants except perfluorinated compounds. Study of the kinetics of the process showed that both light absorption and quantum yield of each compound affected the decomposition performance. Analysis of water quality parameters of the treated water indicated that the outcome of both UV photolysis and UV/H2O2 processes can be affected by changes in the feed water quality.

  6. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment.

    Science.gov (United States)

    Ghattas, Ann-Kathrin; Fischer, Ferdinand; Wick, Arne; Ternes, Thomas A

    2017-06-01

    Although strictly anaerobic conditions prevail in several environmental compartments, up to now, biodegradation studies with emerging organic contaminants (EOCs), such as pharmaceuticals and personal care products, have mainly focused on aerobic conditions. One of the reasons probably is the assumption that the aerobic degradation is more energetically favorable than degradation under strictly anaerobic conditions. Certain aerobically recalcitrant contaminants, however, are biodegraded under strictly anaerobic conditions and little is known about the organisms and enzymatic processes involved in their degradation. This review provides a comprehensive survey of characteristic anaerobic biotransformation reactions for a variety of well-studied, structurally rather simple contaminants (SMOCs) bearing one or a few different functional groups/structural moieties. Furthermore it summarizes anaerobic degradation studies of more complex contaminants with several functional groups (CMCs), in soil, sediment and wastewater treatment. While strictly anaerobic conditions are able to promote the transformation of several aerobically persistent contaminants, the variety of observed reactions is limited, with reductive dehalogenations and the cleavage of ether bonds being the most prevalent. Thus, it becomes clear that the transferability of degradation mechanisms deduced from culture studies of SMOCs to predict the degradation of CMCs, such as EOCs, in environmental matrices is hampered due the more complex chemical structure bearing different functional groups, different environmental conditions (e.g. matrix, redox, pH), the microbial community (e.g. adaptation, competition) and the low concentrations typical for EOCs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Effects of soil amendment on soil characteristics and maize yield in Horqin Sandy Land

    Science.gov (United States)

    Zhou, L.; Liu, J. H.; Zhao, B. P.; Xue, A.; Hao, G. C.

    2016-08-01

    A 4-year experiment was conducted to investigate the inter-annual effects of sandy soil amendment on maize yield, soil water storage and soil enzymatic activities in sandy soil in Northeast China in 2010 to 2014. We applied the sandy soil amendment in different year, and investigated the different effects of sandy soil amendment in 2014. There were six treatments including: (1) no sandy soil amendment application (CK); (2) one year after applying sandy soil amendment (T1); (3) two years after applying sandy soil amendment(T2); (4) three years after applying sandy soil amendment(T3); (5)four years after applying sandy soil amendment(T4); (6) five years after applying sandy soil amendment (T5). T refers to treatment, and the number refers to the year after application of the sandy soil amendment. Comparing with CK, sandy soil amendments improved the soil water storage, soil urease, invertase, and catalase activity in different growth stages and soil layers, the order of soil water storage in all treatments roughly performed: T3 > T5 > T4 > T2 > T1 > CK. the order of soil urease, invertase, and catalase activity in all treatments roughly performed: T5 > T3 > T4 > T2 > T1 > CK. Soil application of sandy soil amendment significantly (p≤⃒0.05) increased the grain yield and biomass yield by 22.75%-41.42% and 29.92%-45.45% respectively, and maize yield gradually increased with the years go by in the following five years. Sandy soil amendment used in poor sandy soil had a positive effect on soil water storage, soil enzymatic activities and maize yield, after five years applied sandy soil amendment (T5) showed the best effects among all the treatments, and deserves further research.

  8. Remediation of diesel-contaminated soils using catalyzed hydrogen peroxide: a laboratory evaluation

    International Nuclear Information System (INIS)

    Xu, P.; Achari, G.; Mahmoud, M.; Joshi, R.C.

    2002-01-01

    This paper presents the results of a laboratory investigation conducted to determine the optimum amount of Fenton's reagent that allows for effective treatment of diesel-contaminated soils. Two types of soils spiked with 5,000 mg/kg diesel fuel were treated in vial reactors with varying concentrations and volumes of hydrogen peroxide. Additionally, Ottawa sand spiked with 5,000 mg/kg of diesel was treated with different H 2 O 2 to iron ratios. The gases produced during the remediation process were measured and analyzed to evaluate the oxidation of diesel range organics. As much as 40 % of diesel range organics was removed when 5 grams of silty clay were treated with 20 mL of 20 % H 2 O 2 . The same concentration and volume of hydrogen peroxide removed about 63 % of diesel range organics from sandy silt. The optimal molar ratio of H 2 O 2 : iron catalyst was found to vary between 235:1 to 490:1. (author)

  9. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  10. Hierarchical responses to organic contaminants in aquatic ecotoxicological bioassays: from microcystins to biodegradation

    OpenAIRE

    Montenegro, Katia

    2008-01-01

    In this thesis I explore the ecotoxicological responses of aquatic organisms at different hierarchical levels to organic contaminants by means of bioassays. The bioassays use novel endpoints or approaches to elucidate the effects of exposure to contaminants and attempt to give mechanistic explanations that could be used to interpret effects at higher hierarchical scales. The sensitivity of population growth rate in the cyanobacteria species Microcystis aeruginosa to the herbicide glyp...

  11. Study of monitoring protection of radionuclides contamination in organism by autoradiography

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Kang Baoan; He Guangren

    1987-01-01

    In view of the exceptionally important role of the medical radiation protection in human health, the authors try to study on the monitoring of internal contamination of radionuclides in organism by different autoradiographic methods, such as: monitoring of the body retention of isolated or combined radionuclides by freezing microautoradiography; monitoring of blood, bone marrow and excreta radioactive samples by smear autoradiography; differentiation of two radionuclides contamination by double radionuclide autoradiography; especially, monitoring of low level of radionuclides contamination by fluorescence sensitization autoradiography. The sensitivity of autoradiographic formation was increased by the scintillator by 10 times

  12. Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity in a Drosophila bioassay.

    Science.gov (United States)

    Zhao, G; Yin, G; Inamdar, A A; Luo, J; Zhang, N; Yang, I; Buckley, B; Bennett, J W

    2017-05-01

    Superstorm Sandy provided an opportunity to study filamentous fungi (molds) associated with winter storm damage. We collected 36 morphologically distinct fungal isolates from flooded buildings. By combining traditional morphological and cultural characters with an analysis of ITS sequences (the fungal DNA barcode), we identified 24 fungal species that belong to eight genera: Penicillium (11 species), Fusarium (four species), Aspergillus (three species), Trichoderma (two species), and one species each of Metarhizium, Mucor, Pestalotiopsis, and Umbelopsis. Then, we used a Drosophila larval assay to assess possible toxicity of volatile organic compounds (VOCs) emitted by these molds. When cultured in a shared atmosphere with growing cultures of molds isolated after Hurricane Sandy, larval toxicity ranged from 15 to 80%. VOCs from Aspergillus niger 129B were the most toxic yielding 80% mortality to Drosophila after 12 days. The VOCs from Trichoderma longibrachiatum 117, Mucor racemosus 138a, and Metarhizium anisopliae 124 were relatively non-toxigenic. A preliminary analysis of VOCs was conducted using solid-phase microextraction-gas chromatography-mass spectrometry from two of the most toxic, two of the least toxic, and two species of intermediate toxicity. The more toxic molds produced higher concentrations of 1-octen-3-ol, 3-octanone, 3-octanol, 2-octen-1-ol, and 2-nonanone; while the less toxic molds produced more 3-methyl-1-butanol and 2-methyl-1-propanol, or an overall lower amount of volatiles. Our data support the hypothesis that at certain concentrations, some VOCs emitted by indoor molds are toxigenic. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Final Report for Project ''Role of Metal Bioavailability in In Situ Bioremediation of Metal and Organic Co-Contaminated Sites''; FINAL

    International Nuclear Information System (INIS)

    Raina M. Maier

    2002-01-01

    A large proportion of hazardous waste sites are co-contaminated with organics and various metals. Such co-contaminated sites are difficult to bioremediate due to the nature of the mixed contaminants. Specifically, the presence of a co-contaminating metal imposes increased stress on indigenous populations already impacted by organic contaminant stress. The overall objective of this research is to investigate the effect of varying metal bioavailability on microbial populations and biodegradation of organics to allow a better understanding of how optimize remediation of co-contaminated sites. The hypothesis for this project is that metal bioavailability is not directly correlated with metal stress imposed on microbial populations that are degrading organics in soil and that further understanding of the relationship between metal bioavailability and metal stress is required for successful treatment of sites contaminated with mixtures of organics and metals. The specific objectives to be addressed to accomplish this goal are: (1) To determine the influence of metal bioavailability in soil microcosms co-contaminated with organics and metals on degradation of the organic contaminants and on mechanisms of metal resistance and (2) To determine the efficacy of different bioremediation strategies for co-contaminated soils based on metal bioavailability

  14. Sequester of metals and mineralization of organic contaminants with microbial mats

    International Nuclear Information System (INIS)

    Bender, J.; Phillips, P.; Gould, J.P.

    1995-01-01

    Several recalcitrant organic contaminants are completely mineralized to simple products by microbial mats. Contaminants include chlordane, PCB, TNT, petroleum distillates, BM compounds and TCE in a mixed contaminant solution containing Zn. Degradation rates are relatively rapid under both dark and light conditions. In addition to complete degradation of organic materials, mats have been used to reduce selenate to elemental selenium, remove Pb, Cd, Cu, Zn, Co, Cr, Fe and Mn from water and sequester uranium (U 238 ) at a rate of 3.19 mg/m 2 /h. Results of three pilot projects, including field pond treatment of mine drainage and bioreactor treatment of BTEX compounds will be reported. Microbial mats are natural heterotrophic and autotrophic communities dominated by cyanobacteria (blue-green algae). They are self-organized laminated structures annealed fightly together by slimy secretions from various microbial components. The surface slime of the mats effectively immobilizes the ecosystem to a variety of substrates, thereby stabilizing the most efficient internal microbial structure. Cyanobacteria mats are generated for bioremediation applications by enriching a water surface with ensiled grass clippings together with mat inocula developed in the laboratory

  15. Effects of metals on life cycle parameters of the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils

    International Nuclear Information System (INIS)

    Nahmani, Johanne; Hodson, Mark E.; Black, Stuart

    2007-01-01

    Two control and eight field-contaminated, metal-polluted soils were inoculated with Eisenia fetida (Savigny, 1826). Three, 7, 14, 21, 28 and 42 days after inoculation, earthworm survival, body weight, cocoon production and hatching rate were measured. Seventeen metals were analysed in E. fetida tissue, bulk soil and soil solution. Soil organic carbon content, texture, pH and cation exchange capacity were also measured. Cocoon production and hatching rate were more sensitive to adverse conditions than survival or weight change. Soil properties other than metal concentration impacted toxicity. The most toxic soils were organic-poor (1-10 g C kg -1 ), sandy soils (c. 74% sand), with intermediate metal concentrations (e.g. 7150-13,100 mg Pb kg -1 , 2970-53,400 mg Zn kg -1 ). Significant relationships between soil properties and the life cycle parameters were determined. The best coefficients of correlation were generally found for texture, pH, Ag, Cd, Mg, Pb, Tl, and Zn both singularly and in multivariate regressions. Studies that use metal-amended artificial soils are not useful to predict toxicity of field multi-contaminated soils. - Soil pH, organic carbon content and texture can exert a greater influence on earthworm life cycle parameters than soil metal concentrations at metal-contaminated sites

  16. Effects of metals on life cycle parameters of the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Nahmani, Johanne [Department of Soil Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DW (United Kingdom)]. E-mail: nahmani@univ-metz.fr; Hodson, Mark E. [Department of Soil Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DW (United Kingdom)]. E-mail: m.e.hodson@reading.ac.uk; Black, Stuart [Department of Archaeology, School of Human and Environmental Sciences, Whiteknights, University of Reading, Reading RG6 6DW (United Kingdom)

    2007-09-15

    Two control and eight field-contaminated, metal-polluted soils were inoculated with Eisenia fetida (Savigny, 1826). Three, 7, 14, 21, 28 and 42 days after inoculation, earthworm survival, body weight, cocoon production and hatching rate were measured. Seventeen metals were analysed in E. fetida tissue, bulk soil and soil solution. Soil organic carbon content, texture, pH and cation exchange capacity were also measured. Cocoon production and hatching rate were more sensitive to adverse conditions than survival or weight change. Soil properties other than metal concentration impacted toxicity. The most toxic soils were organic-poor (1-10 g C kg{sup -1}), sandy soils (c. 74% sand), with intermediate metal concentrations (e.g. 7150-13,100 mg Pb kg{sup -1}, 2970-53,400 mg Zn kg{sup -1}). Significant relationships between soil properties and the life cycle parameters were determined. The best coefficients of correlation were generally found for texture, pH, Ag, Cd, Mg, Pb, Tl, and Zn both singularly and in multivariate regressions. Studies that use metal-amended artificial soils are not useful to predict toxicity of field multi-contaminated soils. - Soil pH, organic carbon content and texture can exert a greater influence on earthworm life cycle parameters than soil metal concentrations at metal-contaminated sites.

  17. Operational Group Sandy technical progress report

    Science.gov (United States)

    ,

    2013-01-01

    Hurricane Sandy made US landfall near Atlantic City, NJ on 29 October 2012, causing 72 direct deaths, displacing thousands of individuals from damaged or destroyed dwellings, and leaving over 8.5 million homes without power across the northeast and mid-Atlantic. To coordinate federal rebuilding activities in the affected region, the President established the cabinet-level Hurricane Sandy Rebuilding Task Force (Task Force). The Task Force was charged with identifying opportunities for achieving rebuilding success while supporting economic vitality, improving public health and safety, protecting and enhancing natural and manmade infrastructure, bolstering resilience, and ensuring appropriate accountability.

  18. The Development of a Sub-Surface Monitoring System for Organic Contamination in Soils and Groundwater

    Directory of Open Access Journals (Sweden)

    Sharon L. Huntley

    2002-01-01

    Full Text Available A major problem when dealing with environmental contamination is the early detection and subsequent surveillance of the contamination. This paper describes the potential of sub-surface sensor technology for the early detection of organic contaminants in contaminated soils, sediments, and landfill sites. Rugged, low-power hydrocarbon sensors have been developed, along with a data-logging system, for the early detection of phase hydrocarbons in soil. Through laboratory-based evaluation, the ability of this system to monitor organic contamination in water-based systems is being evaluated. When used in conjunction with specific immunoassays, this can provide a sensitive and low-cost solution for long-term monitoring and analysis, applicable to a wide range of field applications.

  19. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio).

    Science.gov (United States)

    Rainieri, Sandra; Conlledo, Nadia; Larsen, Bodil K; Granby, Kit; Barranco, Alejandro

    2018-04-01

    Microplastics contamination of the aquatic environment is considered a growing problem. The ingestion of microplastics has been documented for a variety of aquatic animals. Studies have shown the potential of microplastics to affect the bioavailability and uptake route of sorbed co-contaminants of different nature in living organisms. Persistent organic pollutants and metals have been the co-contaminants majorly investigated in this field. The combined effect of microplastics and sorbed co-contaminants in aquatic organisms still needs to be properly understood. To address this, we have subjected zebrafish to four different feeds: A) untreated feed; B) feed supplemented with microplastics (LD-PE 125-250µm of diameter); C) feed supplemented with 2% microplastics to which a mixture of PCBs, BFRs, PFCs and methylmercury were sorbed; and D) feed supplemented with the mixture of contaminants only. After 3 weeks of exposure fish were dissected and liver, intestine, muscular tissue and brain were extracted. After visual observation, evaluation of differential gene expression of some selected biomarker genes in liver, intestine and brain were carried out. Additionally, quantification of perfluorinated compounds in liver, brain, muscular tissue and intestine of some selected samples were performed. The feed supplemented with microplastics with sorbed contaminants produced the most evident effects especially on the liver. The results indicate that microplastics alone does not produce relevant effects on zebrafish in the experimental conditions tested; on the contrary, the combined effect of microplastics and sorbed contaminants altered significantly their organs homeostasis in a greater manner than the contaminants alone. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish ( Danio rerio )

    DEFF Research Database (Denmark)

    Rainieri, Sandra; Conlledo, Nadia; Larsen, Bodil Katrine

    2018-01-01

    3 weeks of exposure fish were dissected and liver, intestine, muscular tissue and brain were extracted. After visual observation, evaluation of differential gene expression of some selected biomarker genes in liver, intestine and brain were carried out. Additionally, quantification of perfluorinated...... compounds in liver, brain, muscular tissue and intestine of some selected samples were performed. The feed supplemented with microplastics with sorbed contaminants produced the most evident effects especially on the liver. The results indicate that microplastics alone does not produce relevant effects......-contaminants of different nature in living organisms. Persistent organic pollutants and metals have been the co-contaminants majorly investigated in this field. The combined effect of microplastics and sorbed co-contaminants in aquatic organisms still needs to be properly understood. To address this, we have subjected...

  1. Mobilization And Characterization Of Colloids Generated From Cement Leachates Moving Through A SRS Sandy Sediment

    International Nuclear Information System (INIS)

    Li, D.; Roberts, K.; Kaplan, D.; Seaman, J.

    2011-01-01

    Naturally occurring mobile colloids are ubiquitous and are involved in many important processes in the subsurface zone. For example, colloid generation and subsequent mobilization represent a possible mechanism for the transport of contaminants including radionuclides in the subsurface environments. For colloid-facilitated transport to be significant, three criteria must be met: (1) colloids must be generated; (2) contaminants must associate with the colloids preferentially to the immobile solid phase (aquifer); and (3) colloids must be transported through the groundwater or in subsurface environments - once these colloids start moving they become 'mobile colloids'. Although some experimental investigations of particle release in natural porous media have been conducted, the detailed mechanisms of release and re-deposition of colloidal particles within natural porous media are poorly understood. Even though this vector of transport is known, the extent of its importance is not known yet. Colloid-facilitated transport of trace radionuclides has been observed in the field, thus demonstrating a possible radiological risk associated with the colloids. The objective of this study was to determine if cementitious leachate would promote the in situ mobilization of natural colloidal particles from a SRS sandy sediment. The intent was to determine whether cementitious surface or subsurface structure would create plumes that could produce conditions conducive to sediment dispersion and mobile colloid generation. Column studies were conducted and the cation chemistries of influents and effluents were analyzed by ICP-OES, while the mobilized colloids were characterized using XRD, SEM, EDX, PSD and Zeta potential. The mobilization mechanisms of colloids in a SRS sandy sediment by cement leachates were studied.

  2. The sandy beach meiofauna and free-living nematodes from De Panne (Belgium)

    OpenAIRE

    Gheskiere, T.; Hoste, E.; Kotwicki, L.; Degraer, S.; Vanaverbeke, J.; Vincx, M.

    2002-01-01

    Despite their rather barren and arid appearance, European sandy beaches harbour a highly diverse fauna and flora and some of them are even highly productive. In contrast to tropical sandy beaches little is known about the structural and functional diversity of the different benthic components. This study aims to investigate the structural diversity of the meiobenthos, emphasizing on free-living marine nematodes on a Belgian sandy beach.The samples were collected on the sandy beach of De Panne...

  3. Quantifying the effect of sorption and bioavailability of hydrophobic organic contaminants

    International Nuclear Information System (INIS)

    Zhang, W.; Bouwer, E.; Cunningham, A.

    1994-01-01

    In-situ bioremediation has been applied successfully at a few sites. Several restrictions presently exist which could greatly limit the effectiveness of this promising technology. Hydrophobic organic contaminants tend to sorb onto soil. However, microorganisms are most effective in utilizing substrates from the aqueous phase. Sorption tends to separate the direct contact between microorganisms and contaminants necessary for biodegradation to occur. A series of experiments, which represented scenarios with fast sorption/desorption, slow sorption/desorption, mass transfer across boundary layer and mass transfer within attached microorganisms (biofilm), was conducted to demonstrate the concentration effect and the mass transfer effect. A method has been developed to quantify bioavailability of organic contaminants in aquatic environments. Bioavailability Factor (B f ), a dimensionless parameter derived from mathematical models and verified by experimental results, has been formulated to describe the impact of equilibrium sorption, nonequilibrium sorption, and mass transfer processes on the rate and extent of biodegradation of petroleum hydrocarbons

  4. DETERMINATION OF MINERAL CONTAIN AND BACTERIA CONTAMINANT ON ORGANIC AND NONORGANIC FRESH VEGETABLES

    Directory of Open Access Journals (Sweden)

    Harsojo Harsojo

    2010-06-01

    Full Text Available The determination of mineral content and bacteria contaminant on fresh vegetable of long bean (Vegan ungulate Wall., white cabbage (Basic tolerance L., and lettuce (Lectuca sativa L. that cultivated by organic and nonorganic system have been done. The mineral content has been analyzed using neutron activation analysis and atomic absorption spectroscopy method, while bacteria contaminant by total plate count number using Nutrient Agar, Mac Conkey Agar, Baird Parker medium, and Salmonella using selective medium. The results showed that there are some essential mineral such as Fe, Zn, Ca, Co, and nonessential mineral Cd. There is tendency that fresh vegetable that cultivated by organic system contained Fe, Zn, Ca, Co and Cd mineral less than nonorganic. The Zn mineral content in nonorganic of fresh vegetable were higher than the limit of threshold number from Health Department, Republic of Indonesia (2004, while Cd mineral in organic or nonorganic of fresh vegetable were greater then threshold number from Codex Alimentarius Commision. The measurement of bacteria contaminant on organic and nonorganic of fresh vegetables contained aerob, coli, and Staphylococcus bacteria in organic of fresh vegetables were less compared to nonorganic of fresh vegetables.   Keywords: mineral, bacteria aerob, coli, Staphylococcus, Salmonella, organic, and nonorganic vegetable, neutron activation

  5. EAARL-B Coastal Topography--Eastern New Jersey, Hurricane Sandy, 2012: First Surface, Pre-Sandy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ASCII xyz and binary point-cloud data, as well as a digital elevation model (DEM) of a portion of the New Jersey coastline, pre- and post-Hurricane Sandy (October...

  6. Evaluation of trace organic contaminants in ultra-pure water production processes by measuring total organic halogen formation potential

    International Nuclear Information System (INIS)

    Urano, Kohei; Iwase, Yoko

    1984-01-01

    A new procedure for the determination of organic substances in water with high accuracy and high sensitivity was proposed, in which a hypochlorite is added to water, and the resultant total amount of organic halogen compounds (TOX formation potential) was measured, and it was applied to the evaluation of trace organic contaminants in ultra-pure water production process. In this investigation, the TOX formation potential of the raw water which was to be used for the ultra-pure water production process, intermediately treated water and ultra-pure water was measured to clarify the behavior of organic substances in the ultra-pure water production process and to demonstrate the usefulness of this procedure to evaluate trace organic contaminants in water. The measurement of TOX formation potential requires no specific technical skill, and only a short time, and gives accurate results, therefore, it is expected that the water quality control in the ultra-pure water production process can be performed more exactly by applying this procedure. (Yoshitake, I.)

  7. A Community Checklist for Health Sector Resilience Informed by Hurricane Sandy.

    Science.gov (United States)

    Toner, Eric S; McGinty, Meghan; Schoch-Spana, Monica; Rose, Dale A; Watson, Matthew; Echols, Erin; Carbone, Eric G

    This is a checklist of actions for healthcare, public health, nongovernmental organizations, and private entities to use to strengthen the resilience of their community's health sector to disasters. It is informed by the experience of Hurricane Sandy in New York and New Jersey and analyzed in the context of findings from other recent natural disasters in the United States. The health sector is defined very broadly, including-in addition to hospitals, emergency medical services (EMS), and public health agencies-healthcare providers, outpatient clinics, long-term care facilities, home health providers, behavioral health providers, and correctional health services. It also includes community-based organizations that support these entities and represent patients. We define health sector resilience very broadly, including all factors that preserve public health and healthcare delivery under extreme stress and contribute to the rapid restoration of normal or improved health sector functioning after a disaster. We present the key findings organized into 8 themes. We then describe a conceptual map of health sector resilience that ties these themes together. Lastly, we provide a series of recommended actions for improving health sector resilience at the local level. The recommended actions emphasize those items that individuals who experienced Hurricane Sandy deemed to be most important. The recommendations are presented as a checklist that can be used by a variety of interested parties who have some role to play in disaster preparedness, response, and recovery in their own communities. Following a general checklist are supplemental checklists that apply to specific parts of the larger health sector.

  8. The speciation, stability, solubility and biodegradation of organic co-contaminant radionuclide complexes: A review

    International Nuclear Information System (INIS)

    Keith-Roach, Miranda J.

    2008-01-01

    The potential migration of radionuclides is of concern at contaminated land sites and, in the long term, waste repositories. Pathways of migration need to be characterised on a predictive level so that management decisions can be made with confidence. A pathway that is relatively poorly understood at present is radionuclide solubilisation due to complexation by organic complexing agents that are present in mixed radioactive wastes, and at radioactively contaminated land sites. Interactions of the complexing agents with radionuclides and the host environment, and the response to changes in the physicochemical conditions make their role far from simple to elucidate. In addition, chemical and biodegradation of the organic materials may be important. In this paper, key co-contaminant organics are reviewed with emphasis on their environmental fate and impact on radionuclide migration

  9. The speciation, stability, solubility and biodegradation of organic co-contaminant radionuclide complexes: A review

    Energy Technology Data Exchange (ETDEWEB)

    Keith-Roach, Miranda J. [Biogeochemistry and Environmental Analytical Chemistry Group/Consolidated Radio-isotope Facility, School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: mkeith-roach@plymouth.ac.uk

    2008-06-15

    The potential migration of radionuclides is of concern at contaminated land sites and, in the long term, waste repositories. Pathways of migration need to be characterised on a predictive level so that management decisions can be made with confidence. A pathway that is relatively poorly understood at present is radionuclide solubilisation due to complexation by organic complexing agents that are present in mixed radioactive wastes, and at radioactively contaminated land sites. Interactions of the complexing agents with radionuclides and the host environment, and the response to changes in the physicochemical conditions make their role far from simple to elucidate. In addition, chemical and biodegradation of the organic materials may be important. In this paper, key co-contaminant organics are reviewed with emphasis on their environmental fate and impact on radionuclide migration.

  10. Genesis of Hurricane Sandy (2012) Simulated with a Global Mesoscale Model

    Science.gov (United States)

    Shen, Bo-Wen; DeMaria, Mark; Li, J.-L. F.; Cheung, S.

    2013-01-01

    In this study, we investigate the formation predictability of Hurricane Sandy (2012) with a global mesoscale model. We first present five track and intensity forecasts of Sandy initialized at 00Z 22-26 October 2012, realistically producing its movement with a northwestward turn prior to its landfall. We then show that three experiments initialized at 00Z 16-18 October captured the genesis of Sandy with a lead time of up to 6 days and simulated reasonable evolution of Sandy's track and intensity in the next 2 day period of 18Z 21-23 October. Results suggest that the extended lead time of formation prediction is achieved by realistic simulations of multiscale processes, including (1) the interaction between an easterly wave and a low-level westerly wind belt (WWB) and (2) the appearance of the upper-level trough at 200 hPa to Sandy's northwest. The low-level WWB and upper-level trough are likely associated with a Madden-Julian Oscillation.

  11. Influences of binding to dissolved organic matter on hydrophobic organic compounds in a multi-contaminant system: Coefficients, mechanisms and ecological risks

    International Nuclear Information System (INIS)

    Li, Yi-Long; He, Wei; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Xu, Fu-Liu

    2015-01-01

    The complexation flocculation (CF) method was successfully employed to identify binding coefficients (K_d_o_c) of specific organic contaminants to dissolved organic matter (DOM, often indicated by dissolved organic carbon, DOC) in a multi-contaminant hydrophobic organic contaminant (HOC) system. K_d_o_c values were obtained for most of the evaluated 33 HOCs, indicating the feasibility and applicability of the CF method in a multi-contaminant system. Significant positive correlations were observed between binding coefficients and octanol–water partition coefficients (K_o_w) for organic halogen compounds, such as polybrominated diphenyl ethers (PBDEs) (R"2 = 0.95, p < 0.05) and organic chlorine pesticides (OCPs) (methoxychlor excluded, R"2 = 0.82, p < 0.05). The positive correlations identified between the lgK_d_o_c and lgBCF (bioconcentration factor) for PBDEs and OCPs, as well as the negative correlation observed for polycyclic aromatic hydrocarbons (PAHs), indicated that different binding or partition mechanisms between PAHs and organic halogen compounds exist. These differences further result in discriminative competition partitions of HOCs between DOM and organisms. Assuming that only freely dissolved HOCs are bioconcentrative, the results of DOM-influenced bioconcentration factor (BCF_D_O_M) and DOM-influenced lowest observed effect level (LOEL_D_O_M) indicate that the ecological risk of HOCs is decreased by DOM. - Highlights: • Complexing-flocculation is viable in measuring K_d_o_c in a multi-polluted system. • The binding mechanisms between PAHs and organic halogens were different. • DOM should be considered when assessing ecological risk of HOCs in natural ecosystem. - Assuming only freely dissolved HOCs are effective, bioconcentration factors and ecological risks of HOCs are decreased by dissolved organic matter via binding.

  12. Investigation of superstorm Sandy 2012 in a multi-disciplinary approach

    Science.gov (United States)

    Kunz, M.; Mühr, B.; Kunz-Plapp, T.; Daniell, J. E.; Khazai, B.; Wenzel, F.; Vannieuwenhuyse, M.; Comes, T.; Elmer, F.; Schröter, K.; Fohringer, J.; Münzberg, T.; Lucas, C.; Zschau, J.

    2013-10-01

    At the end of October 2012, Hurricane Sandy moved from the Caribbean Sea into the Atlantic Ocean and entered the United States not far from New York. Along its track, Sandy caused more than 200 fatalities and severe losses in Jamaica, The Bahamas, Haiti, Cuba, and the US. This paper demonstrates the capability and potential for near-real-time analysis of catastrophes. It is shown that the impact of Sandy was driven by the superposition of different extremes (high wind speeds, storm surge, heavy precipitation) and by cascading effects. In particular the interaction between Sandy and an extra-tropical weather system created a huge storm that affected large areas in the US. It is examined how Sandy compares to historic hurricane events, both from a hydro-meteorological and impact perspective. The distribution of losses to different sectors of the economy is calculated with simple input-output models as well as government estimates. Direct economic losses are estimated about USD 4.2 billion in the Caribbean and between USD 78 and 97 billion in the US. Indirect economic losses from power outages is estimated in the order of USD 16.3 billion. Modelling sector-specific dependencies quantifies total business interruption losses between USD 10.8 and 15.5 billion. Thus, seven years after the record impact of Hurricane Katrina in 2005, Hurricane Sandy is the second costliest hurricane in the history of the United States.

  13. Investigation of superstorm Sandy 2012 in a multi-disciplinary approach

    Directory of Open Access Journals (Sweden)

    M. Kunz

    2013-10-01

    Full Text Available At the end of October 2012, Hurricane Sandy moved from the Caribbean Sea into the Atlantic Ocean and entered the United States not far from New York. Along its track, Sandy caused more than 200 fatalities and severe losses in Jamaica, The Bahamas, Haiti, Cuba, and the US. This paper demonstrates the capability and potential for near-real-time analysis of catastrophes. It is shown that the impact of Sandy was driven by the superposition of different extremes (high wind speeds, storm surge, heavy precipitation and by cascading effects. In particular the interaction between Sandy and an extra-tropical weather system created a huge storm that affected large areas in the US. It is examined how Sandy compares to historic hurricane events, both from a hydro-meteorological and impact perspective. The distribution of losses to different sectors of the economy is calculated with simple input-output models as well as government estimates. Direct economic losses are estimated about USD 4.2 billion in the Caribbean and between USD 78 and 97 billion in the US. Indirect economic losses from power outages is estimated in the order of USD 16.3 billion. Modelling sector-specific dependencies quantifies total business interruption losses between USD 10.8 and 15.5 billion. Thus, seven years after the record impact of Hurricane Katrina in 2005, Hurricane Sandy is the second costliest hurricane in the history of the United States.

  14. On the Impact Angle of Hurricane Sandy's New Jersey Landfall

    Science.gov (United States)

    Hall, Timothy M.; Sobel, Adam H.

    2013-01-01

    Hurricane Sandy's track crossed the New Jersey coastline at an angle closer to perpendicular than any previous hurricane in the historic record, one of the factors contributing to recordsetting peak-water levels in parts of New Jersey and New York. To estimate the occurrence rate of Sandy-like tracks, we use a stochastic model built on historical hurricane data from the entire North Atlantic to generate a large sample of synthetic hurricanes. From this synthetic set we calculate that under long-term average climate conditions, a hurricane of Sandy's intensity or greater (category 1+) makes NJ landfall at an angle at least as close to perpendicular as Sandy's at an average annual rate of 0.0014 yr-1 (95% confidence range 0.0007 to 0.0023); i.e., a return period of 714 years (95% confidence range 435 to 1429).

  15. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system

    DEFF Research Database (Denmark)

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M.

    2016-01-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse...... experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected within the applicability domain of a steady-state two-compartment standard plant uptake model: bisphenol A (BPA......), carbamazepine (CBZ), triclosan (TCS) and caffeine (CAF). The model overestimated concentrations in most cases, when no degradation rates in plants were entered. Subsequently, biodegradation rates were fitted so that the measured concentrations were met.Obtained degradation kinetics are in the order, BPA

  16. Sandy Hook : alternative access concept plan and vehicle replacement study

    Science.gov (United States)

    2009-06-01

    This study addresses two critical issues of concern to the Sandy Hook Unit of Gateway National : Recreational Area: (1) options for alternative access to Sandy Hook during peak summer season, : particularly when the park is closed to private vehicles...

  17. Preparation of Sandy Soil Stabilizer for Roads Based on Radiation Modified Polymer Composite

    International Nuclear Information System (INIS)

    Elnahas, H.H.

    2016-01-01

    Radiation modified polymer composite (RMPC) was studied to build an extremely durable sandy road, construct a trail or bath, or control dust and erosion. A dilute solution of composite binds sandy soil fines through a coagulation bonding process. The result is a dense soil structure that has superior resistance to cracks and water penetration and can also solve erosion control problems. In erosion control applications, diluted composite is merely sprayed into sandy soil without compaction, effectively sealing the surface to prevent air-born dust or deterioration from erosion. The prepared composite has an elastic and melt-able film formation that imparts thermal compacting to the stabilized sandy soil after full dryness for sandy road leveling, repairing and restoration processes. The prepared composite is environmentally economical when compared with traditional sandy soil stabilizing (SSS) or sealing methods.

  18. Profiling micro-organic contaminants in groundwater using multi-level piezometers

    OpenAIRE

    White, Debbie; Lapworth, Dan; Stuart, Marianne; Williams, Peter

    2015-01-01

    The presence of micro-organic pollutants, including ‘emerging contaminants’ within groundwater is of increasing interest. Robust protocols are required to minimise the introduction of contamination during the sampling process. Below we discuss the sampling protocols used to reduce inputs of plasticisers during the sampling process, as well as the techniques used to characterise the distribution of micro-organic pollutants in the subsurface. In this study multi-level piezometers...

  19. Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices.

    Science.gov (United States)

    Chabauty, Florian; Pot, Valérie; Bourdat-Deschamps, Marjolaine; Bernet, Nathalie; Labat, Christophe; Benoit, Pierre

    2016-04-01

    Compost amendment on agricultural soil is a current practice to compensate the loss of organic matter. As a consequence, dissolved organic carbon concentration in soil leachates can be increased and potentially modify the transport of other solutes. This study aims to characterize the processes controlling the mobility of dissolved organic matter (DOM) in deep soil layers and their potential impacts on the leaching of organic contaminants (pesticides and pharmaceutical compounds) potentially present in cultivated soils receiving organic waste composts. We sampled undisturbed soil cores in the illuviated horizon (60-90 cm depth) of an Albeluvisol. Percolation experiments were made in presence and absence of DOM with two different pesticides, isoproturon and epoxiconazole, and two pharmaceutical compounds, ibuprofen and sulfamethoxazole. Two types of DOM were extracted from two different soil surface horizons: one sampled in a plot receiving a co-compost of green wastes and sewage sludge applied once every 2 years since 1998 and one sampled in an unamended plot. Results show that DOM behaved as a highly reactive solute, which was continuously generated within the soil columns during flow and increased after flow interruption. DOM significantly increased the mobility of bromide and all pollutants, but the effects differed according the hydrophobic and the ionic character of the molecules. However, no clear effects of the origin of DOM on the mobility of the different contaminants were observed.

  20. Effects of predicted climatic changes on distribution of organic contaminants in brackish water mesocosms

    Energy Technology Data Exchange (ETDEWEB)

    Ripszam, M., E-mail: matyas.ripszam@chem.umu.se [Department of Chemistry, Umea University, 901 87 Umeå (Sweden); Gallampois, C.M.J. [Department of Chemistry, Umea University, 901 87 Umeå (Sweden); Berglund, Å. [Department of Ecology and Environmental Sciences, Umeå University, 901 87 Umeå (Sweden); Larsson, H. [Umeå Marine Sciences Centre, Umeå University, Norrbyn, 905 71 Hörnefors (Sweden); Andersson, A. [Department of Ecology and Environmental Sciences, Umeå University, 901 87 Umeå (Sweden); Tysklind, M.; Haglund, P. [Department of Chemistry, Umea University, 901 87 Umeå (Sweden)

    2015-06-01

    Predicted consequences of future climate change in the northern Baltic Sea include increases in sea surface temperatures and terrestrial dissolved organic carbon (DOC) runoff. These changes are expected to alter environmental distribution of anthropogenic organic contaminants (OCs). To assess likely shifts in their distributions, outdoor mesocosms were employed to mimic pelagic ecosystems at two temperatures and two DOC concentrations, current: 15 °C and 4 mg DOC L{sup −1} and, within ranges of predicted increases, 18 °C and 6 mg DOC L{sup −1}, respectively. Selected organic contaminants were added to the mesocosms to monitor changes in their distribution induced by the treatments. OC partitioning to particulate matter and sedimentation were enhanced at the higher DOC concentration, at both temperatures, while higher losses and lower partitioning of OCs to DOC were observed at the higher temperature. No combined effects of higher temperature and DOC on partitioning were observed, possibly because of the balancing nature of these processes. Therefore, changes in OCs' fates may largely depend on whether they are most sensitive to temperature or DOC concentration rises. Bromoanilines, phenanthrene, biphenyl and naphthalene were sensitive to the rise in DOC concentration, whereas organophosphates, chlorobenzenes (PCBz) and polychlorinated biphenyls (PCBs) were more sensitive to temperature. Mitotane and diflufenican were sensitive to both temperature and DOC concentration rises individually, but not in combination. - Highlights: • More contaminants remained in the ecosystem at higher organic carbon levels. • More contaminants were lost in the higher temperature treatments. • The combined effects are competitive with respect to contaminant cycling. • The individual properties of each contaminant determine their respective fate.

  1. Effects of predicted climatic changes on distribution of organic contaminants in brackish water mesocosms

    International Nuclear Information System (INIS)

    Ripszam, M.; Gallampois, C.M.J.; Berglund, Å.; Larsson, H.; Andersson, A.; Tysklind, M.; Haglund, P.

    2015-01-01

    Predicted consequences of future climate change in the northern Baltic Sea include increases in sea surface temperatures and terrestrial dissolved organic carbon (DOC) runoff. These changes are expected to alter environmental distribution of anthropogenic organic contaminants (OCs). To assess likely shifts in their distributions, outdoor mesocosms were employed to mimic pelagic ecosystems at two temperatures and two DOC concentrations, current: 15 °C and 4 mg DOC L −1 and, within ranges of predicted increases, 18 °C and 6 mg DOC L −1 , respectively. Selected organic contaminants were added to the mesocosms to monitor changes in their distribution induced by the treatments. OC partitioning to particulate matter and sedimentation were enhanced at the higher DOC concentration, at both temperatures, while higher losses and lower partitioning of OCs to DOC were observed at the higher temperature. No combined effects of higher temperature and DOC on partitioning were observed, possibly because of the balancing nature of these processes. Therefore, changes in OCs' fates may largely depend on whether they are most sensitive to temperature or DOC concentration rises. Bromoanilines, phenanthrene, biphenyl and naphthalene were sensitive to the rise in DOC concentration, whereas organophosphates, chlorobenzenes (PCBz) and polychlorinated biphenyls (PCBs) were more sensitive to temperature. Mitotane and diflufenican were sensitive to both temperature and DOC concentration rises individually, but not in combination. - Highlights: • More contaminants remained in the ecosystem at higher organic carbon levels. • More contaminants were lost in the higher temperature treatments. • The combined effects are competitive with respect to contaminant cycling. • The individual properties of each contaminant determine their respective fate

  2. Deaths associated with Hurricane Sandy - October-November 2012.

    Science.gov (United States)

    2013-05-24

    On October 29, 2012, Hurricane Sandy hit the northeastern U.S. coastline. Sandy's tropical storm winds stretched over 900 miles (1,440 km), causing storm surges and destruction over a larger area than that affected by hurricanes with more intensity but narrower paths. Based on storm surge predictions, mandatory evacuations were ordered on October 28, including for New York City's Evacuation Zone A, the coastal zone at risk for flooding from any hurricane. By October 31, the region had 6-12 inches (15-30 cm) of precipitation, 7-8 million customers without power, approximately 20,000 persons in shelters, and news reports of numerous fatalities (Robert Neurath, CDC, personal communication, 2013). To characterize deaths related to Sandy, CDC analyzed data on 117 hurricane-related deaths captured by American Red Cross (Red Cross) mortality tracking during October 28-November 30, 2012. This report describes the results of that analysis, which found drowning was the most common cause of death related to Sandy, and 45% of drowning deaths occurred in flooded homes in Evacuation Zone A. Drowning is a leading cause of hurricane death but is preventable with advance warning systems and evacuation plans. Emergency plans should ensure that persons receive and comprehend evacuation messages and have the necessary resources to comply with them.

  3. ACHIEVEMENTS AND PERSPECTIVES ON STONE FRUIT GROWING ON SANDY SOILS

    Directory of Open Access Journals (Sweden)

    Anica Durău

    2012-01-01

    of 2.5 m and 7.9 t / ha at a distance of 3 m, the distance between the tree rows is 4m. Need for organic and mineral fertilization, and the effectiveness of micronutrients with bor established optimum fertilizer doses on fruit peach, (40-60 t / ha manure and N100P80 K100. Biochemical compozition of fruit parameters is comparable with that obtained in other fruit growing areas in the country. Cherry and cherry fruit under sandy soils accumulate much larger quantities of total drymatter, carbohydrates and C vitamin compared with apricot and peach fruit.

  4. Acidification of sandy grasslands - consequences for plant diversity

    DEFF Research Database (Denmark)

    Olsson, Pål Axel; Mårtensson, Linda-Maria; Bruun, Hans Henrik

    2009-01-01

    soil; a number of nationally red-listed species showed a similar pattern. Plant species diversity and number of red-listed species increased with slope. Where the topsoil had been acidified, limestone was rarely present above a depth of 30 cm. The presence of limestone restricts the availability......Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits......). Environmental variables were recorded at each plot, and soil samples were analysed for exchangeable P and N, as well as limestone content and pH. Data were analysed with regression analysis and canonical correspondence analysis. Results: Plant species richness was highest on weakly acid to slightly alkaline...

  5. Viability of natural attenuation in a petroleum-contaminated shallow sandy aquifer

    International Nuclear Information System (INIS)

    Jin Yong Lee; Kang Kun Lee

    2003-01-01

    This study focused on evaluating and quantifying the potential of natural attenuation of groundwater at a petroleum-contaminated site in an industrial area of a satellite city of Seoul, Korea. Groundwater at the study site was contaminated with toluene, ethylbenzene and xylene (TEX). Eight rounds of groundwater sampling and subsequent chemical analyses were performed over a period of 3 years. The groundwater quality data suggest that TEX concentrations at this site have been decreasing with time and that the TEX plume is at a quasi-steady state. Trend analysis, changes in mass flux and plume area also confirmed that the TEX plume has reached a quasi-steady state. The proportion of the total attenuation attributable to biodegradation has decreased over the monitoring period while contribution of other attenuation processes, such as dilution or dispersion, has increased. Based on the calculated attenuation rates, it would take more than 20 years to clean up the site by natural attenuation alone. (author)

  6. Monitoring of organic contaminants in sediments using low field proton nuclear magnetic resonance

    Science.gov (United States)

    Zhang, Chi; Rupert, Yuri

    2016-04-01

    The effective monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. Recent geophysical methods such as electrical resistivity, complex conductivity, and ground penetrating radar have been successfully applied to characterize organic contaminants in the subsurface and to monitor remediation process both in laboratory and in field. Low field proton nuclear magnetic resonance (NMR) is a geophysical tool sensitive to the molecular-scale physical and chemical environment of hydrogen-bearing fluids in geological materials and shows promise as a novel method for monitoring contaminant remediation. This laboratory research focuses on measurements on synthetic samples to determine the sensitivity of NMR to the presence of organic contaminants and improve understanding of relationships between NMR observables, hydrological properties of the sediments, and amount and state of contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL) has been selected as a representative organic contaminant. Three types of porous media (pure silica sands, montmorillonite clay, and various sand-clay mixtures with different sand/clay ratios) were prepared as synthetic sediments. NMR relaxation time (T2) and diffusion-relaxation (D - T2) correlation measurements were performed in each sediment saturated with water and toluene mixed fluid at assorted concentrations (0% toluene and 100% water, 1% toluene and 99% water, 5% toluene and 95% water, 25% toluene and 75% water, and 100% toluene and 0% water) to 1) understand the effect of different porous media on the NMR responses in each fluid mixture, 2) investigate the role of clay content on T2 relaxation of each fluid, 3) quantify the amount hydrocarbons in the presence of water in each sediment, and 4) resolve hydrocarbons from water in D - T2 map. Relationships between the compositions of porous media, hydrocarbon concentration, and hydraulic

  7. Assessing the fate of antibiotic contaminants in metal contaminated soils four years after cessation of long-term waste water irrigation

    International Nuclear Information System (INIS)

    Tamtam, Fatima; Oort, Folkert van; Le Bot, Barbara; Dinh, Tuc; Mompelat, Sophie; Chevreuil, Marc; Lamy, Isabelle; Thiry, Medard

    2011-01-01

    Spreading of urban wastewater on agricultural land may lead to concomitant input of organic and inorganic pollutants. Such multiple pollution sites offer unique opportunities to study the fate of both heavy metals and pharmaceuticals. We examined the occurrence and fate of selected antibiotics in sandy-textured soils, sampled four years after cessation of 100 years irrigation with urban wastewater from the Paris agglomeration. Previous studies on heavy metal contamination of these soils guided our sampling strategy. Six antibiotics were studied, including quinolones, with a strong affinity for organic and mineral soil components, and sulfonamides, a group of more mobile molecules. Bulk samples were collected from surface horizons in different irrigation fields, but also in subsurface horizons in two selected profiles. In surface horizons, three quinolones (oxolinic acid, nalidixic acid, and flumequine) were present in eight samples out of nine. Their contents varied spatially, but were well-correlated one to another. Their distributions showed great similarities regarding spatial distribution of total organic carbon and heavy metal contents, consistent with a common origin by wastewater irrigation. Highest concentrations were observed for sampling sites close to irrigation water outlets, reaching 22 μg kg -1 for nalidixic acid. Within soil profiles, the two antibiotic groups demonstrated an opposite behavior: quinolones, found only in surface horizons; sulfamethoxazole, detected in clay-rich subsurface horizons, concomitant with Zn accumulation. Such distribution patterns are consistent with chemical adsorption properties of the two antibiotic groups: immobilization of quinolones in the surface horizons ascribed to strong affinity for organic matter (OM), migration of sulfamethoxazole due to a lower affinity for OM and its interception and retention in electronegative charged clay-rich horizons. Our work suggests that antibiotics may represent a durable

  8. Evidence of Maternal Offloading of Organic Contaminants in White Sharks (Carcharodon carcharias)

    Science.gov (United States)

    Mull, Christopher G.; Lyons, Kady; Blasius, Mary E.; Winkler, Chuck; O’Sullivan, John B.; Lowe, Christopher G.

    2013-01-01

    Organic contaminants were measured in young of the year (YOY) white sharks (Carcharodon carcharias) incidentally caught in southern California between 2005 and 2012 (n = 20) and were found to be unexpectedly high considering the young age and dietary preferences of young white sharks, suggesting these levels may be due to exposure in utero. To assess the potential contributions of dietary exposure to the observed levels, a five-parameter bioaccumulation model was used to estimate the total loads a newborn shark would potentially accumulate in one year from consuming contaminated prey from southern California. Maximum simulated dietary accumulation of DDTs and PCBs were 25.1 and 4.73 µg/g wet weight (ww) liver, respectively. Observed ΣDDT and ΣPCB concentrations (95±91 µg/g and 16±10 µg/g ww, respectively) in a majority of YOY sharks were substantially higher than the model predictions suggesting an additional source of contaminant exposure beyond foraging. Maternal offloading of organic contaminants during reproduction has been noted in other apex predators, but this is the first evidence of transfer in a matrotrophic shark. While there are signs of white shark population recovery in the eastern Pacific, the long-term physiological and population level consequences of biomagnification and maternal offloading of environmental contaminants in white sharks is unclear. PMID:23646154

  9. Soil sampling for environmental contaminants

    International Nuclear Information System (INIS)

    2004-10-01

    The Consultants Meeting on Sampling Strategies, Sampling and Storage of Soil for Environmental Monitoring of Contaminants was organized by the International Atomic Energy Agency to evaluate methods for soil sampling in radionuclide monitoring and heavy metal surveys for identification of punctual contamination (hot particles) in large area surveys and screening experiments. A group of experts was invited by the IAEA to discuss and recommend methods for representative soil sampling for different kinds of environmental issues. The ultimate sinks for all kinds of contaminants dispersed within the natural environment through human activities are sediment and soil. Soil is a particularly difficult matrix for environmental pollution studies as it is generally composed of a multitude of geological and biological materials resulting from weathering and degradation, including particles of different sizes with varying surface and chemical properties. There are so many different soil types categorized according to their content of biological matter, from sandy soils to loam and peat soils, which make analytical characterization even more complicated. Soil sampling for environmental monitoring of pollutants, therefore, is still a matter of debate in the community of soil, environmental and analytical sciences. The scope of the consultants meeting included evaluating existing techniques with regard to their practicability, reliability and applicability to different purposes, developing strategies of representative soil sampling for cases not yet considered by current techniques and recommending validated techniques applicable to laboratories in developing Member States. This TECDOC includes a critical survey of existing approaches and their feasibility to be applied in developing countries. The report is valuable for radioanalytical laboratories in Member States. It would assist them in quality control and accreditation process

  10. Rates of Hospitalization for Dehydration Following Hurricane Sandy in New Jersey.

    Science.gov (United States)

    Swerdel, Joel N; Rhoads, George G; Cosgrove, Nora M; Kostis, John B

    2016-04-01

    Hurricane Sandy, one of the most destructive natural disasters in New Jersey history, made landfall on October 29, 2012. Prolonged loss of electrical power and extensive infrastructure damage restricted access for many to food and water. We examined the rate of dehydration in New Jersey residents after Hurricane Sandy. We obtained data from 2008 to 2012 from the Myocardial Infarction Data Acquisition System (MIDAS), a repository of in-patient records from nonfederal New Jersey hospitals (N=517,355). Patients with dehydration had ICD-9-CM discharge diagnosis codes for dehydration, volume depletion, and/or hypovolemia. We used log-linear modeling to estimate the change in in-patient hospitalizations for dehydration comparing 2 weeks after Sandy with the same period in the previous 4 years (2008-2011). In-patient hospitalizations for dehydration were 66% higher after Sandy than in 2008-2011 (rate ratio [RR]: 1.66; 95% confidence interval [CI]: 1.50, 1.84). Hospitalizations for dehydration in patients over 65 years of age increased by nearly 80% after Sandy compared with 2008-2011 (RR: 1.79; 95% CI: 1.58, 2.02). Sandy was associated with a marked increase in hospitalizations for dehydration. Reducing the rate of dehydration following extreme weather events is an important public health concern that needs to be addressed, especially in those over 65 years of age.

  11. Hurricane Sandy, Disaster Preparedness, and the Recovery Model.

    Science.gov (United States)

    Pizzi, Michael A

    2015-01-01

    Hurricane Sandy was the second largest and costliest hurricane in U.S. history to affect multiple states and communities. This article describes the lived experiences of 24 occupational therapy students who lived through Hurricane Sandy using the Recovery Model to frame the research. Occupational therapy student narratives were collected and analyzed using qualitative methods and framed by the Recovery Model. Directed content and thematic analysis was performed using the 10 components of the Recovery Model. The 10 components of the Recovery Model were experienced by or had an impact on the occupational therapy students as they coped and recovered in the aftermath of the natural disaster. This study provides insight into the lived experiences and recovery perspectives of occupational therapy students who experienced Hurricane Sandy. Further research is indicated in applying the Recovery Model to people who survive disasters. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  12. Trophic niche shifts driven by phytoplankton in sandy beach ecosystems

    Science.gov (United States)

    Bergamino, Leandro; Martínez, Ana; Han, Eunah; Lercari, Diego; Defeo, Omar

    2016-10-01

    Stable isotopes (δ13C and δ15N) together with chlorophyll a and densities of surf diatoms were used to analyze changes in trophic niches of species in two sandy beaches of Uruguay with contrasting morphodynamics (i.e. dissipative vs. reflective). Consumers and food sources were collected over four seasons, including sediment organic matter (SOM), suspended particulate organic matter (POM) and the surf zone diatom Asterionellopsis guyunusae. Circular statistics and a Bayesian isotope mixing model were used to quantify food web differences between beaches. Consumers changed their trophic niche between beaches in the same direction of the food web space towards higher reliance on surf diatoms in the dissipative beach. Mixing models indicated that A. guyunusae was the primary nutrition source for suspension feeders in the dissipative beach, explaining their change in dietary niche compared to the reflective beach where the proportional contribution of surf diatoms was low. The high C/N ratios in A. guyunusae indicated its high nutritional value and N content, and may help to explain the high assimilation by suspension feeders at the dissipative beach. Furthermore, density of A. guyunusae was higher in the dissipative than in the reflective beach, and cell density was positively correlated with chlorophyll a only in the dissipative beach. Therefore, surf diatoms are important drivers in the dynamics of sandy beach food webs, determining the trophic niche space and productivity. Our study provides valuable insights on shifting foraging behavior by beach fauna in response to changes in resource availability.

  13. Enhanced benthic activity in sandy sublittoral sediments: Evidence from 13C tracer experiments

    DEFF Research Database (Denmark)

    Bühring, Solveig I.; Ehrenhauss, Sandra; Kamp, Anja

    2006-01-01

    In situ and on-board pulse-chase experiments were carried out on a sublittoral fine sand in the German Bight (southern North Sea) to investigate the hypothesis that sandy sediments are highly active and have fast turnover rates. To test this hypothesis, we conducted a series of experiments where we...... investigated the pathway of settling particulate organic carbon through the benthic food web. The diatom Ditylum brightwellii was labelled with the stable carbon isotope 13C and injected into incubation chambers. On-board incubations lasted 12, 30 and 132 h, while the in situ experiment was incubated for 32 h....... The study revealed a stepwise short-term processing of a phytoplankton bloom settling on a sandy sediment. After the 12 h incubation, the largest fraction of recovered carbon was in the bacteria (62%), but after longer incubation times (30 and 32 h in situ) the macrofauna gained more importance (15 and 48...

  14. Viability of natural attenuation in a petroleum-contaminated shallow sandy aquifer

    International Nuclear Information System (INIS)

    Lee, Jin-Yong; Lee, Kang-Kun

    2003-01-01

    More than 20 years would be required to clean up the site by natural attenuation alone. - This study focused on evaluating and quantifying the potential of natural attenuation of groundwater at a petroleum-contaminated site in an industrial area of a satellite city of Seoul, Korea. Groundwater at the study site was contaminated with toluene, ethylbenzene and xylene (TEX). Eight rounds of groundwater sampling and subsequent chemical analyses were performed over a period of 3 years. The groundwater quality data suggest that TEX concentrations at this site have been decreasing with time and that the TEX plume is at a quasi-steady state. Trend analysis, changes in mass flux and plume area also confirmed that the TEX plume has reached a quasi-steady state. The proportion of the total attenuation attributable to biodegradation has decreased over the monitoring period while contribution of other attenuation processes, such as dilution or dispersion, has increased. Based on the calculated attenuation rates, it would take more than 20 years to clean up the site by natural attenuation alone

  15. Lasting effects of soil health improvements with management changes in cotton-based cropping systems in a sandy soil

    Science.gov (United States)

    The soil microbial component is essential for sustainable agricultural systems and soil health. This study evaluated the lasting impacts of 5 years of soil health improvements from alternative cropping systems compared to intensively tilled continuous cotton (Cont. Ctn) in a low organic matter sandy...

  16. ROLE OF SOME CHEMICAL MATERIALS ON THE PHYTO-EXTRACTION OF HEAVY METALS FROM CONTAMINATED SOILS WITH SUNFLOWER PLANTS (HELIANTHUS ANNUUS)

    International Nuclear Information System (INIS)

    ABD EL-BARY, S.A.; EL-NAKA, E.A.; RIZK, M.A.; LOTFY, S.M.

    2009-01-01

    Chelation and complexation of heavy metals were evaluated as practical ways to solubilize, detoxify and enhance heavy metals accumulation by plants. Sunflower (Helianthus annuus) was selected as potential heavy metals accumulator for metals phyto-extraction in two selected soils (clayey and sandy). To enhance metals phyto-extraction, ammonium nitrate and organic chelates such as EDTA and citric acid were added to soils at the rates from 0 to 20 mmol/kg soil as extracting solutions and applied to the soil by mixing thoroughly before planting. Dry matter production and metals concentrations in shoots and roots and soil pH were measured after 60 days.Plant dry matter production and metals accumulation were varied with soil contamination, chelate / organic acid form and rate, and soil type. The highest metals concentration was obtained in plants grown on clayey soil, however, the lowest content was observed in case of sandy soil. Addition of citric acid increased metals accumulation and translocation to the shoots significantly. Addition of 20 mmol/kg of citric acid to clayey soils increased metals concentration in shoots several folds of magnitude, but addition of ammonium nitrate had little effect on metal translocation to shoots. Citric acid was the most effective chelate in plant accumulation of tested metals.

  17. Superstorm Sandy and the Verdant Power RITE Project

    Science.gov (United States)

    Corren, D.; Colby, J.; Adonizio, M.

    2013-12-01

    On October 29, 2012 Superstorm Sandy (formerly Hurricane Sandy) made landfall in New Jersey. One of the deadliest, and second-costliest hurricane in US history, Sandy was the largest Atlantic hurricane on record, with a diameter of 1,800 km. It was this unprecedented size, extreme central low pressure, and full-moon timing that created a storm surge which inundated New York City with record-breaking water levels, resulting in tremendous destruction of buildings and infrastructure. At its RITE (Roosevelt Island Tidal Energy) Project in New York City's East River, Verdant Power has been installing demonstration and commercial turbine systems since 2005, along with performing related environmental monitoring and measurements. The RITE site is located in the East Channel of the East River, on the east side of Roosevelt Island. All along the East River, large areas of the adjacent boroughs were impacted by Sandy, including flooding of the subway tunnels under the river. When Sandy struck, Verdant had recently concluded a two-week in-water test at RITE of a new rotor for its Gen5 KHPS (Kinetic Hydropower System) turbine, with funding assistance by partners NYSERDA and the US Department of Energy. While the turbine had already been removed from its mounting in the river bottom in September, Verdant continued to operate two water measurement instruments in the river. These acoustic Doppler current profilers (ADCPs) measure the 3-D water velocity at various heights in the water column, and are also equipped to provide water level data. Verdant is interested in the effects such an extreme storm could have on turbines and other equipment installed in this river reach, as is planned by Verdant under a 10-year commercial pilot project licensed by the Federal Energy Regulatory Commission (FERC) for up to 30 turbines. Associated equipment includes navigational aids (buoys and signage), which Verdant is required to maintain to exclude vessels from the project boundaries. The East

  18. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils.

    Science.gov (United States)

    Park, Jin Hee; Lamb, Dane; Paneerselvam, Periyasamy; Choppala, Girish; Bolan, Nanthi; Chung, Jae-Woo

    2011-01-30

    As land application becomes one of the important waste utilization and disposal practices, soil is increasingly being seen as a major source of metal(loid)s reaching food chain, mainly through plant uptake and animal transfer. With greater public awareness of the implications of contaminated soils on human and animal health there has been increasing interest in developing technologies to remediate contaminated sites. Bioremediation is a natural process which relies on soil microorganisms and higher plants to alter metal(loid) bioavailability and can be enhanced by addition of organic amendments to soils. Large quantities of organic amendments, such as manure compost, biosolid and municipal solid wastes are used as a source of nutrients and also as a conditioner to improve the physical properties and fertility of soils. These organic amendments that are low in metal(loid)s can be used as a sink for reducing the bioavailability of metal(loid)s in contaminated soils and sediments through their effect on the adsorption, complexation, reduction and volatilization of metal(loid)s. This review examines the mechanisms for the enhanced bioremediation of metal(loid)s by organic amendments and discusses the practical implications in relation to sequestration and bioavailability of metal(loid)s in soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. The effect of organic contaminants on the spectral induced polarization response of porous media - mechanistic approach

    Science.gov (United States)

    Schwartz, N.; Huisman, J. A.; Furman, A.

    2012-12-01

    In recent years, there is a growing interest in using geophysical methods in general and spectral induced polarization (SIP) in particular as a tool to detect and monitor organic contaminants within the subsurface. The general idea of the SIP method is to inject alternating current through a soil volume and to measure the resultant potential in order to obtain the relevant soil electrical properties (e.g. complex impedance, complex conductivity/resistivity). Currently, a complete mechanistic understanding of the effect of organic contaminants on the SIP response of soil is still absent. In this work, we combine laboratory experiments with modeling to reveal the main processes affecting the SIP signature of soil contaminated with organic pollutant. In a first set of experiments, we investigate the effect of non-aqueous phase liquids (NAPL) on the complex conductivity of unsaturated porous media. Our results show that addition of NAPL to the porous media increases the real component of the soil electrical conductivity and decreases the polarization of the soil (imaginary component of the complex conductivity). Furthermore, addition of NAPL to the soil resulted in an increase of the electrical conductivity of the soil solution. Based on these results, we suggest that adsorption of NAPL to the soil surface, and exchange process between polar organic compounds in the NAPL and inorganic ions in the soil are the main processes affecting the SIP signature of the contaminated soil. To further support our hypothesis, the temporal change of the SIP signature of a soil as function of a single organic cation concentration was measured. In addition to the measurements of the soil electrical properties, we also measured the effect of the organic cation on the chemical composition of both the bulk and the surface of the soil. The results of those experiments again showed that the electrical conductivity of the soil increased with increasing contaminant concentration. In addition

  20. SUPERFUND TREATABILITY CLEARINGHOUSE: INCINERATION TEST OF EXPLOSIVES CONTAMINATED SOILS AT SAVANNA ARMY DEPOT ACTIVITY, SAVANNA, ILLINOIS

    Science.gov (United States)

    The primary objective of these tests was to demonstrate the effectiveness of incineration as a decontamination method for explosives contaminated sails. A pilot-scale rotary kiln incinerator, manufactured by ThermAll, Inc., was used to treat both sandy and clayey...

  1. Hurricane Sandy (New Jersey): Mortality Rates in the Following Month and Quarter.

    Science.gov (United States)

    Kim, Soyeon; Kulkarni, Prathit A; Rajan, Mangala; Thomas, Pauline; Tsai, Stella; Tan, Christina; Davidow, Amy

    2017-08-01

    To describe changes in mortality after Hurricane Sandy made landfall in New Jersey on October 29, 2012. We used electronic death records to describe changes in all-cause and cause-specific mortality overall, in persons aged 76 years or older, and by 3 Sandy impact levels for the month and quarter following Hurricane Sandy compared with the same periods in earlier years adjusted for trends. All-cause mortality increased 6% (95% confidence interval [CI] = 2%, 11%) for the month, 5%, 8%, and 12% by increasing Sandy impact level; and 7% (95% CI = 5%, 10%) for the quarter, 5%, 8%, and 15% by increasing Sandy impact level. In elderly persons, all-cause mortality rates increased 10% (95% CI = 5%, 15%) and 13% (95% CI = 10%, 16%) in the month and quarter, respectively. Deaths that were cardiovascular disease-related increased by 6% in both periods, noninfectious respiratory disease-related by 24% in the quarter, infection-related by 20% in the quarter, and unintentional injury-related by 23% in the month. Mortality increased, heterogeneous by cause, for both periods after Hurricane Sandy, particularly in communities more severely affected and in the elderly, who may benefit from supportive services.

  2. Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies.

    Science.gov (United States)

    Kret, E; Kiecak, A; Malina, G; Nijenhuis, I; Postawa, A

    2015-07-01

    The main aim of this study was to determine the sorption and biodegradation parameters of trichloroethene (TCE) and tetrachloroethene (PCE) as input data required for their fate and transport modelling in a Quaternary sandy aquifer. Sorption was determined based on batch and column experiments, while biodegradation was investigated using the compound-specific isotope analysis (CSIA). The aquifer materials medium (soil 1) to fine (soil 2) sands and groundwater samples came from the representative profile of the contaminated site (south-east Poland). The sorption isotherms were approximately linear (TCE, soil 1, K d = 0.0016; PCE, soil 1, K d = 0.0051; PCE, soil 2, K d = 0.0069) except for one case in which the best fitting was for the Langmuir isotherm (TCE, soil 2, K f = 0.6493 and S max = 0.0145). The results indicate low retardation coefficients (R) of TCE and PCE; however, somewhat lower values were obtained in batch compared to column experiments. In the column experiments with the presence of both contaminants, TCE influenced sorption of PCE, so that the R values for both compounds were almost two times higher. Non-significant differences in isotope compositions of TCE and PCE measured in the observation points (δ(13)C values within the range of -23.6 ÷ -24.3‰ and -26.3 ÷-27.7‰, respectively) indicate that biodegradation apparently is not an important process contributing to the natural attenuation of these contaminants in the studied sandy aquifer.

  3. Persistence and internalization of Salmonella on/in organic spinach sprout: exploring the contamination route

    Science.gov (United States)

    Purpose: The effects of contamination route, including seed and water, on the persistence and internalization of Salmonella in organic spinach cultivars- Lazio, Space, Emilia and Waitiki were studied. Methods: Seeds (1g) were contaminated with S. Newport using 10 ml of S. Newport-water suspension ov...

  4. Family Structures, Relationships, and Housing Recovery Decisions after Hurricane Sandy

    Directory of Open Access Journals (Sweden)

    Ali Nejat

    2016-04-01

    Full Text Available Understanding of the recovery phase of a disaster cycle is still in its infancy. Recent major disasters such as Hurricane Sandy have revealed the inability of existing policies and planning to promptly restore infrastructure, residential properties, and commercial activities in affected communities. In this setting, a thorough grasp of housing recovery decisions can lead to effective post-disaster planning by policyholders and public officials. The objective of this research is to integrate vignette and survey design to study how family bonds affected rebuilding/relocating decisions after Hurricane Sandy. Multinomial logistic regression was used to investigate respondents’ family structures before Sandy and explore whether their relationships with family members changed after Sandy. The study also explores the effect of the aforementioned relationship and its changes on households’ plans to either rebuild/repair their homes or relocate. These results were compared to another multinomial logistic regression which was applied to examine the impact of familial bonds on respondents’ suggestions to a vignette family concerning rebuilding and relocating after a hurricane similar to Sandy. Results indicate that respondents who lived with family members before Sandy were less likely to plan for relocating than those who lived alone. A more detailed examination shows that this effect was driven by those who improved their relationships with family members; those who did not improve their family relationships were not significantly different from those who lived alone, when it came to rebuilding/relocation planning. Those who improved their relationships with family members were also less likely to suggest that the vignette family relocate. This study supports the general hypothesis that family bonds reduce the desire to relocate, and provides empirical evidence that family mechanisms are important for the rebuilding/relocating decision

  5. Metabolic responses of Eisenia fetida after sub-lethal exposure to organic contaminants with different toxic modes of action

    Energy Technology Data Exchange (ETDEWEB)

    McKelvie, Jennifer R.; Wolfe, David M.; Celejewski, Magda A. [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail Toronto, ON M1C 1A4 (Canada); Alaee, Mehran [Environment Canada, 867 Lakeshore Rd., P.O. Box 5050, Burlington, ON L7R 4A6 (Canada); Simpson, Andre J. [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail Toronto, ON M1C 1A4 (Canada); Simpson, Myrna J., E-mail: myrna.simpson@utoronto.ca [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail Toronto, ON M1C 1A4 (Canada)

    2011-12-15

    Nuclear magnetic resonance (NMR) - based metabolomics has the potential to identify toxic responses of contaminants within a mixture in contaminated soil. This study evaluated the metabolic response of Eisenia fetida after exposure to an array of organic compounds to determine whether contaminant-specific responses could be identified. The compounds investigated in contact tests included: two pesticides (carbaryl and chlorpyrifos), three pharmaceuticals (carbamazephine, estrone and caffeine), two persistent organohalogens (Aroclor 1254 and PBDE 209) and two industrial compounds (nonylphenol and dimethyl phthalate). Control and contaminant-exposed metabolic profiles were distinguished using principal component analysis and potential contaminant-specific biomarkers of exposure were found for several contaminants. These results suggest that NMR-based metabolomics offers considerable promise for differentiating between the different toxic modes of action (MOA) associated with sub-lethal toxicity to earthworms. - Highlights: > NMR-based earthworm metabolomic analysis of the toxic mode of action of various environmental contaminants. > Organic chemicals with different toxic modes of action resulted in varied metabolomic responses for E. fetida. > NMR-based metabolomics differentiates between the different modes of action associated with sub-lethal toxicity. - {sup 1}H NMR metabolomics was used to identify potential biomarkers of organic contaminant exposure in Eisenia fetida earthworms.

  6. Field sampling of residual aviation gasoline in sandy soil

    International Nuclear Information System (INIS)

    Ostendorf, D.W.; Hinlein, E.S.; Yuefeng, Xie; Leach, L.E.

    1991-01-01

    Two complementary field sampling methods for the determination of residual aviation gasoline content in the contaminated capillary fringe of a fine, uniform, sandy soil were investigated. The first method featured field extrusion of core barrels into pint-size Mason jars, while the second consisted of laboratory partitioning of intact stainless steel core sleeves. Soil samples removed from the Mason jars (in the field) and sleeve segments (in the laboratory) were subjected to methylene chloride extraction and gas chromatographic analysis to compare their aviation gasoline content. The barrel extrusion sampling method yielded a vertical profile with 0.10m resolution over an essentially continuous 5.0m interval from the ground surface to the water table. The sleeve segment alternative yielded a more resolved 0.03m vertical profile over a shorter 0.8m interval through the capillary fringe. The two methods delivered precise estimates of the vertically integrated mass of aviation gasoline at a given horizontal location, and a consistent view of the vertical profile as well. In the latter regard, a 0.2m thick lens of maximum contamination was found in the center of the capillary fringe, where moisture filled all voids smaller than the mean pore size. The maximum peak was resolved by the core sleeve data, but was partially obscured by the barrel extrusion observations, so that replicate barrels or a half-pint Mason jar size should be considered for data supporting vertical transport analyses in the absence of sleeve partitions

  7. Penguin colonies as secondary sources of contamination with persistent organic pollutants

    NARCIS (Netherlands)

    Roosens, L.; Brink, van den N.W.; Riddle, M.; Blust, R.; Neels, H.; Covaci, A.

    2007-01-01

    Although long-range atmospheric transport has been described as the predominant mechanism for exposing polar regions to persistent organic pollutants (POPs), recent studies have suggested that bird activity can also contribute substantially to contaminant levels in some environments. However,

  8. The fate of fresh and stored 15N-labelled sheep urine and urea applied to a sandy and a sandy loam soil using different application strategies

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1996-01-01

    The fate of nitrogen from N-15-labelled sheep urine and urea applied to two soils was studied under field conditions. Labelled and stored urine equivalent to 204 kg N ha(-1) was either incorporated in soil or applied to the soil surface prior to sowing of Italian ryegrass (Lolium multiflorum L...... and soil was not significantly different for incorporated urine and urea. Almost all the supplied labelled N was accounted for in soil and herbage in the sandy loam soil, whereas 33-34% of the labelled N was unaccounted for in the sandy soil. When the stored urine was applied to the soil surface, 20...... was applied to growing ryegrass at the sandy loam soil, the immobilization of urine-derived N was significantly reduced compared to application prior to sowing. The results indicated that the net mineralization of urine N was similar to that of urea in the sandy soil, but only about 75% of the urine N was net...

  9. Sandy a změna klimatu

    Czech Academy of Sciences Publication Activity Database

    Pecho, Jozef

    2013-01-01

    Roč. 92, č. 7 (2013), s. 408-411 ISSN 0042-4544 Institutional support: RVO:68378289 Keywords : hurricanes * climate change Subject RIV: DG - Athmosphere Sciences, Meteorology http://www.vesmir.cz/clanek/sandy-a-zmena-klimatu

  10. Microbe and Mineral Mediated Transformation of Heavy Metals, Radionuclides, and Organic Contaminants

    Science.gov (United States)

    Gerlach, R.

    2011-12-01

    Microorganisms influence their surroundings in many ways and humans have utilized microbially catalyzed reactions for benefit for centuries. Over the past few decades, microorganisms have been used for the control of contaminant transport in subsurface environments where many microbe mineral interactions occur. This presentation will discuss microbially influenced mineral formation and transformation as well as their influence on the fate of organic contaminants such as chlorinated aliphatics & 2,4,6-trinitrotoluene (TNT), heavy metals such as chromium, and radionuclides such as uranium & strontium. Both, batch and flow experiments have been performed, which monitor the net effect of microbe mineral interactions on the fate of these contaminants. This invited presentation will place an emphasis on the relative importance of direct microbial (i.e. biotic) transformations, mineral-mediated transformations as well as other abiotic reactions influencing the fate of environmental contaminants. Experiments will be summarized and placed in context of past and future engineered applications for the control of subsurface contaminants.

  11. Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor; Maeng, Sungkyu; Fujioka, Takahiro; Kennedy, Maria Dolores; Amy, Gary L.

    2010-01-01

    . The use of RO in existing water reuse facilities is addressed and questioned, taking into consideration that tight NF can be a more cost-effective and efficient technology to target the problem of organic contaminants. It was concluded that tight NF

  12. Irradiated Sewage Sludge for Production of Fennel Plants in Sandy Soil

    International Nuclear Information System (INIS)

    El-Motaium, R. A.; Abo El-Seoud, M. A.

    2004-01-01

    Irradiated sewage sludge (SS) has proved to be a useful organic fertilizer particularly for sandy soil. The objective of this study is to compare the response of fennel (Foeniculum vulgare L.) plants growing in sandy soil to different fertilizer regimes, organic vs. mineral. In a field experiment four levels (20, 40, 60, 80 t/ha) of irradiated and non-irradiated sewage sludge were incorporated into sandy soil, in addition to the control treatment (mineral fertilizer). Samples analysis included the biomass production at the vegetative and flowering stages, chlorophyll content, total and reducing sugars and heavy metals content of the shoots. The data indicate that the biomass production has dramatically increased as the sludge application rate increased in both irradiated and non-irradiated plots. However, the increase was significantly higher under all irradiated treatments than the corresponding rates of non-irradiated treatments at both the vegetative and flowering stages. Also, the biomass production at all levels of application was higher than the control, receiving mineral fertilizer. At the vegetative stage, the biomass values ranged from 3.1 g/plant for the control to 10.2 and 34.1 g/plant at 80 t/ha for non-irradiated and irradiated sewage sludge, respectively. Whereas, at the flowering stage the values ranged from 9.8 g/plant for the control to 23.9 and 65.1 g/plant at 80 t/ha for non-irradiated and irradiated sewage sludge, respectively. Total sugars, reducing sugar, non-reducing sugar, and chlorophyll content has increased as the sludge application rate increased. At 80t/ha application rate of irradiated sludge, the reducing sugars content was 29.39 mg/g DW at the vegetative stage and 37.85 mg/g DW at the flowering stage. Reducing sugars recorded lower values in the control plants, 14.54 mg/g DW at the vegetative stage and 18.78 mg/g DW at the flowering stage. Heavy metals (Zn, Fe, Pb, Cd) of the shoots was also determined. Sewage sludge was a good

  13. The Department of the Interior Strategic Sciences Group and its Response to Hurricane Sandy

    Science.gov (United States)

    Ludwig, K. A.; Machlis, G. E.; Applegate, D.

    2013-12-01

    This presentation will describe the history, mission, and current activities of the newly formed Department of the Interior (DOI) Strategic Sciences Group (SSG), with a focus on its response to Hurricane Sandy and lessons learned from using scenario building to support decision making. There have been several environmental crises of national significance in recent years, including Hurricane Katrina (2005), large-scale California wildfires (2007-2008), the Deepwater Horizon oil spill (2010), and Hurricane Sandy (2012). Such events are complex because of their impacts on the ecology, economy, and people of the affected locations. In these and other environmental disasters, the DOI has had significant responsibilities to protect people and resources and to engage in emergency response, recovery, and restoration efforts. In recognition of the increasingly critical role of strategic science in responding to such complex events, the DOI established the SSG by Secretarial Order in 2012. Its purpose is to provide the DOI with science-based assessments and interdisciplinary scenarios of environmental crises affecting Departmental resources; rapidly assemble interdisciplinary teams of scientists from government, academia, and non-governmental organizations to conduct such work; and provide results to DOI leadership as usable knowledge to support decision making. March 2013 was the SSG's first deployment since its formation. The SSG's charge was to support DOI's participation on the Hurricane Sandy Rebuilding Task Force by developing scenarios of Hurricane Sandy's environmental, economic, and social consequences in the New York/New Jersey area and potential interventions that could improve regional resilience to future major storms. Over the course of one week, the SSG Sandy team (Operational Group Sandy) identified 13 first-tier consequences and 17 interventions. The SSG briefed DOI leadership, Task Force representatives, and other policy makers in both Washington, DC and

  14. Passive sampling methods for contaminated sediments: State of the science for organic contaminants

    Science.gov (United States)

    Lydy, Michael J; Landrum, Peter F; Oen, Amy MP; Allinson, Mayumi; Smedes, Foppe; Harwood, Amanda D; Li, Huizhen; Maruya, Keith A; Liu, Jingfu

    2014-01-01

    This manuscript surveys the literature on passive sampler methods (PSMs) used in contaminated sediments to assess the chemical activity of organic contaminants. The chemical activity in turn dictates the reactivity and bioavailability of contaminants in sediment. Approaches to measure specific binding of compounds to sediment components, for example, amorphous carbon or specific types of reduced carbon, and the associated partition coefficients are difficult to determine, particularly for native sediment. Thus, the development of PSMs that represent the chemical activity of complex compound–sediment interactions, expressed as the freely dissolved contaminant concentration in porewater (Cfree), offer a better proxy for endpoints of concern, such as reactivity, bioaccumulation, and toxicity. Passive sampling methods have estimated Cfree using both kinetic and equilibrium operating modes and used various polymers as the sorbing phase, for example, polydimethylsiloxane, polyethylene, and polyoxymethylene in various configurations, such as sheets, coated fibers, or vials containing thin films. These PSMs have been applied in laboratory exposures and field deployments covering a variety of spatial and temporal scales. A wide range of calibration conditions exist in the literature to estimate Cfree, but consensus values have not been established. The most critical criteria are the partition coefficient between water and the polymer phase and the equilibrium status of the sampler. In addition, the PSM must not appreciably deplete Cfree in the porewater. Some of the future challenges include establishing a standard approach for PSM measurements, correcting for nonequilibrium conditions, establishing guidance for selection and implementation of PSMs, and translating and applying data collected by PSMs. Integr Environ Assess Manag 2014;10:167–178. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of

  15. Titania nano-coated quartz wool for the photocatalytic mineralisation of emerging organic contaminants.

    Science.gov (United States)

    Saracino, M; Pretali, L; Capobianco, M L; Emmi, S S; Navacchia, M L; Bezzi, F; Mingazzini, C; Burresi, E; Zanelli, A

    2018-01-01

    Many emerging contaminants pass through conventional wastewater treatment plants, contaminating surface and drinking water. The implementation of advanced oxidation processes in existing plants for emerging contaminant remediation is one of the challenges for the enhancement of water quality in the industrialised countries. This paper reports on the production of a TiO 2 nano-layer on quartz wool in a relevant amount, its characterisation by X-ray diffraction and scanning electron microscopy, and its use as a photocatalyst under ultraviolet radiation for the simultaneous mineralisation of five emerging organic contaminants (benzophenone-3, benzophenone-4, carbamazepine, diclofenac, and triton X-100) dissolved in deionised water and tap water. This treatment was compared with direct ultraviolet photolysis and with photocatalytic degradation on commercial TiO 2 micropearls. The disappearance of every pollutant was measured by high performance liquid chromatography and mineralisation was assessed by the determination of total organic carbon. After 4 hours of treatment with the TiO 2 nano-coated quartz wool, the mineralisation exceeds 90% in deionised water and is about 70% in tap water. This catalyst was reused for seven cycles without significant efficiency loss.

  16. Development of HUMASORB trademark, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    International Nuclear Information System (INIS)

    Sanjay, H.G.; Srivastave, K.C.; Walia, D.S.

    1995-01-01

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project.The objective of this project is to develop a lignite-derived adsorbent, Humasorb TM to remove heavy metals and organics from ground water and surface water streams

  17. Critical assessment of the available technologies for sanitation of contaminated soil and their limits of application

    International Nuclear Information System (INIS)

    Nussbaumer, M.; Glaeser, E.

    1993-01-01

    Sanitation of polluted land comprises safety measures and soil purification measures. Soil purification can take place either in situ, or on-site or off-site after digging up the contaminated soil. In-situ processes are soil deaeration, groundwater purification and biological methods. Soil deaeration is suited for volatile pollutants in the unsaturated zone of loose soils, while groundwater purification is commonly applied for water-soluble pollutants in the saturated zone of soils with a high k f value. On-site or off-site purification of contaminated soils can take place by thermal processes, by soil washing, by microorganisms, or by physical processes. Thermal processes have the widest range of applications; they are suited for most soils polluted with mostly organic pollutants, and the residual contamination is lowest. Soil washing is limited to sandy and noncohesive soils and for emulsifiable or elutable pollutants. Biological on-site and off-line methods are limited to biodegradable pollutants which are not in phase. Loosening agents may be added in order to overcome geotechnical limitations. Physical purification of soils is limited to specific applications e.g. removal of volatile hydrocarbons. (orig.) [de

  18. Abrasive wear based predictive maintenance for systems operating in sandy conditions

    NARCIS (Netherlands)

    Woldman, M.; Tinga, T.; Heide, E. van der; Masen, M.A.

    2015-01-01

    Machines operating in sandy environments are damaged by the abrasive action of sand particles that enter the machine and become entrapped between components and contacting surfaces. In the case of the military services the combination of a sandy environment and the wide range of tasks to be

  19. Predicting the denitrification capacity of sandy aquifers from shorter-term incubation experiments and sediment properties

    Directory of Open Access Journals (Sweden)

    W. Eschenbach

    2013-02-01

    Full Text Available Knowledge about the spatial variability of denitrification rates and the lifetime of denitrification in nitrate-contaminated aquifers is crucial to predict the development of groundwater quality. Therefore, regression models were derived to estimate the measured cumulative denitrification of aquifer sediments after one year of incubation from initial denitrification rates and several sediment parameters, namely total sulphur, total organic carbon, extractable sulphate, extractable dissolved organic carbon, hot water soluble organic carbon and potassium permanganate labile organic carbon.

    For this purpose, we incubated aquifer material from two sandy Pleistocene aquifers in Northern Germany under anaerobic conditions in the laboratory using the 15N tracer technique. The measured amount of denitrification ranged from 0.19 to 56.2 mg N kg−1 yr−1. The laboratory incubations exhibited high differences between non-sulphidic and sulphidic aquifer material in both aquifers with respect to all investigated sediment parameters. Denitrification rates and the estimated lifetime of denitrification were higher in the sulphidic samples. For these samples, the cumulative denitrification measured during one year of incubation (Dcum(365 exhibited distinct linear regressions with the stock of reduced compounds in the investigated aquifer samples. Dcum(365 was predictable from sediment variables within a range of uncertainty of 0.5 to 2 (calculated Dcum(365/measured Dcum(365 for aquifer material with a Dcum(365 > 20 mg N kg−1 yr−1. Predictions were poor for samples with lower Dcum(365, such as samples from the NO3 bearing groundwater zone, which includes the non-sulphidic samples, from the upper part of both aquifers where denitrification is not sufficient to

  20. Estimation of Nitrogen Pools in Irrigated Potato Production on Sandy Soil Using the Model SUBSTOR

    Science.gov (United States)

    Prasad, Rishi; Hochmuth, George J.; Boote, Kenneth J.

    2015-01-01

    Recent increases in nitrate concentrations in the Suwannee River and associated springs in northern Florida have raised concerns over the contributions of non-point sources. The Middle Suwannee River Basin (MSRB) is of special concern because of prevalent karst topography, unconfined aquifers and sandy soils which increase vulnerability of the ground water contamination from agricultural operations- a billion dollar industry in this region. Potato (Solanum tuberosum L.) production poses a challenge in the area due to the shallow root system of potato plants, and low water and nutrient holding capacity of the sandy soils. A four-year monitoring study for potato production on sandy soil was conducted on a commercial farm located in the MSRB to identify major nitrogen (N) loss pathways and determine their contribution to the total environmental N load, using a partial N budget approach and the potato model SUBSTOR. Model simulated environmental N loading rates were found to lie within one standard deviation of the observed values and identified leaching loss of N as the major sink representing 25 to 38% (or 85 to 138 kg ha-1 N) of the total input N (310 to 349 kg ha-1 N). The crop residues left in the field after tuber harvest represented a significant amount of N (64 to 110 kg ha-1N) and posed potential for indirect leaching loss of N upon their mineralization and the absence of subsequent cover crops. Typically, two months of fallow period exits between harvest of tubers and planting of the fall row crop (silage corn). The fallow period is characterized by summer rains which pose a threat to N released from rapidly mineralizing potato vines. Strategies to reduce N loading into the groundwater from potato production must focus on development and adoption of best management practices aimed on reducing direct as well as indirect N leaching losses. PMID:25635904

  1. Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2011-10-01

    Reverse osmosis (RO) in existing water reuse facilities is a water industry standard. However, that approach may be questioned taking into consideration that "tight" NF can be equal or "better" than RO. NF can achieve the same removals of RO membranes when dealing with emerging organic contaminants (pharmaceuticals, pesticides, endocrine disruptors and others). Experiments using 18 emerging contaminants were performed using membranes NF200 and NF90 at bench-scale units, and for a more complete study, results of NF and RO pilot and full-scale experiments where compared to our experimental results. The removal results showed that NF can remove many emerging contaminants. The average removal by tight NF was 82% for neutral contaminants and 97% for ionic contaminants. The average removal by RO was 85% for neutral contaminants and 99% for ionic contaminants. Aquifer recharge and recovery (ARR) followed by NF can effectively remove emerging contaminants with removals over 90% when loose NF membranes are used.

  2. Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2011-01-01

    Reverse osmosis (RO) in existing water reuse facilities is a water industry standard. However, that approach may be questioned taking into consideration that "tight" NF can be equal or "better" than RO. NF can achieve the same removals of RO membranes when dealing with emerging organic contaminants (pharmaceuticals, pesticides, endocrine disruptors and others). Experiments using 18 emerging contaminants were performed using membranes NF200 and NF90 at bench-scale units, and for a more complete study, results of NF and RO pilot and fullscale experiments where compared to our experimental results. The removal results showed that NF can remove many emerging contaminants. The average removal by tight NF was 82% for neutral contaminants and 97% for ionic contaminants. The average removal by RO was 85% for neutral contaminants and 99% for ionic contaminants. Aquifer recharge and recovery (ARR) followed by NF can effectively remove emerging contaminants with removals over 90% when loose NF membranes are used. © 2011 2011 Desalination Publications. All rights reserved.

  3. Development of HUMASORB trademark, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    International Nuclear Information System (INIS)

    Sanjay, H.G.; Srivastava, K.C.; Walia, D.S.

    1995-01-01

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project

  4. Metabolic responses of Eisenia fetida after sub-lethal exposure to organic contaminants with different toxic modes of action

    International Nuclear Information System (INIS)

    McKelvie, Jennifer R.; Wolfe, David M.; Celejewski, Magda A.; Alaee, Mehran; Simpson, Andre J.; Simpson, Myrna J.

    2011-01-01

    Nuclear magnetic resonance (NMR) - based metabolomics has the potential to identify toxic responses of contaminants within a mixture in contaminated soil. This study evaluated the metabolic response of Eisenia fetida after exposure to an array of organic compounds to determine whether contaminant-specific responses could be identified. The compounds investigated in contact tests included: two pesticides (carbaryl and chlorpyrifos), three pharmaceuticals (carbamazephine, estrone and caffeine), two persistent organohalogens (Aroclor 1254 and PBDE 209) and two industrial compounds (nonylphenol and dimethyl phthalate). Control and contaminant-exposed metabolic profiles were distinguished using principal component analysis and potential contaminant-specific biomarkers of exposure were found for several contaminants. These results suggest that NMR-based metabolomics offers considerable promise for differentiating between the different toxic modes of action (MOA) associated with sub-lethal toxicity to earthworms. - Highlights: → NMR-based earthworm metabolomic analysis of the toxic mode of action of various environmental contaminants. → Organic chemicals with different toxic modes of action resulted in varied metabolomic responses for E. fetida. → NMR-based metabolomics differentiates between the different modes of action associated with sub-lethal toxicity. - 1 H NMR metabolomics was used to identify potential biomarkers of organic contaminant exposure in Eisenia fetida earthworms.

  5. Measuring Sandy Bottom Dynamics by Exploiting Depth from Stereo Video Sequences

    DEFF Research Database (Denmark)

    Musumeci, Rosaria E.; Farinella, Giovanni M.; Foti, Enrico

    2013-01-01

    In this paper an imaging system for measuring sandy bottom dynamics is proposed. The system exploits stereo sequences and projected laser beams to build the 3D shape of the sandy bottom during time. The reconstruction is used by experts of the field to perform accurate measurements and analysis...

  6. Evaluation of the 137Cs technique for estimating wind erosion losses for some sandy Western Australian soils

    International Nuclear Information System (INIS)

    Harper, R.J.; Gilkes, R.J.

    1994-01-01

    The utility of the caesium-137 technique, for estimating the effects of wind erosion, was evaluated on the soils of a semi-arid agricultural area near Jerramungup, Western Australia. The past incidence of wind erosion was estimated from field observations of soil profile morphology and an existing remote sensing study. Erosion was limited to sandy surfaced soils (0-4% clay), with a highly significant difference (P 137 Cs values between eroded and non-eroded sandy soils, with mean values of 243±17 and 386±13 Bq m -2 respectively. Non-eroded soils, with larger clay contents, had a mean 137 Cs content of 421±26 Bq m -2 , however, due to considerable variation between replicate samples, this value was not significantly different from that of the non-eroded sands. Hence, although the technique discriminates between eroded and non-eroded areas, the large variation in 137 Cs values means that from 27 to 96 replicate samples are required to provide statistically valid estimates of 137 Cs loss. The occurrence of around 18% of the total 137 Cs between 10 and 20 cm depth in these soils, despite cultivation being confined to the surface 9 cm, suggests that leaching of 137 Cs occurs in the sandy soils, although there was no relationship between clay content and 137 Cs value for either eroded or non-eroded soils. In a multiple linear regression, organic carbon content and the mean grain size of the eroded soils explained 35% of the variation in 137 Cs content. This relationship suggests that both organic carbon and 137 Cs are removed by erosion, with erosion being more prevalent on soils with a finer sand fraction. Clay and silt contents do not vary with depth in the near-surface horizons of the eroded sandy soils, hence it is likely that wind erosion strips the entire surface horizon with its 137 Cs content, rather than selectively winnowing fine material. 71 refs., 6 tabs., 2 fig

  7. Enhanced organic contaminants accumulation in crops: Mechanisms, interactions with engineered nanomaterials in soil.

    Science.gov (United States)

    Wu, Xiang; Wang, Wei; Zhu, Lizhong

    2018-05-02

    The mechanism of enhanced accumulation of organic contaminants in crops with engineered nanomaterials (ENMs) were investigated by co-exposure of crops (Ipomoea aquatica Forsk (Swamp morning-glory), Cucumis sativus L. (cucumber), Zea mays L. (corn), Spinacia oleracea L. (spinach) and Cucurbita moschata (pumpkin))to a range of chemicals (polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polybrominated diphenyl ether (PBDE)) and ENMs (TiO 2 , Ag, Al 2 O 3 , graphene, carbon nanotubes (CNTs)) in soil. Induced by 50 mg kg -1 graphene co-exposure, the increase range of BDE-209, BaP, p,p'-DDE, HCB, PYR, FLU, ANT, and PHEN in the plants were increased in the range of 7.51-36.42, 5.69-32.77, 7.09-59.43, 11.61-66.73, 4.58-57.71, 5.79-109.07, 12.85-109.76, and15.57-127.75 ng g -1 , respectively. The contaminants in ENMs-spiked and control soils were separated into bioavailable, bound and residual fractions using a sequential ultrasonic extraction procedure (SUEP) to investigate the mechanism of the enhanced accumulation. The bioavailable fraction in spiked soils showed no significant difference (p > 0.05) from that in the control, while the bound fraction increased in equal proportion (p > 0.05) to the reduction in the residual fraction. These results implied that ENMs can competitively adsorbed the bound of organic contaminants from soil and co-transferred into crops, followed by a portion of the residual fraction transferred to the bound fraction to maintain the balance of different fractions in soils. The mass balance was all higher than 98.5%, indicating the portion of degraded contaminants was less than 1.5%. These findings could expand our knowledge about the organic contaminants accumulation enhancement in crops with ENMs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Microbiological Analysis of an Active Pilot-Scale Mobile Bioreactor Treating Organic Contaminants

    International Nuclear Information System (INIS)

    Brigmon, R.L.

    1997-01-01

    Samples were obtained for microbiological analysis from a granular activated carbon fluidized bed bioreactor (GAC-FBR). This GAC-FBR was in operation at a former manufactured gas plant (MGP) Site in Augusta Georgia for in situ groundwater bioremediation of organics. The samples included contaminated site groundwater, GAC-FBR effluent, and biofilm coated granular activated carbon at 5, 9, and 13 feet within the GAC-FBR column. The objective of this analysis was to correlate contaminant removal with microbiological activity within the GAC-FBR

  9. Transportation during and after Hurricane Sandy.

    Science.gov (United States)

    2012-11-01

    "Hurricane Sandy demonstrated the strengths and limits of the transportation infrastructure in New York City and the surrounding region. As a result of the timely and thorough preparations by New York City and the MTA, along with the actions of city ...

  10. Will the future atmospheric circulation favor the landfall of Sandy-like superstorms? (Invited)

    Science.gov (United States)

    Barnes, E. A.; Polvani, L. M.; Sobel, A. H.

    2013-12-01

    Superstorm Sandy ravaged the Eastern seaboard of the United States, costing a great number of lives and billions of dollars in damage. Whether events like Sandy will become more frequent as anthropogenic greenhouse gases continue to increase remains an open and complex question. Here, we consider whether the persistent large-scale atmospheric patterns that steered Sandy onto the coast will become more frequent in the coming decades. Using the CMIP5 multi-model ensemble, we demonstrate that climate models consistently project a decrease in the frequency and persistence of the westward flow that led to Sandy's unprecedented track, implying that future atmospheric conditions are less likely than at present to propel storms westward into the coast.

  11. Effects of Pisha sandstone content on solute transport in a sandy soil.

    Science.gov (United States)

    Zhen, Qing; Zheng, Jiyong; He, Honghua; Han, Fengpeng; Zhang, Xingchang

    2016-02-01

    In sandy soil, water, nutrients and even pollutants are easily leaching to deeper layers. The objective of this study was to assess the effects of Pisha sandstone on soil solute transport in a sandy soil. The miscible displacement technique was used to obtain breakthrough curves (BTCs) of Br(-) as an inert non-adsorbed tracer and Na(+) as an adsorbed tracer. The incorporation of Pisha sandstone into sandy soil was able to prevent the early breakthrough of both tracers by decreasing the saturated hydraulic conductivity compared to the controlled sandy soil column, and the impeding effects increased with Pisha sandstone content. The BTCs of Br(-) were accurately described by both the convection-dispersion equation (CDE) and the two-region model (T-R), and the T-R model fitted the experimental data slightly better than the CDE. The two-site nonequilibrium model (T-S) accurately fit the Na(+) transport data. Pisha sandstone impeded the breakthrough of Na(+) not only by decreasing the saturated hydraulic conductivity but also by increasing the adsorption capacity of the soil. The measured CEC values of Pisha sandstone were up to 11 times larger than those of the sandy soil. The retardation factors (R) determined by the T-S model increased with increasing Pisha sandstone content, and the partition coefficient (K(d)) showed a similar trend to R. According to the results of this study, Pisha sandstone can successfully impede solute transport in a sandy soil column. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Migration characteristics of cobalt-60 through sandy soil in high pH solution

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko

    1992-01-01

    Migration characteristics of 60 Co through sandy soil in high pH solution has been investigated by both column and batch techniques. The association of 60 Co with the sandy soil and its components were studied by sequential extraction techniques. The concentration profile of 60 Co in the sandy soil column was composed of two exponential curves showing that 60 Co would consist of immobile and mobile fractions. The immobile 60 Co was retained by the sandy soil and was distributed near the top. Though the mobile 60 Co was little sorbed by soil and migrated through the soil column, maximum concentration of 60 Co in the effluents decreased slightly with increasing path length of the soil column. The sequential extraction of 60 Co from the sandy soil and from its components showed that 60 Co was sorbed by both manganese oxide and clay minerals. And manganese oxide is one of the responsible soil components for the observed decrease in the maximum concentration of 60 Co in the effluents. Although the content of manganese oxide in the sandy soil was 0.13%, manganese oxide is the important component to prevent from the migration of 60 Co in the high pH solution. (author)

  13. Organic Pollutant Contamination of the River Tichá Orlice as Assessed by Biochemical Markers

    Directory of Open Access Journals (Sweden)

    M. Havelková

    2008-01-01

    Full Text Available This study used biochemical markers to assess contamination at two contaminated sites (Králíky and Lichkov and one control site (Červená Voda on the River Tichá Orlice, a left-side tributary of the River Elbe. The brown trout (Salmo trutta fario was selected as an indicator species. Enzymes of the first stage of xenobiotic conversion, namely cytochrome P450 (CYP 450 and ethoxyresorufin-O-deethylase (EROD in the liver were selected as biochemical markers. Blood plasma vitellogenin concentrations were used to evaluate xenoestrogenic effects of contamination. Results were compared with the most important inductors of these markers, i.e. with organic pollutants (PCB, HCH, HCB, OCS and DDT and their metabolites in fish muscle and with PAH concentrations in bottom sediments. The highest contamination with organic pollutants was at Králíky, and this was reflected in increased cytochrome P450, EROD activity and vitellogenin concentrations. Significant differences were demonstrated in EROD activity and vitellogenin concentrations between Králíky and Červená Voda (P s = -0.964 between EROD activity and vitellogenin concentrations was demonstrated. This relationship was discussed from the point of view of a possible induction or inhibition of the assessed biomarkers at persistently highly contaminated sites.

  14. Hurricane Sandy science plan: coastal topographic and bathymetric data to support hurricane impact assessment and response

    Science.gov (United States)

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry • Impacts to coastal beaches and barriers • Impacts of storm surge, including disturbed estuarine and bay hydrology • Impacts on environmental quality and persisting contaminant exposures • Impacts to coastal ecosystems, habitats, and fish and wildlife This fact sheet focuses on coastal topography and bathymetry. This fact sheet focuses on coastal topography and bathymetry.

  15. Longitudinal Impact of Hurricane Sandy Exposure on Mental Health Symptoms.

    Science.gov (United States)

    Schwartz, Rebecca M; Gillezeau, Christina N; Liu, Bian; Lieberman-Cribbin, Wil; Taioli, Emanuela

    2017-08-24

    Hurricane Sandy hit the eastern coast of the United States in October 2012, causing billions of dollars in damage and acute physical and mental health problems. The long-term mental health consequences of the storm and their predictors have not been studied. New York City and Long Island residents completed questionnaires regarding their initial Hurricane Sandy exposure and mental health symptoms at baseline and 1 year later (N = 130). There were statistically significant decreases in anxiety scores (mean difference = -0.33, p Hurricane Sandy has an impact on PTSD symptoms that persists over time. Given the likelihood of more frequent and intense hurricanes due to climate change, future hurricane recovery efforts must consider the long-term effects of hurricane exposure on mental health, especially on PTSD, when providing appropriate assistance and treatment.

  16. 33 CFR 80.170 - Sandy Hook, NJ to Tom's River, NJ.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sandy Hook, NJ to Tom's River, NJ. 80.170 Section 80.170 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.170 Sandy Hook, NJ to Tom's River...

  17. The Use of Modified Bentonite for Removal of Aromatic Organics from Contaminated Soil.

    Science.gov (United States)

    Gitipour; Bowers; Bodocsi

    1997-12-15

    This study investigates the clay-aromatic interactions with a view to the use of bentonite clay for binding benzene, toluene, ethylbenzene, and o-xylene (BTEX compounds) in contaminated soils. BTEX compounds are the most toxic aromatic constituents of gasoline present in many underground storage tanks. Modified (organophilic) and ordinary bentonites are used to remove these organics. The organophilic bentonites are prepared by replacing the exchangeable inorganic cations present in bentonite particles with a quaternary ammonium salt. Various clay-to-soil ratios were applied to determine the efficiency of the modified bentonite in enhancing the cement-based solidification/stabilization (S/S) of BTEX contaminated soils. Toxicity characteristics leaching procedure (TCLP) tests were performed on soil samples to evaluate the leaching of the organics. In addition, X-ray diffraction analyses were conducted to assess the changes in the basal spacing of the clays as a result of their interaction with BTEX compounds. The findings of this study reveal that organophilic bentonite can act as a successful adsorbent for removing the aromatic organics from contaminated soil. Thus, this material is viable for enhancing the performance of cement-based S/S processes, as an adsorbent for petroleum spills, and for landfill liners and slurry walls. Copyright 1997 Academic Press.

  18. The use of modified bentonite for removal of aromatic organics from contaminated soil

    International Nuclear Information System (INIS)

    Gitipour, S.; Bowers, M.T.; Bodocsi, A.

    1997-01-01

    This study investigates the clay-aromatic interactions with a view to the use of bentonite clay for binding benzene, toluene, ethylbenzene, and o-xylene (BTEX compounds) in contaminated soils. BTEX compounds are the most toxic aromatic constituents of gasoline present in many underground storage tanks. Modified (organophilic) and ordinary bentonites are used to remove these organics. The organophilic bentonites are prepared by replacing the exchangeable inorganic cations present in bentonite particles with a quaternary ammonium salt. Various clay-to-soil ratios were applied to determine the efficiency of the modified bentonite in enhancing the cement-based solidification/stabilization (S/S) of BTEX contaminated soils. Toxicity characteristics leaching procedure (TCLP) tests were performed on soil samples to evaluate the leaching of the organics. In addition, X-ray diffraction analyses were conducted to assess the changes in the basal spacing of the clays as a result of their interaction with BTEX compounds. The findings of this study reveal that organophilic bentonite can act as a successful adsorbent for removing the aromatic organics from contaminated soil. Thus, this material is viable for enhancing the performance of cement-based S/S processes, as an adsorbent for petroleum spills, and for landfill liners and slurry walls

  19. Leaching of organic contaminants from storage of reclaimed asphalt pavement.

    Science.gov (United States)

    Norin, Malin; Strömvall, A M

    2004-03-01

    Recycling of asphalt has been promoted by rapid increases in both the use and price of petroleum-based bitumen. Semi-volatile organic compounds in leachates from reclaimed asphalt pavement, measured in field samples and in laboratory column test, were analysed through a GC/MS screen-test methodology. Sixteen PAH (polyaromatic hydrocarbons) were also analysed in leachates from the column study. The highest concentrations of semi-volatile compounds, approximately 400 microg l(-1), were measured in field samples from the scarified stockpile. Naphthalene, butylated hydroxytoluene (BHT) and dibutyl phthalate (DBP) were the most dominant of the identified semi-volatiles. The occurrence of these compounds in urban groundwater, also indicate high emission rates and persistent structures of the compounds, making them potentially hazardous. Car exhausts, rubber tires and the asphalt material itself are all probable emission sources, determined from the organic contaminants released from the stockpiles. The major leaching mechanism indicated was dissolution of organic contaminants from the surface of the asphalt gravels. In the laboratory column test, the release of high-molecular weight and more toxic PAH was higher in the leachates after two years than at the commencement of storage. The concentrations of semi-volatiles in leachates, were also several times lower than those from the field stockpile. These results demonstrate the need to follow up laboratory column test with real field measurements.

  20. Rebuilding Emergency Care After Hurricane Sandy.

    Science.gov (United States)

    Lee, David C; Smith, Silas W; McStay, Christopher M; Portelli, Ian; Goldfrank, Lewis R; Husk, Gregg; Shah, Nirav R

    2014-04-09

    A freestanding, 911-receiving emergency department was implemented at Bellevue Hospital Center during the recovery efforts after Hurricane Sandy to compensate for the increased volume experienced at nearby hospitals. Because inpatient services at several hospitals remained closed for months, emergency volume increased significantly. Thus, in collaboration with the New York State Department of Health and other partners, the Health and Hospitals Corporation and Bellevue Hospital Center opened a freestanding emergency department without on-site inpatient care. The successful operation of this facility hinged on key partnerships with emergency medical services and nearby hospitals. Also essential was the establishment of an emergency critical care ward and a system to monitor emergency department utilization at affected hospitals. The results of this experience, we believe, can provide a model for future efforts to rebuild emergency care capacity after a natural disaster such as Hurricane Sandy. (Disaster Med Public Health Preparedness. 2014;0:1-4).

  1. Blood culture contamination with Enterococci and skin organisms: implications for surveillance definitions of primary bloodstream infections.

    Science.gov (United States)

    Freeman, Joshua T; Chen, Luke Francis; Sexton, Daniel J; Anderson, Deverick J

    2011-06-01

    Enterococci are a common cause of bacteremia but are also common contaminants. In our institution, approximately 17% of positive blood cultures with enterococci are mixed with skin organisms. Such isolates are probable contaminants. The specificity of the current definition of primary bloodstream infection could be increased by excluding enterococci mixed with skin organisms. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  2. Numerical modeling of salt marsh morphological change induced by Hurricane Sandy

    Science.gov (United States)

    Hu, Kelin; Chen, Qin; Wang, Hongqing; Hartig, Ellen K.; Orton, Philip M.

    2018-01-01

    The salt marshes of Jamaica Bay serve as a recreational outlet for New York City residents, mitigate wave impacts during coastal storms, and provide habitat for critical wildlife species. Hurricanes have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. In this study, the Delft3D modeling suite was utilized to examine the effects of Hurricane Sandy (2012) on salt marsh morphology in Jamaica Bay. Observed marsh elevation change and accretion from rod Surface Elevation Tables and feldspar Marker Horizons (SET-MH) and hydrodynamic measurements during Hurricane Sandy were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model. The model results agreed well with in situ field measurements. The validated model was then used to detect salt marsh morphological change due to Sandy across Jamaica Bay. Model results indicate that the island-wide morphological changes in the bay's salt marshes due to Sandy were in the range of −30 mm (erosion) to +15 mm (deposition), and spatially complex and heterogeneous. The storm generated paired deposition and erosion patches at local scales. Salt marshes inside the west section of the bay showed erosion overall while marshes inside the east section showed deposition from Sandy. The net sediment amount that Sandy brought into the bay is only about 1% of the total amount of reworked sediment within the bay during the storm. Numerical experiments show that waves and vegetation played a critical role in sediment transport and associated wetland morphological change in Jamaica Bay. Furthermore, without the protection of vegetation, the marsh islands of Jamaica Bay would experience both more erosion and less accretion in coastal storms.

  3. Biogenic volatile organic compounds as a potential stimulator for organic contaminant degradation by soil microorganisms

    International Nuclear Information System (INIS)

    McLoughlin, Emma; Rhodes, Angela H.; Owen, Susan M.; Semple, Kirk T.

    2009-01-01

    The effects of monoterpenes on the degradation of 14 C-2,4-dichlorophenol (DCP) were investigated in soils collected from areas surrounding monoterpene and non-monoterpene-emitting vegetation. Indigenous microorganisms degraded 14 C-2,4-DCP to 14 CO 2 , after 1 d contact time. Degradation was enhanced by prior exposure of the soils to 2,4-DCP for 32 d, increasing extents of mineralisation up to 60%. Monoterpene amendments further enhanced 2,4-DCP degradation, but only following pre-exposure to both 2,4-DCP and monoterpene, with total 2,4-DCP mineralisation extents of up to 71%. Degradation was greatest at the higher monoterpene concentrations (≥1 μg kg -1 ). Total mineralisation extents were similar between concentrations, but higher than the control and the 0.1 μg kg -1 amendment, indicating that increases in monoterpene concentration has a diminishing enhancing effect. We suggest that monoterpenes can stimulate the biodegradation of 2,4-DCP by indigenous soil microorganisms and that monoterpene amendment in soils is an effective strategy for removing organic contaminants. - A amendment of soils with monoterpenes may induce organic contaminant degradation by indigenous soil microorganisms

  4. The influence of interfacial properties on the two-phase liquid flow of organic contaminants in groundwater

    International Nuclear Information System (INIS)

    Demond, A.H.; Desai, F.N.; Hayes, K.F.

    1992-01-01

    DOE's waste sites are contaminated with a variety of organic liquids. Because of their low solubility in water, organic liquids such as these will persist as separate liquid phases and be transported as such in the subsurface. Thus, an improved understanding of the factors influencing the movement of a separate organic liquid phase in the subsurface is important to DOE's efforts to control groundwater contamination. Wettability is sometimes cited as the most important factor influencing two-phase flow in porous media. The wetting phase migrates preferentially through the smaller pores, whereas the nonwetting phase is concentrated in the larger pores. Typically, aquifers are thought of as strongly water-wet, implying that the organic liquid preferentially occupies the larger pores. But in fact, that state depends on the properties of the three interfaces of the system: between the organic liquid and water, water and the solid, and the organic liquid and the solid. Characteristics of the system which affect the interfacial properties also impact the wettability, such as the nature of the aquifer solids' surfaces, the composition of the goundwater and the properties of the organic contaminant. The alteration of wettability at DOE waste sites may be dominated by the presence of co-contaminants such as organic acids and bases which behave as surface-active agents or surfactants. Because of their physicochemical nature, surfactants will sorb preferentially at the interfaces of the system, thereby impacting the wettability and the distribution of the liquids in the porous medium. The over-all objective of this research was to determine how changes in interfacial properties affect two-phase flow. Specifically, the objective was to examine the effect of surfactant sorption on capillary pressure relationships by correlating measurements of sorption, zeta potential, interfacial tension and contact angle, with changes in the capillary pressure-saturation relationships

  5. The delivery of organic contaminants to the Arctic food web: Why sea ice matters

    DEFF Research Database (Denmark)

    Pucko, M.; Stern, Gary; Macdonald, Robie

    2015-01-01

    For decades sea ice has been perceived as a physical barrier for the loading of contaminants to the Arctic Ocean. We show that sea ice, in fact, facilitates the delivery of organic contaminants to the Arctic marine food web through processes that: 1) are independent of contaminant physical......–chemical properties (e.g. 2–3-fold increase in exposure to brine-associated biota), and 2) depend on physical–chemical properties and, therefore, differentiate between contaminants (e.g. atmospheric loading of contaminants to melt ponds over the summer, and their subsequent leakage to the ocean). We estimate...... risk of increased exposures through melt pond loading and drainage due to the high ratio of melt pond water to seawater concentration (Melt pond Enrichment Factor, MEF), which ranges from 2 for dacthal to 10 for endosulfan I. Melt pond contaminant enrichment can be perceived as a hypothetical ‘pump...

  6. Effect of coastal urbanization on sandy beach coleoptera Phaleria maculata (Kulzer, 1959) in northern Chile.

    Science.gov (United States)

    González, Sergio A; Yáñez-Navea, Katherine; Muñoz, Mauricio

    2014-06-15

    The beetle Phaleria maculata is a common inhabitant of the upper intertidal fringe of Chilean beaches. Anthropogenic intervention in coastal areas has increased intensely, leading to changes in the flora and fauna of sandy beaches. To examine the impact of human activities on P. maculata, we studied several beaches along the northern Chilean coast. Beaches were characterized based on morphodynamics and the level of intervention, leading to the estimation of an "Urbanization Index" based on various indicators. The analysis showed a significant inverse correlation between the rate of urbanization and night sky quality. Larval and adult beetles were almost absent on beaches with high levels of urbanization. The results of simple and multiple correlations based on nMDS ordination showed an inverse relationship between increases in urbanization and the abundance of beetles. Because darkling beetles are very sensitive to human interventions on sandy beaches, we suggest that they are ideal indicator organisms for the health of these environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Can porosity affect the hyperspectral signature of sandy landscapes?

    Science.gov (United States)

    Baranoski, Gladimir V. G.; Kimmel, Bradley W.

    2017-10-01

    Porosity is a fundamental property of sand deposits found in a wide range of landscapes, from beaches to dune fields. As a primary determinant of the density and permeability of sediments, it represents a central element in geophysical studies involving basin modeling and coastal erosion as well as geoaccoustics and geochemical investigations aiming at the understanding of sediment transport and water diffusion properties of sandy landscapes. These applications highlight the importance of obtaining reliable porosity estimations, which remains an elusive task, notably through remote sensing. In this work, we aim to contribute to the strengthening of the knowledge basis required for the development of new technologies for the remote monitoring of environmentally-triggered changes in sandy landscapes. Accordingly, we employ an in silico investigation approach to assess the effects of porosity variations on the reflectance of sandy landscapes in the visible and near-infrared spectral domains. More specifically, we perform predictive computer simulations using SPLITS, a hyperspectral light transport model for particulate materials that takes into account actual sand characterization data. To the best of our knowledge, this work represents the first comprehensive investigation relating porosity to the reflectance responses of sandy landscapes. Our findings indicate that the putative dependence of these responses on porosity may be considerably less pronounced than its dependence on other properties such as grain size and shape. Hence, future initiatives for the remote quantification of porosity will likely require reflectance sensors with a high degree of sensitivity.

  8. Emerging organic contaminants in groundwater : a review of sources, fate and occurrence

    OpenAIRE

    Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S.

    2012-01-01

    Emerging organic contaminants (EOCs) detected in groundwater may have adverse effects on human health and aquatic ecosystems. This paper reviews the existing occurrence data in groundwater for a range of EOCs including pharmaceutical, personal care, ‘life-style’ and selected industrial compounds. The main sources and pathways for organic EOCs in groundwater are reviewed, with occurrence data for EOCs in groundwater included from both targeted studies and broad reconnaissance surveys. Nanogram...

  9. The characterization of organic contaminants during the development of the Space Station water reclamation and management system

    Science.gov (United States)

    Cole, H.; Habercom, M.; Crenshaw, M.; Johnson, S.; Manuel, S.; Martindale, W.; Whitman, G.; Traweek, M.

    1991-01-01

    Examples of the application of various methods for characterizing samples for alcohols, fatty acids, detergents, and volatile/semivolatile basic, neutral, and phenolic acid contaminants are presented. Data, applications, and interpretations are given for a variety of methods including sample preparation/cleanup procedures, ion chromatography, and gas chromatography with various detectors. Summaries of the major organic contaminants that contribute to the total organic carbon content are presented.

  10. Online Media Use and Adoption by Hurricane Sandy Affected Fire and Police Departments

    OpenAIRE

    Chauhan, Apoorva

    2014-01-01

    In this thesis work, I examine the use and adoption of online communication media by 840 fire and police departments that were affected by the 2012 Hurricane Sandy. I began by exploring how and why these fire and police departments used (or did not use) online media to communicate with the public during Hurricane Sandy. Results show that fire and police departments used online media during Hurricane Sandy to give timely and relevant information to the public about things such as evacuations, ...

  11. Organic Contamination Baseline Study in NASA Johnson Space Center Astromaterials Curation Laboratories

    Science.gov (United States)

    Calaway, Michael J.; Allen, Carlton C.; Allton, Judith H.

    2014-01-01

    Future robotic and human spaceflight missions to the Moon, Mars, asteroids, and comets will require curating astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. 21st century sample return missions will focus on strict protocols for reducing organic contamination that have not been seen since the Apollo manned lunar landing program. To properly curate these materials, the Astromaterials Acquisition and Curation Office under the Astromaterial Research and Exploration Science Directorate at NASA Johnson Space Center houses and protects all extraterrestrial materials brought back to Earth that are controlled by the United States government. During fiscal year 2012, we conducted a year-long project to compile historical documentation and laboratory tests involving organic investigations at these facilities. In addition, we developed a plan to determine the current state of organic cleanliness in curation laboratories housing astromaterials. This was accomplished by focusing on current procedures and protocols for cleaning, sample handling, and storage. While the intention of this report is to give a comprehensive overview of the current state of organic cleanliness in JSC curation laboratories, it also provides a baseline for determining whether our cleaning procedures and sample handling protocols need to be adapted and/or augmented to meet the new requirements for future human spaceflight and robotic sample return missions.

  12. Heterotrophic bacterial populations in tropical sandy beaches

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.; LokaBharathi, P.A.

    Distribution pattern of heterotrophic bacterial flora of three sandy beaches of the west coast of India was studied. The population in these beaches was microbiologically different. Population peaks of halotolerant and limnotolerant forms were...

  13. Light pollution reduces activity, food consumption and growth rates in a sandy beach invertebrate.

    Science.gov (United States)

    Luarte, T; Bonta, C C; Silva-Rodriguez, E A; Quijón, P A; Miranda, C; Farias, A A; Duarte, C

    2016-11-01

    The continued growth of human activity and infrastructure has translated into a widespread increase in light pollution. Natural daylight and moonlight cycles play a fundamental role for many organisms and ecological processes, so an increase in light pollution may have profound effects on communities and ecosystem services. Studies assessing ecological light pollution (ELP) effects on sandy beach organisms have lagged behind the study of other sources of disturbance. Hence, we assessed the influence of this stressor on locomotor activity, foraging behavior, absorption efficiency and growth rate of adults of the talitrid amphipod Orchestoidea tuberculata. In the field, an artificial light system was assembled to assess the local influence of artificial light conditions on the amphipod's locomotor activity and use of food patches in comparison to natural (ambient) conditions. Meanwhile in the laboratory, two experimental chambers were set to assess amphipod locomotor activity, consumption rates, absorption efficiency and growth under artificial light in comparison to natural light-dark cycles. Our results indicate that artificial light have significantly adverse effects on the activity patterns and foraging behavior of the amphipods, resulting on reduced consumption and growth rates. Given the steady increase in artificial light pollution here and elsewhere, sandy beach communities could be negatively affected, with unexpected consequences for the whole ecosystem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Reduction in bioavailability of arsenic in contaminated irrigated soil using zinc and organic manure

    International Nuclear Information System (INIS)

    Batool, S.Q.

    2012-01-01

    The experiments were conducted to reduce the bioavailability of arsenic with application of organic and inorganic materials from contaminated soils irrigated with arsenic contaminated water. The results showed that the amount of extractable arsenic increased with submergence and decreased with application of organic material. However, amount of such decrease altered with inorganic material i.e. zinc and decrease was greater with As5Zn10 (0.17 to 0.0 mg/kg) where zinc was applied at the rate of 10 mg/kg. Among the different organic materials, arsenic content in soil remarkably decreased with application of farmyard manure. The decrease in arsenic content was less than upper toxic limit of arsenic in soil i.e.10mg/kg for paddy soils. Other manures also showed decrease in arsenic concentration but with desorption after half interval of treatment. Best remediating agents used for arsenic retention was zinc sulphate> organic compost >farmyard manure. (author)

  15. 2012 U.S. Geological Survey Topographic Lidar: Northeast Atlantic Coast Post-Hurricane Sandy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Binary point-cloud data were produced for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an...

  16. Cadmium accumulation by muskmelon under salt stress in contaminated organic soil

    Energy Technology Data Exchange (ETDEWEB)

    Gabrijel, Ondrasek [University of Zagreb, Faculty of Agriculture, Svetosimunska 25, 10000 Zagreb (Croatia)], E-mail: gondrasek@agr.hr; Davor, Romic [University of Zagreb, Faculty of Agriculture, Svetosimunska 25, 10000 Zagreb (Croatia); Zed, Rengel [Soil Science and Plant Nutrition, Faculty of Natural and Agricultural Sciences, University of Western Australia, Crawley WA 6009 (Australia); Marija, Romic; Monika, Zovko [University of Zagreb, Faculty of Agriculture, Svetosimunska 25, 10000 Zagreb (Croatia)

    2009-03-15

    Human-induced salinization and trace element contamination are widespread and increasing rapidly, but their interactions and environmental consequences are poorly understood. Phytoaccumulation, as the crucial entry pathway for biotoxic Cd into the human foodstuffs, correlates positively with rhizosphere salinity. Hypothesising that organic matter decreases the bioavailable Cd{sup 2+} pool and therefore restricts its phytoextraction, we assessed the effects of four salinity levels (0, 20, 40 and 60 mM NaCl) and three Cd levels (0.3, 5.5 and 10.4 mg kg{sup -1}) in peat soil on mineral accumulation/distribution as well as vegetative growth and fruit yield parameters of muskmelon (Cucumis melo L.) in a greenhouse. Salt stress reduced shoot biomass and fruit production, accompanied by increased Na and Cl and decreased K concentration in above-ground tissues. A 25- and 50-day exposure to salinity increased Cd accumulation in leaves up to 87% and 46%, respectively. Accumulation of Cd in the fruits was up to 43 times lower than in leaves and remained unaltered by salinity. Soil contamination by Cd enhanced its accumulation in muskmelon tissues by an order of magnitude compared with non-contaminated control. In the drainage solution, concentrations of Na and Cl slightly exceeded those in the irrigation solution, whereas Cd concentration in drainage solution was lower by 2-3 orders of magnitude than the total amount added. Chemical speciation and distribution modelling (NICA-Donnan) using Visual MINTEQ showed predominance of dissolved organic ligands in Cd chemisorption and complexation in all treatments; however, an increase in salt addition caused a decrease in organic Cd complexes from 99 to 71%, with free Cd{sup 2+} increasing up to 6% and Cd-chlorocomplexes up to 23%. This work highlights the importance of soil organic reactive surfaces in reducing trace element bioavailability and phytoaccumulation. Chloride salinity increased Cd accumulation in leaves but not in fruit

  17. [Physicochemical and microbiological factors influencing the bioavailability of organic contaminants in subsoils

    International Nuclear Information System (INIS)

    1992-01-01

    We report progress in elucidating the microbiological variables important in determining the relative success of bacteria in utilizing soil-sorbed contaminants. Two bacterial species, Pseudomonas putida (ATCC 17484) and an Alcaligenes sp. isolated from petroleum contaminated soil are known to differ markedly in their ability to utilize soil-sorbed napthalene based on a kinetic comparison of their capability of naphthalene mineralization in soil-containing and soil-free systems. The kinetic analysis led us to conclude that strain 17484 had direct access to naphthalene present in a labile sorbed state which promoted the rapid desorption of naphthalene from the non-labile phase. Conversely, both the rate and extent of naphthalene mineralization by strain NP-Alk suggested that this organism had access only to naphthalene in solution. Desorption was thus limited and the efficiency of total naphthalene removal from these soil slurries was poor. These conclusions were based on the average activities of cells in soil slurries without regard for the disposition of the organisms with respect to the sorbent. Since both organisms degrade naphthalene by apparently identical biochemical pathways, have similar enzyme kinetic properties, and are both motile, gram negative organisms, we undertook a series of investigations to gain a better understanding of what microbiological properties were important in bioavailability

  18. Efficiency of Cleanup of Ra-226 Contaminated Gravel Assayed by LSC and TL Dosimetry

    International Nuclear Information System (INIS)

    Mamoon, A.; Abulfaraj, W.H.; Kamal, S.M.; Sohsah, M.A.

    1999-01-01

    The present study concerns itself with decontamination of gravel that had been contaminated with Ra-226 from natural origins. Aqueous solutions of different compositions including water, and various concentrations of CaCl 2 and BaCl 2 were used to leach the contaminated gravel. The leaching experiments were carried out in glass columns. In some leaching experiments a sample of a common brand of sandy soil (fine sand with traces of silt )was placed below the gravel to test the binding capacity (sorption) of this soil for the leached Ra-226

  19. Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution.

    Science.gov (United States)

    Kwon, Bum Gun; Koizumi, Koshiro; Chung, Seon-Yong; Kodera, Yoichi; Kim, Jong-Oh; Saido, Katsuhiko

    2015-12-30

    Polystyrene (PS) plastic marine pollution is an environmental concern. However, a reliable and objective assessment of the scope of this problem, which can lead to persistent organic contaminants, has yet to be performed. Here, we show that anthropogenic styrene oligomers (SOs), a possible indicator of PS pollution in the ocean, are found globally at concentrations that are higher than those expected based on the stability of PS. SOs appear to persist to varying degrees in the seawater and sand samples collected from beaches around the world. The most persistent forms are styrene monomer, styrene dimer, and styrene trimer. Sand samples from beaches, which are commonly recreation sites, are particularly polluted with these high SOs concentrations. This finding is of interest from both scientific and public perspectives because SOs may pose potential long-term risks to the environment in combination with other endocrine disrupting chemicals. From SOs monitoring results, this study proposes a flow diagram for SOs leaching from PS cycle. Using this flow diagram, we conclude that SOs are global contaminants in sandy beaches around the world due to their broad spatial distribution. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Burrowing and avoidance behaviour in marine organisms exposed to pesticide-contaminated sediment

    DEFF Research Database (Denmark)

    Møhlenberg, Flemming; Kiørboe, Thomas

    1983-01-01

    Behavioural effects of marine sediment contaminated with pesticides (6000 ppm parathion, 200 ppm methyl parathion, 200 ppm malathion) were studied in a number of marine organisms in laboratory tests and in situ. The burrowing behaviour in Macoma baltica, Cerastoderma edule, Abra alba, Nereis...

  1. Evaluation of organic contamination in urban groundwater surrounding a municipal landfill, Zhoukou, China.

    Science.gov (United States)

    Han, D M; Tong, X X; Jin, M G; Hepburn, Emily; Tong, C S; Song, X F

    2013-04-01

    This paper investigates the organic pollution status of shallow aquifer sediments and groundwater around Zhoukou landfill. Chlorinated aliphatic hydrocarbons, monocylic aromatic hydrocarbons, halogenated aromatic hydrocarbons, organochlorine pesticides and other pesticides, and polycyclic aromatic hydrocarbons (PAHs) have been detected in some water samples. Among the detected eleven PAHs, phenanthrene, fluorine, and fluoranthene are the three dominant in most of the groundwater samples. Analysis of groundwater samples around the landfill revealed concentrations of PAHs ranging from not detected to 2.19 μg/L. The results show that sediments below the waste dump were low in pollution, and the shallow aquifer, at a depth of 18-30 m, was heavily contaminated, particularly during the wet season. An oval-shaped pollution halo has formed, spanning 3 km from west to east and 2 km from south to north, and mainly occurs in groundwater depths of 2-4 m. For PAH source identification, both diagnostic ratios of selected PAHs and principal component analysis were studied, suggesting mixed sources of pyro- and petrogenic derived PAHs in the Zhoukou landfill. Groundwater table fluctuations play an important role in the distribution of organic pollutants within the shallow aquifer. A conceptual model of leachate migration in the Quaternary aquifers surrounding the Zhoukou landfill has been developed to describe the contamination processes based on the major contaminant (PAHs). The groundwater zone contaminated by leachate has been identified surrounding the landfill.

  2. Is the IP response related to geology or contaminants in a leachate plume at the Grindsted Landfill, Denmark?

    DEFF Research Database (Denmark)

    Møller, Ingelise; Maurya, Pradip Kumar; Balbarini, Nicola

    Contaminants in leachate plumes from landfills and other contaminated sites are a threat to the environment. Efficient site characterization methods are needed. The perspectives of the IP method are investigated in combination with geological sampling and chemical analyses of water samples. Along...... a leachate plume from a landfill hosting both household and chemical waste, borehole IP data, geological samples, grain size, and contaminant concentrations in water samples are examined for correlations related to geology and concentrations of contaminants. Results relating the Cole-Cole parameters...... with sediment types and pore water resistivity representing the concentrations of the contaminants show that the formation resistivity primarily is controlled by the contaminant concentrations while the IP parameters primarily are related to the clay content and grain size distribution of sandy sediments...

  3. Is the IP response related to geology or contaminants in a leachate plume at the Grindsted Landfill, Denmark?

    DEFF Research Database (Denmark)

    Møller, Ingelise; Maurya, Pradip Kumar; Balbarini, Nicola

    a leachate plume from a landfill hosting both household and chemical waste, borehole IP data, geological samples, grain size, and contaminant concentrations in water samples are examined for correlations related to geology and concentrations of contaminants. Results relating the Cole-Cole parameters...... with sediment types and pore water resistivity representing the concentrations of the contaminants show that the formation resistivity primarily is controlled by the contaminant concentrations while the IP parameters primarily are related to the clay content and grain size distribution of sandy sediments......Contaminants in leachate plumes from landfills and other contaminated sites are a threat to the environment. Efficient site characterization methods are needed. The perspectives of the IP method are investigated in combination with geological sampling and chemical analyses of water samples. Along...

  4. Organic acid enhanced electrodialytic extraction of lead from contaminated soil fines in suspension

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ahring, Birgitte Kiær; Ottosen, Lisbeth M.

    2007-01-01

    for decontamination of the sludge was investigated. The ability of 11 organic acids to extract Pb from the fine fraction of contaminated soil (grains soil fines in suspension......The implementation of soil washing technology for the treatment of heavy metal contaminated soils is limited by the toxicity and unwieldiness of the remaining heavy metal contaminated sludge. In this work, the feasibility of combining electrodialytic remediation with heterotrophic leaching...... was tested. Five of the acids showed the ability to extract Ph from the soil fines in excess of the effect caused solely by pH changes. Addition of the acids, however, severely impeded EDR, hence promotion of EDR by combination with heterotrophic leaching was rejected. In contrast, enhancement of EDR...

  5. Depositional history of organic contaminants on the Palos Verdes Shelf, California

    Science.gov (United States)

    Eganhouse, R.P.; Pontolillo, J.

    2000-01-01

    During more than 60 years, sedimentation on the Palos Verdes Shelf has been dominated by time-varying inputs of municipal wastewater from the Los Angeles County Sanitation Districts (LACSD) and debris from the Portuguese Bend Landslide (PBL). The present study examines the depositional history of wastewater-derived organic contaminants at a site approximately 6-8 km downcurrent from the outfall system. Sediments at this location are impacted by contributions from both sources, but the relative influence of the sources has changed over time. Two classes of hydrophobic organic contaminants (chlorinated hydrocarbons, long-chain alkylbenzenes) were determined in sediment cores collected in 1981 and 1992. Using molecular stratigraphy, we determined average sedimentation rates (cm/year) and mass accumulation rates (g cm-2 year-1) for the following periods: 1955-1965, 1965-1971, 1971-1981 and 1981-1992. The results show that sedimentation and mass accumulation rates increased from 1955 to 1971 and decreased from 1971 to 1981. These trends are consistent with historical information on the emission of suspended solids from the outfall system, indicating that the discharge of wastes dominated sedimentation at the site during this period. In the 1980s and early 1990s, however, mass accumulation rates increased in spite of continually decreasing emissions of wastewater solids. Several lines of evidence indicate that this increase was due to mobilization of debris from the PBL during and after unusually strong winter storms in the 1980s. As a result, heavily contaminated sediments deposited during the years of greatest waste emissions (i.e. 1950-1970) have been buried to greater sub-bottom depths, thereby reducing their availability for mobilization to the overlying water column. These results highlight the dynamic nature of sedimentation in contaminated coastal ecosystems and its importance to the long-term fate and effects of toxic substances.

  6. Measurement of biological oxygen demand sandy beaches

    African Journals Online (AJOL)

    Measurements of biological oxygen demand in a sandy beach using conventional .... counting the cells present in a sample of aged seawater and comparing this with .... This activity peaked at 71 % above the undisturbed level after 16 hours.

  7. Arsenic uptake by lettuce from As-contaminated soil remediated with Pteris vittata and organic amendment.

    Science.gov (United States)

    de Oliveira, Letuzia M; Suchismita, Das; Gress, Julia; Rathinasabapathi, Bala; Chen, Yanshan; Ma, Lena Q

    2017-06-01

    Leaching of inorganic arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil As levels. Thus, an environmental concern arises regarding As accumulation in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to investigate the ability of As-hyperaccumulator P. vittata and organic amendments in reducing As uptake by lettuce (Lactuca sativa) from a soil contaminated from CCA-treated wood (63.9 mg kg -1 As). P. vittata was grown for 150 d in a CCA-contaminated soil amended with biochar, activated carbon or coffee grounds at 1%, followed by lettuce for another 55 d. After harvest, plant biomass and As concentrations in plant and soil were determined. The presence of P. vittata reduced As content in lettuce by 21% from 27.3 to 21.5 mg kg -1 while amendment further reduced As in lettuce by 5.6-18%, with activated C being most effective. Our data showed that both P. vittata and organic amendments were effective in reducing As concentration in lettuce. Though no health-based standard for As in vegetables exists in USA, care should be taken when growing lettuce in contaminated soils. Our data showed that application of organic amendments with P. vittata reduced As hazards in CCA-contaminated soils. Published by Elsevier Ltd.

  8. Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process

    International Nuclear Information System (INIS)

    Wang, J.-Y.; Huang, X.-J.; Kao, Jimmy C.M.; Stabnikova, Olena

    2007-01-01

    Kaolins contaminated with heavy metals, Cu and Pb, and organic compounds, p-xylene and phenanthrene, were treated with an upward electrokinetic soil remediation (UESR) process. The effects of current density, cathode chamber flushing fluid, treatment duration, reactor size, and the type of contaminants under the vertical non-uniform electric field of UESR on the simultaneous removal of the heavy metals and organic contaminants were studied. The removal efficiencies of p-xylene and phenanthrene were higher in the experiments with cells of smaller diameter or larger height, and with distilled water flow in the cathode chamber. The removal efficiency of Cu and Pb were higher in the experiments with smaller diameter or shorter height cells and 0.01 M HNO 3 solution as cathode chamber flow. In spite of different conditions for removal of heavy metals and organics, it is possible to use the upward electrokinetic soil remediation process for their simultaneous removal. Thus, in the experiments with duration of 6 days removal efficiencies of phenanthrene, p-xylene, Cu and Pb were 67%, 93%, 62% and 35%, respectively. The experiment demonstrated the feasibility of simultaneous removal of organic contaminants and heavy metals from kaolin using the upward electrokinetic soil remediation process

  9. Campylobacter contamination and the relative risk of illness from organic broiler meat in comparison with conventional broiler meat

    DEFF Research Database (Denmark)

    Rosenquist, Hanne; Boysen, Louise; Krogh, Anne Louise

    2013-01-01

    Danish organic broiler meat, represented by carcasses sampled at the end of processing after chilling, was more frequently contaminated with thermotolerant Campylobacter spp. than conventional broiler carcasses; the yearly mean prevalence being 54.2% (CI: 40.9-67.5) for organic and 19.7% (CI: 14.......8-24.7) for conventional carcasses. Campylobacter jejuni was the most frequently isolated species. The difference in prevalence was obvious in all quarters of the year. Contamination of organic and conventional broiler carcasses was more likely to occur in the warmer summer months, in this case in the third quarter......, as also documented for conventional broiler flocks. When contaminated, the mean concentration of Campylobacter on neck skin samples of organic and conventional carcasses was not significantly different (P=0.428); 2.0±0.65log10cfu/g and 2.1±0.93log10cfu/g, respectively. Assessing the relative risk...

  10. Approaches for assessment of terrestrial vertebrate responses to contaminants: moving beyond individual organisms

    Science.gov (United States)

    Albers, P.H.; Heinz, G.H.; Hall, R.J.; Albers, Peter H.; Heinz, Gary H.; Ohlendorf, Harry M.

    2000-01-01

    Conclusions: A need for a broader range ofinformation on effects of contaminants on individuals exists among the 4 classes of terrestrial vertebrates, especially mammals, reptiles, and amphibians. Separation of contaminant effects from other effects and reduction of speculative extrapolation within and among species requires information that can be produced only by combined field and laboratory investigations that incorporate seasonal or annual cycles and important spatial and interaction conditions. Assessments of contaminant effects at the population level and higher are frequently dependent on extrapolations from a lower organizational level. Actual measurements of the effects of contaminants on populations or communities, possibly in conjunction with case studies that establish relations between effects on individuals and effects on populations, are needed to reduce the uncertainty associated with these extrapolations. Associated with these assessment levels is the need for acceptable definitions of what we mean when we refer to a 'meaningful population change' or an 'effect on communities or ecosystems.' At these higher levels of organization we are also confronted with the need for procedures useful for separating contaminant effects from effects caused by other environmental conditions. Although the bulk of literature surveyed was of the focused cause-and-effect type that is necessary for proving relations between contaminants and wildlife, community or ecosystem field assessments, as sometimes performed with reptiles and amphibians, might be a useful alternative for estimating the potential of a contaminant to cause environmental harm. Assumptions about the special usefulness of reptiles and amphibians as environmental indicators ought to be tested with comparisons to mammals and birds. Information on the effects of contaminants above the individual level is needed to generate accurate estimates of the potential consequences of anthropogenic pollution (e

  11. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system.

    Science.gov (United States)

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M

    2016-08-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected within the applicability domain of a steady-state two-compartment standard plant uptake model: bisphenol A (BPA), carbamazepine (CBZ), triclosan (TCS) and caffeine (CAF). The model overestimated concentrations in most cases, when no degradation rates in plants were entered. Subsequently, biodegradation rates were fitted so that the measured concentrations were met. Obtained degradation kinetics are in the order, BPA < CAF ≈ TCS < CBZ in roots, and BPA ≈ TCS < CBZ < CAF in leaves. Kinetics determined by inverse modeling are, despite the inherent uncertainty, indicative of the dissipation rates. The advantage of the procedure that is additional knowledge can be gained from existing experimental data. Dissipation kinetics found via inverse modeling is not a conclusive proof for biodegradation and confirmation by experimental studies is needed. Copyright © 2016. Published by Elsevier Ltd.

  12. Estuarine bed-sediment-quality data collected in New Jersey and New York after Hurricane Sandy, 2013

    Science.gov (United States)

    Fischer, Jeffrey M.; Phillips, Patrick J.; Reilly, Timothy J.; Focazio, Michael J.; Loftin, Keith A.; Benzel, William M.; Jones, Daniel K.; Smalling, Kelly L.; Fisher, Shawn C.; Fisher, Irene J.; Iwanowicz, Luke R.; Romanok, Kristin M.; Jenkins, Darkus E.; Bowers, Luke; Boehlke, Adam; Foreman, William T.; Deetz, Anna C.; Carper, Lisa G.; Imbrigiotta, Thomas E.; Birdwell, Justin E.

    2015-01-01

    This report describes a reconnaissance study of estuarine bed-sediment quality conducted June–October 2013 in New Jersey and New York after Hurricane Sandy in October 2012 to assess the extent of contamination and the potential long-term human and ecological impacts of the storm. The study, funded through the Disaster Relief Appropriations Act of 2013 (PL 113-2), was conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency and the National Oceanographic and Atmospheric Administration. In addition to presenting the bed-sediment-quality data, the report describes the study design, documents the methods of sample collection and analysis, and discusses the steps taken to assure the quality of the data.

  13. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents

    Science.gov (United States)

    Jasper, Justin T.; Nguyen, Mi T.; Jones, Zackary L.; Ismail, Niveen S.; Sedlak, David L.; Sharp, Jonathan O.; Luthy, Richard G.; Horne, Alex J.; Nelson, Kara L.

    2013-01-01

    Abstract Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe. PMID:23983451

  14. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents.

    Science.gov (United States)

    Jasper, Justin T; Nguyen, Mi T; Jones, Zackary L; Ismail, Niveen S; Sedlak, David L; Sharp, Jonathan O; Luthy, Richard G; Horne, Alex J; Nelson, Kara L

    2013-08-01

    Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe.

  15. Epidemic gasoline exposures following Hurricane Sandy.

    Science.gov (United States)

    Kim, Hong K; Takematsu, Mai; Biary, Rana; Williams, Nicholas; Hoffman, Robert S; Smith, Silas W

    2013-12-01

    Major adverse climatic events (MACEs) in heavily-populated areas can inflict severe damage to infrastructure, disrupting essential municipal and commercial services. Compromised health care delivery systems and limited utilities such as electricity, heating, potable water, sanitation, and housing, place populations in disaster areas at risk of toxic exposures. Hurricane Sandy made landfall on October 29, 2012 and caused severe infrastructure damage in heavily-populated areas. The prolonged electrical outage and damage to oil refineries caused a gasoline shortage and rationing unseen in the USA since the 1970s. This study explored gasoline exposures and clinical outcomes in the aftermath of Hurricane Sandy. Prospectively collected, regional poison control center (PCC) data regarding gasoline exposure cases from October 29, 2012 (hurricane landfall) through November 28, 2012 were reviewed and compared to the previous four years. The trends of gasoline exposures, exposure type, severity of clinical outcome, and hospital referral rates were assessed. Two-hundred and eighty-three gasoline exposures were identified, representing an 18 to 283-fold increase over the previous four years. The leading exposure route was siphoning (53.4%). Men comprised 83.0% of exposures; 91.9% were older than 20 years of age. Of 273 home-based calls, 88.7% were managed on site. Asymptomatic exposures occurred in 61.5% of the cases. However, minor and moderate toxic effects occurred in 12.4% and 3.5% of cases, respectively. Gastrointestinal (24.4%) and pulmonary (8.4%) symptoms predominated. No major outcomes or deaths were reported. Hurricane Sandy significantly increased gasoline exposures. While the majority of exposures were managed at home with minimum clinical toxicity, some patients experienced more severe symptoms. Disaster plans should incorporate public health messaging and regional PCCs for public health promotion and toxicological surveillance.

  16. 78 FR 7780 - Sunshine Act Meeting; FCC Announces Further Details for the First Post-Superstorm Sandy Field...

    Science.gov (United States)

    2013-02-04

    ... First Post-Superstorm Sandy Field Hearing, Tuesday, February 5, 2013 AGENCY: Federal Communications Commission. ACTION: Sunshine notice. SUMMARY: In the wake of Superstorm Sandy, Federal Communications... focusing on the impact of Superstorm Sandy, and help inform recommendations and actions to strengthen wired...

  17. Near-real-time Forensic Disaster Analysis: experiences from hurricane Sandy

    Science.gov (United States)

    Kunz, Michael; Mühr, Bernhard; Schröter, Kai; Kunz-Plapp, Tina; Daniell, James; Khazai, Bijan; Wenzel, Friedemann; Vannieuwenhuyse, Marjorie; Comes, Tina; Münzberg, Thomas; Elmer, Florian; Fohringer, Joachim; Lucas, Christian; Trieselmann, Werner; Zschau, Jochen

    2013-04-01

    Hurricane Sandy was the last tropical cyclone of the 2012 Northern Atlantic Hurricane season that made landfall. It moved on an unusual track from the Caribbean to the East Coast of the United States from 24 to 30 October as a Category 1 and 2 Hurricane according to the Saffir-Simpson Scale. Along its path, the severe storm event caused widespread damage including almost 200 fatalities. In the early hours of 30 October, Sandy made landfall near Atlantic City, N.J. Sandy was an extraordinary event due to its multihazard nature and several cascading effects in the aftermath. From the hydro-meteorological perspective, most unusual was the very large spatial extent of up to 1,700 km. High wind speeds were associated with record breaking storm surges at the U.S. Mid- Atlantic and New England Coast during high (astronomical) tide, leading to widespread flooding. Though Sandy was not the most severe storm event in terms of wind speed and precipitation, the impact in the U.S. was enormous with total damage estimates of up to 90 billion US (own estimate from Dec. 2012). Although much better data emerge weeks after such an event, the Forensic Disaster Analysis (FDA) Task Force of the Center for Disaster Management and Risk Reduction Technology (CEDIM) made an effort to obtain a comprehensive and holistic overview of the causes, hazardous effects and consequences associated with Sandy immediately after landfall at the U.S. coast on 30 October 2012. This was done in an interdisciplinary way by collecting and compiling scattered and distributed information from available databases and sources via the Internet, by applying own methodologies and models for near-real time analyses developed in recent years, and by expert knowledge. This contribution gives an overview about the CEDIM-FDA analyses' results. It describes the situation that led to the extraordinary event, highlights the interaction of the tropical cyclone with other hydro-meteorological events, and examines the

  18. Contamination of an arctic terrestrial food web with marine-derived persistent organic pollutants transported by breeding seabirds

    International Nuclear Information System (INIS)

    Choy, Emily S.; Kimpe, Linda E.; Mallory, Mark L.; Smol, John P.; Blais, Jules M.

    2010-01-01

    At Cape Vera, Devon Island (Nunavut, Canada), a colony of northern fulmars (Fulmarus glacialis) concentrates and releases contaminants through their guano to the environment. We determined whether persistent organic pollutants (POPs) from seabirds were transferred to coastal food webs. Snow buntings (Plectrophenax nivalis) were the most contaminated species, with ΣPCB and ΣDDT (mean: 168, 106 ng/g ww) concentrations surpassing environmental guidelines for protecting wildlife. When examined collectively, PCB congeners and DDT in jewel lichen (Xanthoria elegans) were lower in samples taken farther from the seabird colony, and increased with increasing δ 15 N values. However, only concentrations of p'p-DDE:ΣDDT and PCB-95 were significantly correlated inversely with distance from the seabird cliffs. Linkages between marine-derived POPs and their concentrations in terrestrial mammals were less clear. Our study provides novel contaminant data for these species and supports biovector transport as a source of organic contaminants to certain components of the terrestrial food web. - This study provides evidence of contaminant transport by seabirds to a coastal Arctic food web.

  19. Contamination of an arctic terrestrial food web with marine-derived persistent organic pollutants transported by breeding seabirds

    Energy Technology Data Exchange (ETDEWEB)

    Choy, Emily S., E-mail: echoy087@uottawa.c [Program for Chemical and Environmental Toxicology, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada); Kimpe, Linda E., E-mail: linda.kimpe@uottawa.c [Program for Chemical and Environmental Toxicology, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada); Mallory, Mark L., E-mail: mark.mallory@ec.gc.c [Canadian Wildlife Service, Environment Canada, Iqaluit, NU, X0A 0H0 (Canada); Smol, John P., E-mail: smolj@queensu.c [Paleoecological Environmental Assessment and Research Lab (PEARL), Department of Biology, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Blais, Jules M., E-mail: jules.blais@uottawa.c [Program for Chemical and Environmental Toxicology, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada)

    2010-11-15

    At Cape Vera, Devon Island (Nunavut, Canada), a colony of northern fulmars (Fulmarus glacialis) concentrates and releases contaminants through their guano to the environment. We determined whether persistent organic pollutants (POPs) from seabirds were transferred to coastal food webs. Snow buntings (Plectrophenax nivalis) were the most contaminated species, with {Sigma}PCB and {Sigma}DDT (mean: 168, 106 ng/g ww) concentrations surpassing environmental guidelines for protecting wildlife. When examined collectively, PCB congeners and DDT in jewel lichen (Xanthoria elegans) were lower in samples taken farther from the seabird colony, and increased with increasing {delta}{sup 15}N values. However, only concentrations of p'p-DDE:{Sigma}DDT and PCB-95 were significantly correlated inversely with distance from the seabird cliffs. Linkages between marine-derived POPs and their concentrations in terrestrial mammals were less clear. Our study provides novel contaminant data for these species and supports biovector transport as a source of organic contaminants to certain components of the terrestrial food web. - This study provides evidence of contaminant transport by seabirds to a coastal Arctic food web.

  20. Modeling the pH-mediated Extraction of Ionizable Organic Contaminants to Improve the Quality of Municipal Sewage Sludge Destined for Land Application

    OpenAIRE

    Venkatesan, Arjun K.; Halden, Rolf U.

    2016-01-01

    A model was developed to assess the impact of adding acids and bases to processed municipal sewage sludge (MSS) to mobilize contaminants, facilitating their removal from sludge by flushing prior to land application. Among 312 organic contaminants documented to occur in U.S. MSS, 71 or 23% were identified as ionizable organic contaminants (IOCs), contributing a disproportionately large fraction of 82% of the total mass of sludge-borne contaminants. Detected IOCs included 57 pharmaceuticals and...

  1. Comparison of Passive Samplers for Monitoring Dissolved Organic Contaminants in Water Column Deployments

    Science.gov (United States)

    Nonionic organic contaminants (NOCs) are difficult to measure in the water column due to their inherent chemical properties resulting in low water solubility and high particle activity. Traditional sampling methods require large quantities of water to be extracted and interferen...

  2. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    International Nuclear Information System (INIS)

    Ullmann, Amos; Brauner, Neima; Vazana, Shlomi; Katz, Zhanna; Goikhman, Roman; Seemann, Boaz; Marom, Hanit; Gozin, Michael

    2013-01-01

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied

  3. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, Amos, E-mail: Ullmann@eng.tau.ac.il [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Brauner, Neima; Vazana, Shlomi; Katz, Zhanna [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Goikhman, Roman [The Hebrew University of Jerusalem, The Robert H. Smith, Faculty of Agriculture, Food and Environment, Rehovot (Israel); Seemann, Boaz; Marom, Hanit [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Gozin, Michael, E-mail: cogozin@gmail.com [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2013-09-15

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied.

  4. Plant uptake and soil retention of phthalic acid applied to Norfolk sandy loam

    International Nuclear Information System (INIS)

    Dorney, J.R.; Weber, J.B.; Overcash, M.R.; Strek, H.J.

    1985-01-01

    Plant uptake and soil retention of 14 C carboxyl-labeled phthalic acid were studied at application rates of 0.6, 6.0, 60.0, and 600.0 ppm (soil dry weight) to Norfolk sandy loam (Typic Paleudult, fine loamy, kaolinitic, thermic). Height and dry weight of corn (Zea mays L. Pioneer 3368A) (21 day), tall fescue (Festuca arundinacea Schreb. Kentucky 31) (45 day) immature soybean (Glycine max (L.) Merr. Altoona) (21 day) plant, mature soybean plant, and mature wheat (Triticum aestivum L. Butte) straw were not affected by phthalic acid applied to soil. In addition, soybean seed and wheat seed dry weight were unaffected. Immature wheat (40 day) height decreased at the 600 ppm rate. Plant uptake of phthalic acid ranged from 0 to 23 ppm and was significantly above background for all plants and plant materials except soybean pods. Fescue and immature plants exhibited the highest concentration of phthalic acid while mature wheat plants and wheat seeds exhibited the least. Most of the phthalic acid volatilized or was decomposed from the soil by the end of the study; an average of only 5.7% of the originally applied chemical was recovered in both soil or plants. An average of 0.02% of the originally applied phthalic acid leached out of the treated zone. Considering the low toxicity of phthalic acid and its relatively rapid disappearance from soil, it is unlikely to become a health hazard from contaminated plants. However, plant uptake of other toxic organics could potentially become a hazard on soils treated with sludge containing significant quantities of these substances

  5. [Fish community structure and its seasonal change in subtidal sandy beach habitat off southern Gouqi Island].

    Science.gov (United States)

    Wang, Zhen-Hua; Wang, Kai; Zhao, Jing; Zhang, Shou-Yu

    2011-05-01

    To understand the characteristics of fish community structure in sandy beach habitats of island reef water areas, and to evaluate the potential capacity of these habitats in local fish stock maintenance, fishes were monthly collected with multi-mesh trammel nets in 2009 from the subtidal sandy beach habitat off southern Gouqi Island, taking the adjacent rocky reef habitat as the control. alpha and beta species diversity indices, index of relative importance (IRI), relative catch rate, and dominance curve for abundance and biomass (ABC curve) were adopted to compare the fish species composition, diversity, and community pattern between the two habitats, and multivariate statistical analyses such as non-metric multidimensional scaling (nMDS) and cluster were conducted to discuss the fish assemblage patterns. A total of 63 fish species belonging to 11 orders, 38 families, and 56 genera were collected, of which, 46 fish species were appeared in the two habitats. Due to the appearance of more warm water species in sandy bottom, the fishes in subtidal sandy beach habitat showed much higher richness, and the abundance catch rate (ACR) from May to July was higher than that in rocky reef habitat. In most rest months, the ACR in subtidal sandy beach habitat also showed the similar trend. However, the species richness and diversity in spring and summer were significantly lower in subtidal sandy beach habitat than in rocky reef habitat, because of the high species dominance and low evenness in the sandy beach habitat. Japanese tonguefish (Paraplagusia japonica) was the indicator species in the sandy beach habitat, and dominated in early spring, later summer, autumn, and winter when the fishing pressure was not strong. In sandy bottom, a unique community structure was formed and kept in dynamic, due to the nursery use of sandy beach by Japanese anchovy (Engraulis japonicus) from May to July, the gathering of gray mullet (Mugil cephalus) in most months for feeding, and the large

  6. Micropore clogging by leachable pyrogenic organic carbon: A new perspective on sorption irreversibility and kinetics of hydrophobic organic contaminants to black carbon.

    Science.gov (United States)

    Wang, Bingyu; Zhang, Wei; Li, Hui; Fu, Heyun; Qu, Xiaolei; Zhu, Dongqiang

    2017-01-01

    Black carbon (BC) plays a crucial role in sequestering hydrophobic organic contaminants in the environment. This study investigated key factors and mechanisms controlling nonideal sorption (e.g., sorption irreversibility and slow kinetics) of model hydrophobic organic contaminants (nitrobenzene, naphthalene, and atrazine) by rice-straw-derived BC. After removing the fraction of leachable pyrogenic organic carbon (LPyOC) (referring to composites of dissoluble non-condensed organic carbon and associated mineral components) with deionized water or 0.5 M NaOH, sorption of these sorbates to BC was enhanced. The sorption enhancement was positively correlated with sorbate molecular size in the order of atrazine > naphthalene > nitrobenzene. The removal of LPyOC also accelerated sorption kinetics and reduced sorption irreversibility. These observations were attributed to increased accessibility of BC micropores initially clogged by the LPyOC. Comparison of BC pore size distributions before and after atrazine sorption further suggested that the sorbate molecules preferred to access the micropores that were more open, and the micropore accessibility was enhanced by the removal of LPyOC. Consistently, the sorption of nitrobenzene and atrazine to template-synthesized mesoporous carbon (CMK3), a model sorbent with homogeneous pore structures, showed decreased kinetics, but increased irreversibility by impregnating sorbent pores with surface-grafted alkylamino groups and by subsequent loading of humic acid. These findings indicated an important and previously unrecognized role of LPyOC (i.e., micropore clogging) in the nonideal sorption of organic contaminants to BC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Expanded target-chemical analysis reveals extensive mixed-organic-contaminant exposure in USA streams

    Science.gov (United States)

    Bradley, Paul M.; Journey, Celeste A.; Romanok, Kristin; Barber, Larry B.; Buxton, Herbert T.; Foreman, William T.; Furlong, Edward T.; Glassmeyer, Susan T.; Hladik, Michelle L.; Iwanowicz, Luke R.; Jones, Daniel K.; Kolpin, Dana W.; Kuivila, Kathryn M.; Loftin, Keith A.; Mills, Marc A.; Meyer, Michael T.; Orlando, James L.; Reilly, Timothy J.; Smalling, Kelly L.; Villeneuve, Daniel L.

    2017-01-01

    Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66–84% of all sites. Detected contaminant concentrations varied from less than 1 ng L–1 to greater than 10 μg L–1, with 77 and 278 having median detected concentrations greater than 100 ng L–1 and 10 ng L–1, respectively. Cumulative detections and concentrations ranged 4–161 compounds (median 70) and 8.5–102 847 ng L–1, respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71–82% of the variability in the total number of compounds detected (linear regression; p-values: environment application (pesticides), designed-bioactive organics (median 41 per site at μg L–1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L–1.

  8. Secondary environmental impacts of remedial alternatives for sediment contaminated with hydrophobic organic contaminants.

    Science.gov (United States)

    Choi, Yongju; Thompson, Jay M; Lin, Diana; Cho, Yeo-Myoung; Ismail, Niveen S; Hsieh, Ching-Hong; Luthy, Richard G

    2016-03-05

    This study evaluates secondary environmental impacts of various remedial alternatives for sediment contaminated with hydrophobic organic contaminants using life cycle assessment (LCA). Three alternatives including two conventional methods, dredge-and-fill and capping, and an innovative sediment treatment technique, in-situ activated carbon (AC) amendment, are compared for secondary environmental impacts by a case study for a site at Hunters Point Shipyard, San Francisco, CA. The LCA results show that capping generates substantially smaller impacts than dredge-and-fill and in-situ amendment using coal-based virgin AC. The secondary impacts from in-situ AC amendment can be reduced effectively by using recycled or wood-based virgin AC as production of these materials causes much smaller impacts than coal-based virgin AC. The secondary environmental impacts are highly sensitive to the dredged amount and the distance to a disposal site for dredging, the capping thickness and the distance to the cap materials for capping, and the AC dose for in-situ AC amendment. Based on the analysis, this study identifies strategies to minimize secondary impacts caused by different remediation activities: optimize the dredged amount, the capping thickness, or the AC dose by extensive site assessments, obtain source materials from local sites, and use recycled or bio-based AC. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. An analysis of the synoptic and dynamical characteristics of hurricane Sandy (2012)

    Science.gov (United States)

    Varlas, George; Papadopoulos, Anastasios; Katsafados, Petros

    2018-01-01

    Hurricane Sandy affected the Caribbean Islands and the Northeastern United States in October 2012 and caused 233 fatalities, severe rainfalls, floods, electricity blackouts, and 75 billion U.S. dollars in damages. In this study, the synoptic and dynamical characteristics that led to the formation of the hurricane are investigated. The system was driven by the interaction between the polar jet displacement and the subtropical jet stream. In particular, Sandy was initially formed as a tropical depression system over the Caribbean Sea and the unusually warm sea drove its intensification. The interaction between a rapidly approaching trough from the northwest and the stagnant ridge over the Atlantic Ocean drove Sandy to the northeast coast of United States. To better understand the dynamical characteristics and the mechanisms that triggered Sandy, a non-hydrostatic mesoscale model has been used. Model results indicate that the surface heat fluxes and the moisture advection enhanced the convective available potential energy, increased the low-level convective instability, and finally deepened the hurricane. Moreover, the upper air conditions triggered the low-level frontogenesis and increased the asymmetry of the system which finally affected its trajectory.

  10. Task 15 - Remediation of Organically Contaminated Soil Using Hot/Liquid (Subcritical) Water. Semiannual report, November 1, 1996-- March 31,1997

    International Nuclear Information System (INIS)

    Hawthorne, Steven B.

    1997-01-01

    This activity will perform a pilot-scale demonstration of the use of hot/liquid water for the removal of organic contaminants from soil at the pilot (20 to 40 kg) scale. Lab-scale studies will be performed to determine the optimum temperature, contact time, and flow rates for removal of the organic contaminants. Initial investigations into using carbon sorbents to clean the extractant water for recycle use and to concentrate the extracted contaminants in a small volume for disposal will also be performed

  11. Spectral induced polarization (SIP) measurement of NAPL contaminated soils

    Science.gov (United States)

    Schwartz, N.; Huisman, J. A.; Furman, A.

    2010-12-01

    The potential applicability of spectral induce polarization (SIP) as a tool to map NAPLs (non aqueous phase liquids) contaminants at the subsurface lead researchers to investigate the electric signature of those contaminant on the spectral response. However, and despite the cumulative efforts, the effect of NAPL on the electrical properties of soil, and the mechanisms that control this effect are largely unknown. In this work a novel experiment is designed to further examine the effect of NAPL on the electrical properties of partially saturated soil. The measurement system that used is the ZEL-SIP04 impedance meter developed at the Forschungszentrum Julich, Germany. The system accurately (nominal phase precision of 0.1 mrad below 1 kHz) measures the phase and the amplitude of a material possessing a very low polarization (such as soil). The sample holder has a dimension of 60 cm long and 4.6 cm in diameter. Current and potential electrodes were made of brass, and while the current electrodes were inserted in full into the soil, the contact between the potential electrode and the soil was made through an Agarose bridge. Two types of soils were used: clean quartz sand, and a mixture of sand with clean Bentonite. Each soil (sandy or clayey) was mixed with water to get saturation degree of 30%. Following the mixture with water, NAPL was added and the composite were mixed again. Packing was done by adding and compressing small portions of the soil to the column. A triplicate of each mixture was made with a good reproducible bulk density. Both for the sandy and clayey soils, the results indicate that additions of NAPL decrease the real part of the complex resistivity. Additionally, for the sandy soil this process is time depended, and that a further decrease in resistivity develops over time. The results are analyzed considering geometrical factors: while the NAPL is electrically insulator, addition of NAPL to the soil is expected to increase the connectivity of the

  12. Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments

    Science.gov (United States)

    Snoeyenbos-West, O.L.; Nevin, K.P.; Anderson, R.T.; Lovely, D.R.

    2000-01-01

    Engineered stimulation of Fe(III) has been proposed as a strategy to enhance the immobilization of radioactive and toxic metals in metal-contaminated subsurface environments. Therefore, laboratory and field studies were conducted to determine which microbial populations would respond to stimulation of Fe(III) reduction in the sediments of sandy aquifers. In laboratory studies, the addition of either various organic electron donors or electron shuttle compounds stimulated Fe(III) reduction and resulted in Geobacter sequences becoming important constituents of the Bacterial 16S rDNA sequences that could be detected with PCR amplification and denaturing gradient gel electrophoresis (DGGE). Quantification of Geobacteraceae sequences with a PCR most-probable-number technique indicated that the extent to which numbers of Geobacter increased was related to the degree of stimulation of Fe(III) reduction. Geothrix species were also enriched in some instances, but were orders of magnitude less numerous than Geobacter species. Shewanella species were not detected, even when organic compounds known to be electron donors for Shewanella species were used to stimulate Fe(III) reduction in the sediments. Geobacter species were also enriched in two field experiments in which Fe(III) reduction was stimulated with the addition of benzoate or aromatic hydrocarbons. The apparent growth of Geobacter species concurrent with increased Fe(III) reduction suggests that Geobacter species were responsible for much of the Fe(III) reduction in all of the stimulation approaches evaluated in three geographically distinct aquifers. Therefore, strategies for subsurface remediation that involve enhancing the activity of indigenous Fe(III)-reducing populations in aquifers should consider the physiological properties of Geobacter species in their treatment design.

  13. Telehealth at the US Department of Veterans Affairs after Hurricane Sandy.

    Science.gov (United States)

    Der-Martirosian, Claudia; Griffin, Anne R; Chu, Karen; Dobalian, Aram

    2018-01-01

    Background Like other integrated health systems, the US Department of Veterans Affairs has widely implemented telehealth during the past decade to improve access to care for its patient population. During major crises, the US Department of Veterans Affairs has the potential to transition healthcare delivery from traditional care to telecare. This paper identifies the types of Veterans Affairs telehealth services used during Hurricane Sandy (2012), and examines the patient characteristics of those users. Methods This study conducted both quantitative and qualitative analyses. Veterans Affairs administrative and clinical data files were used to illustrate the use of telehealth services 12 months pre- and 12 months post- Hurricane Sandy. In-person interviews with 31 key informants at the Manhattan Veterans Affairs Medical Center three-months post- Hurricane Sandy were used to identify major themes related to telecare. Results During the seven-month period of hospital closure at the Manhattan Veterans Affairs Medical Center after Hurricane Sandy, in-person patient visits decreased dramatically while telehealth visits increased substantially, suggesting that telecare was used in lieu of in-person care for some vulnerable patients. The most commonly used types of Veterans Affairs telehealth services included primary care, triage, mental health, home health, and ancillary services. Using qualitative analyses, three themes emerged from the interviews regarding the use of Veterans Affairs telecare post- Hurricane Sandy: patient safety, provision of telecare, and patient outreach. Conclusion Telehealth offers the potential to improve post-disaster access to and coordination of care. More information is needed to better understand how telehealth can change the processes and outcomes during disasters. Future studies should also evaluate key elements, such as adequate resources, regulatory and technology issues, workflow integration, provider resistance, diagnostic fidelity and

  14. Lessons from Hurricane Sandy for port resilience.

    Science.gov (United States)

    2013-12-01

    New York Harbor was directly in the path of the most damaging part of Hurricane Sandy causing significant impact on many of the : facilities of the Port of New York and New Jersey. The U.S. Coast Guard closed the entire Port to all traffic before the...

  15. Biochar reduces copper toxicity in Chenopodium quinoa Willd. In a sandy soil.

    Science.gov (United States)

    Buss, Wolfram; Kammann, Claudia; Koyro, Hans-Werner

    2012-01-01

    Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 μg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 μg g and died at 200 μg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 μg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Screening of inorganic and organic contaminants in floodwater in paddy fields of Hue and Thanh Hoa in Vietnam

    DEFF Research Database (Denmark)

    Trinh Thu, Ha; Marcussen, Helle; Hansen, Hans Chr. Bruun

    2017-01-01

    In the rainy season, rice growing areas in Vietnam often become flooded by up to 1.5 m water. The floodwater brings contaminants from cultivated areas, farms and villages to the rice fields resulting in widespread contamination. In 2012 and 2013, the inorganic and organic contaminants in floodwater...... was investigated in Thanh Hoa and Hue. Water samples were taken at 16 locations in canals, paddy fields and rivers before and during the flood. In total, 940 organic micro-pollutants in the water samples were determined simultaneously by GC-MS method with automatic identification and quantification system (AIQS...... detection frequency of 90%, followed by isoprothiolane (88%) and fenobucarb (71%). The results indicated that contaminants in floodwater come from untreated wastewater from villages, and the agricultural activities are the major sources of increased pesticides resuspended in the floodwater in this study....

  17. Bioremediation of soil and ground water impacted with organic contaminants

    International Nuclear Information System (INIS)

    Woods, W.B.

    1991-01-01

    Two case studies demonstrate the controlled use of micro-organisms to degrade organic contaminants under aerobic and anaerobic conditions. The aerobic study illustrates the degradation of hydrocarbons in a soil matrix. Data are presented that show a two-phase degradation of total petroleum hydrocarbons (TPH) from about 1,300 ppm TPH to cleanup levels of 100 ppm or less in two months. Total aerobic microorganism and substate-specific degrader counts were tracked throughout the study. Typical total aerobic counts of 10 6 colony forming units (CFU)/g and hydrocarbon degrader counts of 10 4 CFU/g were observed. Hydrocarbon degraders were enumerated on minimal salts media incubated in the presence of hydrocarbon vapors. The anaerobic study documents the successful use of a supplemental carbon source and fertilizers to stimulate indigenous microbe to degrade ketones. A nutrient mix of s polysaccharide, a nitrate electron acceptor and an inorganic orthophosphate was used to augment 100,000 yd 3 of soil contaminated with ketones at about 1,000 ppm. The key elements of a biotreatment project are discussed (i.e., site characterization, treatability studies, biotreatment design, site construction, system maintenance, final disposal and site closure). Lastly, the benefits of bioremediation vs. other remediation alternatives such as landfill disposal, incineration, and stabilization/fixation are discussed in terms of cost and liability

  18. Environmental contamination and transmission of Ascaris suum in Danish organic pig farms

    DEFF Research Database (Denmark)

    Katakam, Kiran K.; Thamsborg, Stig M.; Dalsgaard, Anders

    2016-01-01

    Background: Although Ascaris suum is the most common pig nematode, the on-farm transmission dynamics are not well described. Methods: We performed a 1-year field study on five organic pig farms, mapping egg contamination levels in pens and pasture soil as well as faecal egg counts in starter pigs...... % in starters, finishers, dry and lactating sows, respectively. For starters and finishers, the prevalence varied with season increasing towards the end of the year when 83-96 % of finishing pigs from each farm had fresh liver white spots. Farrowing pastures were contaminated with a mean of 78-171 larvated eggs....../kg dry soil depending on farm, while pastures for starter pigs contained 290-5397 larvated eggs/kg dry soil. The concentration of eggs in soil was highest in the autumn. Indoors, all pen areas were contaminated with A. suum eggs at comparable levels for shallow and deep litter. Overall there were 106...

  19. Evaluation of the use of Olivella minuta (Gastropoda, Olividae) and Hastula cinerea (Gastropoda, Terebridae) as TBT sentinels for sandy coastal habitats.

    Science.gov (United States)

    Petracco, Marcelo; Camargo, Rita Monteiro; Berenguel, Thayana Amorim; de Arruda, Noelle C L Patrício; del Matto, Lygia A; Amado, Lílian Lund; Corbisier, Thais Navajas; Castro, Ítalo Braga; Turra, Alexander

    2015-07-01

    Tributyltin (TBT) contamination is still recorded in the environment even after its ban in antifouling paints. Since most biomonitors of TBT contamination, through imposex evaluation, are hard-bottom gastropods, the identification of soft-bottom sentinels has become useful for regions where rocky shores and coral reefs are absent. Thus, an evaluation of Olivella minuta and Hastula cinerea as monitors of TBT contamination was performed in two sandy beaches located under influence area of São Sebastião harbor (São Paulo state, Brazil), where previous and simultaneous studies have reported environmental contamination by TBT. In addition, the imposex occurrence in H. cinerea was assessed in an area with low marine traffic (Una beach), also located in São Paulo State. A moderate imposex incidence in O. minuta was detected in Pernambuco (% I = 9.36, RPLI = 4.49 and RPLIstand = 4.27) and Barequeçaba (% I = 2.42, RPLI = 0.36 and RPLIstand = 0.81) beaches, indicating TBT contamination. In contrast, more severe levels of imposex were recorded for H. cinerea in Una beach (% I = 12.45) and mainly in Barequeçaba beach (% I = 98.92, RPLI = 26.65). Our results suggest that O. minuta and H. cinerea have good potential as biomonitors for TBT based on their wide geographical distribution, common occurrence in different coastal sediment habitats, easy collection, and association with TBT-contaminated sediments.

  20. Sandy lower Gotherivian reservoirs in the south central Turkmeniya. [Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Mavyyev, N.Ch.; Nedirov, B.R.

    1982-01-01

    Composition and capacitance-filtering properties of sandy rocks of the early Gotherivian age developed on the fields of Karadzhaulak and Cirili within the northeast slope of the Predkopetdag marginal trough and on areas of Dengli Bakharadok of the Bakharadok monocline are studied. These rocks are viewed as analogs of the gas-bearing Shatlyk level of the Murgabskiy Basin. They can be considered the main potential source of hydrocarbons on the studied territory. In the upper part of the lower Gotherivian, a level of sandy rocks is traced. Rocks represented by small-and average-grained red and light grey differences in sandstones of polymictic composition. The porosity of the sandstones is 20-22%, permeability is 200-500 mdarcy. Not only a similar stratigraphic position of the described sandstones in the lower Gotherivian was found, but also lithological common nature of the rocks. In the south central Turkmeniya one can isolate age analogs of the Shatlyk level, the main productive level of southeast Turkmeniya. The thickness of the sandy beds is from 17 to 45 m. The sandstones of the Karadzhaulak area have the best capacitance-filtering properties. Post sedimentation changes depend on the quantity and composition of the cement, influence of formation waters, and possibly thermobaric conditions of rock formation. The presence of sandy rocks with high collector properties in the cross section of the lower Gotherivian deposits in south central Turkmeniya should be considered in determining the objects for further prospecting and exploration. The areas of Kumbet and Karadzhaulak are primary.

  1. Quantifying the Digital Traces of Hurricane Sandy on Flickr

    Science.gov (United States)

    Preis, Tobias; Moat, Helen Susannah; Bishop, Steven R.; Treleaven, Philip; Stanley, H. Eugene

    2013-11-01

    Society's increasing interactions with technology are creating extensive ``digital traces'' of our collective human behavior. These new data sources are fuelling the rapid development of the new field of computational social science. To investigate user attention to the Hurricane Sandy disaster in 2012, we analyze data from Flickr, a popular website for sharing personal photographs. In this case study, we find that the number of photos taken and subsequently uploaded to Flickr with titles, descriptions or tags related to Hurricane Sandy bears a striking correlation to the atmospheric pressure in the US state New Jersey during this period. Appropriate leverage of such information could be useful to policy makers and others charged with emergency crisis management.

  2. Quantification of fossil organic matter in contaminated sediments from an industrial watershed: Validation of the quantitative multimolecular approach by radiocarbon analysis

    International Nuclear Information System (INIS)

    Jeanneau, Laurent; Faure, Pierre

    2010-01-01

    The quantitative multimolecular approach (QMA) based on an exhaustive identification and quantification of molecules from the extractable organic matter (EOM) has been recently developed in order to investigate organic contamination in sediments by a more complete method than the restrictive quantification of target contaminants. Such an approach allows (i) the comparison between natural and anthropogenic inputs, (ii) between modern and fossil organic matter and (iii) the differentiation between several anthropogenic sources. However QMA is based on the quantification of molecules recovered by organic solvent and then analyzed by gas chromatography-mass spectrometry, which represent a small fraction of sedimentary organic matter (SOM). In order to extend the conclusions of QMA to SOM, radiocarbon analyses have been performed on organic extracts and decarbonated sediments. This analysis allows (i) the differentiation between modern biomass (contemporary 14 C) and fossil organic matter ( 14 C-free) and (ii) the calculation of the modern carbon percentage (PMC). At the confluence between Fensch and Moselle Rivers, a catchment highly contaminated by both industrial activities and urbanization, PMC values in decarbonated sediments are well correlated with the percentage of natural molecular markers determined by QMA. It highlights that, for this type of contamination by fossil organic matter inputs, the conclusions of QMA can be scaled up to SOM. QMA is an efficient environmental diagnostic tool that leads to a more realistic quantification of fossil organic matter in sediments.

  3. Comparison of germination and seed vigor of sunflower in two contaminated soils of different texture

    Science.gov (United States)

    Zhao, Xin; Han, Jaemaro; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Phytoremediation as an emerging low-cost and ecologically friendly alternative to the conventional soil remediation technologies has gained a great deal of attention and into lots of research. As a kind of the methods that use of green plants to remediate heavy metals contaminated soils, the early growth status of plant seeds in the contaminated environmental directly affects the effect of phytoremediation. Germination test in the water (aqueous solution of heavy metal) is generally used for assessing heavy metal phytotoxicity and possibility of plant growth, but there is a limit. Because soil is commonly main target of phytoremediation, not the water. The bioavailability of heavy metals in the soil also depends on the texture. So soil texture is an important factor of phytoremediation effect. Sunflower is the representative species which have good tolerance to various heavy metals; furthermore, the seeds of sunflower can be used as the raw-material for producing bio-diesel. The objectives of this research were to investigate germination rate of sunflowers in various heavy metal contaminated soils and to compare the seedling vigor index (SVI) of sunflower in two contaminated soils of different texture. Sunflower (Helianthusannuus L.) seeds were obtained from a commercial market. In order to prove the soil texture effect on heavy metal contaminated soil, germination tests in soil were conducted with two different types of soil texture (i.e., loam soil and sandy loam soil) classified by soil textural triangle (defined by USDA) including representative soil texture of Korea. Germination tests in soil were conducted using KS I ISO 11260-1 (2005) for reference that sunflower seeds were incubated for 7 days in dark at 25 ± 1 Celsius degree. The target heavy metals are Nickel (Ni) and Zinc (Zn). The Ni and Zn concentrations were 0, 10, 50, 100, 200, 300, 500 mg-Ni/kg-dry soil, and 0, 10, 50, 100, 300, 500, 900 mg-Zn/kg-dry soil, respectively. After germination test for 7

  4. Spatial patterns and natural recruitment of native shrubs in a semi-arid sandy land.

    Science.gov (United States)

    Wu, Bo; Yang, Hongxiao

    2013-01-01

    Passive restoration depending on native shrubs is an attractive approach for restoring desertified landscapes in semi-arid sandy regions. We sought to understand the relationships between spatial patterns of native shrubs and their survival ability in sandy environments. Furthermore, we applied our results to better understand whether passive restoration is feasible for desertified landscapes in semi-arid sandy regions. The study was conducted in the semi-arid Mu Us sandy land of northern China with the native shrub Artemisia ordosica. We analyzed population structures and patterns of A. ordosica at the edges and centers of land patches where sand was stabilized by A. ordosica-dominated vegetation. Saplings were more aggregated than adults, and both were more aggregated at the patch edges than at the patch centers. At the patch edges, spatial association of the saplings with the adults was mostly positive at distances 0.3-6.6 m, and turned from positive to neutral, and even negative, at other distances. At the patch centers, the saplings were spaced almost randomly around the adults, and their distances from the adults did not seem to affect their locations. A greater number of A. ordosica individuals emerged at the patch edges than at the patch centers. Such patterns may have resulted from their integrative adjustment to specific conditions of soil water supply and sand drift intensity. These findings suggest that in semi-arid sandy regions, native shrubs that are well-adapted to local environments may serve as low-cost and competent ecological engineers that can promote the passive restoration of surrounding patches of mobile sandy land.

  5. THE PROBLEMATIC OF SANDY LANDS IN PARANAVAI MUNICIPALITY –PR

    Directory of Open Access Journals (Sweden)

    Marcelo Eduardo Freres Stipp

    2005-05-01

    Full Text Available The sandy lands are a process of scouring with sand forming a sandy area, which correspondsto a reworking of the sands due its constant mobility, involving the transformation of notsolids deposits is sandy areas. This work tried to establish the characterization of thisphenomenon of scouring with sand in a local level, occurring in arenaceous areas in theNortheast of the state of Paraná, specifically in the urban site of Paranavaí. It was also madean evaluation of the environmental degradation as well as different causes for what provokedthese sandy areas. Being an area with a high level of soil decomposition with the highwaysroutes crossing it, it was necessary, besides bibliographic data that allowed a theoretical basis,a research applied in order to supply subsides for future planning related to the spaceorganization. The evolution of the use and soil occupation in this area has been processedwithin an urban planning which considered by no account neither soil characteristic, thevegetation nor the predominant climate in that region. The mechanisms of region atmospherecirculation were analyzed, the alterations or attributes of the climate as well, aiming toidentify the genesis of the erosion sandy and possible time and space distribution. Initially, themain characteristics of the region were collected, components e processes working on the landmodel. It was observed how it worked and the use and occupation of the soil in past times andcurrently. During 2004, using the Environmental Fragility Letter, the areas of erosion wereidentified, ravines and strong erosion that compounds the first stages of the focused problem.The sandy land is a process that involves erosion, transport, e accumulation, meaning most oftimes the loosing of Biosphere productivity. For monitoring these risk areas some measuringcanes were made to measure the soil loss, which were used in several spots of erosion in theurban area in Paranavaí. The measurement happened in

  6. Migration of cesium-137 through sandy soil layer effect of fine silt on migration

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Wadachi, Yoshiki

    1983-01-01

    The migration of 137 Cs through sandy soil layer was studied with consideration of the migration of fine silt by column method. It was found that a portion of fine silt migrated through the soil layer accompanying with 137 Cs. The mathematical migration model of 137 Cs involved the migration of fine silt through such soil layer was presented. This model gave a good accordance between calculated concentration distribution curve in sandy soil layer and effluent curve and observed those. So, this model seems to be advanced one for evaluating migration of 137 Cs in sandy soil layer with silt. (author)

  7. Methane accumulation and forming high saturations of methane hydrate in sandy sediments

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T.; Waseda, A. [JAPEX Research Center, Chiba (Japan); Fujii, T. [Japan Oil, Gas and Metals National Corp., Chiba (Japan). Upstream Technology Unit

    2008-07-01

    Methane supplies for marine gas hydrates are commonly attributed to the microbial conversion of organic materials. This study hypothesized that methane supplies were related to pore water flow behaviours and microscopic migration in intergranular pore systems. Sedimentology and geochemistry analyses were performed on sandy core samples taken from the Nankai trough and the Mallik gas hydrate test site in the Mackenzie Delta. The aim of the study was to determine the influence of geologic and sedimentolic controls on the formation and preservation of natural gas hydrates. Grain size distribution curves indicated that gas hydrate saturations of up to 80 per cent in pore volume occurred throughout the hydrate-dominant sand layers in the Nankai trough and Mallik areas. Water permeability measurements showed that the highly gas hydrate-saturated sands have a permeability of a few millidarcies. Pore-space gas hydrates occurred primarily in fine and medium-grained sands. Core temperature depression, core observations, and laboratory analyses of the hydrates confirmed the pore-spaces as intergranular pore fillings. Results of the study suggested that concentrations of gas hydrates may require a pore space large enough to occur within a host sediments, and that the distribution of porous and coarser-grained sandy sediments is an important factor in controlling the occurrence of gas hydrates. 11 refs., 4 figs.

  8. Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils

    International Nuclear Information System (INIS)

    Dumat, C.; Quenea, K.; Bermond, A.; Toinen, S.; Benedetti, M.F.

    2006-01-01

    The role of metals in the behaviour of soil organic matter (SOM) is not well documented. Therefore, we investigated the influence of metals (Pb, Zn, Cu and Cd) on the dynamic of SOM in contaminated soils where maize (C 4 plant) replaced C 3 cultures. Three pseudogley brown leached soil profiles under maize with a decreasing gradient in metals concentrations were sampled. On size fractions, stable carbon isotopic ratio (δ 13 C), metals, organic carbon and nitrogen concentrations were measured in function of depth. The determined sequence for the amount of C 4 organic matter in the bulk fractions: M 3 (0.9) > M 2 (0.4) > M 1 (0.3) is in agreement with a significant influence of metals on the SOM turnover. New C 4 SOM, mainly present in the labile coarser fractions and less contaminated by metals than the stabilised C 3 SOM of the clay fraction, is more easily degraded by microorganisms. - Measure of δ 13 C and total metal concentrations in size fractions of contaminated soils suggests an influence of metals on the soil organic matter dynamic

  9. Biodegradation of organ chlorine pesticides in contaminated soil collected from Yen Tap, Cam Khe, Phu Tho

    International Nuclear Information System (INIS)

    Nguyen Thuy Binh; Nguyen Van Toan; Pham Thi Thai; Dinh Thi Thu Hang

    2007-01-01

    Biodegradation of POPs contaminant in soil collected from Phu Tho province and Nghe An province had carried out. The process comprises treating soil, which contains anaerobic and aerobic microbes capable of transforming lindane and DDT into harmless material and being under anaerobic and aerobic steps. Significant biodegradation of POPs contaminants occurred in there tests. But some of toxic organic compounds remained. (author)

  10. Analysis of storm-tide impacts from Hurricane Sandy in New York

    Science.gov (United States)

    Schubert, Christopher E.; Busciolano, Ronald J.; Hearn, Paul P.; Rahav, Ami N.; Behrens, Riley; Finkelstein, Jason S.; Monti, Jack; Simonson, Amy E.

    2015-07-21

    The hybrid cyclone-nor’easter known as Hurricane Sandy affected the mid-Atlantic and northeastern United States during October 28-30, 2012, causing extensive coastal flooding. Prior to storm landfall, the U.S. Geological Survey (USGS) deployed a temporary monitoring network from Virginia to Maine to record the storm tide and coastal flooding generated by Hurricane Sandy. This sensor network augmented USGS and National Oceanic and Atmospheric Administration (NOAA) networks of permanent monitoring sites that also documented storm surge. Continuous data from these networks were supplemented by an extensive post-storm high-water-mark (HWM) flagging and surveying campaign. The sensor deployment and HWM campaign were conducted under a directed mission assignment by the Federal Emergency Management Agency (FEMA). The need for hydrologic interpretation of monitoring data to assist in flood-damage analysis and future flood mitigation prompted the current analysis of Hurricane Sandy by the USGS under this FEMA mission assignment.

  11. Recycling of Organic Wastes to Achieve the Clean Agriculture Approach with Aid of Nuclear Techniques

    International Nuclear Information System (INIS)

    Moursy, A.A.A.

    2012-01-01

    The Objective of this current work is to study Organic matter decomposition under clean agriculture system in sandy soil using nuclear technique. This desirtatation has the following targets: - Amendment and improving sandy soil properties - Utilization of farm wastes (Recycling) in safe mode -Benefits form organic matter decomposition. - Follow up the fate of same nutrients (Nitrogen) released in soil media after organic matter (O.M) decomposition and Impact on plant nutrition status.-saving the environment on short and long run.

  12. Remediation of Biological Organic Fertilizer and Biochar in Paddy Soil Contaminated by Cd and Pb

    Directory of Open Access Journals (Sweden)

    MA Tie-zheng

    2015-02-01

    Full Text Available The effect of application of biological organic fertilizer and biochar on the immobilized remediation of paddy soil contaminated by Cd and Pb was studied under the field experiment. The results showed that biological organic fertilizer and biochar increased the soil pH and soil nutrient contents, and reduced the soil available Cd and Pb concentrations significantly. The soil pH had significantly negative correla-tion with the soil available Cd and Pb contents. The application of biological organic fertilizer and biochar decreased Cd and Pb concentration in all parts of the rice plant, with Cd concentration in brown rice decrease by 22.00% and 18.34% and Pb decease in brown rice by 33.46% and 12.31%. The concentration of Cd and Pb in brown rice had significant positive correlation with the soil available Cd and Pb concentra-tions. It was observed that both biological organic fertilizer and biochar had a positive effect on the remediation of paddy soil contaminated by Cd and Pb.

  13. The ecology of sandy beaches in Transkei

    African Journals Online (AJOL)

    Data from an ecological survey of three sandy beaches in. Transkei and from Gulu beach on the eastern Cape coast,. South Africa, are presented. Physical parameters such as beach profile, sand particle size, Eh and carbonate content, as well as abundance, composition, biomass and distribution of the macrofauna and ...

  14. Certified reference materials for organic contaminants for use in monitoring of the aquatic environment

    NARCIS (Netherlands)

    Boer, de J.; McGovern, E.

    2001-01-01

    Over the last three decades organic contaminants have been of increasing importance in environmental monitoring. Dioxins, furans, polychlorinated biphenyls and organochlorine pesticides have determined the environmental research agenda. This has led to an increasing demand for certified reference

  15. Real-time detection of organic contamination events in water distribution systems by principal components analysis of ultraviolet spectral data.

    Science.gov (United States)

    Zhang, Jian; Hou, Dibo; Wang, Ke; Huang, Pingjie; Zhang, Guangxin; Loáiciga, Hugo

    2017-05-01

    The detection of organic contaminants in water distribution systems is essential to protect public health from potential harmful compounds resulting from accidental spills or intentional releases. Existing methods for detecting organic contaminants are based on quantitative analyses such as chemical testing and gas/liquid chromatography, which are time- and reagent-consuming and involve costly maintenance. This study proposes a novel procedure based on discrete wavelet transform and principal component analysis for detecting organic contamination events from ultraviolet spectral data. Firstly, the spectrum of each observation is transformed using discrete wavelet with a coiflet mother wavelet to capture the abrupt change along the wavelength. Principal component analysis is then employed to approximate the spectra based on capture and fusion features. The significant value of Hotelling's T 2 statistics is calculated and used to detect outliers. An alarm of contamination event is triggered by sequential Bayesian analysis when the outliers appear continuously in several observations. The effectiveness of the proposed procedure is tested on-line using a pilot-scale setup and experimental data.

  16. Water management in sandy soil using neutron scattering method

    International Nuclear Information System (INIS)

    Mohamed, K.M.

    2011-01-01

    This study was carried out during 2008/2009 at the Experimental Field of Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas in a newly reclaimed sandy soil. The aims of this work are,- determine soil moisture tension within the active root zone and - detecting the behavior of soil moisture within the active root zoon by defines the total hydraulic potential within the soil profile to predict both of actual evapotranspiration and rate of moisture depletion This work also is aimed to study soil water distribution under drip irrigation system.- reducing water deep percolation under the active root depth.This study included two factors, the first one is the irrigation intervals, and the second one is the application rate of organic manure. Irrigation intervals were 5, 10 and 15 days, besides three application rates of organic manure (0 m 3 /fed, 20 m 3 /fed. and 30 m 3 /fed.) in -three replicates under drip irrigation system, Onion was used as an indicator plant. Obtained data show, generally, that neutron scattering technique and soil moisture retention curve model helps more to study the water behavior in the soil profile.Application of organic manure and irrigation to field capacity is a good way to minimize evapotranspiration and deep percolation, which was zero mm/day in the treated treatments.The best irrigation interval for onion plant, in the studied soil, was 5 days with 30m 3 /fad. an application rate of organic manure.Parameter α of van Genuchent's 1980 model was affected by the additions of organic manure, which was decreased by addition of organic manure decreased it. Data also showed that n parameter was decreased by addition of organic manure Using surfer program is a good tool to describe the water distribution in two directions (vertical and horizontal) through soil profile.

  17. Soil color indicates carbon and wetlands: developing a color-proxy for soil organic carbon and wetland boundaries on sandy coastal plains in South Africa.

    Science.gov (United States)

    Pretorius, M L; Van Huyssteen, C W; Brown, L R

    2017-10-13

    A relationship between soil organic carbon and soil color is acknowledged-albeit not a direct one. Since heightened carbon contents can be an indicator of wetlands, a quantifiable relationship between color and carbon might assist in determining wetland boundaries by rapid, field-based appraisal. The overarching aim of this initial study was to determine the potential of top soil color to indicate soil organic carbon, and by extension wetland boundaries, on a sandy coastal plain in South Africa. Data were collected from four wetland types in northern KwaZulu-Natal in South Africa. Soil samples were taken to a depth of 300 mm in three transects in each wetland type and analyzed for soil organic carbon. The matrix color was described using a Munsell soil color chart. Various color indices were correlated with soil organic carbon. The relationship between color and carbon were further elucidated using segmented quantile regression. This showed that potentially maximal carbon contents will occur at values of low color indices, and predictably minimal carbon contents will occur at values of low or high color indices. Threshold values can thus be used to make deductions such as "when the sum of dry and wet Value and Chroma values is 9 or more, carbon content will be 4.79% and less." These threshold values can then be used to differentiate between wetland and non-wetland sites with a 70 to 100% certainty. This study successfully developed a quantifiable correlation between color and carbon and showed that wetland boundaries can be determined based thereon.

  18. Structural stability and hydraulic conductivity of Nkpologu sandy ...

    African Journals Online (AJOL)

    vincent

    mean weight diameter (MWD), water dispersible silt (WDSi), aggregate size distributions (> 2 mm, 1-0.5 mm and < 0.25 ... above sea level. ... and red to brownish red and derived from sandy ... where Q = steady state volume of outflow from the.

  19. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence

    International Nuclear Information System (INIS)

    Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S.

    2012-01-01

    Emerging organic contaminants (EOCs) detected in groundwater may have adverse effects on human health and aquatic ecosystems. This paper reviews the existing occurrence data in groundwater for a range of EOCs including pharmaceutical, personal care, ‘life-style’ and selected industrial compounds. The main sources and pathways for organic EOCs in groundwater are reviewed, with occurrence data for EOCs in groundwater included from both targeted studies and broad reconnaissance surveys. Nanogram-microgram per litre concentrations are present in groundwater for a large range of EOCs as well as metabolites and transformation products and under certain conditions may pose a threat to freshwater bodies for decades due to relatively long groundwater residence times. In the coming decades, more of these EOCs are likely to have drinking water standards, environmental quality standards and/or groundwater threshold values defined, and therefore a better understanding of the spatial and temporal variation remains a priority. - Highlights: ► First review to focus on EOCs in groundwater. ► A large range (n > 180) of EOCs are detected in groundwater. ► Significant concentrations (10 2 –10 4 ng/L) for a range of EOCs, including endocrine disruptors. ► Groundwater EOC occurrence is poorly characterised compared to other freshwater resources. - A large range of emerging organic contaminants are now being detected in groundwater as a result of recent and historical anthropogenic activities.

  20. Treatment of Gravel Contaminated with Naturally Occurring Radioactive Element

    International Nuclear Information System (INIS)

    Sohsah, M. A.; Kamal, S. M.; Mamoon, A.

    2004-01-01

    Environmental protection primarily means controlling the releases of radioactive and non-radioactive wastes to the environment and involves treatment, storage, cleanup and disposal of these wastes. The present study concerns the cleanup of gravel that has been contaminated with 2 26 R a. Aqueous solutions of different compositions including water and various concentrations of calcium chloride and barium chloride were used to leach the contaminated gravel. The leaching experiments were carried out in glass column. In some leaching experiments, samples of sandy soil were placed below the gravel to test the sorption of the leached 2 26 R a by the soil. The relative efficiencies of the leachant and the extent of sorption of the leached radionuclide were determined both by the liquid scintillation counting and by the thermoluminescent chips. The TLD chips record the dose before and after decontamination of the gravel and before and after contamination of the soil samples when used. The results obtained indicated that acidified barium chloride was relatively the most effective leachant of 2 26 R a contamination. It reduced the dose from the contaminated gravel to almost half. The soil sample used adsorbs the leached radionuclides efficiently, increasing the soil naturally low dose to about six folds

  1. The use of passive membrane samplers to assess organic contaminant inputs at five coastal sites in west Maui, Hawaii

    Science.gov (United States)

    Campbell, Pamela L.; Prouty, Nancy G.; Storlazzi, Curt; D'antonio, Nicole

    2017-07-26

    Five passive membrane samplers were deployed for 28 continuous days at select sites along and near the west Maui coastline to assess organic compounds and contaminant inputs to diverse, shallow coral reef ecosystems. Daily and weekly fluctuations in such inputs were captured on the membranes using integrative sampling. The distribution of organic compounds observed at these five coastal sites showed considerable variation; with high concentrations of terrestrially sourced organic compounds such as C29 sterols and high molecular weight n-alkanes at the strongly groundwater-influenced Kahekili vent site. In comparison, the coastal sites were presumably influenced more by seasonal surface and stream water runoff and therefore had marine-sourced organic compounds and fewer pharmaceuticals and personal care products. The direct correlation to upstream land-use practices was not obvious and may require additional wet-season sampling. Pharmaceuticals and personal care products as well as flame retardants were detected at all sites, and the Kahekili vent site had the highest number of detections. Planned future work must also determine the organic compound and contaminant concentrations adsorbed onto water column particulate matter, because it may also be an important vector for contaminant transport to coral reef ecosystems. The impact of contaminants per individual (such as fecundity and metabolism) as well as per community (such as species abundance and diversity) is necessary for an accurate assessment of environmental stress. Results presented herein provide current contaminant inputs to select nearshore environments along the west Maui coastline captured during the dry season, and they can be useful to aid potential future evaluations and (or) comparisons.

  2. Occurrence, distribution and bioaccumulation behaviour of hydrophobic organic contaminants in a large-scale constructed wetland in Singapore.

    Science.gov (United States)

    Wang, Qian; Kelly, Barry C

    2017-09-01

    This study involved a field-based investigation to assess the occurrence, distribution and bioaccumulation behaviour of hydrophobic organic contaminants in a large-scale constructed wetland. Samples of raw leachate, water and wetland plants, Typha angustifolia, were collected for chemical analysis. Target contaminants included polychlorinated biphenyls (PCBs), organochlorine pesticides (OCP), as well as several halogenated flame retardants (HFRs) and personal care products (triclosan and synthetic musks). In addition to PCBs and OCPs, synthetic musks, triclosan (TCS) and dechlorane plus stereoisomers (syn- and anti-DPs) were frequently detected. Root concentration factors (log RCF L/kg wet weight) of the various contaminants ranged between 3.0 and 7.9. Leaf concentration factors (log LCF L/kg wet weight) ranged between 2.4 and 8.2. syn- and anti-DPs exhibited the greatest RCF and LCF values. A strong linear relationship was observed between log RCF and octanol-water partition coefficient (log K OW ). Translocation factors (log TFs) were negatively correlated with log K OW . The results demonstrate that more hydrophobic compounds exhibit higher degrees of partitioning into plant roots and are less effectively transported from roots to plant leaves. Methyl triclosan (MTCS) and 2,8-dichlorodibenzo-p-dioxin (DCDD), TCS degradation products, exhibited relatively high concentrations in roots and leaves., highlighting the importance of degradation/biotransformation. The results further suggest that Typha angustifolia in this constructed wetland can aid the removal of hydrophobic organic contaminants present in this landfill leachate. The findings will aid future investigations regarding the fate and bioaccumulation of hydrophobic organic contaminants in constructed wetlands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Estimating the fates of organic contaminants in an aquifer using QSAR.

    Science.gov (United States)

    Lim, Seung Joo; Fox, Peter

    2013-01-01

    The quantitative structure activity relationship (QSAR) model, BIOWIN, was modified to more accurately estimate the fates of organic contaminants in an aquifer. The predictions from BIOWIN were modified to include oxidation and sorption effects. The predictive model therefore included the effects of sorption, biodegradation, and oxidation. A total of 35 organic compounds were used to validate the predictive model. The majority of the ratios of predicted half-life to measured half-life were within a factor of 2 and no ratio values were greater than a factor of 5. In addition, the accuracy of estimating the persistence of organic compounds in the sub-surface was superior when modified by the relative fraction adsorbed to the solid phase, 1/Rf, to that when modified by the remaining fraction of a given compound adsorbed to a solid, 1 - fs.

  4. EFFECT OF CONTAMINANT AND ORGANIC MATTER BIOAVAILABILITY ON THE MICROBIAL DEHALOGENATION OF SEDIMENT-BOUND CHLOROBENZENES. (R825513C007)

    Science.gov (United States)

    The extent of reductive dechlorination occurring in contaminated, estuarine sediments was investigated. Contaminant and organic matter bioavailability and their effect on the reductive dechlorination of sediment-bound chlorobenzenes was the main focus of the work presented her...

  5. Organics in water contamination analyzer, phase 1

    Science.gov (United States)

    1986-01-01

    The requirements which would result in identifying the components of an automatic analytical system for the analysis of specific organic compounds in the space station potable water supply are defined. The gas chromatographic system for such an analysis is limited to commercially available off-the-shelf hardware and includes the sample inlet, an ionization detector, capillary columns as well as computerized compound identification. The sampling system will be a special variation of the purge and trap Tenax mode using six-port valves and a 500 microliter water sample. Capillary columns used for the separating of contaminants will be bonded phase fused silica with a silicone stationary phase. Two detectors can be used: photoionization and far ultraviolet, since they are sensitive and compatible with capillary columns. A computer system evaluation and program with the principle of compound identification based on the retention index is presented.

  6. Treatment of organic aromatic contaminants in soil with fungi and biochar

    OpenAIRE

    Anasonye, Festus

    2017-01-01

    Soils that are contaminated with organic aromatic compounds such as polyaromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and 2,4,6-trinitrotoluene (TNT) have previously been treated by combustion at elevated temperatures. Although, combustion is effective, it is expensive due to high energy and equipment requirements. However, innovative technologies such as the use of fungi and/or biochar can offer an alternative option that is friendly to the envir...

  7. Laboratory Study of Quaternary Sediment Resistivity Related to Groundwater Contamination at Mae-Hia Landfill, Mueang District, Chiang Mai Province

    Science.gov (United States)

    Sichan, N.

    2007-12-01

    This study was aimed to understand the nature of the resistivity value of the sediment when it is contaminated, in order to use the information solving the obscure interpretation in the field. The pilot laboratory experiments were designed to simulate various degree of contamination and degree of saturation then observe the resulting changes in resistivity. The study was expected to get a better understanding of how various physical parameters effect the resistivity values in term of mathematic function. And also expected to apply those obtained function to a practical quantitatively interpretation. The sediment underlying the Mae-Hia Landfill consists of clay-rich material, with interfingerings of colluvium and sandy alluvium. A systematic study identified four kinds of sediment, sand, clayey sand, sandy clay, and clay. Representative sediment and leachate samples were taken from the field and returned to the laboratory. Both the physical and chemical properties of the sediments and leachate were analyzed to delineate the necessary parameters that could be used in Archie's equation. Sediment samples were mixed with various concentration of leachate solutions. Then the resistivity values were measured at various controlled steps in the saturation degree in a well- calibrated six-electrode model resistivity box. The measured resistivity values for sand, clayey sand, sandy clay when fully and partly saturated were collected, then plotted and fitted to Archie's equation, to obtain a mathematical relationship between bulk resistivity, porosity, saturation degree and resistivity of pore fluid. The results fit well to Archie's equation, and it was possible to determine all the unknown parameters representative of the sediment samples. For sand, clayey sand, sandy clay, and clay, the formation resistivity factors (F) are 2.90, 5.77, 7.85, and 7.85 with the products of cementation factor (m) and the pore geometry factors (a) (in term of -am) are 1.49, -1.63, -1.92, -2

  8. Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids.

    Science.gov (United States)

    Nikolopoulou, M; Pasadakis, N; Norf, H; Kalogerakis, N

    2013-12-15

    Mediterranean coastal regions are particularly exposed to oil pollution due to extensive industrialization, urbanization and transport of crude and refined oil to and from refineries. Bioremediation of contaminated beach sand through landfarming is both simple and cost-effective to implement compared to other treatment technologies. The purpose of the present study was to investigate the effect of alternative nutrients on biodegradation of crude oil contaminated beach sand in an effort to reduce the time required for bioremediation employing only indigenous hydrocarbon degraders. A natural sandy soil was collected from Agios Onoufrios beach (Chania, Greece) and was contaminated with weathered crude oil. The indigenous microbial population in the contaminated sand was tested alone (control treatment) or in combination with inorganic nutrients (KNO3 and K2HPO4) to investigate their effects on oil biodegradation rates. In addition, the ability of biosurfactants (rhamnolipids), in the presence of organic nutrients (uric acid and lecithin), to further stimulate biodegradation was investigated in laboratory microcosms over a 45-day period. Biodegradation was tracked by GC/MS analysis of aliphatic and polycyclic aromatic hydrocarbons components and the measured concentrations were corrected for abiotic removal by hopane normalizations. It was found that the saturated fraction of the residual oil is degraded more extensively than the aromatic fraction and the bacterial growth after an incubation period of approximately 3 weeks was much greater from the bacterial growth in the control. The results show that the treatments with inorganic or organic nutrients are equally effective over almost 30 days where C12-C35n-alkanes were degraded more than 97% and polyaromatic hydrocarbons with two or three rings were degraded more than 95% within 45 days. The results clearly show that the addition of nutrients to contaminated beach sand significantly enhanced the activity of

  9. Vulnerable, But Why? Post-Traumatic Stress Symptoms in Older Adults Exposed to Hurricane Sandy.

    Science.gov (United States)

    Heid, Allison R; Christman, Zachary; Pruchno, Rachel; Cartwright, Francine P; Wilson-Genderson, Maureen

    2016-06-01

    Drawing on pre-disaster, peri-disaster, and post-disaster data, this study examined factors associated with the development of post-traumatic stress disorder (PTSD) symptoms in older adults exposed to Hurricane Sandy. We used a sample of older participants matched by gender, exposure, and geographic region (N=88, mean age=59.83 years) in which one group reported clinically significant levels of PTSD symptoms and the other did not. We conducted t-tests, chi-square tests, and exact logistic regressions to examine differences in pre-disaster characteristics and peri-disaster experiences. Older adults who experienced PTSD symptoms reported lower levels of income, positive affect, subjective health, and social support and were less likely to be working 4 to 6 years before Hurricane Sandy than were people not experiencing PTSD symptoms. Those developing PTSD symptoms reported more depressive symptoms, negative affect, functional disability, chronic health conditions, and pain before Sandy and greater distress and feelings of danger during Hurricane Sandy. Exact logistic regression revealed independent effects of preexisting chronic health conditions and feelings of distress during Hurricane Sandy in predicting PTSD group status. Our findings indicated that because vulnerable adults can be identified before disaster strikes, the opportunity to mitigate disaster-related PTSD exists through identification and resource programs that target population subgroups. (Disaster Med Public Health Preparedness. 2016;10:362-370).

  10. The impact of Hurricane Sandy on the mental health of New York area residents.

    Science.gov (United States)

    Schwartz, Rebecca M; Sison, Cristina; Kerath, Samantha M; Murphy, Lisa; Breil, Trista; Sikavi, Daniel; Taioli, Emanuela

    2015-01-01

    To evaluate the long-term psychological impact of Hurricane Sandy on New York residents. Prospective, cross-sectional study. Community-based study. From October 2013 to February 2015, 669 adults in Long Island, Queens, and Staten Island completed a survey on their behavioral and psychological health, demographics, and hurricane impact (ie, exposure). Depression, anxiety, and post-traumatic stress disorder (PTSD). Using multivariable logistic regression models, the relationships between Hurricane Sandy exposure and depression, anxiety, and PTSD were examined. Participants experienced an average of 3.9 exposures to Hurricane Sandy, most of which were related to property damage/loss. Probable depression was reported in 33.4 percent of participants, probable anxiety in 46 percent, and probable PTSD in 21.1 percent. Increased exposure to Hurricane Sandy was significantly associated with a greater likelihood of depression (odds ratio [OR] = 1.09, 95% confidence interval [CI]: 1.04-1.14), anxiety (OR = 1.08, 95% CI: 1.03-1.13), and probable PTSD (OR = 1.32, 95% CI: 1.23-1.40), even after controlling for demographic factors known to increase susceptibility to mental health issues. Individuals affected by Hurricane Sandy reported high levels of mental health issues and were at an increased risk of depression, anxiety, and PTSD in the years following the storm. Recovery and prevention efforts should focus on mental health issues in affected populations.

  11. Study on the metabolism of contamination of radioactive materials in organism by autoradiographic techniques

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Zhang Lansheng; Kang Baoan

    1988-08-01

    The metabolism of contamination of radioactive materials in organism was studied by diferent types of autoradiographic techniques, such as: (1) in body level by whole-body autoradiography; (2) in organ level by whole-organ autoradiography; (3) in cellular level by microautoradiography; (4) in subcellular level by electron microscopic autoradiography; (5) in combinative form by tissue fixative autoradiography; (6) in ionizing form by freezing autoradiography; (7) for radioactive mateials with two radionuclides by double radionuclide autoradiography; (8) for radioactive materials with low level of radionuclides by fluorescence sensitization autoradiography; (9) in dissociative products by chromatographic autoradiography

  12. Selected trace-element and organic contaminants in the streambed sediments of the Potomac River Basin, August 1992

    Science.gov (United States)

    Gerhart, James M.; Blomquist, Joel D.

    1995-01-01

    This report describes the occurrence and distribution of five selected contaminants in streambed sediments at 22 stream sites in the Potomac River Basin. Lead, mercury, and total DDT (dichlorodiphenyltrichloroethane) were detected at all sites, and chlordane and total PCB's (polychlorinated biphenyls) were detected at most sites. At six sites, streambed-sediment concentrations of contaminants were detected at levels with the potential to cause frequent adverse effects on aquatic organisms that live in the sediments. Chlordane was detected at these high levels at sampling sites on the Anacostia River, the North Branch Potomac River, Bull Run, and Accotink Creek; mercury was detected at these levels at sites on the South River and the South Fork Shenandoah River; and total PCB's were detected at these levels at the site on the South Fork Shenandoah River. The highest concentrations of all five contaminants generally occurred at sampling sites downstream from areas with industrial plants, urban centers, or orchard and agricultural activity. The occurrence of these contaminants in streambed sediments of the Potomac River Basin is of concern because the contaminants (1) are environmentally persistent, (2) are available for downstream transport during high streamflow periods, and (3) have the potential to cause adverse effects on the health of aquatic organisms and humans through bioaccumulation.

  13. Enhanced degradation of organic contaminants in water by peroxydisulfate coupled with bisulfite

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Chengdu, E-mail: qichengdu@mail.tsinghua.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084 (China); Liu, Xitao, E-mail: liuxt@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Li, Yang; Lin, Chunye; Ma, Jun; Li, Xiaowan; Zhang, Huijuan [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2017-04-15

    Highlights: • S(IV)/PDS system showed synergistic degradation of BPA than S(IV) and PDS. • BPA degradation involved hydroxyl and oxysulfur radicals in the S(IV)/PDS system. • Based on the identified intermediates, the BPA degradation pathway was proposed. - Abstract: In this study, the bisulfite-peroxydisulfate system (S(IV)/PDS) widely used in polymerization was innovatively applied for organic contaminants degradation in water. The addition of S(IV) into PDS system remarkably enhanced the degradation efficiency of bisphenol A (BPA, a frequently detected endocrine disrupting chemical in the environments) from 17.0% to 84.7% within 360 min. The degradation efficiency of BPA in the S(IV)/PDS system followed pseudo-first-order kinetics, with rate constant values ranging from 0.00005 min{sup −1} to 0.02717 min{sup −1} depending on the operating parameters, such as the initial S(IV) and PDS dosage, solution pH, reaction temperature, chloride and water type. Furthermore, nitrogen purging experiment, radical scavenging experiment and electron spin resonance (ESR) analysis were used to elucidate the possible mechanism. The results revealed that sulfate radical was the dominant reactive species in the S(IV)/PDS system. Finally, based on the results of liquid chromatography–mass spectrometry (LC–MS) and gas chromatography–mass spectrometry (GC–MS), the BPA degradation pathway was proposed to involve β-scission (C−C), hydroxylation, dehydration, oxidative skeletal rearrangement, and ring opening. This study helps to characterize the combination of PDS and inorganic S(IV), a common industrial contaminant, to generate reactive species to enhance organic contaminants degradation in water.

  14. Application of hazard analysis critical control points (HACCP) to organic chemical contaminants in food.

    Science.gov (United States)

    Ropkins, K; Beck, A J

    2002-03-01

    Hazard Analysis Critical Control Points (HACCP) is a systematic approach to the identification, assessment, and control of hazards that was developed as an effective alternative to conventional end-point analysis to control food safety. It has been described as the most effective means of controlling foodborne diseases, and its application to the control of microbiological hazards has been accepted internationally. By contrast, relatively little has been reported relating to the potential use of HACCP, or HACCP-like procedures, to control chemical contaminants of food. This article presents an overview of the implementation of HACCP and discusses its application to the control of organic chemical contaminants in the food chain. Although this is likely to result in many of the advantages previously identified for microbiological HACCP, that is, more effective, efficient, and economical hazard management, a number of areas are identified that require further research and development. These include: (1) a need to refine the methods of chemical contaminant identification and risk assessment employed, (2) develop more cost-effective monitoring and control methods for routine chemical contaminant surveillance of food, and (3) improve the effectiveness of process optimization for the control of chemical contaminants in food.

  15. Geochemical and mineralogical investigation of uranium in multi-element contaminated, organic-rich subsurface sediment

    International Nuclear Information System (INIS)

    Qafoku, Nikolla P.; Gartman, Brandy N.; Kukkadapu, Ravi K.; Arey, Bruce W.; Williams, Kenneth H.; Mouser, Paula J.; Heald, Steve M.; Bargar, John R.; Janot, Noémie; Yabusaki, Steve; Long, Philip E.

    2014-01-01

    Highlights: • Subsurface naturally reduced zones (NRZ) contain U and other potential co-contaminants. • The NRZ has a remarkable assortment of chemically complex, potential U hosts. • Micron-scale, multi-contaminant areas were discovered in NRZ. • U(IV) occurs as biogenic UO 2 (82%), or biomass – bound monomeric U(IV) (18%). • NRZs may exhibit contaminant sink-source complex behavior. - Abstract: Subsurface regions of alluvial sediments characterized by an abundance of refractory or lignitic organic carbon compounds and reduced Fe and S bearing minerals, which are referred to as naturally reduced zones (NRZ), are present at the Integrated Field Research Challenge site in Rifle, CO (a former U mill site), and other contaminated subsurface sites. A study was conducted to demonstrate that the NRZ contains a variety of contaminants and unique minerals and potential contaminant hosts, investigate micron-scale spatial association of U with other co-contaminants, and determine solid phase-bounded U valence state and phase identity. The NRZ sediment had significant solid phase concentrations of U and other co-contaminants suggesting competing sorption reactions and complex temporal variations in dissolved contaminant concentrations in response to transient redox conditions, compared to single contaminant systems. The NRZ sediment had a remarkable assortment of potential contaminant hosts, such as Fe oxides, siderite, Fe(II) bearing clays, rare solids such as ZnS framboids and CuSe, and, potentially, chemically complex sulfides. Micron-scale inspections of the solid phase showed that U was spatially associated with other co-contaminants. High concentration, multi-contaminant, micron size (ca. 5–30 μm) areas of mainly U(IV) (53–100%) which occurred as biogenic UO 2 (82%), or biomass – bound monomeric U(IV) (18%), were discovered within the sediment matrix confirming that biotically induced reduction and subsequent sequestration of contaminant U(VI) via

  16. Development of a lab-scale contaminated organic effluents treatment process using evaporation and supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Turc, H.A.; Joussot-Dubien, C

    2004-07-01

    The organic liquid waste produced in the ATALANTE facility have to be treated in order to reduce the fire and contamination risks. Therefore, the Mini-DELOS process has been developed, which combines a low pressure evaporator in a shielded enclosure and a continuous supercritical water oxidation (SCWO) reactor in a glovebox. Evaporation makes it possible to evacuate the main organic stream as decontaminated distillates to an industrial incinerator. The remaining residue, concentrating the radioactivity can be converted through SCWO into a contaminated aqueous effluent, fully compatible with the existing outlets of the facility. The preliminary results of the first year of active operation of the Mini- DELOS process are here presented. (authors)

  17. Sorption of heavy metals and radionuclides on mineral surfaces in the presence of organic co-contaminants. 1997 annual progress report

    International Nuclear Information System (INIS)

    Leckie, J.; Redden, G.

    1997-01-01

    'This project fits well within the overall objectives established by the Environmental Management and Science Program to promote long-term basic research that will provide the tools for more effective and lower cost remediation efforts at DOE sites where hazardous and radioactive wastes or contamination zones are present. In order to develop the necessary remediation technology it has been recognized that a fundamental understanding of the various chemical and physical factors associated with waste treatment and contaminant transport must be established. Some of the specific topics include waste pretreatment, volume reduction, immobilization, separation methods, the interactions of actinides and heavy metals with surfaces in the presence of organic residues and co-contaminants, contaminant transport in the environment, and long-term storage site assessment. This project has direct and potential application in all these areas. The interaction and partitioning of contaminant metals and radionuclides between solution and solid- surface phases is a fundamental issue for waste treatment and predicting contaminant transport in the environment. Many factors are involved in the functional relationships describing chemical reactivity and physical distribution of chemical species. These include modification of chemical behavior by the suite of chemical co-contaminants in a system. Organic complexing agents are common components of waste mixtures and include both synthetic components specifically introduced as part of processing methods, and poorly characterized compounds that were introduced separately or evolved within the highly reactive wastes. Natural organic complexing agents such as citric acid and siderophores are common in nature and represent factors that will further influence contaminant transport in soils and aquatic systems. Knowledge of the existence of a metal-organic complex cannot automatically be used to predict changes in solid-solution partitioning of the

  18. Resuspended contaminated sediments cause sublethal stress to oysters: A biomarker differentiates total suspended solids and contaminant effects.

    Science.gov (United States)

    Edge, Katelyn J; Dafforn, Katherine A; Simpson, Stuart L; Ringwood, Amy H; Johnston, Emma L

    2015-06-01

    Resuspended contaminated sediments represent an important route of contaminant exposure for aquatic organisms. During resuspension events, filter-feeding organisms are exposed to contaminants, in both the dissolved form (at the gills) and the particulate form (in the digestive system). In addition, these organisms must manage the physical stress associated with an increase in total suspended solids (TSS). To date, few studies have experimentally compared the contributions to biological stress of contaminated and clean suspended solids. The authors mixed field-collected sediments (cellular biomarkers (lysosomal membrane stability, lipid peroxidation, and glutathione) were measured to evaluate sublethal toxicity. Lysosomal membrane stability was the most sensitive biomarker for distinguishing effects from resuspended contaminated sediments, as increasing amounts of contaminated TSS increased lysosomal membrane destabilization. The authors' results illustrate the importance of considering contaminant exposures from resuspended sediments when assessing the toxicity of contaminants to aquatic organisms. © 2015 SETAC.

  19. Direct control of perennial weeds between crops - Implication for organic farming

    DEFF Research Database (Denmark)

    Melander, Bo; Holst, Niels; Rasmussen, Ilse Ankjær

    2012-01-01

    and ending the strategy with mouldboard ploughing in the succeeding spring. Grain yields did not differ among the treatments in the two experiments as a result of the generally high effectiveness exerted by the control strategies. Especially post-harvest control strategies based on rotating weed devices...... and mouldboard ploughing appear to be effective solutions against mixed stands of perennials on sandy soils but they do not comply with optimal nutrient management in organic cropping. Therefore, intensive autumn cultivation is only relevant where a perennial weed problem is uncontrollable by other means.......Perennial weeds can be a major constraint to organic crop production and direct control actions applied between crops can then be necessary to reduce the problems. We conducted two experiments, one on a sandy loam and one on a sandy soil in Denmark, with the aim of studying the efficacy...

  20. The effects of Hurricane Sandy on trauma center admissions.

    Science.gov (United States)

    Curran, T; Bogdanovski, D A; Hicks, A S; Bilaniuk, J W; Adams, J M; Siegel, B K; DiFazio, L T; Durling-Grover, R; Nemeth, Z H

    2018-02-01

    Hurricane Sandy was a particularly unusual storm with regard to both size and location of landfall. The storm landed in New Jersey, which is unusual for a tropical storm of such scale, and created hazardous conditions which caused injury to residents during the storm and in the months following. This study aims to describe differences in trauma center admissions and patterns of injury during this time period when compared to a period with no such storm. Data were collected for this study from patients who were admitted to the trauma center at Morristown Medical Center during Hurricane Sandy or the ensuing cleanup efforts (patients admitted between 29 October 2012 and 27 December 2012) as well as a control group consisting of all patients admitted to the trauma center between 29 October 2013 and 27 December 2013. Patient information was collected to compare the admissions of the trauma center during the period of the storm and cleanup to the control period. A total of 419 cases were identified in the storm and cleanup period. 427 were identified for the control. Striking injuries were more common in the storm and cleanup group by 266.7% (p = 0.0107); cuts were more common by 650.8% (p = 0.0044). Medical records indicate that many of these injuries were caused by Hurricane Sandy. Self-inflicted injuries were more common by 301.3% (p = 0.0294). There were no significant differences in the total number of patients, mortality, or injury severity score between the two cohorts. The data we have collected show that the conditions caused by Hurricane Sandy and the following cleanup had a significant effect on injury patterns, with more patients having been injured by being struck by falling or thrown objects, cut while using tools, or causing self-inflicted injuries. These changes, particularly during the cleanup period, are indicative of environmental changes following the storm which increase these risks of injury.

  1. Radon emanation coefficients in sandy soils

    International Nuclear Information System (INIS)

    Holy, K.; Polaskova, A.; Baranova, A.; Sykora, I.; Hola, O.

    1998-01-01

    In this contribution the results of the study of an influence of the water content on the emanation coefficient for two sandy soil samples are reported. These samples were chosen on the because of the long-term continual monitoring of the 222 Rn concentration just in such types of soils and this radon concentration showed the significant variations during a year. These variations are chiefly given in connection with the soil moisture. Therefore, the determination of the dependence of the emanation coefficient of radon on the water content can help to evaluate the influence of the soil moisture variations of radon concentrations in the soil air. The presented results show that the emanation coefficient reaches the constant value in the wide interval of the water content for both sandy soil samples. Therefore, in the common range of the soil moisture (5 - 20 %) it is impossible to expect the variations of the radon concentration in the soil air due to the change of the emanation coefficient. The expressive changes of the radon concentration in the soil air can be observed in case of the significant decrease of the emanation coefficient during the soil drying when the water content decreases under 5 % or during the complete filling of the soil pores by the water. (authors)

  2. Response of sesame to population densities and nitrogen fertilization on newly reclaimed sandy soils

    International Nuclear Information System (INIS)

    Noorka, I.R.; Hafiz, S.I.

    2011-01-01

    Two field experiments were conducted at the Experimental Farm of Faculty of Agriculture, Suez Canal University at Ismailia during 2008 and 2009 seasons to study the effect of nitrogen fertilization and planting density on growth , yield, its attributes as well as seed quality of new sesame variety (Taka 2 cv.). On newly reclaimed sandy soils of Ismailia Governorate, Egypt, experimental design in split plots form with four replications was used. Four levels of nitrogen fertilization 55, 105, 155 and 205 Kg/ha were arranged randomly in the main plots and three planting distances between hills (10, 15 and 20 cm, respectively) were distributed at random in the sub plots. Increasing N fertilizer level up to 205 Kg/ha significantly increased plant height, fruiting zone length, height of the first fruiting branch, number of branches and capsules/plant, 1000-seed weight, seed weight/plant, seed oil content (%) and seed and oil yields /ha. Decreasing planting distance from 20 to 15 and 10 cm consistently and significantly increased plant height, height of the first fruiting branch and seed and oil yields /ha. The reverse was true regarding the yield components. These results were expected, since experiment soil was newly reclaimed sandy soil and very poor in the nutrients and organic matter. (author)

  3. Response and recovery of a pristine groundwater ecosystem impacted by toluene contamination - A meso-scale indoor aquifer experiment

    Science.gov (United States)

    Herzyk, Agnieszka; Fillinger, Lucas; Larentis, Michael; Qiu, Shiran; Maloszewski, Piotr; Hünniger, Marko; Schmidt, Susanne I.; Stumpp, Christine; Marozava, Sviatlana; Knappett, Peter S. K.; Elsner, Martin; Meckenstock, Rainer; Lueders, Tillmann; Griebler, Christian

    2017-12-01

    Microbial communities are the driving force behind the degradation of contaminants like aromatic hydrocarbons in groundwater ecosystems. However, little is known about the response of native microbial communities to contamination in pristine environments as well as their potential to recover from a contamination event. Here, we used an indoor aquifer mesocosm filled with sandy quaternary calciferous sediment that was continuously fed with pristine groundwater to study the response, resistance and resilience of microbial communities to toluene contamination over a period of almost two years, comprising 132 days of toluene exposure followed by nearly 600 days of recovery. We observed an unexpectedly high intrinsic potential for toluene degradation, starting within the first two weeks after the first exposure. The contamination led to a shift from oxic to anoxic, primarily nitrate-reducing conditions as well as marked cell growth inside the contaminant plume. Depth-resolved community fingerprinting revealed a low resistance of the native microbial community to the perturbation induced by the exposure to toluene. Distinct populations that were dominated by a small number of operational taxonomic units (OTUs) rapidly emerged inside the plume and at the plume fringes, partially replacing the original community. During the recovery period physico-chemical conditions were restored to the pristine state within about 35 days, whereas the recovery of the biological parameters was much slower and the community composition inside the former plume area had not recovered to the original state by the end of the experiment. These results demonstrate the low resilience of sediment-associated groundwater microbial communities to organic pollution and underline that recovery of groundwater ecosystems cannot be assessed solely by physico-chemical parameters.

  4. Effect of Simulated Weathering and Aging of TNT in Amended Sandy Loam Soil on Toxicity to the Enchytraeid Worm, Enchytreaeus Crypticus

    Science.gov (United States)

    2006-05-01

    high bioavailability of organic compounds. However, amended SSL soil was analyzed for presence of metabolic transformation products from nitroaromatic...Phillips, C.; Checkai, R. 1999. Comparison of malathion toxicity using enchytraeid reproduction test and earthworm toxicity test in different soil ...OF TNT IN AMENDED SANDY LOAM SOIL ON TOXICITY TO THE ENCHYTRAEID WORM, ENCHYTRAEUS CRYPTICUS Roman G. Kuperman Ronald T. Checkai Michael Simini

  5. Removal of contaminants from fine grained soils using electrokinetic (EK) flushing. Final report, September 30, 1987--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B.E.; Berg, M.T.

    1993-10-01

    Recently, attention has focused on developing cost effective techniques to remove inorganic contaminants from soils in-situ. For most in-situ techniques hydraulic pressure is used to disperse the chemical additives and collect the contaminated groundwater. In-situ treatment technologies have had success at sites containing sandy soils but have not shown much promise for soils with large amounts of clay and silt. This is due primarily to difficulty in transporting groundwater, contaminants, and chemical additives through the subsurface. Unfortunately, soils high in clay and silt are known to sequester large quantities of inorganic and organic contaminants. Thus, soils having low hydraulic conductivity`s are generally efficient in sequestering pollutants but are resistant to standard in-situ remediation techniques because of the difficulty in transporting groundwater and contaminants. A candidate technology for the in-situ remediation of low permeability soils is electrokinetic (EK) soil flushing. In EK soil flushing, groundwater and contaminants are transported under an a plied voltage. The transport of groundwater electroosmotically does not depend directly on the soil`s hydraulic conductivity. Thus, soils that would otherwise require excavation and treatment can be remediated in-situ if electrokinetics is used as the driving force for liquid and contaminant transport. This report details the results from work conducted on the use of EK soil flushing to remediate a fine grained soil contaminated with lead. The first portion of the experimental work entailed soil collection and characterization, soil adsorption and desorption of lead, and EK reactor construction and testing. The second phase of the research consisted of investigating the efficacy of using EK soil flushing on an actual soil using bench-scale EK reactors. For the second phase of the research the affect of initial conditions on the efficiency of EK soil flushing was studied.

  6. Application of groundwater residence time tracers and broad screening for micro-organic contaminants in the Indo-Gangetic aquifer system

    Science.gov (United States)

    Lapworth, Dan; Das, Prerona; Mukherjee, Abhijit; Petersen, Jade; Gooddy, Daren; Krishan, Gopal

    2017-04-01

    Groundwater abstracted from aquifers underlying urban centres across India provide a vital source of domestic water. Abstraction from municipal and private supplies is considerable and growing rapidly with ever increasing demand for water from expanding urban populations. This trend is set to continue. The vulnerability of deeper aquifers (typically >100 m below ground) used for domestic water to contamination migration from often heavily contaminated shallow aquifer systems has not been studies in detail in India. This paper focusses on the occurrence of micro-organic contaminants within sedimentary aquifers beneath urban centres which are intensively pumped for drinking water and domestic use. New preliminary results from a detailed case study undertaken across Varanasi, a city with an estimated population of ca. 1.5 million in Uttar Pradesh. Micro -organic groundwater quality status and evolution with depth is investigated through selection of paired shallow and deep sites across the city. These results are considered within the context of paired groundwater residence time tracers within the top 150m within the sedimentary aquifer system. Groundwater emerging contaminant results are compared with surface water quality from the Ganges which is also used for drinking water supply. Broad screening for >800 micro-organic compounds was undertaken. Age dating tools were employed to constrain and inform a conceptual model of groundwater recharge and contaminant evolution within the sedimentary aquifer system.

  7. Hurricane Sandy: Rapid Response Imagery of the Surrounding Regions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is of Hurricane Sandy. The aerial photography missions were conducted by the NOAA Remote Sensing Division. The images were acquired...

  8. 2014 USGS CMGP Lidar: Sandy Restoration (Delaware and Maryland)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Geographic Extent: SANDY_Restoration_DE_MD_QL2 Area of Interest covers approximately 3.096 square miles. Lot #5 contains the full project area Dataset Description:...

  9. Review of remediation techniques for arsenic (As) contamination: a novel approach utilizing bio-organisms.

    Science.gov (United States)

    Rahman, Shahedur; Kim, Ki-Hyun; Saha, Subbroto Kumar; Swaraz, A M; Paul, Dipak Kumar

    2014-02-15

    Arsenic (As) contamination has recently become a worldwide problem, as it is found to be widespread not only in drinking water but also in various foodstuffs. Because of the high toxicity, As contamination poses a serious risk to human health and ecological system. To cope with this problem, a great deal of effort have been made to account for the mechanisms of As mineral formation and accumulation by some plants and aquatic organisms exposed to the high level of As. Hence, bio-remediation is now considered an effective and potent approach to breakdown As contamination. In this review, we provide up-to-date knowledge on how biological tools (such as plants for phytoremediation and to some extent microorganisms) can be used to help resolve the effects of As problems on the Earth's environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The delivery of organic contaminants to the Arctic food web: why sea ice matters.

    Science.gov (United States)

    Pućko, Monika; Stern, Gary A; Macdonald, Robie W; Jantunen, Liisa M; Bidleman, Terry F; Wong, Fiona; Barber, David G; Rysgaard, Søren

    2015-02-15

    For decades sea ice has been perceived as a physical barrier for the loading of contaminants to the Arctic Ocean. We show that sea ice, in fact, facilitates the delivery of organic contaminants to the Arctic marine food web through processes that: 1) are independent of contaminant physical-chemical properties (e.g. 2-3-fold increase in exposure to brine-associated biota), and 2) depend on physical-chemical properties and, therefore, differentiate between contaminants (e.g. atmospheric loading of contaminants to melt ponds over the summer, and their subsequent leakage to the ocean). We estimate the concentrations of legacy organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in melt pond water in the Beaufort Sea, Canadian High Arctic, in 2008, at near-gas exchange equilibrium based on Henry's law constants (HLCs), air concentrations and exchange dynamics. CUPs currently present the highest risk of increased exposures through melt pond loading and drainage due to the high ratio of melt pond water to seawater concentration (Melt pond Enrichment Factor, MEF), which ranges from 2 for dacthal to 10 for endosulfan I. Melt pond contaminant enrichment can be perceived as a hypothetical 'pump' delivering contaminants from the atmosphere to the ocean under ice-covered conditions, with 2-10% of CUPs annually entering the Beaufort Sea via this input route compared to the standing stock in the Polar Mixed Layer of the ocean. The abovementioned processes are strongly favored in first-year ice compared to multi-year ice and, therefore, the dynamic balance between contaminant inventories and contaminant deposition to the surface ocean is being widely affected by the large-scale icescape transition taking place in the Arctic. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Organic Contaminants and Treatment Chemicals in Steam-Water Cycles : Thermal stability, decomposition products and flow-accelerated corrosion

    NARCIS (Netherlands)

    Moed, D.H.

    2015-01-01

    Boiler feedwater and steam have to be of high purity, because of the susceptibility of the steam-water cycle to corrosion. Organic contaminants break down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam-water cycle

  12. Structural Stability and Hydraulic Conductivity Of Nkpologu Sandy ...

    African Journals Online (AJOL)

    Studies were conducted in the runoff plots at the University of Nigeria Nsukka Teaching and Resesarch Farm in 2010 and 2011 to monitor the changes in structural stability and saturated hydraulic conductivity (Ksat) of Nkpologu sandy loam soil under different cover management practices. The management practices were ...

  13. First evidence of persistent organic contaminants as potential anthropogenic stressors in the Barndoor Skate Dipturus laevis.

    Science.gov (United States)

    Lyons, Kady; Adams, Douglas H

    2017-03-15

    Although exploited populations of elasmobranchs may be able to recover from fishing pressure, there is little information regarding the Barndoor Skate's ability to cope with other anthropogenic stressors such as organic contaminants (OCs). Legacy OCs were measured in liver, muscle and ova from fourteen Barndoor Skates with mature skates having significantly greater mean concentrations of OCs than immature skates, demonstrating bioaccumulation with age. Using Toxic Equivalency Factors, skates were found to have levels of PCBs that have been shown to elicit negative physiological responses in other fishes and these results highlight the need for future studies to investigate the potential impacts that bioaccumulated organic contaminants have on the recovery and conservation of this vulnerable species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Monitoring organic contaminants in eggs of glaucous and glaucous-winged gulls (Larus hyperboreus and Larus glaucescens) from Alaska

    International Nuclear Information System (INIS)

    Vander Pol, Stacy S.; Becker, Paul R.; Ellisor, Michael B.; Moors, Amanda J.; Pugh, Rebecca S.; Roseneau, David G.

    2009-01-01

    Gull eggs have been used to monitor contaminants in many parts of the world. The Seabird Tissue Archival and Monitoring Project (STAMP) is a long-term program designed to track trends in pollutants in northern marine environments using seabird eggs. Glaucous and glaucous-winged gull (Larus hyperboreus and Larus glaucescens) eggs collected in 2005 from seven Alaskan colonies were analyzed for organic contaminants. Concentrations ranged from below detection limits to 322 ng g -1 wet mass in one egg for 4,4'-DDE and differed among the samples collected in the Gulf of Alaska and Bering and Chukchi Seas. Chick growth and survival rates may be affected by the contaminant levels found in the eggs, but the eggs should be safe for human consumption if they are eaten in small quantities. STAMP plans to continue collecting and banking gull eggs for future real-time and retrospective analyses. - Organic contaminant concentrations in Alaskan gull eggs could possibly be affecting chick growth and survival rates, but the eggs should be safe for humans to eat in small quantities

  15. Sorption of Emerging Organic Wastewater Contaminants to Four Soils

    Directory of Open Access Journals (Sweden)

    Sarah Roberts

    2014-04-01

    Full Text Available Conventional onsite wastewater treatment system design relies on a septic tank and soil treatment unit (STU for treatment of wastewater and integration of the final effluent into the environment. Organic water contaminants (OWCs, chemicals found in pharmaceutical drugs, detergents, surfactants, and other personal care and cleaning products, have been observed in septic tank effluent and the environment. Sorption of OWC mass to soil is a key mechanism in the removal and retardation of many of these chemicals in effluent as it travels through an STU. The primary purpose of this study was to investigate the relationship between the fraction of organic carbon of soil and the equilibrium sorption partitioning coefficient of a selected group of relevant and diverse OWCs. A secondary goal is to evaluate current methods of modeling the sorption of selected OWCs in soil. Five point Freundlich isotherms were constructed from equilibrium sorption batch tests for target OWCs with four different soils. For soils with organic carbon fraction between 0.021 and 0.054, Kd values were calculated between 60 and 185 for 4-nonylphenol, 75 to 260 for triclosan, 115 to 270 for bisphenol-A, 3 to 255 for 17β-estradiol, 40 to 55 for 17α-ethynylestradiol, and 28 to 70 for estrone. An empirically derived, direct relationship between foc and Kd may be a useful approach to estimating sorption for a soil based on organic carbon content.

  16. Organic Contaminant Levels in Three Fish Species Downchannel from the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, G.J.; Fresquez, P.R.; Beveridge, J.W.

    1999-06-01

    The LANL contribution, if any, to organic contaminant levels in the common carp, the channel catfish, and the white sucker in the Rio Grande appear to be small; however, low sample sizes, high variation, and potential interaction of species effect with location treatment effect require additional sampling and analysis.

  17. Oxidation by UV and ozone of organic contaminants dissolved in deionized and raw mains water

    International Nuclear Information System (INIS)

    Francis, P.D.

    1987-01-01

    Organic contaminants dissolved in deionized pretreated and raw mains water were reacted with ultraviolet light and ozone. Ozone first was used for partial oxidation followed by ozone combined with ultraviolet radiation to produce total oxidation. The reduction of total organic carbon (TOC) level and direct oxidation of halogenated compounds were measured throughout the treatment process. The rate of TOC reduction was compared for ozone injected upstream and inside the reactor

  18. 2014 USGS CMGP Lidar: Post Sandy (Long Island, NY)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Long Island New York Sandy LIDAR lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G14PD00296 Woolpert...

  19. Rapid Assessment of Anthropogenic Impacts of Exposed Sandy ...

    African Journals Online (AJOL)

    We applied a rapid assessment methodology to estimate the degree of human impact of exposed sandy beaches in Ghana using ghost crabs as ecological indicators. The use of size ranges of ghost crab burrows and their population density as ecological indicators to assess extent of anthropogenic impacts on beaches ...

  20. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications.

    Science.gov (United States)

    Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F

    2014-07-01

    There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes.

    Science.gov (United States)

    Estevez, Esmeralda; Cabrera, María del Carmen; Fernández-Vera, Juan Ramón; Molina-Díaz, Antonio; Robles-Molina, José; Palacios-Díaz, María del Pino

    2016-05-01

    Irrigation with reclaimed water (R) is necessary to guarantee the sustainability of semi-arid areas. Results obtained during a two years monitoring network (2009-2011) in Gran Canaria are presented, including the analysis of chemical parameters, N and S isotopes, priority substances (2008/105/EC, 2013/39/EU), other organic contaminants and heavy metals in groundwater and R used to irrigate a golf course. The aims of this work are to evaluate the contamination in a volcanic aquifer, relate the presence of organic contaminants and heavy metals with the hydrogeochemistry and identify pollution sources in the area. No priority substance exceeded the EU thresholds for surface water, although seventeen were detected in R. The most frequent compounds were hexachlorobenzene, chlorpyrifos ethyl, fluorene, phenanthrene and pyrene. These compounds were detected at low concentration, except chlorpyrifos. Chlorpyrifos ethyl, terbuthylazine, diuron, terbutryn, procymidone, atrazine and propazine exceeded the European threshold concentration for pesticides in groundwater (100ngL(-1)). Therefore, the priority substances chlorpyrifos ethyl and diuron must be included in monitoring studies. The priority pesticides chlorfenvinphos and diazinon were always detected in R but rarely in groundwater. Besides, the existence of contaminants not related to the current R irrigation has been identified. Absence of environmental problems related to heavy metals can be expected. The relationship among contaminant presence, hydrogeochemistry, including the stable isotopic prints of δ(18)O, δ(15)N and δ(34)S and preferential recharge paths has been described. The coastal well shows high values of EC, nitrate, a variable chemistry, and 50% of organic contaminants detected above 100ngL(-1). The well located in the recharge area presents a stable hydrochemistry, the lowest value of δ(15)N and the lowest contaminants occurrence. The area is an example of a complex volcanic media with several

  2. Organic Carbon and Physical Properties in Sandy Soil after Conversion from Degraded Pasture to Eucalyptus in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Karla Nascimento Sena

    Full Text Available ABSTRACT Soil is currently seen as the most relevant carbon sink and the most effective carbon stabilizer. In contrast, agriculture is the second largest C emitter, after burning of fossil fuels. This organic carbon (OC introduced into the soil, mainly via organic matter (OM, is essential for several soil properties and plays an extremely important role in sandy soils. The objective of this study was to describe the changes in the amounts and pools of OC and the influence thereof on some physical soil properties in areas converted from pasture to eucalyptus. The following areas were analyzed: a degraded pasture (PAST, two areas of pasture-eucalyptus conversion after 2 and 15 years (EU02 and EU15, respectively and a preserved Cerrado area (CER in the east of the state of Mato Grosso do Sul. Soil samples were taken from the 0.00-0.05, 0.05-0.10, and 0.10-0.30 m layers. The OC was measured and analyzed, the carbon pool (CP calculated, aggregate stability, bulk density (BD, and macro- and microporosity determined, and total porosity (TP calculated to analyze the influence of land use on soil properties. The experimental design was completely randomized, and four clusters per area were established, with nine subsampling points, for a total of 36 subsamples per area, organized in 20 × 20 m grids, The soil under natural vegetation (preserved Cerrado was used as a control. The change from CER to commercial cultivation accelerates the process of OC loss (reductions of 25-35 % and reductions in soil physical quality. In the PAST area, OC was reduced by 30 % in the 0.00-0.05 m layer. Cumulative OC and CP were highest in the 0.00-0.05 m layer and decreased in the deeper layers in all land use treatments. Organic C in the 0.10-0.30 m layer was not influenced by land use, indicating the possibility of OC persistence in the soil for longer periods. Macroporosity and total porosity may be considered appropriate in CER and EU15, whereas the conditions for plant

  3. Contaminated water treatment

    Science.gov (United States)

    Gormly, Sherwin J. (Inventor); Flynn, Michael T. (Inventor)

    2010-01-01

    Method and system for processing of a liquid ("contaminant liquid") containing water and containing urine and/or other contaminants in a two step process. Urine, or a contaminated liquid similar to and/or containing urine and thus having a relatively high salt and urea content is passed through an activated carbon filter to provide a resulting liquid, to remove most of the organic molecules. The resulting liquid is passed through a semipermeable membrane from a membrane first side to a membrane second side, where a fortified drink having a lower water concentration (higher osmotic potential) than the resulting liquid is positioned. Osmotic pressure differential causes the water, but not most of the remaining inorganic (salts) contaminant(s) to pass through the membrane to the fortified drink. Optionally, the resulting liquid is allowed to precipitate additional organic molecules before passage through the membrane.

  4. Metrics to assess ecological condition, change, and impacts in sandy beach ecosystems.

    Science.gov (United States)

    Schlacher, Thomas A; Schoeman, David S; Jones, Alan R; Dugan, Jenifer E; Hubbard, David M; Defeo, Omar; Peterson, Charles H; Weston, Michael A; Maslo, Brooke; Olds, Andrew D; Scapini, Felicita; Nel, Ronel; Harris, Linda R; Lucrezi, Serena; Lastra, Mariano; Huijbers, Chantal M; Connolly, Rod M

    2014-11-01

    Complexity is increasingly the hallmark in environmental management practices of sandy shorelines. This arises primarily from meeting growing public demands (e.g., real estate, recreation) whilst reconciling economic demands with expectations of coastal users who have modern conservation ethics. Ideally, shoreline management is underpinned by empirical data, but selecting ecologically-meaningful metrics to accurately measure the condition of systems, and the ecological effects of human activities, is a complex task. Here we construct a framework for metric selection, considering six categories of issues that authorities commonly address: erosion; habitat loss; recreation; fishing; pollution (litter and chemical contaminants); and wildlife conservation. Possible metrics were scored in terms of their ability to reflect environmental change, and against criteria that are widely used for judging the performance of ecological indicators (i.e., sensitivity, practicability, costs, and public appeal). From this analysis, four types of broadly applicable metrics that also performed very well against the indicator criteria emerged: 1.) traits of bird populations and assemblages (e.g., abundance, diversity, distributions, habitat use); 2.) breeding/reproductive performance sensu lato (especially relevant for birds and turtles nesting on beaches and in dunes, but equally applicable to invertebrates and plants); 3.) population parameters and distributions of vertebrates associated primarily with dunes and the supralittoral beach zone (traditionally focused on birds and turtles, but expandable to mammals); 4.) compound measurements of the abundance/cover/biomass of biota (plants, invertebrates, vertebrates) at both the population and assemblage level. Local constraints (i.e., the absence of birds in highly degraded urban settings or lack of dunes on bluff-backed beaches) and particular issues may require alternatives. Metrics - if selected and applied correctly - provide

  5. Hydrophobic organic contaminants in surficial sediments of Baltimore Harbor: Inventories and sources

    International Nuclear Information System (INIS)

    Ashley, J.T.F.; Baker, J.E.

    1999-01-01

    The heavily urbanized and industrialized Baltimore Harbor/Patapsco River/Back River system is one of the most highly contaminated regions of the Chesapeake Bay. In June 1996, surficial sediments were collected at 80 sites throughout the subestuarine system, including historically undersampled creek sand embayments. The samples were analyzed for a suite of hydrophobic organic contaminants (HOCs) consisting of 32 polycyclic aromatic hydrocarbons (PAHs) and 113 polychlorinated biphenyl (PCB) congeners. Total PAH and total PCB concentrations ranged from 90 to 46,200 and 8 to 2,150 ng/g dry weight, respectively. There was enormous spatial variability in the concentrations of HOCs, which was not well correlated to grain size or organic carbon content, suggesting nonequilibrium partitioning and/or proximity to sources as important factors explaining the observed spatial variability. High concentrations of both classes of HOCs were localized around major urban stormwater runoff discharges. Elevated PAH concentrations were also centered around the Sparrow's Point Industrial Complex, most likely a result of the pyrolysis of coal during the production of steel. All but 1 of the 80 sites exceeded the effects range-low (ERL) for total PCBs and, of those sites, 40% exceeded the effects range-medium (ERM), suggesting toxicity to marine benthic organisms would frequently occur. Using principal component analysis, differences in PAH signatures were discerned. Higher molecular weight PAHs were enriched in signatures from sediments close to suspected sources (i.e., urban stormwater runoff and steel production complexes) compared to those patterns observed at sites further from outfalls or runoff. Due to varying solubilities and affinities for organic matter of the individual PAHs, partitioning of the heavier weight PAHs may enrich settling particles with high molecular weight PAHs. Lower molecular weight PAHs, having lower affinity for particles, may travel from the source to a

  6. Surfactant-modified zeolites as permeable barriers to organic and inorganic groundwater contaminants

    International Nuclear Information System (INIS)

    Bowman, R.S.; Sullivan, E.J.

    1995-01-01

    We have shown in laboratory experiments that natural zeolites treated with hexadecyltrimethylammonium (HDTMA) are effective sorbents for nonpolar organics, inorganic cations, and inorganic anions. Due to their low cost (∼$0.75/kg) and granular nature, HDTMA-zeolites appear ideal candidates for reactive, permeable subsurface barriers. The HDTMA-zeolites are stable over a wide range of pH (3-13), ionic strength (1 M Cs + or Ca 2+ ), and in organic solvents. Surfactant-modified zeolites sorb nonpolar organics (benzene, toluene, xylene, chlorinated aliphatics) via a partitioning mechanism, inorganic cations (Pb 2+ ) via ion exchange and surface complexation, and inorganic anions (CrO 4 2- , SeO 4 2- , SO 4 2- ) via surface precipitation.The goal of this work is to demonstrate the use of surfactant-modified zeolite as a permeable barrier to ground water contaminants

  7. Peculiarities of pulse crops mineral feeding on sod-podzolic sandy soils contaminated with radionuclides

    International Nuclear Information System (INIS)

    Timofeev, S.F.; Sedukova, G.V.; Demidovich, S.A.

    2010-01-01

    In the conditions of the Republic of Belarus there was analyzed the influence of mineral fertilizers of leguminius crops (blue lupine (Lupinus angustifolius) of Gelena variety and field pea (Pisum arvense) of Alex variety) on yielding capacity, grain and green mass quality, and parameters transit of 137Cs and 90Sr radionuclides into leguminous products. In course of the experiment there were analyzed six variants of mineral fertilizer application P30K30; P30K90; P30K120; P60K60; P60K90; and P60K120. Variant without any fertilizers was as control. Double superphosphate (46% of P2O5) and potash chloride (60% of K2O) were applied as mineral fertilizers. Research results showed that application of phosphate-potassium fertilizers on sod-podzolic sandy soils moderately supplied with phosphate and potassium made it possible to increase pea and lupine yield. The highest efficiency of application of phosphate-potassium fertilizers was in the ratio of 1 (ðá2ð×5) : 2 (ðÜ2ð×) provided. Fertilizer system did not render substantial influence on indexes of nutritive value of green mass of pea and lupine. There was marked a tendency of increasing of phosphorous in lupine grain after its application in dose of P60. Mineral fertilizer application made it possible to lower 137Cs transit from soil into lupine green mass in 2 times and seeds ÔÇô in 1,5 times. Application of potassium fertilizer in dose of 120 kg/ha proved to be the most efficient for the lowering of 137Cs accumulation in products of the analyzed crops

  8. Detection of PPCPs in marine organisms from contaminated coastal waters of the Saudi Red Sea.

    Science.gov (United States)

    Ali, Aasim M; Rønning, Helene Thorsen; Sydnes, Leiv K; Alarif, Walied M; Kallenborn, Roland; Al-Lihaibi, Sultan S

    2018-04-15

    The occurrence of PPCPs in macroalgae, barnacle and fish samples from contaminated coastal waters of the Saudi Red Sea is reported. Solvent extraction followed by solid phase extraction was applied to isolate the compounds, and their quantification was carried out by high performance liquid chromatography-tandem mass spectrometry. Atenolol, ranitidine, chlorpheniramine, DEET, and atrazine were detected in one or more macroalgae at caffeine, methylparaben, and carbamazepine were present atmaximum concentrations of 41.3, 44.3, and 1.7ng/g (on a dry weight basis=dw), respectively. Eleven PPCPs were detected in the barnacle samples at concentrations between contaminated waters where a continuous supply of non-persistent contaminants such as PPCPs is available for long-term exposure of local benthic organisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. From Leaders, For Leaders: Advice From the Lived Experience of Leaders in Community Health Sector Disaster Recovery After Hurricanes Irene and Sandy.

    Science.gov (United States)

    Craddock, Hillary A; Walsh, Lauren; Strauss-Riggs, Kandra; Schor, Kenneth

    2016-08-01

    Hurricanes Sandy and Irene damaged and destroyed homes, businesses, and infrastructure, and recovery after these storms took years. The goal of this article was to learn from the lived experience of local-level decision-makers actively involved in the long-term disaster recovery process after Hurricanes Irene and Sandy. Respondents provided professional recommendations, based on their experience, to assist other organizations in preparing for, responding to, and recovering from disasters. Semi-structured interviews were conducted with professionals actively involved in recovery from Hurricane Irene or Hurricane Sandy in 5 different communities. Transcripts were qualitatively analyzed. Respondents' advice fell into 5 main categories: planning and evaluation, education and training, fundraising and donations management, building relationships, and disaster behavioral health. The lived experience of those in disaster recovery can provide guidance for planning, education, and training both within and outside their communities in order to better respond to and recover from future disasters. These data help to facilitate a community of practice by compiling and sharing the lived experience of leaders who experienced large-scale disasters, and the outcomes of this analysis help to show what areas of planning require special attention in the phases of preparedness, response, and recovery. (Disaster Med Public Health Preparedness. 2016;10:623-630).

  10. Application of compost for effective bioremediation of organic contaminants and pollutants in soil.

    Science.gov (United States)

    Kästner, Matthias; Miltner, Anja

    2016-04-01

    Soils contaminated with hazardous chemicals worldwide are awaiting remediation activities; bioremediation is often considered as a cost-effective remediation approach. Potential bioapproaches are biostimulation, e.g. by addition of nutrients, fertiliser and organic substrates, and bioaugmentation by addition of compound-degrading microbes or of organic amendments containing active microorganisms, e.g. activated sludge or compost. In most contaminated soils, the abundance of the intrinsic metabolic potential is too low to be improved by biostimulation alone, since the physical and chemical conditions in these soils are not conducive to biodegradation. In the last few decades, compost or farmyard manure addition as well as composting with various organic supplements have been found to be very efficient for soil bioremediation. In the present minireview, we provide an overview of the composting and compost addition approaches as 'stimulants' of natural attenuation. Laboratory degradation experiments are often biased either by not considering the abiotic factors or by focusing solely on the elimination of the chemicals without taking the biotic factors and processes into account. Therefore, we first systemise the concepts of composting and compost addition, then summarise the relevant physical, chemical and biotic factors and mechanisms for improved contaminant degradation triggered by compost addition. These factors and mechanisms are of particular interest, since they are more relevant and easier to determine than the composition of the degrading community, which is also addressed in this review. Due to the mostly empirical knowledge and the nonstandardised biowaste or compost materials, the field use of these approaches is highly challenging, but also promising. Based on the huge metabolic diversity of microorganisms developing during the composting processes, a highly complex metabolic diversity is established as a 'metabolic memory' within developing and mature

  11. Global warming and environmental contaminants in aquatic organisms: the need of the etho-toxicology approach.

    Science.gov (United States)

    Manciocco, Arianna; Calamandrei, Gemma; Alleva, Enrico

    2014-04-01

    Environmental contaminants are associated with a wide spectrum of pathological effects. Temperature increase affects ambient distribution and toxicity of these chemicals in the water environment, representing a potentially emerging problem for aquatic species with short-, medium- and long-term repercussions on human health through the food chain. We assessed peer-reviewed literature, including primary studies, review articles and organizational reports available. We focused on studies concerning toxicity of environmental pollutants within a global warming scenario. Existing knowledge on the effects that the increase of water temperature in a contaminated situation has on physiological mechanisms of aquatic organisms is presented. Altogether we consider the potential consequences for the human beings due to fish and shellfish consumption. Finally, we propose an etho-toxicological approach to study the effects of toxicants in conditions of thermal increase, using aquatic organisms as experimental models under laboratory controlled conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Localised Effects of a Mega-Disturbance: Spatiotemporal Responses of Intertidal Sandy Shore Communities to the 2010 Chilean Earthquake.

    Science.gov (United States)

    Sepúlveda, Roger D; Valdivia, Nelson

    2016-01-01

    Determining the effects of unpredictable disturbances on dynamic ecological systems is challenged by the paucity of appropriate temporal and spatial coverage of data. On 27 February 2010, an 8.8 Mw mega-earthquake and tsunami struck central Chile and caused coastal land-level changes, massive damage to coastal infrastructure, and widespread mortality of coastal organisms. Wave-exposed sandy beaches showed significant changes of species abundances from before to after the earthquake, but the highly dynamic biotic and abiotic conditions of these habitats make difficult to draw clear-cut conclusions from these patterns. Here, we analysed a beyond-BACI (Before-After Control-Impact) sampling design to test whether the effects of the Maule earthquake on sandy-shore species diversity, abundance, and structure were heterogeneous along the shore. Invertebrate species abundances were quantified before (i.e. February 2010) and after (i.e. March 2010, September 2010, and March 2011) the earthquake at three sandy shores randomly located within the earthquake rupture area and three sites within a "control" area located >400 km southward from epicentre. Immediately after the earthquake took place, the three sites located in the rupture area showed anomalous beach-profile uplifts that did not comply with the erosion (i.e. "negative" uplifts) that regularly occurs during late summer in the region. Species richness, abundance, and community structure significantly varied from before to after the strike, but these patterns of change varied among sites within both areas. Only the site with the strongest and persistent beach-profile uplift within the rupture area showed significant concomitant changes in species richness and community structure; after 13 months, this community showed a similar multivariate structure to the before-disturbance state. This site, in particular, was located in the section of the rupture area that received most of the impact of the after-earthquake tsunami

  13. Localised Effects of a Mega-Disturbance: Spatiotemporal Responses of Intertidal Sandy Shore Communities to the 2010 Chilean Earthquake.

    Directory of Open Access Journals (Sweden)

    Roger D Sepúlveda

    Full Text Available Determining the effects of unpredictable disturbances on dynamic ecological systems is challenged by the paucity of appropriate temporal and spatial coverage of data. On 27 February 2010, an 8.8 Mw mega-earthquake and tsunami struck central Chile and caused coastal land-level changes, massive damage to coastal infrastructure, and widespread mortality of coastal organisms. Wave-exposed sandy beaches showed significant changes of species abundances from before to after the earthquake, but the highly dynamic biotic and abiotic conditions of these habitats make difficult to draw clear-cut conclusions from these patterns. Here, we analysed a beyond-BACI (Before-After Control-Impact sampling design to test whether the effects of the Maule earthquake on sandy-shore species diversity, abundance, and structure were heterogeneous along the shore. Invertebrate species abundances were quantified before (i.e. February 2010 and after (i.e. March 2010, September 2010, and March 2011 the earthquake at three sandy shores randomly located within the earthquake rupture area and three sites within a "control" area located >400 km southward from epicentre. Immediately after the earthquake took place, the three sites located in the rupture area showed anomalous beach-profile uplifts that did not comply with the erosion (i.e. "negative" uplifts that regularly occurs during late summer in the region. Species richness, abundance, and community structure significantly varied from before to after the strike, but these patterns of change varied among sites within both areas. Only the site with the strongest and persistent beach-profile uplift within the rupture area showed significant concomitant changes in species richness and community structure; after 13 months, this community showed a similar multivariate structure to the before-disturbance state. This site, in particular, was located in the section of the rupture area that received most of the impact of the after

  14. Incineration method for plutonium recovery from alpha contaminated organic compounds

    International Nuclear Information System (INIS)

    Yahata, Taneaki; Abe, Jiro; Kato, Michiharu; Kurihara, Masayoshi

    1985-01-01

    An incineration method for plutonium recovery from α contaminated organic compounds in a flow of controlled oxygen gas is stated. The species of such thermal decomposition products as hydrocarbons, free carbon, carbon monoxide and hydrogen were determined by mass spectrography. The mixture of the products which are the source of tar or soot was converted to CO 2 and H 2 O in contact with copper oxide catalyst without flaming. This incineration method is composed of two stages. The first stage is the decomposition of organic compounds in the streams of gas mixtures containing oxygen in low ratios. The second stage is the incineration of the decomposition products by catalytic reaction in the streams of gas with higher oxygen ratios. Plutonium was recovered as the form of plutonium dioxide from the incineration residues of the first stage. The behavior of oil was examined as a representative of liquid organic compounds. It was found to evaporate below ca. 500 0 C, but was completely incinerated by the catalytic reaction with copper oxide catalyst in the flow of gas with controlled oxygen amount and was changed to CO 2 and H 2 O. (author)

  15. Storm Impact and Depression Among Older Adults Living in Hurricane Sandy-Affected Areas.

    Science.gov (United States)

    Sirey, Jo Anne; Berman, Jacquelin; Halkett, Ashley; Giunta, Nancy; Kerrigan, Janice; Raeifar, Elmira; Artis, Amanda; Banerjee, Samprit; Raue, Patrick J

    2017-02-01

    Research on the impact of natural disasters on the mental health of older adults finds both vulnerabilities and resilience. We report on the rates of clinically significant depression among older adults (aged ≥60 years) living in areas affected by Hurricane Sandy in 2012 and the factors associated with mental health need. The Sandy Mobilization, Assessment, Referral and Treatment for Mental Health (SMART-MH) program integrates community outreach and needs assessments to identify older adults with mental health and aging service needs. Older adults with significant anxiety or depressive symptoms were offered short-term psychotherapy. Social service referrals were made directly to community agencies. All SMART-MH activities were offered in Spanish, Russian, Mandarin/Cantonese, and English. Across the full sample, 14% of participants screened positive for depression. Hurricane Sandy stressors predicted increased odds of depression, including storm injury, post-storm crime, and the total count of stressors. Outcomes varied significantly by age group, such that all Sandy-related variables remained significant for younger-old adults (aged 60-74 years), whereas only the loss of access to medical care was significant for older-old adults (aged ≥75 years). Storm-affected communities show higher rates of depressive symptoms than seen in the general population, with storm stressors affecting mental health needs differentially by age group. (Disaster Med Public Health Preparedness. 2017;11:97-109).

  16. Development and Application of Syndromic Surveillance for Severe Weather Events Following Hurricane Sandy.

    Science.gov (United States)

    Tsai, Stella; Hamby, Teresa; Chu, Alvin; Gleason, Jessie A; Goodrow, Gabrielle M; Gu, Hui; Lifshitz, Edward; Fagliano, Jerald A

    2016-06-01

    Following Hurricane Superstorm Sandy, the New Jersey Department of Health (NJDOH) developed indicators to enhance syndromic surveillance for extreme weather events in EpiCenter, an online system that collects and analyzes real-time chief complaint emergency department (ED) data and classifies each visit by indicator or syndrome. These severe weather indicators were finalized by using 2 steps: (1) key word inclusion by review of chief complaints from cases where diagnostic codes met selection criteria and (2) key word exclusion by evaluating cases with key words of interest that lacked selected diagnostic codes. Graphs compared 1-month, 3-month, and 1-year periods of 8 Hurricane Sandy-related severe weather event indicators against the same period in the following year. Spikes in overall ED visits were observed immediately after the hurricane for carbon monoxide (CO) poisoning, the 3 disrupted outpatient medical care indicators, asthma, and methadone-related substance use. Zip code level scan statistics indicated clusters of CO poisoning and increased medicine refill needs during the 2 weeks after Hurricane Sandy. CO poisoning clusters were identified in areas with power outages of 4 days or longer. This endeavor gave the NJDOH a clearer picture of the effects of Hurricane Sandy and yielded valuable state preparation information to monitor the effects of future severe weather events. (Disaster Med Public Health Preparedness. 2016;10:463-471).

  17. Adsorption of ionizable organic contaminants on multi-walled carbon nanotubes with different oxygen contents

    International Nuclear Information System (INIS)

    Li Xiaona; Zhao Huimin; Quan Xie; Chen Shuo; Zhang Yaobin; Yu Hongtao

    2011-01-01

    Multi-walled carbon nanotubes (MWNTs), which are considered to be promising candidates for the adsorption of toxic organics, are released into aqueous environment with their increasing production and application. In this study, the adsorption behaviors of five structurally related ionizable organic contaminants namely perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorooctanesulfonamide (PFOSA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-n-nonylphenol (4-NP) onto MWNTs with different oxygen contents (3.84-22.85%) were investigated. The adsorption kinetics was investigated and simulated with pseudo-second-order model. The adsorption isotherms were found to be fitted with Freundlich model and influenced by both the properties of organic chemicals and the oxygen contents of MWNTs. As adsorption capacity decreases dramatically with the increasing of oxygen contents, the MWNTs with the lowest oxygen contents possess the highest adsorption capacity among four MWNTs. For the MWNTs with the oxygen contents of 3.84%, the adsorption affinity related with hydrophobic interaction and π-electron polarizability decreased in the order of 4-NP > PFOSA > PFOS > 2,4-D > PFOA. Furthermore, the adsorption characters of five contaminants were affected by solution pH and solute pK a considering electrostatic repulse force and hydrogen bonding, which showed the adsorption of MWNTs with lower oxygen content is much sensitive to solution chemistry.

  18. Evidence of micropore filling for sorption of nonpolar organic contaminants by condensed organic matter.

    Science.gov (United States)

    Ran, Yong; Yang, Yu; Xing, Baoshan; Pignatello, Joseph J; Kwon, Seokjoo; Su, Wei; Zhou, Li

    2013-01-01

    Although microporosity and surface area of natural organic matter (NOM) are crucial for mechanistic evaluation of the sorption process for nonpolar organic contaminants (NOCs), they have been underestimated by the N adsorption technique. We investigated the CO-derived internal hydrophobic microporosity () and specific surface area (SSA) obtained on dry samples and related them to sorption behaviors of NOCs in water for a wide range of condensed NOM samples. The is obtained from the total CO-derived microporosity by subtracting out the contribution of the outer surfaces of minerals and NOM using N adsorption-derived parameters. The correlation between or CO-SSA and fractional organic carbon content () is very significant, demonstrating that much of the microporosity is associated with internal NOM matrices. The average and CO-SSA are, respectively, 75.1 μL g organic carbon (OC) and 185 m g OC from the correlation analysis. The rigid aliphatic carbon significantly contributes to the microporosity of the Pahokee peat. A strong linear correlation is demonstrated between / and the OC-normalized sorption capacity at the liquid or subcooled liquid-state water solubility calculated via the Freundlich equation for each of four NOCs (phenanthrene, naphthalene, 1,3,5-trichlorobenzene, and 1,2-dichlorobenzene). We concluded that micropore filling ("adsorption") contributes to NOC sorption by condensed NOM, but the exact contribution requires knowing the relationship between the dry-state, CO-determined microporosity and the wet-state, NOC-available microporosity of the organic matter. The findings offer new clues for explaining the nonideal sorption behaviors of NOCs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. 77 FR 74891 - Order Granting Exemptions From Certain Rules of Regulation SHO Related to Hurricane Sandy

    Science.gov (United States)

    2012-12-18

    ... Client Update on Superstorm Sandy--Current and Ongoing Operations as Markets Re-Open; Physical.../downloads/legal/imp_notices/2012/dtcc/z0033.pdf ; ``DTCC Client Update on Superstorm Sandy--Physical...://www.dtcc.com/downloads/legal/imp_notices/2012/dtcc/z0035.pdf ; ``DTCC Client Update on Superstorm...

  20. Comparative assessment of LECA and Spartina maritima to remove emerging organic contaminants from wastewater.

    Science.gov (United States)

    Ferreira, Ana Rita; Guedes, Paula; Mateus, Eduardo P; Ribeiro, Alexandra B; Couto, Nazaré

    2017-03-01

    The present work aimed to evaluate the capacity of constructed wetlands (CWs) to remove three emerging organic contaminants with different physicochemical properties: caffeine (CAF), oxybenzone (MBPh), and triclosan (TCS). The simulated CWs were set up with a matrix of light expanded clay aggregates (LECA) and planted with Spartina maritima, a salt marsh plant. Controlled experiments were carried out in microcosms using deionized water and wastewater collected at a wastewater treatment plant (WWTP), with different contaminant mass ranges, for 3, 7, and 14 days. The effects of variables were tested isolatedly and together (LECA and/or S. maritima). The presence of LECA and/or S. maritima has shown higher removal (around 61-97%) of lipophilic compounds (MBPh and TCS) than the hydrophilic compound (CAF; around 19-85%). This was attributed to the fact that hydrophilic compounds are dissolved in the water column, whereas the lipophilic ones suffer sorption processes promoting their removal by plant roots and/or LECA. In the control (only wastewater), a decrease in the three contaminant levels was observed. Adsorption and bio/rhizoremediation are the strongest hypothesis to explain the decrease in contaminants in the tested conditions.

  1. Macrofauna and meiofauna of two sandy beaches at Mombasa, Kenya

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Ingole, B.S.; Parulekar, A.H.

    Macrofauna and meiofauna of 2 sandy beaches having medium and fine sand particles, respectively, were investigated, quantitatively Macrofauna density was highest around high water mark and progressively decreased towards low water mark Meiofauna...

  2. Aggregations of the sandy-beach isopod, Tylos granulatus ...

    African Journals Online (AJOL)

    ... lives as a scavenger in the intertidal zone of sandy beaches on the west coast of South Africa. Individuals emerge with the receding tide leaving exit holes, then forage for about two hours before returning to the vicinity of the high-water mark where they aggregate to bury themselves, leaving behind cone-shaped mounds.

  3. EFFICIENCY OF THE EARTHWORM Eisenia fetida UNDER THE EFFECT OF ORGANIC MATTER FOR BIOREMEDIATION OF SOILS CONTAMINATED WITH CADMIUM AND CHROMIUM

    Directory of Open Access Journals (Sweden)

    G. R. Mostafaii

    Full Text Available Abstract The use of earthworms to bioremediate soil results in decreasing the pollutant concentration through a bioaccumulation mechanism of the contaminants in the earthworm's body. The present work is an empirical study that was carried out on soils contaminated with chromium and cadmium. Organic matter in the amount of 5% and 9% of soil weight was added. Chromium and cadmium concentrations in soil and in the body of worms were measured at two time periods of 21 and 42 days. According to the results, increasing from 5% to 9% the organic material of the soil contaminated with chromium at the initial concentration of 0.06 mg/g, the removal efficiency decreased by 5%. In 0.1 mg/g concentration the bioremediation efficiency decreased by 20%, showing that the earthworms probably have more tendency to consume the organic material and low tendency for consuming the soil contaminated by metal. Results showed that, considering the increased mortality of worms in the soil at a concentration of 0.08 mg/g of chromium, using this method is not recommended. For cadmium we require more study, though we can say that the organic material had no influence on the bioremediation of the soil.

  4. A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils

    International Nuclear Information System (INIS)

    Chapman, E.Emily V.; Dave, Göran; Murimboh, John D.

    2013-01-01

    To improve risk estimates at the screening stage of Ecological Risk Assessment (ERA), short duration bioassays tailored to undisturbed soil cores from the contaminated site could be useful. However, existing standardized bioassays use disturbed soil samples and often pH sensitive organisms. This is a problem as naturally acidic soils are widespread. Changing soil properties to suit the test organism may change metal bioavailability, leading to erroneous risk estimates. For bioassays in undisturbed soil cores to be effective, species able to withstand natural soil properties must be identified. This review presents a critical examination of bioassay species' tolerance of acidic soils and sensitivity to metal contaminants such as Pb and Zn. Promising organisms include; Dendrobaena octaedra, Folsomia candida, Caenorhabditis elegans, Oppia nitens, Brassica rapa, Trifolium pratense, Allium cepa, Quercus rubra and Acer rubrum. The MetSTICK test and the Bait lamina test were also identified as suitable microorganism tests. -- Highlights: •Risk screening of metal contaminated soils should consider metal bioavailability. •Metal bioavailability is dependent on soil properties such as pH. •Many standardized bioassay organisms are sensitive to acidic soils. •This review identifies acid tolerant and metal sensitive bioassays and species. •The identified tests can improve risk screening of acidic metal contaminated soil. -- This review identifies bioassay species able to withstand naturally acidic soils while being sensitive to metal contaminants

  5. Organization of internal contamination monitoring

    International Nuclear Information System (INIS)

    Badreddine, A.

    1986-07-01

    The nuclear energy takes a big part in the world's energy production. The nuclear techniques are used in most fields of life. Nevertheless the use of radioactive materials may cause prejudice to human beings by radiation contamination. The International Commission on Radiological Protection gives the general rules and regulations to avoid this danger. In the publication No. 30, the ICRP gives a metabolic model for the respiratory system and values of Annual Limit of Intake. The ALI for inhalation supposes a standard AMAD (Activity Median Aerodynamic Diameter) of 1 um. We have measured the AMAD in a laboratory under different conditions of functioning in order to show its variation. Then we have analysed the effect of this variation on the internal contamination monitoring. Thus we have calculated the Effective Committed Dose (ECD), the ALI, then the Derived Investigation Level (DIL) for different values of AMAD for Whole-Body Counting (WBC)

  6. Long-Term Observations of Dust Storms in Sandy Desert Environments

    Science.gov (United States)

    Yun, Hye-Won; Kim, Jung-Rack; Choi, Yun-Soo

    2015-04-01

    Mineral dust occupies the largest portion of atmospheric aerosol. Considering the numerous risks that dust poses for socioeconomic and anthropogenic activities, it is crucial to understand sandy desert environments, which frequently generate dust storms and act as a primary source of atmospheric aerosol. To identify mineral aerosol mechanisms, it is essential to monitor desert environmental factors involving dust storm generation in the long term. In this study, we focused on two major environmental factors: local surface roughness and soil moisture. Since installments of ground observation networks in sandy deserts are unfeasible, remote sensing techniques for mining desert environmental factors were employed. The test area was established within the Badain Jaran and Kubuqi Deserts in Inner Mongolia, China, where significant seasonal aeolian processes emit mineral dust that influences all of East Asia. To trace local surface roughness, we employed a multi-angle imaging spectroradiometer (MISR) image sequence to extract multi-angle viewing (MAV) topographic parameters such as normalized difference angular index, which represents characteristics of the target desert topography. The backscattering coefficient from various space-borne SAR and stereotopography were compared with MAV observations to determine calibrated local surface roughness. Soil moisture extraction techniques from InSAR-phase coherence stacks were developed and compiled with advanced scatterometer (ASCAT) soil moisture data. Combined with metrological information such as the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA interim, correlations between intensity of sand dune activity as a proxy of aeolian processes in desert environments, surface wind conditions, and surface soil moisture were traced. Overall, we have confirmed that tracking sandy desert aeolian environments for long-term observations is feasible with space-borne, multi-sensor observations when combined with

  7. Emerging organic pollutants in the vadose zone of a soil aquifer treatment system: Pore water extraction using positive displacement.

    Science.gov (United States)

    Sopilniak, Alexander; Elkayam, Roy; Rossin, Anna Voloshenko; Lev, Ovadia

    2018-01-01

    Trace organic compounds in effluents, water streams and aquifers are amply reported. However, the mobile pool of Emerging Organic Contaminants (EOCs) in the deep parts of the vadose zone is hard to estimate, due to difficulties in extraction of sufficient quantity of pore water. Here, we present a new methodology for depth profiling of EOCs in pore water by Positive Displacement Extraction (PDE): Pore water extraction from unsaturated soil samples is carried out by withdrawal of soil cores by direct-push drilling and infiltrating the core by organics free water. We show that EOC concentrations in the water eluted in the plateau region of the inverse breakthrough curve is equal to their pore water concentrations. The method was previously validated for DOC extraction, and here the scope of the methodology is extended to pore water extraction for organic pollutants analysis. Method characteristics and validation were carried out with atrazine, simazine, carbamazepine, venlafaxine, O-desmethylvenlafaxine and caffeine in the concentration range of several ng to several μg/liter. Validation was carried out by laboratory experiments on three different soils (sandy, sandy-clayey and clayey). Field studies in the vadose zone of a SAT system provided 27 m deep EOC profiles with less than 1.5 m spatial resolution. During the percolation treatment, carbamazepine remained persistent, while the other studied EOCs were attenuated to the extent of 50-99%.The highest degradation rate of all studied EOCs was in the aerobic zone. EOC levels based on PDE and extraction by centrifugation were compared, showing a positive bias for centrifugation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Muhlbachova, G. [Crop Research Institute, Drnovska 507, 161 06 Prague 6, Ruzyne (Czech Republic); Sagova-Mareckova, M., E-mail: sagova@vurv.cz [Crop Research Institute, Drnovska 507, 161 06 Prague 6, Ruzyne (Czech Republic); Omelka, M. [Charles University, Faculty of Mathematics and Physics, Dept. of Probability and Mathematical Statistics, Prague 8, Karlin (Czech Republic); Szakova, J.; Tlustos, P. [Czech University of Life Sciences, Department of Agroenvironmental Chemistry and Plant Nutrition, Prague 6, Suchdol (Czech Republic)

    2015-01-01

    The effects of lead, zinc, cadmium, arsenic and copper deposits on soil microbial parameters were investigated at a site exposed to contamination for over 200 years. Soil samples were collected in triplicates at 121 sites differing in contamination and soil organic carbon (SOC). Microbial biomass, respiration, dehydrogenase activity and metabolic quotient were determined and correlated with total and extractable metal concentrations in soil. The goal was to analyze complex interactions between toxic metals and microbial parameters by assessing the effect of soil organic carbon in the relationships. The effect of SOC was significant in all interactions and changed the correlations between microbial parameters and metal fractions from negative to positive. In some cases, the effect of SOC was combined with that of clay and soil pH. In the final analysis, dehydrogenase activity was negatively correlated to total metal concentrations and acetic acid extractable metals, respiration and metabolic quotient were to ammonium nitrate extractable metals. Dehydrogenase activity was the most sensitive microbial parameter correlating most frequently with contamination. Total and extractable zinc was most often correlated with microbial parameters. The large data set enabled robust explanation of discrepancies in organic matter functioning occurring frequently in analyzing of contaminated soil processes. - Highlights: • Soil organic carbon affected all interactions between metals and microorganisms. • Soil organic carbon adjustment changed correlations from positive to negative. • Ammonium nitrate extractable metals were the most influencing fraction. • Dehydrogenase activity was the most affected soil parameter. • Zinc was the most toxic metal among studied metals.

  9. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site

    International Nuclear Information System (INIS)

    Muhlbachova, G.; Sagova-Mareckova, M.; Omelka, M.; Szakova, J.; Tlustos, P.

    2015-01-01

    The effects of lead, zinc, cadmium, arsenic and copper deposits on soil microbial parameters were investigated at a site exposed to contamination for over 200 years. Soil samples were collected in triplicates at 121 sites differing in contamination and soil organic carbon (SOC). Microbial biomass, respiration, dehydrogenase activity and metabolic quotient were determined and correlated with total and extractable metal concentrations in soil. The goal was to analyze complex interactions between toxic metals and microbial parameters by assessing the effect of soil organic carbon in the relationships. The effect of SOC was significant in all interactions and changed the correlations between microbial parameters and metal fractions from negative to positive. In some cases, the effect of SOC was combined with that of clay and soil pH. In the final analysis, dehydrogenase activity was negatively correlated to total metal concentrations and acetic acid extractable metals, respiration and metabolic quotient were to ammonium nitrate extractable metals. Dehydrogenase activity was the most sensitive microbial parameter correlating most frequently with contamination. Total and extractable zinc was most often correlated with microbial parameters. The large data set enabled robust explanation of discrepancies in organic matter functioning occurring frequently in analyzing of contaminated soil processes. - Highlights: • Soil organic carbon affected all interactions between metals and microorganisms. • Soil organic carbon adjustment changed correlations from positive to negative. • Ammonium nitrate extractable metals were the most influencing fraction. • Dehydrogenase activity was the most affected soil parameter. • Zinc was the most toxic metal among studied metals

  10. Carbon tetrachloride contamination, 200 West Area, Hanford Site: Arid Site Integrated Demonstration for remediation of volatile organic compounds

    International Nuclear Information System (INIS)

    Last, G.V.; Rohay, V.J.

    1991-01-01

    The Arid State Integrated Demonstration is a US Department of Energy (DOE) program targeted at the acquisition, development, demonstration, and deployment of technologies for evaluation and cleanup of volatile organic and associated contaminants in soils and ground waters. Several DOE laboratories, universities, and industry will participate in the program. Candidate technologies will be demonstrated in the areas of site characterization; performance prediction, monitoring, and evaluations; contaminant extraction and ex situ treatment; in situ remediations; and site closure and monitoring. The performance of these demonstrated technologies will be compared to baseline technologies and documented to promote the transfer of new technologies to industry for use at DOE facilities. The initial host site is the Hanford Site's 200 West Area. The location of the demonstration contains primarily carbon tetrachloride (CCl 4 ), chloroform, and a variety of associated mixed waste contaminants. Chemical processes used to recover and purify plutonium at Hanford's plutonium finishing plant (Z Plant) resulted in the production of actinide-bearing waste liquid. Both aqueous and organic liquid wastes were generated, and were routinely discharged to subsurface disposal facilities. The primary radionuclide in the waste streams was plutonium, and the primary organic was CCl 4 . This paper contains brief descriptions of the principal CCl 4 waste disposal facilities in Hanford's 200 West Area, associated hydrogeology, existing information on the extent of soil and ground-water contamination, and a conceptual outline of suspected subsurface CCl 4 distributions

  11. Effects of low molecular weight organic acids on 137Cs release from contaminated soils

    International Nuclear Information System (INIS)

    Chiang, Po Neng; Wang, Ming Kuang; Huang, Pan Ming; Wang, Jeng Jong

    2011-01-01

    Radio pollutant removal is one of several priority restoration strategies for the environment. This study assessed the effect of low molecular weight organic acid on the lability and mechanisms for release of 137 Cs from contaminated soils. The amount of 137 Cs radioactivity released from contaminated soils reacting with 0.02 M low molecular weight organic acids (LMWOAs) specifically acetic, succinic, oxalic, tartaric, and citric acid over 48 h were 265, 370, 760, 850, and 1002 Bq kg -1 , respectively. The kinetic results indicate that 137 Cs exhibits a two-step parabolic diffusion equation and a good linear relationship, indicating that the parabolic diffusion equation describes the data quite well, as shown by low p and high r 2 values. The fast stage, which was found to occur within a short period of time (0.083-3 h), corresponds to the interaction of LMWOAs with the surface of clay minerals; meanwhile, during the slow stage, which occurs over a much longer time period (3-24 h), desorption primarily is attributed to inter-particle or intra-particle diffusion. After a fifth renewal of the LMWOAs, the total levels of 137 Cs radioactivity released by acetic, succinic, oxalic, tartaric, and citric acid were equivalent to 390, 520, 3949, 2061, and 4422 Bq kg -1 soil, respectively. H + can protonate the hydroxyl groups and oxygen atoms at the broken edges or surfaces of the minerals, thereby weakening Fe-O and Al-O bonds. After protonation of H + , organic ligands can attack the OH and OH 2 groups in the minerals easily, to form complexes with surface structure cations, such as Al and Fe. The amounts of 137 Cs released from contaminated soil treated with LMWOAs were substantially increased, indicating that the LMWOAs excreted by the roots of plants play a critical role in 137 Cs release.

  12. Marine meiofauna, carbon and nitrogen mineralization in sandy and soft sediments of Disko Bay, West Greenland

    DEFF Research Database (Denmark)

    Rysgaard, S.; Christensen, P.B.; Sørensen, Martin Vinther

    2000-01-01

    Organic carbon mineralization was studied in a shallow-water (4 m), sandy sediment and 2 comparatively deep-water (150 and 300 m), soft sediments in Disko Bay, West Greenland. Benthic microalgae inhabiting the shallow-water locality significantly affected diurnal O-2 conditions within the surface...... is regulated primarily by the availability of organic matter and not by temperature. The shallow-water sediment contained a larger meiofauna population than the deep-water muddy sediments. Crustacean nauplia dominated the upper 9 mm while nematodes dominated below. A typical interstitial fauna of species...... layers of the sediment. Algal photosynthetic activity and nitrogen uptake reduced nitrogen effluxes and denitrification rates. Sulfate reduction was the most important pathway for carbon mineralization in the sediments of the shallow-water station. In contrast, high bottom-water NO3- concentrations...

  13. A novel modeling tool with multi-stressor functionality for organic contaminant transport and fate in the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Undeman, E., E-mail: emma.undeman@itm.su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Department of Applied Environmental Science, Stockholm University, 11418 Stockholm (Sweden); Gustafsson, E., E-mail: erik.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Gustafsson, B.G., E-mail: bo.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden)

    2014-11-01

    The coupled physical–biogeochemical model BALTSEM, previously used to assess nutrient/carbon cycles and eutrophication in the Baltic Sea, has been expanded to include algorithms for calculations of organic contaminant environmental transport and fate. This novel model version (BALTSEM-POP) is evaluated for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and hexachlorobenzene (HCB) in Baltic Sea surface water and sediment. Modeled dissolved concentrations are usually within a factor of 2–4 of observed concentrations, however with larger deviations for furans. Calculated concentrations in particulate organic matter are less accurate (within factors of 1–700), likely due to errors in estimated pelagic biomass, particulate matter–water partitioning, and large natural variability in field data. Concentrations in sediments are usually predicted within a factor of 6. The good performance of the model illustrates its usefulness for exploration of contaminant fate in response to variations in nutrient input and climatic conditions in the Baltic Sea marine environment. - Highlights: • A new model for organic chemical transport and fate in the Baltic Sea is presented. • Physical and biogeochemical processes are linked to organic contaminant transport. • The model is evaluated for PCBs, HCB and PCDD/Fs. • The model can predict dissolved concentrations within a factor of ca 2–4. • Predictions for concentrations in particulate matter and sediment are less accurate.

  14. A national-scale assessment of micro-organic contaminants in groundwater of England and Wales.

    Science.gov (United States)

    Manamsa, Katya; Crane, Emily; Stuart, Marianne; Talbot, John; Lapworth, Dan; Hart, Alwyn

    2016-10-15

    A large variety of micro-organic (MO) compounds is used in huge quantities for a range of purposes (e.g. manufacturing, food production, healthcare) and is now being frequently detected in the aquatic environment. Interest in the occurrence of MO contaminants in the terrestrial and aquatic environments continues to grow, as well as in their environmental fate and potential toxicity. However, the contamination of groundwater resources by MOs has a limited evidence base compared to other freshwater resources. Of particular concern are newly 'emerging contaminants' such as pharmaceuticals and lifestyle compounds, particularly those with potential endocrine disrupting properties. While groundwater often has a high degree of protection from pollution due to physical, chemical and biological attenuation processes in the subsurface compared to surface aquatic environments, trace concentrations of a large range of compounds are still detected in groundwater and in some cases may persist for decades due to the long residence times of groundwater systems. This study provides the first national-scale assessment of micro-organic compounds in groundwater in England and Wales. A large set of monitoring data was analysed to determine the relative occurrence and detected concentrations of different groups of compounds and to determine relationships with land-use, aquifer type and groundwater vulnerability. MOs detected including emerging compounds such as caffeine, DEET, bisphenol A, anti-microbial agents and pharmaceuticals as well as a range of legacy contaminants including chlorinated solvents and THMs, petroleum hydrocarbons, pesticides and other industrial compounds. There are clear differences in MOs between land-use types, particularly for urban-industrial and natural land-use. Temporal trends of MO occurrence are assessed but establishing long-term trends is not yet possible. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.

  15. Identification of specific organic contaminants in different units of a chemical production site.

    Science.gov (United States)

    Dsikowitzky, L; Botalova, O; al Sandouk-Lincke, N A; Schwarzbauer, J

    2014-07-01

    Due to the very limited number of studies dealing with the chemical composition of industrial wastewaters, many industrial organic contaminants still escape our view and consequently also our control. We present here the chemical characterization of wastewaters from different units of a chemical complex, thereby contributing to the characterization of industrial pollution sources. The chemicals produced in the investigated complex are widely and intensively used and the synthesis processes are common and applied worldwide. The chemical composition of untreated and treated wastewaters from the chemical complex was investigated by applying a non-target screening which allowed for the identification of 39 organic contaminants. According to their application most of them belonged to four groups: (i) unspecific educts or intermediates of industrial syntheses, (ii) chemicals for the manufacturing of pharmaceuticals, (iii) educts for the synthesis of polymers and resins, and (iv) compounds known as typical constituents of municipal sewage. A number of halogenated compounds with unknown toxicity and with very high molecular diversity belonged to the second group. Although these compounds were completely removed or degraded during wastewater treatment, they could be useful as "alarm indicators" for industrial accidents in pharmaceutical manufacturing units or for malfunctions of wastewater treatment plants. Three potential branch-specific indicators for polymer manufacturing were found in the outflow of the complex. Among all compounds, bisphenol A, which was present in the leachate water of the on-site waste deposit, occurred in the highest concentrations of up to 20 000 μg L(-1). The comparison of contaminant loads in the inflow and outflow of the on-site wastewater treatment facility showed that most contaminants were completely or at least significantly removed or degraded during the treatment, except two alkylthiols, which were enriched during the treatment process

  16. Use of dolomite phosphate rock (DPR) fertilizers to reduce phosphorus leaching from sandy soil

    International Nuclear Information System (INIS)

    Chen, G.C.; He, Z.L.; Stoffella, P.J.; Yang, X.E.; Yu, S.; Calvert, D.

    2006-01-01

    There is increasing concern over P leaching from sandy soils applied with water-soluble P fertilizers. Laboratory column leaching experiments were conducted to evaluate P leaching from a typical acidic sandy soil in Florida amended with DPR fertilizers developed from dolomite phosphate rock (DPR) and N-Viro soil. Ten leaching events were carried out at an interval of 7 days, with a total leaching volume of 1183 mm equivalent to the mean annual rainfall of this region during the period of 2001-2003. Leachates were collected and analyzed for total P and inorganic P. Phosphorus in the leachate was dominantly reactive, accounting for 67.7-99.9% of total P leached. Phosphorus leaching loss mainly occurred in the first three leaching events, accounting for 62.0-98.8% of the total P leached over the whole period. The percentage of P leached (in the total P added) from the soil amended with water-soluble P fertilizer was higher than those receiving the DPR fertilizers. The former was up to 96.6%, whereas the latter ranged from 0.3% to 3.8%. These results indicate that the use of N-Viro-based DPR fertilizers can reduce P leaching from sandy soils. - Fertilizers developed from dolomite phosphate rock (DPR) reduce phosphorus leaching from sandy soil

  17. Ripples and ripples: from sandy deserts to ion-sputtered surfaces

    International Nuclear Information System (INIS)

    Aste, T; Valbusa, U

    2005-01-01

    We study the morphological evolution of surfaces during ion sputtering and we compare their dynamical corrugation with aeolian ripple formation in sandy deserts. We show that, although the two phenomena are physically different, they must obey similar geometrical constraints and therefore they can be described within the same theoretical framework. The present theory distinguishes between atoms that stay bounded in the bulk and others that are mobile on the surface. We describe the excavation mechanisms, the adsorption and the surface mobility by means of a continuous equation derived from the study of dune formation on sand. We explore the spontaneous development of ordered nanostructures and explain the different dynamical behaviours experimentally observed in metals or in semiconductors or in amorphous systems. We also show that this novel approach can describe the occurrence of rotation in the ripple direction and the formation of other kinds of self-organized patterns induced by changes in the sputtering incidence angle

  18. A model compound study: The ecotoxicological evaluation of five organic contaminants employing a battery of marine bioassays

    International Nuclear Information System (INIS)

    Macken, Ailbhe; Giltrap, Michelle; Foley, Barry; McGovern, Evin; McHugh, Brendan; Davoren, Maria

    2008-01-01

    This paper describes the ecotoxicological evaluation of five organic contaminants frequently detected in marine sediments (tributyltin, triphenyltin, benzo[a]pyrene, fluoranthene, and PCB 153) using three marine species (Vibrio fischeri, Tetraselmis suecica, and Tisbe battagliai). The sensitivity of each species varied for all compounds. The triorganotins were consistently the most toxic to all species. The applicability of each test system to assess the acute toxicity of environmental contaminants and their use in Toxicity Identification Evaluation (TIE) is discussed. Suitability of the Microtox and T. battagliai tests for employment in TIE studies were further assessed through spiking experiments with tributyltin. Results demonstrated that the most effective treatment to remove organotin toxicity from the sample was the C 18 resin. The results of this study have important implications for risk assessment in estuarine and coastal waters in Ireland, where, at present the monitoring of sediment and water quality is predominantly reliant on chemical analysis alone. - Ecotoxicological evaluation of five organic marine sediment contaminants was conducted and the suitability of the test species for marine porewater TIE discussed

  19. A model compound study: The ecotoxicological evaluation of five organic contaminants employing a battery of marine bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Macken, Ailbhe [Radiation and Environmental Science Centre, Focas Institute, DIT, Kevin Street, Dublin 8 (Ireland)], E-mail: ailbhe.macken@dit.ie; Giltrap, Michelle [Radiation and Environmental Science Centre, Focas Institute, DIT, Kevin Street, Dublin 8 (Ireland); Marine Institute, Rinville, Oranmore, Co. Galway (Ireland)], E-mail: michelle.giltrap@marine.ie; Foley, Barry [School of Chemical and Pharmaceutical Sciences, DIT, Kevin Street, Dublin 8 (Ireland)], E-mail: barry.foley@dit.ie; McGovern, Evin [Marine Institute, Rinville, Oranmore, Co. Galway (Ireland)], E-mail: evin.mcgovern@marine.ie; McHugh, Brendan [Marine Institute, Rinville, Oranmore, Co. Galway (Ireland)], E-mail: brendan.mchugh@marine.ie; Davoren, Maria [Radiation and Environmental Science Centre, Focas Institute, DIT, Kevin Street, Dublin 8 (Ireland)], E-mail: maria.davoren@dit.ie

    2008-06-15

    This paper describes the ecotoxicological evaluation of five organic contaminants frequently detected in marine sediments (tributyltin, triphenyltin, benzo[a]pyrene, fluoranthene, and PCB 153) using three marine species (Vibrio fischeri, Tetraselmis suecica, and Tisbe battagliai). The sensitivity of each species varied for all compounds. The triorganotins were consistently the most toxic to all species. The applicability of each test system to assess the acute toxicity of environmental contaminants and their use in Toxicity Identification Evaluation (TIE) is discussed. Suitability of the Microtox and T. battagliai tests for employment in TIE studies were further assessed through spiking experiments with tributyltin. Results demonstrated that the most effective treatment to remove organotin toxicity from the sample was the C{sub 18} resin. The results of this study have important implications for risk assessment in estuarine and coastal waters in Ireland, where, at present the monitoring of sediment and water quality is predominantly reliant on chemical analysis alone. - Ecotoxicological evaluation of five organic marine sediment contaminants was conducted and the suitability of the test species for marine porewater TIE discussed.

  20. Electrokinetic remediation of anionic contamination from unsaturated soil: Field application

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Mattson, E.D.

    1995-01-01

    Electrokinetic remediation is an in situ technique under development at Sandia National Laboratories for removal of ionic contaminants from soil. While to date most other studies of this technique have focused on saturated soils, usually clays, the work at Sandia has been to extend the process to unsaturated sandy soils typical of arid regions. The impetus for this study is a chromate plume located beneath an old Sandia chemical waste landfill. Working in unsaturated soils is complicated by moisture control requirements, both to prevent undesired hydraulic transport of contamination outside the treatment zone and to optimize soil properties for efficient electrokinetic remediation. Two field tests will be discussed. First, a field test in clean soil is in progress to demonstrate moisture control with the Sandia electrode system. The second field demonstration, planned to begin the Fall of 1995, involves chromate removal from a in a chemical waste landfill

  1. Accumulation patterns of lipophilic organic contaminants in surface sediments and in economic important mussel and fish species from Jakarta Bay, Indonesia

    International Nuclear Information System (INIS)

    Dwiyitno; Dsikowitzky, Larissa; Nordhaus, Inga; Andarwulan, Nuri; Irianto, Hari Eko; Lioe, Hanifah Nuryani; Ariyani, Farida; Kleinertz, Sonja

    2016-01-01

    Non-target screening analyses were conducted in order to identify a wide range of organic contaminants in sediment and animal tissue samples from Jakarta Bay. High concentrations of di-iso-propylnaphthalenes (DIPNs), linear alkylbenzenes (LABs) and polycyclic aromatic hydrocarbons (PAHs) were detected in all samples, whereas phenylmethoxynaphthalene (PMN), DDT and DDT metabolites (DDX) were detected at lower concentrations. In order to evaluate the uptake and accumulation by economic important mussel (Perna viridis) and fish species, contaminant patterns of DIPNs, LABs and PAHs in different compartments were compared. Different patterns of these contaminant groups were found in sediment and animal tissue samples, suggesting compound-specific accumulation and metabolism processes. Significantly higher concentrations of these three contaminant groups in mussel tissue as compared to fish tissue from Jakarta Bay were found. Because P. viridis is an important aquaculture species in Asia, this result is relevant for food safety. - Highlights: • Analyses of surface sediment and animal tissue samples from a tropical coastal system • Non-target screening enabled identification of a wide range of organic contaminants. • Comparison of contaminant patterns in surface sediments and animal tissue samples • Results illustrate compound-specific accumulation and metabolism processes. • Higher concentrations of all contaminants in mussel tissue as compared to fish tissue

  2. Impact of fresh organic matter incorporation on PAH fate in a contaminated industrial soil

    International Nuclear Information System (INIS)

    Pernot, Audrey; Ouvrard, Stéphanie; Leglize, Pierre; Watteau, Françoise; Derrien, Delphine

    2014-01-01

    The impacts of fresh organic matter (OM) incorporation in an industrial PAH-contaminated soil on its structure and contaminant concentrations (available and total) were monitored. A control soil and a soil amended with the equivalent of 10 years maize residue input were incubated in laboratory-controlled conditions over 15 months. The structure of the amended soil showed an aggregation process trend which is attributable to (i) the enhanced microbial activity resulting from fresh OM input itself and (ii) the fresh OM and its degradation products. Initially the added organic matter was evenly distributed among all granulodensimetric fractions, and then rapidly degraded in the sand fraction, while stabilizing and accumulating in the silts. PAH degradation remained slight, despite the enhanced microbial biomass activity, which was similar to kinetics of the turnover rate of OM in an uncontaminated soil. The silts stabilized the anthropogenic OM and associated PAH. The addition of fresh OM tended to contribute to this stabilization process. Thus, in a context of plant growth on this soil two opposing processes might occur: rhizodegradation of the available contaminant and enhanced stabilization of the less available fraction due to carbon input. - Highlights: • Fresh OM input in an industrial soil leads to aggregation. • TC and δ 13 C increase in fine silts. • Fine silts store both the natural and anthropogenic OM. • PAH concentration and availability are not impacted by an addition of OM

  3. Impact of fresh organic matter incorporation on PAH fate in a contaminated industrial soil

    Energy Technology Data Exchange (ETDEWEB)

    Pernot, Audrey [Université de Lorraine, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); INRA, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); Université de Lorraine, LIEC, UMR 7360, Vandoeuvre-lès-Nancy, F-54506 (France); CNRS, LIEC, UMR 7360, Vandoeuvre-lès-Nancy, F-54506 (France); Ouvrard, Stéphanie, E-mail: stephanie.ouvrard@univ-lorraine.fr [Université de Lorraine, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); INRA, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); Leglize, Pierre [Université de Lorraine, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); INRA, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); Watteau, Françoise [Université de Lorraine, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); INRA, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); CNRS, UMS 3562, Vandoeuvre-lès-Nancy, F-54501 (France); Derrien, Delphine [INRA, BEF, UR 1138, Centre Nancy-Lorraine, Champenoux, F-54280 (France); and others

    2014-11-01

    The impacts of fresh organic matter (OM) incorporation in an industrial PAH-contaminated soil on its structure and contaminant concentrations (available and total) were monitored. A control soil and a soil amended with the equivalent of 10 years maize residue input were incubated in laboratory-controlled conditions over 15 months. The structure of the amended soil showed an aggregation process trend which is attributable to (i) the enhanced microbial activity resulting from fresh OM input itself and (ii) the fresh OM and its degradation products. Initially the added organic matter was evenly distributed among all granulodensimetric fractions, and then rapidly degraded in the sand fraction, while stabilizing and accumulating in the silts. PAH degradation remained slight, despite the enhanced microbial biomass activity, which was similar to kinetics of the turnover rate of OM in an uncontaminated soil. The silts stabilized the anthropogenic OM and associated PAH. The addition of fresh OM tended to contribute to this stabilization process. Thus, in a context of plant growth on this soil two opposing processes might occur: rhizodegradation of the available contaminant and enhanced stabilization of the less available fraction due to carbon input. - Highlights: • Fresh OM input in an industrial soil leads to aggregation. • TC and δ{sup 13}C increase in fine silts. • Fine silts store both the natural and anthropogenic OM. • PAH concentration and availability are not impacted by an addition of OM.

  4. Organization of work for prevention of propagation of radioactive contamination, for decontamination of the premise surfaces and individual protective means in case of radiation accident

    International Nuclear Information System (INIS)

    Klochkov, V.N.; Vas'kin, A.G.; Filatova, V.M.

    1995-01-01

    Radiation accident results in radioactive contamination of the surface, clothes and other property. If proper measures are taken, it will prevent propagation of contamination. Decontamination of surfaces - is a complicated and tedious process. The paper has examined the measures of organization and technical aspects of prevention of propagation of radioactive contamination. Methods of decontamination of internal surfaces of premises are demonstrated, organization of the individual protective means is determined. 9 refs

  5. Meeting the Science Needs of the Nation in the Wake of Hurricane Sandy-- A U.S. Geological Survey Science Plan for Support of Restoration and Recovery

    Science.gov (United States)

    Buxton, Herbert T.; Andersen, Matthew E.; Focazio, Michael J.; Haines, John W.; Hainly, Robert A.; Hippe, Daniel J.; Sugarbaker, Larry J.

    2013-01-01

    plan will: (1) further characterize impacts and changes, (2) guide mitigation and restoration of impacted communities and ecosystems, (3) inform a redevelopment strategy aimed at developing resilient coastal communities and ecosystems, (4) improve preparedness and responsiveness to the next hurricane or similar coastal disaster, and (5) enable improved hazard assessment, response, and recovery for future storms along the hurricane prone shoreline of the United States. The activities outlined in this plan are organized in five themes based on impact types and information needs. These USGS science themes are: Theme 1: Coastal topography and bathymetry. Theme 2: Impacts to coastal beaches and barriers. Theme 3: Impacts of storm surge and estuarine and bay hydrology. Theme 4: Impacts on environmental quality and persisting contaminant exposures. Theme 5: Impacts to coastal ecosystems, habitats, and fish and wildlife. A major emphasis in the implementation of this plan will be on interacting with stakeholders to better understand their specific data and information needs, to define the best way to make information available, and to support applications of USGS science and expertise to decisionmaking.

  6. Heavy metal(loid)s and organic contaminants in groundwater in the Pearl River Delta that has undergone three decades of urbanization and industrialization: Distributions, sources, and driving forces.

    Science.gov (United States)

    Huang, Guanxing; Zhang, Ming; Liu, Chunyan; Li, Liangping; Chen, Zongyu

    2018-09-01

    Urbanization and industrialization have increased groundwater resource demands, and may drive the change of heavy metal(loid)s and organic chemicals in groundwater in the Pearl River Delta (PRD), southern China. Thus, a comprehensive understanding of the distributions, sources, and driving forces of heavy metal(loid)s and organic chemicals in groundwater in the PRD is vital for water resource management in this region. In this study, eight heavy metal(loid)s and fifty-five organic chemicals in groundwater across the PRD were investigated. The results show that undrinkable groundwater related to heavy metal(loid)s was mainly due to high concentrations of Fe (19.3%) and As (6.8%). Eighteen organic contaminants were detected in groundwater in the PRD, where the most frequently detected organic contaminant was naphthalene, and its detection rate was 2.51%. In 5.3% of all groundwater samples, one or more organic contaminants were found. All detected organic contaminants, except ones without allowable limits, in groundwater were at concentrations below allowable limits of China. The mean concentrations of heavy metal(loid)s in granular aquifers were higher than those in fissured and karst aquifers, especially for Fe and As. Except Se, the mean concentrations of other heavy metal(loid)s and the frequency of detection of organic contaminants in groundwater in urbanized and peri-urban areas were higher than those in non-urbanized areas, especially for Hg, Co, and organic contaminants. Fe, As, and Se in groundwater mainly originated from the release of Fe/As/Se rich sediments. The former two were driven by reduction reactions, while the latter was driven by oxidation resulting from the infiltration of NO 3 - . In contrast, other five heavy metal(loid)s and organic contaminants in groundwater mainly originated from the anthropogenic sources, such as the infiltration of industrial sewage. It is evident that urbanization and industrialization are two powerful driving forces for

  7. Superstorm Sandy and the academic achievement of university students.

    Science.gov (United States)

    Doyle, Matthew D; Lockwood, Brian; Comiskey, John G

    2017-10-01

    Much of the literature on the consequences of natural disasters has focused on their physical and psychological ramifications. Few researchers have considered how the impacts of a natural disaster can influence academic achievement. This study analyses data collected from nearly 300 students at a mid-sized, private university in the northeast United States to determine if the effects of Cyclone Sandy in 2012 are associated with measures of academic achievement. The findings reveal that experiencing headaches after the event resulted in a higher likelihood of students suffering a loss of academic motivation. In addition, experiencing headaches and a loss of academic motivation were correlated with a lower grade point average (GPA) during the semester in which Sandy made landfall. However, the more direct effects of the superstorm, including displacement and a loss of power, did not have a significant bearing on academic achievement. Lastly, the paper examines the implications for higher education policy and future research. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.

  8. Organic Contaminants Library for the Sample Analysis at Mars

    Science.gov (United States)

    Misra, P.; Garcia-Sanchez, R.; Canham, J.; Mahaffy, P. R.

    2012-12-01

    A library containing mass spectra for Sample Analysis at Mars (SAM) materials has been developed with the purpose of contamination identification and control. Based on analysis of the Gas Chromatography-Mass Spectrometric (GCMS) data through thermal desorption, organic compounds were successfully identified from material samples, such as polymers, paints and adhesives. The library contains the spectra for all the compounds found in each of these analyzed files and is supplemented by a file information spreadsheet, a spreadsheet-formatted library for easy searching, and a Perfluorotributylamine (PFTBA) based normalization protocol to make corrections to SAM data in order to meet the standard set by commercial libraries. An example of the library in use can be seen in Figure 1, where the abundances match closely, the spectral shape is retained, and the library picks up on it with an 88% identification probability. Of course, there are also compounds that have not been identified and are retained as unknowns. The library we have developed, along with its supplemental materials, is useful from both organizational and practical viewpoints. Through them we are able to organize large volumes of GCMS data, while at the same time breaking down the components that each material sample is made of. This approach in turn allows us straightforward and fast access to information that will be critical while performing analysis on the data recorded by the SAM instrumentation. In addition, the normalization protocol dramatically increased the identification probability. In SAM GCMS, PFTBA signals were obfuscated, resulting in library matches far away from PFTBA; by using the normalization protocol we were able to transform it into a 92% probable spectral match for PFTBA. The project has demonstrated conclusively that the library is successful in identifying unknown compounds utilizing both the Automated Mass Spectral Deconvolution & Identification System (AMDIS) and the Ion

  9. Comparison of Passive Samplers for Monitoring Dissolved Organic Contaminants in Water Column Deployments NAC/SETAC 2012

    Science.gov (United States)

    Nonionic organic contaminants (NOCs) are difficult to measure in the water column due to their inherent chemical properties resulting in low water solubility and high particle activity. Traditional sampling methods require large quantities of water to be extracted and interferen...

  10. Longitudinal Impact of Hurricane Sandy Exposure on Mental Health Symptoms

    Directory of Open Access Journals (Sweden)

    Rebecca M. Schwartz

    2017-08-01

    Full Text Available Hurricane Sandy hit the eastern coast of the United States in October 2012, causing billions of dollars in damage and acute physical and mental health problems. The long-term mental health consequences of the storm and their predictors have not been studied. New York City and Long Island residents completed questionnaires regarding their initial Hurricane Sandy exposure and mental health symptoms at baseline and 1 year later (N = 130. There were statistically significant decreases in anxiety scores (mean difference = −0.33, p < 0.01 and post-traumatic stress disorder (PTSD scores (mean difference = −1.98, p = 0.001 between baseline and follow-up. Experiencing a combination of personal and property damage was positively associated with long-term PTSD symptoms (ORadj 1.2, 95% CI [1.1–1.4] but not with anxiety or depression. Having anxiety, depression, or PTSD at baseline was a significant predictor of persistent anxiety (ORadj 2.8 95% CI [1.1–6.8], depression (ORadj 7.4 95% CI [2.3–24.1 and PTSD (ORadj 4.1 95% CI [1.1–14.6] at follow-up. Exposure to Hurricane Sandy has an impact on PTSD symptoms that persists over time. Given the likelihood of more frequent and intense hurricanes due to climate change, future hurricane recovery efforts must consider the long-term effects of hurricane exposure on mental health, especially on PTSD, when providing appropriate assistance and treatment.

  11. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes

    International Nuclear Information System (INIS)

    Estevez, Esmeralda; Cabrera, María del Carmen; Fernández-Vera, Juan Ramón; Molina-Díaz, Antonio; Robles-Molina, José; Palacios-Díaz, María del Pino

    2016-01-01

    Irrigation with reclaimed water (R) is necessary to guarantee the sustainability of semi-arid areas. Results obtained during a two years monitoring network (2009–2011) in Gran Canaria are presented, including the analysis of chemical parameters, N and S isotopes, priority substances (2008/105/EC, 2013/39/EU), other organic contaminants and heavy metals in groundwater and R used to irrigate a golf course. The aims of this work are to evaluate the contamination in a volcanic aquifer, relate the presence of organic contaminants and heavy metals with the hydrogeochemistry and identify pollution sources in the area. No priority substance exceeded the EU thresholds for surface water, although seventeen were detected in R. The most frequent compounds were hexachlorobenzene, chlorpyrifos ethyl, fluorene, phenanthrene and pyrene. These compounds were detected at low concentration, except chlorpyrifos. Chlorpyrifos ethyl, terbuthylazine, diuron, terbutryn, procymidone, atrazine and propazine exceeded the European threshold concentration for pesticides in groundwater (100 ng L"−"1). Therefore, the priority substances chlorpyrifos ethyl and diuron must be included in monitoring studies. The priority pesticides chlorfenvinphos and diazinon were always detected in R but rarely in groundwater. Besides, the existence of contaminants not related to the current R irrigation has been identified. Absence of environmental problems related to heavy metals can be expected. The relationship among contaminant presence, hydrogeochemistry, including the stable isotopic prints of δ"1"8O, δ"1"5N and δ"3"4S and preferential recharge paths has been described. The coastal well shows high values of EC, nitrate, a variable chemistry, and 50% of organic contaminants detected above 100 ng L"−"1. The well located in the recharge area presents a stable hydrochemistry, the lowest value of δ"1"5N and the lowest contaminants occurrence. The area is an example of a complex volcanic media with

  12. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes

    Energy Technology Data Exchange (ETDEWEB)

    Estevez, Esmeralda, E-mail: eestevez@proyinves.ulpgc.es [Dpt. Física (GEOVOL), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Agrifood and Phytopathological Laboratory (Cabildo de Gran Canaria), 35413 Arucas, Canary Islands (Spain); Cabrera, María del Carmen, E-mail: mcarmen.cabrera@ulpgc.es [Dpt. Física (GEOVOL), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); IMDEA Water Institute, Alcalá de Henares, Madrid (Spain); Fernández-Vera, Juan Ramón, E-mail: jrfernandezv@grancanaria.com [Agrifood and Phytopathological Laboratory (Cabildo de Gran Canaria), 35413 Arucas, Canary Islands (Spain); Molina-Díaz, Antonio, E-mail: amolina@ujaen.es [Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen (Spain); Robles-Molina, José, E-mail: jroblesmol@gmail.com [Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen (Spain); Palacios-Díaz, María del Pino, E-mail: mp.palaciosdiaz@ulpgc.es [Dpt. de Patología Animal, Producción Animal, Bromatología y Tecnología de los Alimentos (GEOVOL), Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Canary Islands (Spain)

    2016-05-01

    Irrigation with reclaimed water (R) is necessary to guarantee the sustainability of semi-arid areas. Results obtained during a two years monitoring network (2009–2011) in Gran Canaria are presented, including the analysis of chemical parameters, N and S isotopes, priority substances (2008/105/EC, 2013/39/EU), other organic contaminants and heavy metals in groundwater and R used to irrigate a golf course. The aims of this work are to evaluate the contamination in a volcanic aquifer, relate the presence of organic contaminants and heavy metals with the hydrogeochemistry and identify pollution sources in the area. No priority substance exceeded the EU thresholds for surface water, although seventeen were detected in R. The most frequent compounds were hexachlorobenzene, chlorpyrifos ethyl, fluorene, phenanthrene and pyrene. These compounds were detected at low concentration, except chlorpyrifos. Chlorpyrifos ethyl, terbuthylazine, diuron, terbutryn, procymidone, atrazine and propazine exceeded the European threshold concentration for pesticides in groundwater (100 ng L{sup −1}). Therefore, the priority substances chlorpyrifos ethyl and diuron must be included in monitoring studies. The priority pesticides chlorfenvinphos and diazinon were always detected in R but rarely in groundwater. Besides, the existence of contaminants not related to the current R irrigation has been identified. Absence of environmental problems related to heavy metals can be expected. The relationship among contaminant presence, hydrogeochemistry, including the stable isotopic prints of δ{sup 18}O, δ{sup 15}N and δ{sup 34}S and preferential recharge paths has been described. The coastal well shows high values of EC, nitrate, a variable chemistry, and 50% of organic contaminants detected above 100 ng L{sup −1}. The well located in the recharge area presents a stable hydrochemistry, the lowest value of δ{sup 15}N and the lowest contaminants occurrence. The area is an example of a complex

  13. Analytical strategies for organic food packaging contaminants.

    Science.gov (United States)

    Sanchis, Yovana; Yusà, Vicent; Coscollà, Clara

    2017-03-24

    In this review, we present current approaches in the analysis of food-packaging contaminants. Gas and liquid chromatography coupled to mass spectrometry detection have been widely used in the analysis of some relevant families of these compounds such as primary aromatic amines, bisphenol A, bisphenol A diglycidyl ether and related compounds, UV-ink photoinitiators, perfluorinated compounds, phthalates and non-intentionally added substances. Main applications for sample treatment and different types of food-contact material migration studies have been also discussed. Pressurized Liquid Extraction, Solid-Phase Microextraction, Focused Ultrasound Solid-Liquid Extraction and Quechers have been mainly used in the extraction of food contact material (FCM) contaminants, due to the trend of minimising solvent consumption, automatization of sample preparation and integration of extraction and clean-up steps. Recent advances in analytical methodologies have allowed unequivocal identification and confirmation of these contaminants using Liquid Chromatography coupled to High Resolution Mass Spectrometry (LC-HRMS) through mass accuracy and isotopic pattern applying. LC-HRMS has been used in the target analysis of primary aromatic amines in different plastic materials, but few studies have been carried out applying this technique in post-target and non-target analysis of FCM contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Methods to assess bioavailability of hydrophobic organic contaminants: Principles, operations, and limitations.

    Science.gov (United States)

    Cui, Xinyi; Mayer, Philipp; Gan, Jay

    2013-01-01

    Many important environmental contaminants are hydrophobic organic contaminants (HOCs), which include PCBs, PAHs, PBDEs, DDT and other chlorinated insecticides, among others. Owing to their strong hydrophobicity, HOCs have their final destination in soil or sediment, where their ecotoxicological effects are closely regulated by sorption and thus bioavailability. The last two decades have seen a dramatic increase in research efforts in developing and applying partitioning based methods and biomimetic extractions for measuring HOC bioavailability. However, the many variations of both analytical methods and associated measurement endpoints are often a source of confusion for users. In this review, we distinguish the most commonly used analytical approaches based on their measurement objectives, and illustrate their practical operational steps, strengths and limitations using simple flowcharts. This review may serve as guidance for new users on the selection and use of established methods, and a reference for experienced investigators to identify potential topics for further research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil.

    Science.gov (United States)

    Zhuang, Wenhua; Li, Longguo; Liu, Chao

    2013-01-01

    Based on the laboratory study, the effects of sodium polyacrylate (SP) was investigated at 5 rates of 0, 0.08, 0.2, 0.5, and 1%, on water retention, saturated hydraulic conductivity(Ks), infiltration characteristic and water distribution profiles of a sandy soil. The results showed that water retention and available water capacity effectively increased with increasing SP rate. The Ks and the rate of wetting front advance and infiltration under certain pond infiltration was significantly reduced by increasing SP rate, which effectively reduced water in a sandy soil leaking to a deeper layer under the plough layer. The effect of SP on water distribution was obviously to the up layer and very little to the following deeper layers. Considering both the effects on water retention and infiltration capacity, it is suggested that SP be used to the sandy soil at concentrations ranging from 0.2 to 0.5%.

  16. Effects of predicted climatic changes on distribution of organic contaminants in brackish water mesocosms.

    Science.gov (United States)

    Ripszam, M; Gallampois, C M J; Berglund, Å; Larsson, H; Andersson, A; Tysklind, M; Haglund, P

    2015-06-01

    Predicted consequences of future climate change in the northern Baltic Sea include increases in sea surface temperatures and terrestrial dissolved organic carbon (DOC) runoff. These changes are expected to alter environmental distribution of anthropogenic organic contaminants (OCs). To assess likely shifts in their distributions, outdoor mesocosms were employed to mimic pelagic ecosystems at two temperatures and two DOC concentrations, current: 15°C and 4 mg DOCL(-1) and, within ranges of predicted increases, 18°C and 6 mg DOCL(-1), respectively. Selected organic contaminants were added to the mesocosms to monitor changes in their distribution induced by the treatments. OC partitioning to particulate matter and sedimentation were enhanced at the higher DOC concentration, at both temperatures, while higher losses and lower partitioning of OCs to DOC were observed at the higher temperature. No combined effects of higher temperature and DOC on partitioning were observed, possibly because of the balancing nature of these processes. Therefore, changes in OCs' fates may largely depend on whether they are most sensitive to temperature or DOC concentration rises. Bromoanilines, phenanthrene, biphenyl and naphthalene were sensitive to the rise in DOC concentration, whereas organophosphates, chlorobenzenes (PCBz) and polychlorinated biphenyls (PCBs) were more sensitive to temperature. Mitotane and diflufenican were sensitive to both temperature and DOC concentration rises individually, but not in combination. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Mineralogical and Micro-fabric investigation of the Sandy Facies of Opalinus Clay (Mont Terri)

    International Nuclear Information System (INIS)

    Kaufhold, Annette; Siegesmund, Siegfried; Dohrmann, Reiner; Graesle, Werner; Plischke, Ingo

    2013-01-01

    In the field of geological disposal of radioactive waste in many countries argillaceous formations are considered as potential host rock. For the understanding of the long-term behaviour of clay host rock, it is important to understand the interaction between mechanical behaviour, micro-fabric, and mineral composition. Previous publications showed that particularly the carbonate content and the arrangement of the carbonate grains (as cement in the matrix or as shells) determines the mechanical strength of Opalinus Clay and Callovo-Oxfordian Clay specimens, respectively. Klinkenberg et al. (2009) studied the shaly facies of Opalinus Clay, however, the actual deposit is planned to be built in the sandy facies of Opalinus Clay. The aim of the present study is to investigate the relation between micro-fabric, mineral composition, and mechanical properties of different samples derived from the sandy facies (BLT-A2). Image analysis showed that the carbonates in the sandy facies mainly occur as 1) matrix which in turn acts as cement. Carbonates also occur 2) in the fine sand fraction and 3) biogenic carbonates as traces. The carbonates of the sandy facies, therefore, appear to be similar to the carbonates of the Callovo-Oxfordian Clay with respect to their possible influence on failure strength. The mechanical testing showed that the shear strength increases with increasing carbonate content. This phenomenon was also observed for the samples of the Callovo-Oxfordian Clay, while the opposite relation was found for the shaly facies of the Opalinus Clay. Preliminary results presented here, indicate that the sandy facies (drilling BLT-A2) and Callovo-Oxfordian Clay show similar mechanical properties - in detail: 1) Micro-fabric: carbonates predominate in the matrix, 2) Mineralogy: high carbonate content and 3) Mechanical testing: shear strength increases with increasing carbonate content, where the type of carbonates which controls the increase of strength has to be

  18. Modeling the pH-mediated extraction of ionizable organic contaminants to improve the quality of municipal sewage sludge destined for land application

    International Nuclear Information System (INIS)

    Venkatesan, Arjun K.; Halden, Rolf U.

    2016-01-01

    A model was developed to assess the impact of adding acids and bases to processed municipal sewage sludge (MSS) to mobilize contaminants, facilitating their removal from sludge by flushing prior to land application. Among 312 organic contaminants documented to occur in U.S. MSS, 71 or 23% were identified as ionizable organic contaminants (IOCs), contributing a disproportionately large fraction of 82% of the total mass of sludge-borne contaminants. Detected IOCs included 57 pharmaceuticals and personal care products, 12 perfluorinated compounds, one surfactant and one pesticide. Annually, about 2000 t of IOCs were estimated to be released to U.S. soils via land-application of MSS. A partitioning model developed to assess the impact of pH on hydrophobic sorption revealed that between 36 and 85% of the mass of individual classes of IOCs potentially could be desorbed from MSS via pH adjustment and flushing. Thus, modeling results suggest that a sequential pH treatment [acidic (~ pH 2) followed by basic (~ pH 12) treatment] has the potential to reduce the burden of harmful IOCs in MSS applied on U.S. land by up to 40 ± 16 t annually. This approach may serve as a cost-effective treatment process that can be implemented easily in existing sludge treatment infrastructure in the U.S. and worldwide, serving to significantly improve the quality of MSS destined for land application. - Highlights: • Sorption model predicts the leachability of ionizable organics from sludge. • Ionic organics make up 82% of total contaminant mass in U.S. sludge. • 36–85% of ionic organic pollutants are removable by pH treatment. • Proposed sludge treatment promises cost-effective risk reduction.

  19. Modeling the pH-mediated extraction of ionizable organic contaminants to improve the quality of municipal sewage sludge destined for land application

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Arjun K.; Halden, Rolf U., E-mail: halden@asu.edu

    2016-04-15

    A model was developed to assess the impact of adding acids and bases to processed municipal sewage sludge (MSS) to mobilize contaminants, facilitating their removal from sludge by flushing prior to land application. Among 312 organic contaminants documented to occur in U.S. MSS, 71 or 23% were identified as ionizable organic contaminants (IOCs), contributing a disproportionately large fraction of 82% of the total mass of sludge-borne contaminants. Detected IOCs included 57 pharmaceuticals and personal care products, 12 perfluorinated compounds, one surfactant and one pesticide. Annually, about 2000 t of IOCs were estimated to be released to U.S. soils via land-application of MSS. A partitioning model developed to assess the impact of pH on hydrophobic sorption revealed that between 36 and 85% of the mass of individual classes of IOCs potentially could be desorbed from MSS via pH adjustment and flushing. Thus, modeling results suggest that a sequential pH treatment [acidic (~ pH 2) followed by basic (~ pH 12) treatment] has the potential to reduce the burden of harmful IOCs in MSS applied on U.S. land by up to 40 ± 16 t annually. This approach may serve as a cost-effective treatment process that can be implemented easily in existing sludge treatment infrastructure in the U.S. and worldwide, serving to significantly improve the quality of MSS destined for land application. - Highlights: • Sorption model predicts the leachability of ionizable organics from sludge. • Ionic organics make up 82% of total contaminant mass in U.S. sludge. • 36–85% of ionic organic pollutants are removable by pH treatment. • Proposed sludge treatment promises cost-effective risk reduction.

  20. Bioclogging Effects Relevant to In-Situ Bioremediation of Organic Contaminants

    Science.gov (United States)

    Bielefeldt, A. R.; Illangasekare, T.

    2002-05-01

    This presentation will summarize 5 years of laboratory experiments investigating the effects of biodegradation of organic contaminants on the hydrodynamic properties of saturated sand due to biomass accumulation. The contaminants studied included naphthalene, decane, diesel fuel, propylene glycol, and aircraft de-icing fluid (ADF). Most of the experiments were conducted in columns (~6 cm dia x 15 cm L). A wide range of environmental conditions were simulated including low to high organic loading (1.2 to 38,000 mg C/kg dry sand/d), various nutrient concentrations (C:N 3:1 to 5424:1), seepage velocity (0.5-11 m/d), and sand size (average diameter 0.19, 0.32, 0.49 mm). Changes in the hydraulic conductivity and dispersivity of the media over time and the biomass distribution in the sand at the end of the experiments were measured. In general, the hydraulic conductivity in the columns declined over time until a steady-state minimum was reached when the new biogrowth was balanced by endogenous decay and shear stress losses from the system. The minimum conductivity was generally 2 to 4 orders of magnitude below that of the clean sand. Dispersivity was evaluated using bromide tracer tests and monitoring the break-through curves. Dispersivity after biomass growth was always higher than that of the clean sand (up to 10x), but trends over time did not always consistently increase. Under selected conditions the dispersivity initially increased and then decreased, although never achieving a level below that of the clean sand. Final biomass concentrations in the sand at steady state ranged from 0.1 to 10 mg dry weight/g dry sand. In some experiments the biomass was evenly distributed through the sand while in others significantly more biomass was present at the column inlet. Some experiments were also conducted in larger 2-D tanks (122 cm L x 46 cm H x 6 cm W) which allowed the groundwater flow to route around local areas of bioclogging as would be likely to occur in subsurface

  1. Replacement of Eocene white sandy limestone in historical buildings : over 100 years of practice in the Netherlands

    NARCIS (Netherlands)

    Quist, W.J.; Nijland, T.G.; Hees, R.P.J. van

    2013-01-01

    This paper discusses the replacement of white sandy limestone (Gobertange and Lede or Balegem) in the Netherlands in (successive) restorations from the mid-19th century onwards. White sandy limestone, transported from the southern part of the Low Countries (now Belgium), was extensively used in the

  2. Geochemical processes at a fresh/seawater interface in a shallow sandy aquifer

    DEFF Research Database (Denmark)

    Andersen, Martin Søgaard; Iversen, Vibeke Margrethe Nyvang; Postma, Diederik Jan

    2001-01-01

    Chemical processes in a natural fresh-/seawater mixing zone were studied in a shallow sandy aquifer. The dominant redox-processes are sulfate reduction and methanogenesis. Methanogenesis produces CO2, which causes calcite dissolution. The produced calcium induces ion exchange with sodium. The fin...... result of these interactions between different types of geochemical processes is an anoxic groundwater enriched in bicarbonate and sodium.......Chemical processes in a natural fresh-/seawater mixing zone were studied in a shallow sandy aquifer. The dominant redox-processes are sulfate reduction and methanogenesis. Methanogenesis produces CO2, which causes calcite dissolution. The produced calcium induces ion exchange with sodium. The final...

  3. 2012 USACE Post Sandy Topographic LiDAR: Virginia and Maryland

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK ORDER NAME: VIRGINIA AND MARYLAND LIDAR ACQUISITION FOR SANDY RESPONSE CONTRACT NUMBER: W912P9-10-D-0533 TASK ORDER NUMBER: W81C8X2314841 Woolpert Project...

  4. Organic Contaminant Content and Physico-Chemical Characteristics of Waste Materials Recycled in Agriculture

    Directory of Open Access Journals (Sweden)

    Hannah Rigby

    2015-12-01

    Full Text Available A range of wastes representative of materials currently applied, or with future potential to be applied, to agricultural land in the UK as fertilisers and soil improvers or used as animal bedding in livestock production, were investigated. In addition to full physico-chemical characterization, the materials were analysed for a suite of priority organic contaminants. In general, contaminants were present at relatively low concentrations. For example, for biosolids and compost-like-output (CLO, concentrations of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs and polychlorinated biphenyls (PCBs were approximately 1−10 and 5–50 times lower, respectively, than various proposed or implemented European limit values for these contaminants in biosolids or composts applied to agricultural land. However, the technical basis for these limits may require re-evaluation in some cases. Polybrominated, and mixed halogenated, dibenzo-p-dioxins/dibenzofurans are not currently considered in risk assessments of dioxins and dioxin-like chemicals, but were detected at relatively high concentrations compared with PCDD/Fs in the biosolids and CLOs and their potential contribution to the overall toxic equivalency is assessed. Other ‘emerging’ contaminants, such as organophosphate flame retardants, were detected in several of the waste materials, and their potential significance is discussed. The study is part of a wider research programme that will provide evidence that is expected to improve confidence in the use of waste-derived materials in agriculture and to establish guidelines to protect the food chain where necessary.

  5. Dynamics And Remediation Of Fine Textured Soils And Ground Water Contaminated With Salts And Chlorinated Organic Compounds

    Science.gov (United States)

    Murata, Alison; Naeth, M. Anne

    2017-04-01

    Soil and ground water are frequently contaminated by industrial activities, posing a potential risk to human and environmental health and limiting land use. Proper site management and remediation treatments can return contaminated areas to safe and useful states. Most remediation research focuses on single contaminants in coarse and medium textured soils. Contaminant mixtures are common and make remediation efforts complex due to differing chemical properties. Remediation in fine textured soils is difficult since their low hydraulic conductivities hinder addition of amendments into and removal of contaminated media out of the impacted zone. The objective of this research is to assess contaminant dynamics and potential remediation techniques for fine textured soil and ground water impacted by multiple contaminants in Edmonton, Alberta, Canada. The University of Alberta's Ellerslie Waste Management Facility was used to process liquid laboratory waste from 1972 to 2007. A waste water pond leak prior to 1984 resulted in salt and chlorinated organic compound contamination. An extensive annual ground water monitoring data set for the site is available since 1988. Analytical parameters include pH, electrical conductivity, major ions, volatile organic compounds, and metals. Data have been compared to Alberta Tier 1 Soil and Groundwater Remediation Guidelines to identify exceedances. The parameters of greatest concern, based on magnitude and frequency of detection, are electrical conductivity, sodium, chloride, chloroform, and dichloromethane. Spatial analyses of the data show that the contamination is focused in and down gradient of the former waste water pond. Temporal analyses show different trends depending on monitoring well location. Laboratory column experiments were used to assess leaching as a potential treatment for salt contamination in fine textured soils. Saturated hydraulic conductivity was measured for seven soils from two depth intervals with or without

  6. Potential contamination of shipboard air samples by diffusive emissions of PCBs and other organic pollutants: implications and solutions.

    Science.gov (United States)

    Lohmann, Rainer; Jaward, Foday M; Durham, Louise; Barber, Jonathan L; Ockenden, Wendy; Jones, Kevin C; Bruhn, Regina; Lakaschus, Soenke; Dachs, Jordi; Booij, Kees

    2004-07-15

    Air samples were taken onboard the RRS Bransfield on an Atlantic cruise from the United Kingdom to Halley, Antarctica, from October to December 1998, with the aim of establishing PCB oceanic background air concentrations and assessing their latitudinal distribution. Great care was taken to minimize pre- and post-collection contamination of the samples, which was validated through stringent QA/QC procedures. However, there is evidence that onboard contamination of the air samples occurred,following insidious, diffusive emissions on the ship. Other data (for PCBs and other persistent organic pollutants (POPs)) and examples of shipboard contamination are presented. The implications of these findings for past and future studies of global POPs distribution are discussed. Recommendations are made to help critically appraise and minimize the problems of insidious/diffusive shipboard contamination.

  7. Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil.

    Science.gov (United States)

    Abdelhafez, Ahmed A; Li, Jianhua; Abbas, Mohamed H H

    2014-12-01

    The main objectives of the current study were to evaluate the potential effects of biochar derived from sugar cane bagasse (SC-BC) and orange peel (OP-BC) on improving the physicochemical properties of a metal smelter contaminated soil, and determining its potentiality for stabilizing Pb and As in soil. To achieve these goals, biochar was produced in a small-scale biochar producing plant, and an incubation experiment was conducted using a silt loam metal-contaminated soil treated with different application rates of biochar (0-10% w/w). The obtained results showed that, the addition of SC-BC and OP-BC increased significantly the soil aggregate stability, water-holding capacity, cation exchange capacity, organic matter and N-status in soil. SC-BC considerably decreased the solubility of Pb to values lower than the toxic regulatory level of the toxicity characteristics leaching procedure extraction (5 mg L(-1)). The rise in soil pH caused by biochar application, and the increase of soil organic matter transformed the labile Pb into less available fractions i.e. "Fe-Mn oxides" and "organic" bound fractions. On the other hand, As was desorbed from Fe-Mn oxides, which resulted in greater mobility of As in the treated soil. We concluded that SC-BC and OP-BC could be used successfully for remediating soils highly contaminated with Pb. However, considerable attention should be paid when using it in soil contaminated with As. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Uncertainties in sandy shorelines evolution under the Bruun rule assumption

    Directory of Open Access Journals (Sweden)

    Gonéri eLe Cozannet

    2016-04-01

    Full Text Available In the current practice of sandy shoreline change assessments, the local sedimentary budget is evaluated using the sediment balance equation, that is, by summing the contributions of longshore and cross-shore processes. The contribution of future sea-level-rise induced by climate change is usually obtained using the Bruun rule, which assumes that the shoreline retreat is equal to the change of sea-level divided by the slope of the upper shoreface. However, it remains unsure that this approach is appropriate to account for the impacts of future sea-level rise. This is due to the lack of relevant observations to validate the Bruun rule under the expected sea-level rise rates. To address this issue, this article estimates the coastal settings and period of time under which the use of the Bruun rule could be (invalidated, in the case of wave-exposed gently-sloping sandy beaches. Using the sedimentary budgets of Stive (2004 and probabilistic sea-level rise scenarios based on IPCC, we provide shoreline change projections that account for all uncertain hydrosedimentary processes affecting idealized coasts (impacts of sea-level rise, storms and other cross-shore and longshore processes. We evaluate the relative importance of each source of uncertainties in the sediment balance equation using a global sensitivity analysis. For scenario RCP 6.0 and 8.5 and in the absence of coastal defences, the model predicts a perceivable shift toward generalized beach erosion by the middle of the 21st century. In contrast, the model predictions are unlikely to differ from the current situation in case of scenario RCP 2.6. Finally, the contribution of sea-level rise and climate change scenarios to sandy shoreline change projections uncertainties increases with time during the 21st century. Our results have three primary implications for coastal settings similar to those provided described in Stive (2004 : first, the validation of the Bruun rule will not necessarily be

  9. Hurricane Sandy: An Educational Bibliography of Key Research Studies

    Science.gov (United States)

    Piotrowski, Chris

    2013-01-01

    There, undoubtedly, will be a flurry of research activity in the "Superstorm" Sandy impact area on a myriad of disaster-related topics, across academic disciplines. The purpose of this study was to review the disaster research related specifically to hurricanes in the educational and social sciences that would best serve as a compendium…

  10. Hurricane Sandy Exposure Alters the Development of Neural Reactivity to Negative Stimuli in Children.

    Science.gov (United States)

    Kessel, Ellen M; Nelson, Brady D; Kujawa, Autumn; Hajcak, Greg; Kotov, Roman; Bromet, Evelyn J; Carlson, Gabrielle A; Klein, Daniel N

    2018-03-01

    This study examined whether exposure to Hurricane Sandy-related stressors altered children's brain response to emotional information. An average of 8 months (M age  = 9.19) before and 9 months after (M age  = 10.95) Hurricane Sandy, 77 children experiencing high (n = 37) and low (n = 40) levels of hurricane-related stress exposure completed a task in which the late positive potential, a neural index of emotional reactivity, was measured in response to pleasant and unpleasant, compared to neutral, images. From pre- to post-Hurricane Sandy, children with high stress exposure failed to show the same decrease in emotional reactivity to unpleasant versus neutral stimuli as those with low stress exposure. Results provide compelling evidence that exposure to natural disaster-related stressors alters neural emotional reactivity to negatively valenced information. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  11. Superstorm Sandy: How the New York University Psychiatry Residency Training Program Weathered the Storm.

    Science.gov (United States)

    Capasso, Rebecca; Adler, Laura

    2016-10-01

    The teaching hospitals of the New York University psychiatry residency program were evacuated and then closed for a minimum of 3 months in the aftermath of Superstorm Sandy. Faculty and residents were deployed to alternate clinical sites. The authors examine the consequences of Superstorm Sandy and its implications for the New York University psychiatry residency training program. A survey was administered to faculty and residents. The authors tabulated 98 surveys, for which 24 % of faculty and 84 % of residents responded. Among respondents, 61 % believed that being involved in the evacuation of the hospitals was a positive experience. During deployment, most (85 %) found being placed with peers and supervisors to be beneficial, but there were significant disruptions. Despite facing multiple challenges including closed facilities, deployment to nonaffiliated hospitals, and exhausted personal resources, the training program continued to provide accredited clinical experiences, a core curriculum, and supervision for psychiatry residents during and after Superstorm Sandy.

  12. Quantifying the synergistic effect of the precipitation and land use on sandy desertification at county level: a case study in Naiman Banner, Northern China.

    Science.gov (United States)

    Xiaodong, Ge; Jinren, Ni; Zhenshan, Li; Ronggui, Hu; Xin, Ming; Qing, Ye

    2013-07-15

    Assessing the driving forces of sandy desertification is fundamental and important for its control. It has been widely accepted that both climatic conditions and land use have great impact on sandy desertification in northern China. However, the relative role and synergistic effect of each driving force of sandy desertification are still not clear. In this paper, an indicator named as SI was defined to represent the integrated probability of sandy desertification caused by land use. A quantitative method was developed for characterizing the relative roles of annual precipitation and land use to sandy desertification in both spatial and temporal dimensions at county level. Results showed that, at county level, land use was the main cause of sandy desertification for Naiman Banner since 1987-2009. In the case of spatial dimension, the different combination of land use types decided the distribution of sandy desertification probability and finally decided the spatial pattern of bared sand land. In the case of temporal dimension, the synergistic effect of land use and precipitation highly influenced the spatial distribution of sandy desertification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. New complex fertilizer 'Suprodit' to obtain safe agricultural productions on contaminated lands.

    Science.gov (United States)

    Nikolaevich Ratnikov, Alexander; Sergeevich Anisimov, Vyacheslav; Nikoaevna Anisimova, Lidiya; Georgievich Sviridenko, Dmitry; Jurievna Balanova, Olesya

    2015-04-01

    One of the reclamation techniques to reduce the accumulation of radionuclides and heavy metals in the crop is the use of natural sorbents, industrial deposits of which are located in the contaminated areas or at distances that allows one to organize cheap their delivery to the application site. More promising reclamation technique is the use of new types of complex fertilizers, the main components of which are special sorbents of natural or artificial origin. New complex fertilizer of prolonged action - "SUPRODIT", containing in addition to nutrients highly efficient mineral and organic sorbents, was developed by specialists of the RIRAE. The feedstock for mineral sorbent was Tripoli (finely porous siliceous mineral) from local field (Kaluga region), organic sorbent - peat. The "SUPRODIT"composition: N - 8-11%; P2O5 - 11-13 %; K2O - 11-17%, organic matter and 30-40%, respectively. The effect of a single application of complex fertilizer will be maintained for two or more growing seasons. Received RF patent for the invention "Method of production of complex fertilizer of prolonged action". In a series of field experiments on sod-podzolic sandy loam soil it was shown that the application of "SUPRODIT" at dose of 800 kg/ha to soil contaminated with dehydrated sewage sludge (DSS), significantly reduces heavy metals (Cd, Ni, Pb) content in a crop of oats and barley due to the sorption properties of this fertilizers. Thus, Cd accumulation in the oats grain decreased 1.3 times, barley grain - 1.5 times, Ni - 1.5 times for barley and oats; Pb - 1.8 and 1.7 times respectively opposite to variant where the DSS was applied only. "SUPRODIT" reduces the negative effects of HM on the growth and development of plants, and limits the accumulation of 137Cs and HM in biomass. The 137Cs content in the biomass of barley in the variant of jointly added to soil of 137Cs and "SUPRODIT" decreased by 8.9 times in comparison with control and 4.4 times compared with standard fertilizers (NPK

  14. Expanded uncertainty estimation methodology in determining the sandy soils filtration coefficient

    Science.gov (United States)

    Rusanova, A. D.; Malaja, L. D.; Ivanov, R. N.; Gruzin, A. V.; Shalaj, V. V.

    2018-04-01

    The combined standard uncertainty estimation methodology in determining the sandy soils filtration coefficient has been developed. The laboratory researches were carried out which resulted in filtration coefficient determination and combined uncertainty estimation obtaining.

  15. An Experimental Study of Portland Cement and Superfine Cement Slurry Grouting in Loose Sand and Sandy Soil

    Directory of Open Access Journals (Sweden)

    Weijing Yao

    2018-04-01

    Full Text Available Grouting technology is widely applied in the fields of geotechnical engineering in infrastructure. Loose sand and sandy soil are common poor soils in tunnel and foundation treatments. It is necessary to use superfine cement slurry grouting in the micro-cracks of soil. The different effectiveness of Portland cement slurry and superfine cement slurry in sandy soil by the laboratory grouting experiment method were presented in this paper. The grouting situations of superfine cement slurry injected into sand and sandy soil were explored. The investigated parameters were the dry density, wet density, moisture content, internal friction angle, and cohesion force. The results show that the consolidation effect of superfine cement is better than that of Portland cement due to the small size of superfine cement particles. The superfine cement can diffuse into the sand by infiltration, extrusion, and splitting. When the water–cement ratio of superfine cement slurry is less than 2:1 grouting into loose sand, the dry and wet density decrease with the increase in the water–cement ratio, while the moisture content and cohesive force gradually increase. When the water–cement ratio of superfine cement slurry is 1:1 grouting into loose sand and sandy soil, the dry density, wet density, and cohesive force of loose sand are larger than those of sandy soil. The results of the experiment may be relevant for engineering applications.

  16. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.G.; Zachara, J.M. [Pacific Northwest Lab., Richland, WA (United States)

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE`s Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  17. Strategies for monitoring the emerging polar organic contaminants in water with emphasis on integrative passive sampling.

    Science.gov (United States)

    Söderström, Hanna; Lindberg, Richard H; Fick, Jerker

    2009-01-16

    Although polar organic contaminants (POCs) such as pharmaceuticals are considered as some of today's most emerging contaminants few of them are regulated or included in on-going monitoring programs. However, the growing concern among the public and researchers together with the new legislature within the European Union, the registration, evaluation and authorisation of chemicals (REACH) system will increase the future need of simple, low cost strategies for monitoring and risk assessment of POCs in aquatic environments. In this article, we overview the advantages and shortcomings of traditional and novel sampling techniques available for monitoring the emerging POCs in water. The benefits and drawbacks of using active and biological sampling were discussed and the principles of organic passive samplers (PS) presented. A detailed overview of type of polar organic PS available, and their classes of target compounds and field of applications were given, and the considerations involved in using them such as environmental effects and quality control were discussed. The usefulness of biological sampling of POCs in water was found to be limited. Polar organic PS was considered to be the only available, but nevertheless, an efficient alternative to active water sampling due to its simplicity, low cost, no need of power supply or maintenance, and the ability of collecting time-integrative samples with one sample collection. However, the polar organic PS need to be further developed before they can be used as standard in water quality monitoring programs.

  18. Constraining Depositional Slope From Sedimentary Structures in Sandy Braided Streams

    Science.gov (United States)

    Lynds, R. M.; Mohrig, D.; Heller, P. L.

    2003-12-01

    Determination of paleoslopes in ancient fluvial systems has potentially broad application to quantitatively constraining the history of tectonics and paleoclimate in continental sequences. Our method for calculating paleoslopes for sandy braided streams is based upon a simple physical model that establishes depositional skin-frictional shear stresses from assemblages of sedimentary structures and their associated grain size distributions. The addition of a skin-frictional shear stress, with a geometrically determined form-drag shear stress results in a total boundary shear stress which is directly related to water-surface slope averaged over an appropriate spatial scale. In order to apply this model to ancient fluvial systems, it is necessary to measure the following: coarsest suspended sediment size, finest grain size carried in bed load, flow depth, dune height, and dune length. In the rock record, suspended load and bed load can be accurately assessed by well-preserved suspended load deposits ("low-energy" ripples) and bed load deposits (dune foresets). This model predicts an average slope for the North Loup River near Taylor, Nebraska (modern case study) of 2.7 x 10-3. The measured reach-averaged water surface slope for the same reach of the river is 1.37 x 10-3. We suggest that it is possible to calculate the depositional slope of a sandy fluvial system by a factor of approximately two. Additionally, preliminary application of this model to the Lower Jurassic Kayenta Formation throughout the Colorado Plateau provides a promising and consistent evaluation of paleoslope in an ancient and well-preserved, sandy braided stream deposit.

  19. Determination of diffusion coefficients in cohesive and sandy sediment from the area of Gorleben

    International Nuclear Information System (INIS)

    Klotz, D.

    1989-01-01

    The cohesive and sandy sediments stem from shaft driving at the Gorleben salt done. For the cohesive materials, HTD was used as a tracer substance, while I-131 - was used for the sandy materials. Diffusion coefficients of HTD in cohesive materials in their natural texture are in the range of 2x10 -6 to 5x10 -6 cm 2 /s, those of I-131 - in the investigated uniform fine and middle sands are approximately 3x10 -6 cm 2 /s. (DG) [de

  20. Disentangling diversity patterns in sandy beaches along environmental gradients.

    Science.gov (United States)

    Barboza, Francisco R; Gómez, Julio; Lercari, Diego; Defeo, Omar

    2012-01-01

    Species richness in sandy beaches is strongly affected by concurrent variations in morphodynamics and salinity. However, as in other ecosystems, different groups of species may exhibit contrasting patterns in response to these environmental variables, which would be obscured if only aggregate richness is considered. Deconstructing biodiversity, i.e. considering richness patterns separately for different groups of species according to their taxonomic affiliation, dispersal mode or mobility, could provide a more complete understanding about factors that drive species richness patterns. This study analyzed macroscale variations in species richness at 16 Uruguayan sandy beaches with different morphodynamics, distributed along the estuarine gradient generated by the Rio de la Plata over a 2 year period. Species richness estimates were deconstructed to discriminate among taxonomic groups, supralittoral and intertidal forms, and groups with different feeding habits and development modes. Species richness was lowest at intermediate salinities, increasing towards oceanic and inner estuarine conditions, mainly following the patterns shown for intertidal forms. Moreover, there was a differential tolerance to salinity changes according to the habitat occupied and development mode, which determines the degree of sensitivity of faunal groups to osmotic stress. Generalized (additive and linear) mixed models showed a clear increase of species richness towards dissipative beaches. All taxonomic categories exhibited the same trend, even though responses to grain size and beach slope were less marked for crustaceans and insects than for molluscs or polychaetes. However, supralittoral crustaceans exhibited the opposite trend. Feeding groups decreased from dissipative to reflective systems, deposit feeders being virtually absent in the latter. This deconstructive approach highlights the relevance of life history strategies in structuring communities, highlighting the relative

  1. Copper and zinc distribution coefficients for sandy aquifer materials

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Boddum, J. K.

    2000-01-01

    Distribution coe�cients (Kd) were measured for copper (Cu) and zinc (Zn) in laboratory batch experiments for 17 sandy aquifer materials at environmentally relevant solute concentrations (Cu: 5±300 mg/l, Zn: 20±3100 mg/l). The Kd values ranged two to three orders of magnitude (Cu: 70±10,800 l/ kg...

  2. Evaluating non-incinerative treatment of organically contaminated low level mixed waste

    International Nuclear Information System (INIS)

    Shuck, D.L.; Wade, J.F.

    1993-01-01

    This investigation examines the feasibility of using non-incinerator technologies effectively to treat organically contaminated mixed waste. If such a system is feasible now, it would be easier to license because it would avoid the stigma that incineration has in the publics' perception. As other DOE facilities face similar problems, this evaluation is expected to be of interest to both DOE and the attendees of WM'93. This investigation considered treatment to land disposal restriction (LDR) standards of 21 different low level mixed (LLM) waste streams covered by the Rocky Flats Federal Facilities Compliance Agreement (FFCA) agreement with the Environmental Protection Agency (EPA). Typically the hazardous components consists of organic solvent wastes and the radioactive component consists of uranic/transuranic wastes. Limited amounts of cyanide and lead wastes are also involved. The primary objective of this investigation was to identify the minimum number of non-thermal unit processes needed to effectively treat this collection of mixed waste streams

  3. Assessing the bioavailability of organic contaminants using a novel bioluminescent biosensor

    International Nuclear Information System (INIS)

    Keane, A.; Phoenix, P.; Lau, P.C.K.; Ghoshal, S.

    2002-01-01

    The limited rate and extent of biodegradation in contaminated soils is often attributed to a lack of bioavailability of hydrophobic organic compounds. To date, the majority of studies aimed at assessing bioavailability and modes of bacterial uptake have relied upon quantification of microbial degradation rates in comparison to rates of dissolution or desorption in corresponding abiotic systems. Several studies have indicated the possibility of a direct uptake mechanism for sorbed or separate phase compounds. However, there is a lack of direct evidence to support these claims. To address the need for a direct measurement technique for microbial bioavailability, we have constructed a whole-cell bioluminescent biosensor, Pseudomonas putida F1G4 (PpF1G4), by fusing lux genes that encode for bioluminescence to the solvent efflux pump (sep) promoter element in PpF1G4, which is induced by the presence of target organic compounds. When the biosensor microorganism is exposed to an inducing compound, the bioluminescence system is activated and the cell produces an intensity of visible light (λ = 495 nm) that is directly related to the level of exposure to the contaminant. Batch experiments were carried out to assess whether the biosensor is able to sense the presence of toluene, a representative target compound, contained in a NAPL. Preliminary results show that while PpF1G4 responds to toluene in the aqueous phase, the biosensor does not appear to emit a significant bioluminescence signal in response to the toluene present in the NAPL. Ongoing research is focusing on optimizing the experimental procedure to fully explore this issue. (author)

  4. Amelioration of sandy soils in drought stricken areas through use of ...

    African Journals Online (AJOL)

    ACSS

    improving N, P, Ca and Mg content in sandy soils, and consequently support crop growth and yield. ... stress, soil moisture conservation, soil fertility management ... water many times its own weight. ... improves the productivity of degraded,.

  5. Effect Of Soil Contamination Due To Wastewater Irrigation On Total Co As Determined By Neutron Activation And Other Conventional Analytical Techniques In Some Soils Of Egypt

    International Nuclear Information System (INIS)

    Abdel-Sabour, M. F.; Al-Salama, Y. J.

    2004-01-01

    Fifteen soil samples were chosen from different locations (five different locations at north greater Cairo, Egypt) to represent different soils (alluvial and sandy) as well as different sources of contaminated wastewater (sewage and industrial effluent). Using sequential extraction technique (extracting the soil with different solutions, which is designed to separate metal fractions), Co was separated into six operationally defined fractions: water soluble, exchangeable, carbonate bound, Fe-Mn oxides bound, organic bound and residual fractions. Moreover, total-Co in soils as determined by three analytical methods (sum of sequential extracting, Atomic Absorption Spectrometry (AAS) and neutron activation analysis (NAA) techniques) were compared. Cobalt distribution between different extractants shows that the greatest amounts are found in the residual and Occluded in Fe and Mn-Oxides fractions followed by carbonate or organic fractions. In most cases the proportion of all tested Co-forms has increased in contaminated soil layers with higher enrichment in organically bound Co, occluded in Fe and Mn oxides, carbonate exchangeable and soluble fractions. Results indicate that soil properties have a significant role on Co fractions in soil. In the mean time, soil properties are affected by pollution factors such as source of pollution and load of pollution on the studied soil. Data showed that values of total Co determined by NAA method were always higher than the relevant values determined by AAS or those calculated after the sequential extraction method. (Authors)

  6. A review of centrifugal testing of gasoline contamination and remediation.

    Science.gov (United States)

    Meegoda, Jay N; Hu, Liming

    2011-08-01

    Leaking underground storage tanks (USTs) containing gasoline represent a significant public health hazard. Virtually undetectable to the UST owner, gasoline leaks can contaminate groundwater supplies. In order to develop remediation plans one must know the extent of gasoline contamination. Centrifugal simulations showed that in silty and sandy soils gasoline moved due to the physical process of advection and was retained as a pool of free products above the water table. However, in clayey soils there was a limited leak with lateral spreading and without pooling of free products above the water table. Amount leaked depends on both the type of soil underneath the USTs and the amount of corrosion. The soil vapor extraction (SVE) technology seems to be an effective method to remove contaminants from above the water table in contaminated sites. In-situ air sparging (IAS) is a groundwater remediation technology for contamination below the water table, which involves the injection of air under pressure into a well installed into the saturated zone. However, current state of the art is not adequate to develop a design guide for site implementation. New information is being currently generated by both centrifugal tests as well as theoretical models to develop a design guide for IAS. The petroleum contaminated soils excavated from leaking UST sites can be used for construction of highway pavements, specifically as sub-base material or blended and used as hot or cold mix asphalt concrete. Cost analysis shows that 5% petroleum contaminated soils is included in hot or cold mix asphalt concrete can save US$5.00 production cost per ton of asphalt produced.

  7. A Review of Centrifugal Testing of Gasoline Contamination and Remediation

    Directory of Open Access Journals (Sweden)

    Jay N. Meegoda

    2011-08-01

    Full Text Available Leaking underground storage tanks (USTs containing gasoline represent a significant public health hazard. Virtually undetectable to the UST owner, gasoline leaks can contaminate groundwater supplies. In order to develop remediation plans one must know the extent of gasoline contamination. Centrifugal simulations showed that in silty and sandy soils gasoline moved due to the physical process of advection and was retained as a pool of free products above the water table. However, in clayey soils there was a limited leak with lateral spreading and without pooling of free products above the water table. Amount leaked depends on both the type of soil underneath the USTs and the amount of corrosion. The soil vapor extraction (SVE technology seems to be an effective method to remove contaminants from above the water table in contaminated sites. In-situ air sparging (IAS is a groundwater remediation technology for contamination below the water table, which involves the injection of air under pressure into a well installed into the saturated zone. However, current state of the art is not adequate to develop a design guide for site implementation. New information is being currently generated by both centrifugal tests as well as theoretical models to develop a design guide for IAS. The petroleum contaminated soils excavated from leaking UST sites can be used for construction of highway pavements, specifically as sub-base material or blended and used as hot or cold mix asphalt concrete. Cost analysis shows that 5% petroleum contaminated soils is included in hot or cold mix asphalt concrete can save US$5.00 production cost per ton of asphalt produced.

  8. 2014 NOAA Ortho-rectified Mosaic of Hurricane Sandy Coastal Impact Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles at 0.35m GSD created for NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative in Hurricane Sandy coastal...

  9. Restoration of contaminated soils

    International Nuclear Information System (INIS)

    Miranda J, Jose Eduardo

    2009-01-01

    A great variety of techniques are used for the restoration of contaminated soils. The contamination is present by both organic and inorganic pollutants. Environmental conditions and soil characteristics should take into account in order to implement a remedial technique. The bioremediation technologies are showed as help to remove a variety of soil contaminants. (author) [es

  10. Physical-hydraulic properties of a sandy loam typic paleudalf soil under organic cultivation of 'montenegrina' mandarin (Citrus deliciosa Tenore¹

    Directory of Open Access Journals (Sweden)

    Caroline Valverde dos Santos

    2014-12-01

    Full Text Available Citrus plants are the most important fruit species in the world, with emphasis to oranges, mandarins and lemons. In Rio Grande do Sul, Brazil, most fruit production is found on small properties under organic cultivation. Soil compaction is one of the factors limiting production and due to the fixed row placement of this crop, compaction can arise in various manners in the interrows of the orchard. The aim of this study was to evaluate soil physical properties and water infiltration capacity in response to interrow management in an orchard of mandarin (Citrus deliciosa Tenore 'Montenegrina' under organic cultivation. Interrow management was performed through harrowing, logs in em "V", mowing, and cutting/knocking down plants with a knife roller. Soil physical properties were evaluated in the wheel tracks of the tractor (WT, between the wheel tracks (BWT, and in the area under the line projection of the canopy (CLP, with undisturbed soil samples collected in the 0.00-0.15, 0.15-0.30, 0.30-0.45, and 0.45-0.60 m layers, with four replicates. The soil water infiltration test was performed using the concentric cylinder method, with a maximum time of 90 min for each test. In general, soil analysis showed a variation in the physical-hydraulic properties of the Argissolo Vermelho-Amarelo distrófico arênico (sandy loam Typic Paleudalf in the three sampling sites in all layers, regardless of the management procedure in the interrows. Machinery traffic leads to heterogeneity in the soil physical-hydraulic properties in the interrows of the orchard. Soil porosity and bulk density are affected especially in the wheel tracks of the tractor (WT, which causes a reduction in the constant rate of infiltration and in the accumulated infiltration of water in this sampling site. The use of the disk harrow and mower leads to greater harmful effects on the soil, which can interfere with mandarin production.

  11. effect of tractor forward speed on sandy loam soil physical ...

    African Journals Online (AJOL)

    Dr Obe

    Ilorin on a sandy loam soil to evaluate the effect of the imposition of different .... of the blade is 10.5cm. ... arranged in an inverted cone shape with ... replicates were taken for each speed run. The ..... Thakur, T. C; A. Yadav; B. P. Varshney and.

  12. Methods to assess bioavailability of hydrophobic organic contaminants: Principles, operations, and limitations

    International Nuclear Information System (INIS)

    Cui Xinyi; Mayer, Philipp; Gan, Jay

    2013-01-01

    Many important environmental contaminants are hydrophobic organic contaminants (HOCs), which include PCBs, PAHs, PBDEs, DDT and other chlorinated insecticides, among others. Owing to their strong hydrophobicity, HOCs have their final destination in soil or sediment, where their ecotoxicological effects are closely regulated by sorption and thus bioavailability. The last two decades have seen a dramatic increase in research efforts in developing and applying partitioning based methods and biomimetic extractions for measuring HOC bioavailability. However, the many variations of both analytical methods and associated measurement endpoints are often a source of confusion for users. In this review, we distinguish the most commonly used analytical approaches based on their measurement objectives, and illustrate their practical operational steps, strengths and limitations using simple flowcharts. This review may serve as guidance for new users on the selection and use of established methods, and a reference for experienced investigators to identify potential topics for further research. - This review summarizes the principles and operations of bioavailability prediction methods, discusses their strengths and limitations, and highlights issues for future research.

  13. Sorption and Migration Mechanisms of 237 Np through Sandy Soil

    International Nuclear Information System (INIS)

    Chantaraprachoom, Nanthavan; Tanaka, Tadao

    2003-06-01

    In order to evaluate migration behavior of radioactive nuclides in the disposal of low-level radioactive waste into a shallow land burial, the sorption characteristic and migration behavior of 237 Np through sandy soil was studied. Two experimental methods were performed by using batch and column systems. The distribution coefficients (K d ) obtained from the adsorption and desorption process are rather small about 16 and 21 cm 3 /g respectively. Size distribution of 237 Np species in the influent solution was measured by ultra-filtration technique. Migration mechanism of 237 Np was studied by column experiments. The experimental condition was the influence of volume of eluting solution; 100, 300, 500, 1000 and 2000 ml respectively. The result from five column experiments confirm that the sorption characteristics of 237 Np are mainly controlled by a reversible ion-exchange reaction and the migration of 237 Np in the sandy soil can be estimated by using the K d concept

  14. Low pressure drop filtration of airborne molecular organic contaminants using open-channel networks

    Science.gov (United States)

    Dallas, Andrew J.; Joriman, Jon; Ding, Lefei; Weineck, Gerald; Seguin, Kevin

    2007-03-01

    Airborne molecular contamination (AMC) continues to play a very decisive role in the performance of many microelectronic devices and manufacturing processes. Besides airborne acids and bases, airborne organic contaminants such as 1-methyl-2-pyrrolidinone (NMP), hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), perfluoroalkylamines and condensables are of primary concern in these applications. Currently, the state of the filtration industry is such that optimum filter life and removal efficiency for organics is offered by granular carbon filter beds. However, the attributes that make packed beds of activated carbon extremely efficient also impart issues related to elevated filter weight and pressure drop. Most of the lower pressure drop AMC filters currently offered are quite expensive and are simply pleated combinations of various adsorptive and reactive media. On the other hand, low pressure drop filters, such as those designed as open-channel networks (OCN's), offer good filter life and removal efficiency with the additional benefits of significant reductions in overall filter weight and pressure drop. Equally important for many applications, the OCN filters can reconstruct the airflow so as to enhance the operation of a tool or process. For tool mount assemblies and fan filter units (FFUs) this can result in reduced fan and blower speeds, which subsequently can provide reduced vibration and energy costs. Additionally, these low pressure drop designs can provide a cost effective way of effectively removing AMC in full fab (or HVAC) filtration applications without significantly affecting air-handling requirements. Herein, we will present a new generation of low pressure drop OCN filters designed for the removal of airborne organics in a wide range of applications.

  15. Distribution and enzymatic activity of heterotrophic bacteria decomposing selected macromolecular compounds in a Baltic Sea sandy beach

    Science.gov (United States)

    Podgórska, B.; Mudryk, Z. J.

    2003-03-01

    The potential capability to decompose macromolecular compounds, and the level of extracellular enzyme activities were determined in heterotrophic bacteria isolated from a sandy beach in Sopot on the Southern Baltic Sea coast. Individual isolates were capable of hydrolysing a wide spectrum of organic macromolecular compounds. Lipids, gelatine, and DNA were hydrolyzed most efficiently. Only a very small percentage of strains were able to decompose cellulose, and no pectinolytic bacteria were found. Except for starch-hydrolysis, no significant differences in the intensity of organic compound decomposition were recorded between horizontal and vertical profiles of the studied beach. Of all the studied extracellular enzymes, alkaline phosphatase, esterase lipase, and leucine acrylaminidase were most active; in contrast, the activity α-fucosidase, α-galactosidase and β-glucouronidase was the weakest. The level of extracellular enzyme activity was similar in both sand layers.

  16. 2012 USGS EAARL-B Coastal Topography: Post-Sandy, First Surface (NJ)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ASCII xyz and binary point-cloud data, as well as a digital elevation model (DEM) of a portion of the New Jersey coastline, pre- and post-Hurricane Sandy (October...

  17. Covalent organic polymer functionalized activated carbon: A novel material for water contaminant removal and CO2 capture

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    Covalent organic polymers (COPs) have emerged as one of the leading advanced materials for environmental applications, such as the capture and recovery of carbon dioxide and the removal of contaminants from polluted water. COPs exhibit many remarkable properties that other leading advanced materi...

  18. Fingerprinting of petroleum hydrocarbons (PHC) and other biogenic organic compounds (BOC) in oil-contaminated and background soil samples.

    Science.gov (United States)

    Wang, Zhendi; Yang, C; Yang, Z; Hollebone, B; Brown, C E; Landriault, M; Sun, J; Mudge, S M; Kelly-Hooper, F; Dixon, D G

    2012-09-01

    Total petroleum hydrocarbons (TPH) or petroleum hydrocarbons (PHC) are one of the most widespread soil contaminants in Canada, the United States and many other countries worldwide. Clean-up of PHC-contaminated soils costs the Canadian economy hundreds of millions of dollars annually. In Canada, most PHC-contaminated site evaluations are based on the methods developed by the Canadian Council of the Ministers of the Environment (CCME). However, the CCME method does not differentiate PHC from BOC (the naturally occurring biogenic organic compounds), which are co-extracted with petroleum hydrocarbons in soil samples. Consequently, this could lead to overestimation of PHC levels in soil samples. In some cases, biogenic interferences can even exceed regulatory levels (300 μg g(-1) for coarse soils and 1300 μg g(-1) for fine soils for Fraction 3, C(16)-C(34) range, in the CCME Soil Quality Level). Resulting false exceedances can trigger unnecessary and costly cleanup or remediation measures. Therefore, it is critically important to develop new protocols to characterize and quantitatively differentiate PHC and BOC in contaminated soils. The ultimate objective of this PERD (Program of Energy Research and Development) project is to correct the misconception that all detectable hydrocarbons should be regulated as toxic petroleum hydrocarbons. During 2009-2010, soil and plant samples were collected from over forty oil-contaminated and paired background sites in various provinces. The silica gel column cleanup procedure was applied to effectively remove all target BOC from the oil-contaminated sample extracts. Furthermore, a reliable GC-MS method in combination with the derivatization technique, developed in this laboratory, was used for identification and characterization of various biogenic sterols and other major biogenic compounds in these oil-contaminated samples. Both PHC and BOC in these samples were quantitatively determined. This paper reports the characterization

  19. Visualising the equilibrium distribution and mobility of organic contaminants in soil using the chemical partitioning space.

    Science.gov (United States)

    Wong, Fiona; Wania, Frank

    2011-06-01

    Assessing the behaviour of organic chemicals in soil is a complex task as it is governed by the physical chemical properties of the chemicals, the characteristics of the soil as well as the ambient conditions of the environment. The chemical partitioning space, defined by the air-water partition coefficient (K(AW)) and the soil organic carbon-water partition coefficient (K(OC)), was employed to visualize the equilibrium distribution of organic contaminants between the air-filled pores, the pore water and the solid phases of the bulk soil and the relative importance of the three transport processes removing contaminants from soil (evaporation, leaching and particle erosion). The partitioning properties of twenty neutral organic chemicals (i.e. herbicides, pharmaceuticals, polychlorinated biphenyls and volatile chemicals) were estimated using poly-parameter linear free energy relationships and superimposed onto these maps. This allows instantaneous estimation of the equilibrium phase distribution and mobility of neutral organic chemicals in soil. Although there is a link between the major phase and the dominant transport process, such that chemicals found in air-filled pore space are subject to evaporation, those in water-filled pore space undergo leaching and those in the sorbed phase are associated with particle erosion, the partitioning coefficient thresholds for distribution and mobility can often deviate by many orders of magnitude. In particular, even a small fraction of chemical in pore water or pore air allows for evaporation and leaching to dominate over solid phase transport. Multiple maps that represent soils that differ in the amount and type of soil organic matter, water saturation, temperature, depth of surface soil horizon, and mineral matters were evaluated.

  20. MALDI-TOF MS for the Identification of Cultivable Organic-Degrading Bacteria in Contaminated Groundwater near Unconventional Natural Gas Extraction Sites

    Directory of Open Access Journals (Sweden)

    Inês C. Santos

    2017-08-01

    Full Text Available Groundwater quality and quantity is of extreme importance as it is a source of drinking water in the United States. One major concern has emerged due to the possible contamination of groundwater from unconventional oil and natural gas extraction activities. Recent studies have been performed to understand if these activities are causing groundwater contamination, particularly with respect to exogenous hydrocarbons and volatile organic compounds. The impact of contaminants on microbial ecology is an area to be explored as alternatives for water treatment are necessary. In this work, we identified cultivable organic-degrading bacteria in groundwater in close proximity to unconventional natural gas extraction. Pseudomonas stutzeri and Acinetobacter haemolyticus were identified using matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF MS, which proved to be a simple, fast, and reliable method. Additionally, the potential use of the identified bacteria in water and/or wastewater bioremediation was studied by determining the ability of these microorganisms to degrade toluene and chloroform. In fact, these bacteria can be potentially applied for in situ bioremediation of contaminated water and wastewater treatment, as they were able to degrade both compounds.

  1. MALDI-TOF MS for the Identification of Cultivable Organic-Degrading Bacteria in Contaminated Groundwater near Unconventional Natural Gas Extraction Sites.

    Science.gov (United States)

    Santos, Inês C; Martin, Misty S; Carlton, Doug D; Amorim, Catarina L; Castro, Paula M L; Hildenbrand, Zacariah L; Schug, Kevin A

    2017-08-10

    Groundwater quality and quantity is of extreme importance as it is a source of drinking water in the United States. One major concern has emerged due to the possible contamination of groundwater from unconventional oil and natural gas extraction activities. Recent studies have been performed to understand if these activities are causing groundwater contamination, particularly with respect to exogenous hydrocarbons and volatile organic compounds. The impact of contaminants on microbial ecology is an area to be explored as alternatives for water treatment are necessary. In this work, we identified cultivable organic-degrading bacteria in groundwater in close proximity to unconventional natural gas extraction. Pseudomonas stutzeri and Acinetobacter haemolyticus were identified using matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF MS), which proved to be a simple, fast, and reliable method. Additionally, the potential use of the identified bacteria in water and/or wastewater bioremediation was studied by determining the ability of these microorganisms to degrade toluene and chloroform. In fact, these bacteria can be potentially applied for in situ bioremediation of contaminated water and wastewater treatment, as they were able to degrade both compounds.

  2. The soil structure investigation for the interpreting radiocaesium behaviour in upper horizons of Chernobyl contaminated sandy soils

    International Nuclear Information System (INIS)

    Vazhinskij, A.G.

    2002-01-01

    The soil-composing particles in natural environment form aggregates of different stability. For soils (topsoil) of contrasting type from Chernobyl NPP area the particle size and microaggregate analyses have been performed and the distribution of Cs 137 in the obtained fractions has been studied. Results of long-term investigation of Cs 137 vertical migration in sandy soils of 50-km zone around Chernobyl NPP have been compared with data on radiocaesium distribution among water-stable aggregates and particles of various size in studied soils. On the basis of particle size analysis and aggregate soil composition the size of soil components with vertical migration potential, and the amount of Cs 137 potentially tending to migrate with the soil components along soil profile have been assessed. Based on findings showing Cs 137 partitioning among water-stable soil aggregates of diverse size and pattern of the radionuclide vertical distribution in top 0-10 cm soil layer, it was assumed that neither shift of peak radiocaesium level from upper soil layer downwards nor the so-called slow constituent of Cs 137 vertical migration (in terms of quasi diffusion description of Cs 137 profile in soil) could not be explained by self-motion of soil aggregates and particles with associated radiocaesium. Hypothesis of root intermixing as principal mechanism responsible for Cs 137 vertical transport in top 0-10 cm soil layer was postulated

  3. Validation of regression models for nitrate concentrations in the upper groundwater in sandy soils

    International Nuclear Information System (INIS)

    Sonneveld, M.P.W.; Brus, D.J.; Roelsma, J.

    2010-01-01

    For Dutch sandy regions, linear regression models have been developed that predict nitrate concentrations in the upper groundwater on the basis of residual nitrate contents in the soil in autumn. The objective of our study was to validate these regression models for one particular sandy region dominated by dairy farming. No data from this area were used for calibrating the regression models. The model was validated by additional probability sampling. This sample was used to estimate errors in 1) the predicted areal fractions where the EU standard of 50 mg l -1 is exceeded for farms with low N surpluses (ALT) and farms with higher N surpluses (REF); 2) predicted cumulative frequency distributions of nitrate concentration for both groups of farms. Both the errors in the predicted areal fractions as well as the errors in the predicted cumulative frequency distributions indicate that the regression models are invalid for the sandy soils of this study area. - This study indicates that linear regression models that predict nitrate concentrations in the upper groundwater using residual soil N contents should be applied with care.

  4. PHYSICOCHEMICAL PROPERTIES AS PREDICTORS OF ORGANIC CHEMICAL EFFECTS ON SOIL MICROBIAL RESPIRATION

    Science.gov (United States)

    Structure-activity analysis was used to evaluate the effects of 19 hazardous organic chemicals on microbial respiration in two slightly acidic soils (a Captina silt loam from Roane County Tennessee, and a McLaurin sandy loam from Stone County, Mississippi), both low in organic ca...

  5. Contamination versus preservation of cosmetics

    DEFF Research Database (Denmark)

    Lundov, Michael Dyrgaard; Moesby, Lise; Zachariae, Claus

    2009-01-01

    Cosmetics with high water content are at a risk of being contaminated by micro-organisms that can alter the composition of the product or pose a health risk to the consumer. Pathogenic micro-organisms such as Staphylococcus aureus and Pseudomonas aeruginosa are frequently found in contaminated...... cosmetics. In order to avoid contamination of cosmetics, the manufacturers add preservatives to their products. In the EU and the USA, cosmetics are under legislation and all preservatives must be safety evaluated by committees. There are several different preservatives available but the cosmetic market...

  6. The Sandy Hook Elementary School shooting as tipping point

    Science.gov (United States)

    Shultz, James M; Muschert, Glenn W; Dingwall, Alison; Cohen, Alyssa M

    2013-01-01

    Among rampage shooting massacres, the Sandy Hook Elementary School shooting on December 14, 2012 galvanized public attention. In this Commentary we examine the features of this episode of gun violence that has sparked strong reactions and energized discourse that may ultimately lead toward constructive solutions to diminish high rates of firearm deaths and injuries in the United States. PMID:28228989

  7. A study on the aseismic safety of the experimental VHTR on the dense sandy layer

    International Nuclear Information System (INIS)

    Fujita, Shigeki; Ito, Yoshio; Baba, Osamu; Suzuki, Hideyuki; Takewaki, Naonobu; Kondo, Tsukasa; Yoshimura, Takashi; Yamada, Hitoshi.

    1986-12-01

    A series of studies has been carried out in 1983 and 1985 for the purpose of confirming the aseismic safety of the Experimental VHTR on the dense sandy layer. In 1983, effect of some of soil properties on seismic responses of the reactor building was estimated by means of parametric survey, and soil properties were estimated by analyzing the obserbed earthquake record. In 1985, literature review, linear, nonlinear parametric analyses and nonlinear simulation analyses were carried to study and compare the analysis method. In addition, seismic response of proposed construction site was estimated with nonlinear analysis method. As a result of these studies, the seismic response of reactor building on the dense sandy layers and wave propagation characteristics of sandy layers are understood. Especially, by means of many parametric studies, the effect of input wave characteristics, soil stiffness, nonlinear characteristics of soil properties and nonlinear analysis method on the reactor building responses were evaluated. (author)

  8. What would happen to Superstorm Sandy under the influence of a substantially warmer Atlantic Ocean?

    Science.gov (United States)

    Lau, William K. M.; Shi, J. J.; Tao, W. K.; Kim, K. M.

    2016-01-01

    Based on ensemble numerical simulations, we find that possible responses of Sandy-like superstorms under the influence of a substantially warmer Atlantic Ocean bifurcate into two groups. In the first group, storms are similar to present-day Sandy from genesis to extratropical transition, except they are much stronger, with peak Power Destructive Index (PDI) increased by 50-80%, heavy rain by 30-50%, and maximum storm size (MSS) approximately doubled. In the second group, storms amplify substantially over the interior of the Atlantic warm pool, with peak PDI increased by 100-160%, heavy rain by 70-180%, and MSS more than tripled compared to present-day Superstorm Sandy. These storms when exiting the warm pool, recurve northeastward out to sea, subsequently interact with the developing midlatitude storm by mutual counterclockwise rotation around each other and eventually amplify into a severe Northeastern coastal storm, making landfall over the extreme northeastern regions from Maine to Nova Scotia.

  9. NSF-RANN trace contaminants abstracts

    International Nuclear Information System (INIS)

    Copenhaver, E.D.; Harnden, D.S.

    1976-10-01

    Specific areas of interest of the Environmental Aspects of Trace Contaminants Program are organic chemicals of commerce, metals and organometallic compounds, air-borne contaminants, and environmental assay methodology. Fifty-three abstracts of literature on trace contaminants are presented. Author, keyword, and permuted title indexes are included

  10. Analysis of Organic and Inorganic Contaminants in Dried Sewage Sludge and By-Products of Dried Sewage Sludge Gasification

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2014-01-01

    Full Text Available Organic and inorganic contaminants in sewage sludge may cause their presence also in the by-products formed during gasification processes. Thus, this paper presents multidirectional chemical instrumental activation analyses of dried sewage sludge as well as both solid (ash, char coal and liquid (tar by-products formed during sewage gasification in a fixed bed reactor which was carried out to assess the extent of that phenomenon. Significant differences were observed in the type of contaminants present in the solid and liquid by-products from the dried sewage sludge gasification. Except for heavy metals, the characteristics of the contaminants in the by-products, irrespective of their form (solid and liquid, were different from those initially determined in the sewage sludge. It has been found that gasification promotes the migration of certain valuable inorganic compounds from sewage sludge into solid by-products which might be recovered. On the other hand, the liquid by-products resulting from sewage sludge gasification require a separate process for their treatment or disposal due to their considerable loading with toxic and hazardous organic compounds (phenols and their derivatives.

  11. [Spatial distribution pattern and allometric growth of three common species on moving sand dunes in Horqin Sandy Land, China].

    Science.gov (United States)

    Jia, Mei-yu; Li, Xue-hua; Oh, Choong-hyeon; Park, Hong-chul; Miao, Chun-ping; Han, Xu

    2015-10-01

    Research on fine scale pattern and characteristics of allometric growth could contribute to better understanding plants' adaptation in moving sandy dunes. The abundance, height and biomass of 3 species Agriophilum aquarrosum, Corispermum candelabrum and Setaria viridis in twenty-eight 1 m x 1 m quadrats of Horqin Sandy Land were identified, mapped and described. The nearest neighbor method and O-ring O(r) function analysis were applied to analyze the spatial patterns. The results showed that the individual spatial pattern was mainly aggregated in 1 m x 1 m quadrat at community level but mainly random at population level. At 0-50 cm individual distance scale, both intraspecific and interspecific relationship were facilitation and aggregated distribution occurred at some scales and varied with increasing plant abundance in 1 m x 1 m quadrat. In 0-40 cm, the aggregated distribution of S. viridis and A. aquarrosum increased obviously; in 10-20 cm, both intraspecific and interspecific aggregation increased; in 10-30 cm, the occurrence possibility of positive correlations between S. viridis and A. aquarrosum, S. viridis and C. candelabrum all increased; in 40-50 cm, the possibility of positive correlations between A. squarrosum and S. viridis, A. squarrosum and C. candelabrum all increased. Research on the three species components indicated that the growth rate of above-ground was faster than that of underground. S. viridis had the highest ratio of under-ground biomass to above-ground biomass but its nutritional organs' biomass ratio was medium. C. candelabrum allocated more biomass to propagative organs and stem, but A. squarrosum allocated more biomass to nutritional organs. Based on the spatial distribution and allometric characteristics, the three common species in moving sand dunes preferred r strategy in their life history.

  12. Patterns of species richness in sandy beaches of South America ...

    African Journals Online (AJOL)

    The middle shore is primarily occupied by cirolanids and bivalves, and hippid crabs, bivalves and amphipods dominate the lower beach. Generally, species richness increases from upper to lower beach levels. Studies carried out on exposed sandy beaches of south-central Chile (ca. 40°S) show that different beach states ...

  13. Effect of biochar or activated carbon amendment on the volatilisation and biodegradation of organic soil pollutants

    Science.gov (United States)

    Werner, David; Meynet, Paola; Bushnaf, Khaled

    2013-04-01

    Biochar or activated carbon added to contaminated soil may temporarily reduce the volatilisation of organic pollutants by enhanced sorption. The long-term effect of sorbent amendments on the fate of volatile petroleum hydrocarbon mixtures (VPHs) will depend on the responses of the soil bacterial community members, especially those which may utilize VPHs as carbon substrates. We investigated the volatilisation and biodegradation of VPHs emanating from NAPL sources and migrating through one meter long columns containing unsaturated sandy soil with and without 2% biochar or activated carbon amendment. After 420 days, VPH volatilisation from AC amended soil was less than 10 percent of the cumulative VPH volatilisation flux from unamended soil. The cumulative CO2 volatilisation flux increased more slowly in AC amended soil, but was comparable to the untreated soil after 420 days. This indicated that the pollution attenuation over a 1 meter distance was improved by the AC amendment. Biochar was a weaker VPH sorbent than AC and had a lesser effect on the cumulative VPH and CO2 fluxes. We also investgated the predominant bacterial community responses in sandy soil to biochar and/or VPH addition with a factorially designed batch study, and by analyzing preserved soil samples. Biochar addition alone had only weak effects on soil bacterial communities, while VPH addition was a strong community structure shaping factor. The bacterial community effects of biochar-enhanced VPH sorption were moderated by the limited biomass carrying capacity of the sandy soil investigated which contained only low amounts of inorganic nitrogen. Several Pseudomonas spp., including Pseudomonas putida strains, became dominant in VPH polluted soil with and without biochar. The ability of these versatile VPH degraders to effectively regulate their metabolic pathways according to substrate availabilities may additionally have moderated bacterial community structure responses to the presence of biochar

  14. Dose assessment and radioecological consequences to aquatic organisms in the areas of Russia exposed to radioactive contamination

    International Nuclear Information System (INIS)

    Kryshev, I.I.; Sazykina, T.G.

    1996-01-01

    A comparative analysis of the radioecological state of aquatic ecosystems in the territory of Russia was performed. The following water bodies were considered: lakes and rivers in the Ural and Chernobyl contaminated areas, the Yenisei River, cooling ponds of nuclear power plants, and the Arctic Seas. It was demonstrated that in all cases under consideration, doses to aquatic organisms were markedly higher than those to humans. Especially high exposure levels to fish and molluscs much in excess of the natural background were observed in a number of water bodies in the Ural and Chernobyl contaminated areas

  15. Occurrence of organic wastewater and other contaminants in cave streams in northeastern Oklahoma and northwestern Arkansas

    Science.gov (United States)

    Bidwell, Joseph R.; Becker, C.; Hensley, S.; Stark, R.; Meyer, M.T.

    2010-01-01

    The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and ??-sitosterol), plasticizers [diethylhexylphthalate and tris (2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surfacewater site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewaterassociated chemicals into the cave. Halogenated organics

  16. Characterization of Carbon Monoxide Exposure During Hurricane Sandy and Subsequent Nor'easter.

    Science.gov (United States)

    Schnall, Amy; Law, Royal; Heinzerling, Amy; Sircar, Kanta; Damon, Scott; Yip, Fuyuen; Schier, Josh; Bayleyegn, Tesfaye; Wolkin, Amy

    2017-10-01

    Carbon monoxide (CO) is an odorless, colorless gas produced by fossil fuel combustion. On October 29, 2012, Hurricane Sandy moved ashore near Atlantic City, New Jersey, causing widespread morbidity and mortality, $30 to $50 billion in economic damage, and 8.5 million households to be without power. The combination of power outages and unusually low temperatures led people to use alternate power sources, placing many at risk for CO exposure. We examined Hurricane Sandy-related CO exposures from multiple perspectives to help identify risk factors and develop strategies to prevent future exposures. This report combined data from 3 separate sources (health departments, poison centers via the National Poison Data System, and state and local public information officers). Results indicated that the number of CO exposures in the wake of Hurricane Sandy was significantly greater than in previous years. The persons affected were mostly females and those in younger age categories and, despite messaging, most CO exposures occurred from improper generator use. Our findings emphasize the continued importance of CO-related communication and ongoing surveillance of CO exposures to support public health response and prevention during and after disasters. Additionally, regional poison centers can be a critical resource for potential on-site management, public health promotion, and disaster-related CO exposure surveillance. (Disaster Med Public Health Preparedness. 2017;11:562-567).

  17. Bioaugmentation for Aerobic Bioremediation of RDX-Contaminated Groundwater

    Science.gov (United States)

    2016-06-01

    sampling. The surface soil is characterized as a sandy loam soil (78% sand, 6% silt, 16% clay ) with a pH of 8.4, an organic carbon content of < 0.1...biomass is disposed of according to local ordinances (e.g., sterilized and directed into a municipal sanitary sewer). E.3. Use Information and...sterilized and directed into a municipal sanitary sewer). E.3. Use Information and Consumer Exposure Cultures are being used solely for field

  18. Method of removing contaminants from plastic resins

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-11-18

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  19. Method for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  20. Decontamination method for radiation contaminated metal

    International Nuclear Information System (INIS)

    Enda, Masami; Hosaka, Katsumi; Sakai, Hitoshi.

    1997-01-01

    An organic acid solution is used as a decontamination liquid, and base materials of radiation contaminated metals are dissolved in the solution. The concentration of the organic acid is measured, and the organic acid is supplied by an amount corresponding to the lowering of the concentration. The decontamination liquid wastes generated during the decontamination step are decomposed, and metals leached in the organic acid solution are separated. With such procedures, contamination intruded into the inside of the mother materials of the metals can be removed, and radioactivity of the contaminated metals such as stainless steels and carbon steels can be eliminated, or the radiation level thereof can be reduced. In addition, the amount of secondary wastes generated along with the decontamination can be suppressed. (T.M.)

  1. Impact of Superstorm Sandy on Medicare Patients' Utilization of Hospitals and Emergency Departments.

    Science.gov (United States)

    Stryckman, Benoit; Walsh, Lauren; Carr, Brendan G; Hupert, Nathaniel; Lurie, Nicole

    2017-10-01

    National health security requires that healthcare facilities be prepared to provide rapid, effective emergency and trauma care to all patients affected by a catastrophic event. We sought to quantify changes in healthcare utilization patterns for an at-risk Medicare population before, during, and after Superstorm Sandy's 2012 landfall in New Jersey (NJ). This study is a retrospective cohort study of Medicare beneficiaries impacted by Superstorm Sandy. We compared hospital emergency department (ED) and healthcare facility inpatient utilization in the weeks before and after Superstorm Sandy landfall using a 20% random sample of Medicare fee-for-service beneficiaries continuously enrolled in 2011 and 2012 (N=224,116). Outcome measures were pre-storm discharges (or transfers), average length of stay, service intensity weight, and post-storm ED visits resulting in either discharge or hospital admission. In the pre-storm week, hospital transfers from skilled nursing facilities (SNF) increased by 39% and inpatient discharges had a 0.3 day decreased mean length of stay compared to the prior year. In the post-storm week, ED visits increased by 14% statewide; of these additional "surge" patients, 20% were admitted to the hospital. The increase in ED demand was more than double the statewide average in the most highly impacted coastal regions (35% versus 14%). Superstorm Sandy impacted both pre- and post-storm patient movement in New Jersey; post-landfall ED surge was associated with overall storm impact, which was greatest in coastal counties. A significant increase in the number and severity of pre-storm transfer patients, in particular from SNF, as well as in post-storm ED visits and inpatient admissions, draws attention to the importance of collaborative regional approaches to healthcare in large-scale events.

  2. Measurement of earthquake-induced shear strain in sandy gravel

    International Nuclear Information System (INIS)

    Ohkawa, I.; Futaki, M.; Yamanouchi, H.

    1989-01-01

    The nuclear power reactor buildings have been constructed on the hard rock ground formed in or before the Tertiary in Japan. This is mainly because the nuclear reactor building is much heavier than the common buildings and requires a large bearing capacity of the underlying soil deposit, and additionally the excessive deformation in soil deposit might cause damage in reactor building and subsequently cause the malfunction of the internal important facilities. Another reason is that the Quaternary soil deposit is not fully known with respect to its dynamic property. The gravel, and the sandy gravel, the representative soils of the Quaternary, have been believed to be suitable soil deposits to support the foundation of a common building, although the soils have rarely been investigated so closely on their physical properties quantitatively. In this paper, the dynamic deformability, i.e., the shear stress-strain relationship of the Quaternary diluvial soil deposit is examined through the earthquake ground motion measurement using accelerometers, pore-pressure meters, the specific devices developed in this research work. The objective soil deposit in this research is the sandy gravel of the diluvial and the alluvial

  3. Solubility of lead and copper in biochar-amended small arms range soils: influence of soil organic carbon and pH.

    Science.gov (United States)

    Uchimiya, Minori; Bannon, Desmond I

    2013-08-14

    Biochar is often considered a strong heavy metal stabilizing agent. However, biochar in some cases had no effects on, or increased the soluble concentrations of, heavy metals in soil. The objective of this study was to determine the factors causing some biochars to stabilize and others to dissolve heavy metals in soil. Seven small arms range soils with known total organic carbon (TOC), cation exchange capacity, pH, and total Pb and Cu contents were first screened for soluble Pb and Cu concentrations. Over 2 weeks successive equilibrations using weak acid (pH 4.5 sulfuric acid) and acetate buffer (0.1 M at pH 4.9), Alaska soil containing disproportionately high (31.6%) TOC had nearly 100% residual (insoluble) Pb and Cu. This soil was then compared with sandy soils from Maryland containing significantly lower (0.5-2.0%) TOC in the presence of 10 wt % (i) plant biochar activated to increase the surface-bound carboxyl and phosphate ligands (PS450A), (ii) manure biochar enriched with soluble P (BL700), and (iii) unactivated plant biochars produced at 350 °C (CH350) and 700 °C (CH500) and by flash carbonization (corn). In weak acid, the pH was set by soil and biochar, and the biochars increasingly stabilized Pb with repeated extractions. In pH 4.9 acetate buffer, PS450A and BL700 stabilized Pb, and only PS450A stabilized Cu. Surface ligands of PS450A likely complexed and stabilized Pb and Cu even under acidic pH in the presence of competing acetate ligand. Oppositely, unactivated plant biochars (CH350, CH500, and corn) mobilized Pb and Cu in sandy soils; the putative mechanism is the formation of soluble complexes with biochar-borne dissolved organic carbon. In summary, unactivated plant biochars can inadvertently increase dissolved Pb and Cu concentrations of sandy, low TOC soils when used to stabilize other contaminants.

  4. Enantioselective stable isotope analysis (ESIA) — A new concept to evaluate the environmental fate of chiral organic contaminants

    International Nuclear Information System (INIS)

    Badea, Silviu-Laurentiu; Danet, Andrei-Florin

    2015-01-01

    Since 2011, the enantiospecific stable carbon isotope analysis (ESIA) has emerged as an innovative technique to assess the environmental fate of chiral emerging compounds by combining in one experimental technique both compound specific isotope analysis (CSIA) and enantioselective analysis. To date, the ESIA was applied for four classes of compounds: α-hexachlorocyclohexane (α-HCH), polar herbicides (phenoxy acids), synthetic polycyclic musk galaxolide (HHCB), and phenoxyalkanoic methyl herbicides. From an analytical point of view there are factors that are hindering the application of ESIA methods for the field samples: (i.e. amounts of target analyte, matrix effects, GC resolution) and overcoming these factors is challenging. While ESIA was shown as a mature technique for the first three abovementioned class of compounds, no isotope analysis of individual enantiomers could be performed for phenoxyalkanoic methyl herbicides. With respect to field studies, one study showed that ESIA might be a promising tool to distinguish between biotic and abiotic transformation pathways of chiral organic contaminants and even to differentiate between their aerobic and anaerobic biotransformation pathways. The development of ESIA methods for new chiral emerging contaminants in combination with development of multi-element isotope analysis will contribute to a better characterization of transformation pathways of chiral organic contaminants. - Highlights: • ESIA is an innovative technique to assess the environmental fate of chiral pollutants • Overcoming the analytical limitations of ESIA is challenging • Development of ESIA methods for new chiral emerging contaminants is needed

  5. Enantioselective stable isotope analysis (ESIA) — A new concept to evaluate the environmental fate of chiral organic contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Badea, Silviu-Laurentiu, E-mail: badeasilviu@gmail.com [Department of Chemistry, Umeå University, SE-901 87 Umeå (Sweden); Danet, Andrei-Florin [Department of Analytical Chemistry, University of Bucharest, Faculty of Chemistry, 90-92 Panduri Str., Bucharest 050657 (Romania)

    2015-05-01

    Since 2011, the enantiospecific stable carbon isotope analysis (ESIA) has emerged as an innovative technique to assess the environmental fate of chiral emerging compounds by combining in one experimental technique both compound specific isotope analysis (CSIA) and enantioselective analysis. To date, the ESIA was applied for four classes of compounds: α-hexachlorocyclohexane (α-HCH), polar herbicides (phenoxy acids), synthetic polycyclic musk galaxolide (HHCB), and phenoxyalkanoic methyl herbicides. From an analytical point of view there are factors that are hindering the application of ESIA methods for the field samples: (i.e. amounts of target analyte, matrix effects, GC resolution) and overcoming these factors is challenging. While ESIA was shown as a mature technique for the first three abovementioned class of compounds, no isotope analysis of individual enantiomers could be performed for phenoxyalkanoic methyl herbicides. With respect to field studies, one study showed that ESIA might be a promising tool to distinguish between biotic and abiotic transformation pathways of chiral organic contaminants and even to differentiate between their aerobic and anaerobic biotransformation pathways. The development of ESIA methods for new chiral emerging contaminants in combination with development of multi-element isotope analysis will contribute to a better characterization of transformation pathways of chiral organic contaminants. - Highlights: • ESIA is an innovative technique to assess the environmental fate of chiral pollutants • Overcoming the analytical limitations of ESIA is challenging • Development of ESIA methods for new chiral emerging contaminants is needed.

  6. influence of tillage practices on physical properties of a sandy loam

    African Journals Online (AJOL)

    DR. AMINU

    many regions of the world if the mechanics of tillage effects on soil physical properties is to be well understood. Thus, the ... tillage systems on water storage of a sandy loam soil after 22 years of ..... Soil infiltration ... and processes. Academy ...

  7. Enhanced degradation of mono aromatic hydrocarbons in sandy aquifer materials

    Energy Technology Data Exchange (ETDEWEB)

    Corseuil, Henry X [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Sanitaria; Weber, Junior, W J [Michigan Univ., Ann Arbor, MI (United States). Dept. of Civil and Environmental Engineering

    1994-12-31

    The use of an inoculation technique to enhance rates of in-situ biodegradation of toxic organic contaminants by increasing subsurface populations of specific microorganisms is described. An external biologically active carbon (BAC) adsorber is demonstrated to be an efficient reactor system for collection, acclimation and enrichment of microorganisms for the inoculation process (author). 15 refs., 3 figs.

  8. Enhanced degradation of mono aromatic hydrocarbons in sandy aquifer materials

    Energy Technology Data Exchange (ETDEWEB)

    Corseuil, Henry X. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Sanitaria; Weber Junior, W.J. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Civil and Environmental Engineering

    1993-12-31

    The use of an inoculation technique to enhance rates of in-situ biodegradation of toxic organic contaminants by increasing subsurface populations of specific microorganisms is described. An external biologically active carbon (BAC) adsorber is demonstrated to be an efficient reactor system for collection, acclimation and enrichment of microorganisms for the inoculation process (author). 15 refs., 3 figs.

  9. Uptake of Organic Contaminants from Soil into Vegetables and Fruits

    DEFF Research Database (Denmark)

    Trapp, Stefan; Legind, Charlotte Nielsen

    2011-01-01

    Contaminants may enter vegetables and fruits by several pathways: by uptake with soil pore water, by diffusion from soil or air, by deposition of soil or airborne particles, or by direct application. The contaminant-specific and plantspecific properties that determine the importance...... of these pathways are described in this chapter. A variety of models have been developed, specific for crop types and with steady-state or dynamic solutions. Model simulations can identify sensitive properties and relevant processes. Persistent, polar (log KOW contaminants have...... the highest potential for accumulation from soil, and concentrations in leaves may be several hundred times higher than in soil. However, for most contaminants the accumulation in vegetables or fruits is much lower. Lipophilic (log KOW > 3) contaminants are mainly transported to leaves by attached soil...

  10. Food habits of fishes on an exposed sandy beach at Fukiagehama, South-West Kyushu Island, Japan

    Science.gov (United States)

    Nakane, Yukinori; Suda, Yusuke; Sano, Mitsuhiko

    2011-06-01

    To clarify the feeding habits and major food sources of sandy beach fishes, the gut contents of 55 fish species collected on a sandy beach at Fukiagehama, South-West Kyushu Island, Japan, were examined. Ontogenetic changes in food preference were recognized in nine species ( Hypoatherina valenciennei, Lateolabrax japonicus, Trachurus japonicus, Sillago japonica, Sphyraena japonica, Paralichthys olivaceus, Heteromycteris japonica, Paraplagusia japonica, and Takifugu niphobles). A cluster analysis based on dietary overlaps showed that the sandy beach fish assemblage comprised six trophic groups (mysid, amphipod, zooplankton, juvenile fish, terrestrial insect, and mollusk feeders). Of these, the first three groups were the most abundantly represented, whereas the last two were represented by only a single species. These results indicated that epibenthic macrofauna, such as mysids and gammaridean amphipods, and zooplankton, were important food resources for the fish assemblage at the study site, but infaunal macrobenthos, such as polychaetes and bivalves, being relatively unimportant.

  11. Remediation of groundwater contaminated with the lead-phenol binary system by granular dead anaerobic sludge-permeable reactive barrier.

    Science.gov (United States)

    Faisal, Ayad A H; Abd Ali, Ziad T

    2017-10-01

    Computer solutions (COMSOL) Multiphysics 3.5a software was used for simulating the one-dimensional equilibrium transport of the lead-phenol binary system including the sorption process through saturated sandy soil as the aquifer and granular dead anaerobic sludge (GDAS) as the permeable reactive barrier. Fourier-transform infrared spectroscopy analysis proved that the carboxylic and alcohol groups are responsible for the bio-sorption of lead onto GDAS, while phosphines, aromatic and alkane are the functional groups responsible for the bio-sorption of phenol. Batch tests have been performed to characterize the equilibrium sorption properties of the GDAS and sandy soil in lead and/or phenol containing aqueous solutions. Numerical and experimental results proved that the barrier plays a potential role in the restriction of the contaminant plume migration and there is a linear relationship between longevity and thickness of the barrier. A good agreement between these results was recognized with root mean squared error not exceeding 0.04.

  12. An overview of the bioremediation of inorganic contaminants

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Gorby, Y.A.

    1995-01-01

    Bioremediation, or the biological treatment of wastes, usually is associated with the remediation of organic contaminants. Similarly, there is an increasing body of literature and expertise in applying biological systems to assist in the bioremediation of soils, sediments, and water contaminated with inorganic compounds including metals, radionuclides, nitrates, and cyanides. Inorganic compounds can be toxic both to humans and to organisms used to remediate these contaminants. However, in contrast to organic contaminants, most inorganic contaminants cannot be degraded, but must be remediated by altering their transport properties. Immobilization, mobilization, or transformation of inorganic contaminants via bioaccumulation, biosorption, oxidation, reduction, methylation, demethylation, metal-organic complexation, ligand degradation, and phytoremediation are the various processes applied in the bioremediation of inorganic compounds. This paper briefly describes these processes, referring to other contributors in this book as examples when possible, and summarize the factors that must be considered when choosing bioremediation as a cleanup technology for inorganics. Understanding the current state of knowledge as well as the limitations for bioremediation of inorganic compounds will assist in identifying and implementing successful remediation strategies at sites containing inorganic contaminants. 79 refs

  13. Multi-residue analysis of legacy POPs and emerging organic contaminants in Singapore's coastal waters using gas chromatography-triple quadrupole tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Hui; Bayen, Stéphane; Kelly, Barry C

    2015-08-01

    A gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) based method was developed for determination of 86 hydrophobic organic compounds in seawater. Solid-phase extraction (SPE) was employed for sequestration of target analytes in the dissolved phase. Ultrasound assisted extraction (UAE) and florisil chromatography were utilized for determination of concentrations in suspended sediments (particulate phase). The target compounds included multi-class hydrophobic contaminants with a wide range of physical-chemical properties. This list includes several polycyclic and nitro-aromatic musks, brominated and chlorinated flame retardants, methyl triclosan, chlorobenzenes, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). Spiked MilliQ water and seawater samples were used to evaluate the method performance. Analyte recoveries were generally good, with the exception of some of the more volatile target analytes (chlorobenzenes and bromobenzenes). The method is very sensitive, with method detection limits typically in the low parts per quadrillion (ppq) range. Analysis of 51 field-collected seawater samples (dissolved and particulate-bound phases) from four distinct coastal sites around Singapore showed trace detection of several polychlorinated biphenyl congeners and other legacy POPs, as well as several current-use emerging organic contaminants (EOCs). Polycyclic and nitro-aromatic musks, bromobenzenes, dechlorane plus isomers (syn-DP, anti-DP) and methyl triclosan were frequently detected at appreciable levels (2-20,000pgL(-1)). The observed concentrations of the monitored contaminants in Singapore's marine environment were generally comparable to previously reported levels in other coastal marine systems. To our knowledge, these are the first measurements of these emerging contaminants of concern in Singapore or Southeast Asia. The developed method may prove beneficial for future environmental monitoring of hydrophobic organic contaminants

  14. Global contamination trends of persistent organic chemicals

    National Research Council Canada - National Science Library

    Loganathan, Bommanna G; Lam, Paul K. S

    2012-01-01

    "Composed by a diverse group of experts, this reference covers the history, present status, and projected future trends of environmental contamination from highly toxic synthetic chemical pollutants...

  15. Patterns of Arbuscular Mycorrhizal Fungal Distribution on Mainland and Island Sandy Coastal Plain Ecosystems in Brazil.

    Science.gov (United States)

    da Silva, Iolanda Ramalho; de Souza, Francisco Adriano; da Silva, Danielle Karla Alves; Oehl, Fritz; Maia, Leonor Costa

    2017-10-01

    Although sandy coastal plains are important buffer zones to protect the coast line and maintain biological diversity and ecosystem services, these ecosystems have been endangered by anthropogenic activities. Thus, information on coastal biodiversity and forces shaping coastal biological diversity are extremely important for effective conservation strategies. In this study, we aimed to compare arbuscular mycorrhizal (AM) fungal communities from soil samples collected on the mainland and nearby islands located in Brazilian sandy coastal plain ecosystems (Restingas) to get information about AM fungal biogeography and identify factors shaping these communities. Soil samples were collected in 2013 and 2014 on the beachfront of the tropical sandy coastal plain at six sites (three island and three mainland locations) across the northeast, southeast, and south regions of Brazil. Overall, we recorded 53 AM fungal species from field and trap culture samples. The richness and diversity of AM fungal species did not differ between mainland and island locations, but AM fungal community assemblages were different between mainland and island environments and among most sites sampled. Glomeromycota communities registered from island samples showed higher heterogeneity than communities from mainland samples. Sandy coastal plains harbor diverse AM fungal communities structured by climatic, edaphic, and spatial factors, while the distance from the colonizing source (mainland environments) does not strongly affect the AM fungal communities in Brazilian coastal environments.

  16. Challenges in estimating the health impact of Hurricane Sandy using macro-level flood data.

    Science.gov (United States)

    Lieberman-Cribbin, W.; Liu, B.; Schneider, S.; Schwartz, R.; Taioli, E.

    2016-12-01

    Background: Hurricane Sandy caused extensive physical and economic damage but the long-term health impacts are unknown. Flooding is a central component of hurricane exposure, influencing health through multiple pathways that unfold over months after flooding recedes. This study assesses concordance in Federal Emergency Management (FEMA) and self-reported flood exposure after Hurricane Sandy to elucidate discrepancies in flood exposure assessments. Methods: Three meter resolution New York State flood data was obtained from the FEMA Modeling Task Force Hurricane Sandy Impact Analysis. FEMA data was compared to self-reported flood data obtained through validated questionnaires from New York City and Long Island residents following Sandy. Flooding was defined as both dichotomous and continuous variables and analyses were performed in SAS v9.4 and ArcGIS 10.3.1. Results: There was a moderate agreement between FEMA and self-reported flooding (Kappa statistic 0.46) and continuous (Spearman's correlation coefficient 0.50) measures of flood exposure. Flooding was self-reported and recorded by FEMA in 23.6% of cases, while agreement between the two measures on no flooding was 51.1%. Flooding was self-reported but not recorded by FEMA in 8.5% of cases, while flooding was not self-reported but indicated by FEMA in 16.8% of cases. In this last instance, 84% of people (173/207; 83.6%) resided in an apartment (no flooding reported). Spatially, the most concordance resided in the interior of New York City / Long Island, while the greatest areas of discordance were concentrated in the Rockaway Peninsula and Long Beach, especially among those living in apartments. Conclusions: There were significant discrepancies between FEMA and self-reported flood data. While macro-level FEMA flood data is a relatively less expensive and faster way to provide exposure estimates spanning larger geographic areas affected by Hurricane Sandy than micro-level estimates from cohort studies, macro

  17. Barrier capacity of weathered coal mining wastes with respect to heavy metal and organic contaminants

    International Nuclear Information System (INIS)

    Twardowska, I.; Jarosinska, B.

    1992-01-01

    Some types of weathered, buffered coal mining wastes (CMW), being essentially heterogenous and complex mineralogical system of developed surface area, under certain conditions could be widely applicable for binding a variety of contaminants both inorganic in cationic or anionic form, and organic compounds. The experiments reported earlier, showed excellent Cr(VI)-binding capacity of CMW. In this paper, experiments on simultaneous removal of heavy metals Cr t , Cu 2+ , Zn 2+ and Cd 2+ from highly (pH 2.5) and mildly acidic solutions (pH 4.0), as well as of organic compounds and color reduction in leachate from solid industrial waste dump (foundry wastes) will be presented

  18. Uptake of radionuclides by wheat roots with respect to location of contamination below the surface

    International Nuclear Information System (INIS)

    Suvornmongkhol, Narumon.

    1996-01-01

    The behaviour of 85 Sr, 137 Cs, 54 Mn and 60 Co in terms of plant availability in near surface soil and their root uptake was studied as a function of the location of contamination in the soil profile. Wheat (Triticum aestivum) was employed and the study programme involved both column and hydroponic studies. In the column studies, columns were packed with sandy soil, and either homogeneously or discretely contaminated with the radionuclides, and the water table maintained manually at 3 cm from the bottom. In the discrete contamination, the location of contamination was varied (0-5, 25-30 or 45-50 cm from the top). Wheat plants were grown to maturity in these columns, and harvested at different growth stages to examine radioactivity uptake and its subsequent translocation within the plants. The movement of radionuclides within the soil as well as the soil physicochemical properties were also investigated. The short term uptake kinetics of the hydroponically grown plants during ontogenesis were also studied, both with excised roots and intact plants. The excised root experiment was aimed at investigating the radionuclide by roots of different orders. (author)

  19. Physical Properties of Sandy Soil Affected by Soil Conditioner Under Wetting and Drying cycles

    Directory of Open Access Journals (Sweden)

    M.I. Choudhary

    1998-06-01

    Full Text Available Information on the effectiveness of soil conditioners over a prolonged period is scarce. A laboratory experiment was undertaken to evaluate the effectiveness of a polyacrylamide (Broadleaf P4 soil conditioner on the physical properties of sandy soil subjected to wetting and drying cycles. Four concentrations of Broadleaf P4 0, 0.2, 0.4, and 0.6% on dry weight basis were uniformly mixed with a calcareous sandy soil. Addition of Broadleaf P4 to sandy soil increased the water holding capacity, decreased the bulk density, and increased the porosity and void ratio at 0 and 16 wetting and drying cycles. The coefficient of linear extensibility increased considerably with increasing concentrations of the polymer. The addition of polymer at 0 and 16 cycles increased considerably the retention and availability of water in sandy soil. Saturated hydraulic conductivity decreased with increasing concentrations of Broadleaf P4 whereas unsaturated hydraulic conductivity at 0 and 16 cycles showed an increase with increasing soil moisture contents. After I6 wetting and drying cycles, the capacity of the soil to hold water was lost on average by 15.8% when compared to the 0 wetting and drying cycle. The effectiveness of the soil conditioner on bulk density, coefficient of linear extensibility, available water and saturated hydraulic conductivity was reduced on average by 14.1, 24.5, 21.l and 53.7% respectively. The significant changes in soil properties between 0 and 16 cycles suggested that the effectiveness of the conditioner decreased with the application of wetting and drying cycles. However, its effect was still considerable when compared to untreated soil under laboratory conditions.

  20. Behavioural adaptations of two sympatric sandhoppers living on a mesotidal European Atlantic sandy beach

    Science.gov (United States)

    Bessa, Filipa; Marques, João Carlos; Scapini, Felicita

    2014-06-01

    Behavioural adaptations of supralittoral species on sandy beaches are expressed as responses to environmental changes and constitute a key factor in their survival and evolution. Two sympatric talitrid amphipods (Talitrus saltator and Britorchestia brito) from a mesotidal exposed sandy beach on the European Atlantic coast (Portugal) were compared as regards orientation and littoral zonation patterns under natural conditions. Orientation experiments were carried out during spring and summer 2011 and 2012 at Quiaios beach, a highly dynamic exposed sandy beach. Multiple regression models were fitted to the angular data and the environmental effects on orientation were investigated for each species. Both talitrids were shown to be well orientated towards the shoreline and finely adapted to the mesotidal environment but a different use of local cues and climatic features between the two species was apparent. T. saltator showed a lower precision in the orientation performance (with a bimodal distribution sea- and land-wards), with less dependence on the sun cues and higher dependence on climatic features. In addition, the zonation of T. saltator was across the land-sea axis during both seasons. For B. brito the landscape vision, sun visibility and the tidal range enhanced the orientation to the shoreline. On this mesotidal Atlantic beach, T. saltator appeared to have a more flexible orientation with respect to B. brito, which appeared to be more dependent on the conditions offered by the intertidal zone, a behaviour confirmed by its restricted zonation below the high tide mark. Consequently, T. saltator showed a more flexible behaviour that may be considered an important evolutionary adaptation to dynamic and mesotidal sandy beaches.