WorldWideScience

Sample records for organic vapor release

  1. Released air during vapor and air cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Jablonská, Jana, E-mail: jana.jablonska@vsb.cz; Kozubková, Milada, E-mail: milada.kozubkova@vsb.cz [VŠB-Technical University of Ostrava, Faculty of Mechanical Engineering, Department of Hydromechanics and Hydraulic Equipment, 17. listopadu 15, 708 33 Ostrava-Poruba (Czech Republic)

    2016-06-30

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ε model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.

  2. Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges

    Directory of Open Access Journals (Sweden)

    Dora M. Paolucci

    2011-03-01

    Full Text Available A broadly responsive optical organic vapor sensor is described that responds to low concentrations of organic vapors without significant interference from water vapor. Responses to several classes of organic vapors are highlighted, and trends within classes are presented. The relationship between molecular properties (vapor pressure, boiling point, polarizability, and refractive index and sensor response are discussed.

  3. Vapor pressure of selected organic iodides

    Czech Academy of Sciences Publication Activity Database

    Fulem, M.; Růžička, K.; Morávek, P.; Pangrác, Jiří; Hulicius, Eduard; Kozyrkin, B.; Shatunov, V.

    2010-01-01

    Roč. 55, č. 11 (2010), 4780-4784 ISSN 0021-9568 R&D Projects: GA ČR GA203/08/0217 Institutional research plan: CEZ:AV0Z10100521 Keywords : vapor pressure * static method * organic iodides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.089, year : 2010

  4. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system.

    Science.gov (United States)

    Liu, Lu; Chang, Hou-Min; Jameel, Hasan; Park, Sunkyu

    2018-03-01

    Biomass hydrolysate from autohydrolysis pretreatment was used for furfural production considering it is in rich of xylose, xylo-oligomers, and other decomposition products from hemicellulose structure. By using the vapor-releasing reactor system, furfural was protected from degradation by separating it from the reaction media. The maximum furfural yield of 73% was achieved at 200 °C for biomass hydrolysate without the use of the catalyst. This is because the presence of organic acids such as acetic acid in hydrolysate functioned as a catalyst. According to the results in this study, biomass hydrolysate with a vapor-releasing system proves to be efficient for furfural production. The biorefinery process which allows the separation of xylose-rich autohydrolysate from other parts from biomass feedstock also improves the overall application of the biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    Science.gov (United States)

    Baker, Richard W.; Pinnau, Ingo; He, Zhenjie; Da Costa, Andre R.; Daniels, Ramin; Amo, Karl D.; Wijmans, Johannes G.

    2003-06-03

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  6. Toxic vapor concentrations in the control room following a postulated accidental release

    International Nuclear Information System (INIS)

    Wing, J.

    1979-05-01

    An acceptable method is presented for calculating the vapor concentrations in a control room as a function of time after a postulated accidental release. Included are the mathematical formulas for computing the rates of vaporization and evaporation of liquid spills, the vapor dispersion in air, and the control room air exchange. A list of toxic chemicals and their physical properties is also given

  7. Analysis of organic vapors with laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Nozari, Hadi; Tavassoli, Seyed Hassan; Rezaei, Fatemeh

    2015-01-01

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor

  8. Analysis of organic vapors with laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nozari, Hadi; Tavassoli, Seyed Hassan [Laser and Plasma Research Institute, Shahid Beheshti University, G. C, 1983963113 Evin, Tehran (Iran, Islamic Republic of); Rezaei, Fatemeh, E-mail: fatemehrezaei@kntu.ac.ir [Department of Physics, K. N. Toosi University of Technology, 15875-4416 Shariati, Tehran (Iran, Islamic Republic of)

    2015-09-15

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.

  9. Chemically assisted release of transition metals in graphite vaporizers for atomic spectrometry

    International Nuclear Information System (INIS)

    Katskov, Dmitri; Darangwa, Nicholas; Grotti, Marco

    2006-01-01

    The processes associated with the vaporization of microgram samples and modifiers in a graphite tube ET AAS were investigated by the example of transition metals. The vapor absorption spectra and vaporization behavior of μg-amounts Cd, Zn, Cu, Ag, Au, Ni, Co, Fe, Mn and Cr were studied using the UV spectrometer with CCD detector, coupled with a continuum radiation source. The pyrocoated, Ta or W lined tubes, with Ar or He as internal gases, and filter furnace were employed in the comparative experiments. It was found that the kinetics of atomic vapor release changed depending on the specific metal-substrate-gas combination; fast vaporization at the beginning was followed by slower 'tailing.' The absorption continuum, overlapped by black body radiation at longer wavelengths, accompanied the fast vaporization mode for all metals, except Cd and Zn. The highest intensity of the continuum was observed in the pyrocoated tube with Ar. For Cu and Ag the molecular bands overlapped the absorption continuum; the continuum and bands were suppressed in the filter furnace. It is concluded that the exothermal interaction of sample vapor with the material of the tube causes the energy evolution in the gas phase. The emitted heat is dispersed near the tube wall in the protective gas and partially transferred back to the surface of the sample, thus facilitating the vaporization. The increased vapor flow causes over-saturation and gas-phase condensation in the absorption volume at some distance from the wall, where the gas temperature is not affected by the reaction. The condensation is accompanied by the release of phase transition energy via black body radiation and atomic emission. The particles of condensate and molecular clusters cause the scattering of light and molecular absorption; slow decomposition of the products of the sample vapor-substrate reaction produces the 'tailing' of atomic absorption signal. The interaction of graphite with metal vapor or oxygen, formed in the

  10. How do organic vapors contribute to new-particle formation?

    CERN Document Server

    Donahue, Neil M; Chuang, Wayne; Riipinen, Ilona; Riccobono, Francesco; Schobesberger, Siegfried; Dommen, Josef; Baltensperger, Urs; Kulmala, Markku; Worsnop, Douglas R; Vehkamaki, Hanna

    2013-01-01

    Highly oxidised organic vapors can effectively stabilize sulphuric acid in heteronuclear clusters and drive new-particle formation. We present quantum chemical calculations of cluster stability, showing that multifunctional species can stabilize sulphuric acid and also present additional polar functional groups for subsequent cluster growth. We also model the multi-generation oxidation of vapors associated with secondary organic aerosol formation using a two-dimensional volatility basis set. The steady-state saturation ratios and absolute concentrations of extremely low volatility products are sufficient to drive new-particle formation with sulphuric acid at atmospherically relevant rates.

  11. Estimation of the vaporization heat of organic liquids. Pt. 3

    International Nuclear Information System (INIS)

    Ducros, M.; Sannier, H.

    1982-01-01

    In our previous publications it has been shown that the method of Benson's group permits the estimation of the enthalpies of vaporization of organic compounds. In the present paper we have applied this method for unsaturated hydrocarbons, thus completing our previous work on acyclic alkenes. For the alkylbenzenes we have changed the values of the groups C-(Csub(b))(C)(H) 2 and C-(Csub(b))(C) 2 (H) previously determined. A more accurate value for the enthalpies of vaporization of the alkylbenzenes of higher molecular weight is obtained. (orig.)

  12. Characterization and monitoring of total organic chloride vapors

    International Nuclear Information System (INIS)

    Anheier, N.C. Jr.; Evans, J.C. Jr.; Olsen, K.B.

    1992-07-01

    Chemical sensors are being developed intermediate highly selective and broadly selective methods. PNL is developing an optical-emission based TOCl (total organic chlorinated compounds) sensor (Halosnif) which is capable of measuring TOCl in real time on an extracted gas sample over a wide linear dynamic range. Halosnif employs an atomic emission sensor that is broadly selective for any moderately volatile organic hclorinated vapor but does not distinguish between classes of chlorinated compounds. A rf-induced He plasma is used to excite the chlorine atoms, causing light emission at 837.6 nm. The sensitivity ranges from 1-2 ppM up to at least 10,000 ppM. Field tests were conducted at Tinker AFB in areas of high TCE contamination, in two boreholes at Savannah River, and at Hanford CCl 4 vapor extraction system. This sensor is briefly compared with acoustic wave sensors being developed by SNL (PAWS). 4 figs

  13. Single-walled carbon nanotubes nanocomposite microacoustic organic vapor sensors

    Energy Technology Data Exchange (ETDEWEB)

    Penza, M. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy)]. E-mail: michele.penza@brindisi.enea.it; Tagliente, M.A. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy); Aversa, P. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy); Cassano, G. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy); Capodieci, L. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy)

    2006-07-15

    We have developed highly sensitive microacoustic vapor sensors based on surface acoustic waves (SAWs) configured as oscillators using a two-port resonator 315, 433 and 915 MHz device. A nanocomposite film of single-walled carbon nanotubes (SWCNTs) embedded in a cadmium arachidate (CdA) amphiphilic organic matrix was prepared by Langmuir-Blodgett technique with a different SWCNTs weight filler content onto SAW transducers as nanosensing interface for vapor detection, at room temperature. The structural properties and surface morphology of the nanocomposite have been examined by X-ray diffraction, transmission and scanning electron microscopy, respectively. The sensing properties of SWCNTs nanocomposite LB films consisting of tangled nanotubules have been also investigated by using Quartz Crystal Microbalance 10 MHz AT-cut quartz resonators. The measured acoustic sensing characteristics indicate that the room-temperature SAW sensitivity to polar and nonpolar tested organic molecules (ethanol, ethylacetate, toluene) of the SWCNTs-in-CdA nanocomposite increases with the filler content of SWCNTs incorporated in the nanocomposite; also the SWCNTs-in-CdA nanocomposite vapor sensitivity results significantly enhanced with respect to traditional organic molecular cavities materials with a linearity in the frequency change response for a given nanocomposite weight composition and a very low sub-ppm limit of detection.

  14. A field portable mass spectrometer for monitoring organic vapors.

    Science.gov (United States)

    Meier, R W

    1978-03-01

    A portable mass spectrometer has been designed and built under the sponsorship of the US Army for the purpose of monitoring low concentrations of specified organics in the ambient atmosphere. The goals of the development were discrimination, sensitivity, portability, simplicity of operation, economy and convenience. These objectives were met in a system consisting of a computer operated mass spectrometer with a Llewellyn membrane separator inlet system housed in two 26 x 18 x 9 inch aluminum cases with a total weight less than 150 pounds. This system has shown the capability for field detection of hundreds of specific organic vapors at the parts per billion level in the ambient and workplace environments.

  15. Dermal Uptake of Organic Vapors Commonly Found in Indoor Air

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, William W

    2014-01-01

    Transdermal uptake directly from air is a potentially important yet largely overlooked pathway for human exposure to organic vapors indoors. We recently reported (Indoor Air 2012, 22, 356) that transdermal uptake directly from air could be comparable to or larger than intake via inhalation for many......, formaldehyde, and acrolein. Analysis of published experimental data for human subjects for twenty different organic compounds substantiates these model predictions. However, transdermal uptake rates from air have not been measured for the indoor organics that have the largest modeled ratios of dermal......-to-inhalation uptake; for such compounds, the estimates reported here require experimental verification. In accounting for total exposure to indoor organic pollutants and in assessing potential health consequences of such exposures, it is important to consider direct transdermal absorption from air....

  16. On the growth of atmospheric nanoparticles by organic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Yli-Juuti, T.

    2013-09-01

    Atmospheric aerosol particles affect the visibility, damage human health and influence the Earth's climate by scattering and absorbing radiation and acting as cloud condensation nuclei (CCN). Considerable uncertainties are associated with the estimates of aerosol climatic effects and the extent of these effects depends on the particles size, composition, concentration and location in the atmosphere. Improved knowledge on the processes affecting these properties is of great importance in predicting future climate. Significant fraction of the atmospheric aerosol particles are formed in the atmosphere from trace gases through a phase change, i.e. nucleation. The freshly nucleated secondary aerosol particles are about a nanometer in diameter, and they need to grow tens of nanometers by condensation of vapors before they affect the climate. During the growth, the nanoparticles are subject to coagulational losses, and their survival to CCN sizes is greatly dependent on their growth rate. Therefore, capturing the nanoparticle growth correctly is crucial for representing aerosol effects in climate models. A large fraction of nanoparticle growth in many environments is expected to be due to organic compounds. However a full identification of the compounds and processes involved in the growth is lacking to date. In this thesis the variability in atmospheric nanoparticle growth rates with particle size and ambient conditions was studied based on observations at two locations, a boreal forest and a Central European rural site. The importance of various organic vapor uptake mechanisms and particle phase processes was evaluated, and two nanoparticle growth models were developed to study the effect of acid-base chemistry in the uptake of organic compounds by nanoparticles. Further, the effect of inorganic solutes on the partitioning of organic aerosol constituents between gas and particle phase was studied based on laboratory experiments. Observations of the atmospheric

  17. Thin film solar cells grown by organic vapor phase deposition

    Science.gov (United States)

    Yang, Fan

    Organic solar cells have the potential to provide low-cost photovoltaic devices as a clean and renewable energy resource. In this thesis, we focus on understanding the energy conversion process in organic solar cells, and improving the power conversion efficiencies via controlled growth of organic nanostructures. First, we explain the unique optical and electrical properties of organic materials used for photovoltaics, and the excitonic energy conversion process in donor-acceptor heterojunction solar cells that place several limiting factors of their power conversion efficiency. Then, strategies for improving exciton diffusion and carrier collection are analyzed using dynamical Monte Carlo models for several nanostructure morphologies. Organic vapor phase deposition is used for controlling materials crystallization and film morphology. We improve the exciton diffusion efficiency while maintaining good carrier conduction in a bulk heterojunction solar cell. Further efficiency improvement is obtained in a novel nanocrystalline network structure with a thick absorbing layer, leading to the demonstration of an organic solar cell with 4.6% efficiency. In addition, solar cells using simultaneously active heterojunctions with broad spectral response are presented. We also analyze the efficiency limits of single and multiple junction organic solar cells, and discuss the challenges facing their practical implementations.

  18. Small-scale experimental study of vaporization flux of liquid nitrogen released on water.

    Science.gov (United States)

    Gopalaswami, Nirupama; Olewski, Tomasz; Véchot, Luc N; Mannan, M Sam

    2015-10-30

    A small-scale experimental study was conducted using liquid nitrogen to investigate the convective heat transfer behavior of cryogenic liquids released on water. The experiment was performed by spilling five different amounts of liquid nitrogen at different release rates and initial water temperatures. The vaporization mass fluxes of liquid nitrogen were determined directly from the mass loss measured during the experiment. A variation of initial vaporization fluxes and a subsequent shift in heat transfer mechanism were observed with changes in initial water temperature. The initial vaporization fluxes were directly dependent on the liquid nitrogen spill rate. The heat flux from water to liquid nitrogen determined from experimental data was validated with two theoretical correlations for convective boiling. It was also observed from validation with correlations that liquid nitrogen was found to be predominantly in the film boiling regime. The substantial results provide a suitable procedure for predicting the heat flux from water to cryogenic liquids that is required for source term modeling. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Comparison of sensor characteristics of three real-time monitors for organic vapors.

    Science.gov (United States)

    Hori, Hajime; Ishimatsu, Sumiyo; Fueta, Yukiko; Hinoue, Mitsuo; Ishidao, Toru

    2015-01-01

    Sensor characteristics and performance of three real-time monitors for volatile organic compounds (VOC monitor) equipped with a photo ionization detector (PID), a sensor using the interference enhanced reflection (IER) method and a semiconductor gas sensor were investigated for 52 organic solvent vapors designated as class 1 and class 2 of organic solvents by the Ordinance of Organic Solvent Poisoning Prevention in Japan. Test vapors were prepared by injecting each liquid solvent into a 50 l Tedlar® bag and perfectly vaporizing it. The vapor concentration was from one-tenth to twice the administrative control level for all solvents. The vapor concentration was measured with the monitors and a gas chromatograph equipped with a flame ionization detector simultaneously, and the values were compared. The monitor with the PID sensor could measure many organic vapors, but it could not detect some vapors with high ionization potential. The IER sensor could also detect many vapors, but a linear response was not obtained for some vapors. A semiconductor sensor could detect methanol that could not be detected by PID and IER sensors. Working environment measurement of organic vapors by real-time monitors may be possible, but sensor characteristics and their limitations should be known.

  20. Screening for organic solvents in Hanford waste tanks using total non- methane organic compound vapor concentrations

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Glissmeyer, J.A.; Sklarew, D.S.

    1997-02-01

    The potential ignition of organic liquids stored in the Hanford high-level radioactive waste tanks is a safety issue because expanding gases could affect tank dome integrity. This report presents results of a screening test that was applied to 75 passively ventilated waste tanks at Hanford to determine those that might contain a significant amount of organic liquid waste. The screening test is based on a simple model of tank headspace, headspace organic vapor concentrations, and certain tank physical parameters. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Twelve tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Tank head space organic vapor concentrations and physical parameters required by the screening test have been compiled and are presented for each of the tanks studied. Estimates of the ventilation rates of the waste tanks were revised to reflect recent information obtained from hydrogen monitoring data. A simple analysis of the uncertainty in the test results suggests that the largest current uncertainty in the estimation of organic liquid surface area is that associated with knowledge of the tank ventilation rate. The uncertainty analysis is applied to determine 95% confidence limits for the estimated organic waste surface area in each tank

  1. A review of selected aspects of the effect of water vapor on fission gas release from uranium oxycarbide

    International Nuclear Information System (INIS)

    Myers, B.F.

    1994-04-01

    A selective review is presented of previous measurements and the analysis of experiments on the effect of water vapor on fission gas release from uranium oxycarbide. Evidence for the time-dependent composition of the uranium oxycarbide fuel; the diffusional release of fission gas; and the initial, rapid and limited release of stored fission gas is discussed. In regard to the initial, rapid release of fission gas, clear restrictions on mechanistic hypotheses can be deduced from the experimental data. However, more fundamental experiments may be required to establish the mechanism of the rapid release

  2. Screening for organic solvents in Hanford waste tanks using organic vapor concentrations

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Sklarew, D.S.

    1997-09-01

    The potential ignition of organic liquids stored in the Hanford Site high-level radioactive waste tanks has been identified as a safety issue because expanding gases could potentially affect tank dome integrity. Organic liquid waste has been found in some of the waste tanks, but most are thought to contain only trace amounts. Due to the inhomogeneity of the waste, direct sampling of the tank waste to locate organic liquids may not conclusively demonstrate that a given tank is free of risk. However, organic vapors present above the organic liquid waste can be detected with a high degree of confidence and can be used to identify problem tanks. This report presents the results of a screening test that has been applied to 82 passively ventilated high-level radioactive waste tanks at the Hanford Site to identify those that might contain a significant amount of organic liquid waste. It includes seven tanks not addressed in the previous version of this report, Screening for Organic Solvents in Hanford Waste Tanks Using Total Non-Methane Organic Compound Vapor Concentrations. The screening test is based on a simple model of the tank headspace that estimates the effective surface area of semivolatile organic liquid waste in a tank. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Thirteen tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Most of the tanks identified as containing potentially significant quantities of organic liquid waste are in the 241-BY and 241-C tank farms, which agrees qualitatively with the fact that these tank farms received the majority of the PUREX process organic wash waste and waste organic liquids

  3. Liquid-phase and vapor-phase dehydration of organic/water solutions

    Science.gov (United States)

    Huang, Yu [Palo Alto, CA; Ly, Jennifer [San Jose, CA; Aldajani, Tiem [San Jose, CA; Baker, Richard W [Palo Alto, CA

    2011-08-23

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  4. Hazards to nuclear plants from off-site release of toxic vapors

    International Nuclear Information System (INIS)

    Hornyik, K.

    1976-01-01

    A method for the assessment of risk involved in shipping toxic compounds past nuclear power plants uses a postulated chain of events, starting with a traffic accident causing instantaneous release of the compound as vapor, and leading to incapacitation of control operators in the nuclear plant, described by deterministic and statistical models as appropriate to the respective event. Statistical treatment of relevant atmospheric conditions is a major improvement over more conservative assumptions commonly made in current analyses of this problem. Consequently, one obtains a substantial reduction in the estimated risk expressed in usual terms of the annual probability of an unacceptable event, in spite of the fact that no credit is taken for protective measures other than potential control room isolation

  5. Safety limits of half-mask cartridge respirators for organic solvent vapors

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Recent studies of the effective service life (safety limits) for typical half-mask cartridge respirators have shown these devices to be unsuitable for certain organic vapors, e.g., methanol, methylamine, vinyl chloride, and dichloromethane, because the effective service life is too short. For these vapors other forms of protection such as air-supplied respirators are recommended. The experimentally determined service life for many vapors is shorter--sometimes significantly shorter--than predicted by adsorption theory

  6. Method of estimating changes in vapor concentrations continuously generated from two-component organic solvents.

    Science.gov (United States)

    Hori, Hajime; Ishidao, Toru; Ishimatsu, Sumiyo

    2010-12-01

    We measured vapor concentrations continuously evaporated from two-component organic solvents in a reservoir and proposed a method to estimate and predict the evaporation rate or generated vapor concentrations. Two kinds of organic solvents were put into a small reservoir made of glass (3 cm in diameter and 3 cm high) that was installed in a cylindrical glass vessel (10 cm in diameter and 15 cm high). Air was introduced into the glass vessel at a flow rate of 150 ml/min, and the generated vapor concentrations were intermittently monitored for up to 5 hours with a gas chromatograph equipped with a flame ionization detector. The solvent systems tested in this study were the methanoltoluene system and the ethyl acetate-toluene system. The vapor concentrations of the more volatile component, that is, methanol in the methanol-toluene system and ethyl acetate in the ethyl acetate-toluene system, were high at first, and then decreased with time. On the other hand, the concentrations of the less volatile component were low at first, and then increased with time. A model for estimating multicomponent organic vapor concentrations was developed, based on a theory of vapor-liquid equilibria and a theory of the mass transfer rate, and estimated values were compared with experimental ones. The estimated vapor concentrations were in relatively good agreement with the experimental ones. The results suggest that changes in concentrations of two-component organic vapors continuously evaporating from a liquid reservoir can be estimated by the proposed model.

  7. The effect of vadose zone heterogeneities on vapor phase migration and aquifer contamination by volatile organics

    Energy Technology Data Exchange (ETDEWEB)

    Seneviratne, A.; Findikakis, A.N. [Bechtel Corporation, San Francisco, CA (United States)

    1995-03-01

    Organic vapors migrating through the vadose zone and inter-phase transfer can contribute to the contamination of larger portions of aquifers than estimated by accounting only for dissolved phase transport through the saturated zone. Proper understanding of vapor phase migration pathways is important for the characterization of the extent of both vadose zone and the saturated zone contamination. The multiphase simulation code T2VOC is used to numerically investigate the effect of heterogeneties on the vapor phase migration of chlorobenzene at a hypothetical site where a vapor extraction system is used to remove contaminants. Different stratigraphies consisting of alternate layers of high and low permeability materials with soil properties representative of gravel, sandy silt and clays are evaluated. The effect of the extent and continuity of low permeability zones on vapor migration is evaluated. Numerical simulations are carried out for different soil properties and different boundary conditions. T2VOC simulations with zones of higher permeability were made to assess the role of how such zones in providing enhanced migration pathways for organic vapors. Similarly, the effect of the degree of saturation of the porous medium on vapor migration was for a range of saturation values. Increased saturation reduces the pore volume of the medium available for vapor diffusion. Stratigraphic units with higher aqueous saturation can retard the vapor phase migration significantly.

  8. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics

    KAUST Repository

    Gomez De Arco, Lewis; Zhang, Yi; Schlenker, Cody W.; Ryu, Koungmin; Thompson, Mark E.; Zhou, Chongwu

    2010-01-01

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD

  9. Evaluation of the Process of Solvent Vapor Annealing on Organic Thin Films

    KAUST Repository

    Ren, Yi

    2011-01-01

    Solvent vapor annealing has recently emerged as an intriguing, room-temperature, and highly versatile alternative to thermal annealing. The chemically selective interaction between solvents and organic semiconductors opens new opportunities

  10. Vapor phase coatings of metals and organics for laser fusion target applications

    International Nuclear Information System (INIS)

    Simonsic, G.A.; Powell, B.W.

    Techniques for applying a variety of metal and organic coatings to 50- to 500 μm diameter glass micro-balloons are discussed. Coating thicknesses vary from 1- to 10 μm. Physical vapor deposition (PVD), chemical vapor deposition (CVD), and electrolytic and electroless plating are some of the techniques being evaluated for metal deposition. PVD and glow discharge polymerization are being used for the application of organic coatings. (U.S.)

  11. A semiempirical correlation between enthalpy of vaporization and saturation concentration for organic aerosol.

    Science.gov (United States)

    Epstein, Scott A; Riipinen, Ilona; Donahue, Neil M

    2010-01-15

    To model the temperature-induced partitioning of semivolatile organics in laboratory experiments or atmospheric models, one must know the appropriate heats of vaporization. Current treatments typically assume a constant value of the heat of vaporization or else use specific values from a small set of surrogate compounds. With published experimental vapor-pressure data from over 800 organic compounds, we have developed a semiempirical correlation between the saturation concentration (C*, microg m(-3)) and the heat of vaporization (deltaH(VAP), kJ mol(-1)) for organics in the volatility basis set. Near room temperature, deltaH(VAP) = -11 log(10)C(300)(*) + 129. Knowledge of the relationship between C* and deltaH(VAP) constrains a free parameter in thermodenuder data analysis. A thermodenuder model using our deltaH(VAP) values agrees well with thermal behavior observed in laboratory experiments.

  12. PREDICTION OF THE VAPOR PRESSURE, BOILING POINT, HEAT OF VAPORIZATION AND DIFFUSION COEFFICIENT OF ORGANIC COMPOUNDS

    Science.gov (United States)

    The prototype computer program SPARC has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC solute-solute physical process models have been developed and tested...

  13. A novel tandem differential mobility analyzer with organic vapor treatment of aerosol particles

    Directory of Open Access Journals (Sweden)

    J. Joutsensaari

    2001-01-01

    Full Text Available A novel method to characterize the organic composition of aerosol particles has been developed. The method is based on organic vapor interaction with aerosol particles and it has been named an Organic Tandem Differential Mobility Analyzer (OTDMA. The OTDMA method has been tested for inorganic (sodium chloride and ammonium sulfate and organic (citric acid and adipic acid particles. Growth curves of the particles have been measured in ethanol vapor and as a comparison in water vapor as a function of saturation ratio. Measurements in water vapor show that sodium chloride and ammonium sulfate as well as citric acid particles grow at water saturation ratios (S of 0.8 and above, whereas adipic acid particles do not grow at S S = 0.75 and S = 0.79, respectively. Citric acid particles grow monotonously with increasing saturation ratios already at low saturation ratios and no clear deliquescence point is found. For sodium chloride and ammonium sulfate particles, no growth can be seen in ethanol vapor at saturation ratios below 0.93. In contrast, for adipic acid particles, the deliquescence takes place at around S = 0.95 in the ethanol vapor. The recrystallization of adipic acid takes place at S The results show that the working principles of the OTDMA are operational for single-component aerosols. Furthermore, the results indicate that the OTDMA method may prove useful in determining whether aerosol particles contain organic substances, especially if the OTDMA is operated in parallel with a hygroscopicity TDMA, as the growth of many substances is different in ethanol and water vapors.

  14. Correlations between water-soluble organic aerosol and water vapor: a synergistic effect from biogenic emissions?

    Science.gov (United States)

    Hennigan, Christopher J; Bergin, Michael H; Weber, Rodney J

    2008-12-15

    Ground-based measurements of meteorological parameters and water-soluble organic carbon in the gas(WSOCg) and particle (WSOCp) phases were carried out in Atlanta, Georgia, from May to September 2007. Fourteen separate events were observed throughout the summer in which WSOCp and water vapor concentrations were highly correlated (average WSOCp-water vapor r = 0.92); however, for the entire summer, no well-defined relationship existed between the two. The correlation events, which lasted on average 19 h, were characterized by a wide range of WSOCp and water vapor concentrations. Several hypotheses for the correlation are explored, including heterogeneous liquid phase SOA formation and the co-emission of biogenic VOCs and water vapor. The data provide supporting evidence for contributions from both and suggest the possibility of a synergistic effect between the co-emission of water vapor and VOCs from biogenic sources on SOA formation. Median WSOCp concentrations were also correlated with elemental carbon (EC), although this correlation extended over the entire summer. Despite the emission of water vapor from anthropogenic mobile sources and the WSOCp-EC correlation, mobile sources were not considered a potential cause for the WSOCp-water vapor correlations because of their low contribution to the water vapor budget. Meteorology could perhaps have influenced the WSOCp-EC correlation, but other factors are implicated as well. Overall, the results suggest that the temperature-dependent co-emission of water vapor through evapotranspiration and SOA precursor-VOCs by vegetation may be an important process contributing to SOA in some environments.

  15. Electrospray droplet exposure to organic vapors: metal ion removal from proteins and protein complexes.

    Science.gov (United States)

    DeMuth, J Corinne; McLuckey, Scott A

    2015-01-20

    The exposure of aqueous nanoelectrospray droplets to various organic vapors can dramatically reduce sodium adduction on protein ions in positive ion mass spectra. Volatile alcohols, such as methanol, ethanol, and isopropanol lead to a significant reduction in sodium ion adduction but are not as effective as acetonitrile, acetone, and ethyl acetate. Organic vapor exposure in the negative ion mode, on the other hand, has essentially no effect on alkali ion adduction. Evidence is presented to suggest that the mechanism by which organic vapor exposure reduces alkali ion adduction in the positive mode involves the depletion of alkali metal ions via ion evaporation of metal ions solvated with organic molecules. The early generation of metal/organic cluster ions during the droplet desolvation process results in fewer metal ions available to condense on the protein ions formed via the charged residue mechanism. These effects are demonstrated with holomyoglobin ions to illustrate that the metal ion reduction takes place without detectable protein denaturation, which might be revealed by heme loss or an increase in charge state distribution. No evidence is observed for denaturation with exposure to any of the organic vapors evaluated in this work.

  16. Simple gun for vapor deposition of organic thin films

    International Nuclear Information System (INIS)

    Sato, N.; Seki, K.; Inokuchi, H.

    1987-01-01

    A simple evaporation gun for preparing organic thin films was fabricated using commercially available parts of an electron gun for a TV Braun tube. The device permits sample heating to be easily controlled because of the small heat capacity

  17. Half-sandwich cobalt complexes in the metal-organic chemical vapor deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Georgi, Colin [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Hapke, Marko; Thiel, Indre [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Straße 29a, Rostock 18059 (Germany); Hildebrandt, Alexander [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Waechtler, Thomas; Schulz, Stefan E. [Fraunhofer Institute of Electronic Nano Systems (ENAS), Technologie-Campus 3, Chemnitz 09126 (Germany); Technische Universität Chemnitz, Center for Microtechnologies (ZfM), Chemnitz 09107 (Germany); Lang, Heinrich, E-mail: heinrich.lang@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany)

    2015-03-02

    A series of cobalt half-sandwich complexes of type [Co(η{sup 5}-C{sub 5}H{sub 5})(L)(L′)] (1: L, L′ = 1,5-hexadiene; 2: L = P(OEt){sub 3}, L′ = H{sub 2}C=CHSiMe{sub 3}; 3: L = L′ = P(OEt){sub 3}) has been studied regarding their physical properties such as the vapor pressure, decomposition temperature and applicability within the metal-organic chemical vapor deposition (MOCVD) process, with a focus of the influence of the phosphite ligands. It could be shown that an increasing number of P(OEt){sub 3} ligands increases the vapor pressure and thermal stability of the respective organometallic compound. Complex 3 appeared to be a promising MOCVD precursor with a high vapor pressure and hence was deposited onto Si/SiO{sub 2} (100 nm) substrates. The resulting reflective layer is closed, dense and homogeneous, with a slightly granulated surface morphology. X-ray photoelectron spectroscopy (XPS) studies demonstrated the formation of metallic cobalt, cobalt phosphate, cobalt oxide and cobalt carbide. - Highlights: • Thermal studies and vapor pressure measurements of cobalt half-sandwich complexes was carried out. • Chemical vapor deposition with cobalt half-sandwich complexes is reported. • The use of Co-phosphites results in significant phosphorous-doped metallic layers.

  18. SnO2 thin film synthesis for organic vapors sensing at ambient temperature

    Directory of Open Access Journals (Sweden)

    N.H. Touidjen

    2016-12-01

    Full Text Available The present work is a study of tin dioxide (SnO2 based thin sensitive layer dedicated to organic vapors detection at ambient temperature. SnO2 thin film was deposited by chemical spray pyrolysis technique. The glass substrate temperature was kept to 400 °C, using a starting solution of 0.1 M tin (II dichloride dihydrate (SnCl2, 2H2O. Films structural and morphological properties were characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM and atomic force microscope (AFM respectively. Films optical characteristics were studied using UV-VIS spectrophotometer. XRD revealed the presence of pure SnO2 polycrystalline thin film with a tetragonal rutile structure. The SEM and AFM observations confirmed the granular morphology with presence of pores in the film surface. The prepared film was tested in various organic vapors (ethanol, methanol and acetone at ambient operating temperature (25 °C ± 2 °C. The obtained results suggested that SnO2 is more sensitive to ethanol vapor with a maximum sensitivity of 35% higher than to methanol and acetone vapors (1% and 3%. The realized SnO2 based sensor demonstrated fast response and recovery times as revealed by the values of 2 s to 3 s towards 47 ppm of ethanol vapor. Keywords: SnO2 thin film, Sensitivity, XRD, SEM, AFM, UV–visible

  19. Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Lengálová, A.; Svoboda, P.; Sáha, P.

    2011-01-01

    Roč. 49, č. 7 (2011), s. 2499-2507 ISSN 0008-6223 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotube network * KMnO 4 oxidation * electrical resistance * organic vapor detection * adsorption /desorption cycles Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 5.378, year: 2011

  20. Metal–organic covalent network chemical vapor deposition for gas separation

    NARCIS (Netherlands)

    Boscher, N.D.; Wang, M.; Perrotta, A.; Heinze, K.; Creatore, A.; Gleason, K.K.

    2016-01-01

    The chemical vapor deposition (CVD) polymerization of metalloporphyrin building units is demonstrated to provide an easily up-scalable one-step method toward the deposition of a new class of dense and defect-free metal–organic covalent network (MOCN) layers. The resulting hyper-thin and flexible

  1. Radiolytic formation of organic iodides from organic compounds released from ripolin paint

    International Nuclear Information System (INIS)

    Attia, S.; Evans, G.J.

    2002-01-01

    The impact of a serious nuclear reactor accident is governed to a large extent by the possible release of airborne organic iodides to the environment. This research examines the identification and behavior of organic iodides formed in the containment due to the release of organic compounds from Ripolin paint, into the aqueous phase, following a nuclear reactor accident. A bench scale apparatus installed in the irradiation chamber of a Gammacell was used to analyze the formation of organic iodides. Iodo-organics, transferred to the gas phase above irradiated aqueous samples, were analyzed using a Thermal Desorption method coupled with gas chromatography and mass spectrometry. Detailed studies of the identity of the organic compounds released and the organic iodides formed were conducted. The effects of parameters such as irradiation dose were also examined. All the organic iodides formed, under radiolytic conditions, were identified as iodo-alkanes. The organic compounds that were released from the Ripolin paint, such as methyl isobutyl ketone, were found to decompose, by a series of reactions, to produce the organic iodides. The precursor organic compounds and the organic iodides formed were observed to consist of the same alkyl group. These results indicate that organic compounds released from surface paints directly influence the formation of radiolytic organic iodide. (author)

  2. Organic Insulation Materials, the Effect on Indoor Humidity, and the Necessity of a Vapor Barrier

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Examples of organic insulation products are cellulose fiber, other plant fiber, and animal wool. These materials, which are all very hygroscopic, are associated with certain assertions about their building physical behavior that need to be verified.Examples of such assertions are: "A vapor barrier...... is not needed when using organic insulation materials" and "Organic insulation materials have a stabilizing effect on the indoor humidity".The paper presents some numerical analyses of the hygrothermal behavior of wall constructions and the occupied spaces they surround when an organic insulation material...

  3. SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds

    Directory of Open Access Journals (Sweden)

    J. F. Pankow

    2008-05-01

    Full Text Available The SIMPOL.1 group contribution method is developed for predicting the liquid vapor pressure poL (atm and enthalpy of vaporization Δ Hvap (kJ mol-1 of organic compounds as functions of temperature (T. For each compound i, the method assumes log10poL,i (T=∑kνk,ibk(T where νk,i is the number of groups of type k, and bk (T is the contribution to log10poL,i (T by each group of type k. A zeroeth group is included that uses b0 (T with ν0,i=1 for all i. A total of 30 structural groups are considered: molecular carbon, alkyl hydroxyl, aromatic hydroxyl, alkyl ether, alkyl ring ether, aromatic ether, aldehyde, ketone, carboxylic acid, ester, nitrate, nitro, alkyl amine (primary, secondary, and tertiary, aromatic amine, amide (primary, secondary, and tertiary, peroxide, hydroperoxide, peroxy acid, C=C, carbonylperoxynitrate, nitro-phenol, nitro-ester, aromatic rings, non-aromatic rings, C=C–C=O in a non-aromatic ring, and carbon on the acid-side of an amide. The T dependence in each of the bk (T is assumed to follow b(T=B1/T+B2+B3T+B4ln T. Values of the B coefficients are fit using an initial basis set of 272 compounds for which experimentally based functions po L,i=fi (T are available. The range of vapor pressure considered spans fourteen orders of magnitude. The ability of the initially fitted B coefficients to predict poL values is examined using a test set of 184 compounds and a T range that is as wide as 273

  4. Plasma-polymerized films providing selective affinity to the polarity of vaporized organic solvents

    International Nuclear Information System (INIS)

    Akimoto, Takuo; Ikeshita, Yusuke; Terashima, Ryo; Karube, Isao

    2009-01-01

    Plasma-polymerized films (PPFs) were fabricated as recognition membranes for a vapor-sensing device, and their affinity to vaporized organic solvents was evaluated with surface plasmon resonance. The affinity we intended to create is the selective sorption of the vaporized organic solvents depending on their polarity. For this purpose, acetonitrile, ethylenediamine (EDA), styrene, hexamethyldisiloxane (HMDSO), and hexamethyldisilazane were used to fabricate PPFs. Vaporized methanol, ethanol, and 1-propanol were used as high-polar solvents to be analyzed. Hexane, toluene, and p-xylene were used as low-polar solvents. As a result, the HMDSO-PPF with 97.3 o of contact angle was found to provide affinity to the low-polar solvents. In contrast, the EDA-PPF with 7.1 o of contact angle provided affinity to the high-polar solvents. Observations of the surface morphology of the HMDSO- and EDA-PPFs with a scanning electron microscope revealed that they are composed of nano-scale islands.

  5. Nitrogen Released From Organic Residues Using 15N

    International Nuclear Information System (INIS)

    Galal, Y.G.M.; Gadalla, A.M.; Abdel Aziz, H.A.; Abdel Salam, A.A.; El-Degwy, S.M.A.

    2008-01-01

    Incubation technique was followed under laboratory condition to evaluate and determine the rate of organic residues decomposition as well as N released in media. Rice straw, soybean straw, and leuceana cutting residue were used. These materials were incubated on virgin sandy soil up to 90 days intervals. Cups with mixture of sand and organic residues were inoculated with fungi, bacteria and mixture of them. Un inoculated treatment was also included. Results showed that N released from the different organic materials was significant at 30 days of incubation. It seems that presence of Azotobacter was associated with enhanced demand on soluble N at this stage. Superiority of leucaena over the other two sources of rice straw and soybean straw occurred particularly during the 15 to 30.day period. In greenhouse experiment, the results indicated that N derived from organic materials was high and easily released from compost as mediated materials comparing to leucaena as undigested raw materials. In the same time, barley had more benefits from organic residues than lupine crop

  6. Evaluation of Vapor Pressure Estimation Methods for Use in Simulating the Dynamic of Atmospheric Organic Aerosols

    Directory of Open Access Journals (Sweden)

    A. J. Komkoua Mbienda

    2013-01-01

    Lee and Kesler (LK, and Ambrose-Walton (AW methods for estimating vapor pressures ( are tested against experimental data for a set of volatile organic compounds (VOC. required to determine gas-particle partitioning of such organic compounds is used as a parameter for simulating the dynamic of atmospheric aerosols. Here, we use the structure-property relationships of VOC to estimate . The accuracy of each of the aforementioned methods is also assessed for each class of compounds (hydrocarbons, monofunctionalized, difunctionalized, and tri- and more functionalized volatile organic species. It is found that the best method for each VOC depends on its functionality.

  7. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Brusasco, R.M.

    1989-01-01

    A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs

  8. Organically bound deuterium in soybean exposed to atmospheric D2O vapor as a substitute for HTO under different growth phase

    International Nuclear Information System (INIS)

    Ichimasa, Michiko; Maejima, Takuya; Seino, Nami; Ara, Tetsuki; Masukura, Akari; Nishihiro, Sayaka; Tauchi, Hiroshi; Ichimasa, Yusuke

    2003-01-01

    Heavy water vapor release experiments were carried out in a greenhouse using deuterium as a substitute for tritium and uptake and loss kinetics of D 2 O in leaves and formation, translocation and retention of organically bound deuterium (OBD) in bean soybean exposed to D 2 O under different growth phase were investigated. Rate constants of D 2 O uptake in leaves of soybean in the daytime release were 0.6 - 6.1 hr -1 and several times higher than those in the nighttime release. Rate constants of D 2 O loss in leaves after daytime release were almost the same as those after the nighttime release. No significant difference in the half time of D 2 O loss was observed between daytime and nighttime releases. After D 2 O release, OBD concentration in bean in daytime experiments increased with time until 3 - 4 days of the experiments and then decreased with time. The OBD concentrations in bean in daytime release were several times higher than those in nighttime release while the extents of decrease of OBD concentration were somewhat lower than those in the daytime experiment. (author)

  9. The detection of organic solvent vapor by using polymer coated chemocapacitor sensor

    Science.gov (United States)

    Rusdiarna Indrapraja, Apik; Rivai, Muhammad; Arifin, Achmad; Purwanto, Djoko

    2017-05-01

    A chemocapacitor consists of planar interdigital electrodes (IDE) made by two comb electrodes on a substrate. A dielectric film was applied on the electrodes in which the absorbed vapor will modify its permittivity. This study has fabricated chemocapacitor with the IDE distance of 0.5 mm, while the dielectric film was a sensitive layer consisting of a polymeric material. The deposition of the polymeric film was accomplished by drop casting. A sensor array consisting of four chemocapacitors coated with different polymers namely PEG-1540, PEG-20M, PEG-6000, and PVP was used to obtain the pattern of shift in the capacitance. The integrated circuit AD7746 was used as the capacitance to-digital converter (CDC). The organic solvents of ethanol, benzene, and aceton were used as the vapor samples in this experiment. The results showed that the change in the capacitance value increases proportionally to the concentration of vapour where sensors coated with PEG-1540 and PVP have higher sensitivity, i.e. 0.0028pF/part per thousand and 0.0027pF/part per thousand, respectively. Based on the capacitance to digital conversion capabilities, the system provides there solution of 0.4084ppm. The sensor array could produce a different pattern for each of the vapor sample. The Neural Network pattern recognition system could identify the type of vapor automatically with the root mean square error of 10-5

  10. Tank 241-C-103 organic vapor and liquid characterization and supporting activities, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1993-01-01

    The action proposed is to sample the vapor space and liquid waste and perform other supporting activities in Tank 241-C-103 located in the 241-C Tank Farm on the Hanford Site. Operations at Tank 241-C-103 are curtailed because of an unreviewed safety question (USQ) concerning flammability issues of the organic waste in the tank. This USQ must be resolved before normal operation and surveillance of the tank can resume. In addition to the USQ, Tank 241-C-103 is thought to be involved in several cases of exposure of individuals to noxious vapors. This safety issue requires the use of supplied air for workers in the vicinity of the tank. Because of the USQ, the US Department of Energy proposes to characterize the waste in the vapor space and the organic and aqueous layers, to determine the volume of the organic layer. This action is needed to: (1) assess potential risks to workers, the public, and the environment from continued routine tank operations and (2) provide information on the waste material in the tank to facilitate a comprehensive safety analysis of this USQ. The information would be used to determine if a flammable condition within the tank is credible. This information would be used to prevent or mitigate an accident during continued waste storage and future waste characterization. Alternatives to the proposed activities have been considered in this analysis

  11. Radiolytic decomposition of organic C-14 released from TRU waste

    International Nuclear Information System (INIS)

    Kani, Yuko; Noshita, Kenji; Kawasaki, Toru; Nishimura, Tsutomu; Sakuragi, Tomofumi; Asano, Hidekazu

    2007-01-01

    It has been found that metallic TRU waste releases considerable portions of C-14 in the form of organic molecules such as lower molecular weight organic acids, alcohols and aldehydes. Due to the low sorption ability of organic C-14, it is important to clarify the long-term behavior of organic forms under waste disposal conditions. From investigations on radiolytic decomposition of organic carbon molecules into inorganic carbonic acid, it is expected that radiation from TRU waste will decompose organic C-14 into inorganic carbonic acid that has higher adsorption ability into the engineering barriers. Hence we have studied the decomposition behavior of organic C-14 by gamma irradiation experiments under simulated disposal conditions. The results showed that organic C-14 reacted with OH radicals formed by radiolysis of water, to produce inorganic carbonic acid. We introduced the concept of 'decomposition efficiency' which expresses the percentage of OH radicals consumed for the decomposition reaction of organic molecules in order to analyze the experimental results. We estimated the effect of radiolytic decomposition on the concentration of organic C-14 in the simulated conditions of the TRU disposal system using the decomposition efficiency, and found that the concentration of organic C-14 in the waste package will be lowered when the decomposition of organic C-14 by radiolysis was taken into account, in comparison with the concentration of organic C-14 without radiolysis. Our prediction suggested that some amount of organic C-14 can be expected to be transformed into the inorganic form in the waste package in an actual system. (authors)

  12. Release Early, Release Often: Predicting Change in Versioned Knowledge Organization Systems on the Web

    OpenAIRE

    Meroño-Peñuela, Albert; Guéret, Christophe; Schlobach, Stefan

    2015-01-01

    The Semantic Web is built on top of Knowledge Organization Systems (KOS) (vocabularies, ontologies, concept schemes) that provide a structured, interoperable and distributed access to Linked Data on the Web. The maintenance of these KOS over time has produced a number of KOS version chains: subsequent unique version identifiers to unique states of a KOS. However, the release of new KOS versions pose challenges to both KOS publishers and users. For publishers, updating a KOS is a knowledge int...

  13. Controlled assembly of organic whispering-gallery-mode microlasers as highly sensitive chemical vapor sensors.

    Science.gov (United States)

    Gao, Miaomiao; Wei, Cong; Lin, Xianqing; Liu, Yuan; Hu, Fengqin; Zhao, Yong Sheng

    2017-03-09

    We demonstrate the fabrication of organic high Q active whispering-gallery-mode (WGM) resonators from π-conjugated polymer by a controlled emulsion-solvent-evaporation method, which can simultaneously provide optical gain and act as an effective resonant cavity. By measuring the shift of their lasing modes on exposure to organic vapor, we successfully monitored the slight concentration variation in the chemical gas. These microlaser sensors demonstrated high detection sensitivity and good signal repeatability under continuous chemical gas treatments. The results offer an effective strategy to design miniaturized optical sensors.

  14. Evaluation of the Process of Solvent Vapor Annealing on Organic Thin Films

    KAUST Repository

    Ren, Yi

    2011-07-01

    Solvent vapor annealing has recently emerged as an intriguing, room-temperature, and highly versatile alternative to thermal annealing. The chemically selective interaction between solvents and organic semiconductors opens new opportunities to selectively anneal certain components of the device, while leaving others intact. On the downside, these interactions are complex and rather unpredictable, requiring further investigation. We propose a novel methodology to investigate solvent-film interactions, based on use of an in situ quartz crystal microbalance with dissipation (QCM-D) capability and in situ grazing incidence wide angle X-ray scattering (GIWAXS). These methods make it possible to investigate both qualitatively and quantitatively the solvent vapor uptake, the resulting softening and changes (reversible and/or irreversible) in crystallinity. Using this strategy, we have investigated the solvent vapor annealing of traditional donor and acceptor materials, namely poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-Phenyl-C61-butyric acid methyl ester (PCBM). We find these materials retain their rigid structure during toluene vapor annealing and do not dewet. We also investigated the toluene vapor annealing of several newly proposed acceptor molecules (pentacene-based) modified with various silyl groups and electron withdrawing groups to tune the packing structure of the acceptor domains and energy levels at the donor-acceptor interface. We found a dramatic effect of the electron-withdrawing group on vapor uptake and whether the film remains rigid, softens, or dissolves completely. In the case of trifluoromethyl electron-withdrawing group, we found the film dissolves, resulting in complete and irreversible loss of long range order. By contrast, the cyano group prevented loss of long range order, instead promoting crystallization in some cases. The silyl groups had a secondary effect in comparison to these. In the last part of the thesis, we investigated the

  15. Influence of Molecular Shape on Molecular Orientation and Stability of Vapor-Deposited Organic Semiconductors

    Science.gov (United States)

    Walters, Diane M.; Johnson, Noah D.; Ediger, M. D.

    Physical vapor deposition is commonly used to prepare active layers in organic electronics. Recently, it has been shown that molecular orientation and packing can be tuned by changing the substrate temperature during deposition, while still producing macroscopically homogeneous films. These amorphous materials can be highly anisotropic when prepared with low substrate temperatures, and they can exhibit exceptional kinetic stability; films retain their favorable packing when heated to high temperatures. Here, we study the influence of molecular shape on molecular orientation and stability. We investigate disc-shaped molecules, such as TCTA and m-MTDATA, nearly spherical molecules, such as Alq3, and linear molecules covering a broad range of aspect ratios, such as p-TTP and BSB-Cz. Disc-shaped molecules have preferential horizontal orientation when deposited at low substrate temperatures, and their orientation can be tuned by changing the substrate temperature. Alq3 forms stable, amorphous films that are optically isotropic when vapor deposited over a broad range of substrate temperatures. This work may guide the choice of material and deposition conditions for vapor-deposited films used in organic electronics and allow for more efficient devices to be fabricated.

  16. Evidence of thermal transport anisotropy in stable glasses of vapor deposited organic molecules

    Science.gov (United States)

    Ràfols-Ribé, Joan; Dettori, Riccardo; Ferrando-Villalba, Pablo; Gonzalez-Silveira, Marta; Abad, Llibertat; Lopeandía, Aitor F.; Colombo, Luciano; Rodríguez-Viejo, Javier

    2018-03-01

    Vapor deposited organic glasses are currently in use in many optoelectronic devices. Their operation temperature is limited by the glass transition temperature of the organic layers and thermal management strategies become increasingly important to improve the lifetime of the device. Here we report the unusual finding that molecular orientation heavily influences heat flow propagation in glassy films of small molecule organic semiconductors. The thermal conductivity of vapor deposited thin-film semiconductor glasses is anisotropic and controlled by the deposition temperature. We compare our data with extensive molecular dynamics simulations to disentangle the role of density and molecular orientation on heat propagation. Simulations do support the view that thermal transport along the backbone of the organic molecule is strongly preferred with respect to the perpendicular direction. This is due to the anisotropy of the molecular interaction strength that limits the transport of atomic vibrations. This approach could be used in future developments to implement small molecule glassy films in thermoelectric or other organic electronic devices.

  17. Considering Organic Carbon for Improved Predictions of Clay Content from Water Vapor Sorption

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2014-01-01

    Accurate determination of the soil clay fraction (CF) is of crucial importance for characterization of numerous environmental, agricultural, and engineering processes. Because traditional methods for measurement of the CF are laborious and susceptible to errors, regression models relating the CF...... to water vapor sorption isotherms that can be rapidly measured with a fully automated vapor sorption analyzer are a viable alternative. In this presentation we evaluate the performance of recently developed regression models based on comparison with standard CF measurements for soils with high organic...... carbon (OC) content and propose a modification to improve prediction accuracy. Evaluation of the CF prediction accuracy for 29 soils with clay contents ranging from 6 to 25% and with OC contents from 2.0 to 8.4% showed that the models worked reasonably well for all soils when the OC content was below 2...

  18. Multi-scale organization of water vapor over low and mid-tropical Africa

    CSIR Research Space (South Africa)

    Botai, OJ

    2009-01-01

    Full Text Available stream_source_info Botai_2009.pdf.txt stream_content_type text/plain stream_size 23192 Content-Encoding UTF-8 stream_name Botai_2009.pdf.txt Content-Type text/plain; charset=UTF-8 1 MULTI-SCALE ORGANIZATION OF WATER.... Integrated water vapor field and multiscale variations over China from GPS measurements. J. appl., Meteo., Climatol., 47, pp. 3008-3015 8. Johnsen K. P., 2003. GPS atmosphere sounding project- An innovative approach for the recovery of atmospheric...

  19. Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks.

    Science.gov (United States)

    Wang, Hao; Lustig, William P; Li, Jing

    2018-03-13

    Toxic and hazardous chemical species are ubiquitous, predominantly emitted by anthropogenic activities, and pose serious risks to human health and the environment. Thus, the sensing and subsequent capture of these chemicals, especially in the gas or vapor phase, are of extreme importance. To this end, metal-organic frameworks have attracted significant interest, as their high porosity and wide tunability make them ideal for both applications. These tailorable framework materials are particularly promising for the specific sensing and capture of targeted chemicals, as they can be designed to fit a diverse range of required conditions. This review will discuss the advantages of metal-organic frameworks in the sensing and capture of harmful gases and vapors, as well as principles and strategies guiding the design of these materials. Recent progress in the luminescent detection of aromatic and aliphatic volatile organic compounds, toxic gases, and chemical warfare agents will be summarized, and the adsorptive removal of fluorocarbons/chlorofluorocarbons, volatile radioactive species, toxic industrial gases and chemical warfare agents will be discussed.

  20. Direct observation of the release of alkali vapor species in biofuel combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    French, R.J.; Milne, T.A. [National Renewable Energy Lab., Golden, CO (United States)

    1993-12-31

    The largest present use of biomass for energy is in combustion for steam and electrical power. Biofuels have an acknowledged advantage over coal as a solid fuel because of their low sulfur and ash content. However, some forms of biomass have substantial quantities of alkali metals and chlorine. In addition, evidence indicates that the alkali in biomass is largely atomically dispersed, resulting in its facile mobilization into the gas-phase. Gaseous alkali compounds aggravate problems of slagging, fouling, and corrosion on heat transfer surfaces in present-day boilers. These problems can be particularly severe when mixed and variable agricultural residues are burned. Furthermore, the next generation of biomass-to-power systems will likely involve combined cycle gas turbines, where alkali tolerances are especially restrictive. In this paper, we report on laboratory studies in which biofuels are combusted under simulated turbine or boiler-firing conditions. Gaseous alkali, sulfur, nitrogen, and halogen-containing species are measured by direct extraction from the hot gases through molecular-beam mass spectrometry (MBMS). The experimental apparatus will be described and its capability illustrated with results of time-resolved evolution of species like K, KCl, KOH, SO{sub 2} and NO{sub x} from small samples of biomass in combustion environments. The nature and release of such species will be explicated by referring to thermodynamic equilibrium predictions and the form of alkali in solid, gaseous, and liquid biofuels.

  1. Group vector space method for estimating enthalpy of vaporization of organic compounds at the normal boiling point.

    Science.gov (United States)

    Wenying, Wei; Jinyu, Han; Wen, Xu

    2004-01-01

    The specific position of a group in the molecule has been considered, and a group vector space method for estimating enthalpy of vaporization at the normal boiling point of organic compounds has been developed. Expression for enthalpy of vaporization Delta(vap)H(T(b)) has been established and numerical values of relative group parameters obtained. The average percent deviation of estimation of Delta(vap)H(T(b)) is 1.16, which show that the present method demonstrates significant improvement in applicability to predict the enthalpy of vaporization at the normal boiling point, compared the conventional group methods.

  2. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications

    Science.gov (United States)

    Collis, Ward J.; Abul-Fadl, Ali

    1988-01-01

    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  3. Methods for calculation of engineering parameters for gas separation. [vapor pressure and solubility of gases in organic liquids

    Science.gov (United States)

    Lawson, D. D.

    1979-01-01

    A group additivity method is generated which allows estimation, from the structural formulas alone, of the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. Using these two parameters and appropriate thermodynamic relations, the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids are predicted. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  4. Development of Y-BA-CU-O Coated Conductor Using Metal Organic Chemical Vapor Deposition

    National Research Council Canada - National Science Library

    Selvamanickam, V

    2003-01-01

    .... The program includes a study of the a) influence of MOCVD processing conditions such as the flow rate of precursor vapors, precursor vaporization temperatures, oxygen partial pressure, reactor pressure, and the deposition temperature...

  5. Vapor-Phase Deposition and Modification of Metal-Organic Frameworks: State-of-the-Art and Future Directions.

    Science.gov (United States)

    Stassen, Ivo; De Vos, Dirk; Ameloot, Rob

    2016-10-04

    Materials processing, and thin-film deposition in particular, is decisive in the implementation of functional materials in industry and real-world applications. Vapor processing of materials plays a central role in manufacturing, especially in electronics. Metal-organic frameworks (MOFs) are a class of nanoporous crystalline materials on the brink of breakthrough in many application areas. Vapor deposition of MOF thin films will facilitate their implementation in micro- and nanofabrication research and industries. In addition, vapor-solid modification can be used for postsynthetic tailoring of MOF properties. In this context, we review the recent progress in vapor processing of MOFs, summarize the underpinning chemistry and principles, and highlight promising directions for future research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Release of organic nitrogen compounds from Kerogen via catalytic hydropyrolysis

    Directory of Open Access Journals (Sweden)

    Bennett B

    2000-12-01

    Full Text Available High hydrogen pressure pyrolysis (hydropyrolysis was performed on samples of solvent extracted Kimmeridge Clay Formation source rock with a maturity equivalent to ca. 0.35% vitrinite reflectance. We describe the types and distributions of organic nitrogen compounds in the pyrolysis products (hydropyrolysates using GC-MS. Compounds identified included alkyl-substituted indoles, carbazoles, benzocarbazoles, quinolines and benzoquinolines. The distributions of the isomers of methylcarbazoles, C2-alkylcarbazoles and benzocarbazoles in the hydropyrolysates were compared to a typical North Sea oil. The hydropyrolysates compared to the North Sea oil, showed increased contributions from alkylcarbazole isomers where the nitrogen group is "exposed" (no alkyl substituents adjacent to the nitrogen functionality and appreciable levels of benzo[b]carbazole relative to benzo[a]- and benzo[c]carbazoles. Hydropyrolysis is found to be an ideal technique for liberating appreciable quantities of heterocyclic organic nitrogen compounds from geomacromolecules. The products released from the immature Kimmeridge Clay are thought to represent a potential source of nitrogen compounds in the bound phase (kerogen able to contribute to the free bitumen phase during catagenesis.

  7. Reactivity and morphology of vapor-deposited Al/polymer interfaces for organic semiconductor devices

    International Nuclear Information System (INIS)

    Demirkan, K.; Mathew, A.; Weiland, C.; Opila, R. L.; Reid, M.

    2008-01-01

    The chemistry and the morphology of metal-deposited organic semiconductor interfaces play a significant role in determining the performance and reliability of organic semiconductor devices. We investigated the aluminum metallization of poly(2-methoxy-5,2 ' -ethyl-hexyloxy-phenylene vinylene) (MEH-PPV), polystyrene, and ozone-treated polystyrene surfaces by chemical (x-ray and ultraviolet photoelectron spectroscopy) and microscopic [atomic force microscopy, scanning electron microscopy (SEM), focused ion beam (FIB)] analyses. Photoelectron spectroscopy showed the degree of chemical interaction between Al and each polymer; for MEH-PPV, the chemical interactions were mainly through the C-O present in the side chain of the polymer structure. The chemical interaction of aluminum with polystyrene was less significant, but it showed a dramatic increase after ozone treatment of the polystyrene surface (due to the formation of exposed oxygen sites). Results showed a strong relationship between the surface reactivity and the condensation/sticking of the aluminum atoms on the surface. SEM analysis showed that, during the initial stages of the metallization, a significant clustering of aluminum takes place. FIB analysis showed that such clustering yields a notably porous structure. The chemical and the morphological properties of the vapor-deposited Al on organic semiconductor surfaces makes such electrical contacts more complicated. The possible effects of surface chemistry and interface morphology on the electrical properties and reliability of organic semiconductor devices are discussed in light of the experimental findings

  8. InAs film grown on Si(111) by metal organic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Caroff, P; Jeppsson, M; Mandl, B; Wernersson, L-E; Wheeler, D; Seabaugh, A; Keplinger, M; Stangl, J; Bauer, G

    2008-01-01

    We report the successful growth of high quality InAs films directly on Si(111) by Metal Organic Vapor Phase Epitaxy. A nearly mirror-like and uniform InAs film is obtained at 580 0 C for a thickness of 2 μm. We measured a high value of the electron mobility of 5100 cm 2 /Vs at room temperature. The growth is performed using a standard two-step procedure. The influence of the nucleation layer, group V flow rate, and layer thickness on the electrical and morphological properties of the InAs film have been investigated. We present results of our studies by Atomic Force Microscopy, Scanning Electron Microscopy, electrical Hall/van der Pauw and structural X-Ray Diffraction characterization

  9. Thermodynamic analysis of trimethylgallium decomposition during GaN metal organic vapor phase epitaxy

    Science.gov (United States)

    Sekiguchi, Kazuki; Shirakawa, Hiroki; Chokawa, Kenta; Araidai, Masaaki; Kangawa, Yoshihiro; Kakimoto, Koichi; Shiraishi, Kenji

    2018-04-01

    We analyzed the decomposition of Ga(CH3)3 (TMG) during the metal organic vapor phase epitaxy (MOVPE) of GaN on the basis of first-principles calculations and thermodynamic analysis. We performed activation energy calculations of TMG decomposition and determined the main reaction processes of TMG during GaN MOVPE. We found that TMG reacts with the H2 carrier gas and that (CH3)2GaH is generated after the desorption of the methyl group. Next, (CH3)2GaH decomposes into (CH3)GaH2 and this decomposes into GaH3. Finally, GaH3 becomes GaH. In the MOVPE growth of GaN, TMG decomposes into GaH by the successive desorption of its methyl groups. The results presented here concur with recent high-resolution mass spectroscopy results.

  10. Catalyst-free growth of InN nanorods by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Min Hwa; Moon, Dae Young; Park, Jinsub; Nanishi, Yasushi; Yi, Gyu-Chul; Yoon, Euijoon

    2012-01-01

    We demonstrated the growth of catalyst-free InN nanostructures including nanorods on (0001) Al 2 O 3 substrates using metal-organic chemical vapor deposition. As the growth time increased, growth rate along c-direction increased superlinearly with decreasing c-plane area fractions and increasing side wall areas. It was also found that desorption from the sidewalls of InN nanostructures during the InN nanorods formation was one of essential key parameters of the growth mechanism. We propose a growth model to explain the InN nanostructure evolution by considering the side wall desorption and re-deposition of indium at top c-plane surfaces. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Triple sorbent thermal desorption/gas chromatography/mass spectrometry determination of vapor phase organic contaminants

    International Nuclear Information System (INIS)

    Ma, C.Y.; Skeen, J.T.; Dindal, A.B.; Higgins, C.E.; Jenkins, R.A.

    1994-05-01

    A thermal desorption/ps chromatography/mass spectrometry (TD/GC/MS) has been evaluated for the determination of volatile organic compounds (VOCS) in vapor phase samples using Carbosieve S-III/Carbotrap/Carotrap C triple sorbent traps (TST) similar to those available from a commercial source. The analysis was carried out with a Hewlett-Packard 5985A or 5995 GC/MS system with a modified injector to adapt an inhouse manufactured short-path desorber for transferring desorbate directly onto a cryofocusing loop for subsequent GC/MS analysis. Vapor phase standards generated from twenty six compounds were used for method validation, including alkanes, alkyl alcohols, alkyl ketones, and alkyl nitrites, a group of representative compounds that have previously been identified in a target airborne matrix. The method was validated based on the satisfactory results in terms of reproducibility, recovery rate, stability, and linearity. A relative, standard deviation of 0.55 to 24.3 % was obtained for the entire TD process (generation of gas phase standards, spiking the standards on and desorbing from TST) over a concentration range of 20 to 500 ng/trap. Linear correlation coefficients for the calibration curves as determined ranged from 0.81 to 0.99 and limits of detection ranged from 3 to 76 ng. For a majority of standards, recoveries of greater than 90% were observed. For three selected standards spiked on TSTS, minimal loss (10 to 22%) was observed after storing the spiked in, a 4 degree C refrigerator for 29 days. The only chromatographable artifact observed was a 5% conversion of isopropanol to acetone. The validated method been successfully applied, to the determination of VOCs collected from various emission sources in a diversified concentration range

  12. The cost-effective synthesis of furan- and thienyl-based microporous polyaminals for adsorption of gases and organic vapors.

    Science.gov (United States)

    Li, Guiyang; Zhang, Biao; Yan, Jun; Wang, Zhonggang

    2016-01-21

    This work reveals that furfural and 2-thenaldehyde can readily react with melamine via "one-step" polycondensation to yield hyper-cross-linked sulfur-, nitrogen- and oxygen-rich microporous polyaminals with promising applications in adsorption of gases and toxic organic vapors.

  13. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics.

    Science.gov (United States)

    Gomez De Arco, Lewis; Zhang, Yi; Schlenker, Cody W; Ryu, Koungmin; Thompson, Mark E; Zhou, Chongwu

    2010-05-25

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD, transferred to transparent substrates, and evaluated in organic solar cell heterojunctions (TCE/poly-3,4-ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS)/copper phthalocyanine/fullerene/bathocuproine/aluminum). Key to our success is the continuous nature of the CVD graphene films, which led to minimal surface roughness ( approximately 0.9 nm) and offered sheet resistance down to 230 Omega/sq (at 72% transparency), much lower than stacked graphene flakes at similar transparency. In addition, solar cells with CVD graphene and indium tin oxide (ITO) electrodes were fabricated side-by-side on flexible polyethylene terephthalate (PET) substrates and were confirmed to offer comparable performance, with power conversion efficiencies (eta) of 1.18 and 1.27%, respectively. Furthermore, CVD graphene solar cells demonstrated outstanding capability to operate under bending conditions up to 138 degrees , whereas the ITO-based devices displayed cracks and irreversible failure under bending of 60 degrees . Our work indicates the great potential of CVD graphene films for flexible photovoltaic applications.

  14. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics

    KAUST Repository

    Gomez De Arco, Lewis

    2010-05-25

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD, transferred to transparent substrates, and evaluated in organic solar cell heterojunctions (TCE/poly-3,4- ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS)/copper phthalocyanine/fullerene/bathocuproine/aluminum). Key to our success is the continuous nature of the CVD graphene films, which led to minimal surface roughness (∼ 0.9 nm) and offered sheet resistance down to 230 Ω/sq (at 72% transparency), much lower than stacked graphene flakes at similar transparency. In addition, solar cells with CVD graphene and indium tin oxide (ITO) electrodes were fabricated side-by-side on flexible polyethylene terephthalate (PET) substrates and were confirmed to offer comparable performance, with power conversion efficiencies (η) of 1.18 and 1.27%, respectively. Furthermore, CVD graphene solar cells demonstrated outstanding capability to operate under bending conditions up to 138°, whereas the ITO-based devices displayed cracks and irreversible failure under bending of 60°. Our work indicates the great potential of CVD graphene films for flexible photovoltaic applications. © 2010 American Chemical Society.

  15. Native Fluorescence Detection Methods and Detectors for Naphthalene and/or Other Volatile Organic Compound Vapors

    Science.gov (United States)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)

    2014-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds have been identified as serious health hazards. This is especially true for personnel working with JP8 jet fuel and other fuels containing naphthalene as well as other hazardous volatile organic compounds (VOCs). Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to naphthalene or other hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined. The badges employ a new native fluorescence based detection method to identify and differentiate VOCs. The particular focus of some embodiments are the detection and identification of naphthalene while other embodiments are directed to detection and identification of other VOCs like aromatic hydrocarbons such as benzene, toluene, and xylene.

  16. Epitaxial Oxide Thin Films Grown by Solid Source Metal-Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Lu, Zihong

    1995-01-01

    The conventional liquid source metal-organic chemical vapor deposition (MOCVD) technique is capable of producing large area, high quality, single crystal semiconductor films. However, the growth of complex oxide films by this method has been hampered by a lack of suitable source materials. While chemists have been actively searching for new source materials, the research work reported here has demonstrated the successful application of solid metal-organic sources (based on tetramethylheptanedionate) to the growth of high quality thin films of binary compound cerium dioxide (CeO_2), and two more complex materials, the ternary compound lithium niobate (LiNbO_3), with two cations, and the quaternary compound strontium barium niobate (SBN), with three cations. The growth of CeO_2 thin films on (1012)Al_2O_3 substrates has been used as a model to study the general growth behavior of oxides. Factors affecting deposition rate, surface morphology, out-of-plane mosaic structure, and film orientation have been carefully investigated. A kinetic model based on gas phase prereaction is proposed to account for the substrate temperature dependence of film orientation found in this system. Atomically smooth, single crystal quality cerium dioxide thin films have been obtained. Superconducting YBCO films sputtered on top of solid source MOCVD grown thin cerium dioxide buffer layers on sapphire have been shown to have physical properties as good as those of YBCO films grown on single crystal MgO substrates. The thin film growth of LiNbO_3 and Sr_{1-x}Ba _{x}Nb_2 O_6 (SBN) was more complex and challenging. Phase purity, transparency, in-plane orientation, and the ferroelectric polarity of LiNbO _3 films grown on sapphire substrates was investigated. The first optical quality, MOCVD grown LiNbO _3 films, having waveguiding losses of less than 2 dB/cm, were prepared. An important aspect of the SBN film growth studies involved finding a suitable single crystal substrate material. Mg

  17. Effect of light availability on dissolved organic carbon release by Caribbean reef algae and corals

    NARCIS (Netherlands)

    Mueller, B.; van der Zande, R.M.; van Leent, P.J.M.; Meesters, E.H.; Vermeij, M.J.A.; van Duyl, F.C.

    2014-01-01

    Dissolved organic carbon (DOC) release of three algal and two coral species was determined at three light intensities (0, 30–80, and 200–400 µmol photons m–2 s–1) in ex situ incubations to quantify the effect of light availability on DOC release by reef primary producers. DOC release of three

  18. Organic vapor discrimination with chemiresistor arrays of temperature modulated tin-oxide nanowires and thiolate-monolayer-protected gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Scholten, K; Bohrer, F I; Dattoli, E; Lu, W; Zellers, E T, E-mail: ezellers@umich.edu [Center for Wireless Integrated Microsystems, University of Michigan, Ann Arbor, MI 48109-2122 (United States)

    2011-03-25

    This paper explores the discrimination of organic vapors with arrays of chemiresistors (CRs) employing interface layers of tin-oxide nanowires (NWs) and thiolate-monolayer-protected gold nanoparticles (MPNs). The former devices use contact-printed mats of NWs on micro-hotplate membranes to bridge a pair of metal electrodes. Oxidation at the NW surface causes changes in charge transport, the temperature dependence of which differs among different vapors, permitting vapor discrimination. The latter devices use solvent cast films of MPNs on interdigital electrodes operated at room temperature. Sorption into the organic monolayers causes changes in film tunneling resistance that differ among different vapors and MPN structures, permitting vapor discrimination. Here, we compare the performance and assess the 'complementarity' of these two types of sensors. Calibrated responses from an NW CR operated at two different temperatures and from a set of four different MPN CRs were generated for three test vapors: n-hexane, toluene, and nitromethane. This pooled data set was then analyzed using principal components regression classification models with varying degrees of random error superimposed on the responses via Monte Carlo simulation in order to estimate the rates of recognition/discrimination for arrays comprising different combinations of sensors. Results indicate that the diversity of most of the dual MPN-CR arrays exceeds that of the dual NW-CR array. Additionally, in assessing all possible arrays of 4-6 CR sensors, the recognition rates of the hybrid arrays (i.e. MPN + NW) were no better than that of the 4-sensor array containing only MPN CRs.

  19. Beryllium doped p-type GaN grown by metal-organic chemical vapor depostion

    International Nuclear Information System (INIS)

    Al-Tahtamouni, T.M.; Sedhain, A.; Lin, J.Y.; Jiang, H.X.

    2010-01-01

    The authors report on the growth of Be-doped p-type GaN epilayers by metal-organic chmical vapor deposition (MOCVD). The electrical and optical properties of the Be-doped GaN epilayers were studied by Hall-effect measurements and photoluminescence (PL) spectroscopy. The PL spectra of Be-doped GaN epilayers ethibited two emission lines at 3.36 and 2.71 eV, which were obsent in undoped epilayers. The transition at 3.36 eV was at 3.36 and 2.71eV, which were absent in undoped epilayers. The transition at 3.36 eV was assigned to the transition of free electrons to the neutral Be acceptor Be d eg.. The transition at 2.71 eV was assigned to the transition of electrons bound to deep level donors to the Be d eg. acceptors. Three independent measurements: (a) resistivity vs. temperature, (b) PL peak positions between Be doped and undoped GaN and (c) activation energy of 2.71 eV transition all indicate that the Be energy level is between 120 and 140 meV above the valence band. This is about 20-40 meV shallower than the Mg energy level (160 meV) in GaN. It is thus concluded that Be could be an excellent acceptor dopant in nitride materials. (authors).

  20. Dew point fast measurement in organic vapor mixtures using quartz resonant sensor

    Science.gov (United States)

    Nie, Jing; Liu, Jia; Meng, Xiaofeng

    2017-01-01

    A fast dew point sensor has been developed for organic vapor mixtures by using the quartz crystal with sensitive circuits. The sensor consists of the quartz crystal and a cooler device. Proactive approach is taken to produce condensation on the surface of the quartz crystal, and it will lead to a change in electrical features of the quartz crystal. The cessation of oscillation was measured because this phenomenon is caused by dew condensation. Such a phenomenon can be used to detect the dew point. This method exploits the high sensitivity of the quartz crystal but without frequency measurement and also retains the stability of the resonant circuit. It is strongly anti-interfered. Its performance was evaluated with acetone-methanol mixtures under different pressures. The results were compared with the dew points predicted from the universal quasi-chemical equation to evaluate the performance of the proposed sensor. Though the maximum deviations of the sensor are less than 1.1 °C, it still has a fast response time with a recovery time of less than 10 s, providing an excellent dehumidifying performance.

  1. Vaporization of protic ionic liquids derived from organic superbases and short carboxylic acids.

    Science.gov (United States)

    Ribeiro, Filipe M S; Lima, Carlos F R A C; Vaz, Inês C M; Rodrigues, Ana S M C; Sapei, Erlin; Melo, André; Silva, Artur M S; Santos, Luís M N B F

    2017-06-28

    This work presents a comprehensive evaluation of the phase behaviour and cohesive enthalpy of protic ionic liquids (PILs) composed of 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) organic superbases with short-chain length (acetic, propionic and butyric) carboxylic acids. Glass transition temperatures, T g , and enthalpies of vaporization, ΔH vap , were measured for six [BH][A] (1 : 1) PILs (B = DBN, DBU; A = MeCOO, EtCOO, nPrCOO), revealing more significant changes upon increasing the number of -CH 2 - groups in the base than in the acid. The magnitude of ΔH vap evidences that liquid PILs have a high proportion of ions, although the results also indicate that in DBN PILs the concentration of neutral species is not negligible. In the gas phase, these PILs exist as a distribution of ion pairs and isolated neutral species, with speciation being dependent on the temperature and pressure conditions - at high temperatures and low pressures the separated neutral species dominate. The higher T g and ΔH vap of the DBU PILs are explained by the stronger basicity of DBU (as supported by NMR and computational calculations), which increases the extent of proton exchange and the ionic character of the corresponding PILs, resulting in stronger intermolecular interactions in condensed phases.

  2. In situ synchrotron X-ray studies during metal-organic chemical vapor deposition of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Carol [Northern Illinois Univ., DeKalb, IL (United States); Argonne National Lab., Argonne, IL (United States); Highland, Matthew J.; Perret, Edith; Fuoss, Paul H.; Streiffer, Stephen K.; Stephenson, G. Brian [Argonne National Lab., Argonne, IL (United States); Richard, Marie-Ingrid [Universite Paul Cezanne Aix-Marseille, Marseille (France)

    2012-07-01

    In-situ, time-resolved techniques provide valuable insight into the complex interplay of surface structural and chemical evolution occurring during materials synthesis and processing of semiconductors. Our approach is to observe the evolution of surface structure and morphology at the atomic scale in real-time during metal organic vapor phase deposition (MOCVD) by using grazing incidence x-ray scattering and X-ray fluorescence, coupled with visible light scattering. Our vertical-flow MOCVD chamber is mounted on a 'z-axis' surface diffractometer designed specifically for these studies of the film growth, surface evolution and the interactions within a controlled growth environment. These techniques combine the ability of X-rays to penetrate a complex environment for measurements during growth and processing, with the sensitivity of surface scattering techniques to atomic and nanoscale structure. In this talk, we outline our program and discuss examples from our in-situ and real-time X-ray diffraction and fluorescence studies of InN, GaN, and InGaN growth on GaN(0001).

  3. Waste retrieval sluicing system vapor sampling and analysis plan for evaluation of organic emissions, process test phase III

    International Nuclear Information System (INIS)

    SASAKI, L.M.

    1999-01-01

    This sampling and analysis plan identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained to address vapor issues related to the sluicing of tank 241-C-106. Sampling will be performed in accordance with Waste Retrieval Sluicing System Emissions Collection Phase III (Jones 1999) and Process Test Plan Phase III, Waste Retrieval Sluicing System Emissions Collection (Powers 1999). Analytical requirements include those specified in Request for Ecology Concurrence on Draft Strategy/Path Forward to Address Concerns Regarding Organic Emissions from C-106 Sluicing Activities (Peterson 1998). The Waste Retrieval Sluicing System was installed to retrieve and transfer high-heat sludge from tank 241-C-106 to tank 241-AY-102, which is designed for high-heat waste storage. During initial sluicing of tank 241-C-106 in November 1998, operations were halted due to detection of unexpected high volatile organic compounds in emissions that exceeded regulatory permit limits. Several workers also reported smelling sharp odors and throat irritation. Vapor grab samples from the 296-C-006 ventilation system were taken as soon as possible after detection; the analyses indicated that volatile and semi-volatile organic compounds were present. In December 1998, a process test (phase I) was conducted in which the pumps in tanks 241-C-106 and 241-AY-102 were operated and vapor samples obtained to determine constituents that may be present during active sluicing of tank 241-C-106. The process test was suspended when a jumper leak was detected. On March 7, 1999, phase I1 of the process test was performed; the sluicing system was operated for approximately 7 hours and was ended using the controlled shutdown method when the allowable amount of solids were transferred to 241-AY-102. The phase II test was successful, however, further testing is required to obtain vapor samples at higher emission levels

  4. A field comparison of volatile organic compound measurements using passive organic vapor monitors and stainless steel canisters.

    Science.gov (United States)

    Pratt, Gregory C; Bock, Don; Stock, Thomas H; Morandi, Maria; Adgate, John L; Ramachandran, Gurumurthy; Mongin, Steven J; Sexton, Ken

    2005-05-01

    Concurrent field measurements of 10 volatile organic compounds (VOCs) were made using passive diffusion-based organic vapor monitors (OVMs) and the U.S. Federal Reference Method, which comprises active monitoring with stainless steel canisters (CANs). Measurements were obtained throughout a range of weather conditions, repeatedly over the course of three seasons, and at three different locations in the Minneapolis/St. Paul metropolitan area. Ambient concentrations of most VOCs as measured by both methods were low compared to those of other large metropolitan areas. For some VOCs a considerable fraction of measurements was below the detection limit of one or both methods. The observed differences between the two methods were similar across measurement sites, seasons, and meteorological variables. A Bayesian analysis with uniform priors on the differences was applied, with accommodation of sometimes heavy censoring (nondetection) in either device. The resulting estimates of bias and standard deviation of the OVM relative to the CAN were computed by tertile of the canister-measured concentration. In general, OVM and CAN measurements were in the best agreement for benzene and other aromatic compounds with hydrocarbon additions (ethylbenzene, toluene, and xylenes). The two methods were not in such good agreement for styrene and halogenated compounds (carbon tetrachloride, p-dichlorobenzene, methylene chloride, and trichloroethylene). OVMs slightly overestimated benzene concentrations and carbon tetrachloride at low concentrations, but in all other cases where significant differences were found, OVMs underestimated relative to canisters. Our study indicates that the two methods are in agreement for some compounds, but not all. We provide data and interpretation on the relative performance of the two VOC measurement methods, which facilitates intercomparisons among studies.

  5. RESUS: A code for low volatile radio-nuclide release from liquids due to vapor bubble burst induced liquid jet formation and disintegration

    International Nuclear Information System (INIS)

    Koch, M.K.; Starflinger, J.; Linnemann, Th.; Brockmeier, U.; Unger, H.; Schuetz, W.

    1995-01-01

    In the field of nuclear safety, the release of volatile and low volatile radio-nuclides from liquid surfaces into a gas atmosphere is important for aerosol source term considerations particularly in late severe accident sequences. In case of a hypothetical nuclear reactor accident involving a failure of the primary system, primary coolant and radio-nuclides may be released into the containment to frequently form a liquid pool which may be contaminated by suspended or solved fuel particles and fission products. Under this scope, the release code package REVOLS/RENONS was developed for radio-nuclide release from liquid surfaces. Assuming the absence of gas or vapor bubbles in the liquid, the evaporative release of volatile components, calculated by the REVOLS code, is governed by diffusive and convective transport processes, whereas the release of low volatiles, calculated by the RENONS code, may be governed by mechanical processes which leads to droplet entrainment in case of wavy liquid pool surface conditions into the containment atmosphere by means of convection. For many accident sequences, in which gas is injected into a pool or liquid area elsewhere, predominantly when saturation temperatures can be reached, the release of low volatile species from liquid surfaces due to bubble burst is identified as a decisive release mechanism also. Together with the liquid, the particles which are located at the pool surface or suspended in the pool, are released into the atmosphere. Consequently, the code RESUS.MOD1 (RESUSpension) is presently extended to include the calculation of the release of droplets and suspended radio-nuclide particles due to bubble burst induced liquid jet formation and disintegration above liquid surfaces. Experimental investigations indicate the influence of bubble volume and shape at the pool surface as well as bubble stabilization or destabilization, and furthermore the system pressure and temperatures as well as fluid properties, on droplet

  6. Release of organics from BWR condensate demineralizer resins

    International Nuclear Information System (INIS)

    Ohira, Taku; Furukawa, Makoto; Sekiguchi, Masahiko; Takiguchi, Hideki; Deguchi, Tatsuya; Ino, Takao; Izumi, Takeshi; Hagiwara, Masahiro

    1998-01-01

    In BWRs, one of major factors to affect water chemistry in reactor is the organics leaching from condensate demineralizer. Especially, the organics from cation ion exchange resin (described CER hereafter) is intaken to reactor and changes to the sulfuric acid due to thermal decomposition and radiolysis, because CER contains sulfuric groups. In this paper, the influence of environmental parameters and structure of ion exchange resin (described IER hereafter) on the organics leaching are clarified by using 'the new method' developed for accurate measurement organics leaching from IER. Based on these results, the mechanism of the organics leaching from IER is discussed. (author)

  7. Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids.

    Science.gov (United States)

    Xu, Ren-kou; Zhu, Yong-guan; Chittleborough, David

    2004-01-01

    Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by low-molecular-weight organic acids. Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the pKa values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was notcorrelated with pKa. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.

  8. Development of a primary diffusion source of organic vapors for gas analyzer calibration

    Science.gov (United States)

    Lecuna, M.; Demichelis, A.; Sassi, G.; Sassi, M. P.

    2018-03-01

    The generation of reference mixtures of volatile organic compounds (VOCs) at trace levels (10 ppt-10 ppb) is a challenge for both environmental and clinical measurements. The calibration of gas analyzers for trace VOC measurements requires a stable and accurate source of the compound of interest. The dynamic preparation of gas mixtures by diffusion is a suitable method for fulfilling these requirements. The estimation of the uncertainty of the molar fraction of the VOC in the mixture is a key step in the metrological characterization of a dynamic generator. The performance of a dynamic generator was monitored over a wide range of operating conditions. The generation system was simulated by a model developed with computational fluid dynamics and validated against experimental data. The vapor pressure of the VOC was found to be one of the main contributors to the uncertainty of the diffusion rate and its influence at 10-70 kPa was analyzed and discussed. The air buoyancy effect and perturbations due to the weighing duration were studied. The gas carrier flow rate and the amount of liquid in the vial were found to play a role in limiting the diffusion rate. The results of sensitivity analyses were reported through an uncertainty budget for the diffusion rate. The roles of each influence quantity were discussed. A set of criteria to minimize the uncertainty contribution to the primary diffusion source (25 µg min-1) were estimated: carrier gas flow rate higher than 37.7 sml min-1, a maximum VOC liquid mass decrease in the vial of 4.8 g, a minimum residual mass of 1 g and vial weighing times of 1-3 min. With this procedure a limit uncertainty of 0.5% in the diffusion rate can be obtained for VOC mixtures at trace levels (10 ppt-10 ppb), making the developed diffusion vials a primary diffusion source with potential to become a new reference material for trace VOC analysis.

  9. Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

    2008-01-01

    Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

  10. Tuning of electrical and structural properties of indium oxide films grown by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Wang, Ch.Y.; Cimalla, V.; Romanus, H.; Kups, Th.; Niebelschuetz, M.; Ambacher, O.

    2007-01-01

    Tuning of structural and electrical properties of indium oxide (In 2 O 3 ) films by means of metal organic chemical vapor deposition is demonstrated. Phase selective growth of rhombohedral In 2 O 3 (0001) and body-centered cubic In 2 O 3 (001) polytypes on (0001) sapphire substrates was obtained by adjusting the substrate temperature and trimethylindium flow rate. The specific resistance of the as-grown films can be tuned by about two orders of magnitude by varying the growth conditions

  11. Prediction of organic combined sewer sediment release and transport

    OpenAIRE

    Seco, Raquel Irene; Schellart, Alma Neeltje Antonia; Gómez Valentín, Manuel; Tait, Simon

    2018-01-01

    Accurate predictions of sediment loads released by sewer overflow discharges are important for being able to provide protection to vulnerable receiving waters. These predictions are sensitive to the estimated sediment characteristics and on the site conditions of in-pipe deposit formation. Their application without a detailed analysis and understanding of the initial conditions under which in-sewer deposits were formed normally results in very poor estimations. In this study, in-sewer sedimen...

  12. Source and Biological Response of Biochar Organic Compounds Released into Water; Relationships with Bio-Oil Composition and Carbonization Degree.

    Science.gov (United States)

    Ghidotti, Michele; Fabbri, Daniele; Mašek, Ondřej; Mackay, Colin Logan; Montalti, Marco; Hornung, Andreas

    2017-06-06

    Water-soluble organic compounds (WSOCs) were extracted from corn stalk biochar produced at increasing pyrolysis temperatures (350-650 °C) and from the corresponding vapors, collected as bio-oil. WSOCs were characterized by gas chromatography (semivolatile fraction), negative electron spray ionization high resolution mass spectrometry (hydrophilic fraction) and fluorescence spectroscopy. The pattern of semivolatile WSOCs in bio-oil was dominated by aromatic products from lignocellulose, while in biochar was featured by saturated carboxylic acids from hemi/cellulose and lipids with concentrations decreasing with decreasing H/C ratios. Hydrophilic species in poorly carbonized biochar resembled those in bio-oil, but the increasing charring intensity caused a marked reduction in the molecular complexity and degree of aromaticity. Differences in the fluorescence spectra were attributed to the predominance of fulvic acid-like structures in biochar and lignin-like moieties in bio-oil. The divergence between pyrolysis vapors and biochar in the distribution of WSOCs with increasing carbonization was explained by the hydrophobic carbonaceous matrix acting like a filter favoring the release into water of carboxylic and fulvic acid-like components. The formation of these structures was confirmed in biochar produced by pilot plant pyrolysis units. Biochar affected differently shoot and root length of cress seedlings in germination tests highlighting its complex role on plant growth.

  13. Controlled release of beta-estradiol from PLAGA microparticles: the effect of organic phase solvent on encapsulation and release.

    Science.gov (United States)

    Birnbaum, D T; Kosmala, J D; Henthorn, D B; Brannon-Peppas, L

    2000-04-03

    To determine the effect of the organic solvent used during microparticle preparation on the in vitro release of beta-estradiol, a number of formulations were evaluated in terms of size, shape and drug delivery performance. Biodegradable microparticles of poly(lactide-co-glycolide) were prepared containing beta-estradiol that utilized dichloromethane, ethyl acetate or a mixture of dichloromethane and methanol as the organic phase solvent during the particle preparation. The drug delivery behavior from the microparticles was studied and comparisons were made of their physical properties for different formulations. The varying solubilities of beta-estradiol and poly(lactide-co-glycolide) in the solvents studied resulted in biodegradable microparticles with very different physical characteristics. Microparticles prepared from solid suspensions of beta-estradiol using dichloromethane as the organic phase solvent were similar in appearance to microparticles prepared without drug. Microparticles prepared from dichloromethane/methanol solutions appeared transparent to translucent depending on the initial amount of drug used in the formulation. Microparticles prepared using ethyl acetate appeared to have the most homogeneous encapsulation of beta-estradiol, appearing as solid white spheres regardless of initial drug content. Studies showed that microparticles prepared from either ethyl acetate or a mixture of dichloromethane and methanol gave a more constant release profile of beta-estradiol than particles prepared using dichloromethane alone. For all formulations, an initial burst of release increased with increasing drug loading, regardless of the organic solvent used.

  14. Long-Term Stability of Polymer-Coated Surface Transverse Wave Sensors for the Detection of Organic Solvent Vapors.

    Science.gov (United States)

    Stahl, Ullrich; Voigt, Achim; Dirschka, Marian; Barié, Nicole; Richter, Christiane; Waldbaur, Ansgar; Gruhl, Friederike J; Rapp, Bastian E; Rapp, Michael; Länge, Kerstin

    2017-11-03

    Arrays with polymer-coated acoustic sensors, such as surface acoustic wave (SAW) and surface transverse wave (STW) sensors, have successfully been applied for a variety of gas sensing applications. However, the stability of the sensors' polymer coatings over a longer period of use has hardly been investigated. We used an array of eight STW resonator sensors coated with different polymers. This sensor array was used at semi-annual intervals for a three-year period to detect organic solvent vapors of three different chemical classes: a halogenated hydrocarbon (chloroform), an aliphatic hydrocarbon (octane), and an aromatic hydrocarbon (xylene). The sensor signals were evaluated with regard to absolute signal shifts and normalized signal shifts leading to signal patterns characteristic of the respective solvent vapors. No significant time-related changes of sensor signals or signal patterns were observed, i.e., the polymer coatings kept their performance during the course of the study. Therefore, the polymer-coated STW sensors proved to be robust devices which can be used for detecting organic solvent vapors both qualitatively and quantitatively for several years.

  15. Dissolved organic nitrogen and carbon release by a marine unicellular diazotrophic cyanobacterium

    NARCIS (Netherlands)

    Benavides, M.; Agawin, N.S.R.; Aristegui, J.; Peene, J.; Stal, L.J.

    2013-01-01

    Dinitrogen (N-2) fixation rates may be underestimated when recently fixed N2 is released as dissolved organic nitrogen (DON). DON release (DONr) is substantial in the filamentous cyanobacterium Trichodesmium but has never been reported in unicellular diazotrophic cyanobacteria. We used axenic

  16. Dissolved organic nitrogen and carbon release by a marine unicellular diazotrophic cyanobacterium

    NARCIS (Netherlands)

    Benavides, M.; Agawin, N.S.R.; Aristegui, J.; Peene, J.; Stal, L.J.

    2013-01-01

    Dinitrogen (N2) fixation rates may be underestimated when recently fixed N2 is released as dissolved organic nitrogen (DON). DON release (DONr) is substantial in the filamentous cyanobacterium Trichodesmium but has never been reported in unicellular diazotrophic cyanobacteria. We used axenic

  17. [Removal of volatile organic compounds in soils by soil vapor extraction (SVE)].

    Science.gov (United States)

    Yin, Fu-xiang; Zhang, Sheng-tian; Zhao, Xin; Feng, Ke; Lin, Yu-suo

    2011-05-01

    An experiment study has been carried out to investigate effects of the diameter of soil columns, the size of soil particulate and different contaminants on efficiency of simulated soil vapor extraction (SVE). Experiments with benzene, toluene, ethylbenzene and n-propylbenzene contaminated soils showed that larger bottom area/soil height (S/H) of the columns led to higher efficiency on removal of contaminants. Experiments with contaminated soils of different particulate size showed that the efficiency of SVE decreased with increases in soil particulate size, from 10 mesh to between 20 mesh and 40 mesh and removal of contaminants in soils became more difficult. Experiments with contaminated soils under different ventilation rates suggested that soil vapor extraction at a ventilation rate of 0.10 L x min(-1) can roughly remove most contaminants from the soils. Decreasing of contaminants in soils entered tailing stages after 12 h, 18 h and 48 h for benzene, toluene and ethylbenzene, respectively. Removal rate of TVOCs (Total VOCs) reached a level as high as 99.52%. The results of the experiment have indicated that molecule structure and properties of the VOCs are also important factors which have effects on removal rates of the contaminants. Increases in carbon number on the benzene ring, decreases in vapor pressure and volatile capability resulted in higher difficulties in soil decontamination. n-propylbenzene has a lower vapor pressure than toluene and ethylbenzene which led to a significant retard effect on desorption and volatilization of benzene and ethylbenzene.

  18. Dissolution kinetics of volatile organic compound vapors in water : An integrated experimental and computational study

    NARCIS (Netherlands)

    G. Mahmoodlu, Mojtaba; Pontedeiro, Elizabeth M.; Pérez Guerrero, Jesús S.; Raoof, Amir; Hassanizadeh, S. Majid; van Genuchten, Martinus Th

    In this study we performed batch experiments to investigate the dissolution kinetics of trichloroethylene (TCE) and toluene vapors in water at room temperature and atmospheric pressure. The batch systems consisted of a water reservoir and a connected headspace, the latter containing a small glass

  19. How Do Organic Vapors Swell Ultra-Thin PIM-1 Films?

    KAUST Repository

    Ogieglo, Wojciech; Rahimi, Khosrow; Rauer, Sebastian Bernhard; Ghanem, Bader; Ma, Xiao-Hua; Pinnau, Ingo; Wessling, Matthias

    2017-01-01

    Dynamic sorption of ethanol and toluene vapor into ultra-thin supported PIM-1 films down to 6 nm are studied with a combination of in-situ spectroscopic ellipsometry and in-situ X-ray reflectivity. Both ethanol and toluene significantly swell

  20. Colorimetric Detection of Water Vapor Using Metal-Organic Framework Composites.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    Purpose: Water vapor trapped in encapsulation materials or enclosed volumes leads to corrosion issues for critical NW components. Sandia National Laboratories has created a new diagnostic to indicate the presence of water in weapon systems. Impact: Component exposure to water now can be determined instantly, without need for costly, time-consuming analytical methods.

  1. Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 2: Assessing the influence of vapor wall losses

    OpenAIRE

    Cappa, Christopher D.; Jathar, Shantanu H.; Kleeman, Michael J.; Docherty, Kenneth S.; Jimenez, Jose L.; Seinfeld, John H.; Wexler, Anthony S.

    2016-01-01

    The influence of losses of organic vapors to chamber walls during secondary organic aerosol (SOA) formation experiments has recently been established. Here, the influence of such losses on simulated ambient SOA concentrations and properties is assessed in the UCD/CIT regional air quality model using the statistical oxidation model (SOM) for SOA. The SOM was fit to laboratory chamber data both with and without accounting for vapor wall losses following the approa...

  2. An evaluation of absorption spectroscopy to monitor YBa2Cu3O7-x precursors for metal organics chemical vapor deposition processing

    International Nuclear Information System (INIS)

    Matthew Edward Thomas

    1999-01-01

    Absorption spectroscopy was evaluated as a technique to monitor the metal organics chemical vapor deposition (MOCVD) process for forming YBa 2 Cu 3 O 7-x superconducting coated conductors. Specifically, this study analyzed the feasibility of using absorption spectroscopy to monitor the MOCVD supply vapor concentrations of the organic ligand 2,2,6,6-tetramethyl-3,5-heptanedionate (TMHD) metal chelates of barium, copper, and yttrium. Ba(TMHD) 2 , Cu(TMHD) 2 , and Y(TMHD) 3 compounds have successfully been vaporized in the MOCVD processing technique to form high temperature superconducting ''coated conductors,'' a promising technology for wire fabrication. The absorption study of the barium, copper, and yttrium (TMHD) precursors was conducted in the ultraviolet wavelength region from 200nm to 400nm. To simulate the MOCVD precursor flows the Ba(TMHD) 2 , Cu(TMHD) 2 , and Y(TMHD) 3 complexes were vaporized at vacuum pressures of (0.03--10)Torr. Spectral absorption scans of each precursor were conducted to examine potential measurement wavelengths for determining vapor concentrations of each precursor via Beer's law. The experimental results show that under vacuum conditions the barium, copper, and yttrium (TMHD) precursors begin to vaporize between 90 C and 135 C, which are considerably lower vaporization temperatures than atmospheric thermal gravimetric analyses indicate. Additionally, complete vaporization of the copper and yttrium (TMHD) precursors occurred during rapid heating at temperatures between 145 C and 195 C and after heating at constant temperatures between 90 C and 125 C for approximately one hour, whereas the Ba(TMHD) 2 precursor did not completely vaporize. At constant temperatures, near constant vaporization levels for each precursor were observed for extended periods of time. Detailed spectroscopic scans at stable vaporization conditions were conducted

  3. Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Mike Hack

    2008-12-31

    In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing the efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or

  4. Transport and sorption of volatile organic compounds and water vapor in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tsair-Fuh [Univ. of California, Berkeley, CA (United States)

    1995-07-01

    To gain insight on the controlling mechanisms for VOC transport in porous media, the relations among sorbent properties, sorption equilibrium and intraparticle diffusion processes were studied at the level of individual sorbent particles and laboratory columns for soil and activated carbon systems. Transport and sorption of VOCs and water vapor were first elucidated within individual dry soil mineral grains. Soil properties, sorption capacity, and sorption rates were measured for 3 test soils; results suggest that the soil grains are porous, while the sorption isotherms are nonlinear and adsorption-desorption rates are slow and asymmetric. An intragranular pore diffusion model coupled with the nonlinear Freundlich isotherm was developed to describe the sorption kinetic curves. Transport of benzene and water vapor within peat was studied; partitioning and sorption kinetics were determined with an electrobalance. A dual diffusion model was developed. Transport of benzene in dry and moist soil columns was studied, followed by gaseous transport and sorption in activated carbon. The pore diffusion model provides good fits to sorption kinetics for VOCs to soil and VOC to granular activated carbon and activated carbon fibers. Results of this research indicate that: Intraparticle diffusion along with a nonlinea sorption isotherm are responsible for the slow, asymmetric sorption-desorption. Diffusion models are able to describe results for soil and activated carbon systems; when combined with mass transfer equations, they predict column breakthrough curves for several systems. Although the conditions are simplified, the mechanisms should provide insight on complex systems involving transport and sorption of vapors in porous media.

  5. Research Update: Hybrid organic-inorganic perovskite (HOIP thin films and solar cells by vapor phase reaction

    Directory of Open Access Journals (Sweden)

    Po-Shen Shen

    2016-09-01

    Full Text Available With the rapid progress in deposition techniques for hybrid organic-inorganic perovskite (HOIP thin films, this new class of photovoltaic (PV technology has achieved material quality and power conversion efficiency comparable to those established technologies. Among the various techniques for HOIP thin films preparation, vapor based deposition technique is considered as a promising alternative process to substitute solution spin-coating method for large-area or scale-up preparation. This technique provides some unique benefits for high-quality perovskite crystallization, which are discussed in this research update.

  6. Raman Enhancement and Photo-Bleaching of Organic Dyes in the Presence of Chemical Vapor Deposition-Grown Graphene

    Directory of Open Access Journals (Sweden)

    Jiaxin Weng

    2017-10-01

    Full Text Available Fluorescent organic dyes photobleach under intense light. Graphene has been shown to improve the photo-stability of organic dyes. In this paper, we investigated the Raman spectroscopy and photo-bleaching kinetics of dyes in the absence/presence of chemical vapor deposition (CVD-grown graphene. We show that graphene enhances the Raman signal of a wide range of dyes. The photo-bleaching of the dyes was reduced when the dyes were in contact with graphene. In contrast, monolayer hexagonal boron nitride (h-BN was much less effective in reducing the photo-bleaching rate of the dyes. We attribute the suppression of photo-bleaching to the energy or electron transfer from dye to graphene. The results highlight the potential of CVD graphene as a substrate for protecting and enhancing Raman response of organic dyes.

  7. Metal-organic framework tethering PNIPAM for ON-OFF controlled release in solution.

    Science.gov (United States)

    Nagata, Shunjiro; Kokado, Kenta; Sada, Kazuki

    2015-05-21

    A smart metal-organic framework (MOF) exhibiting controlled release was achieved by modification with a thermoresponsive polymer (PNIPAM) via a surface-selective post-synthetic modification technique. Simple temperature variation readily switches "open" (lower temperature) and "closed" (higher temperature) states of the polymer-modified MOF through conformational change of PNIPAM grafted onto the MOF, resulting in controlled release of the included guest molecules such as resorufin, caffeine, and procainamide.

  8. Preliminary investigation of the potential for transient vapor release events during in situ vitrification based on thermal- hydraulic modeling

    International Nuclear Information System (INIS)

    Roberts, J.S.; Woosley, S.L.; Lessor, D.L.; Strachan, C.

    1992-07-01

    This study investigates a possible cause of molten glass displacements that occurred during two recent in situ vitrification (ISV) tests. The study was conducted for the US Department of Energy by Pacific Northwest Laboratory. It is hypothesized that these glass displacements are caused by large gas bubbles rising up through the ISV melt and bursting at its surface. These bubbles cause the molten surface to upwell and possibly overflow. When the bubbles burst, molten glass is thrown from the melt surface and the volume of gas contained in the bubble is released into the hood. Both of these phenomena are undesirable because the molten soil ejected from the melt is dangerous to operating personnel and can damage equipment. The sudden gas release can cause a temporary pressurization of the hood, allowing potentially contaminated gas to escape to the atmosphere. This study attempts to explain the conditions necessary for formation of large gas bubbles in the melt so that future glass displacements can be avoided

  9. Preliminary investigation of the potential for transient vapor release events during in situ vitrification based on thermal- hydraulic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.S.; Woosley, S.L.; Lessor, D.L.; Strachan, C.

    1992-07-01

    This study investigates a possible cause of molten glass displacements that occurred during two recent in situ vitrification (ISV) tests. The study was conducted for the US Department of Energy by Pacific Northwest Laboratory. It is hypothesized that these glass displacements are caused by large gas bubbles rising up through the ISV melt and bursting at its surface. These bubbles cause the molten surface to upwell and possibly overflow. When the bubbles burst, molten glass is thrown from the melt surface and the volume of gas contained in the bubble is released into the hood. Both of these phenomena are undesirable because the molten soil ejected from the melt is dangerous to operating personnel and can damage equipment. The sudden gas release can cause a temporary pressurization of the hood, allowing potentially contaminated gas to escape to the atmosphere. This study attempts to explain the conditions necessary for formation of large gas bubbles in the melt so that future glass displacements can be avoided.

  10. Growth kinetics and mass transport mechanisms of GaN columns by selective area metal organic vapor phase epitaxy

    Science.gov (United States)

    Wang, Xue; Hartmann, Jana; Mandl, Martin; Sadat Mohajerani, Matin; Wehmann, Hergo-H.; Strassburg, Martin; Waag, Andreas

    2014-04-01

    Three-dimensional GaN columns recently have attracted a lot of attention as the potential basis for core-shell light emitting diodes for future solid state lighting. In this study, the fundamental insights into growth kinetics and mass transport mechanisms of N-polar GaN columns during selective area metal organic vapor phase epitaxy on patterned SiOx/sapphire templates are systematically investigated using various pitch of apertures, growth time, and silane flow. Species impingement fluxes on the top surface of columns Jtop and on their sidewall Jsw, as well as, the diffusion flux from the substrate Jsub contribute to the growth of the GaN columns. The vertical and lateral growth rates devoted by Jtop, Jsw and Jsub are estimated quantitatively. The diffusion length of species on the SiOx mask surface λsub as well as on the sidewall surfaces of the 3D columns λsw are determined. The influences of silane on the growth kinetics are discussed. A growth model is developed for this selective area metal organic vapor phase epitaxy processing.

  11. Storage and release of organic carbon from glaciers and ice sheets

    Science.gov (United States)

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-02-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change -- equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  12. Storage and release of organic carbon from glaciers and ice sheets

    Science.gov (United States)

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-01-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change — equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  13. Organic vapor phase composition of sidestream and environmental tobacco smoke from cigarettes

    International Nuclear Information System (INIS)

    Higgins, C.E.; Jenkins, R.A.; Guerin, M.R.

    1987-01-01

    Environmental tobacco smoke (ETS) has received considerable attention because of its contribution to indoor air pollution. While some studies have attempted to estimate the exposure of humans to ETS constituents by extrapolating from information gleaned from investigations of sidestream smoke (SS), few studies have reported a direct comparison between the composition of SS and that of ETS. In the study reported here, the authors describe the relative compositional similarities and differences between the vapor phase of SS and that of ETS. SS was generated under different conditions. Both a new laminar flow chamber, which prevents significant alteration of the near-cigarette environment, and a modified Neurath chamber were used for SS generation. ETS samples were collected from an office environment. Vapor phase samples were collected on multi-media resin sorbent traps and analyzed using thermal desorption gas/liquid chromatography employing flame ionization, nitrogen-specific, and mass selective detection. Influences on the compositional profiles by the manner in which the SS is generated are described, as well as the differences between SS and ETS composition resulting from phase transition

  14. Suppressed beta relaxations and reduced heat capacity in ultrastable organic glasses prepared by physical vapor deposition

    Science.gov (United States)

    Ediger, Mark

    Glasses play an important role in technology as a result of their macroscopic homogeneity (e.g., the clarity of window glass) and our ability to tune properties through composition changes. A problem with liquid-cooled glasses is that they exhibit marginal kinetic stability and slowly evolve towards lower energy glasses and crystalline states. In contrast, we have shown that physical vapor deposition can prepare glasses with very high kinetic stability. These materials have properties expected for ``million-year-old'' glasses, including high density, low enthalpy, and high mechanical moduli. We have used nanocalorimetry to show that these high stability glasses have lower heat capacities than liquid-cooled glasses for a number of molecular systems. Dielectric relaxation has been used to show that the beta relaxation can be suppressed by nearly a factor of four in vapor-deposited toluene glasses, indicating a very tight packing environment. Consistent with this view, computer simulations of high stability glasses indicate reduced Debye-Waller factors. These high stability materials raise interesting questions about the limiting properties of amorphous packing arrangements.

  15. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)

    Science.gov (United States)

    Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.

    2009-01-01

    To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.

  16. Detection of organic vapors on sputtered and annealed thin Au films

    Science.gov (United States)

    Kvitek, O.; Kopacek, V.; Reznickova, A.; Svorcik, V.

    2018-03-01

    Unique optical properties of metal nanostructures enable construction of new types of chemical sensors. Nanostructures composed of Au on glass substrate were prepared by annealing of 2-20 nm thick sputtered Au films at 300 °C for 1 h. The annealing leads to transformation of the as sputtered continuous Au layers to a nanoisland structure. The forming nanostructure shows a strong, well defined surface plasmon resonance absorption band in UV-Vis spectrum, which is useful for construction of a chemical sensor. The samples were used to detect vapors of acetone and water in an experimental testing apparatus. The achieved signal-to-noise ratio was 583 and 386 for acetone and water vapors, respectively on the nanostructure prepared from 4 nm thick Au layer. The nanostructured sensitive layers, however, showed poor signal stability; therefore a polymer overlayer was introduced to protect it. The employed polystyrene film prepared by spin-coating improved sensitivity and selectivity of the sensor, while the dynamic properties of the sensing influenced only slightly.

  17. Effect of ultraviolet illumination and ambient gases on the photoluminescence and electrical properties of nanoporous silicon layer for organic vapor sensor.

    Science.gov (United States)

    Atiwongsangthong, Narin

    2012-08-01

    The purpose of this research, the nanoporous silicon layer were fabricated and investigated the physical properties such as photoluminescence and the electrical properties in order to develop organic vapor sensor by using nanoporous silicon. The Changes in the photoluminescence intensity of nanoporous silicon samples are studied during ultraviolet illumination in various ambient gases such as nitrogen, oxigen and vacuum. In this paper, the nanoporous silicon layer was used as organic vapor adsorption and sensing element. The advantage of this device are simple process compatible in silicon technology and usable in room temperature. The structure of this device consists of nanoporous silicon layer which is formed by anodization of silicon wafer in hydrofluoric acid solution and aluminum electrode which deposited on the top of nanoporous silicon layer by evaporator. The nanoporous silicon sensors were placed in a gas chamber with various organic vapor such as ethanol, methanol and isopropyl alcohol. From studying on electrical characteristics of this device, it is found that the nanoporous silicon layer can detect the different organic vapor. Therefore, the nanoporous silicon is important material for organic vapor sensor and it can develop to other applications about gas sensors in the future.

  18. Mass-Spectrometric Studies of Catalytic Chemical Vapor Deposition Processes of Organic Silicon Compounds Containing Nitrogen

    Science.gov (United States)

    Morimoto, Takashi; Ansari, S. G.; Yoneyama, Koji; Nakajima, Teppei; Masuda, Atsushi; Matsumura, Hideki; Nakamura, Megumi; Umemoto, Hironobu

    2006-02-01

    The mechanism of catalytic chemical vapor deposition (Cat-CVD) processes for hexamethyldisilazane (HMDS) and trisdimethylaminosilane (TDMAS), which are used as source gases to prepare SiNx or SiCxNy films, was studied using three different mass spectrometric techniques: ionization by Li+ ion attachment, vacuum-ultraviolet radiation and electron impact. The results for HMDS show that Si-N bonds dissociate selectively, although Si-C bonds are weaker, and (CH3)3SiNH should be one of the main precursors of deposited films. This decomposition mechanism did not change when NH3 was introduced, but the decomposition efficiency was slightly increased. Similar results were obtained for TDMAS.

  19. How Do Organic Vapors Swell Ultra-Thin PIM-1 Films?

    KAUST Repository

    Ogieglo, Wojciech

    2017-06-22

    Dynamic sorption of ethanol and toluene vapor into ultra-thin supported PIM-1 films down to 6 nm are studied with a combination of in-situ spectroscopic ellipsometry and in-situ X-ray reflectivity. Both ethanol and toluene significantly swell the PIM-1 matrix and, at the same time, induce persistent structural relaxations of the frozen-in glassy PIM-1 morphology. For ethanol below 20 nm three effects were identified. First, the swelling magnitude at high vapor pressures is reduced by about 30% as compared to thicker films. Second, at low penetrant activities (below 0.3 p/p0) films below 20 nm are able to absorb slightly more penetrant as compared with thicker films despite similar swelling magnitude. Third, for the ultra-thin films the onset of the dynamic penetrant-induced glass transition Pg has been found to shift to higher values indicating higher resistance to plasticization. All of these effects are consistent with a view where immobilization of the super-glassy PIM-1 at the substrate surface leads to an arrested, even more rigid and plasticization-resistant, yet still very open, microporous structure. PIM-1 in contact with the larger and more condensable toluene shows very complex, heterogeneous swelling dynamics and two distinct penetrant-induced relaxation phenomena, probably associated with the film outer surface and the bulk, are detected. Following the direction of the penetrant\\'s diffusion the surface seems to plasticize earlier than the bulk and the two relaxations remain well separated down to 6 nm film thickness, where they remarkably merge to form just a single relaxation.

  20. How Do Organic Vapors Swell Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1?

    Science.gov (United States)

    Ogieglo, Wojciech; Rahimi, Khosorov; Rauer, Sebastian Bernhard; Ghanem, Bader; Ma, Xiaohua; Pinnau, Ingo; Wessling, Matthias

    2017-07-27

    Dynamic sorption of ethanol and toluene vapor into ultrathin supported films of polymer of intrinsic microporosity PIM-1 down to a thickness of 6 nm are studied with a combination of in situ spectroscopic ellipsometry and in situ X-ray reflectivity. Both ethanol and toluene significantly swell the PIM-1 matrix and, at the same time, induce persistent structural relaxations of the frozen-in glassy PIM-1 morphology. For ethanol below 20 nm, three effects were identified. First, the swelling magnitude at high vapor pressures is reduced by about 30% as compared to that of thicker films. Second, at low penetrant activities (below 0.3p/p 0 ), films below 20 nm are able to absorb slightly more penetrant as compared with thicker films despite a similar swelling magnitude. Third, for the ultrathin films, the onset of the dynamic penetrant-induced glass transition P g has been found to shift to higher values, indicating higher resistance to plasticization. All of these effects are consistent with a view where immobilization of the superglassy PIM-1 at the substrate surface leads to an arrested, even more rigid, and plasticization-resistant, yet still very open, microporous structure. PIM-1 in contact with the larger and more condensable toluene shows very complex, heterogeneous swelling dynamics, and two distinct penetrant-induced relaxation phenomena, probably associated with the film outer surface and the bulk, are detected. Following the direction of the penetrant's diffusion, the surface seems to plasticize earlier than the bulk, and the two relaxations remain well separated down to 6 nm film thickness, where they remarkably merge to form just a single relaxation.

  1. Kinetics of extracellular release of 14C-labelled organic carbon by submerged macrophytes

    International Nuclear Information System (INIS)

    Soendergaard, M.

    1981-01-01

    The release of extracellular organic carbon (EOC) by six submerged freswater macrophytes was measured in time course studies with a 14 C-technique. Incubation in light in an open water-flow system made it possible to assay the time courses of 14 C-fixation and the simultaneous release of labelled EOC. Heterotrophic utilization of the released products by epiphytic communities was measured. Two patterns of release kinetics were found: (1) Constant rates of release occurred during the incubations, (2) The rates still increased after 24 h of incubation. During the first hours of incubation the rates of release increased in all species. Elodea reached constant rates after 2-4 h and Littorella and Ceratophyllum demersum after about 20 h. In the experiments with C. submersum and Nitella the rates of release increased almost linearly during the entire incubation period. The kinetics of release were in agreement with the molecular weight distribution of the dissolved EOC measured with gel chromatography. Low molecular weight products ( 10000 Daltons) dominated the dissolved EOC released by C. submersum and Nitella. A large fraction (18-60%) of the total EOC could be recovered on filters with a pore size of 0.2 μm. This particulate fraction probably represents some abiotic removal. The quantities of relase were low in all species and did not exceed 0.9% of the photosynthetic carbon fixation. Heterotrophic uptake by the epiphytic communities was less than 10% of the EOC released. The results emphasize that the 14 C-labelling of extracellular products is a time dependent process. (author)

  2. [A novel vapor dynamic headspace enrichment equipment for nontarget screening of volatile organic compounds in drinking water].

    Science.gov (United States)

    Ma, Huilian; Zhang, Haijun; Tian, Yuzeng; Wang, Longxing; Chen, Jiping

    2011-09-01

    A novel vapor dynamic headspace enrichment device was set up for nontarget screening of volatile organic compounds (VOCs) in drinking water. The main operating parameters of this device, such as length of distillation tube, volume of collected condensate, and choice of absorbent, were optimized. In this device, vapor was utilized as a purge gas and water was utilized as a absorbent. With the help of the device, one liter of water sample could be concentrated to 5 mL and the sensitivity of traditional purge and trap-gas chromatography-mass spectrometry (P&T-GC-MS) could be improved 1-2 orders of magnitude. Source and disinfected water samples from a water treatment plant were analyzed with this method. Compared with the traditional P&T-GC-MS analysis without pre-enrichment, the numbers of identified VOCs were improved from 0 to 16 for source water and 5 to 35 for disinfected water samples. It is also shown that there are many halide compounds in VOCs in disinfected water which do not exist in source water.

  3. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPOR EXTRACTION AND BIOVENTING OF ORGANIC CHEMICALS IN UNSATURATED GEOLOGICAL MATERIAL

    Science.gov (United States)

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  4. pH-independent release of propranolol hydrochloride from HPMC-based matrices using organic acids

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background and purpose of the study: Propranolol HCl, a widely used drug in the treatment of cardiac arrhythmias and hypertension, is a weak basic drug with pH-dependent solubility that may show release problems from sustained release dosage forms at higher pH of small intestine. This might decrease drug bioavailability and cause variable oral absorption. Preparation of a sustained release matrix system with a pH-independent release profile was the aim of the present study. Methods: Three types of organic acids namely tartaric, citric and fumaric acid in the concentrations of 5, 10 and 15 % were added to the matrices prepared by hydroxypropyl methylcellulose (HPMC and dicalcium phosphate. The drug release studies were carried out at pH 1.2 and pH 6.8 separately and mean dissolution time (MDT as well as similarity factor (¦2 were calculated for all formulations. Results and discussion: It was found that incorporation of 5 and 10 % tartaric acid in tablet formulations with 30 % HPMC resulted in a suitable pH-independent release profiles with significant higher ¦2 values (89.9 and 87.6 respectively compared to acid free tablet (58.03. The other two acids did not show the desirable effects. It seems that lower pKa of tartaric acid accompanied by its higher solubility were the main factors in the achievement of pH-independent release profiles.

  5. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Duarte, Fabio Andrei; Bizzi, Cezar Augusto; Goldschmidt Antes, Fabiane; Dressler, Valderi Luiz; Flores, Erico Marlon de Moraes

    2009-01-01

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L - 1 KBr in 6 mol L - 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L - 1 HCl and 2.5% m/v NaBH 4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 deg. C and the atomization temperature was set at 650 deg. C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g - 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  6. Release rates of Al from inorganic and organic compounds in a sandy podzol, during laboratory experiments

    NARCIS (Netherlands)

    Salm, van der C.; Westerveld, J.W.; Verstraten, J.M.

    2000-01-01

    Research with respect to release rates of Al and Al concentrations in the soil solution has led to two contrasting hypotheses, stressing either the importance of kinetically constrained dissolution reactions or the role of complexation of Al to soil organic matter. The existence of two contrasting

  7. Exploring the Nutrient Release Potential of Organic Materials as Integrated Soil Fertility Management Components Using SAFERNAC

    NARCIS (Netherlands)

    Maro, G.P.; Mrema, J.P.; Msanya, B.M.; Janssen, B.H.; Teri, J.M.

    2014-01-01

    The aim of this study was to establish the nutrient release potential of different organic materials and assess their role in integrated soil fertility management for coffee using the new coffee yield model SAFERNAC. It involved an incubation experiment conducted at TaCRI Lyamungu Screenhouse for

  8. Nanoscale leakage current measurements in metal organic chemical vapor deposition crystalline SrTiO3 films

    International Nuclear Information System (INIS)

    Rozier, Y.; Gautier, B.; Hyvert, G.; Descamps, A.; Plossu, C.; Dubourdieu, C.; Ducroquet, F.

    2009-01-01

    The properties of SrTiO 3 thin films, grown by liquid injection metal organic chemical vapor deposition on Si/SiO 2 , using a mixture of precursors, have been investigated at the nanoscale using an Atomic Force Microscope in the so-called Conductive Atomic Force Microscopy mode. Maps of the leakage currents with a nanometric resolution have been obtained on films elaborated at different temperatures and stoichiometries in order to discriminate the role of each parameter on the onset of leakage currents in the resulting layers. It appears that the higher the deposition temperature, the higher the leakage currents of the films. The mapping with a nanometric precision allows to show a heterogeneous behaviour of the surface with leaky grains and insulating boundaries. The study of films elaborated at the same temperature with different compositions supports the assumption that the leakage currents on Ti-rich layers are far higher than on Sr-rich layers

  9. Highly sensitive room temperature organic vapor sensor based on polybenzoxazine-derived carbon aerogel thin film composite

    Energy Technology Data Exchange (ETDEWEB)

    Thubsuang, Uthen [Materials Science and Engineering, School of Engineering and Resources, Walailak University, Nakhon Si Thammarat 80160 (Thailand); Sukanan, Darunee [The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand); Sahasithiwat, Somboon [National Metal and Materials Technology Center, Thailand Science Park (TSP), Khlong Luang, Pathum Thani 12120 (Thailand); Wongkasemjit, Sujitra [The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand); Chaisuwan, Thanyalak, E-mail: thanyalak.c@chula.ac.th [The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand)

    2015-10-15

    Graphical abstract: - Highlights: • Activated carbon aerogel with high surface area can be prepared from polybenzoxazine. • Activated carbon aerogel enhances the adsorption capacity of gas sensor. • Organic vapors with very low concentration can be detected by the as-prepared sensor. • The as-prepared sensor shows impressive short exposure and recovery time. • The response to different organic vapors can be tailored by changing polymer matrix. - Abstract: Gas sensing composites were fabricated using polybenzoxazine-based activated carbon aerogel as a conductive filler. The activated carbon aerogel is a nano-porous material, which has high pore volume of 0.57 cm{sup 3}/g and surface area of 917 m{sup 2}/g. The activated carbon aerogel/polybutadiene composite displayed good response of 11.2 and 6.7 to toluene and n-hexane, respectively, compared to those of graphite/polybutadiene composite. The activated carbon aerogel/polybutadiene composite also showed high sensitivity of 3.09 × 10{sup 2} ppm{sup −1} to toluene. However, the sensitivity of activated carbon aerogel/polybutadiene composite drastically decreased to 1.99 ppm{sup −1} and zero when exposed to acetone and water, respectively. Contrarily, when polyvinyl alcohol was used as a matrix, the sensitivity was about 4.19 ppm{sup −1} to water. While the composite was found to be not sensitive to toluene. The activated carbon aerogel/polybutadiene composite also showed good recovery as the electrical resistance came back to the original value within minutes when exposed to nitrogen gas.

  10. Organic-inorganic field effect transistor with SnI-based perovskite channel layer using vapor phase deposition technique

    Science.gov (United States)

    Matsushima, Toshinori; Yasuda, Takeshi; Fujita, Katsuhiko; Tsutsui, Tetsuo

    2003-11-01

    High field-effect hole mobility of (formula available in paper)and threshold voltage is -3.2 V) in organic-inorganic layered perovskite film (formula available in paper)prepared by a vapor phase deposition technique have been demonstrated through the octadecyltrichlorosilane treatment of substrate. Previously, the (formula available in paper)films prepared on the octadecyltrichlorosilane-covered substrates using a vapor evaporation showed not only intense exciton absorption and photoluminescence in the optical spectroscopy but also excellent crystallinity and large grain structure in X-ray and atomic force microscopic studies. Especially, the (formula available in paper)structure in the region below few nm closed to the surface of octadecyltrichlorosilane monolayer was drastically improved in comparison with that on the non-covered substrate. Though our initial (formula available in paper)films via a same sequence of preparation of (formula available in paper)and octadecyltrichlorosilane monolayer did not show the field-effect properties because of a lack of spectral, structural, and morphological features. The unformation of favorable (formula available in paper)structure in the very thin region, that is very important for the field-effect transistors to transport electrons or holes, closed to the surface of non-covered (formula available in paper)dielectric layer was also one of the problems for no observation of them. By adding further optimization and development, such as deposition rate of perovskite, substrate heating during deposition, and tuning device architecture, with hydrophobic treatment, the vacuum-deposited (formula available in paper)have achieved above-described high performance in organic-inorganic hybrid transistors.

  11. Highly sensitive room temperature organic vapor sensor based on polybenzoxazine-derived carbon aerogel thin film composite

    International Nuclear Information System (INIS)

    Thubsuang, Uthen; Sukanan, Darunee; Sahasithiwat, Somboon; Wongkasemjit, Sujitra; Chaisuwan, Thanyalak

    2015-01-01

    Graphical abstract: - Highlights: • Activated carbon aerogel with high surface area can be prepared from polybenzoxazine. • Activated carbon aerogel enhances the adsorption capacity of gas sensor. • Organic vapors with very low concentration can be detected by the as-prepared sensor. • The as-prepared sensor shows impressive short exposure and recovery time. • The response to different organic vapors can be tailored by changing polymer matrix. - Abstract: Gas sensing composites were fabricated using polybenzoxazine-based activated carbon aerogel as a conductive filler. The activated carbon aerogel is a nano-porous material, which has high pore volume of 0.57 cm 3 /g and surface area of 917 m 2 /g. The activated carbon aerogel/polybutadiene composite displayed good response of 11.2 and 6.7 to toluene and n-hexane, respectively, compared to those of graphite/polybutadiene composite. The activated carbon aerogel/polybutadiene composite also showed high sensitivity of 3.09 × 10 2 ppm −1 to toluene. However, the sensitivity of activated carbon aerogel/polybutadiene composite drastically decreased to 1.99 ppm −1 and zero when exposed to acetone and water, respectively. Contrarily, when polyvinyl alcohol was used as a matrix, the sensitivity was about 4.19 ppm −1 to water. While the composite was found to be not sensitive to toluene. The activated carbon aerogel/polybutadiene composite also showed good recovery as the electrical resistance came back to the original value within minutes when exposed to nitrogen gas

  12. Fabrication of single-phase ε-GaSe films on Si(100) substrate by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia-Chen; Zeng, Jia-Xian; Lan, Shan-Ming [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Uen, Wu-Yih, E-mail: uenwuyih@ms37.hinet.net [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Liao, Sen-Mao [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Tsun-Neng; Ma, Wei-Yang [Institute of Nuclear Energy Research, P.O. Box 3-11, Lungtan 32500, Taiwan (China); Chang, Kuo-Jen [Chung-Shan Institute of Science and Technology, No.15, Shi Qi Zi, Gaoping Village, Longtan Township, Taoyuan County, Taiwan (China)

    2013-09-02

    Single-phase ε-gallium selenide (GaSe) films were fabricated on Si(100) substrate by metal organic chemical vapor deposition using dual-source precursors: triethylgallium (TEG) and hydrogen selenide (H{sub 2}Se) with the flow ratio of [H{sub 2}Se]/[TEG] being maintained at 1.2. In particular, an arsine (AsH{sub 3}) flow was introduced to the Si substrate before the film deposition to induce an arsenic (As)-passivation effect on the substrate. The crystalline structure of GaSe films prepared was analyzed using X-ray diffraction and the surface morphology of them was characterized by scanning electron microscopy. It was found that the film quality could be improved by the As-passivation effect. The optical properties of the films were studied by temperature dependent photoluminescence (PL) measurements. PL spectra obtained with different distributions and intensities favored for resolving the superior material quality of the films produced on the substrate with As-passivation compared to those produced on the substrate without As-passivation. The former was dominated by the excitonic emissions for the whole temperature range of 20–300 K examined, while the latter was initially dominated by the defect-related emission at 1.907 eV for a low-temperature range ≦ 80 K and then became dominated by the weak excitonic emission band instead. The ε modification of GaSe films prepared was further recognized by the Raman scattering measurements conducted at room temperature. - Highlights: • Gallium selenide (GaSe) layered structures are fabricated on Si(100) substrate. • Metal–organic chemical vapor deposition is used for film fabrication. • Arsenic-passivation effects of Si substrate on the GaSe film quality are analyzed. • Photoluminescence measurements of GaSe polycrystals are reported.

  13. Crustacean zooplankton release copious amounts of dissolved organic matter as taurine in the ocean.

    Science.gov (United States)

    Clifford, Elisabeth L; Hansell, Dennis A; Varela, Marta M; Nieto-Cid, Mar; Herndl, Gerhard J; Sintes, Eva

    2017-11-01

    Taurine (Tau), an amino acid-like compound, is present in almost all marine metazoans including crustacean zooplankton. It plays an important physiological role in these organisms and is released into the ambient water throughout their life cycle. However, limited information is available on the release rates by marine organisms, the concentrations and turnover of Tau in the ocean. We determined dissolved free Tau concentrations throughout the water column and its release by abundant crustacean mesozooplankton at two open ocean sites (Gulf of Alaska and North Atlantic). At both locations, the concentrations of dissolved free Tau were in the low nM range (up to 15.7 nM) in epipelagic waters, declining sharply in the mesopelagic to about 0.2 nM and remaining fairly stable throughout the bathypelagic waters. Pacific amphipod-copepod assemblages exhibited lower dissolved free Tau release rates per unit biomass (0.8 ± 0.4 μmol g -1 C-biomass h -1 ) than Atlantic copepods (ranging between 1.3 ± 0.4 μmol g -1 C-biomass h -1 and 9.5 ± 2.1 μmol g -1 C-biomass h -1 ), in agreement with the well-documented inverse relationship between biomass-normalized excretion rates and body size. Our results indicate that crustacean zooplankton might contribute significantly to the dissolved organic matter flux in marine ecosystems via dissolved free Tau release. Based on the release rates and assuming steady state dissolved free Tau concentrations, turnover times of dissolved free Tau range from 0.05 d to 2.3 d in the upper water column and are therefore similar to those of dissolved free amino acids. This rapid turnover indicates that dissolved free Tau is efficiently consumed in oceanic waters, most likely by heterotrophic bacteria.

  14. Selective adsorption and release of cationic organic dye molecules on mesoporous borosilicates

    International Nuclear Information System (INIS)

    Paul, Manidipa; Pal, Nabanita; Bhaumik, Asim

    2012-01-01

    Mesoporous materials can play a pivotal role as a host material for delivery application to a specific part of a system. In this work we explore the selective adsorption and release of cationic organic dye molecules such as safranine T (ST) and malachite green (MG) on mesoporous borosilicate materials. The mesoporous silica SBA-15 and borosilicate materials (MBS) were prepared using non-ionic surfactant Pluronic P123 as template via evaporation induced self-assembly (EISA) method. After template removal the materials show high surface areas and in some cases ordered mesopores of dimensions ca. 6–7 nm. High surface area, mesoporosity and the presence of heteroatom (boron) help this mesoporous borosilicate material to adsorb high amount of cationic dye molecules at its surface from the respective aqueous solutions. Furthermore, the mesoporous borosilicate samples containing higher percentage adsorbed dyes show excellent release of ST or MG dye in simulated body fluid (SBF) solution at physiological pH = 7.4 and temperature 310 K. The adsorption and release efficiency of mesoporous borosilicate samples are compared with reference boron-free mesoporous pure silica material to understand the nature of adsorbate–adsorbent interaction at the surfaces. - Graphical abstract: Highly ordered 2D-hexagonal mesoporous borosilicate materials have been synthesized by using Pluronic P123 as template. The materials show very good adsorption and release of organic cationic dye molecules under physiological conditions. Highlights: ► Highly ordered 2D-hexagonal mesoporous borosilicate. ► Nonionic Pluoronic P123 templated mesoporous material. ► Adsorption of organic dyes at the mesopore surface. ► Controlled release of dyes under physiological pH and temperature. ► Release of safranine T (ST) and malachite green (MG) dyes in simulated body fluids.

  15. Evaluation of Water Vapor Sorption Hysteresis in Soils: The Role of Organic Matter and Clay

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    an important role. It is clear that modeling physical and biological soil processes is more accurate when SWC hysteresis is considered, particularly at low potentials where small differences in water content are associated with large changes in potential energy. The objectives of the presented study were to......: (i) evaluate and compare recently developed methods (MBET-n, Dh and SPN) for quantifying hysteresis in soils and pure clays, and (ii) investigate the role of organic matter (OM) and clay content and type on hysteresis. Five pure clays and two sets of soils with gradients in organic matter and clay....... For the SPN method, large contents of organic matter and clay in soils are associated with increased hysteresis. For both MBET-n and Dh methods, no clear trends of clay or OM contents effects on hysteresis was observed....

  16. Prediction of heat capacities and heats of vaporization of organic liquids by group contribution methods

    DEFF Research Database (Denmark)

    Ceriani, Roberta; Gani, Rafiqul; Meirelles, A.J.A.

    2009-01-01

    In the present work a group contribution method is proposed for the estimation of the heat capacity of organic liquids as a function of temperature for fatty compounds found in edible oil and biofuels industries. The data bank used for regression of the group contribution parameters (1395 values...

  17. Effect of working fluids on the performance of a novel direct vapor generation solar organic Rankine cycle system

    International Nuclear Information System (INIS)

    Li, Jing; Alvi, Jahan Zeb; Pei, Gang; Ji, Jie; Li, Pengcheng; Fu, Huide

    2016-01-01

    Highlights: • A novel, flexible direct vapor generation solar ORC is proposed. • Technical feasibility of the system is discussed. • Fluid effect on collector efficiency is explored. • The system is more efficient than solar ORC with HTF. - Abstract: A novel solar organic Rankine cycle (ORC) system with direct vapor generation (DVG) is proposed. A heat storage unit is embedded in the ORC to guarantee the stability of power generation. Compared with conventional solar ORCs, the proposed system avoids the secondary heat transfer intermediate and shows good reaction to the fluctuation of solar radiation. The technical feasibility of the system is discussed. Performance is analyzed by using 17 dry and isentropic working fluids. Fluid effects on the efficiencies of ORC, collectors and the whole system are studied. The results indicate that the collector efficiency generally decreases while the ORC and system efficiencies increase with the increment in fluid critical temperature. At evaporation temperature of 120 °C and solar radiation of 800 Wm −2 , the ORC, collector and overall thermal efficiencies of R236fa are 10.59, 56.14 and 5.08% while their values for Benzene are 12.5, 52.58 and 6.57% respectively. The difference between collector efficiencies using R236fa and Benzene gets larger at lower solar radiation. The heat collection is strongly correlated with latent and sensible heat of the working fluid. Among the fluids, R123 exhibits the highest overall performance and seems to be suitable for the proposed system in the short term.

  18. Metal organic vapor phase epitaxy growth of (Al)GaN heterostructures on SiC/Si(111) templates synthesized by topochemical method of atoms substitution

    DEFF Research Database (Denmark)

    Rozhavskaya, Mariia M.; Kukushkin, Sergey A.; Osipov, Andrey V.

    2017-01-01

    We report a novel approach for metal organic vapor phase epitaxy of (Al)GaN heterostructures on Si substrates. An approximately 90–100 nm thick SiC buffer layer is synthesized using the reaction between Si substrate and CO gas. Highresolution transmission electron microscopy reveals sharp...

  19. Effects of low molecular weight organic acids on 137Cs release from contaminated soils

    International Nuclear Information System (INIS)

    Chiang, Po Neng; Wang, Ming Kuang; Huang, Pan Ming; Wang, Jeng Jong

    2011-01-01

    Radio pollutant removal is one of several priority restoration strategies for the environment. This study assessed the effect of low molecular weight organic acid on the lability and mechanisms for release of 137 Cs from contaminated soils. The amount of 137 Cs radioactivity released from contaminated soils reacting with 0.02 M low molecular weight organic acids (LMWOAs) specifically acetic, succinic, oxalic, tartaric, and citric acid over 48 h were 265, 370, 760, 850, and 1002 Bq kg -1 , respectively. The kinetic results indicate that 137 Cs exhibits a two-step parabolic diffusion equation and a good linear relationship, indicating that the parabolic diffusion equation describes the data quite well, as shown by low p and high r 2 values. The fast stage, which was found to occur within a short period of time (0.083-3 h), corresponds to the interaction of LMWOAs with the surface of clay minerals; meanwhile, during the slow stage, which occurs over a much longer time period (3-24 h), desorption primarily is attributed to inter-particle or intra-particle diffusion. After a fifth renewal of the LMWOAs, the total levels of 137 Cs radioactivity released by acetic, succinic, oxalic, tartaric, and citric acid were equivalent to 390, 520, 3949, 2061, and 4422 Bq kg -1 soil, respectively. H + can protonate the hydroxyl groups and oxygen atoms at the broken edges or surfaces of the minerals, thereby weakening Fe-O and Al-O bonds. After protonation of H + , organic ligands can attack the OH and OH 2 groups in the minerals easily, to form complexes with surface structure cations, such as Al and Fe. The amounts of 137 Cs released from contaminated soil treated with LMWOAs were substantially increased, indicating that the LMWOAs excreted by the roots of plants play a critical role in 137 Cs release.

  20. Research on release rate of volatile organic compounds in typical vessel cabin

    Directory of Open Access Journals (Sweden)

    ZHANG Jinlan

    2018-02-01

    Full Text Available [Objectives] Volatile Organic Compounds (VOC should be efficiently controlled in vessel cabins to ensure the crew's health and navigation safety. As an important parameter, research on release rate of VOCs in cabins is required. [Methods] This paper develops a method to investigate this parameter of a ship's cabin based on methods used in other closed indoor environments. A typical vessel cabin is sampled with Tenax TA tubes and analyzed by Automated Thermal Desorption-Gas Chromatography-Mass Spectrometry (ATD-GC/MS. The lumped mode is used and the release rate of Benzene, Toluene, Ethylbenzene and Xylene (BTEX, the typical representatives of VOCs, is obtained both in closed and ventilated conditions. [Results] The results show that the content of xylene and Total Volatile Organic Compounds (TVOC exceed the indoor environment standards in ventilated conditions. The BTEX release rate is similar in both conditions except for the benzene. [Conclusions] This research builds a method to measure the release rate of VOCs, providing references for pollution character evaluation and ventilation and purification system design.

  1. [Spectral characteristics of dissolved organic matter released during the metabolic process of small medusa].

    Science.gov (United States)

    Guo, Dong-Hui; Yi, Yue-Yuan; Zhao, Lei; Guo, Wei-Dong

    2012-06-01

    The metabolic processes of jellyfish can produce dissolved organic matter (DOM) which will influence the functioning of the aquatic ecosystems, yet the optical properties of DOM released by jellyfish are unknown. Here we report the absorption and fluorescence properties of DOM released by a medusa species Black fordia virginica during a 24 h incubation experiment. Compared with the control group, an obvious increase in the concentrations of dissolved organic carbon (DOC), absorption coefficient (a280) and total dissolved nitrogen (TDN) was observed in incubation group. This clearly demonstrated the release of DOM, chromophoric DOM (CDOM) and dissolved nutrients by B. virginica which feed on enough of Artemia sp. before the experiment. The increase in spectral slope ratio (SR) and decrease in humification index (HIX) indicated that the released DOM was less-humified and had relatively lower molecular weight. Parallel factor analysis (PARAFAC) decomposed the fluorescence matrices of DOM into three humic-like components (C1-C3) and one protein-like component (C4). The Fmax of two components (C2: 400 nm showed little changes. Thus, we suggested a zooplankton index (ZIX) to trace and characterize the DOM excreted by metabolic activity of zooplankton, which is calculated as the ratio of the sum of Fmax of all fluorescence components with the emission wavelength 400 nm.

  2. Performance Evaluation of the Scent Transfer Unit (STU) for Organic Compound Collection and Release

    Energy Technology Data Exchange (ETDEWEB)

    Eckenrode, Brian A. [Federal Bureau of Investigation; Ramsey, Scott A. [Federal Bureau of Investigation; StockhamMFS, Rex A. [Federal Bureau of Investigation; Van Berkel, Gary J [ORNL; Asano, Keiji G [ORNL; Wolf, Dennis A [ORNL

    2006-01-01

    The Scent Transfer UnitTM (STU-100) is a portable vacuum that uses airflow through a sterile gauze pad to capture a volatiles profile over evidentiary items for subsequent canine presentation to assist law enforcement personnel. This device was evaluated to determine its ability to trap and release organic compounds at ambient temperature under controlled laboratory conditions. Gas chromatography-mass spectrometry (GC-MS) analyses using a five-component volatiles mixture in methanol injected directly into a capture pad indicated that compound release could be detected initially and three days after time of collection. Additionally, fifteen compounds of a 39-component toxic organics gaseous mixture (10-1,000 ppbv) were trapped, released, and detected in the headspace of a volatiles capture pad after being exposed to this mixture using the STU-100 with analysis via GC-MS. Component release efficiencies at ambient temperature varied with the analyte; however, typical values of approximately 10 percent were obtained. Desorption at elevated temperatures of reported human odor/scent chemicals and colognes trapped by the STU-100 pads was measured and indicated that the STU-100 has a significant trapping efficiency at ambient temperature. Multivariate statistical analysis of subsequent mass spectral patterns was also performed.

  3. Performance evaluation of the Scent Transfer Unit (STU-100) for organic compound collection and release.

    Science.gov (United States)

    Eckenrode, Brian A; Ramsey, Scott A; Stockham, Rex A; Van Berkel, Gary J; Asano, Keiji G; Wolf, Dennis A

    2006-07-01

    The Scent Transfer Unit (STU-100) is a portable vacuum that uses airflow through a sterile gauze pad to capture a volatiles profile over evidentiary items for subsequent canine presentation to assist law enforcement personnel. This device was evaluated to determine its ability to trap and release organic compounds at ambient temperature under controlled laboratory conditions. Gas chromatography-mass spectrometry (GC-MS) analyses using a five-component volatiles mixture in methanol injected directly into a capture pad indicated that compound release could be detected initially and 3 days after the time of collection. Additionally, 15 compounds of a 39-component toxic organic gaseous mixture (10-1000 parts per billion by volume [p.p.b.(v)]) were trapped, released, and detected in the headspace of a volatiles capture pad after being exposed to this mixture using the STU-100 with analysis via GC-MS. Component release efficiencies at ambient temperature varied with the analyte; however, typical values of c. 10% were obtained. Desorption at elevated temperatures of reported human odor/scent chemicals and colognes trapped by the STU-100 pads was measured and indicated that the STU-100 has a significant trapping efficiency at ambient temperature. Multivariate statistical analysis of subsequent mass spectral patterns was also performed.

  4. Antimony leaching release from brake pads: Effect of pH, temperature and organic acids.

    Science.gov (United States)

    Hu, Xingyun; He, Mengchang; Li, Sisi

    2015-03-01

    Metals from automotive brake pads pollute water, soils and the ambient air. The environmental effect on water of antimony (Sb) contained in brake pads has been largely untested. The content of Sb in one abandoned brake pad reached up to 1.62×10(4) mg/kg. Effects of initial pH, temperature and four organic acids (acetic acid, oxalic acid, citric acid and humic acid) on Sb release from brake pads were studied using batch reactors. Approximately 30% (97 mg/L) of the total Sb contained in the brake pads was released in alkaline aqueous solution and at higher temperature after 30 days of leaching. The organic acids tested restrained Sb release, especially acetic acid and oxalic acid. The pH-dependent concentration change of Sb in aqueous solution was best fitted by a logarithmic function. In addition, Sb contained in topsoil from land where brake pads were discarded (average 9×10(3) mg/kg) was 3000 times that in uncontaminated soils (2.7±1 mg/kg) in the same areas. Because potentially high amounts of Sb may be released from brake pads, it is important that producers and environmental authorities take precautions. Copyright © 2015. Published by Elsevier B.V.

  5. Interaction enthalpies of solid human serum albumin with water-dioxane mixtures: comparison with water and organic solvent vapor sorption

    International Nuclear Information System (INIS)

    Sirotkin, Vladimir A.; Faizullin, Djihanguir A.

    2004-01-01

    Enthalpy changes (ΔH tot ) on the immersion of dehydrated human serum albumin (HSA) into water-dioxane mixtures have been measured using a Setaram BT-2.15 calorimeter at 298 K. Thermodynamic activity of water was varied from 0 to 1. Calorimetric results are discussed together with the FTIR-spectroscopic data on water and organic solvent vapor adsorption/desorption isotherms on solid HSA. Dioxane sorption exhibits a pronounced hysteresis. Calorimetric and dioxane desorption dependencies consist of two parts. No dioxane sorption was observed in low water activity region (a w tot values are close to zero. At water activity about 0.5 the sharp exothermic drop of the interaction enthalpy values was observed. This exothermic drop is accompanied by the sharp increase in the amount of sorbed dioxane and additional water sorption (compared with that for pure water). Dioxane adsorption branch resembles a smooth curve. In this case, solid HSA binds more than 300 mol dioxane/mol HSA at low water activities. By using a water activity-based comparison we distinguished between dioxane-assisted and dioxane-competitive effect on water sorption. The obtained results demonstrate that the hydration 'history' of solid protein is an important factor that controls as the state of protein macromolecule as well as the sorption of low-molecular organic molecules

  6. The earthworm gastrointestinal effect on the release of organic bound residues in soils

    Science.gov (United States)

    Du, J. H.

    2018-03-01

    Earthworm activities promote the release of bound residues and the digestive activities of earthworms contribute to the process. Earthworm digestive effects on bound residues can be divided into physical and chemical effects. Physical effects include gastrointestinal abrasion and mixing. The abrasion of soil and litter residues in earthworm gizzards and intestine can grind the food into fine particles, which increase the contact surface with microbial and promote the desorption of bound residues. Chemical effects are attributed to the secreted surfactant substances and digestive enzymes. The surfactants, especially at levels that lead to micellization, can enhance the desorption process of the organic contaminants that sored in the soil. The enzymes in earthworm digestive tracts can decompose the humus in soil, which may promote the release of organic residues that bind with humus.

  7. Effects of organic matters coming from Chinese tea on soluble copper release from copper teapot

    International Nuclear Information System (INIS)

    Ni Lixiao; Li Shiyin

    2008-01-01

    The morphology and elemental composition of the corrosion products of copper teapot's inner-surface were characterized by the scanning electron microscopy and energy dispersive X-ray surface analysis (SEM/EDS), X-ray powder diffraction (XRD) and X-ray photon spectroscopy (XPS) analysis. It was revealed that Cu, Fe, Ca, P, Si and Al were the main elements of corrosion by-products, and the α-SiO 2 , Cu 2 O and CaCO 3 as the main mineral components on the inner-surface of copper teapot. The effects of organic matters coming from Chinese tea on soluble copper release from copper teapots in tap water were also investigated. The results showed that the doses of organic matter (as TOC), temperate and stagnation time have significant effects on the concentration of soluble copper released from copper teapots in tap water

  8. Variability in the organic ligands released by Emiliania huxleyi under simulated ocean acidification conditions

    Directory of Open Access Journals (Sweden)

    Guillermo Samperio-Ramos

    2017-12-01

    Full Text Available The variability in the extracellular release of organic ligands by Emiliania huxleyi under four different pCO2 scenarios (225, 350, 600 and 900 μatm, was determined. Growth in the batch cultures was promoted by enriching them only with major nutrients and low iron concentrations. No chelating agents were added to control metal speciation. During the initial (IP, exponential (EP and steady (SP phases, extracellular release rates, normalized per cell and day, of dissolved organic carbon (DOCER, phenolic compounds (PhCER, dissolved combined carbohydrates (DCCHOER and dissolved uronic acids (DUAER in the exudates were determined. The growth rate decreased in the highest CO2 treatment during the IP (<48 h, but later increased when the exposure was longer (more than 6 days. DOCER did not increase significantly with high pCO2. Although no relationship was observed between DCCHOER and the CO2 conditions, DCCHO was a substantial fraction of the freshly released organic material, accounting for 18% to 37%, in EP, and 14% to 23%, in SP, of the DOC produced. Growth of E. huxleyi induced a strong response in the PhCER and DUAER. While in EP, PhCER were no detected, the DUAER remained almost constant for all CO2 treatments. Increases in the extracellular release of these organic ligands during SP were most pronounced under high pCO2 conditions. Our results imply that, during the final growth stage of E. huxleyi, elevated CO2 conditions will increase its excretion of acid polysaccharides and phenolic compounds, which may affect the biogeochemical behavior of metals in seawater.

  9. Spatiotemporal Organization of Energy Release Events in the Quiet Solar Corona

    Science.gov (United States)

    Uritsky, Vadim M.; Davila, Joseph M.

    2014-01-01

    Using data from the STEREO and SOHO spacecraft, we show that temporal organization of energy release events in the quiet solar corona is close to random, in contrast to the clustered behavior of flaring times in solar active regions. The locations of the quiet-Sun events follow the meso- and supergranulation pattern of the underling photosphere. Together with earlier reports of the scale-free event size statistics, our findings suggest that quiet solar regions responsible for bulk coronal heating operate in a driven self-organized critical state, possibly involving long-range Alfvenic interactions.

  10. Slow-release and organic fertilizers on early growth of Rangpur lime

    Directory of Open Access Journals (Sweden)

    Daniel Lucas Magalhães Machado

    2011-06-01

    Full Text Available Slow-release and organic fertilizers are promising alternatives to conventional fertilizers, as both reduce losses by leaching, volatilization and problems of toxicity and/or salinity to plants. The objective of this work was to evaluate the effect of different rates of the organic fertilizer Humato-Macota® compared with the slow-release fertilizer Osmocote® on the growth and nitrogen content in the dry matter of Rangpur lime. A field experiment was conducted in a factorial completely randomized design with an additional treatment (4 x 4 +1. The first factor consisted of four Humato­Macota® rates (0, 1, 2, and 3% applied to the substrate; the second factor consisted of the same Humato-Macota® concentrations, but applied as fortnightly foliar sprays; the additional treatment consisted of application of 5 kgm-3 Osmocote® 18-05-09. Means of all growth characteristics (plant height, total dry matter, root/shoot ratio and leaf area and the potential quantum yield of photosystem II (Fv/Fm were higher when plants were fertilized with the slow-release fertilizer. The organic fertilizer applied alone did not meet the N requirement of Rangpur lime.

  11. Porous anionic indium-organic framework with enhanced gas and vapor adsorption and separation ability.

    Science.gov (United States)

    Huang, Yuanbiao; Lin, Zujin; Fu, Hongru; Wang, Fei; Shen, Min; Wang, Xusheng; Cao, Rong

    2014-09-01

    A three-dimensional microporous anionic metal-organic framework (MOF) (Et4N)3[In3(TATB)4] (FJI-C1, H3TATB=4,4',4''-s-triazine-2,4,6-triyltribenzoic acid) with large unit cell volume has been synthesized. Assisted by the organic cation group Et4N in the pores of the compound, FJI-C1 not only shows high adsorption uptakes of C2 and C3 hydrocarbons, but also exhibits highly selective separation of propane, acetylene, ethane, and ethylene from methane at room temperature. Furthermore, it also exhibits high separation selectivity for propane over C2 hydrocarbons and acetylene can be readily separated from their C2 hydrocarbons mixtures at low pressure due to the high selectivity for C2H2 in comparison to C2H4 and C2H6. In addition, FJI-C1 with hydrophilic internal pores surfaces shows highly efficient adsorption separation of polar molecules from nonpolar molecules. Notably, it exhibits high separation selectivity for benzene over cyclohexane due to the π-π interactions between benzene molecules and s-triazine rings of the porous MOF. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska

    Science.gov (United States)

    Wickland, Kimberly P.; Waldrop, Mark P.; Aiken, George R.; Koch, Joshua C.; Torre Jorgenson, M.; Striegl, Robert G.

    2018-06-01

    Permafrost (perennially frozen) soils store vast amounts of organic carbon (C) and nitrogen (N) that are vulnerable to mobilization as dissolved organic carbon (DOC) and dissolved organic and inorganic nitrogen (DON, DIN) upon thaw. Such releases will affect the biogeochemistry of permafrost regions, yet little is known about the chemical composition and source variability of active-layer (seasonally frozen) and permafrost soil DOC, DON and DIN. We quantified DOC, total dissolved N (TDN), DON, and DIN leachate yields from deep active-layer and near-surface boreal Holocene permafrost soils in interior Alaska varying in soil C and N content and radiocarbon age to determine potential release upon thaw. Soil cores were collected at three sites distributed across the Alaska boreal region in late winter, cut in 15 cm thick sections, and deep active-layer and shallow permafrost sections were thawed and leached. Leachates were analyzed for DOC, TDN, nitrate (NO3 ‑), and ammonium (NH4 +) concentrations, dissolved organic matter optical properties, and DOC biodegradability. Soils were analyzed for C, N, and radiocarbon (14C) content. Soil DOC, TDN, DON, and DIN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. These relationships were significantly different for active-layer and permafrost soils such that for a given soil C or N content, or radiocarbon age, permafrost soils released more DOC and TDN (mostly as DON) per gram soil than active-layer soils. Permafrost soil DOC biodegradability was significantly correlated with soil Δ14C and DOM optical properties. Our results demonstrate that near-surface Holocene permafrost soils preserve greater relative potential DOC and TDN yields than overlying seasonally frozen soils that are exposed to annual leaching and decomposition. While many factors control the fate of DOC and TDN, the greater relative yields from newly thawed Holocene permafrost soils will have the largest

  13. Study of electrophysical processes during spontaneous combustion of gases and vapors of organic substances

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, B.S.; Shebeko, Yu.N.; Muravlev, V.K.; Il' in, A.B.

    Combustion of organic substances is accompanied by non-equilibrium ionization, the greatest degree of ionization being in the high temperature zone of the flame, although notable concentrations of ions have been observed in the earlier, low temperature stages of combustion. Since this phenomenon has been studied for only a small number of compounds, a study was undertaken of the electrophysical phenomena taking place during spontaneous combustion of a large variety of compounds, viz., ethanol, acetone, benzene, diethylamine, pentane, diethyl ether, A-72 gasoline, dibromotetrafluoroethane, dichloromethane, and three mixtures of ethanol with 1,2-dibromotetrafluoroethane. Relationships of temperature to passive sonde potential and conductivity current during the induction period were determined. The effective activation energy for the conductivity current-temperature relationship was found to be 230 kilojoules per mole, which agrees with that determined for the induction period in the spontaneous combustion of acetylene-air mixtures in shock waves. 14 references, 3 figures.

  14. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions

    Directory of Open Access Journals (Sweden)

    Flávia Bottino

    2016-06-01

    Full Text Available Abstract Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40 °C. Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days. After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic. However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity and carbon release.

  15. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.

    Science.gov (United States)

    Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu

    2016-01-01

    Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  16. Growth of InAs Quantum Dots on Germanium Substrate Using Metal Organic Chemical Vapor Deposition Technique

    Directory of Open Access Journals (Sweden)

    Tyagi Renu

    2009-01-01

    Full Text Available Abstract Self-assembled InAs quantum dots (QDs were grown on germanium substrates by metal organic chemical vapor deposition technique. Effects of growth temperature and InAs coverage on the size, density, and height of quantum dots were investigated. Growth temperature was varied from 400 to 450 °C and InAs coverage was varied between 1.40 and 2.35 monolayers (MLs. The surface morphology and structural characteristics of the quantum dots analyzed by atomic force microscope revealed that the density of the InAs quantum dots first increased and then decreased with the amount of InAs coverage; whereas density decreased with increase in growth temperature. It was observed that the size and height of InAs quantum dots increased with increase in both temperature and InAs coverage. The density of QDs was effectively controlled by growth temperature and InAs coverage on GaAs buffer layer.

  17. Boron-doped zinc oxide thin films for large-area solar cells grown by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Chen, X.L.; Xu, B.H.; Xue, J.M.; Zhao, Y.; Wei, C.C.; Sun, J.; Wang, Y.; Zhang, X.D.; Geng, X.H.

    2007-01-01

    Boron-doped zinc oxide (ZnO:B) films were grown by metal organic chemical vapor deposition using diethylzinc (DEZn), and H 2 O as reactant gases and diborane (B 2 H 6 ) as an n-type dopant gas. The structural, electrical and optical properties of ZnO films doped at different B 2 H 6 flow rates were investigated. X-ray diffraction spectra and scanning electron microscopy images indicate that boron-doping plays an important role on the microstructure of ZnO films, which induced textured morphology. With optimized conditions, low sheet resistance (∼ 30 Ω/□), high transparency (> 85% in the visible light and infrared range) and high mobility (17.8 cm 2 V -1 s -1 ) were obtained for 700-nm ZnO:B films deposited on 20 cm x 20 cm glass substrates at the temperature of 443 K. After long-term exposure in air, the ZnO:B films also showed a better electrical stability than the un-doped samples. With the application of ZnO:B/Al back contacts, the short circuit current density was effectively enhanced by about 3 mA/cm 2 for a small area a-Si:H cell and a high efficiency of 9.1% was obtained for a large-area (20 cm x 20 cm) a-Si solar module

  18. Selective epitaxial growth of Ge1-xSnx on Si by using metal-organic chemical vapor deposition

    Science.gov (United States)

    Washizu, Tomoya; Ike, Shinichi; Inuzuka, Yuki; Takeuchi, Wakana; Nakatsuka, Osamu; Zaima, Shigeaki

    2017-06-01

    Selective epitaxial growth of Ge and Ge1-xSnx layers on Si substrates was performed by using metal-organic chemical vapor deposition (MOCVD) with precursors of tertiary-butyl-germane (t-BGe) and tri-butyl-vinyl-tin (TBVSn). We investigated the effects of growth temperature and total pressure during growth on the selectivity and the crystallinity of the Ge and Ge1-xSnx epitaxial layers. Under low total pressure growth conditions, the dominant mechanism of the selective growth of Ge epitaxial layers is the desorption of the Ge precursors. At a high total pressure case, it is needed to control the surface migration of precursors to realize the selectivity because the desorption of Ge precursors was suppressed. The selectivity of Ge growth was improved by diffusion of the Ge precursors on the SiO2 surfaces when patterned substrates were used at a high total pressure. The selective epitaxial growth of Ge1-xSnx layer was also realized using MOCVD. We found that the Sn precursors less likely to desorb from the SiO2 surfaces than the Ge precursors.

  19. Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Perez-Blanco, Horacio

    2015-01-01

    A thermodynamic analysis of cogeneration of power and refrigeration activated by low-grade sensible energy is presented in this work. An organic Rankine cycle (ORC) for power production and a vapor compression cycle (VCC) for refrigeration using the same working fluid are linked in the analysis, including the limiting case of cold production without net electricity production. We investigate the effects of key parameters on system performance such as net power production, refrigeration, and thermal and exergy efficiencies. Characteristic indexes proportional to the cost of heat exchangers or of turbines, such as total number of transfer units (NTU tot ), size parameter (SP) and isentropic volumetric flow ratio (VFR) are also examined. Three important system parameters are selected, namely turbine inlet temperature, turbine inlet pressure, and the flow division ratio. The analysis is conducted for several different working fluids. For a few special cases, isobutane is used for a sensitivity analysis due to its relatively high efficiencies. Our results show that the system has the potential to effectively use low grade thermal sources. System performance depends both on the adopted parameters and working fluid. - Highlights: • Waste heat utilization can reduce emissions of carbon dioxide. • The ORC/VCC cycle can deliver power and/or refrigeration using waste heat. • Efficiencies and size parameters are used for cycle evaluation. • The cycle performance is studied for eight suitable refrigerants. Isobutane is used for a sensitivity analysis. • The work shows that the isobutene cycle is quite promising.

  20. Preparation of Hydrophobic Metal-Organic Frameworks via Plasma Enhanced Chemical Vapor Deposition of Perfluoroalkanes for the Removal of Ammonia

    Science.gov (United States)

    DeCoste, Jared B.; Peterson, Gregory W.

    2013-01-01

    Plasma enhanced chemical vapor deposition (PECVD) of perfluoroalkanes has long been studied for tuning the wetting properties of surfaces. For high surface area microporous materials, such as metal-organic frameworks (MOFs), unique challenges present themselves for PECVD treatments. Herein the protocol for development of a MOF that was previously unstable to humid conditions is presented. The protocol describes the synthesis of Cu-BTC (also known as HKUST-1), the treatment of Cu-BTC with PECVD of perfluoroalkanes, the aging of materials under humid conditions, and the subsequent ammonia microbreakthrough experiments on milligram quantities of microporous materials. Cu-BTC has an extremely high surface area (~1,800 m2/g) when compared to most materials or surfaces that have been previously treated by PECVD methods. Parameters such as chamber pressure and treatment time are extremely important to ensure the perfluoroalkane plasma penetrates to and reacts with the inner MOF surfaces. Furthermore, the protocol for ammonia microbreakthrough experiments set forth here can be utilized for a variety of test gases and microporous materials. PMID:24145623

  1. Effect of gas flow on the selective area growth of gallium nitride via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Kasarla, K. R.; Korakakis, D.

    2007-08-01

    The effect of gas flow on the selective area growth (SAG) of gallium nitride (GaN) grown via metal organic vapor phase epitaxy (MOVPE) has been investigated. In this study, the SAG of GaN was carried out on a silicon dioxide striped pattern along the GaN direction. SAG was initiated with the striped pattern oriented parallel and normal to the incoming gas flow in a horizontal reactor. The orientation of the pattern did not impact cross section of the structure after re-growth as both orientations resulted in similar trapezoidal structures bounded by the (0 0 0 1) and {1 1 2¯ n} facets ( n≈1.7-2.2). However, the growth rates were shown to depend on the orientation of the pattern as the normally oriented samples exhibited enhanced vertical and cross-sectional growth rates compared to the parallel oriented samples. All growths occurred under identical conditions and therefore the difference in growth rates must be attributed to a difference in mass transport of species.

  2. The Venus flytrap attracts insects by the release of volatile organic compounds.

    Science.gov (United States)

    Kreuzwieser, Jürgen; Scheerer, Ursel; Kruse, Jörg; Burzlaff, Tim; Honsel, Anne; Alfarraj, Saleh; Georgiev, Plamen; Schnitzler, Jörg-Peter; Ghirardo, Andrea; Kreuzer, Ines; Hedrich, Rainer; Rennenberg, Heinz

    2014-02-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap.

  3. Neuroanatomical organization of gonadotropin-releasing hormone neurons during the oestrus cycle in the ewe

    Science.gov (United States)

    Batailler, Martine; Caraty, Alain; Malpaux, Benoît; Tillet, Yves

    2004-01-01

    Background During the preovulatory surge of gonadotropin-releasing hormone (GnRH), a very large amount of the peptide is released in the hypothalamo-hypophyseal portal blood for 24-36H00. To study whether this release is linked to a modification of the morphological organization of the GnRH-containing neurons, i.e. morphological plasticity, we conducted experiments in intact ewes at 4 different times of the oestrous cycle (before the expected LH surge, during the LH surge, and on day 8 and day 15 of the subsequent luteal phase). The cycle stage was verified by determination of progesterone and LH concentrations in the peripheral blood samples collected prior to euthanasia. Results The distribution of GnRH-containing neurons throughout the preoptic area around the vascular organ of the lamina terminalis was studied following visualisation using immunohistochemistry. No difference was observed in the staining intensity for GnRH between the different groups. Clusters of GnRH-containing neurons (defined as 2 or more neurons being observed in close contact) were more numerous during the late follicular phase (43 ± 7) than during the luteal phase (25 ± 6), and the percentage of clusters was higher during the beginning of the follicular phase than during the luteal phase. There was no difference in the number of labelled neurons in each group. Conclusions These results indicate that the morphological organization of the GnRH-containing neurons in ewes is modified during the follicular phase. This transitory re-organization may contribute to the putative synchronization of these neurons during the surge. The molecular signal inducing this plasticity has not yet been identified, but oestradiol might play an important role, since in sheep it is the only signal which initiates the GnRH preovulatory surge. PMID:15555074

  4. Neuroanatomical organization of gonadotropin-releasing hormone neurons during the oestrus cycle in the ewe

    Directory of Open Access Journals (Sweden)

    Malpaux Benoît

    2004-11-01

    Full Text Available Abstract Background During the preovulatory surge of gonadotropin-releasing hormone (GnRH, a very large amount of the peptide is released in the hypothalamo-hypophyseal portal blood for 24-36H00. To study whether this release is linked to a modification of the morphological organization of the GnRH-containing neurons, i.e. morphological plasticity, we conducted experiments in intact ewes at 4 different times of the oestrous cycle (before the expected LH surge, during the LH surge, and on day 8 and day 15 of the subsequent luteal phase. The cycle stage was verified by determination of progesterone and LH concentrations in the peripheral blood samples collected prior to euthanasia. Results The distribution of GnRH-containing neurons throughout the preoptic area around the vascular organ of the lamina terminalis was studied following visualisation using immunohistochemistry. No difference was observed in the staining intensity for GnRH between the different groups. Clusters of GnRH-containing neurons (defined as 2 or more neurons being observed in close contact were more numerous during the late follicular phase (43 ± 7 than during the luteal phase (25 ± 6, and the percentage of clusters was higher during the beginning of the follicular phase than during the luteal phase. There was no difference in the number of labelled neurons in each group. Conclusions These results indicate that the morphological organization of the GnRH-containing neurons in ewes is modified during the follicular phase. This transitory re-organization may contribute to the putative synchronization of these neurons during the surge. The molecular signal inducing this plasticity has not yet been identified, but oestradiol might play an important role, since in sheep it is the only signal which initiates the GnRH preovulatory surge.

  5. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

    Directory of Open Access Journals (Sweden)

    J. Ofner

    2012-07-01

    Full Text Available Reactive halogen species (RHS, such as X·, X2 and HOX containing X = chlorine and/or bromine, are released by various sources like photo-activated sea-salt aerosol or from salt pans, and salt lakes. Despite many studies of RHS reactions, the potential of RHS reacting with secondary organic aerosol (SOA and organic aerosol derived from biomass-burning (BBOA has been neglected. Such reactions can constitute sources of gaseous organohalogen compounds or halogenated organic matter in the tropospheric boundary layer and can influence physicochemical properties of atmospheric aerosols.

    Model SOA from α-pinene, catechol, and guaiacol was used to study heterogeneous interactions with RHS. Particles were exposed to molecular chlorine and bromine in an aerosol smog-chamber in the presence of UV/VIS irradiation and to RHS, released from simulated natural halogen sources like salt pans. Subsequently, the aerosol was characterized in detail using a variety of physicochemical and spectroscopic methods. Fundamental features were correlated with heterogeneous halogenation, which results in new functional groups (FTIR spectroscopy, changes UV/VIS absorption, chemical composition (ultrahigh resolution mass spectroscopy (ICR-FT/MS, or aerosol size distribution. However, the halogen release mechanisms were also found to be affected by the presence of organic aerosol. Those interaction processes, changing chemical and physical properties of the aerosol are likely to influence e.g. the ability of the aerosol to act as cloud condensation nuclei, its potential to adsorb other gases with low-volatility, or its contribution to radiative forcing and ultimately the Earth's radiation balance.

  6. Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 2: Assessing the influence of vapor wall losses

    Directory of Open Access Journals (Sweden)

    C. D. Cappa

    2016-03-01

    Full Text Available The influence of losses of organic vapors to chamber walls during secondary organic aerosol (SOA formation experiments has recently been established. Here, the influence of such losses on simulated ambient SOA concentrations and properties is assessed in the University of California at Davis / California Institute of Technology (UCD/CIT regional air quality model using the statistical oxidation model (SOM for SOA. The SOM was fit to laboratory chamber data both with and without accounting for vapor wall losses following the approach of Zhang et al. (2014. Two vapor wall-loss scenarios are considered when fitting of SOM to chamber data to determine best-fit SOM parameters, one with “low” and one with “high” vapor wall-loss rates to approximately account for the current range of uncertainty in this process. Simulations were run using these different parameterizations (scenarios for both the southern California/South Coast Air Basin (SoCAB and the eastern United States (US. Accounting for vapor wall losses leads to substantial increases in the simulated SOA concentrations from volatile organic compounds (VOCs in both domains, by factors of  ∼  2–5 for the low and  ∼  5–10 for the high scenarios. The magnitude of the increase scales approximately inversely with the absolute SOA concentration of the no loss scenario. In SoCAB, the predicted SOA fraction of total organic aerosol (OA increases from  ∼  0.2 (no to  ∼  0.5 (low and to  ∼  0.7 (high, with the high vapor wall-loss simulations providing best general agreement with observations. In the eastern US, the SOA fraction is large in all cases but increases further when vapor wall losses are accounted for. The total OA ∕ ΔCO ratio captures the influence of dilution on SOA concentrations. The simulated OA ∕ ΔCO in SoCAB (specifically, at Riverside, CA is found to increase substantially during the day only for the high vapor wall

  7. Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release.

    Science.gov (United States)

    Meng, Xiangshi; Gui, Bo; Yuan, Daqiang; Zeller, Matthias; Wang, Cheng

    2016-08-01

    Stimuli-responsive metal-organic frameworks (MOFs) have gained increasing attention recently for their potential applications in many areas. We report the design and synthesis of a water-stable zirconium MOF (Zr-MOF) that bears photoresponsive azobenzene groups. This particular MOF can be used as a reservoir for storage of cargo in water, and the cargo-loaded MOF can be further capped to construct a mechanized MOF through the binding of β-cyclodextrin with the azobenzene stalks on the MOF surface. The resulting mechanized MOF has shown on-command cargo release triggered by ultraviolet irradiation or addition of competitive agents without premature release. This study represents a simple approach to the construction of stimuli-responsive mechanized MOFs, and considering mechanized UiO-68-azo made from biocompatible components, this smart system may provide a unique MOF platform for on-command drug delivery in the future.

  8. Volatile organic compounds released by blowfly larvae and pupae: new perspectives in forensic entomology.

    Science.gov (United States)

    Frederickx, C; Dekeirsschieter, J; Brostaux, Y; Wathelet, J-P; Verheggen, F J; Haubruge, E

    2012-06-10

    To evaluate postmortem intervals (PMIs), one should take into account the determined age of necrophagous flies present on the cadaver. However, PMI determination needs further improvement, and rapid and accurate approaches have therefore to be developed. While previous studies have focussed on insect cuticular hydrocarbons, here we explore the volatile profile released by larvae and pupae of Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae). We monitored changes in volatile compounds daily, by headspace solid-phase microextraction, followed by gas chromatography-mass spectrometry. Branched and unbranched hydrocarbons, alcohols, esters and acids were identified, and the volatile profile was shown to vary, in both composition and quantity, with the age of the larva/pupa under investigation. We concluded, based on the analysis of the released volatile organic compounds, that it is possible to increase the accuracy of the estimated PMI, through improved estimation of the age of blowflies present on the cadaver. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Final technical report; Mercury Release from Organic matter (OM) and OM-Coated Mineral Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, George

    2014-10-02

    This document is the final technical report for a project designed to address fundamental processes controlling the release of mercury from flood plain soils associated with East Fork Poplar Creek, Tennessee near the U.S. Department of Energy Oak Ridge facility. The report summarizes the activities, findings, presentations, and publications resulting from an award to the U.S. Geological that were part of a larger overall effort including Kathy Nagy (University of Illinois, Chicago, Ill) and Joseph Ryan (University of Colorado, Boulder, CO). The specific charge for the U.S.G.S. portion of the study was to provide analytical support for the larger group effort (Nagy and Ryan), especially with regard to analyses of Hg and dissolved organic matter, and to provide information about the release of mercury from the floodplain soils.

  10. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  11. Contribution of low vapor pressure-volatile organic compounds (LVP-VOCs) from consumer products to ozone formation in urban atmospheres

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.

    2015-05-01

    Because recent laboratory testing indicates that some low vapor pressure-volatile organic compounds (LVP-VOC) solvents readily evaporate at ambient conditions, LVP-VOCs used in some consumer product formulations may contribute to ozone formation. The goal of this study is to determine the fraction of LVP-VOCs available for ozone formation from the use of consumer products for two hypothetical emissions. This study calculates and compares the fraction of consumed product available for ozone formation as a result of (a) volatilization to air during use and (b) down-the-drain disposal. The study also investigates the impact of different modes of releases on the overall fraction available in ambient air for ozone formation. For the portion of the LVP-VOCs volatilized to air during use, we applied a multi-compartment mass-balance model to track the fate of emitted LVP-VOCs in a multimedia urban environment. For the portion of the LVP-VOCs disposed down the drain, we used a wastewater treatment plant (WWTP) fate model to predict the emission rates of LVP-VOCs to ambient air at WWTPs or at the discharge zone of the facilities and then used these results as emissions in the multimedia urban environment model. In a WWTP, the LVP-VOCs selected in this study are primarily either biodegraded or removed via sorption to sludge depending on the magnitude of the biodegradation half-life and the octanol-water partition coefficient. Less than 0.2% of the LVP-VOCs disposed down the drain are available for ozone formation. In contrast, when the LVP-VOC in a consumer product is volatilized from the surface to which it has been applied, greater than 90% is available for photochemical reactions either at the source location or in the downwind areas. Comparing results from these two modes of releases allows us to understand the importance of determining the fraction of LVP-VOCs volatilized versus disposed down the drain when the product is used by consumers. The results from this study

  12. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  13. Kinetic regularities of the heat release for the interaction of some organic compounds with ammonium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Rubtsov, Yury I.; Kazakov, Anatoly I.; Lempert, David B.; Manelis, George B. [Institute of Problems of Chemical Physics of Russian Academy of Sciences, Semenov Av. 1, Chernogolovka, Moscow Region, 142432 (Russian Federation)

    2006-12-15

    Ammonium nitrate (AN) is used as an oxidant in a series of systems with a wide spectrum of applications, from explosive compositions up to smokeless stoichiometric self-burning compositions with low combustion temperature. The knowledge of the thermal stability of such compositions is of great importance in using them in practice. In this work the research of kinetics of heat release in the interaction of AN with different organic compounds has been performed using the automatic differential calorimeter. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  14. Effect of light and nutrient availability on the release of dissolved organic carbon (DOC) by Caribbean turf algae

    NARCIS (Netherlands)

    Mueller, B.; den Haan, J.; Visser, P.M.; Vermeij, M.J.A.; van Duyl, F.C.

    2016-01-01

    Turf algae increasingly dominate benthic communities on coral reefs. Given their abundance and high dissolved organic carbon (DOC) release rates, turf algae are considered important contributors to the DOC pool on modern reefs. The release of photosynthetically fixed carbon as DOC generally, but not

  15. The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method

    Science.gov (United States)

    Wada, Takao; Ueda, Noriaki

    2013-01-01

    The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature. PMID:23674843

  16. The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method

    Science.gov (United States)

    Wada, Takao; Ueda, Noriaki

    2013-04-01

    The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature.

  17. The development of substitute inks and controls for reducing workplace concentrations of organic solvent vapors in a vinyl shower curtain printing plant.

    Science.gov (United States)

    Piltingsrud, Harley V; Zimmer, Anthony T; Rourke, Aaron B

    2003-08-01

    During the summer of 1994, football players at a practice field reported noxious odors in the area. Ohio Environmental Protection Agency (OEPA) investigations of industries surrounding the field included a printing facility producing vinyl shower curtains with screen-printed designs. Though not the source of the odor, they were discharging volatile organic compounds directly to the environs in violation of OEPA regulations. To achieve compliance they installed a catalytic oxidizer for treating discharged air. Due to high equipment costs, the capacity of the installed catalytic oxidizer resulted in a substantial reduction in discharged air flow rates and increased solvent vapor concentrations within the workplace. Vapor levels caused worker discomfort, prompting a request for assistance from the Ohio Bureau of Workers Compensation. The vapor concentrations were found to exceed NIOSH, OSHA, and ACGIH acceptable exposure levels. The workers were then required to wear organic vapor removing respirators full-time while printing as a temporary protective measure. The company requested NIOSH assistance in finding methods to reduce solvent vapor concentrations. NIOSH studies included the identification of the sources and relative magnitude of solvent emissions from the printing process, the design of controls for the emissions, and the development of substitute inks using non-photochemically reactive solvents. The new ink system and controls allowed OEPA removal of the requirement for the treatment of discharged air and substantial increases in dilution ventilation. Increased ventilation would permit reduction in worker exposures to less than 1/3 mixture TLV levels and removal of requirements for respirator usage. This solution was the result of a comprehensive review of all facets of the problem, including OEPA regulations. It also required cooperative work between the company and federal, state, and local governmental agencies.

  18. Kinetic Analysis of the Uptake and Release of Fluorescein by Metal-Organic Framework Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tobias Preiß

    2017-02-01

    Full Text Available Metal-organic framework nanoparticles (MOF NPs are promising guest-host materials with applications in separation, storage, catalysis, and drug delivery. However, on- and off-loading of guest molecules by porous MOF nanostructures are still poorly understood. Here we study uptake and release of fluorescein by two representative MOF NPs, MIL-100(Fe and MIL-101(Cr. Suspensions of these MOF NPs exhibit well-defined size distributions and crystallinity, as verified by electron microscopy, dynamic light scattering, and X-ray diffraction. Using absorbance spectroscopy the equilibrium dissociation constants and maximum numbers of adsorbed fluorescein molecules per NP were determined. Time-resolved fluorescence studies reveal that rates of release and loading are pH dependent. The kinetics observed are compared to theoretical estimates that account for bulk diffusion into NPs, and retarded internal diffusion and adsorption rates. Our study shows that, rather than being simple volumetric carriers, MOF-NPs are dominated by internal surface properties. The findings will help to optimize payload levels and develop release strategies that exploit varying pH for drug delivery.

  19. Organically bound tritium (OBT) for various plants in the vicinity of a continuous atmospheric tritium release

    International Nuclear Information System (INIS)

    Vichot, L.; Boyer, C.; Boissieux, T.; Losset, Y.; Pierrat, D.

    2008-01-01

    In order to quantify tritium impact on the environmental, we studied vegetation continuously exposed to a tritiated atmosphere. We chose lichens as bio-indicators, trees for determination of past tritium releases of the Valduc Centre, and lettuce as edible vegetables for dose calculation regarding neighbourhood. The Pasquill and Doury models from the literature were tested to estimate tritium concentration in the air around vegetable for distance from the release point less than 500 m. The results in tree rings show that organically bound tritium (OBT) concentration was strongly correlated with tritium releases. Using the GASCON model, the modelled variation of OBT concentration with distance was correlated with the measurements. Although lichens are recognized as bio-indicators, our experiments show that they were not convenient for environmental surveys because their age is not definitive. Thus, tritium integration time cannot be precisely determined. Furthermore, their biological metabolism is not well known and tritium concentration appears to be largely dependent on species. An average conversion rate of HTO to OBT was determined for lettuce of about 0.20-0.24% h -1 . Nevertheless, even if it is equivalent to values already published in the literature for other vegetation, we have shown that this conversion rate, established by weekly samples, varies by a factor of 10 during the different stages of lettuce development, and that its variation is linked to the biomass derivative

  20. Organically bound tritium (OBT) for various plants in the vicinity of a continuous atmospheric tritium release

    Energy Technology Data Exchange (ETDEWEB)

    Vichot, L. [Commissariat a l' Energie Atomique, CVA/DSTA/SPR/LMSE, 21120 Is-sur-Tille (France)], E-mail: laurent.vichot@cea.fr; Boyer, C.; Boissieux, T.; Losset, Y.; Pierrat, D. [Commissariat a l' Energie Atomique, CVA/DSTA/SPR/LMSE, 21120 Is-sur-Tille (France)

    2008-10-15

    In order to quantify tritium impact on the environmental, we studied vegetation continuously exposed to a tritiated atmosphere. We chose lichens as bio-indicators, trees for determination of past tritium releases of the Valduc Centre, and lettuce as edible vegetables for dose calculation regarding neighbourhood. The Pasquill and Doury models from the literature were tested to estimate tritium concentration in the air around vegetable for distance from the release point less than 500 m. The results in tree rings show that organically bound tritium (OBT) concentration was strongly correlated with tritium releases. Using the GASCON model, the modelled variation of OBT concentration with distance was correlated with the measurements. Although lichens are recognized as bio-indicators, our experiments show that they were not convenient for environmental surveys because their age is not definitive. Thus, tritium integration time cannot be precisely determined. Furthermore, their biological metabolism is not well known and tritium concentration appears to be largely dependent on species. An average conversion rate of HTO to OBT was determined for lettuce of about 0.20-0.24% h{sup -1}. Nevertheless, even if it is equivalent to values already published in the literature for other vegetation, we have shown that this conversion rate, established by weekly samples, varies by a factor of 10 during the different stages of lettuce development, and that its variation is linked to the biomass derivative.

  1. Organically bound tritium (OBT) for various plants in the vicinity of a continuous atmospheric tritium release.

    Science.gov (United States)

    Vichot, L; Boyer, C; Boissieux, T; Losset, Y; Pierrat, D

    2008-10-01

    In order to quantify tritium impact on the environmental, we studied vegetation continuously exposed to a tritiated atmosphere. We chose lichens as bio-indicators, trees for determination of past tritium releases of the Valduc Centre, and lettuce as edible vegetables for dose calculation regarding neighbourhood. The Pasquill and Doury models from the literature were tested to estimate tritium concentration in the air around vegetable for distance from the release point less than 500 m. The results in tree rings show that organically bound tritium (OBT) concentration was strongly correlated with tritium releases. Using the GASCON model, the modelled variation of OBT concentration with distance was correlated with the measurements. Although lichens are recognized as bio-indicators, our experiments show that they were not convenient for environmental surveys because their age is not definitive. Thus, tritium integration time cannot be precisely determined. Furthermore, their biological metabolism is not well known and tritium concentration appears to be largely dependent on species. An average conversion rate of HTO to OBT was determined for lettuce of about 0.20-0.24% h(-1). Nevertheless, even if it is equivalent to values already published in the literature for other vegetation, we have shown that this conversion rate, established by weekly samples, varies by a factor of 10 during the different stages of lettuce development, and that its variation is linked to the biomass derivative.

  2. Illuminating pathways of forest nutrient provision: relative release from soil mineral and organic pools

    Science.gov (United States)

    Hauser, E.; Billings, S. A.

    2017-12-01

    Depletion of geogenic nutrients during soil weathering can prompt vegetation to rely on other sources, such as organic matter (OM) decay, to meet growth requirements. Weathered soils also tend to permit deep rooting, a phenomenon sometimes attributed to vegetation foraging for geogenic nutrients. This study examines the extent to which OM recycling provides nutrients to vegetation growing in soils with diverse weathering states. We thus address the fundamental problem of how forest vegetation obtains sufficient nutrition to support productivity despite wide variation in soils' nutrient contents. We hypothesized that vegetation growing on highly weathered soils relies on nutrients released from OM decay to a greater extent than vegetation growing on less weathered, more nutrient-rich substrates. For four mineralogically diverse Critical Zone Observatories (CZO) and Critical Zone Exploratory Network sites, we calculated weathering indices and approximated vegetation nutrient demand and nutrient release from OM decay. We also measured nutrient release rates from OM decay at each site. We then assessed the relationship between degree of soil weathering and the estimated fraction of nutrient demand satisfied by OM derived nutrients. Results are consistent with our hypothesis. The chemical index of alteration (CIA), a weathering index that increases in value with mineral depletion, varies predictably from 90 at the highly weathered Calhoun CZO to 60 at the Catalina CZO, where soils are more recently developed. Estimates of rates of K release from OM decay increase with CIA values. The highest release rate is 2.4 gK m-2 y-1 at Calhoun, accounting for 30% of annual vegetation K uptake; at Catalina, less than 0.5 gm-2 y-1 K is released, meeting 14% of vegetation demand. CIA also co-varies with rooting depth across sites: the deepest roots at the Calhoun sites are growing in soils with the highest CIA values, while the deepest roots at Catalina sites are growing in soils

  3. Rhizosphere Environment and Labile Phosphorus Release from Organic Waste-Amended Soils.

    Science.gov (United States)

    Dao, Thanh H.

    2015-04-01

    Crop residues and biofertilizers are primary sources of nutrients for organic crop production. However, soils treated with large amounts of nutrient-enriched manure have elevated phosphorus (P) levels in regions of intensive animal agriculture. Surpluses occurred in these amended soils, resulting in large pools of exchangeable inorganic P (Pi) and enzyme-labile organic P (Po) that averaging 30.9 and 68.2 mg kg-1, respectively. Organic acids produced during crop residue decomposition can promote the complexation of counter-ions and decouple and release unbound Pi from metal and alkali metal phosphates. Animal manure and cover crop residues also contain large amounts of soluble organic matter, and likely generate similar ligands. However, a high degree of heterogeneity in P spatial distribution in such amended fields, arising from variances in substrate physical forms ranging from slurries to dried solids, composition, and diverse application methods and equipment. Distinct clusters of Pi and Po were observed, where accumulation of the latter forms was associated with high soil microbial biomass C and reduced phosphomonoesterases' activity. Accurate estimates of plant requirements and lability of soil P pools, and real-time plant and soil P sensing systems are critical considerations to optimally manage manure-derived nutrients in crop production systems. An in situ X-ray fluorescence-based approach to sensing canopy and soil XRFS-P was developed to improve the yield-soil P relationship for optimal nutrient recommendations in addition to allowing in-the-field verification of foliar P status.

  4. Biosynthesis and release of thyrotropin-releasing hormone immunoreactivity in rat pancreatic islets in organ culture. Effects of age, glucose, and streptozotocin

    DEFF Research Database (Denmark)

    Dolva, L O; Welinder, B S; Hanssen, K F

    1983-01-01

    Thyrotropin-releasing hormone immunoreactivity (TRH-IR) was measured in isolated islets and in medium from rat pancreatic islets maintained in organ culture. TRH-IR in methanol extracts of both islets and culture medium was eluted in the same position as synthetic TRH by ion-exchange and gel...... chromatography and exhibited dilution curves parallel with synthetic TRH in radioimmunoassay. [3H]Histidine was incorporated into a component that reacted with TRH antiserum and had the same retention time as synthetic TRH on reversed-phase high-performance liquid chromatography. A continuous release of TRH...

  5. Increasing coastal slump activity impacts the release of sediment and organic carbon into the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    J. L. Ramage

    2018-03-01

    Full Text Available Retrogressive thaw slumps (RTSs are among the most active thermokarst landforms in the Arctic and deliver a large amount of material to the Arctic Ocean. However, their contribution to the organic carbon (OC budget is unknown. We provide the first estimate of the contribution of RTSs to the nearshore OC budget of the Yukon Coast, Canada, and describe the evolution of coastal RTSs between 1952 and 2011 in this area. We (1 describe the evolution of RTSs between 1952 and 2011; (2 calculate the volume of eroded material and stocks of OC mobilized through slumping, including soil organic carbon (SOC and dissolved organic carbon (DOC; and (3 estimate the OC fluxes mobilized through slumping between 1972 and 2011. We identified RTSs using high-resolution satellite imagery from 2011 and geocoded aerial photographs from 1952 and 1972. To estimate the volume of eroded material, we applied spline interpolation on an airborne lidar dataset acquired in July 2013. We inferred the stocks of mobilized SOC and DOC from existing related literature. Our results show a 73 % increase in the number of RTSs and 14 % areal expansion between 1952 and 2011. In the study area, RTSs displaced at least 16.6×106 m3 of material, 53 % of which was ice, and mobilized 145.9×106 kg of OC. Between 1972 and 2011, 49 RTSs displaced 8.6×103 m3 yr−1 of material, adding 0.6 % to the OC flux released by coastal retreat along the Yukon Coast. Our results show that the contribution of RTSs to the nearshore OC budget is non-negligible and should be included when estimating the quantity of OC released from the Arctic coast to the ocean.

  6. Estimating foundation water vapor release using a simple moisture balance and AIM-2 : case study of a contemporary wood-frame house

    Science.gov (United States)

    C. R. Boardman; Samuel V. Glass; Charles G. Carll

    2010-01-01

    Proper management of indoor humidity in buildings is an essential aspect of durability. Following dissipation of moisture from construction materials, humidity levels during normal operation are generally assumed to primarily depend on the building volume, the number of building occupants and their behavior, the air exchange rate, and the water vapor content of outdoor...

  7. [Impacts of rice straw biochar on organic carbon and CO2 release in arable soil].

    Science.gov (United States)

    Ke, Yue-Jin; Hu, Xue-Yu; Yi, Qing; Yu, Zhong

    2014-01-01

    In order to investigate the stability of biochar and the effect of biochar when added into soil on soil organic carbon, a 130-day incubation experiment was conducted with rice straw biochar produced at 500 degrees C and 700 degrees C (RBC500 and RBC700) and with addition rates of 0% (control), 3%, 6% and 100% (pure biochar), to detect the change of total organic carbon (TOC), easily oxidized carbon (EOC) and status of CO2 release, following addition of biochar in arable soil. Results showed that: the content of both TOC and EOC in soil increased with biochar addition rates comparing with the control. RBC500 had greater contributions to both TOC and EOC increasing amounts than those of RBC700 under the same biochar addition rate. TOC contents of all treatments decreased during the initial 30 days with the largest decreasing amplitude of 15.8%, and tended to be stable in late incubation stages. Same to that of TOC, EOC contents of all treatments also tended to remain stable after 30 days, but in the 30 days of early incubation, EOC in the soil decreased by 72.4% and 81.7% respectively when the added amount of RBC500 was 3% and 6% , while it was reduced by 61.3% and 69.8% respectively when the added amount of RBC700 was 3% and 6%. EOC contents of soil added with biochar produced at the same temperature were similar in the end of incubation. The reduction of soil EOC content in early incubation may be related to mineralization caused by labile fractions of biochar. During the 130-day incubation, the accumulated CO2 releases showed an order of soil and biochar mixtures soil could reduce CO2 release, the largest reduction amplitude is 41.05%. In a long time scale, biochar as a soil amendment is favorable to the deduction of greenhouse gas release and soil carbon immobilization. Biochar could be used as a soil carbon sequestration carrier.

  8. Compositional Characteristics of Dissolved Organic Matter released from the sediment of Han river in Korea.

    Science.gov (United States)

    Oh, H.; Choi, J. H.

    2017-12-01

    The dissolved organic matter (DOM) has variable characteristics depending on the sources. The DOM of a river is affected by rain water, windborne material, surface and groundwater flow, and sediments. In particular, sediments are sources and sinks of nutrients and pollutants in aquatic ecosystems by supplying large amounts of organic matter. The DOM which absorbs ultraviolet and visible light is called colored dissolved organic matter (CDOM). CDOM is responsible for the optical properties of natural waters in several biogeochemical and photochemical processes and absorbs UV-A (315-400 nm) and UV-B (280-315), which are harmful to aquatic ecosystems (Helms et al., 2008). In this study, we investigated the quantity and quality of DOM and CDOM released from the sediments of Han river which was impacted by anthropogenic activities and hydrologic alternation of 4 Major River Restoration Project. The target area of this study is Gangchenbo (GC), Yeojubo (YJ), and Ipobo(IP) of the Han River, Korea. Sediments and water samples were taken on July and August of 2016 and were incubated at 20° up to 7 days. Absorbance was measured with UV-visible spectrophotometer (Libra S32 PC, Biochrom). Fluorescence intensity determined with Fluorescence EEMs (F-7000, Hitachi). Absorbance and fluorescence intensity were used to calculate Specific Ultraviolet Absorbance (SUVA254), Humification index (HIX), Biological index (BIX), Spectral slope (SR) and component analysis. The DOC concentration increased after 3 days of incubation. According to the SUVA254 analysis, the microbial activity is highest in the initial overlying water of IP. HIX have range of 1.35-4.08, and decrease poly aromatic structures of organic matter during incubation. From the results of the BIX, autochthonous organic matter was released from the sediments. In all sites, Humic-like DOM, Microbial humic-like DOM and Protein-like DOM increased significantly between Day 0 and 3(except Humic-like, Microbial humic-like DOM in

  9. Release of non-methane organic compounds during simulated landfilling of aerobically pretreated municipal solid waste.

    Science.gov (United States)

    Zhang, Yuanyuan; Yue, Dongbei; Liu, Jianguo; Lu, Peng; Wang, Ying; Liu, Jing; Nie, Yongfeng

    2012-06-30

    Characteristics of non-methane organic compounds (NMOCs) emissions during the anaerobic decomposition of untreated (APD-0) and four aerobically pretreated (APD-20, APD-39, APD-49, and APD-63) samples of municipal solid waste (MSW) were investigated in laboratory. The cumulative mass of the NMOCs of APD-20, APD-39, APD-49, and APD-63 accounted for 15%, 9%, 16%, and 15% of that of APD-0, respectively. The intensities of the NMOC emissions calculated by dividing the cumulative NMOC emissions by the quantities of organic matter removed (Q(VS)) decreased from 4.1 mg/kg Q(VS) for APD-0 to 0.8-3.4 mg/kg Q(VS) for aerobically pretreated MSW. The lipid and starch contents might have significant impact on the intensity of the NMOC emissions. Alkanes dominated the NMOCs released from the aerobically pretreated MSW, while oxygenated compounds were the chief component of the NMOCs generated from untreated MSW. Aerobic pretreatment of MSW prior to landfilling reduces the organic content of the waste and the intensity of the NMOC emissions, and increases the odor threshold, thereby reducing the environmental impact of landfills. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Bioturbation/bioirrigation effect on thallium released from reservoir sediment by different organism types.

    Science.gov (United States)

    He, Yi; Men, Bin; Yang, Xiaofang; Wang, Dongsheng

    2015-11-01

    Bioturbation can remobilize heavy metal in the sediments and may pose a risk for aquatic biota. The effects of bioturbation/bioirrigation by three different riverine organism types (Tubificid, Chironomid larvae, and Loach) on thallium release from contaminated sediment (10.0 ± 1.1 mg Tl/kg sediment, dry wt.) were evaluated in this study. The bioturbation by the epibenthos clearly caused an increased turbidity in the overlying water, and the effect was in the order of Loach > Chironomid larvae > Tubificid. A significant release of Tl into the water column via the resuspended sediment particles was observed, especially for Loach. During the first few days, the leaching of dissolved Tl from sediment into water was fast, and the dissolved Tl under bioturbation/bioirrigation was much higher than the control group. However, after 14 days, the bioturbation/bioirrigation process seemed to suppress the release of Tl from the sediment particles to water, especially for sediment with Loach. This may partly be due to the sorption or coprecipitation of Tl simultaneous with the formation of iron and manganese hydrous oxides with increased pH values as a consequence of phytoplankton growth. Linear regression analysis confirmed that both the total and particulate Tl concentrations had good correlations with particulate Fe and Mn concentrations as well as turbidity in the overlying water. Additionally, planktonic bacteria may oxidize the Tl(I) to Tl(III), resulting in a reduced solubility of Tl by which Tl(OH)3 becomes the predominant form of Tl. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The Role of Organic Acids on the Release of Phosphorus and Zinc in a Calcareous Soil

    Directory of Open Access Journals (Sweden)

    Sareh Nezami

    2017-02-01

    Full Text Available Introduction: Phosphorus (P and zinc (Zn fixation by soil minerals and their precipitation is one of the major constraints for crop production in calcareous soils. Recent Studies show that root exudates are effective for the extraction of the large amounts of nutrients in calcareous soils. A part of the root exudations are Low Molecular Weight Organic Acids (LMWOAs. LMWOAs are involved in the nutrients availability and uptake by plants, nutrients detoxification, minerals weathering and microbial proliferation in the soil. At nutrients deficiency conditions citric and oxalic acids are released by plants root in large quantities and increase nutrient solubility like P, Zn, Fe, Mn and Cu in the rhizosphere. These components are the large portion of the carbon source in the soil after exudations are mineralized by microorganisms, quickly. In addition, soil surface sorption can affect their half-life and other behaviors in the soil. In order to study the effect of oxalic and citric organic acids on the extraction of phosphorus and zinc from a calcareous soil, an experiment was conducted. Materials and Methods: Studied soil was calcareous and had P and Zn deficiency. Soil sample was collected from A horizon (0-30 cm of Damavand region. 3 g of dried soil sample was extracted with 30 ml of oxalic and citric acids extraction solutions at different concentrations (0.1, 1 and 10 mM and different time periods (10, 60, 180 and 360 minutes on an orbital shaker at 200 rev min-1.The soil extracts then centrifuged for 10 minutes (16000g. After filtering, the pH of the extractions was recorded and then phosphorus, calcium and zinc amounts were determined. Soil extraction with distilled water was used as control. Each treatment was performed in 3 replications. Statistical analysis was performed with ANOVA test followed by the Bonferroni method significant level adjustments due to multiple comparisons. Results and Discussion: The results of variance analysis showed

  12. Characterizations of arsenic-doped zinc oxide films produced by atmospheric metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Li-Wei, E-mail: onlyway54@hotmail.com [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Uen, Wu-Yih, E-mail: uenwuyih@ms37.hinet.net [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Lan, Shan-Ming; Liao, Sen-Mao [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Tsun-Neng; Wu, Chih-Hung; Hong, Hwe-Fen; Ma, Wei-Yang [Institute of Nuclear Energy Research, P.O. Box 3-11, Lungtan 32500, Taiwan (China); Shen, Chin-Chang [Chemical Engineering Division, Institute of Nuclear Energy Research, Longtan Township, Taoyuan 32546, Taiwan (China)

    2013-07-15

    p-type ZnO films were prepared by atmospheric metal-organic chemical vapor deposition technique using arsine (AsH{sub 3}) as the doping source. The electrical and optical properties of arsenic-doped ZnO (ZnO:As) films fabricated at 450–600 °C with various AsH{sub 3} flow rates ranging from 8 to 21.34 μmol/min were analyzed and compared. Hall measurements indicate that stable p-type ZnO films with hole concentrations varying from 7.2 × 10{sup 15} to 5.8 × 10{sup 18} cm{sup −3} could be obtained. Besides, low temperature (17 K) photoluminescence spectra of all ZnO:As films also demonstrate the dominance of the line related to the neutral acceptor-bound exciton. Moreover, the elemental identity and chemical bonding information for ZnO:As films were examined by X-ray photoelectron spectroscopy. Based on the results obtained, the effects of doping conditions on the mechanism responsible for the p-type conduction were studied. Conclusively, a simple technique to fabricate good-quality p-type ZnO films has been recognized in this work. Depositing the film at 550 °C with an AsH{sub 3} flow rate of 13.72 μmol/min is appropriate for producing hole concentrations on the order of 10{sup 17} cm{sup −3} for it. Ultimately, by increasing the AsH{sub 3} flow rate to 21.34 μmol/min for doping and depositing the film at 600 °C, ZnO:As films with a hole concentration over 5 × 10{sup 18} cm{sup −3} together with a mobility of 1.93 cm{sup 2}V{sup −1} s{sup −1} and a resistivity of 0.494 ohm-cm can be achieved.

  13. Fife, a Drosophila Piccolo-RIM Homolog, Promotes Active Zone Organization and Neurotransmitter Release

    Science.gov (United States)

    Bruckner, Joseph J.; Gratz, Scott J.; Slind, Jessica K.; Geske, Richard R.; Cummings, Alexander M.; Galindo, Samantha E.; Donohue, Laura K.; O'Connor-Giles, Kate M.

    2012-01-01

    Neuronal communication depends on the precisely orchestrated release of neurotransmitter at specialized sites called active zones (AZs). A small number of scaffolding and cytoskeletal proteins comprising the cytomatrix of the active zone (CAZ) are thought to organize the architecture and functional properties of AZs. The majority of CAZ proteins are evolutionarily conserved, underscoring the fundamental similarities in neurotransmission at all synapses. However, core CAZ proteins Piccolo and Bassoon have long been believed exclusive to vertebrates, raising intriguing questions about the conservation of the molecular mechanisms that regulate presynaptic properties. Here, we present the identification of a piccolo-rim-related gene in invertebrates, together with molecular phylogenetic analyses that indicate the encoded proteins may represent Piccolo orthologs. In accordance, we find that the Drosophila homolog, Fife, is neuronal and localizes to presynaptic AZs. To investigate the in vivo function of Fife, we generated a deletion of the fife locus. We find that evoked neurotransmitter release is substantially decreased in fife mutants and loss of fife results in motor deficits. Through morphological analysis of fife synapses, we identify underlying AZ abnormalities including pervasive presynaptic membrane detachments and reduced synaptic vesicle clustering. Our data demonstrate the conservation of a Piccolo-related protein in invertebrates and identify critical roles for Fife in regulating AZ structure and function. These findings suggest the CAZ is more conserved than previously thought, and open the door to a more complete understanding of how CAZ proteins regulate presynaptic structure and function through genetic studies in simpler model systems. PMID:23197698

  14. Release of volatile organic compounds (VOCs from the lung cancer cell line CALU-1 in vitro

    Directory of Open Access Journals (Sweden)

    Schubert Jochen

    2008-11-01

    Full Text Available Abstract Background The aim of this work was to confirm the existence of volatile organic compounds (VOCs specifically released or consumed by lung cancer cells. Methods 50 million cells of the human non-small cell lung cancer (NSCLC cell line CALU-1 were incubated in a sealed fermenter for 4 h or over night (18 hours. Then air samples from the headspace of the culture vessel were collected and preconcentrated by adsorption on solid sorbents with subsequent thermodesorption and analysis by means of gas chromatography mass spectrometry (GC-MS. Identification of altogether 60 compounds in GCMS measurement was done not only by spectral library match, but also by determination of retention times established with calibration mixtures of the respective pure compounds. Results The results showed a significant increase in the concentrations of 2,3,3-trimethylpentane, 2,3,5-trimethylhexane, 2,4-dimethylheptane and 4-methyloctane in the headspace of CALU-1 cell culture as compared to medium controls after 18 h. Decreased concentrations after 18 h of incubation were found for acetaldehyde, 3-methylbutanal, butyl acetate, acetonitrile, acrolein, methacrolein, 2-methylpropanal, 2-butanone, 2-methoxy-2-methylpropane, 2-ethoxy-2-methylpropane, and hexanal. Conclusion Our findings demonstrate that certain volatile compounds can be cancer-cell derived and thus indicative of the presence of a tumor, whereas other compounds are not released but seem to be consumed by CALU-1 cells.

  15. Advanced characterization of dissolved organic matter released by bloom-forming marine algae

    KAUST Repository

    Rehman, Zahid Ur

    2017-06-01

    Algal organic matter (AOM), produced by marine phytoplankton during bloom periods, may adversely affect the performance of membrane processes in seawater desalination. The polysaccharide fraction of AOM has been related to (bio)fouling in micro-filtration and ultrafiltration, and reverse osmosis membranes. However, so far, the chemical structure of the polysaccharides released by bloom-forming algae is not well understood. In this study, dissolved fraction of AOM produced by three algal species (Chaetoceros affinis, Nitzschia epithemoides and Hymenomonas spp.) was characterized using liquid chromatography–organic carbon detection (LC-OCD) and fluorescence spectroscopy. Chemical structure of polysaccharides isolated from the AOM solutions at stationary phase was analyzed using proton nuclear magnetic resonance (H-NMR). The results showed that production and composition of dissolved AOM varied depending on algal species and their growth stage. AOM was mainly composed of biopolymers (BP; i.e., polysaccharides and proteins [PN]), but some refractory substances were also present.H-NMR spectra confirmed the predominance of carbohydrates in all samples. Furthermore, similar fingerprints were observed for polysaccharides of two diatom species, which differed considerably from that of coccolithophores. Based on the findings of this study,H-NMR could be used as a method for analyzing chemical profiles of algal polysaccharides to enhance the understanding of their impact on membrane fouling.

  16. Selective release of D and 13C from insoluble organic matter of the Murchison meteorite by impact shock

    Science.gov (United States)

    Mimura, Koichi; Okamoto, Michioki; Sugitani, Kenichiro; Hashimoto, Shigemasa

    2007-03-01

    We performed shock-recovery experiments on insoluble organic matter (IOM) purified from the Murchison meteorite, and determined the abundances and isotope ratios of hydrogen and carbon in the shocked IOM sample. We also performed shock experiments on type III kerogen and compared the results of these experiments with the experimental results regarding IOM.The shock selectively released D and 13C from the IOM, while it preferably released H and 12C from the kerogen. The release of these elements from IOM cannot be explained in terms of the isotope effect, whereas their release from kerogen can be explained by this effect. The selective release of heavier isotopes from IOM would be due to its structure, in which D and 13C-enriched parts are present as an inhomogeneity and are weakly attached to the main network. Shock gave rise to a high release of D even at a lower degree of dehydrogenation compared with the stepwise heating of IOM. This effective release of D is probably an inherent result of shock, in which a dynamic high-pressure and high-temperature condition prevails. Thus, shock would effectively control the hydrogen isotope behavior of extraterrestrial organic matter during the evolution of the solar nebula.

  17. Examination of Organic Vapor Adsorption onto Alkali Metal and Halide Atomic Ions by using Ion Mobility Mass Spectrometry.

    Science.gov (United States)

    Maiβer, Anne; Hogan, Christopher J

    2017-11-03

    We utilize ion mobility mass spectrometry with an atmospheric pressure differential mobility analyzer coupled to a time-of-flight mass spectrometer (DMA-MS) to examine the formation of ion-vapor molecule complexes with seed ions of K + , Rb + , Cs + , Br - , and I - exposed to n-butanol and n-nonane vapor under subsaturated conditions. Ion-vapor molecule complex formation is indicated by a shift in the apparent mobility of each ion. Measurement results are compared to predicted mobility shifts based upon the Kelvin-Thomson equation, which is commonly used in predicting rates of ion-induced nucleation. We find that n-butanol at saturation ratios as low as 0.03 readily binds to all seed ions, leading to mobility shifts in excess of 35 %. Conversely, the binding of n-nonane is not detectable for any ion for saturation ratios in the 0-0.27 range. An inverse correlation between the ionic radius of the initial seed and the extent of n-butanol uptake is observed, such that at elevated n-butanol concentrations, the smallest ion (K + ) has the smallest apparent mobility and the largest (I - ) has the largest apparent mobility. Though the differences in behavior of the two vapor molecules types examined and the observed effect of ionic seed radius are not accounted for by the Kelvin-Thomson equation, its predictions are in good agreement with measured mobility shifts for Rb + , Cs + , and Br - in the presence of n-butanol (typically within 10 % of measurements). © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. Pharmacokinetics of prolonged-release tacrolimus and implications for use in solid organ transplant recipients.

    Science.gov (United States)

    Tanzi, Maria G; Undre, Nasrullah; Keirns, James; Fitzsimmons, William E; Brown, Malcolm; First, M Roy

    2016-08-01

    Prolonged-release tacrolimus was developed as a once-daily formulation with ethylcellulose as the excipient, resulting in slower release and reduction in peak concentration (Cmax ) for a given dose compared with immediate-release tacrolimus, which is administered twice daily. This manuscript reviews pharmacokinetic information on prolonged-release tacrolimus in healthy subjects, in transplant recipients converted from immediate-release tacrolimus, and in de novo kidney and liver transplant recipients. As with the immediate-release formulation, prolonged-release tacrolimus shows a strong correlation between trough concentration (Cmin ) and area under the 24-hour time-concentration curve (AUC24 ), indicating that trough whole blood concentrations provide an accurate measure of drug exposure. We present the pharmacokinetic similarities and differences between the two formulations, so that prescribing physicians will have a better understanding of therapeutic drug monitoring in patients receiving prolonged-release tacrolimus. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Effect of light and nutrient availability on the release of dissolved organic carbon (DOC) by Caribbean turf algae.

    Science.gov (United States)

    Mueller, Benjamin; den Haan, Joost; Visser, Petra M; Vermeij, Mark J A; van Duyl, Fleur C

    2016-03-22

    Turf algae increasingly dominate benthic communities on coral reefs. Given their abundance and high dissolved organic carbon (DOC) release rates, turf algae are considered important contributors to the DOC pool on modern reefs. The release of photosynthetically fixed carbon as DOC generally, but not always, increases with increased light availability. Nutrient availability was proposed as an additional factor to explain these conflicting observations. To address this proposed but untested hypothesis, we documented the interactive contributions of light and nutrient availability on the release of DOC by turf algae. DOC release rates and oxygen production were quantified in incubation experiments at two light levels (full and reduced light) and two nutrient treatments (natural seawater and enriched seawater). In natural seawater, DOC release at full light was four times higher than at reduced light. When nutrients were added, DOC release rates at both light levels were similar to the natural seawater treatment at full light. Our results therefore show that low light in combination with low nutrient availability reduces the release of DOC by turf algae and that light and nutrient availability interactively determine DOC release rates by this important component of Caribbean reef communities.

  20. High-voltage vertical GaN Schottky diode enabled by low-carbon metal-organic chemical vapor deposition growth

    Science.gov (United States)

    Cao, Y.; Chu, R.; Li, R.; Chen, M.; Chang, R.; Hughes, B.

    2016-02-01

    Vertical GaN Schottky barrier diode (SBD) structures were grown by metal-organic chemical vapor deposition on free-standing GaN substrates. The carbon doping effect on SBD performance was studied by adjusting the growth conditions and spanning the carbon doping concentration between ≤3 × 1015 cm-3 and 3 × 1019 cm-3. Using the optimized growth conditions that resulted in the lowest carbon incorporation, a vertical GaN SBD with a 6-μm drift layer was fabricated. A low turn-on voltage of 0.77 V with a breakdown voltage over 800 V was obtained from the device.

  1. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C1 - C10

    Science.gov (United States)

    Acree, William; Chickos, James S.

    2016-09-01

    A compendium of phase change enthalpies published in 2010 is updated to include the period 1880-2015. Phase change enthalpies including fusion, vaporization, and sublimation enthalpies are included for organic, organometallic, and a few inorganic compounds. Part 1 of this compendium includes organic compounds from C1 to C10. Part 2 of this compendium, to be published separately, will include organic and organometallic compounds from C11 to C192. Sufficient data are presently available to permit thermodynamic cycles to be constructed as an independent means of evaluating the reliability of the data. Temperature adjustments of phase change enthalpies from the temperature of measurement to the standard reference temperature, T = 298.15 K, and a protocol for doing so are briefly discussed.

  2. Dissolved organic carbon and nitrogen release from Holocene permafrost and seasonally frozen soils

    Science.gov (United States)

    Wickland, K.; Waldrop, M. P.; Koch, J. C.; Jorgenson, T.; Striegl, R. G.

    2017-12-01

    Permafrost (perennially frozen) soils store vast amounts of carbon (C) and nitrogen (N) that are vulnerable to mobilization to the atmosphere as greenhouse gases and to terrestrial and aquatic ecosystems as dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) upon thaw. Such releases will affect the biogeochemistry of arctic and boreal regions, yet little is known about active layer (seasonally frozen) and permafrost source variability that determines DOC and TDN mobilization. We quantified DOC and TDN leachate yields from a range of active layer and permafrost soils in Alaska varying in age and C and N content to determine potential release upon thaw. Soil cores from the upper 1 meter were collected in late winter, when soils were frozen, from three locations representing a range in geographic position, landscape setting, permafrost depth, and soil types across interior Alaska. Two 15 cm-thick segments were extracted from each core: a deep active-layer horizon and a shallow permafrost horizon. Soils were thawed and leached for DOC and TDN yields, dissolved organic matter optical properties, and DOC biodegradability; soils were analyzed for C and N content, and radiocarbon content. Soils had wide-ranging C and N content (<1-44% C, <0.1-2.3% N), and varied in radiocarbon age from 450-9200 years before present - thus capturing typical ranges of boreal and arctic soils. Soil DOC and TDN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. However, across all sites DOC and TDN yields were significantly greater from permafrost soils (0.387 ± 0.324 mg DOC g-1 soil; 0.271 ± 0.0271 mg N g-1 soil) than from active layer soils (0.210 ± 0.192 mg DOC g-1 soil; 0.00716 ± 0.00569 mg N g-1 soil). DOC biodegradability increased with increasing radiocarbon age, and was statistically similar for active layer and permafrost soils. Our findings suggest that the continuously frozen state of permafrost soils has preserved

  3. Effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen by the scleractinian coral Montipora digitata

    Science.gov (United States)

    Tanaka, Y.; Ogawa, H.; Miyajima, T.

    2010-09-01

    The effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen (DOC and DON, respectively) from the coral Montipora digitata were investigated in the laboratory. Nitrate (NO3 -) and phosphate (PO4 3-) were supplied to the aquarium to get the final concentrations of 10 and 0.5 μmol l-1, respectively, and the corals were incubated for 8 days. The release rate of DON per unit coral surface area significantly decreased after the nutrient enrichment, while the release rate of DOC was constant. Because the chlorophyll a (chl a) content of zooxanthellae per unit surface area increased, the release rate of DOC significantly decreased when normalized to unit chl a. These results suggested that the incorporation of NO3 - and PO4 3- stimulated the synthesis of new cellular components in the coral colonies and consequently, reduced extracellular release of DOC and DON. Actually, significant increase in N and P contents relative to C content was observed in the coral’s tissue after the nutrient enrichment. The present study has concluded that inorganic nutrient enrichment not only affects coral-algal metabolism inside the colony but also affects a microbial community around the coral because the organic matter released from corals functions as energy carrier in the coral reef ecosystem.

  4. Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices.

    Science.gov (United States)

    Schiavon, Marco; Martini, Luca Matteo; Corrà, Cesare; Scapinello, Marco; Coller, Graziano; Tosi, Paolo; Ragazzi, Marco

    2017-12-01

    The complaints arising from the problem of odorants released by composting plants may impede the construction of new composting facilities, preclude the proper activity of existing facilities or even lead to their closure, with negative implications for waste management and local economy. Improving the knowledge on VOC emissions from composting processes is of particular importance since different VOCs imply different odour impacts. To this purpose, three different organic matrices were studied in this work: dewatered sewage sludge (M1), digested organic fraction of municipal solid waste (M2) and untreated food waste (M3). The three matrices were aerobically biodegraded in a bench-scale bioreactor simulating composting conditions. A homemade device sampled the process air from each treatment at defined time intervals. The samples were analysed for VOC detection. The information on the concentrations of the detected VOCs was combined with the VOC-specific odour thresholds to estimate the relative weight of each biodegraded matrix in terms of odour impact. When the odour formation was at its maximum, the waste gas from the composting of M3 showed a total odour concentration about 60 and 15,000 times higher than those resulting from the composting of M1 and M2, respectively. Ethyl isovalerate showed the highest contribution to the total odour concentration (>99%). Terpenes (α-pinene, β-pinene, p-cymene and limonene) were abundantly present in M2 and M3, while sulphides (dimethyl sulphide and dimethyl disulphide) were the dominant components of M1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Assessment of released organics from leaf biomass on air quality in the state of California

    International Nuclear Information System (INIS)

    Badgett-West, C.R.; Cort, R.P.

    1991-01-01

    Air quality scientists today are concerned that significant amounts of volatile organic compounds (VOCs), specifically isoprenes and monoterpenes, are released by vegetative matter during biological processes. These emissions have not been previously accounted for and therefore the magnitude of their contribution to ozone concentrations has not been determined. A study of the emissions in the State of California was performed using 1987 as a base year. Data were collected on the acerages of natural and agricultural vegetation for each county in the state. Vegetation acreages were divided by season for direct input into air quality models. Generally, an inventory of the agricultural lands was more complicated than accounting for natural vegetation acreages. This was due to a large extent to crop rotation and production of more than one crop on the same land within the same calendar year. The amount of leaf biomass per acre was very difficult to define. Very little research has been completed in this area. In addition, several variables influence the amount of leaf biomass per acre. These include moisture, temperature, type of soil, insect/animal consumption, and agricultural practices

  6. The formation of an organic coat and the release of corrosion microparticles from metallic magnesium implants.

    Science.gov (United States)

    Badar, Muhammad; Lünsdorf, Heinrich; Evertz, Florian; Rahim, Muhammad Imran; Glasmacher, Birgit; Hauser, Hansjörg; Mueller, Peter P

    2013-07-01

    Magnesium alloys have been proposed as prospective degradable implant materials. To elucidate the complex interactions between the corroding implants and the tissue, magnesium implants were analyzed in a mouse model and the response was compared to that induced by Ti and by the resorbable polymer polyglactin, respectively. One month after implantation, distinct traces of corrosion were apparent but the magnesium implants were still intact, whereas resorbable polymeric wound suture implants were already fragmented. Analysis of magnesium implants 2weeks after implantation by energy-dispersive X-ray spectroscopy indicated that magnesium, oxygen, calcium and phosphate were present at the implant surface. One month after implantation, the element composition of the outermost layer of the implant was indicative of tissue without detectable levels of magnesium, indicating a protective barrier function of this organic layer. In agreement with this notion, gene expression patterns in the surrounding tissue were highly similar for all implant materials investigated. However, high-resolution imaging using energy-filtered transmission electron microscopy revealed magnesium-containing microparticles in the tissue in the proximity of the implant. The release of such corrosion particles may contribute to the accumulation of calcium phosphate in the nearby tissue and to bone conductive activities of magnesium implants. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. EDO, Doses to Man and Organs from Reactor Operation Noble Gas and Liquid Waste Release

    International Nuclear Information System (INIS)

    Rodenas Diago, Jose; Serradell Garcia, Vicente

    1983-01-01

    1 - Description of problem or function: EDO evaluates individual and collective doses to man from atmospheric releases of noble gases and other gaseous effluents. 2 - Method of solution: The dose calculations are carried out by following the guide- lines of USNRC Regulatory Guide 1.109. Radiation exposure for maximum individuals and population are estimated within 30 km from the nuclear plant. This area is divided into 160 circular trapezoids, to which computations are referred. Four age groups, seven organs for internal dose and two for external dose have been considered. Dose calculations are done through 14 pathways, 7 for liquid effluents, one for noble gases, and 6 for the rest of gaseous effluents. 3 - Restrictions on the complexity of the problem: The following are the maximum dimension sizes preset in the code: 73 radionuclides (other than noble gases); 15 noble gases; 160 circular trapezoids; 31 chemical elements; 4 types of aquatic foods; 15 points of exposure for shorelines; 15 trapezoids influenced by each point; 4 terrestrial food pathways; 100 centres of population. Some of these limits can be varied

  8. EDO, Doses to Man and Organs from Reactor Operation Noble Gas and Liquid Waste Release

    Energy Technology Data Exchange (ETDEWEB)

    Rodenas Diago, Jose; Serradell Garcia, Vicente [Departamento de Ingenieria Nuclear, Escuela Tecnica Superior de Ingenieros Industriales, Universidad Politecnica, Camino de Vera 2/n Apartado 2012, Valencia (Spain)

    1983-10-18

    1 - Description of problem or function: EDO evaluates individual and collective doses to man from atmospheric releases of noble gases and other gaseous effluents. 2 - Method of solution: The dose calculations are carried out by following the guide- lines of USNRC Regulatory Guide 1.109. Radiation exposure for maximum individuals and population are estimated within 30 km from the nuclear plant. This area is divided into 160 circular trapezoids, to which computations are referred. Four age groups, seven organs for internal dose and two for external dose have been considered. Dose calculations are done through 14 pathways, 7 for liquid effluents, one for noble gases, and 6 for the rest of gaseous effluents. 3 - Restrictions on the complexity of the problem: The following are the maximum dimension sizes preset in the code: 73 radionuclides (other than noble gases); 15 noble gases; 160 circular trapezoids; 31 chemical elements; 4 types of aquatic foods; 15 points of exposure for shorelines; 15 trapezoids influenced by each point; 4 terrestrial food pathways; 100 centres of population. Some of these limits can be varied.

  9. Photoassisted vapor generation in the presence of organic acids for ultrasensitive determination of Se by electrothermal-atomic absorption spectrometry following headspace single-drop microextraction

    International Nuclear Information System (INIS)

    Figueroa, Raul; Garcia, Monica; Lavilla, Isela; Bendicho, Carlos

    2005-01-01

    A method is described for the determination of selenium at the pg/mL level by electrothermal-atomic absorption spectrometry using in situ photogeneration of Se vapors, headspace sequestration onto an aqueous microdrop containing Pd(II) and subsequent injection in a graphite tube. Several organic acids (formic, oxalic, acetic, citric and ethylenediaminetetraacetic) have been tried for photoreduction of Se(IV) into volatile Se compounds under UV irradiation. Experimental variables such as UV irradiation time, organic acid concentration, Pd(II) concentration in the drop, sample and drop volumes, extraction time and pH were fully optimized. Low-molecular weight acids such as formic and acetic provided optimal photogeneration of volatile Se species at a 0.6 mol/L concentration. Citric and ethylenediaminetetraacetic acid allowed to use a concentration as low as 1 mmol/L, but extraction times were longer than for formic and acetic acids. Photogeneration of (CH 3 ) 2 Se from Se(IV) in the presence of acetic acid provided a detection limit of 20 pg/mL, a preconcentration factor of nearly 285 and a precision, expressed as relative standard deviation, of 4%. Analytical performance seemed to depend not only on the photogeneration efficiency obtained with each acid but also on the stability of the vapors in the headspace. The method showed a high freedom from interferences caused by saline matrices, but interferences were observed for transition metals at a relatively low concentration

  10. Nitrogen and phosphorus release from organic wastes and suitability as bio-based fertilizers in a circular economy.

    Science.gov (United States)

    Case, S D C; Jensen, L S

    2017-11-22

    The drive to a more circular economy has created increasing interest in recycling organic wastes as bio-based fertilizers. This study screened 15 different manures, digestates, sludges, composts, industry by-products, and struvites. Nitrogen (N) and phosphorous (P) release was compared following addition to soil. Three waste materials were then 'upgraded' using heating and pressure (105°C at 220 kPa), alkalinization (pH 10), or sonification to modify N and P release properties, and compared in a second soil incubation. Generally, maximum N release was negatively correlated with the CN ratio of the material (r = -0.6). Composted, dried, or raw organic waste materials released less N (mean of 10.8 ± 0.5%, 45.3 ± 7.2%, and 47.4 ± 3.2% of total N added respectively) than digestates, industry-derived organic fertilizer products, and struvites (mean of 58.2 ± 2.8%, 77.7 ± 6.0%, and 100.0 ± 13.1% of total N added respectively). No analyzed chemical property or processing type could explain differences in P release. No single upgrading treatment consistently increased N or P release. However, for one raw biosolid, heating at a low temperature (105°C) with pressure did increase N release as a percentage of total N added to soil from 30% to 43%.

  11. Thermokarst dynamics and soil organic matter characteristics controlling initial carbon release from permafrost soils in the Siberian Yedoma region

    DEFF Research Database (Denmark)

    Weiss, Niels; Blok, Daan; Elberling, Bo

    2016-01-01

    This study relates soil organic matter (SOM) characteristics to initial soil incubation carbon release from upper permafrost samples in Yedoma region soils of northeastern Siberia, Russia. Carbon (C) and nitrogen (N) content, carbon to nitrogen ratios (C:N), δ13C and δ15N values show clear trends...

  12. Self-organized morphological evolution and dewetting in solvent vapor annealing of spin coated polymer blend nanostructures.

    Science.gov (United States)

    Roy, Sudeshna; Sharma, Ashutosh

    2015-07-01

    Dewetting pathways, kinetics and morphologies of thin films of phase separating polymer blends are governed by the relative mobilities of the two components. We characterize the morphological transformations of the nanostructures of a PS/PMMA blend by annealing in toluene and chloroform vapors. Toluene leads to faster reorganization of PS, whereas chloroform engenders the opposite effect. Spin coating produces a very rough PMMA rich layer that completely wets the substrate and forms a plethora of slender columns protruding through the continuous PS rich layer on top. The nanostructures were stable under long thermal annealing but in the vapor annealing, phase separation and dewetting occurred readily to form the equilibrium structures of dewetted droplets of PS on top of PMMA which also climbed around the PS droplets to form rims. Toluene and chloroform annealing required around 50 h and 1 h respectively to attain the equilibrium. Substantial differences are observed in the intermediate morphologies (heights of nanostructures, roughness and size). PMMA columns remained embedded in the dewetted PS droplets, whereas a high mobility of PMMA in chloroform allowed its rapid evacuation during dewetting to produce an intermediate swiss-cheese like morphology of PS domains. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds and Ionic Liquids. Sublimation, Vaporization, and Fusion Enthalpies from 1880 to 2015. Part 2. C11-C192

    Science.gov (United States)

    Acree, William; Chickos, James S.

    2017-03-01

    The second part of this compendium concludes with a collection of phase change enthalpies of organic molecules inclusive of C11-C192 reported over the period 1880-2015. Also included are phase change enthalpies including fusion, vaporization, and sublimation enthalpies for organometallic, ionic liquids, and a few inorganic compounds. Paper I of this compendium, published separately, includes organic compounds from C1 to C10 and describes a group additivity method for evaluating solid, liquid, and gas phase heat capacities as well as temperature adjustments of phase changes. Paper II of this compendium also includes an updated version of a group additivity method for evaluating total phase change entropies which together with the fusion temperature can be useful in estimating total phase change enthalpies. Other uses include application in identifying potential substances that either form liquid or plastic crystals or exhibit additional phase changes such as undetected solid-solid transitions or behave anisotropically in the liquid state.

  14. Comparative effects of organic and inorganic mercury on in vivo dopamine release in freely moving rats

    Directory of Open Access Journals (Sweden)

    L.R.F. Faro

    2007-10-01

    Full Text Available The present study was carried out in order to compare the effects of administration of organic (methylmercury, MeHg and inorganic (mercury chloride, HgCl 2 forms of mercury on in vivo dopamine (DA release from rat striatum. Experiments were performed in conscious and freely moving female adult Sprague-Dawley (230-280 g rats using brain microdialysis coupled to HPLC with electrochemical detection. Perfusion of different concentrations of MeHg or HgCl 2 (2 µL/min for 1 h, N = 5-7/group into the striatum produced significant increases in the levels of DA. Infusion of 40 µM, 400 µM, or 4 mM MeHg increased DA levels to 907 ± 31, 2324 ± 156, and 9032 ± 70% of basal levels, respectively. The same concentrations of HgCl 2 increased DA levels to 1240 ± 66, 2500 ± 424, and 2658 ± 337% of basal levels, respectively. These increases were associated with significant decreases in levels of dihydroxyphenylacetic acid and homovallinic acid. Intrastriatal administration of MeHg induced a sharp concentration-dependent increase in DA levels with a peak 30 min after injection, whereas HgCl 2 induced a gradual, lower (for 4 mM and delayed increase in DA levels (75 min after the beginning of perfusion. Comparing the neurochemical profile of the two mercury derivatives to induce increases in DA levels, we observed that the time-course of these increases induced by both mercurials was different and the effect produced by HgCl 2 was not concentration-dependent (the effect was the same for the concentrations of 400 µM and 4 mM HgCl 2 . These results indicate that HgCl 2 produces increases in extracellular DA levels by a mechanism differing from that of MeHg.

  15. Nitrogen and phosphorus release from organic wastes and suitability as bio-based fertilizers in a circular economy

    DEFF Research Database (Denmark)

    Case, Sean; Jensen, Lars Stoumann

    2018-01-01

    The drive to a more circular economy has created increasing interest in recycling organic wastes as bio-based fertilizers. This study screened 15 different manures, digestates, sludges, composts, industry by-products, and struvites. Nitrogen (N) and phosphorous (P) release was compared following...... of the material (r = −0.6). Composted, dried, or raw organic waste materials released less N (mean of 10.8 ± 0.5%, 45.3 ± 7.2%, and 47.4 ± 3.2% of total N added respectively) than digestates, industry-derived organic fertilizer products, and struvites (mean of 58.2 ± 2.8%, 77.7 ± 6.0%, and 100.0 ± 13.1% of total...

  16. Assessment of potential climate change impacts on peatland dissolved organic carbon release and drinking water treatment from laboratory experiments

    International Nuclear Information System (INIS)

    Tang, R.; Clark, J.M.; Bond, T.; Graham, N.; Hughes, D.; Freeman, C.

    2013-01-01

    Catchments draining peat soils provide the majority of drinking water in the UK. Over the past decades, concentrations of dissolved organic carbon (DOC) have increased in surface waters. Residual DOC can cause harmful carcinogenic disinfection by-products to form during water treatment processes. Increased frequency and severity of droughts combined with and increased temperatures expected as the climate changes, have potentials to change water quality. We used a novel approach to investigate links between climate change, DOC release and subsequent effects on drinking water treatment. We designed a climate manipulation experiment to simulate projected climate changes and monitored releases from peat soil and litter, then simulated coagulation used in water treatment. We showed that the ‘drought’ simulation was the dominant factor altering DOC release and affected the ability to remove DOC. Our results imply that future short-term drought events could have a greater impact than increased temperature on DOC treatability. - Highlights: ► We model realistic temperature and moisture changes on peat and surface vegetation. ► Quantity, quality and treatability changes of dissolved organic carbon were examined. ► Moisture has significantly greater influence than temperature on DOC production. ► Dry conditions alter treatability of DOC released from surface litter. ► Droughts have greater impact on water treatment than short-term heat waves alone. - Future drought events are likely to alter soil moisture, which predominately controls production of peat-derived dissolved organic carbon and subsequently drinking water quality.

  17. Self-Catalyzed Growth and Characterization of In(As)P Nanowires on InP(111)B Using Metal-Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Park, Jeung Hun; Pozuelo, Marta; Setiawan, Bunga P D; Chung, Choong-Heui

    2016-12-01

    We report the growth of vertical -oriented InAs x P1-x (0.11 ≤ x ≤ 0.27) nanowires via metal-organic chemical vapor deposition in the presence of indium droplets as catalysts on InP(111)B substrates at 375 °C. Trimethylindium, tertiarybutylphosphine, and tertiarybutylarsine are used as the precursors, corresponding to P/In and As/In molar ratios of 29 and 0.01, respectively. The as-grown nanowire growth morphologies, crystallinity, composition, and optical characteristics are determined using a combination of scanning and transmission electron microscopies, electron diffraction, and X-ray photoelectron, energy dispersive X-ray, and Raman spectroscopies. We find that the InAs x P1-x nanowires are tapered with narrow tops, wider bases, and In-rich In-As alloy tips, characteristic of vapor-liquid-solid process. The wires exhibit a mixture of zinc blende and wurtzite crystal structures and a high density of structural defects such as stacking faults and twins. Our results suggest that the incorporation of As into InP wires decreases with increasing substrate temperature. The Raman spectra obtained from the In(As)P nanowires reveal a red-shift and lower intensity of longitudinal optical mode relative to both InP nanowires and InP(111)B bulk, due to the incorporation of As into the InP matrix.

  18. Cu-Al alloy formation by thermal annealing of Cu/Al multilayer films deposited by cyclic metal organic chemical vapor deposition

    Science.gov (United States)

    Moon, Hock Key; Yoon, Jaehong; Kim, Hyungjun; Lee, Nae-Eung

    2013-05-01

    One of the most important issues in future Cu-based interconnects is to suppress the resistivity increase in the Cu interconnect line while decreasing the line width below 30 nm. For the purpose of mitigating the resistivity increase in the nanoscale Cu line, alloying Cu with traces of other elements is investigated. The formation of a Cu alloy layer using chemical vapor deposition or electroplating has been rarely studied because of the difficulty in forming Cu alloys with elements such as Al. In this work, Cu-Al alloy films were successfully formed after thermal annealing of Cu/Al multilayers deposited by cyclic metal-organic chemical vapor deposition (C-MOCVD). After the C-MOCVD of Cu/Al multilayers without gas phase reaction between the Cu and Al precursors in the reactor, thermal annealing was used to form Cu-Al alloy films with a small Al content fraction. The resistivity of the alloy films was dependent on the Al precursor delivery time and was lower than that of the aluminum-free Cu film. No presence of intermetallic compounds were detected in the alloy films by X-ray diffraction measurements and transmission electron spectroscopy.

  19. Epitaxial Pb(Mg1/3Nb2/3)O3 thin films synthesized by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Bai, G. R.; Streiffer, S. K.; Baumann, P. K.; Auciello, O.; Ghosh, K.; Stemmer, S.; Munkholm, A.; Thompson, Carol; Rao, R. A.; Eom, C. B.

    2000-01-01

    Metal-organic chemical vapor deposition was used to prepare Pb(Mg 1/3 Nb 2/3 )O 3 (PMN) thin films on (001) SrTiO 3 and SrRuO 3 /SrTiO 3 substrates, using solid Mg β-diketonate as the Mg precursor. Parameters including the precursor ratio in the vapor phase, growth temperature, growth rate, and reaction pressure in the reactor chamber were varied in order to determine suitable growth conditions for producing phase-pure, epitaxial PMN films. A cube-on-cube orientation relationship between the thin film and the SrTiO 3 substrate was found, with a (001) rocking curve width of 0.1 degree sign , and in-plane rocking-curve width of 0.8 degree sign . The root-mean-square surface roughness of a 200-nm-thick film on SrTiO 3 was 2 to 3 nm as measured by scanning probe microscopy. The zero-bias dielectric constant and loss measured at room temperature and 10 kHz for a 200-nm-thick film on SrRuO 3 /SrTiO 3 were approximately 1100 and 2%, respectively. The remnant polarization for this film was 16 μC/cm 2 . (c) 2000 American Institute of Physics

  20. Tritium release of titan-tritium layers in air, aqueous solutions and living organisms of animals

    International Nuclear Information System (INIS)

    Biro, J.; Feher, I.; Mate, L.; Varga, L.

    1978-01-01

    Samples containing 400-1100 MBq (10-30 mCi) tritium were prepared and the effect of storage time on tritium release was followed. In 250 days one thousandth of the tritium was released in aqueous solution; in air the ratio of release per hour fell in the range of 10 -6 -10 -7 . Ti-T plates with different storage times were surgically placed in the abdomen of rats. Their tritium release dropped with time and the activity appearing in the circulation was lower than that of plates with 5-6 orders of magnitude. Checking the tritium incorporation of neutron generator operators it must be held in mind that only a minor part of tritium can be detected by the measurement of the tritium content of urine. (author)

  1. Organic and total mercury determination in sediments by cold vapor atomic absorption spectrometry: methodology validation and uncertainty measurements

    Directory of Open Access Journals (Sweden)

    Robson L. Franklin

    2012-01-01

    Full Text Available The purpose of the present study was to validate a method for organic Hg determination in sediment. The procedure for organic Hg was adapted from literature, where the organomercurial compounds were extracted with dichloromethane in acid medium and subsequent destruction of organic compounds by bromine chloride. Total Hg was performed according to 3051A USEPA methodology. Mercury quantification for both methodologies was then performed by CVAAS. Methodology validation was verified by analyzing certified reference materials for total Hg and methylmercury. The uncertainties for both methodologies were calculated. The quantification limit of 3.3 µg kg-1 was found for organic Hg by CVAAS.

  2. 32-Week Holding-Time Study of SUMMA Polished Canisters and Triple Sorbent Traps Used To Sample Organic Constituents in Radioactive Waste Tank Vapor Headspace

    International Nuclear Information System (INIS)

    Evans, John C.; Huckaby, James L.; Mitroshkov, Alexandre V.; Julya, Janet L.; Hayes, James C.; Edwards, Jeffrey A.; Sasaki, Leela M.

    1997-01-01

    Two sampling methods[SUMMA polished canisters and triple sorbent traps (TSTs)] were compared for long-term storage of trace organic vapor samples collected from the headspaces of high-level radioactive waste tanks at the U.S. Department of Energy's Hanford Site in Washington State. Because safety, quality assurance, radiological controls, the long-term stability of the sampling media during storage needed to be addressed. Samples were analyzed with a gas chromatograph/mass spectrometer (GC/MS) using cryogenic reconcentration or thermal desorption sample introduction techniques. SUMMA canister samples were also analyzed for total non-methane organic compounds (TNMOC) by GC/flame ionization detector (FID) using EPA Compendium Method TO-12 . To verify the long-term stability of the sampling media, multiple samples were collected in parallel from a typical passively ventilated radioactive waste tank known to contain moderately high concentrations of both polar and nonpolar organic compounds. Analyses for organic analytes and TNMOC were conducted at increasing intervals over a 32-week period to determine whether any systematic degradation of sample integrity occurred. Analytes collected in the SUMMA polished canisters generally showed good stability over the full 32 weeks with recoveries at the 80% level or better for all compounds studied. The TST data showed some loss (50-80% recovery) for a few high-volatility compounds even in the refrigerated samples; losses for unrefrigerated samples were far more pronounced with recoveries as low as 20% observed in a few cases

  3. Sorption and release of organics by primary, anaerobic, and aerobic activated sludge mixed with raw municipal wastewater.

    Directory of Open Access Journals (Sweden)

    Oskar Modin

    Full Text Available New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC per g volatile suspend solids (VSS for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215-230 nm were also rapidly removed.

  4. Raman scattering studies of YBa2Cu3O7-x thin films grown by chemical vapor deposition and metal-organic deposition

    International Nuclear Information System (INIS)

    Lee, E.; Yoon, S.; Um, Y.M.; Jo, W.; Seo, C.W.; Cheong, H.; Kim, B.J.; Lee, H.G.; Hong, G.W.

    2007-01-01

    We present results of Raman scattering studies of superconducting YBa 2 Cu 3 O 7-x (YBCO) films grown by chemical vapor deposition and metal-organic deposition methods. It is shown by X-ray diffraction that all the as-grown YBCO films have a highly c-axis oriented and in-plane aligned texture. Raman scattering measurements were used to investigate optical phonon modes, oxygen contents, structural properties, and second-phases of the YBCO coated conductors. Raman spectra of YBCO films with lower-transport qualities exhibit additional phonon modes at ∼300 cm -1 , ∼600 cm -1 , and ∼630 cm -1 , which are related to second-phases such as Ba 2 Cu 3 O 5.9 and BaCuO 2 . Our results strongly suggest that Raman scattering be useful for optimizing YBCO film growth conditions

  5. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Dutta, P.; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V.; Zheng, N.; Ahrenkiel, P.; Martinez, J.

    2014-01-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10 7  cm −2 . Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm 2 /V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  6. Fabrication of 100 A class, 1 m long coated conductor tapes by metal organic chemical vapor deposition and pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V.; Lee, H.G.; Li, Y.; Xiong, X.; Qiao, Y.; Reeves, J.; Xie, Y.; Knoll, A.; Lenseth, K

    2003-10-15

    SuperPower has been scaling up YBa{sub 2}Cu{sub 3}O{sub x}-based second-generation superconducting tapes by techniques such as pulsed laser deposition (PLD) using industrial laser and metal organic chemical vapor deposition (MOCVD). Both techniques offer advantage of high deposition rates, which is important for high throughput. Using highly-polished substrates produced in a reel-to-reel polishing facility and buffer layers deposited in a pilot ion beam assisted deposition facility, meter-long second-generation high temperature superconductor tapes have been produced. 100 A class, meter-long coated conductor tapes have been reproducibly demonstrated in this work by both MOCVD and PLD. The best results to date are 148 A over 1.06 m by MOCVD and 135 A over 1.1 m by PLD using industrial laser.

  7. The growth of mid-infrared emitting InAsSb/InAsP strained-layer superlattices using metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Biefeld, R.M.; Allerman, A.A.; Kurtz, S.R.; Burkhart, J.H.

    1997-01-01

    We describe the metal-organic chemical vapor deposition os InAsSb/InAsP strained-layer superlattice (SLS) active regions for use in mid-infrared emitters. These SLSs were grown at 500 degrees C, and 200 torr in a horizontal quartz reactor using trimethylindium, triethylantimony, AsH 3 , and PH 3 . By changing the layer thickness and composition we have prepared structures with low temperature (≤20K) photoluminescence wavelengths ranging from 3.2 to 5.0 μm. Excellent performance was observed for an SLS light emitting diode (LED) and both optically pumped and electrically injected SLS layers. An InAsSb/InAsP SLS injection laser emitted at 3.3 μm at 80 K with peak power of 100 mW

  8. Characterization of Pb(Zr, Ti)O sub 3 thin films prepared by metal-organic chemical-vapor deposition using a solid delivery system

    CERN Document Server

    Shin, J C; Hwang, C S; Kim, H J; Lee, J M

    1999-01-01

    Pb(Zr, Ti)O sub 3 (PZT) thin films were deposited on Pt/SiO sub 2 /Si substrates by metal-organic chemical-vapor deposition technique using a solid delivery system to improve the reproducibility of the deposition. The self-regulation mechanism, controlling the Pb-content of the film, was observed to work above a substrate temperature of 620 .deg. C. Even with the self-regulation mechanism, PZT films having low leakage current were obtained only when the molar mixing ratio of the input precursors was 1

  9. Characterization of N-polar AlN in GaN/AlN/(Al,Ga)N heterostructures grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Li, Haoran; Mazumder, Baishakhi; Bonef, Bastien; Keller, Stacia; Wienecke, Steven; Speck, James S.; Denbaars, Steven P.; Mishra, Umesh K.

    2017-11-01

    In GaN/(Al,Ga)N high-electron-mobility transistors (HEMT), AlN interlayer between GaN channel and AlGaN barrier suppresses alloy scattering and significantly improves the electron mobility of the two-dimensional electron gas. While high concentrations of gallium were previously observed in Al-polar AlN interlayers grown by metal-organic chemical vapor deposition, the N-polar AlN (Al x Ga1-x N) films examined by atom probe tomography in this study exhibited aluminum compositions (x) equal to or higher than 95% over a wide range of growth conditions. The also investigated AlN interlayer in a N-polar GaN/AlN/AlGaN/ S.I. GaN HEMT structure possessed a similarly high x content.

  10. GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Lee, SeungGeun; Forman, Charles A.; Lee, Changmin; Kearns, Jared; Young, Erin C.; Leonard, John T.; Cohen, Daniel A.; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.

    2018-06-01

    We report the first demonstration of III–nitride vertical-cavity surface-emitting lasers (VCSELs) with tunnel junction (TJ) intracavity contacts grown completely by metal–organic chemical vapor deposition (MOCVD). For the TJs, n++-GaN was grown on in-situ activated p++-GaN after buffered HF surface treatment. The electrical properties and epitaxial morphologies of the TJs were first investigated on TJ LED test samples. A VCSEL with a TJ intracavity contact showed a lasing wavelength of 408 nm, a threshold current of ∼15 mA (10 kA/cm2), a threshold voltage of 7.8 V, a maximum output power of 319 µW, and a differential efficiency of 0.28%.

  11. Influence of the interface on growth rates in AlN/GaN short period superlattices via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Korakakis, D.

    2011-11-01

    AlN/GaN short period superlattices are well suited for a number of applications including, but not limited to, digital alloys, intersubband devices, and emitters. In this work, AlN/GaN superlattices with periodicities ranging from 10 to 20 Å have been grown via metal organic vapor phase epitaxy in order to investigate the influence of the interface on the binary alloy growth rates. The GaN growth rate at the interface was observed to decrease with increasing GaN thickness while the AlN growth rate remained constant. This has been attributed to a decrease in the decomposition rate of GaN at the hetero-interface as seen in other III-V hetero-structures.

  12. Surfactant effects of indium on cracking in AlN/GaN distributed Bragg reflectors grown via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Miller, C. M.; Korakakis, D.

    2011-01-01

    Aluminum Nitride (AlN) and Gallium Nitride (GaN) superlattice structures are often characterized by a network of cracks resulting from the large lattice mismatch and difference in thermal expansion coefficients, especially as the thickness of the layers increases. This work investigates the influence of indium as a surfactant on strain and cracking in AlN/GaN DBRs grown via Metal Organic Vapor Phase Epitaxy (MOVPE). DBRs with peak reflectivities ranging from 465 nm to 540 nm were grown and indium was introduced during the growth of the AlN layer. Image processing techniques were used to quantify the crack length per square millimeter and it was observed that indium has a significant effect on the crack formation and reduced the total crack length in these structures by a factor of two.

  13. Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition-grown InN thin film

    International Nuclear Information System (INIS)

    Alkis, Sabri; Alevli, Mustafa; Burzhuev, Salamat; Vural, Hüseyin Avni; Okyay, Ali Kemal; Ortaç, Bülend

    2012-01-01

    We report the synthesis of colloidal InN nanocrystals (InN-NCs) in organic solution through nanosecond pulsed laser ablation of high pressure chemical vapor deposition-grown InN thin film on GaN/sapphire template substrate. The size, the structural, the optical, and the chemical characteristics of InN-NCs demonstrate that the colloidal InN crystalline nanostructures in ethanol are synthesized with spherical shape within 5.9–25.3, 5.45–34.8, 3.24–36 nm particle-size distributions, increasing the pulse energy value. The colloidal InN-NCs solutions present strong absorption edge tailoring from NIR region to UV region.

  14. Multivariate Metal-Organic Frameworks for Dialing-in the Binding and Programming the Release of Drug Molecules.

    Science.gov (United States)

    Dong, Zhiyue; Sun, Yangzesheng; Chu, Jun; Zhang, Xianzheng; Deng, Hexiang

    2017-10-11

    We report the control of guest release profiles by dialing-in desirable interactions between guest molecules and pores in metal-organic frameworks (MOFs). The interactions can be derived by the rate constants that were quantitatively correlated with the type of functional group and its proportion in the porous structure; thus the release of guest molecules can be predicted and programmed. Specifically, three probe molecules (ibuprofen, rhodamine B, and doxorubicin) were studied in a series of robust and mesoporous MOFs with multiple functional groups [MIL-101(Fe)-(NH 2 ) x , MIL-101(Fe)-(C 4 H 4 ) x , and MIL-101(Fe)-(C 4 H 4 ) x (NH 2 ) 1-x ]. The release rate can be adjusted by 32-fold [rhodamine from MIL-101(Fe)-(NH 2 ) x ], and the time of release peak can be shifted by up to 12 days over a 40-day release period [doxorubicin from MIL-101(Fe)-(C 4 H 4 ) x (NH 2 ) 1-x ], which was not obtained in the physical mixture of the single component MOF counterparts nor in other porous materials. The corelease of two pro-drug molecules (ibuprofen and doxorubicin) was also achieved.

  15. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant.

    Science.gov (United States)

    Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David

    2012-01-10

    The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats

  16. Influence of litter diversity on dissolved organic matter release and soil carbon formation in a mixed beech forest.

    Science.gov (United States)

    Scheibe, Andrea; Gleixner, Gerd

    2014-01-01

    We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow.

  17. Deposition of D{sub 2}O from air to plant and soil during an experiment of D{sub 2}O vapor release into a vinyl house

    Energy Technology Data Exchange (ETDEWEB)

    Atarashi, M.; Amano, H. [Japan Atomic Energy Res. Inst., Naka, Ibaraki (Japan). Dept. of Environ. Safety Res.; Ichimasa, M.; Ichimasa, Y. [Faculty of Science, Ibaraki University, Mito-shi, Ibaraki 310 (Japan)

    1998-09-01

    Deuterium, a stable isotope of tritium, was released into a vinyl house in autumn 1995 and summer 1996 to study the transfer of tritium from air to plant and soil. Temporal variation of D{sub 2}O concentrations in plant and soil water, and plant physiological parameters such as transpiration rate and leaf temperature, were measured during these experiments. D{sub 2}O concentrations of plants were fitted to a first order kinetic model: C{sub p}=C{sub max} (1-e{sup -kt}), where C{sub p} is the D{sub 2}O concentrations in plants at time t, C{sub max} is the steady-state concentration in plants and k is the rate constant. The rate constant was also calculated using measured plant physiological parameters for comparison. The D{sub 2}O uptake by paddy rice was most rapid and the value of k was 3.63{+-}0.31 h{sup -1} followed by radish, cherry tomato, komatsuna and orange. The day/night concentration ratio for cherry tomato and orange was higher than that for radish and komatsuna. (orig.) 8 refs.

  18. Deposition of D2O from air to plant and soil during an experiment of D2O vapor release into a vinyl house

    International Nuclear Information System (INIS)

    Atarashi, M.; Amano, H.

    1998-01-01

    Deuterium, a stable isotope of tritium, was released into a vinyl house in autumn 1995 and summer 1996 to study the transfer of tritium from air to plant and soil. Temporal variation of D 2 O concentrations in plant and soil water, and plant physiological parameters such as transpiration rate and leaf temperature, were measured during these experiments. D 2 O concentrations of plants were fitted to a first order kinetic model: C p =C max (1-e -kt ), where C p is the D 2 O concentrations in plants at time t, C max is the steady-state concentration in plants and k is the rate constant. The rate constant was also calculated using measured plant physiological parameters for comparison. The D 2 O uptake by paddy rice was most rapid and the value of k was 3.63±0.31 h -1 followed by radish, cherry tomato, komatsuna and orange. The day/night concentration ratio for cherry tomato and orange was higher than that for radish and komatsuna. (orig.)

  19. Parameters study on the growth of GaAs nanowires on indium tin oxide by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan; Tang, Xiaohong, E-mail: exhtang@ntu.edu.sg, E-mail: wangk@sustc.edu.cn; Li, Xianqiang [OPTIMUS, Photonics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Wang, Kai, E-mail: exhtang@ntu.edu.sg, E-mail: wangk@sustc.edu.cn [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, 1088 Xueyuan Avenue, Shenzhen 518055 (China); Olivier, Aurelien [CINTRA UMI 3288, School of Electrical and Electronic Engineering, Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, 637553 Singapore (Singapore)

    2016-03-07

    After successful demonstration of GaAs nanowire (NW) epitaxial growth on indium tin oxide (ITO) by metal organic chemical vapor deposition, we systematically investigate the effect of growth parameters' effect on the GaAs NW, including temperature, precursor molar flow rates, growth time, and Au catalyst size. 40 nm induced GaAs NWs are observed with zinc-blende structure. Based on vapor-liquid-solid mechanism, a kinetic model is used to deepen our understanding of the incorporation of growth species and the role of various growth parameters in tuning the GaAs NW growth rate. Thermally activated behavior has been investigated by variation of growth temperature. Activation energies of 40 nm Au catalyst induced NWs are calculated at different trimethylgallium (TMGa) molar flow rates about 65 kJ/mol. The GaAs NWs growth rates increase with TMGa molar flow rates whereas the growth rates are almost independent of growth time. Due to Gibbs-Thomson effect, the GaAs NW growth rates increase with Au nanoparticle size at different temperatures. Critical radius is calculated as 2.14 nm at the growth condition of 430 °C and 1.36 μmol/s TMGa flow rate. It is also proved experimentally that Au nanoparticle below the critical radius such as 2 nm cannot initiate the growth of NWs on ITO. This theoretical and experimental growth parameters investigation enables great controllability over GaAs NWs grown on transparent conductive substrate where the methodology can be expanded to other III–V material NWs and is critical for potential hybrid solar cell application.

  20. 3D bioprinting matrices with controlled pore structure and release function guide in vitro self-organization of sweat gland.

    Science.gov (United States)

    Liu, Nanbo; Huang, Sha; Yao, Bin; Xie, Jiangfan; Wu, Xu; Fu, Xiaobing

    2016-10-03

    3D bioprinting matrices are novel platforms for tissue regeneration. Tissue self-organization is a critical process during regeneration that implies the features of organogenesis. However, it is not clear from the current evidences whether 3D printed construct plays a role in guiding tissue self-organization in vitro. Based on our previous study, we bioprinted a 3D matrix as the restrictive niche for direct sweat gland differentiation of epidermal progenitors by different pore structure (300-μm or 400-μm nozzle diameters printed) and reported a long-term gradual transition of differentiated cells into glandular morphogenesis occurs within the 3D construct in vitro. At the initial 14-day culture, an accelerated cell differentiation was achieved with inductive cues released along with gelatin reduction. After protein release completed, the 3D construct guide the self-organized formation of sweat gland tissues, which is similar to that of the natural developmental process. However, glandular morphogenesis was only observed in 300-μm-printed constructs. In the absence of 3D architectural support, glandular morphogenesis was not occurred. This striking finding made us to identify a previously unknown role of the 3D-printed structure in glandular tissue regeneration, and this self-organizing strategy can be applied to forming other tissues in vitro.

  1. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  2. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  3. Effect of the substrate on the properties of ZnO-MgO thin films grown by atmospheric pressure metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atohuer@hotmail.com [Instituto Politecnico Nacional, Grupo de Ingenieria en Procesamiento de Materiales CICATA-IPN, Unidad Altamira, km 14.5, Carretera Tampico-Puerto Industrial Altamira. C. P. 89600, Altamira, Tamps (Mexico); Dominguez-Crespo, M.A. [Instituto Politecnico Nacional, Grupo de Ingenieria en Procesamiento de Materiales CICATA-IPN, Unidad Altamira, km 14.5, Carretera Tampico-Puerto Industrial Altamira. C. P. 89600, Altamira, Tamps (Mexico); Brachetti-Sibaja, S.B. [Alumna del postgrado en Tecnologia Avanzada del CICATA-IPN, Unidad Altamira IPN, km 14.5, Carretera Tampico-Puerto Industrial Altamira. C. P. 89600, Altamira, Tamps (Mexico); Arenas-Alatorre, J. [Instituto de Fisica, UNAM, Apartado Postal 20-364, 01000, D.F. (Mexico); Rodriguez-Pulido, A. [Unidad Profesional Adolfo Lopez Mateos, Luis Enrique Erro s/n, 07738, D. F. (Mexico)

    2011-07-01

    The ZnO-MgO alloys possess attractive properties for possible applications in optoelectronic and display devices; however, the optical properties are strongly dependent on the deposition parameters. In this work, the effect of the glassy and metallic substrates on the structural, morphological and optical properties of ZnO-MgO thin films using atmospheric pressure metal-organic chemical vapor deposition was investigated at relatively low deposition temperature, 500 deg. C. Magnesium and zinc acetylacetonates were used as the metal-organic source. X-ray diffraction experiments provided evidence that the kind of substrates cause a deviation of c-axis lattice constant due to the constitution of a oxide mixture (ZnO and MgO) in combination with different intermetallic compounds(Mg{sub 2}Zn{sub 11} and Mg{sub 4}Zn{sub 7}) in the growth films. The substitutional and interstitial sites of Mg{sup 2+} instead of Zn{sup 2+} ions in the lattice are the most probable mechanism to form intermetallic compounds. The optical parameters as well as thickness of the films were calculated by Spectroscopic Ellipsometry using the classical dispersion model based on the sum of the single and double Lorentz and Drude oscillators in combination with Kato-Adachi equations, as well as X-ray reflectivity.

  4. Prevention of organ rejection in renal and liver transplantation with extended release tacrolimus

    Directory of Open Access Journals (Sweden)

    Reschen ME

    2014-09-01

    Full Text Available Michael E Reschen, Christopher A O’Callaghan Henry Wellcome Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom Abstract: Tacrolimus is the key immunosuppressant used to prevent allograft rejection in kidney and liver transplant recipients. Despite the efficacy of tacrolimus and adjunctive immunosuppressants, a substantial number of patients experience episodes of acute rejection and late graft loss. Nonadherence is an etiological factor in both acute rejection and graft loss. In 2007, a prolonged release version of tacrolimus became available that allows once daily administration, thus halving the pill burden compared to the standard twice-daily tacrolimus. An increasing number of studies in de novo transplantation and in treatment conversion have evaluated the pharmacokinetic profile, efficacy, and safety of prolonged-release tacrolimus. We have reviewed the literature on the use of prolonged-release tacrolimus and hope that this will be of value in the design of protocols for transplant immunosuppression.Keywords: immunosuppression, kidney, hepatic, allograft, adherence

  5. Predicting Mineral N Release during Decomposition of Organic Wastes in Soil by Use of the SOILNNO Model

    International Nuclear Information System (INIS)

    Sogn, T.A.; Haugen, L.E.

    2011-01-01

    In order to predict the mineral N release associated with the use of organic waste as fertilizer in agricultural plant production, the adequacy of the SOILN N O model has been evaluated. The original thought was that the model calibrated to data from simple incubation experiments could predict the mineral N release from organic waste products used as N fertilizer on agricultural land. First, the model was calibrated to mineral N data achieved in a laboratory experiment where different organic wastes were added to soil and incubated at 15 degree C for 8 weeks. Secondly, the calibrated model was tested by use of NO 3 -leaching data from soil columns with barley growing in 4 different soil types, added organic waste and exposed to natural climatic conditions during three growing seasons. The SOILN N O model reproduced relatively well the NO 3 -leaching from some of the soils included in the outdoor experiment, but failed to reproduce others. Use of the calibrated model often induced underestimation of the observed NO 3 -leaching. To achieve a satisfactory simulation of the NO 3 -leaching, recalibration of the model had to be carried out. Thus, SOILN N O calibrated to data from simple incubation experiments in the laboratory could not directly be used as a tool to predict the N-leaching following organic waste application in more natural agronomic plant production systems. The results emphasised the need for site- and system-specific data for model calibration before using a model for predictive purposes related to fertilizer N value of organic wastes applied to agricultural land.

  6. The release of organic compounds during biomass drying depends upon the feedstock and/or altering drying heating medium

    International Nuclear Information System (INIS)

    Rupar, K.; Sanati, M.

    2003-01-01

    The release of organic compounds during the drying of biomass is a potential environmental problem, it may contribute to air pollution or eutrophication. In many countries there are legal restrictions on the amounts of terpenes that may be released into the atmosphere. When considering bioenergy in future energy systems, it is important that information on the environmental effects is available. The emissions of organic compounds from different green and dried biofuels that have been dried in hot air and steam medium, were analyzed by using different techniques. Gas chromatography and gas chromatography mass spectrometry have been used to identify the organic matter. The terpene content was significantly affected by the following factors: changing of the drying medium and the way the same biomass was handled from different localities in Sweden. Comparison between spectra from dried and green fuels reveal that the main compounds emitted during drying are monoterpene and sesquiterpene hydrocarbons, while the emissions of diterpene hydrocarbons seem to be negligible. The relative proportionality between emitted monoterpene, diterpene and sesquiterpene change when the drying medium shifts from steam to hot air. The obtained result of this work implies a parameter optimization study of the dryer with regard to environmental impact. With assistance of this result it might be foreseen that choice of special drying medium, diversity of biomass and low temperature reduce the emissions. A thermo-gravimetric analyzer was used for investigating the biomass drying rate. (author)

  7. Effects of lysine clonixinate and ketorolac tromethamine on prostanoid release from various rat organs incubated ex vivo.

    Science.gov (United States)

    Pallapies, D; Salinger, A; Meyer zum Gottesberge, A; Atkins, D J; Rohleder, G; Nagyiványi, P; Peskar, B A

    1995-01-01

    The release of prostanoids from rat brain, gastric mucosa, lungs and kidneys incubated ex vivo has been investigated for up to 5 h after oral administration of 10 mg/kg lysine clonixinate or 1 mg/kg ketorolac tromethamine. Additionally, 60 min after drug administration, a time point of near-maximal inhibition of prostanoid release, the effects of 2.5, 10 and 30 mg/kg lysine clonixinate and of 0.0225, 0.15 and 1 mg/kg ketorolac tromethamine were compared. In all organs investigated both drugs inhibited fatty acid cyclooxygenase (COX) in a dose-dependent manner, but ketorolac tromethamine was more potent and had a longer-lasting effect than lysine clonixinate. While the ID50 values for lysine clonixinate were in the same order of magnitude for all 4 organs investigated, ketorolac tromethamine exhibited some organ selectivity with a particularly high activity in the kidneys. This effect might be related to the renal toxicity of ketorolac tromethamine. On the other hand, the difference in potency was smallest in brain suggesting that inhibition of central prostanoid biosynthesis could contribute to the rapid and effective inhibition of pain by both drugs. IC50 values for inhibition of purified COX-1 and COX-2 in vitro were slightly lower for lysine clonixinate (2.4 and 24.6 micrograms/ml, respectively) than for ketorolac tromethamine (3.7 and 25.6 micrograms/ml, respectively).

  8. Influence of ultrasonic energy on dispersion of aggregates and released amounts of organic matter and polyvalent cations

    Science.gov (United States)

    Kaiser, M.; Kleber, M.; Berhe, A. A.

    2010-12-01

    Aggregates play important roles in soil carbon storage and stabilization. Identification of scale-dependent mechanisms of soil aggregate formation and stability is necessary to predict and eventually manage the flow of carbon through terrestrial ecosystems. Application of ultrasonic energy is a common tool to disperse soil aggregates. In this study, we used ultra sonic energy (100 to 2000 J cm-3) to determine the amount of polyvalent cations and organic matter involved in aggregation processes in three arable and three forest soils that varied in soil mineral composition. To determine the amount of organic matter and cations released after application of different amount of ultrasonic energy, we removed the coarse fraction (>250 µm). The remaining residue (solid residue freeze dried before we analyzed the amounts of water-extracted organic carbon (OC), Fe, Al, Ca, Mn, and Mg in the filtrates. The extracted OM and solid residues were further characterized by Fourier Transformed Infra Red spectroscopy and Scanning Electron Microscopy. Our results show a linear increase in amount of dissolved OC with increasing amounts of ultra sonic energy up to 1500 J cm-3 indicating maximum dispersion of soil aggregates at this energy level independent from soil type or land use. In contrast to Mn, and Mg, the amounts of dissolved Ca, Fe, and Al increase with increasing ultra sonic energy up to 1500 J cm-3. At 1500 J cm-3, the absolute amounts of OC, Ca, Fe, and Al released were specific for each soil type, likely indicating differences in type of OM-mineral interactions involved in micro-scaled aggregation processes. The amounts of dissolved Fe, and Al released after an application of 1500 J cm-3 are not related to oxalate- and dithionite- extractable, or total Al content indicating less disintegration of pedogenic oxides or clay minerals due to high levels of ultrasonic energy.

  9. Symbiosis of zeolite-like metal-organic frameworks (rho-ZMOF) and hydrogels: Composites for controlled drug release

    KAUST Repository

    Ananthoji, Ramakanth

    2011-01-01

    The design and synthesis of new finely tunable porous materials has spurred interest in developing novel uses in a variety of systems. Zeolites, inorganic materials with high thermal and mechanical stability, in particular, have been widely examined for use in applications such as catalysis, ion exchange and separation. A relatively new class of inorganic-organic hybrid materials known as metal-organic frameworks (MOFs) have recently surfaced, and many have exhibited their efficiency in potential applications such as ion exchange and drug delivery. A more recent development is the design and synthesis of a subclass of MOFs based on zeolite topologies (i.e. ZMOFs), which often exhibit traits of both zeolites and MOFs. Bio-compatible hydrogels already play an important role in drug delivery systems, but are often limited by stability issues. Thus, the addition of ZMOFs to hydrogel formulations is expected to enhance the hydrogel mechanical properties, and the ZMOF-hydrogel composites should present improved, symbiotic drug storage and release for delivery applications. Herein we present the novel composites of a hydrogel with a zeolite-like metal-organic framework, rho-ZMOF, using 2-hydroxyethyl methacrylate (HEMA), 2,3-dihydroxypropyl methacrylate (DHPMA), N-vinyl-2-pyrolidinone (VP) and ethylene glycol dimethacrylate (EGDMA), and the corresponding drug release. An ultraviolet (UV) polymerization method is employed to synthesize the hydrogels, VP 0, VP 15, VP 30, VP 45 and the ZMOF-VP 30 composite, by varying the VP content (mol%). The rho-ZMOF, VP 30, and ZMOF-VP 30 composite are all tested for the controlled release of procainamide (protonated, PH), an anti-arrhythmic drug, in phosphate buffer solution (PBS) using UV spectroscopy. © 2011 The Royal Society of Chemistry.

  10. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US

    Directory of Open Access Journals (Sweden)

    C. Knote

    2015-01-01

    Full Text Available The effect of dry and wet deposition of semi-volatile organic compounds (SVOCs in the gas phase on the concentrations of secondary organic aerosol (SOA is reassessed using recently derived water solubility information. The water solubility of SVOCs was implemented as a function of their volatility distribution within the WRF-Chem regional chemistry transport model, and simulations were carried out over the continental United States for the year 2010. Results show that including dry and wet removal of gas-phase SVOCs reduces annual average surface concentrations of anthropogenic and biogenic SOA by 48 and 63% respectively over the continental US. Dry deposition of gas-phase SVOCs is found to be more effective than wet deposition in reducing SOA concentrations (−40 vs. −8% for anthropogenics, and −52 vs. −11% for biogenics. Reductions for biogenic SOA are found to be higher due to the higher water solubility of biogenic SVOCs. The majority of the total mass of SVOC + SOA is actually deposited via the gas phase (61% for anthropogenics and 76% for biogenics. Results are sensitive to assumptions made in the dry deposition scheme, but gas-phase deposition of SVOCs remains crucial even under conservative estimates. Considering reactivity of gas-phase SVOCs in the dry deposition scheme was found to be negligible. Further sensitivity studies where we reduce the volatility of organic matter show that consideration of gas-phase SVOC removal still reduces average SOA concentrations by 31% on average. We consider this a lower bound for the effect of gas-phase SVOC removal on SOA concentrations. A saturation effect is observed for Henry's law constants above 108 M atm−1, suggesting an upper bound of reductions in surface level SOA concentrations by 60% through removal of gas-phase SVOCs. Other models that do not consider dry and wet removal of gas-phase SVOCs would hence overestimate SOA concentrations by roughly 50%. Assumptions about the water

  11. Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy

    International Nuclear Information System (INIS)

    Ho, Tony; Mao, Samuel S.; Greif, Ralph

    2012-01-01

    The Organic Flash Cycle (OFC) is proposed as a vapor power cycle that could potentially improve the efficiency with which high and intermediate temperature finite thermal sources are utilized. The OFC's aim is to improve temperature matching and reduce exergy losses during heat addition. A theoretical investigation is conducted using high accuracy equations of state such as BACKONE, Span–Wagner, and REFPROP in a detailed thermodynamic and exergetic analysis. The study examines 10 different aromatic hydrocarbons and siloxanes as potential working fluids. Comparisons are drawn between the OFC and an optimized basic Organic Rankine Cycle (ORC), a zeotropic Rankine cycle using a binary ammonia-water mixture, and a transcritical CO 2 cycle. Results showed aromatic hydrocarbons to be the better suited working fluid for the ORC and OFC due to higher power output and less complex turbine designs. Results also showed that the single flash OFC achieves comparable utilization efficiencies to the optimized basic ORC. Although the OFC improved heat addition exergetic efficiency, this advantage was negated by irreversibilities introduced during flash evaporation. A number of potentially significant improvements to the OFC are possible though which includes using a secondary flash stage or replacing the throttling valve with a two-phase expander. -- Highlights: ► The Organic Flash Cycle (OFC) is proposed to improve temperature matching. ► Ten aromatic hydrocarbon and siloxane working fluids are considered. ► Accurate equations of state explicit in Helmholtz energy are used in the analysis. ► The OFC is compared to basic ORCs, zeotropic, and transcritical cycles. ► The OFC achieves comparable power output to the optimized basic ORC.

  12. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter.

    Science.gov (United States)

    Huang, Wenjuan; Hall, Steven J

    2017-11-24

    Moisture response functions for soil microbial carbon (C) mineralization remain a critical uncertainty for predicting ecosystem-climate feedbacks. Theory and models posit that C mineralization declines under elevated moisture and associated anaerobic conditions, leading to soil C accumulation. Yet, iron (Fe) reduction potentially releases protected C, providing an under-appreciated mechanism for C destabilization under elevated moisture. Here we incubate Mollisols from ecosystems under C 3 /C 4 plant rotations at moisture levels at and above field capacity over 5 months. Increased moisture and anaerobiosis initially suppress soil C mineralization, consistent with theory. However, after 25 days, elevated moisture stimulates cumulative gaseous C-loss as CO 2 and CH 4 to >150% of the control. Stable C isotopes show that mineralization of older C 3 -derived C released following Fe reduction dominates C losses. Counter to theory, elevated moisture may significantly accelerate C losses from mineral soils over weeks to months-a critical mechanistic deficiency of current Earth system models.

  13. Mass release of Trichogramma evanescens and T. cacoeciae can reduce damage by the apple codling moth Cydia pomonella in organic orchards under pheromone disruption

    DEFF Research Database (Denmark)

    Sigsgaard, Lene; Herz, Annette; Korsgaard, Maren

    2017-01-01

    of the two species were evaluated for mass-release to control C. pomonella in two commercial organic apple orchards, one in 2012 and one in 2013, using a complete randomized block design. Pheromone disruption was used in both orchards, making the study one of the first to evaluate Trichogramma release under...

  14. Biochemical stability of organic matter in soils amended with organic slow N-release fertilizer derived from charred plant residues and ammonoxidized lignin

    Science.gov (United States)

    Knicker, Heike; de la Rosa, José Maria; López Martín, María; Clemente Barragan, Reyes; Liebner, Falk

    2013-04-01

    As an important plant nutrient, N that has been removed from the soil by plant growth is replaced mainly by the use of synthetic fertilizers. Although this practice has dramatically increased food production, the unintended costs to the environment and human health due to surplus and inefficient application have also been substantial. Major losses of N to the environment can be minimized if "sustainable" agricultural practices are combined with reasonable fertilization. The latter can be achieved by applying slow N-release fertilizers. Here, the N is incorporated into an organic matrix, which after its amendment to soils, slowly decompose, allowing the liberation of the nutrient. Deriving from organic waste, such an amendment helps to efficiently recycle resources and increases the C sequestration potential of soils. However, in order to turn this approach into a successful strategy, the material has to be bioavailable but still sufficiently recalcitrant to ensure slow and controlled N-release. In the present study, we tested potential slow N-release fertilizers recycled from organic waste for their biochemical stability in soils. They comprised N-rich charred grass residues and N-lignin derived from waste of the pulp and paper industry and enriched in N by ammonoxidation. The substrates were mixed with soil of an Histic Humaquept and subsequently subjected to microbial degradation at 28°C in a Respicond IV Apparatus for 10 weeks. Additionally, soil material without organic amendment and soils mixed with lignin or charcoal both with and without KNO3 were included into the experiment. During the degradation experiment the CO2 production was determined on an hourly base. The degradation rate constants and the mean residence times were calculated using a double exponential decay model (pools with fast and slow turnover). Alterations of the chemical composition of the organic matter during degradation were studied by solid-state 13C NMR spectroscopy. First results

  15. Reversible Capture and Release of Cl2 and Br2 with a Redox-Active Metal-Organic Framework.

    Science.gov (United States)

    Tulchinsky, Yuri; Hendon, Christopher H; Lomachenko, Kirill A; Borfecchia, Elisa; Melot, Brent C; Hudson, Matthew R; Tarver, Jacob D; Korzyński, Maciej D; Stubbs, Amanda W; Kagan, Jacob J; Lamberti, Carlo; Brown, Craig M; Dincă, Mircea

    2017-04-26

    Extreme toxicity, corrosiveness, and volatility pose serious challenges for the safe storage and transportation of elemental chlorine and bromine, which play critical roles in the chemical industry. Solid materials capable of forming stable nonvolatile compounds upon reaction with elemental halogens may partially mitigate these challenges by allowing safe halogen release on demand. Here we demonstrate that elemental halogens quantitatively oxidize coordinatively unsaturated Co(II) ions in a robust azolate metal-organic framework (MOF) to produce stable and safe-to-handle Co(III) materials featuring terminal Co(III)-halogen bonds. Thermal treatment of the oxidized MOF causes homolytic cleavage of the Co(III)-halogen bonds, reduction to Co(II), and concomitant release of elemental halogens. The reversible chemical storage and thermal release of elemental halogens occur with no significant losses of structural integrity, as the parent cobaltous MOF retains its crystallinity and porosity even after three oxidation/reduction cycles. These results highlight a material operating via redox mechanism that may find utility in the storage and capture of other noxious and corrosive gases.

  16. Formation and characterization of the MgO protecting layer deposited by plasma-enhanced metal-organic chemical-vapor deposition

    CERN Document Server

    Kang, M S; Byun, J C; Kim, D S; Choi, C K; Lee, J Y; Kim, K H

    1999-01-01

    MgO films were prepared on Si(100) and soda-lime glass substrates by using plasma-enhanced metal-organic chemical-vapor deposition. Various ratios of the O sub 2 /CH sub 3 MgO sup t Bu gas mixture and various gas flow rates were tested for the film fabrications. Highly (100)-oriented MgO films with good crystallinity were obtained with a 10 sccm CH sub 3 MgO sup t Bu flow without an O sub 2 gas flow. About 5 % carbon was contained in all the MgO films. The refractive index and the secondary electron emission coefficient for the best quality film were 1.43 and 0.45, respectively. The sputtering rate was about 0.2 nm/min for 10 sup 1 sup 1 cm sup - sup 3 Ar sup + ion density. Annealing at 500 .deg. C in an Ar ambient promoted the grain size without inducing a phase transition.

  17. Doping characteristics of Si-doped n-GaN Epilayers grown by low-pressure metal-organic chemical-vapor deposition

    CERN Document Server

    Noh, S K; Park, S E; Lee, I H; Choi, I H; Son, S J; Lim, K Y; Lee, H J

    1998-01-01

    We studied doping behaviors through analysis of the electronic properties of a series of undoped and Si-doped GaN epilayers grown on (0001) sapphire substrates by the low-pressure metal-organic chemical-vapor deposition (LP-MOCVD) technique. The doping efficiency was in the range of 0.4 - 0.8, and an empirical relation expressed as eta = 0.45 log[Si] - 8.1 was obtained. The temperature dependence of carrier concentration showed that the donor activation energy monotonically decreased from 17.6 meV to almost zero as the doping level increased. We suggest that the reduction in the activation energy is related not to autodoped defect centers but to doped Si donors and that the behavior originates from the formation of an impurity band. On the basis of an abrupt change in the compensation ratio from 0.9 to 0.5 by Si-doping, an exceptional difference in the Hall mobility between the undoped and the Si-doped films is explained by a mixed conduction mechanism of electrons and holes.

  18. Enhanced and uniform in-field performance in long (Gd, Y)-Ba-Cu-O tapes with zirconium doping fabricated by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Selvamanickam, V; Guevara, A; Zhang, Y; Kesgin, I; Xie, Y; Carota, G; Chen, Y; Dackow, J; Zhang, Y; Zuev, Y; Cantoni, C; Goyal, A; Coulter, J; Civale, L

    2010-01-01

    The influence of Zr doping in (Gd, Y)-Ba-Cu-O ((Gd, Y)BCO) tapes made by metal-organic chemical vapor deposition has been studied with a specific objective of uniform and reproducible enhancement in in-field critical current (I c ) over long lengths. 50 m long tapes with 7.5 and 10 at.% Zr doping in 1 μm thick (Gd, Y)BCO films have been found to exhibit a sharply enhanced peak in I c in the orientation of field parallel to the c-axis and retain 28% of their self-field I c value at 77 K and 1 T. BaZrO 3 (BZO) nanocolumn density in the cross-sectional microstructure was found to increase with increasing Zr addition. The end segments of the 50 m long tapes were found to display nearly identical angular dependence of critical current at 77 K and 1 T, indicative of the uniformity in in-field performance over this length. A 610 m long tape was fabricated with 10% Zr doping and a 130 m segment showed a 3.2% uniformity in critical current measured every meter in the orientation of B || c-axis. A retention factor of 36% of the zero-field I c value measured at 0.52 T over the 130 m is consistent with that obtained in short samples.

  19. Enhanced and uniform in-field performance in long (Gd, Y)-Ba-Cu-O tapes with zirconium doping fabricated by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V; Guevara, A; Zhang, Y; Kesgin, I [Texas Center for Superconductivity and Department of Mechanical Engineering, University of Houston, Houston, TX 77059 (United States); Xie, Y; Carota, G; Chen, Y; Dackow, J [SuperPower Incorporated, 450 Duane Avenue Schenectady, NY 12304 (United States); Zhang, Y; Zuev, Y; Cantoni, C; Goyal, A [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Coulter, J; Civale, L [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-01-15

    The influence of Zr doping in (Gd, Y)-Ba-Cu-O ((Gd, Y)BCO) tapes made by metal-organic chemical vapor deposition has been studied with a specific objective of uniform and reproducible enhancement in in-field critical current (I{sub c}) over long lengths. 50 m long tapes with 7.5 and 10 at.% Zr doping in 1 {mu}m thick (Gd, Y)BCO films have been found to exhibit a sharply enhanced peak in I{sub c} in the orientation of field parallel to the c-axis and retain 28% of their self-field I{sub c} value at 77 K and 1 T. BaZrO{sub 3} (BZO) nanocolumn density in the cross-sectional microstructure was found to increase with increasing Zr addition. The end segments of the 50 m long tapes were found to display nearly identical angular dependence of critical current at 77 K and 1 T, indicative of the uniformity in in-field performance over this length. A 610 m long tape was fabricated with 10% Zr doping and a 130 m segment showed a 3.2% uniformity in critical current measured every meter in the orientation of B || c-axis. A retention factor of 36% of the zero-field I{sub c} value measured at 0.52 T over the 130 m is consistent with that obtained in short samples.

  20. Influence of Zr and Ce doping on electromagnetic properties of (Gd,Y)-Ba-Cu-O superconducting tapes fabricated by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Chen, Y.; Xie, J.; Zhang, Y.; Guevara, A.; Kesgin, I.; Majkic, G.; Martchevsky, M.

    2009-01-01

    (Gd,Y)Ba 2 Cu 3 O x tapes have been fabricated by metal organic chemical vapor deposition (MOCVD) with Zr-doping levels of 0-15 mol.% and Ce doping levels of 0-10 mol.% in 0.4 μm thick films. The critical current density (J c ) of Zr-doped samples at 77 K, 1 T applied in the orientation of H -parallel c is found to increase with Zr content and shows a maximum at 7.5% Zr doping. The 7.5% Zr-doped sample exhibits a critical current density (J c ) of 0.95 MA/cm 2 at H -parallel c which is more than 70% higher than the J c of the undoped sample. The peak in J c at H -parallel c is 83% of that at H -parallel a-b in the 7.5% Zr-doped sample which is more than twice as that in the undoped sample. Superconducting transition temperature (T c ) values as high as about 89 K have been achieved in samples even with 15% Zr and 10% Ce. Ce-doped samples with and without Ba compensation are found to exhibit substantially different J c values as well as angular dependence characteristics.

  1. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, P., E-mail: pdutta2@central.uh.edu; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Zheng, N.; Ahrenkiel, P. [Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701 (United States); Martinez, J. [Materials Evaluation Laboratory, NASA Johnson Space Center, Houston, Texas 77085 (United States)

    2014-09-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10{sup 7 }cm{sup −2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  2. Enhanced and Uniform in-Field Performance in Long (Gd,Y)-Ba-Cu-O Tapes with Zirconium Doping Fabricated by Metal Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Guevara, A. [University of Houston, Houston; Zhang, Y. [University of Houston, Houston; Kesign, I. [University of Houston, Houston; Xie, Y. Y. [SuperPower Incorporated, Schenectady, New York; Carota, G. [SuperPower Incorporated, Schenectady, New York; Chen, Y. [SuperPower Incorporated, Schenectady, New York; Dackow, J. [SuperPower Incorporated, Schenectady, New York; Zhang, Yifei [ORNL; Zuev, Yuri L [ORNL; Cantoni, Claudia [ORNL; Goyal, Amit [ORNL; Coulter, J. [Los Alamos National Laboratory (LANL); Civale, L. [Los Alamos National Laboratory (LANL)

    2010-01-01

    The influence of Zr doping in (Gd, Y)-Ba-Cu-O ((Gd, Y)BCO) tapes made by metal-organic chemical vapor deposition has been studied with a specific objective of uniform and reproducible enhancement in in-field critical current (I{sub c}) over long lengths. 50 m long tapes with 7.5 and 10 at.% Zr doping in 1 {mu}m thick (Gd, Y)BCO films have been found to exhibit a sharply enhanced peak in I{sub c} in the orientation of field parallel to the c-axis and retain 28% of their self-field I{sub c} value at 77 K and 1 T. BaZrO{sub 3} (BZO) nanocolumn density in the cross-sectional microstructure was found to increase with increasing Zr addition. The end segments of the 50 m long tapes were found to display nearly identical angular dependence of critical current at 77 K and 1 T, indicative of the uniformity in in-field performance over this length. A 610 m long tape was fabricated with 10% Zr doping and a 130 m segment showed a 3.2% uniformity in critical current measured every meter in the orientation of {beta} {parallel} c-axis. A retention factor of 36% of the zero-field I{sub c} value measured at 0.52 T over the 130 m is consistent with that obtained in short samples.

  3. Influence of Zr and Ce doping on electromagnetic properties of (Gd,Y)-Ba-Cu-O superconducting tapes fabricated by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V., E-mail: selva@uh.ed [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Rd., Houston, TX 77204-4006 (United States); Chen, Y.; Xie, J. [SuperPower Inc., 450 Duane Ave., Schenectady, NY 12304 (United States); Zhang, Y.; Guevara, A.; Kesgin, I.; Majkic, G. [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Rd., Houston, TX 77204-4006 (United States); Martchevsky, M. [SuperPower Inc., 450 Duane Ave., Schenectady, NY 12304 (United States)

    2009-12-01

    (Gd,Y)Ba{sub 2}Cu{sub 3}O{sub x} tapes have been fabricated by metal organic chemical vapor deposition (MOCVD) with Zr-doping levels of 0-15 mol.% and Ce doping levels of 0-10 mol.% in 0.4 mum thick films. The critical current density (J{sub c}) of Zr-doped samples at 77 K, 1 T applied in the orientation of H -parallel c is found to increase with Zr content and shows a maximum at 7.5% Zr doping. The 7.5% Zr-doped sample exhibits a critical current density (J{sub c}) of 0.95 MA/cm{sup 2} at H -parallel c which is more than 70% higher than the J{sub c} of the undoped sample. The peak in J{sub c} at H -parallel c is 83% of that at H -parallel a-b in the 7.5% Zr-doped sample which is more than twice as that in the undoped sample. Superconducting transition temperature (T{sub c}) values as high as about 89 K have been achieved in samples even with 15% Zr and 10% Ce. Ce-doped samples with and without Ba compensation are found to exhibit substantially different J{sub c} values as well as angular dependence characteristics.

  4. The Structural Evolution of (Gd, Y)Ba2Cu3Ox Tapes With Zr Addition Made by Metal Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lei, CH; Galstyan, E; Chen, YM; Shi, T; Liu, YH; Khatri, N; Liu, JF; Xiong, XM; Majkic, G; Selvamanickam, V

    2013-06-01

    Structural analysis of (Gd, Y) Ba2Cu3Ox tapes with Zr addition made by metal organic chemical vapor deposition has been conducted with transmission electron microscopy and X-ray diffraction. Zr content in the films was varied from 0 to 25% in the precursor. In all Zr-doped films, self-assembled nanocolumnar structures of BaZrO3 (BZO) were observed along the c-axis. The amount of BaZrO3 was found to increase steadily with Zr content. Additionally, planar BZO plates were found on the (001) plane of (Gd, Y) Ba2Cu3Ox film. The size and thickness of BZO plates were seen to increase with Zr doping level. Rare-earth copper oxide phases were observed to begin to emerge in the 20% Zr-doped film. Cross-sectional study of the interface between (Gd, Y)Ba2Cu3Ox and LaMnO3 cap layer revealed a thin discrete BZO layer on the LaMnO3 in the 20% Zr doped film.

  5. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae

    2015-07-01

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga0.97N0.9O0.09 is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga0.97N0.9O0.09 of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4M HCl, 100°C and pulp density of 100 kg/m(3,) respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. High-resistivity unintentionally carbon-doped GaN layers with nitrogen as nucleation layer carrier gas grown by metal-organic chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Fu Chen

    2017-12-01

    Full Text Available In this letter, high-resistivity unintentionally carbon-doped GaN layers with sheet resistivity greater than 106 Ω/□ have been grown on c-plane sapphire substrates by metal-organic chemical vapor deposition (MOCVD. We have observed that the growth of GaN nucleation layers (NLs under N2 ambient leads to a large full width at half maximum (FWHM of (102 X-ray diffraction (XRD line in the rocking curve about 1576 arc sec. Unintentional carbon incorporation can be observed in the secondary ion mass spectroscopy (SIMS measurements. The results demonstrate the self-compensation mechanism is attributed to the increased density of edge-type threading dislocations and carbon impurities. The AlGaN/GaN HEMT grown on the high-resistivity GaN template has also been fabricated, exhibiting a maximum drain current of 478 mA/mm, a peak transconductance of 60.0 mS/mm, an ON/OFF ratio of 0.96×108 and a breakdown voltage of 621 V.

  7. Self-assembled growth and structural analysis of inclined GaN nanorods on nanoimprinted m-sapphire using catalyst-free metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyuseung; Chae, Sooryong; Jang, Jongjin; Min, Daehong; Kim, Jaehwan; Nam, Okhyun, E-mail: ohnam@kpu.ac.kr [Convergence Center for Advanced Nano Semiconductor (CANS), Department of Nano-Optical Engineering, Korea Polytechnic University, Siheung, 15073 (Korea, Republic of)

    2016-04-15

    In this study, self-assembled inclined (1-10-3)-oriented GaN nanorods (NRs) were grown on nanoimprinted (10-10) m-sapphire substrates using catalyst-free metal-organic chemical vapor deposition. According to X-ray phi-scans, the inclined GaN NRs were tilted at an angle of ∼57.5° to the [10-10]{sub sapp} direction. Specifically, the GaN NRs grew in a single inclined direction to the [11-20]{sub sapp}. Uni-directionally inclined NRs were formed through the one-sided (10-11)-faceted growth of the interfacial a-GaN plane layer. It was confirmed that a thin layer of a-GaN was formed on r-facet nanogrooves of the m-sapphire substrate by nitridation. The interfacial a-GaN nucleation affected both the inclined angle and the growth direction of the inclined GaN NRs. Using X-ray diffraction and selective area electron diffraction, the epitaxial relationship between the inclined (1-10-3) GaN NRs and interfacial a-GaN layer on m-sapphire substrates was systematically investigated. Moreover, the inclined GaN NRs were observed to be mostly free of stacking fault-related defects using high-resolution transmission electron microscopy.

  8. Selective growth of Ge1- x Sn x epitaxial layer on patterned SiO2/Si substrate by metal-organic chemical vapor deposition

    Science.gov (United States)

    Takeuchi, Wakana; Washizu, Tomoya; Ike, Shinichi; Nakatsuka, Osamu; Zaima, Shigeaki

    2018-01-01

    We have investigated the selective growth of a Ge1- x Sn x epitaxial layer on a line/space-patterned SiO2/Si substrate by metal-organic chemical vapor deposition. We examined the behavior of a Sn precursor of tributyl(vinyl)tin (TBVSn) during the growth on Si and SiO2 substrates and investigated the effect of the Sn precursor on the selective growth. The selective growth of the Ge1- x Sn x epitaxial layer was performed under various total pressures and growth temperatures of 300 and 350 °C. The selective growth of the Ge1- x Sn x epitaxial layer on the patterned Si region is achieved at a low total pressure without Ge1- x Sn x growth on the SiO2 region. In addition, we found that the Sn content in the Ge1- x Sn x epitaxial layer increases with width of the SiO2 region for a fixed Si width even with low total pressure. To control the Sn content in the selective growth of the Ge1- x Sn x epitaxial layer, it is important to suppress the decomposition and migration of Sn and Ge precursors.

  9. Oxygen and minority carrier lifetimes in N-and P-type AL0.2GA0.8AS grown by metal organics vapor phase epitaxy

    International Nuclear Information System (INIS)

    Zahraman, Khaled; Leroux, M.; Gibart, P.; Zaidi, M.A.; Bremond, G.; Guillot, G.

    2000-01-01

    author.The minority carrier lifetimes in Al x Ga 1-x As grown by Metal-Organics Vapor Phase Epitaxy (MOVPE) is generally lower than in GaAs. This is believed to be due to oxygen incorporation in the layers. We describe a study of radiative and non radiative minority carriers lifetimes in n-and p-type Al 0.2 Ga 0.8 As as a function of growth parameters, in correlation with oxygen concentration measurements and deep level transient spectroscopy (DLTS) studies. Long non radiative lifetimes and low oxygen contents are achieved using temperature growth. A main minority hole lifetime killer appears to be 0.4 eV deep O related electron trap detected by DLTS at concentrations three orders of magnitude lower than the atomic oxygen one. Record lifetimes in MOVPE grown n-and p-type Al 0.2 Ga 0.8 As are obtained. An Al 0.85 Ga 0.15 As/Al 0.2 Ga 0.8 As surface recombination velocity lower than 4.5x10 3 cm.s -1 is measured

  10. Photoluminescence and surface photovoltage spectroscopy characterization of highly strained InGaAs/GaAs quantum well structures grown by metal organic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Chan, C.H.; Wu, J.D.; Huang, Y.S.; Hsu, H.P.; Tiong, K.K.; Su, Y.K.

    2010-01-01

    Photoluminescence (PL) and surface photovoltage spectroscopy (SPS) are used to characterize a series of highly strained In x Ga 1-x As/GaAs quantum well (QW) structures grown by metal organic vapor phase epitaxy with different indium compositions (0.395 ≤ x ≤ 0.44) in the temperature range of 20 K ≤ T ≤ 300 K. The PL features show redshift in peak positions and broadened lineshape with increasing indium composition. The S-shaped temperature dependent PL spectra have been attributed to carrier localization effect resulting from the presence of indium clusters at QW interfaces. A lineshape fit of features in the differential surface photovoltage (SPV) spectra has been used to determine the transition energies accurately. At temperature below 100 K, the light-hole (LH) related feature shows a significant phase difference as compared to that of heavy-hole (HH) related features. The phase change of the LH feature can be explained by the existence of type-II configuration for the LH valence band and the process of separation of carriers within the QWs together with possible capture by the interface defect traps. A detailed analysis of the observed phenomena enables the identification of spectral features and to evaluate the band lineup of the QWs. The results demonstrate the usefulness of PL and SPS for the contactless and nondestructive characterization of highly strained InGaAs/GaAs QW structures.

  11. Comparison of precursors for pulsed metal-organic chemical vapor deposition of HfO2 high-K dielectric thin films

    International Nuclear Information System (INIS)

    Teren, Andrew R.; Thomas, Reji; He, Jiaqing; Ehrhart, Peter

    2005-01-01

    Hafnium oxide films were deposited on Si(100) substrates using pulsed metal-organic chemical vapor deposition (CVD) and evaluated for high-K dielectric applications. Three types of precursors were tested: two oxygenated ones, Hf butoxide-dmae and Hf butoxide-mmp, and an oxygen-free one, Hf diethyl-amide. Depositions were carried out in the temperature range of 350-650 deg. C, yielding different microstructures ranging from amorphous to crystalline, monoclinic, films. The films were compared on the basis of growth rate, phase development, density, interface characteristics, and electrical properties. Some specific features of the pulsed injection technique are considered. For low deposition temperatures the growth rate for the amide precursor was significantly higher than for the mixed butoxide precursors. A thickness-dependent amorphous to crystalline phase transition temperature was found for all precursors. There is an increase of the film density along with the deposition temperature from values as low as 5 g/cm 3 at 350 deg. C to values close to the bulk value of 9.7 g/cm 3 at 550 deg. C. Crystallization is observed in the same temperature range for films of typically 10-20 nm thickness. However, annealing studies show that this density increase is not simply related to the crystallization of the films. Similar electrical properties could be observed for all precursors and the dielectric constant of the films reaches values similar to the best values reported for bulk crystalline HfO 2

  12. As-grown deep-level defects in n-GaN grown by metal-organic chemical vapor deposition on freestanding GaN

    International Nuclear Information System (INIS)

    Chen Shang; Ishikawa, Kenji; Hori, Masaru; Honda, Unhi; Shibata, Tatsunari; Matsumura, Toshiya; Tokuda, Yutaka; Ueda, Hiroyuki; Uesugi, Tsutomu; Kachi, Tetsu

    2012-01-01

    Traps of energy levels E c -0.26 and E c -0.61 eV have been identified as as-grown traps in n-GaN grown by metal-organic chemical vapor deposition by using deep level transient spectroscopy of the Schottky contacts fabricated by resistive evaporation. The additional traps of E c -0.13 and E c -0.65 eV have been observed in samples whose contacts are deposited by electron-beam evaporation. An increase in concentration of the E c -0.13 and E c -0.65 eV traps when approaching the interface between the contact and the GaN film supports our argument that these traps are induced by electron-beam irradiation. Conversely, the depth profiles of as-grown traps show different profiles between several samples with increased or uniform distribution in the near surface below 50 nm. Similar profiles are observed in GaN grown on a sapphire substrate. We conclude that the growth process causes these large concentrations of as-grown traps in the near-surface region. It is speculated that the finishing step in the growth process should be an essential issue in the investigation of the surface state of GaN.

  13. Influence of incoherent twin boundaries on the electrical properties of β-Ga2O3 layers homoepitaxially grown by metal-organic vapor phase epitaxy

    Science.gov (United States)

    Fiedler, A.; Schewski, R.; Baldini, M.; Galazka, Z.; Wagner, G.; Albrecht, M.; Irmscher, K.

    2017-10-01

    We present a quantitative model that addresses the influence of incoherent twin boundaries on the electrical properties in β-Ga2O3. This model can explain the mobility collapse below a threshold electron concentration of 1 × 1018 cm-3 as well as partly the low doping efficiency in β-Ga2O3 layers grown homoepitaxially by metal-organic vapor phase epitaxy on (100) substrates of only slight off-orientation. A structural analysis by transmission electron microscopy (TEM) reveals a high density of twin lamellae in these layers. In contrast to the coherent twin boundaries parallel to the (100) plane, the lateral incoherent twin boundaries exhibit one dangling bond per unit cell that acts as an acceptor-like electron trap. Since the twin lamellae are thin, we consider the incoherent twin boundaries to be line defects with a density of 1011-1012 cm-2 as determined by TEM. We estimate the influence of the incoherent twin boundaries on the electrical transport properties by adapting Read's model of charged dislocations. Our calculations quantitatively confirm that the mobility reduction and collapse as well as partly the compensation are due to the presence of twin lamellae.

  14. High-resistivity unintentionally carbon-doped GaN layers with nitrogen as nucleation layer carrier gas grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Chen, Fu; Sun, Shichuang; Deng, Xuguang; Fu, Kai; Yu, Guohao; Song, Liang; Hao, Ronghui; Fan, Yaming; Cai, Yong; Zhang, Baoshun

    2017-12-01

    In this letter, high-resistivity unintentionally carbon-doped GaN layers with sheet resistivity greater than 106 Ω/□ have been grown on c-plane sapphire substrates by metal-organic chemical vapor deposition (MOCVD). We have observed that the growth of GaN nucleation layers (NLs) under N2 ambient leads to a large full width at half maximum (FWHM) of (102) X-ray diffraction (XRD) line in the rocking curve about 1576 arc sec. Unintentional carbon incorporation can be observed in the secondary ion mass spectroscopy (SIMS) measurements. The results demonstrate the self-compensation mechanism is attributed to the increased density of edge-type threading dislocations and carbon impurities. The AlGaN/GaN HEMT grown on the high-resistivity GaN template has also been fabricated, exhibiting a maximum drain current of 478 mA/mm, a peak transconductance of 60.0 mS/mm, an ON/OFF ratio of 0.96×108 and a breakdown voltage of 621 V.

  15. High growth rate GaN on 200 mm silicon by metal-organic vapor phase epitaxy for high electron mobility transistors

    Science.gov (United States)

    Charles, M.; Baines, Y.; Bavard, A.; Bouveyron, R.

    2018-02-01

    It is increasingly important to reduce the cycle time of epitaxial growth, in order to reduce the costs of device fabrication, especially for GaN based structures which typically have growth cycles of several hours. We have performed a comprehensive study using metal-organic vapor phase epitaxy (MOVPE) investigating the effects of changing GaN growth rates from 0.9 to 14.5 μm/h. Although there is no significant effect on the strain incorporated in the layers, we have seen changes in the surface morphology which can be related to the change in dislocation behaviour and surface diffusion effects. At the small scale, as seen by AFM, increased dislocation density for higher growth rates leads to increased pinning of growth terraces, resulting in more closely spaced terraces. At a larger scale of hundreds of μm observed by optical profiling, we have related the formation of grains to the rate of surface diffusion of adatoms using a random walk model, implying diffusion distances from 30 μm for the highest growth rates up to 100 μm for the lowest. The increased growth rate also increases the intrinsic carbon incorporation which can increase the breakdown voltage of GaN films. Despite an increased threading dislocation density, these very high growth rates of 14.5 μm/hr by MOVPE have been shown to be appealing for reducing epitaxial growth cycle times and therefore costs in High Electron Mobility Transistor (HEMT) structures.

  16. Demonstration of InAlN/AlGaN high electron mobility transistors with an enhanced breakdown voltage by pulsed metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xue, JunShuai, E-mail: junshuaixue@hotmail.com; Zhang, JinCheng; Hao, Yue [Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2016-01-04

    In this work, InAlN/AlGaN heterostructures employing wider bandgap AlGaN instead of conventional GaN channel were grown on sapphire substrate by pulsed metal organic chemical vapor deposition, where the nominal Al composition in InAlN barrier and AlGaN channel were chosen to be 83% and 5%, respectively, to achieve close lattice-matched condition. An electron mobility of 511 cm{sup 2}/V s along with a sheet carrier density of 1.88 × 10{sup 13 }cm{sup −2} were revealed in the prepared heterostructures, both of which were lower compared with lattice-matched InAlN/GaN due to increased intrinsic alloy disorder scattering resulting from AlGaN channel and compressively piezoelectric polarization in barrier, respectively. While the high electron mobility transistor (HEMT) processed on these structures not only exhibited a sufficiently high drain output current density of 854 mA/mm but also demonstrated a significantly enhanced breakdown voltage of 87 V, which is twice higher than that of reported InAlN/GaN HEMT with the same device dimension, potential characteristics for high-voltage operation of GaN-based electronic devices.

  17. Volatile Organic Compound (VOC Removal by Vapor Permeation at Low VOC Concentrations: Laboratory Scale Results and Modeling for Scale Up

    Directory of Open Access Journals (Sweden)

    Philippe Moulin

    2011-03-01

    Full Text Available Petroleum transformation industries have applied membrane processes for solvent and hydrocarbon recovery as an economic alternative to reduce their emissions and reuse evaporated components. Separation of the volatile organic compounds (VOCs (toluene-propylene-butadiene from air was performed using a poly dimethyl siloxane (PDMS/α-alumina membrane. The experimental set-up followed the constant pressure/variable flow set-up and was operated at ~21 °C. The membrane is held in a stainless steel module and has a separation area of 55 × 10−4 m². Feed stream was set to atmospheric pressure and permeate side to vacuum between 3 and 5 mbar. To determine the performance of the module, the removed fraction of VOC was analyzed by Gas Chromatography/Flame Ionization Detector (GC/FID. The separation of the binary, ternary and quaternary hydrocarbon mixtures from air was performed at different flow rates and more especially at low concentrations. The permeate flux, permeance, enrichment factor, separation efficiency and the recovery extent of the membrane were determined as a function of these operating conditions. The permeability coefficients and the permeate flux through the composite PDMS-alumina membrane follow the order given by the Hildebrand parameter: toluene > 1,3-butadiene > propylene. The simulated data for the binary VOC/air mixtures showed fairly good agreement with the experimental results in the case of 1,3-butadiene and propylene. The discrepancies observed for toluene permeation could be minimized by taking into account the effects of the porous support and an influence of the concentration polarization. Finally, the installation of a 0.02 m2 membrane module would reduce 95% of the VOC content introduced at real concentration conditions used in the oil industry.

  18. Ground Based Experiments in Support of Microgravity Research Results-Vapor Growth of Organic Nonlinear Optical Thin Film

    Science.gov (United States)

    Zugrav, M. Ittu; Carswell, William E.; Haulenbeek, Glen B.; Wessling, Francis C.

    2001-01-01

    This work is specifically focused on explaining previous results obtained for the crystal growth of an organic material in a reduced gravity environment. On STS-59, in April 1994, two experiments were conducted with N,N-dimethyl-p-(2,2-dicyanovinyl) aniline (DCVA), a promising nonlinear optical (NLO) material. The space experiments were set to reproduce laboratory experiments that yielded small, bulk crystals of DCVA. The results of the flight experiment, however, were surprising. Rather than producing a bulk single crystal, the result was the production of two high quality, single crystalline thin films. This result was even more intriguing when it is considered that thin films are more desirable for NLO applications than are bulk single crystals. Repeated attempts on the ground to reproduce these results were fruitless. A second set of flight experiments was conducted on STS-69 in September 1995. This time eight DCVA experiments were flown, with each of seven experiments containing a slight change from the first reference experiment. The reference experiment was programmed with growth conditions identical to those of the STS-59 mission. The slight variations in each of the other seven were an attempt to understand what particular parameter was responsible for the preference of thin film growth over bulk crystal growth in microgravity. Once again the results were surprising. In all eight cases thin films were grown again, albeit with varying quality. So now we were faced with a phenomenon that not only takes place in microgravity, but also is very robust, resisting all attempts to force the growth of bulk single crystals.

  19. Design and testing of a chamber device to measure organic vapor fluxes from the unsaturated zone under natural conditions

    International Nuclear Information System (INIS)

    Tillman, F.D.; Choi, J-W.; Smith, J.A.

    2002-01-01

    As the difficulty and expense of achieving water quality standards at contaminated sites becomes more apparent, the U.S. Environmental Protection Agency is taking a closer look at natural attenuation processes for selected sites. To determine if a site has potential for natural attenuation, all natural processes affecting the fate and transport of volatile organic compounds (VOCs) in the subsurface must be identified and quantified. This research addresses the quantification of air-phase VOCs leaving the subsurface and entering the atmosphere, both through diffusion and soil-gas advection caused by barometric pumping. A simple, easy-to-use, and inexpensive device for measuring VOC flux under natural conditions was designed, constructed and tested both in a controlled laboratory environment and in a natural field setting. Design parameters for the chamber were selected using continuously stirred tank reactor (CSTR)-equation based modeling under several flux inputs. The final chamber design performs at greater than 95% efficiency for the simulated cases. Laboratory testing of the flux chamber under both diffusion and advection transport conditions was performed in a device constructed to simulate the unsaturated zone. Results indicate an average flux measurement accuracy of 83% over 3 orders of magnitude for diffusion-only fluxes and 94% for combined advection-diffusion fluxes. A field test of the chamber was performed and results compared with predictions made by a 1-dimensional unsaturated zone flow and transport model whose calibration and parameters were obtained from data collected at the site. Fluxes measured directly by the chamber were generally in good agreement with the fluxes calculated from the calibrated flow-and-transport model. (author)

  20. Mitigation of algal organic matter released from Chaetoceros affinis and Hymenomonas by in situ generated ferrate

    KAUST Repository

    Deka, Bhaskar Jyoti; Jeong, Sanghyun; AlizadehTabatabai, S.Assiyeh; An, Alicia Kyoungjin

    2018-01-01

    This study demonstrates the application of in situ ferrate (Fe(VI)) for the efficient removal of dissolved algal organic matter (AOM) from seawater. Sodium hypochlorite (NaOCl) and ferric (Fe(III)) were used to produce in situ Fe(VI) by wet chemical

  1. AN EMBRYONIC CHICK PANCREAS ORGAN CULTURE MODEL: CHARACTERIZATION AND NEURAL CONTROL OF EXOCRINE RELEASE

    Science.gov (United States)

    An embryonic chick (Gallus domesticus) whole-organ pancreas culture system was developed for use as an in vitro model to study cholinergic regulation of exocrine pancreatic function. The culture system was examined for characteristic exocrine function and viability by measuring e...

  2. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  3. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis.

    Science.gov (United States)

    Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel

    2017-10-20

    The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling

  4. Determination of thiomersal by flow injection coupled with microwave-assisted photochemical online oxidative decomposition of organic mercury and cold vapor atomic fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Campanella, Beatrice; Onor, Massimo; Mascherpa, Marco Carlo; D’Ulivo, Alessandro [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Ferrari, Carlo [National Research Council of Italy, C.N.R., Istituto Nazionale di Ottica, INO–UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Bramanti, Emilia, E-mail: bramanti@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2013-12-04

    Graphical abstract: -- Highlights: •Thiomersal was determined on line using FI-MW/UV-CVGAFS. •MW/UV allows a “green” on line oxidation of organic mercury to Hg{sup II}. •Each measure requires less than 5 min with a LOD of 3 ng mL{sup −1} (as mercury). •Hg concentration in commercial ophthalmic solutions ranges between 7.5 and 59.0 μg mL{sup −1}. -- Abstract: We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C{sub 9}H{sub 9}HgNaO{sub 2}S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH{sub 4} solution, and AFS detection in an Ar/H{sub 2} miniaturized flame. The method was linear in the 0.01–2 μg mL{sup −1} range, with a LOD of 0.003 μg mL{sup −1}. This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL{sup −1}.

  5. Determination of thiomersal by flow injection coupled with microwave-assisted photochemical online oxidative decomposition of organic mercury and cold vapor atomic fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Campanella, Beatrice; Onor, Massimo; Mascherpa, Marco Carlo; D’Ulivo, Alessandro; Ferrari, Carlo; Bramanti, Emilia

    2013-01-01

    Graphical abstract: -- Highlights: •Thiomersal was determined on line using FI-MW/UV-CVGAFS. •MW/UV allows a “green” on line oxidation of organic mercury to Hg II . •Each measure requires less than 5 min with a LOD of 3 ng mL −1 (as mercury). •Hg concentration in commercial ophthalmic solutions ranges between 7.5 and 59.0 μg mL −1 . -- Abstract: We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C 9 H 9 HgNaO 2 S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH 4 solution, and AFS detection in an Ar/H 2 miniaturized flame. The method was linear in the 0.01–2 μg mL −1 range, with a LOD of 0.003 μg mL −1 . This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL −1

  6. Organic components of nuclear wastes and their potential for altering radionuclide distribution when released to soil

    International Nuclear Information System (INIS)

    McFadden, K.M.

    1980-08-01

    Normal waste processing at the Hanford operations requires the use of many organic materials, chiefly in the form of complexing agents and diluents. These organic materials and their chemical and radiolytic degradation products, have potential for complexing fission products and transuranium elements, both in the waste streams and upon infiltration into soil, perhaps influencing future sorption or migration of the nuclides. Particular complexation characteristics of various nuclides which constitute the major fission products, long-lived isotopes, and the most mobile in radioactive wastes are discussed briefly with regards to their anticipated sorption or mobility in soils. Included in the discussion are Am, Sb, Ce, Cs, Co, Cm, Eu, I, Np, Pm, Pu, Ra, Ru, Sr, Tc, U, and Zr. 107 references

  7. Crown-of-Thorns Starfish Larvae Can Feed on Organic Matter Released from Corals

    Directory of Open Access Journals (Sweden)

    Ryota Nakajima

    2016-10-01

    Full Text Available Previous studies have suggested that Crown-of-Thorns starfish (COTS larvae may be able to survive in the absence of abundant phytoplankton resources suggesting that they may be able to utilize alternative food sources. Here, we tested the hypothesis that COTS larvae are able to feed on coral-derived organic matter using labeled stable isotope tracers (13C and 15N. Our results show that coral-derived organic matter (coral mucus and associated microorganisms can be assimilated by COTS larvae and may be an important alternative or additional food resource for COTS larvae through periods of low phytoplankton biomass. This additional food resource could potentially facilitate COTS outbreaks by reducing resource limitation.

  8. Effect of radio-oxidative ageing and pH on the release of soluble organic matter from bitumen

    International Nuclear Information System (INIS)

    Libert, M.F.; Walczak, I.

    2000-01-01

    Bitumen is employed as an embedding matrix for low and medium level radioactive wastes. An high impermeability and a great resistance against most of chemicals are two of main bitumen properties. These characteristics of bitumen confinement properties may be modified under environmental parameters during intermediate storage or deep repository such as radiations or the presence of water. The radio-oxidation induces an increase of the quantity of leached organic matter. The evolution of the soluble organic species release seems to be linear with the irradiation dose, as soon as the dose is higher than 20 kGy, and seems to be no dependant of the dose rate. The generation of water-soluble organic complexing agents can affect the integrity of the wasteform due to an increase of the radionuclides solubility. An increase of the quantity of leached organic matter is also observed in presence of alkaline solutions. Identified molecules, by GC/MS analysis, are aromatics like naphthalene, oxidised compounds like alcohols, linear carbonyls, aromatics, glycols and nitrogen compounds. (authors)

  9. An Approach for Developing Site-Specific Lateral and Vertical Inclusion Zones within which Structures Should be Evaluated for Petroleum Vapor Intrusion due to Releases of Motor Fuel from Underground Storage Tanks

    Science.gov (United States)

    Buildings may be at risk from Petroleum Vapor Intrusion (PVI) when they overlie petroleum hydrocarbon contamination in the unsaturated zone or dissolved in groundwater. The U.S. EPA Office of Underground Storage Tanks (OUST) is preparing Guidance for Addressing Petroleum Vapor I...

  10. Dental amalgam and mercury vapor release.

    Science.gov (United States)

    Osborne, J W

    1992-09-01

    Dental diseases are among the most common ailments, and dentists in the United States spend over 50% of their time in dental practice rebuilding carious, malformed, and traumatically injured teeth. It is logical, therefore, that the majority of the dental school curriculum is devoted to the diagnosis, prevention, and treatment of teeth with anomalies. Dentists have several choices of materials they can use to accomplish the task of rebuilding teeth. Besides amalgam, they have ceramic materials, resin composites, base-metal and noble casting alloys, and glass-ionomer cements to use to restore the posterior dentition. Each of these restorative materials has advantages and disadvantages, and the clinical judgment as to when a particular material should be used is given a high priority in dental education. Amalgam is the most widely used of these restorative materials, with 92% of dentists listing it as the material of choice in the posterior of the mouth (Clinical Research Associates, 1990). Dentists have been placing amalgams for over 150 years in the US. They placed 150 million last year, which represents over 75 tons of amalgam alloy. The reasons that dentists use this restorative material so frequently are its durability, ease of manipulation, and low cost. Numerous clinical studies have been conducted on the serviceability of amalgam. Most of these have been on the old, low-copper alloys, and results indicate that they last from 8 to 15 years (Bailit et al., 1979; Osborne et al., 1980; Qvist et al., 1986). In the past 20 years, vast improvements have been made in amalgams with the development of the high-copper systems.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon

    Directory of Open Access Journals (Sweden)

    Zimin eLi

    2014-10-01

    Full Text Available The continental bio-cycling of silicon (Si plays a key role in global Si cycle and as such partly controls global carbon (C budget through nutrition of marine and terrestrial biota, accumulation of phytolith-occluded organic carbon (PhytOC and weathering of silicate minerals. Despite the key role of elemental composition of phytoliths on their solubility in soils, the impact of plant cultivar and organ on the elemental composition of phytoliths in Si high-accumulator plants, such as rice (Oryza sativa is not yet fully understood. Here we show that rice cultivar significantly impacts the elemental composition of phytoliths (Si, Al, Fe and C in different organs of the shoot system (grains, sheath, leaf and stem. The amount of occluded OC within phytoliths is affected by contents of Si, Al and Fe in plants, while independent of the element composition of phytoliths. Our data document, for different cultivars, higher bio-available Si release from phytoliths of leaves and sheaths, which are characterized by higher enrichment with Al and Fe (i.e., lower Si/Al and Si/Fe ratios, compared to grains and stems. We indicate that phytolith solubility in soils may be controlled by rice cultivar and type of organs. Our results highlight that the role of the morphology, the hydration rate and the chemical composition in the solubility of phytoliths and the kinetic release of Si in soil solution needs to be studied further. This is central to a better understanding of the impact of soil amendment with different plant organs and cultivars on soil OC stock and on the delivery of dissolved Si as we show that sheath and leaf rice organs are both characterized by higher content of OC occluded in phytolith and higher phytolith solubility compared to grains and stems. Our study shows the importance of studying the impact of the agro-management on the evolution of sinks and sources of Si and C in soils used for Si-high accumulator plants.

  12. The release of organic material from clay based buffer materials and its potential implications for radionuclide transport

    International Nuclear Information System (INIS)

    Vilks, P.; Stroes-Gascoyne, S.; Goulard, M.; Haveman, S.A.; Bachinski, D.B.

    1998-01-01

    In the Canadian nuclear fuel waste disposal concept used fuel would be placed in corrosion resistant containers which would be surrounded by clay-based buffer and backfill materials in an engineered vault excavated at 500 to 1000 m depth in crystalline rock formations in the Canadian shield. Organic substances could affect radionuclide mobility due to the effects of redox and complexation reactions that increase solubility and alter mobility. The purpose of this study was to determine whether the buffer and backfill materials, proposed for use in a disposal vault, contain organics that could be leached by groundwater in large enough quantities to affect radionuclide mobility within the disposal vault and surrounding geosphere complex. Buffer material, made from a mixture of 50 wt.% Avonlea sodium bentonite and 50 wt.% silica sand, was extracted with deionized water to determine the release of dissolved organic carbon (DOC), humic acid and fulvic acid. The effect of radiation and heat from the used fuel was simulated by treating samples of buffer before leaching to various amounts of heat (60 and 90 C) for periods of 2, 4 and 6 weeks, and to ionizing radiation with doses of 25 kGy and 50 kGy. The results showed that groundwater would leach significant amounts of organics from buffer that complex with radionuclides such as the actinides, potentially affecting their solubility and transport within the disposal vault and possibly the surrounding geosphere. In addition, the leached organics would likely stimulate microbial growth by several orders of magnitude. Heating and radiation affect the amount and nature of leachable organics. (orig.)

  13. Inhibitors of the 5-lipoxygenase arachidonic acid pathway induce ATP release and ATP-dependent organic cation transport in macrophages.

    Science.gov (United States)

    da Silva-Souza, Hercules Antônio; Lira, Maria Nathalia de; Costa-Junior, Helio Miranda; da Cruz, Cristiane Monteiro; Vasconcellos, Jorge Silvio Silva; Mendes, Anderson Nogueira; Pimenta-Reis, Gabriela; Alvarez, Cora Lilia; Faccioli, Lucia Helena; Serezani, Carlos Henrique; Schachter, Julieta; Persechini, Pedro Muanis

    2014-07-01

    We have previously described that arachidonic acid (AA)-5-lipoxygenase (5-LO) metabolism inhibitors such as NDGA and MK886, inhibit cell death by apoptosis, but not by necrosis, induced by extracellular ATP (ATPe) binding to P2X7 receptors in macrophages. ATPe binding to P2X7 also induces large cationic and anionic organic molecules uptake in these cells, a process that involves at least two distinct transport mechanisms: one for cations and another for anions. Here we show that inhibitors of the AA-5-LO pathway do not inhibit P2X7 receptors, as judged by the maintenance of the ATPe-induced uptake of fluorescent anionic dyes. In addition, we describe two new transport phenomena induced by these inhibitors in macrophages: a cation-selective uptake of fluorescent dyes and the release of ATP. The cation uptake requires secreted ATPe, but, differently from the P2X7/ATPe-induced phenomena, it is also present in macrophages derived from mice deficient in the P2X7 gene. Inhibitors of phospholipase A2 and of the AA-cyclooxygenase pathway did not induce the cation uptake. The uptake of non-organic cations was investigated by measuring the free intracellular Ca(2+) concentration ([Ca(2+)]i) by Fura-2 fluorescence. NDGA, but not MK886, induced an increase in [Ca(2+)]i. Chelating Ca(2+) ions in the extracellular medium suppressed the intracellular Ca(2+) signal without interfering in the uptake of cationic dyes. We conclude that inhibitors of the AA-5-LO pathway do not block P2X7 receptors, trigger the release of ATP, and induce an ATP-dependent uptake of organic cations by a Ca(2+)- and P2X7-independent transport mechanism in macrophages. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Mitigation of algal organic matter released from Chaetoceros affinis and Hymenomonas by in situ generated ferrate

    KAUST Repository

    Deka, Bhaskar Jyoti

    2018-05-10

    This study demonstrates the application of in situ ferrate (Fe(VI)) for the efficient removal of dissolved algal organic matter (AOM) from seawater. Sodium hypochlorite (NaOCl) and ferric (Fe(III)) were used to produce in situ Fe(VI) by wet chemical oxidation. First, the removal efficiencies of model AOM compounds, humic acid (HA), and sodium alginate (SA) were evaluated in the presence of sodium chloride with an initial influent dissolved organic carbon (DOC) concentration of 5.0 mg C L−1 at different pH levels to establish the optimal doses for in situ Fe(VI) generation. The concentration of Fe(VI) was determined by the 2,2-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) ultraviolet–visible spectrophotometry method. In the case of HA, 72% DOC removal was recorded when applied with 1.5 mg L−1 of Fe(III) and 1.5 mg L−1 of NaOCl (in situ Fe(VI) concentration of 1.46 mg L−1) while 42% DOC removal was observed for SA. Subsequently, the removal of AOM extracted from two bloom-forming algal species, Chaetoceros affinis (CA) and Hymenomonas (Hym), cultivated in seawater from the Red Sea, were tested with in situ generated Fe(VI) at the established optimum condition. In situ Fe(VI) recorded superior performance in removing AOM extracted from CA and Hym, showing 83% and 92% DOC removal when the influent DOC concentrations were 2.48 and 2.63 mg L−1, respectively. A detailed AOM characterization was conducted using liquid chromatography–organic carbon detection.

  15. Simulation of in situ uranium bioremediation with slow-release organic amendment injection

    Science.gov (United States)

    Zhang, F.; Parker, J.; Ye, M.; Tang, G.; Wu, W.; Mehlhorn, T.; Gihring, T. M.; Schadt, C.; Watson, D. B.; Brooks, S. C.

    2010-12-01

    In situ bioremediation of a highly uranium-contaminated gravel aquifer with a slow-release electron donor (emulsified edible oil) has been investigated at the US DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) site in east Tennessee. Groundwater at the study location has pH ~6.7 and contains high concentrations of U (5-6 μM), sulfate (1.0-1.2) mM and Ca (3-4 mM). Diluted emulsified oil (20% solution) was injected into three injection wells within 1.5 hrs. Geochemical analysis of site groundwater demonstrated the sequential reduction of nitrate, Mn, Fe(III) and sulfate. The oil was degraded by indigenous microorganisms with acetate as a major product. Rapid removal of U(VI) from the aqueous phase occurred concurrently with acetate production and sulfate reduction. The field test data were analyzed using a reaction network with a kinetic model for lipid hydrolysis and glycerol fermentation and equilibrium reactions representing microbial reduction of sulfate, nitrate, iron, uranium, manganese and carbon dioxide based on the thermodynamic approach of Istok et al. (2010) using the parallelized HGC5 code. Model-simulated chemical concentrations and relative abundance of functional microbial populations are compared with field measurements. Application of the thermodynamically-based modeling approach instead of the widely used multi-Monod kinetic rate law to formulate bioreduction reactions substantially reduces the number of reaction parameters that need to be calibrated thus facilitating a more comprehensive representation of microbial community dynamics. The model developed through this study is expected to aid the design of future bioremediation strategies for the site.

  16. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPORT EXTRACTION AND BIOVENTING OF ORGANIC MATERIALS IN UNSATURATED GEOLOGICAL MATERIAL

    Science.gov (United States)

    This report describes the formulation, numerical development, and use of a multiphase, multicomponent, biodegradation model designed to simulate physical, chemical, and biological interactions occurring primarily in field scale soil vapor extraction (SVE) and bioventing (B...

  17. Emerging organic contaminants in coastal waters: anthropogenic impact, environmental release and ecological risk.

    Science.gov (United States)

    Jiang, Jheng-Jie; Lee, Chon-Lin; Fang, Meng-Der

    2014-08-30

    This study provides a first estimate of the sources, distribution, and risk presented by emerging organic contaminants (EOCs) in coastal waters off southwestern Taiwan. Ten illicit drugs, seven nonsteroidal anti-inflammatory drugs (NSAIDs), five antibiotics, two blood lipid regulators, two antiepileptic drugs, two UV filters, caffeine, atenolol, and omeprazole were analyzed by solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry (SPE-LC-MS/MS). Thirteen EOCs were detected in coastal waters, including four NSAIDs (acetaminophen, ibuprofen, ketoprofen, and codeine), three antibiotics (ampicillin, erythromycin, and cefalexin), three illicit drugs (ketamine, pseudoephedrine, and MDMA), caffeine, carbamazepine, and gemfibrozil. The median concentrations for the 13 EOCs ranged from 1.47 ng/L to 156 ng/L. Spatial variation in concentration of the 13 EOCs suggests discharge into coastal waters via ocean outfall pipes and rivers. Codeine and ampicillin have significant pollution risk quotients (RQ>1), indicating potentially high risk to aquatic organisms in coastal waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Photoreflectance study of strained GaAsN/GaAs T-junction quantum wires grown by metal-organic vapor phase epitaxy.

    Science.gov (United States)

    Klangtakai, Pawinee; Sanorpim, Sakuntam; Onabe, Kentaro

    2011-12-01

    Strained GaAsN T-junction quantum wires (T-QWRs) with different N contents grown on GaAs by two steps metal-organic vapor phase epitaxy in [001] and [110] directions, namely QW1 and QW2 respectively, have been investigated by photoreflectance (PR) spectroscopy. Two GaAsN T-QWRs with different N contents were formed by T-intersection of (i) a 6.4-nm-thick GaAs0.89N0.011 QW1 and a 5.2-nm-thick GaAs0.968N0.032 QW2 and (ii) a 5.0-nm-thick GaAs0.985N0.015 QW1 and a 5.2-nm-thick GaAs0.968N0.032 QW2. An evidence of a one-dimensional structure at T-intersection of the two QWs on the (001) and (110) surfaces was established by PR resonances associated with extended states in all the QW and T-QWR samples. It is found that larger lateral confinement energy than 100 meV in both of [001] and [110] directions were achieved for GaAsN T-QWRs. With increasing temperature, the transition energy of GaAsN T-QWRs decreases with a faster shrinking rate compared to that of bulk GaAs. Optical quality of GaAsN T-QWRs is found to be affected by the N-induced band edge fluctuation, which is the unique characteristic of dilute III-V-nitrides.

  19. Fast Growth of GaN Epilayers via Laser-Assisted Metal-Organic Chemical Vapor Deposition for Ultraviolet Photodetector Applications.

    Science.gov (United States)

    Rabiee Golgir, Hossein; Li, Da Wei; Keramatnejad, Kamran; Zou, Qi Ming; Xiao, Jun; Wang, Fei; Jiang, Lan; Silvain, Jean-François; Lu, Yong Feng

    2017-06-28

    In this study, we successfully developed a carbon dioxide (CO 2 )-laser-assisted metal-organic chemical vapor deposition (LMOCVD) approach to fast synthesis of high-quality gallium nitride (GaN) epilayers on Al 2 O 3 [sapphire(0001)] substrates. By employing a two-step growth procedure, high crystallinity and smooth GaN epilayers with a fast growth rate of 25.8 μm/h were obtained. The high crystallinity was confirmed by a combination of techniques, including X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and atomic force microscopy. By optimizing growth parameters, the ∼4.3-μm-thick GaN films grown at 990 °C for 10 min showed a smooth surface with a root-mean-square surface roughness of ∼1.9 nm and excellent thickness uniformity with sharp GaN/substrate interfaces. The full-width at half-maximum values of the GaN(0002) X-ray rocking curve of 313 arcsec and the GaN(101̅2) X-ray rocking curve of 390 arcsec further confirmed the high crystallinity of the GaN epilayers. We also fabricated ultraviolet (UV) photodetectors based on the as-grown GaN layers, which exhibited a high responsivity of 0.108 A W -1 at 367 nm and a fast response time of ∼125 ns, demonstrating its high optical quality with potential in optoelectronic applications. Our strategy thus provides a simple and cost-effective means toward fast and high-quality GaN heteroepitaxy growth suitable for fabricating high-performance GaN-based UV detectors.

  20. Thermal stability of an InAlN/GaN heterostructure grown on silicon by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Arata, E-mail: a.watanabe.106@nitech.jp; Freedsman, Joseph J.; Urayama, Yuya; Christy, Dennis [Research Center for Nano Devices and Advanced Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan); Egawa, Takashi, E-mail: egawa.takashi@nitech.ac.jp [Research Center for Nano Devices and Advanced Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan); Innovation Center for Multi-Business of Nitride Semiconductors, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan)

    2015-12-21

    The thermal stabilities of metal-organic chemical vapor deposition-grown lattice-matched InAlN/GaN/Si heterostructures have been reported by using slower and faster growth rates for the InAlN barrier layer in particular. The temperature-dependent surface and two-dimensional electron gas (2-DEG) properties of these heterostructures were investigated by means of atomic force microscopy, photoluminescence excitation spectroscopy, and electrical characterization. Even at the annealing temperature of 850 °C, the InAlN layer grown with a slower growth rate exhibited a smooth surface morphology that resulted in excellent 2-DEG properties for the InAlN/GaN heterostructure. As a result, maximum values for the drain current density (I{sub DS,max}) and transconductance (g{sub m,max}) of 1.5 A/mm and 346 mS/mm, respectively, were achieved for the high-electron-mobility transistor (HEMT) fabricated on this heterostructure. The InAlN layer grown with a faster growth rate, however, exhibited degradation of the surface morphology at an annealing temperature of 850 °C, which caused compositional in-homogeneities and impacted the 2-DEG properties of the InAlN/GaN heterostructure. Additionally, an HEMT fabricated on this heterostructure yielded lower I{sub DS,max} and g{sub m,max} values of 1 A/mm and 210 mS/mm, respectively.

  1. Control of metamorphic buffer structure and device performance of In(x)Ga(1-x)As epitaxial layers fabricated by metal organic chemical vapor deposition.

    Science.gov (United States)

    Nguyen, H Q; Yu, H W; Luc, Q H; Tang, Y Z; Phan, V T H; Hsu, C H; Chang, E Y; Tseng, Y C

    2014-12-05

    Using a step-graded (SG) buffer structure via metal-organic chemical vapor deposition, we demonstrate a high suitability of In0.5Ga0.5As epitaxial layers on a GaAs substrate for electronic device application. Taking advantage of the technique's precise control, we were able to increase the number of SG layers to achieve a fairly low dislocation density (∼10(6) cm(-2)), while keeping each individual SG layer slightly exceeding the critical thickness (∼80 nm) for strain relaxation. This met the demanded but contradictory requirements, and even offered excellent scalability by lowering the whole buffer structure down to 2.3 μm. This scalability overwhelmingly excels the forefront studies. The effects of the SG misfit strain on the crystal quality and surface morphology of In0.5Ga0.5As epitaxial layers were carefully investigated, and were correlated to threading dislocation (TD) blocking mechanisms. From microstructural analyses, TDs can be blocked effectively through self-annihilation reactions, or hindered randomly by misfit dislocation mechanisms. Growth conditions for avoiding phase separation were also explored and identified. The buffer-improved, high-quality In0.5Ga0.5As epitaxial layers enabled a high-performance, metal-oxide-semiconductor capacitor on a GaAs substrate. The devices displayed remarkable capacitance-voltage responses with small frequency dispersion. A promising interface trap density of 3 × 10(12) eV(-1) cm(-2) in a conductance test was also obtained. These electrical performances are competitive to those using lattice-coherent but pricey InGaAs/InP systems.

  2. Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Changxiu [School of Environment, Tsinghua University, Beijing 100084 (China); Jiang, Jianguo, E-mail: jianguoj@mail.tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China); Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education of China (China); Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing (China); Li, De' an [School of Environment, Tsinghua University, Beijing 100084 (China)

    2015-11-01

    We focused on the effects of ultrasound and Fenton reagent in ultrasonic coupling Fenton oxidation (U + F) pre-treatment processes on the disintegration of wastewater treatment plant sludge. The results demonstrated that U + F treatment could significantly increase soluble COD, TOC, total N, proteins, total P and PO{sub 4}{sup 3−} concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U + F treatment increased the soluble COD by 2.1- and 1.4-fold compared with U and F alone, respectively. U + F treatment increased the total N and P by 1.7- and 2.2-fold, respectively, compared with F alone. After U + F treatment, sludge showed a considerably finer particle size and looser microstructure based on scanning electron microscopy, and the highest OH· signal intensity increased from 568.7 by F treatment to 1106.3 using electron spin resonance. This demonstrated that U + F treatment induces disintegration of sludge and release of organic carbon, nitrogen and phosphorus better. - Highlights: • Combined ultrasound–Fenton pre-treatment was proposed for sludge disintegration. • Ultrasound–Fenton significantly increased carbon, nitrogen and phosphorus release. • Higher level of OH· was detected after combined disintegration than Fenton.

  3. Organic-Inorganic Hybrid Hollow Mesoporous Organosilica Nanoparticles for Efficient Ultrasound-Based Imaging and Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Xiaoqin Qian

    2014-01-01

    Full Text Available A novel anticancer drug delivery system with contrast-enhanced ultrasound-imaging performance was synthesized by a typical hard-templating method using monodispersed silica nanoparticles as the templates, which was based on unique molecularly organic/inorganic hybrid hollow periodic mesoporous organosilicas (HPMOs. The highly dispersed HPMOs show the uniform spherical morphology, large hollow interior, and well-defined mesoporous structures, which are very beneficial for ultrasound-based theranostics. The obtained HPMOs exhibit excellent performances in contrast-enhanced ultrasonography both in vitro and in vivo and can be used for the real-time determination of the progress of lesion tissues during the chemotherapeutic process. Importantly, hydrophobic paclitaxel- (PTX- loaded HPMOs combined with ultrasound irradiation show fast ultrasound responsiveness for controlled drug release and higher in vitro and in vivo tumor inhibition rates compared with free PTX and PTX-loaded HPMOs, which is due to the enhanced ultrasound-triggered drug release and ultrasound-induced cavitation effect. Therefore, the achieved novel HPMOs-based nanoparticle systems will find broad application potentials in clinically ultrasound-based imaging and auxiliary tumor chemotherapy.

  4. Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus

    International Nuclear Information System (INIS)

    Gong, Changxiu; Jiang, Jianguo; Li, De'an

    2015-01-01

    We focused on the effects of ultrasound and Fenton reagent in ultrasonic coupling Fenton oxidation (U + F) pre-treatment processes on the disintegration of wastewater treatment plant sludge. The results demonstrated that U + F treatment could significantly increase soluble COD, TOC, total N, proteins, total P and PO 4 3− concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U + F treatment increased the soluble COD by 2.1- and 1.4-fold compared with U and F alone, respectively. U + F treatment increased the total N and P by 1.7- and 2.2-fold, respectively, compared with F alone. After U + F treatment, sludge showed a considerably finer particle size and looser microstructure based on scanning electron microscopy, and the highest OH· signal intensity increased from 568.7 by F treatment to 1106.3 using electron spin resonance. This demonstrated that U + F treatment induces disintegration of sludge and release of organic carbon, nitrogen and phosphorus better. - Highlights: • Combined ultrasound–Fenton pre-treatment was proposed for sludge disintegration. • Ultrasound–Fenton significantly increased carbon, nitrogen and phosphorus release. • Higher level of OH· was detected after combined disintegration than Fenton

  5. Vapor Pressure of Antimony Triiodide

    Science.gov (United States)

    2017-12-07

    unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Vapor Pressure 1 3. Experiment 3 4. Discussion and Measurements 5 5...SbI3 as a function of temperature ......................... 6 Approved for public release; distribution is unlimited. 1 1. Introduction ...single-crystal thin films of n-type (Bi,Sb)2(Te,Se)3 materials presents new doping challenges because it is a nonequilibrium process. (Bi,Sb)2(Te,Se)3

  6. The effect of drought on dissolved organic carbon (DOC) release from peatland soil and vegetation sources

    Science.gov (United States)

    Ritson, Jonathan P.; Brazier, Richard E.; Graham, Nigel J. D.; Freeman, Chris; Templeton, Michael R.; Clark, Joanna M.

    2017-06-01

    Drought conditions are expected to increase in frequency and severity as the climate changes, representing a threat to carbon sequestered in peat soils. Downstream water treatment works are also at risk of regulatory compliance failures and higher treatment costs due to the increase in riverine dissolved organic carbon (DOC) often observed after droughts. More frequent droughts may also shift dominant vegetation in peatlands from Sphagnum moss to more drought-tolerant species. This paper examines the impact of drought on the production and treatability of DOC from four vegetation litters (Calluna vulgaris, Juncus effusus, Molinia caerulea and Sphagnum spp.) and a peat soil. We found that mild droughts caused a 39.6 % increase in DOC production from peat and that peat DOC that had been exposed to oxygen was harder to remove by conventional water treatment processes (coagulation/flocculation). Drought had no effect on the amount of DOC production from vegetation litters; however large variation was observed between typical peatland species (Sphagnum and Calluna) and drought-tolerant grassland species (Juncus and Molinia), with the latter producing more DOC per unit weight. This would therefore suggest the increase in riverine DOC often observed post-drought is due entirely to soil microbial processes and DOC solubility rather than litter layer effects. Long-term shifts in species diversity may, therefore, be the most important impact of drought on litter layer DOC flux, whereas pulses related to drought may be observed in peat soils and are likely to become more common in the future. These results provide evidence in support of catchment management which increases the resilience of peat soils to drought, such as ditch blocking to raise water tables.

  7. Cytokine Release Assays as Tests for Exposure to Leishmania, and for Confirming Cure from Leishmaniasis, in Solid Organ Transplant Recipients.

    Directory of Open Access Journals (Sweden)

    Eugenia Carrillo

    Full Text Available Spain has one of the world's largest pools of organ donors and is a global leader in terms of the number of transplants it performs. The current outbreak of leishmaniasis in Fuenlabrada (in the southwest of the region of Madrid, Spain has involved 600 clinical cases since late 2009 (prevalence 0.2%. It may therefore be wise to monitor the town's transplanted population for Leishmania infantum; its members are immunosuppressed and at greater risk of infection and relapse following treatment. The present work examines the use of cytokine release assays to determine the prevalence of Leishmania infection in this population, and to confirm recovery following treatment for visceral leishmaniasis (VL. The humoral and cellular immune responses to L. infantum were characterized in 63 solid organ transplant (SOT recipients from Fuenlabrada, 57 of whom reported no previous episode of VL (NVL subjects, and six of whom had been cured of VL (CVL subjects. Seventeen subjects (12 NVL and 5 CVL showed a patent lymphoproliferative response to soluble Leishmania antigen (SLA. Stimulation of peripheral blood mononuclear cell cultures and of whole blood with SLA led to the production of different combinations of cytokines that might serve to confirm Leishmania infection or recovery from VL and help prevent cured patients from relapsing into this serious condition.

  8. Examination of Mechanisms Responsible for Organic Dust-related Diseases: Mediator Release induced by Microorgansims. A review

    DEFF Research Database (Denmark)

    Norn, Svend; Clementsen, Paul; Kristensen, K.S.

    1994-01-01

    Farmakologi, org. dust-related diseases, bacteria, pathogenic mechanisms, mediator release, entoxins - fungal spores......Farmakologi, org. dust-related diseases, bacteria, pathogenic mechanisms, mediator release, entoxins - fungal spores...

  9. Volatile organic compounds released from Microcystis flos-aquae under nitrogen sources and their toxic effects on Chlorella vulgaris.

    Science.gov (United States)

    Xu, Qinghuan; Yang, Lin; Yang, Wangting; Bai, Yan; Hou, Ping; Zhao, Jingxian; Zhou, Lv; Zuo, Zhaojiang

    2017-01-01

    Eutrophication promotes massive growth of cyanobacteria and algal blooms, which can poison other algae and reduce biodiversity. To investigate the differences in multiple nitrogen (N) sources in eutrophicated water on the emission of volatile organic compounds (VOCs) from cyanobacteria, and their toxic effects on other algal growth, we analyzed VOCs emitted from Microcystis flos-aquae with different types and concentrations of nitrogen, and determined the effects under Normal-N and Non-N conditions on Chlorella vulgaris. M. flos-aquae released 27, 22, 20, 27, 19, 25 and 17 compounds, respectively, with NaNO 3 , NaNO 2 , NH 4 Cl, urea, Ser, Lys and Arg as the sole N source. With the reduction in N amount, the emission of VOCs was increased markedly, and the most VOCs were found under Non-N condition. C. vulgaris cell propagation, photosynthetic pigment and Fv/Fm declined significantly following exposure to M. flos-aquae VOCs under Non-N condition, but not under Normal-N condition. When C. vulgaris cells were treated with two terpenoids, eucalyptol and limonene, the inhibitory effects were enhanced with increasing concentrations. Therefore, multiple N sources in eutrophicated water induce different VOC emissions from cyanobacteria, and reduction in N can cause nutrient competition, which can result in emissions of more VOCs. Those VOCs released from M. flos-aquae cells under Non-N for nutrient competition can inhibit other algal growth. Among those VOCs, eucalyptol and limonene are the major toxic agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III

    Energy Technology Data Exchange (ETDEWEB)

    LOCKREM, L.L.

    1999-08-13

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999.

  11. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiangbin, E-mail: eexbzeng@mail.hust.edu.cn; Wen, Xixing; Sun, Xiaohu; Liao, Wugang; Wen, Yangyang

    2016-04-30

    Boron-doped zinc oxide (BZO) films were grown by metal organic chemical vapor deposition. The influence of B{sub 2}H{sub 6} flow rate and substrate temperature on the microstructure, optical, and electrical properties of BZO films was investigated by X-ray diffraction spectrum, scanning electron microscope, optical transmittance spectrum, and Hall measurements. The BZO films with optical transmittance above 85% in the visible and infrared light range, resistivity of 0.9–1.0 × 10{sup −3} Ω cm, mobility of 16.5–25.5 cm{sup 2}/Vs, and carrier concentration of 2.2–2.7 × 10{sup 20} cm{sup −3} were deposited under optimized conditions. The optimum BZO films were applied on the bifacial BZO/p-type a-Si:H/i-type a-Si:H/n-type c-Si/i-type a-Si:H/n{sup +}-type a-Si:H/BZO heterojunction solar cell as both front and back transparent electrodes. Meanwhile, the bifacial heterojunction solar cell with indium tin oxide (ITO) as both front and back transparent electrodes was fabricated. The efficiencies of 17.788% (open-circuit voltage: 0.628 V, short-circuit current density: 41.756 mA/cm{sup 2} and fill factor: 0.678) and 16.443% (open-circuit voltage: 0.590 V, short-circuit current density: 36.515 mA/cm{sup 2} and fill factor: 0.762) were obtained on the a-Si/c-Si heterojunction solar cell with BZO and ITO transparent electrodes, respectively. - Highlights: • Boron-doped zinc oxide films with low resistivity were fabricated. • The boron-doped zinc oxide films have the high transmittance. • B-doped ZnO film was applied in a-Si:H/c-Si solar cell as transparent electrodes. • The a-Si:H/c-Si solar cell with efficiency of 17.788% was obtained.

  12. Microstructural and superconducting properties of high current metal-organic chemical vapor deposition YBa2Cu3O7-δ coated conductor wires

    International Nuclear Information System (INIS)

    Holesinger, T G; Maiorov, B; Ugurlu, O; Civale, L; Chen, Y; Xiong, X; Xie, Y; Selvamanickam, V

    2009-01-01

    Metal-organic chemical vapor deposition (MOCVD) on flexible, ion beam assisted deposition MgO templates has been used to produce high critical current density (J c ) (Y,Sm) 1 Ba 2 Cu 3 O y (REBCO) films suitable for use in producing practical high temperature superconducting (HTS) coated conductor wires. Thick films on tape were produced with sequential additions of 0.7 μm of REBCO via a reel-to-reel progression through a custom-designed MOCVD reactor. Multi-pass processing for thick film deposition is critically dependent upon minimizing surface secondary phase formation. Critical currents (I c s) of up to 600 A/cm width (t = 2.8 μm, J c = 2.6 MA cm -2 , 77 K, self-field) were obtained in short lengths of HTS wires. These high performance MOCVD films are characterized by closely spaced (Y,Sm) 2 O 3 nanoparticle layers that may be tilted relative to the film normal and REBCO orientation. Small shifts in the angular dependence of J c in low and intermediate applied magnetic fields can be associated with the tilted nanoparticle layers. Also present in these films were YCuO 2 nanoplates aligned with the YBCO matrix (short dimension perpendicular to the film normal), threading dislocations, and oriented composite defects (OCDs). The latter structures consist of single or multiple a-axis oriented grains coated on each side with insulating (Y,Sm) 2 O 3 or CuO. The OCDs formed a connected network of insulating phases by the end of the fourth pass. Subsequent attempts at adding additional layers did not increase I c . There is an inconsistency between the measured J c and the observed microstructural degradation that occurs with each additional layer, suggesting that previously deposited layers are improving with each repeated reactor pass. These dynamic changes suggest a role for post-processing to optimize superconducting properties of as-deposited films, addressing issues associated with reproducibility and manufacturing yield.

  13. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Basudev, E-mail: Swain@iae.re.kr [Institute for Advanced Engineering (IAE), Advanced Materials & Processing Center, Yongin-Si 449-863 (Korea, Republic of); Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo [Institute for Advanced Engineering (IAE), Advanced Materials & Processing Center, Yongin-Si 449-863 (Korea, Republic of); Lee, Kun-Jae [Department of Energy Engineering, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-07-15

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga{sub 0.97}N{sub 0.9}O{sub 0.09} is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga{sub 0.97}N{sub 0.9}O{sub 0.09} of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4 M HCl, 100 °C and pulp density of 100 kg/m{sup 3,} respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. - Highlights: • Waste MOCVD dust is treated through mechanochemical leaching. • GaN is hardly leached, and converted to NaGaO{sub 2} through ball milling and annealing. • Process for gallium recovery from waste MOCVD dust has been developed. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} is revealed. • Solid-state chemistry involved in this process is reported.

  14. Characterization of crystallinity of Ge{sub 1−x}Sn{sub x} epitaxial layers grown using metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Inuzuka, Yuki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ike, Shinichi; Asano, Takanori [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8472 (Japan); Takeuchi, Wakana [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Nakatsuka, Osamu, E-mail: nakatuka@alice.xtal.nagoya-u.ac.jp [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Zaima, Shigeaki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2016-03-01

    The epitaxial growth of a Ge{sub 1−x}Sn{sub x} layer was examined using metal-organic chemical vapor deposition (MOCVD) with two types of Ge precursors; tetra-ethyl-germane (TEGe) and tertiary-butyl-germane (TBGe); and the Sn precursor tri-butyl-vinyl-tin (TBVSn). Though the growth of a Ge{sub 1−x}Sn{sub x} layer on a Ge(001) substrate by MOCVD has been reported, a high-Sn-content Ge{sub 1−x}Sn{sub x} layer and the exploration of MO material combinations for Ge{sub 1−x}Sn{sub x} growth have not been reported. Therefore, the epitaxial growth of a Ge{sub 1−x}Sn{sub x} layer on Ge(001) and Si(001) substrates was examined using these precursors. The Ge{sub 1−x}Sn{sub x} layers were pseudomorphically grown on a Ge(001) substrate, while the Ge{sub 1−x}Sn{sub x} layer with a high degree of strain relaxation was obtained on a Si(001) substrate. Additionally, it was found that the two Ge precursors have different growth temperature ranges, where the TBGe could realize a higher growth rate at a lower growth temperature than the TEGe. The Ge{sub 1−x}Sn{sub x} layers grown using a combination of TBGe and TBVSn exhibited a higher crystalline quality and a smoother surface compared with the Ge{sub 1−x}Sn{sub x} layer prepared by low-temperature molecular beam epitaxy. In this study, a Ge{sub 1−x}Sn{sub x} epitaxial layer with a Sn content as high as 5.1% on a Ge(001) substrate was achieved by MOCVD at 300 °C. - Highlights: • Tertiary-butyl-germane and tri-butyl-vinyl-tin are suitable for Ge{sub 1−x}Sn{sub x} MOCVD growth. • We achieved a Sn content of 5.1% in Ge{sub 1−x}Sn{sub x} epitaxial layer on Ge(001). • The Ge{sub 1−x}Sn{sub x} layers grown on Ge and Si by MOCVD have high crystalline quality.

  15. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells

    International Nuclear Information System (INIS)

    Zeng, Xiangbin; Wen, Xixing; Sun, Xiaohu; Liao, Wugang; Wen, Yangyang

    2016-01-01

    Boron-doped zinc oxide (BZO) films were grown by metal organic chemical vapor deposition. The influence of B_2H_6 flow rate and substrate temperature on the microstructure, optical, and electrical properties of BZO films was investigated by X-ray diffraction spectrum, scanning electron microscope, optical transmittance spectrum, and Hall measurements. The BZO films with optical transmittance above 85% in the visible and infrared light range, resistivity of 0.9–1.0 × 10"−"3 Ω cm, mobility of 16.5–25.5 cm"2/Vs, and carrier concentration of 2.2–2.7 × 10"2"0 cm"−"3 were deposited under optimized conditions. The optimum BZO films were applied on the bifacial BZO/p-type a-Si:H/i-type a-Si:H/n-type c-Si/i-type a-Si:H/n"+-type a-Si:H/BZO heterojunction solar cell as both front and back transparent electrodes. Meanwhile, the bifacial heterojunction solar cell with indium tin oxide (ITO) as both front and back transparent electrodes was fabricated. The efficiencies of 17.788% (open-circuit voltage: 0.628 V, short-circuit current density: 41.756 mA/cm"2 and fill factor: 0.678) and 16.443% (open-circuit voltage: 0.590 V, short-circuit current density: 36.515 mA/cm"2 and fill factor: 0.762) were obtained on the a-Si/c-Si heterojunction solar cell with BZO and ITO transparent electrodes, respectively. - Highlights: • Boron-doped zinc oxide films with low resistivity were fabricated. • The boron-doped zinc oxide films have the high transmittance. • B-doped ZnO film was applied in a-Si:H/c-Si solar cell as transparent electrodes. • The a-Si:H/c-Si solar cell with efficiency of 17.788% was obtained.

  16. Petroleum Release Assessment and Impacts of Weather Extremes

    Science.gov (United States)

    Contaminated ground water and vapor intrusion are two major exposure pathways of concern at petroleum release sites. EPA has recently developed a model for petroleum vapor intrusion, called PVIScreen, which incorporates variability and uncertainty in input parameters. This ap...

  17. [Characteristics of dissolved organic carbon release under inundation from typical grass plants in the water-level fluctuation zone of the Three Gorges Reservoir area].

    Science.gov (United States)

    Tan, Qiu-Xia; Zhu, Boi; Hua, Ke-Ke

    2013-08-01

    The water-level fluctuation zone of the Three Gorges Reservoir (TGR) exposes in spring and summer, then, green plants especially herbaceous plants grow vigorously. In the late of September, water-level fluctuation zone of TGR goes to inundation. Meanwhile, annually accumulated biomass of plant will be submerged for decaying, resulting in organism decomposition and release a large amount of dissolved organic carbon (DOC). This may lead to negative impacts on water environment of TGR. The typical herbaceous plants from water-level fluctuation zone were collected and inundated in the laboratory for dynamic measurements of DOC concentration of overlying water. According to the determination, the DOC release rates and fluxes have been calculated. Results showed that the release process of DOC variation fitted in a parabolic curve. The peak DOC concentrations emerge averagely in the 15th day of inundation, indicating that DOC released quickly with organism decay of herbaceous plant. The release process of DOC could be described by the logarithm equation. There are significant differences between the concentration of DOC (the maximum DOC concentration is 486.88 mg x L(-1) +/- 35.97 mg x L(-1) for Centaurea picris, the minimum is 4.18 mg x L(-1) +/- 1.07 mg x L(-1) for Echinochloacrus galli) and the release amount of DOC (the maximum is 50.54 mg x g(-1) for Centaurea picris, the minimum is 6.51 mg x g(-1) for Polygonum hydropiper) due to different characteristics of plants, especially, the values of C/N of herbaceous plants. The cumulative DOC release quantities during the whole inundation period were significantly correlated with plants' C/N values in linear equations.

  18. Effect of alcohol vapor treatment on electrical and optical properties of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) films for indium tin oxide-free organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Fallahzadeh, Ali, E-mail: afa.phy@gmail.com; Saghaei, Jaber; Yousefi, Mohammad Hassan

    2014-11-30

    Graphical abstract: - Highlights: • A simple alcohol vapor treatment (AVT) technique was applied to enhance the conductivity of PEDOT:PSS films. • Alcohols with one OH group can improve conductivity of PEDOT:PSS films by this technique. • Mechanism of conductivity enhancement of PEDOT:PSS films by AVT method was explained. • ITO-free OLEDs were fabricated using highly conductive AVT PEDOT:PSS films standalone anode. - Abstract: A simple alcohol vapor treatment (AVT) technique was proposed to improve the conductivity of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films. In this technique, various alcohols, i.e. methanol, ethanol, 2-propanol and ethylene glycol, were applied to treat the surface of the films formed and then they were annealed. The sheet resistance of PEDOT:PSS films was significantly reduced from 130 kΩ/sq to 60 Ω/sq when treated with methanol vapor. The investigation of the vertical resistance of the films showed that the sample treated with methanol vapor displayed the lowest resistance as well. The mechanism of conductivity enhancement of PEDOT:PSS films through AVT method was explained by surface phase images, UV and IR spectra of PEDOT:PSS films. Optical transmittance spectrum of treated films exhibited that AVT has even enhanced the optical transmittance slightly. Improvement in the morphology, electrical and optical properties of PEDOT:PSS films prompted their applications as a transparent anode in the fabrication of ITO-free organic light-emitting diodes (OLEDs). The OLED manufactured based on methanol-treated PEDOT:PSS films demonstrated the highest luminance.

  19. Vapor pressures and enthalpies of vaporization of a series of the linear aliphatic aldehydes

    Czech Academy of Sciences Publication Activity Database

    Verevkin, S. P.; Krasnykh, E. L.; Vasiltsova, T. V.; Koutek, Bohumír; Doubský, Jan; Heintz, A.

    2003-01-01

    Roč. 206, - (2003), s. 331-339 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z4055905 Keywords : aldehydes * vapor pressure * enthalpy of vaporization Subject RIV: CC - Organic Chemistry Impact factor: 1.165, year: 2003

  20. Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex

    Science.gov (United States)

    The role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampl...

  1. Release of iodine from organic matter in natural water by K2S2O8 oxidation for 129I determination

    DEFF Research Database (Denmark)

    Dang, Haijun; Hou, Xiaolin; Roos, Per

    2013-01-01

    Accelerator mass spectrometry is the only method for measuring 129I in low level environmental samples. In this method, it is essential to convert organic associated iodine into inorganic form for the determination of total 129I or organic 129I because AgI is usually adopted as a target for AMS...... measurement of 129I. The chemical oxidative method to release iodine from organic matter in natural water was investigated using anion exchange chromatography and CHCl3 extraction methods. K2S2O8 was confirmed to be an ideal oxidative reagent for decomposing organic matters and converting organic iodine...... to inorganic form. More than 95% of iodine in natural water can be separated by solvent extraction after oxidation under optimal conditions, and the isotopic exchange of iodine in inorganic and organic forms was well completed during the oxidation, being able to result in an identical 129I/127I ratio...

  2. Observation of the molecular organization of calcium release sites in fast- and slow-twitch skeletal muscle with nanoscale imaging.

    Science.gov (United States)

    Jayasinghe, Isuru D; Munro, Michelle; Baddeley, David; Launikonis, Bradley S; Soeller, Christian

    2014-10-06

    Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixed adult rat skeletal muscle sections revealed clear differences between fast- and slow-twitch fibres in the molecular organization of ryanodine receptors (RyRs; the primary calcium release channels) within triads. With the improved resolution offered by dSTORM, abutting arrays of RyRs in transverse view of fast fibres were observed in contrast to the fragmented distribution on slow-twitch muscle that were approximately 1.8 times shorter and consisted of approximately 1.6 times fewer receptors. To the best of our knowledge, for the first time, we have quantified the nanometre-scale spatial association between triadic proteins using multi-colour super-resolution, an analysis difficult to conduct with electron microscopy. Our findings confirm that junctophilin-1 (JPH1), which tethers the sarcoplasmic reticulum ((SR) intracellular calcium store) to the tubular (t-) system at triads, was present throughout the RyR array, whereas JPH2 was contained within much smaller nanodomains. Similar imaging of the primary SR calcium buffer, calsequestrin (CSQ), detected less overlap of the triad with CSQ in slow-twitch muscle supporting greater spatial heterogeneity in the luminal Ca2+ buffering when compared with fast twitch muscle. Taken together, these nanoscale differences can explain the fundamentally different physiologies of fast- and slow-twitch muscle. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. The release of reducing sugars and dissolved organic carbon from Spartina alterniflora Loisel in a Georgia salt marsh

    Science.gov (United States)

    Pakulski, J. Dean

    1986-04-01

    Eight monosaccharides were found to be released from both tall and short forms of Spartina alterniflora during tidal submergence including: 2-d ribose, rhamnose, ribose, mannose, arabinose, fructose, galactose and xylose. Glucose was not detected in the leachate of either growth form. Two additional monosaccharides were found but were not identified. Losses of total reducing sugars (TRS) and total dissolved organic carbon (TDOC) ranged from 14-54 μgCg -1 dry wth -1 and 42 to 850 μgCg -1 dry wth -1, respectively. Losses of individual monosaccharides were generally <5μgCg -1 dry wth -1 and varied from 0·5-17 μgCg -1 dry wth -1. Differences were observed in seasonal patterns of losses between tall and short Spartina. Tall Spartina TRS losses peaked in midsummer, while in short Spartina TRS losses peaked in the spring and fall. TDOC losses in both tall and short Spartina followed similar patterns with peak losses occurring in the spring and fall. Periods of net uptake of TDOC were observed in both growth forms in midsummer. Uptake rates varied from 142-930 μgCg -1 dry wth -1. Estimated annual losses of TDOC from tall and short Spartina were between 100-150 and 5-10 gCm -2 year -1, respectively. The magnitude and seasonal pattern of TDOC losses reported here support Turner's conclusions that losses of labile DOM from Spartina are substantial in Georgia salt marshes and related to seasonal patterns of estuarine metabolism.

  4. Nuclear graphite waste's behaviour under disposal conditions: Study of the release and repartition of organic and inorganic forms of carbon 14 and tritium in alkaline media

    International Nuclear Information System (INIS)

    Vende, L.

    2012-01-01

    23000 tons of graphite wastes will be generated during dismantling of the first generation of French reactors (9 gas cooled reactors). These wastes are classified as Long Lived Low Level wastes (LLW-LL). As requested by the law, the French National Radioactive Waste Management Agency (Andra) is studying concepts of low-depth disposals.In this work we focus on carbon 14, the main long-lived radionuclide in graphite waste (5730 y), but also on tritium, which is the main contributor to the radioactivity in the short term. Carbon 14 and tritium may be released from graphite waste in many forms in gaseous phase ( 14 CO 2 , HT...) or in solution ( 14 CO 3 2- , HTO...). Their speciation will strongly affect their migration from the disposal site to the environment. Leaching experiments, in alkaline solution (0.1 M NaOH simulating repository conditions) have been performed on irradiated graphite, from Saint-Laurent A2 and G2 reactors, in order to quantify their release and characterize their speciation. The studies show that carbon 14 exists in both gaseous and aqueous phases. In the gaseous phase, release is weak (≤0.1%) and corresponds to oxidizable species. Carbon 14 is mainly released into liquid phase, as both inorganic and organic species. 65% of released fraction is inorganic and 35% organic carbon. Two tritiated species have been identified in gaseous phase: HTO and HT/Organically Bond Tritium. More than 90% of tritium in that phase corresponds to HT/OBT. But release is weak (≤0.1%). HTO is mainly in the liquid phase. (author)

  5. Effects of seasonal and well construction variables on soil vapor extraction pilot tests

    International Nuclear Information System (INIS)

    Campbell, R.; Hudon, N.; Bass, D.

    1995-01-01

    The selection and design of an effective soil vapor extraction system is dependent upon data generated from pilot testing. Therefore, it is critical to understand factors that may affect the testing prior to selecting or designing a system. In Sebago Lake Village, Maine, two adjacent gasoline stations experienced a release. Gasoline migrated through fine sand into the groundwater and discharged to a small stream. Soil vapor extraction was investigated as a remedial alternative to reduce volatile organic compounds in the unsaturated soil. Three soil vapor extraction pilot tests were performed at one of the sites and one test at the other site. The results of the testing varied. Data collected during a summer test indicated soil vapor extraction was less likely to work. The wells tested were installed using an excavator. An adequate surface seal was not present in any of the tested wells. An additional test was performed in the winter using wells installed by a drill rig. Winter test results indicated that soil vapor extraction could be effective. Another test was performed after a horizontal soil vapor extraction system with a surface seal was installed. The results of this testing indicated that soil vapor extraction was more effective than predicted by the earlier tests. Tests performed on the other property indicated that the horizontal wells were more effective than the vertical wells. Testing results were affected by the well installation method, well construction, proximity to manmade structures, and the season in which testing was performed. Understanding factors that affect the testing is critical in selecting and designing the system

  6. Comparing Titanium Release from Ceramic Tiles using a waste material characterization test - Influence of Calcium and Organic Matter concentrations

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov; Hansen, Steffen Foss; Astrup, Thomas Fruergaard

    2015-01-01

    Nanomaterials are beneficial in the building industry to enhance or add certain features to commonly used materials. One example is the use of nano-titanium dioxide in the surface coating of ceramic tiles, to make the tiles surface self-cleaning. At the end of life stage, ceramic tiles might...... to assess if nano-titanium dioxide coated ceramic tiles are suitable for depositing in a landfill or not. Specifically, we used compliance batch test method, which is a simple test evaluating the release from a solid material to an aqueous media during 24 hrs. If nano-Ti particles are released from solid...... immediately after the 24 hrs. test using single particle ICPMS and Transmission Electron Microscopy imaging. The preliminary results suggest that nanoparticulate titanium is released from both tiles – with and without nano-titanium dioxide coating. The size distributions of the released particles are similar...

  7. A study on safety concept and criteria of site release of nuclear installation proposed by international organizations and adopted in decommissioning practices

    International Nuclear Information System (INIS)

    Enokido, Yuji; Miyasaka, Yasuhiko; Ishikawa, Hironori

    2008-01-01

    Regulatory systems and safety criteria of site release of nuclear installation proposed by international organizations such as IAEA and applied in decommissioning in domestic and foreign countries have been studied, in order to avail them to deliberate the relevant domestic regulation and guides. In addition, the applicability of the proposal and practices to domestic legislation have been discussed. Regarding the national safety criteria, the annual individual dose constraint is optimized between 10 μSv and 300 μSv after recommendation and/or guides of IAEA etc. Unconditional release should be achieved, but the conditional and/or partial site release are possible under the same safety criteria to make the selection flexible for licensees. (author)

  8. Release of volatile mercury from vascular plants

    Science.gov (United States)

    Siegel, S. M.; Puerner, N. J.; Speitel, T. W.

    1974-01-01

    Volatile, organic solvent soluble mercury has been found in leaves and seeds of several angiosperms. Leaves of garlic vine, avocado, and haole-koa release mercury in volatile form rapidly at room temperature. In garlic vine, the most active release is temperature dependent, but does not parallel the vapor-pressure temperature relationship for mercury. Mercury can be trapped in nitric-perchloric acid digestion fluid, or n-hexane, but is lost from the hexane unless the acid mixture is present. Seeds of haole-koa also contain extractable mercury but volatility declines in the series n-hexane (90%), methanol (50%), water (10%). This suggests that reduced volatility may accompany solvolysis in the more polar media.

  9. Influence of dietary slow-release urea on growth performance, organ development and serum biochemical parameters of mutton sheep.

    Science.gov (United States)

    Ji, S K; Zhang, F; Sun, Y K; Deng, K D; Wang, B; Tu, Y; Zhang, N F; Jiang, C G; Wang, S Q; Diao, Q Y

    2017-10-01

    Eighty Dorper × thin-tailed Han cross-bred non-castrated male lambs [mean body weight (BW), 25.87 ± 1.06 kg] were randomly allocated to one of five different concentrations of slow-release urea (urea phosphate, UP). The feed consisted of an equal amount of concentrate diet and roughage; the concentrate feed was formulated to be isoenergetic and isonitrogenic and contained 0%, 1%, 2%, 4% and 8% UP (UP0.0, UP1.0, UP2.0, UP4.0 and UP8.0, respectively) as a replacement for soya bean meal. Feed intake, BW, average daily gain (ADG), feed utilisation efficiency (FUE), absolute and relative organ weights and biochemical and histopathological parameters were measured. Feed intake, BW, ADG and FUE significantly decreased in the group receiving UP8.0 (p  0.05). Quadratic equations were developed between the UP dosage in the concentrate feed and ADG or FUE (r 2  = 0.973 for ADG and r 2  = 0.761 for FUE) to determine the appropriate dosage of UP given the desire to maximise either ADG or FUE, the appropriate dosage (feed concentration) was calculated as 2.01% UP to achieve the greatest ADG or 2.13% UP to achieve the best FUE. The relative weight of the liver (% BW) in the UP2.0 groups was significantly greater than that of UP0.0 (p  0.05). The UP8.0 treatment significantly increased serum phosphorus levels (p < 0.05) and decreased the levels of alkaline phosphatase, glucose and calcium (Ca) compared with the lower UP dosage (p < 0.05). No histopathological differences were found in either hepatic tissues or renal tissues among treatments. Dietary UP as a replacement for soya bean in concentrate feeds for mutton sheep should not exceed 4%, as higher dosing may cause malnutrition and mineral disorders. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  10. Three representative UK moorland soils show differences in decadal release of dissolved organic carbon in response to environmental change

    Directory of Open Access Journals (Sweden)

    M. I. Stutter

    2011-12-01

    Full Text Available Moorland carbon reserves in organo-mineral soils may be crucial to predicting landscape-scale variability in soil carbon losses, an important component of which is dissolved organic carbon (DOC. Surface water DOC trends are subject to a range of scaling, transport and biotic processes that disconnect them from signals in the catchment's soils. Long-term soil datasets are vital to identify changes in DOC release at source and soil C depletion. Here we show, that moorland soil solution DOC concentrations at three key UK Environmental Change Network sites increased between 1993–2007 in both surface- and sub- soil of a freely-draining Podzol (48 % and 215 % increases in O and Bs horizons, respectively, declined in a gleyed Podzol and showed no change in a Peat. Our principal findings were that: (1 considerable heterogeneity in DOC response appears to exist between different soils that is not apparent from the more consistent observed trends for streamwaters, and (2 freely-draining organo-mineral Podzol showed increasing DOC concentrations, countering the current scientific focus on soil C destabilization in peats. We discuss how the key solubility controls on DOC associated with coupled physico-chemical factors of ionic strength, acid deposition recovery, soil hydrology and temperature cannot readily be separated. Yet, despite evidence that all sites are recovering from acidification the soil-specific responses to environmental change have caused divergence in soil DOC concentration trends. The study shows that the properties of soils govern their specific response to an approximately common set of broad environmental drivers. Key soil properties are indicated to be drainage, sulphate and DOC sorption capacity. Soil properties need representation in process-models to understand and predict the role of soils in catchment to global C budgets. Catchment hydrological (i.e. transport controls may, at present, be governing the more ubiquitous rises in

  11. Fuel vapor pressure (FVAPRS)

    International Nuclear Information System (INIS)

    Mason, R.E.

    1979-04-01

    A subcode (FVAPRS) is described which calculates fuel vapor pressure. This subcode was developed as part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The fuel vapor pressure subcode (FVAPRS), is presented and a discussion of literature data, steady state and transient fuel vapor pressure equations and estimates of the standard error of estimate to be expected with the FVAPRS subcode are included

  12. Understanding and optimization of InN and high indium containing InGaN alloys by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Tuna, Oecal

    2013-01-01

    Among the III-nitride semiconductors (Ga,Al,In)N, InN is the most attractive one due to having the narrowest bandgap of 0.64 eV. The revision in the bandgap of InN makes the InGaN more important since one can cover the whole solar spectrum by only changing In composition in an InGaN layer. The comparison of quality of InN and InGaN layers grown using a metal organic chemical vapor deposition (MOCVD) and a molecular beam epitaxy (MBE) methods indicate that growth with MOCVD is the more challenging, again due to the high dissociation temperature of NH 3 relative to the low decomposition temperature of InN (560-570 C). However, there is significant interest in developing an MOCVD process for InN and InGaN growth since MOCVD technology is the technology currently in use for commercial fabrication of group III nitride thin films. This thesis is therefore focused on a study of MOCVD growth of n- and p-type InN and In-rich InGaN films with the goal of providing new information on the influence of growth conditions on the film properties. Initially, a detailed investigation of MOCVD of InN is given. It is shown that MOCVD growth parameters (growth temperature and V/III ratio) have impacts on the layer properties such as In droplet formation on the surface as well as on its electrical and optical properties. PAS is employed for point defect analyzation. It is shown that In vacancies isolated by nitrogen vacancies are the dominant vacancy-type positron traps in InN. A decrease in the N vacancy concentration in InN is observed as a result of the growth temperature increase from 500 to 550 C. This is an indication of a reduction of N vacancy concentration by enhancing NH 3 dissociation at high growth temperature. Results obtained from optical techniques (Raman and PL) are used to estimate the free carrier concentrations in InN. Electrical characterizations are also carried out using Hall measurements. Carrier concentration values obtained by these three techniques revealed a

  13. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III, sampled March 28, 1999

    International Nuclear Information System (INIS)

    LOCKREM, L.L.

    1999-01-01

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999

  14. Understanding and optimization of InN and high indium containing InGaN alloys by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tuna, Oecal

    2013-07-18

    Among the III-nitride semiconductors (Ga,Al,In)N, InN is the most attractive one due to having the narrowest bandgap of 0.64 eV. The revision in the bandgap of InN makes the InGaN more important since one can cover the whole solar spectrum by only changing In composition in an InGaN layer. The comparison of quality of InN and InGaN layers grown using a metal organic chemical vapor deposition (MOCVD) and a molecular beam epitaxy (MBE) methods indicate that growth with MOCVD is the more challenging, again due to the high dissociation temperature of NH{sub 3} relative to the low decomposition temperature of InN (560-570 C). However, there is significant interest in developing an MOCVD process for InN and InGaN growth since MOCVD technology is the technology currently in use for commercial fabrication of group III nitride thin films. This thesis is therefore focused on a study of MOCVD growth of n- and p-type InN and In-rich InGaN films with the goal of providing new information on the influence of growth conditions on the film properties. Initially, a detailed investigation of MOCVD of InN is given. It is shown that MOCVD growth parameters (growth temperature and V/III ratio) have impacts on the layer properties such as In droplet formation on the surface as well as on its electrical and optical properties. PAS is employed for point defect analyzation. It is shown that In vacancies isolated by nitrogen vacancies are the dominant vacancy-type positron traps in InN. A decrease in the N vacancy concentration in InN is observed as a result of the growth temperature increase from 500 to 550 C. This is an indication of a reduction of N vacancy concentration by enhancing NH{sub 3} dissociation at high growth temperature. Results obtained from optical techniques (Raman and PL) are used to estimate the free carrier concentrations in InN. Electrical characterizations are also carried out using Hall measurements. Carrier concentration values obtained by these three techniques

  15. Physical model for vaporization

    OpenAIRE

    Garai, Jozsef

    2006-01-01

    Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result.

  16. Petroleum Vapor - Field Technical

    Science.gov (United States)

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  17. Importance Profiles for Water Vapor

    Science.gov (United States)

    Mapes, Brian; Chandra, Arunchandra S.; Kuang, Zhiming; Zuidema, Paquita

    2017-11-01

    Motivated by the scientific desire to align observations with quantities of physical interest, we survey how scalar importance functions depend on vertically resolved water vapor. Definitions of importance begin from familiar examples of water mass I m and TOA clear-sky outgoing longwave flux I OLR, in order to establish notation and illustrate graphically how the sensitivity profile or "kernel" depends on whether specific humidity S, relative humidity R, or ln( R) are used as measures of vapor. Then, new results on the sensitivity of convective activity I con to vapor (with implied knock-on effects such as weather prediction skill) are presented. In radiative-convective equilibrium, organized (line-like) convection is much more sensitive to moisture than scattered isotropic convection, but it exists in a drier mean state. The lesson for natural convection may be that organized convection is less susceptible to dryness and can survive and propagate into regions unfavorable for disorganized convection. This counterintuitive interpretive conclusion, with respect to the narrow numerical result behind it, highlights the importance of clarity about what is held constant at what values in sensitivity or susceptibility kernels. Finally, the sensitivities of observable radiance signals I sig for passive remote sensing are considered. While the accuracy of R in the lower free troposphere is crucial for the physical importance scalars, this layer is unfortunately the most difficult to isolate with passive remote sensing: In high emissivity channels, water vapor signals come from too high in the atmosphere (for satellites) or too low (for surface radiometers), while low emissivity channels have poor altitude discrimination and (in the case of satellites) are contaminated by surface emissions. For these reasons, active ranging (LiDAR) is the preferred observing strategy.

  18. The Role of Shape in Semantic Memory Organization of Objects : An Experimental Study Using PI-Release

    NARCIS (Netherlands)

    van Weelden, L.; Schilperoord, J.; Swerts, M.G.J.; Pecher, D.

    2015-01-01

    Visual information contributes fundamentally to the process of object categorization. The present study investigated whether the degree of activation of visual information in this process is dependent on the contextual relevance of this information. We used the Proactive Interference (PI-release)

  19. Application of Metal-Organic Framework Nano-MIL-100(Fe) for Sustainable Release of Doxycycline and Tetracycline.

    Science.gov (United States)

    Taherzade, Seyed Dariush; Soleimannejad, Janet; Tarlani, Aliakbar

    2017-08-06

    Nanostructures of MIL-100 were synthesized and used as a drug delivery platform for two members of the Tetracycline family. Doxycycline monohydrate (DOX) and Tetracycline hydrochloride (TC) were loaded separately on nano-MIL-100 (nanoparticles of drug@carrier were abbreviated as DOX@MIL-100 and TC@MIL-100). Characterizations were carried out using FT-IR, XRD, BET, DLS, and SEM. The FT-IR spectra revealed that the drugs were loaded into the framework of the carrier. The XRD patterns of DOX@MIL-100 and TC@MIL-100 indicated that no free DOX or TC were present. It could be concluded that the drugs are well dispersed into the pores of nano-MIL-100. The microporosity of the carrier was confirmed by BJH data. BET analysis showed a reduction in the free surface for both DOX@MIL-100 and TC@MIL-100. The release of TC and DOX was investigated, and it was revealed that MIL-100 mediated the drug solubility in water, which in turn resulted in a decrease in the release rate of TC (accelerating in DOX case) without lowering the total amount of released drug. After 48 h, 96 percent of the TC was sustain released, which is an unprecedented amount in comparison with other methods.

  20. Site-Specific Technical Report for the Evaluation of Thermatrix GS Series Flameless Thermal Oxidizer for Off-Gas Treatment of Soil Vapors with Volatile Organic Compounds at the Source Area Reduction System, Former Lowry Air Force Base, Colorado

    National Research Council Canada - National Science Library

    Archabal, Steven

    1998-01-01

    The Air Force Center for Environmental Excellence (AFCEE) has sponsored an ongoing program to promote the use of cost-effective soil vapor treatment technologies in conjunction with soil vapor extraction (SVE...

  1. Perspective: Highly stable vapor-deposited glasses

    Science.gov (United States)

    Ediger, M. D.

    2017-12-01

    This article describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the "ideal glass." Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquids are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.

  2. Estimating enthalpy of vaporization from vapor pressure using Trouton's rule.

    Science.gov (United States)

    MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2007-04-15

    The enthalpy of vaporization of liquids and subcooled liquids at 298 K (delta H(VAP)) is an important parameter in environmental fate assessments that consider spatial and temporal variability in environmental conditions. It has been shown that delta H(VAP)P for non-hydrogen-bonding substances can be estimated from vapor pressure at 298 K (P(L)) using an empirically derived linear relationship. Here, we demonstrate that the relationship between delta H(VAP)and PL is consistent with Trouton's rule and the ClausiusClapeyron equation under the assumption that delta H(VAP) is linearly dependent on temperature between 298 K and the boiling point temperature. Our interpretation based on Trouton's rule substantiates the empirical relationship between delta H(VAP) degree and P(L) degrees for non-hydrogen-bonding chemicals with subcooled liquid vapor pressures ranging over 15 orders of magnitude. We apply the relationship between delta H(VAP) degrees and P(L) degrees to evaluate data reported in literature reviews for several important classes of semivolatile environmental contaminants, including polycyclic aromatic hydrocarbons, chlorobenzenes, polychlorinated biphenyls and polychlorinated dibenzo-dioxins and -furans and illustrate the temperature dependence of results from a multimedia model presented as a partitioning map. The uncertainty associated with estimating delta H(VAP)degrees from P(L) degrees using this relationship is acceptable for most environmental fate modeling of non-hydrogen-bonding semivolatile organic chemicals.

  3. Low-leakage-current AlGaN/GaN HEMTs on Si substrates with partially Mg-doped GaN buffer layer by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Ming; Wang Yong; Wong Kai-Ming; Lau Kei-May

    2014-01-01

    High-performance low-leakage-current AlGaN/GaN high electron mobility transistors (HEMTs) on silicon (111) substrates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally one. A 1-μm gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10 −8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown AlGaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μm gate length T-shaped gate HEMTs were also investigated

  4. Low-Temperature Preparation of (111)-oriented Pb(Zr,Ti)O3 Films Using Lattice-Matched (111)SrRuO3/Pt Bottom Electrode by Metal-Organic Chemical Vapor Deposition

    Science.gov (United States)

    Kuwabara, Hiroki; Sumi, Akihiro; Okamoto, Shoji; Hoko, Hiromasa; Cross, Jeffrey S.; Funakubo, Hiroshi

    2009-04-01

    Pb(Zr0.35Ti0.65)O3 (PZT) films 170 nm thick were prepared at 415 °C by pulsed metal-organic chemical vapor deposition. The (111)-oriented PZT films with local epitaxial growth were obtained on (111)SrRuO3/(111)Pt/TiO2/SiO2/Si substrates and their ferroelectricities were ascertained. Ferroelectricity was improved by postannealing under O2 gas flow up to 550 °C. Larger remanent polarization and better fatigue endurance were obtained using a SrRuO3 top electrode compared to a Pt top electrode for PZT films after annealing at 500 °C.

  5. Improved crystal quality of a-plane GaN with high- temperature 3-dimensional GaN buffer layers deposited by using metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Park, Sung Hyun; Moon, Dae Young; Kim, Bum Ho; Kim, Dong Uk; Chang, Ho Jun; Jeon, Heon Su; Yoon, Eui Joon; Joo, Ki Su; You, Duck Jae; Nanishi, Yasushi

    2012-01-01

    a-plane GaN on r-plane sapphire substrates suffers from high density defects and rough surfaces. To obtain pit-free a-plane GaN by metal-organic chemical vapor deposition, we intentionally grew high-temperature (HT) 3-dimensional (3D) GaN buffer layers on a GaN nucleation layer. The effects of the HT 3D GaN buffer layers on crystal quality and the surface morphology of a-plane GaN were studied. The insertion of a 3D GaN buffer layer with an optimum thickness was found to be an effective method to obtain pit-free a-plane GaN with improved crystalline quality on r-plane sapphire substrates. An a-plane GaN light emitting diode (LED) at an emission wavelength around 480 nm with negligible peak shift was successfully fabricated.

  6. Direct effect of gonadal and contraceptive steroids on insulin release from mouse pancreatic islets in organ culture

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1984-01-01

    Sex steroids are supposed to contribute to the normal glucose homeostasis and to the altered glucose and insulin metabolism in pregnancy and during contraception. In the present study isolated mouse pancreatic islets were maintained in tissue culture medium RPMI 1640 supplemented with 0.5% newborn...... calf serum and 100 ng/ml of one of the following steroids: oestradiol, progesterone, testosterone, megestrol acetate, medroxyprogesterone, chlormadinone acetate, norethynodrel, norethindrone acetate, and ethynyloestradiol. Release of insulin to the culture medium was measured during a 2 week culture...... in the presence of oestradiol, progesterone, or testosterone were subjected to 30 min stimulation with 5.5, 11, 22 mmol/l glucose, only the progesterone-treated islets released more insulin in response to glucose than the control islets. It is concluded that progesterone and its derivatives have a direct effect...

  7. The Role of Shape in Semantic Memory Organization of Objects: An Experimental Study Using PI-Release.

    Science.gov (United States)

    van Weelden, Lisanne; Schilperoord, Joost; Swerts, Marc; Pecher, Diane

    2015-01-01

    Visual information contributes fundamentally to the process of object categorization. The present study investigated whether the degree of activation of visual information in this process is dependent on the contextual relevance of this information. We used the Proactive Interference (PI-release) paradigm. In four experiments, we manipulated the information by which objects could be categorized and subsequently be retrieved from memory. The pattern of PI-release showed that if objects could be stored and retrieved both by (non-perceptual) semantic and (perceptual) shape information, then shape information was overruled by semantic information. If, however, semantic information could not be (satisfactorily) used to store and retrieve objects, then objects were stored in memory in terms of their shape. The latter effect was found to be strongest for objects from identical semantic categories.

  8. Metal-organic chemical vapor deposition of high quality, high indium composition N-polar InGaN layers for tunnel devices

    Science.gov (United States)

    Lund, Cory; Romanczyk, Brian; Catalano, Massimo; Wang, Qingxiao; Li, Wenjun; DiGiovanni, Domenic; Kim, Moon J.; Fay, Patrick; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia

    2017-05-01

    In this study, the growth of high quality N-polar InGaN films by metalorganic chemical vapor deposition is presented with a focus on growth process optimization for high indium compositions and the structural and tunneling properties of such films. Uniform InGaN/GaN multiple quantum well stacks with indium compositions up to 0.46 were grown with local compositional analysis performed by energy-dispersive X-ray spectroscopy within a scanning transmission electron microscope. Bright room-temperature photoluminescence up to 600 nm was observed for films with indium compositions up to 0.35. To study the tunneling behavior of the InGaN layers, N-polar GaN/In0.35Ga0.65N/GaN tunnel diodes were fabricated which reached a maximum current density of 1.7 kA/cm2 at 5 V reverse bias. Temperature-dependent measurements are presented and confirm tunneling behavior under reverse bias.

  9. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  10. Vapor vacuum extraction treatability study at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Herd, M.D.; Matthern, G.; Michael, D.L.; Spang, N.; Downs, W.; Weidner, J.; Cleary, P.

    1993-01-01

    During the 1960s and early 1970s, barreled mixed waste containing volatile organic compounds (VOCS) and radioactive waste was buried at the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). Over time, some of the barrels have deteriorated allowing, VOC vapors to be released into the vadose zone. The primary VOC contaminates of concern are CCl 4 and trichloroethylene; however, chloroform, tetrachloroethylene, and 1,1,1-trichloroethane have also been detected. Vapor Vacuum Extraction (VVE) is one alternative being considered for remediation of the RWMC SDA vadose zone. A proposed pilot-scale treatability study (TS) will provide operation and maintenance costs for the design of the potential scale-up of the system

  11. Improvements to vapor generators

    International Nuclear Information System (INIS)

    Keller, Arthur; Monroe, Neil.

    1976-01-01

    A supporting system is proposed for vapor generators of the 'supported' type. Said supporting system is intended to compensate the disparities of thermal expansion due to the differences in the vertical dimensions of the tubes in the walls of the combustion chamber and their collectors compared to that of the balloon tanks and the connecting tube clusters of vaporization, the first one being longer than the second ones. Said system makes it possible to build said combustion chamber higher than the balloon tanks and the tube clusters of vaporization. The capacity of steam production is thus enhanced [fr

  12. Kinetics of killing Listeria monocytogenes by macrophages: correlation of 3H-DNA release from labeled bacteria and changes in numbers of viable organisms by mathematical model

    International Nuclear Information System (INIS)

    Davies, W.A.

    1982-01-01

    Conventional methods of assessing antibacterial activities of macrophages by viable counting are limited by the precision of the statistics and are difficult to interpret quantitatively because of unrestrained extracellular growth of bacteria. An alternative technique based on the release of radioactive DNA from labeled bacteria has been offered as overcoming these drawbacks. To assess it for use with macrophages I have made a correlation with the conventional viable counting method using a mathematical model. Opsonized Listeria monocytogenes labeled with 3 H-thymidine were exposed to rat macrophages for periods up to 4 hr. Numbers of viable bacteria determined after sonication increased exponentially in the absence of live cells and this growth rate was progressively inhibited by increasing numbers of macrophages. After a lag period of 30-60 min soluble 3 H appeared in the supernatant, the amount increasing with time and numbers of macrophages. To correlate these data I developed a mathematical model that considered that changes in numbers of viable organisms were due to the difference between rates of 1) growth of extracellular bacteria and 2) killing within the macrophage. On the basis of this model curves of best fit to the viable counts data were used to predict the release of radioactivity, assuming that death of a bacterium led to the total release of its label. These predictions and the experimental data agreed well, the lag period of 30-60 min between death of the bacterium and release of radioactivity being consistent with intracellular digestion. Release of soluble radioactivity appears to be an accurate reflection of the number of bacteria killed within the macrophage

  13. GROUND WATER SAMPLING OF VOCS IN THE WATER/CAPILLARY FRINGE AREA FOR VAPOR INTRUSION ASSESSMENT

    Science.gov (United States)

    Vapor intrusion has recently been considered a major pathway for increased indoor air contamination from certain volatile organic contaminants (VOCs). The recent Draft EPA Subsurface Vapor Intrusion Guidance Document states that ground water samples should be obtained from the u...

  14. Enhanced Attenuation Technologies: Passive Soil Vapor Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

    2010-03-15

    Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE

  15. Impact on the Fe redox cycling of organic ligands released by Synechococcus PCC 7002, under different iron fertilization scenarios. Modeling approach

    Science.gov (United States)

    Samperio-Ramos, Guillermo; González-Dávila, Melchor; Santana-Casiano, J. Magdalena

    2018-06-01

    The kinetics of Fe redox transformations are of crucial importance in determining the bioavailability of iron, due to inorganic Fe(II) and Fe weakly organic complexes being the most easily assimilated species by phytoplankton. The role played by the natural organic ligands excreted by the cyanobacteria Synecococcus PCC 7002 on the iron redox chemistry was studied at different stages of growth, considering changes in the organic exudation of the cyanobacteria, associated with growth under two different scenarios of iron availability. The oxidation/reduction processes of iron were studied at nanomolar levels and under different physicochemical conditions of pH (7.2- 8.2), temperature (5- 35 °C) and salinity (10- 37). The presence of natural organic exudates of Synechococcus affected the redox behavior of iron. A pH-dependent and photo-induced Fe(III) reduction process was detected in the presence of exudates produced under Fe-Low conditions. Photolytic reactions also modified the reactivity of those exudates with respect to Fe(II), increasing its lifetime in seawater. Without light mediated processes, organic ligands excreted under iron deficient conditions intensified the Fe(II) oxidation at pH redox constants between iron and the major ligands present in solution. Two organic type ligands for the exudates of Synechococcus PCC 7002, with different iron-chelation properties were included in the model. The Fe(II) speciation was radically affected when organic ligands were considered. The individual contributions to the overall Fe(II) oxidation rate demonstrated that these organic ligands played a key role in the oxidation process, although their contributions were dependent on the prescribed iron conditions. The study, therefore, suggests that the variability in the composition and nature of organic exudates released, due to iron availability conditions, might determine the redox behaviour of iron in seawater.

  16. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  17. From solid to liquid: assessing the release of organic matter into soil solution in response to land-use conversion in Brazilian Oxisols

    Science.gov (United States)

    James, Jason; Gross, Cole; Dwivedi, Pranjal; Bernardi, Rodolpho; Guerrini, Irae; Harrison, Rob; Butman, David

    2017-04-01

    Recent advances in freshwater research indicate that roughly double the quantity of carbon is exported from soils to streams and rivers than was previously estimated, and that the age of carbon exported from major rivers globally increases with greater human disturbance in the watershed. This implies that human land-use can release old, previously mineral-associated C into solution with subsequent export to groundwater and ultimately freshwater systems where terrestrial organic matter is either mineralized to CO2, stored in aquatic sediments, or exported to the ocean. Consequently, it is important to understand the mechanisms that cause the release of SOM that is mineral-bound into solution in response to human disturbance and land-use change. Research methods have been established to examine both the fast turnover, dissolved pool of soil organic matter (SOM), as well as the slow turnover, mineral-associated pool. However, to better characterize the response of the total SOM pool to disturbance, it is necessary to understand the interactions between these functional pools by examining them both simultaneously. This study seeks to examine the interaction between dissolved organic matter (DOM) and bulk SOM throughout the soil profile in response to conversion of Brazilian Cerrado (savannah forest) to Eucalyptus plantation forest on the same soil type. The water-extractable organic matter was obtained from soil samples down to 150 cm, characterized using fluorescence and NMR spectroscopy, and carbon-dated. Simultaneously, bulk mineral soil samples were analyzed for microbial biomass, carbon content and age, and characterized using Fourier Transform Infrared Spectroscopy. SOM spectra were obtained by washing subsamples with sodium hypochlorite and subtracting the subsequent mineral matrix spectra from bulk soil spectra. Preliminary results show that microbial biomass decreases much more quickly with depth than DOM, suggesting that C released into solution from deeper

  18. A Numerical Investigation of Vapor Intrusion — the Dynamic Response of Contaminant Vapors to Rainfall Events

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    determining the vapor intrusion risk. In addition, soil organic carbon retarded the transport process, and damped the contaminant concentration fluctuations. PMID:22922135

  19. Effect of spray-drying with organic solvents on the encapsulation, release and stability of fish oil.

    Science.gov (United States)

    Encina, Cristian; Márquez-Ruiz, Gloria; Holgado, Francisca; Giménez, Begoña; Vergara, Cristina; Robert, Paz

    2018-10-15

    Fish-oil (FO) was encapsulated with hydroxypropylcelullose (HPC) by conventional spray-drying with water (FO-water) and solvent spray-drying with ethanol (FO-EtOH), methanol (FO-MeOH) and acetone (FO-Acet) in order to study the effect of the solvent on the encapsulation efficiency (EE), microparticle properties and stability of FO during storage at 40 °C. Results showed that FO-Acet presented the highest EE of FO (92.0%), followed by FO-EtOH (80.4%), FO-MeOH (75.0%) and FO-water (71.1%). A decrease of the dielectric constant increased the EE of FO, promoting triglyceride-polymer interactions instead of oil-in-water emulsion retention. FO release profile in aqueous model was similar for all FO-microparticles, releasing only the surface FO, according to Higuchi model. Oxidative stability of FO significantly improved by spray-drying with MeOH, both in surface and encapsulated oil fractions. In conclusion, encapsulation of FO by solvent spray-drying can be proposed as an alternative technology for encapsulation of hydrophobic molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Stakeholder acceptance analysis: Passive soil vapor extraction using borehole flux

    International Nuclear Information System (INIS)

    Peterson, T.S.

    1995-12-01

    This report presents evaluations, recommendations, and requirements concerning passive soil vapor extraction (PSVE) derived from a three-year program of stakeholder involvement. PSVE takes advantage of the naturally occurring tendency of soil vapor to leave the subsurface during periods of low barometric pressure. PSVE seeks to expedite the release of volatile contaminants through the use of boreholes and technological enhancements. This report is for technology developers and those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders' perspectives help those responsible for technology deployment to make good decisions concerning the acceptability and applicability of PSVE to the remediation problems they face. The report provides: stakeholders' final evaluation of the acceptability of PSVE in light of the technology's field test; stakeholders' principal comments concerning PSVE; requirements that stakeholders have of any remediation technology. Technology decision makers should take these conclusions into account in evaluating the effectiveness and acceptability of any remedial method proposed for their site. In addition, the report presents data requirements for the technology's field demonstration defined by stakeholders associated with the Hanford site in Washington State, as well as detailed comments on PSVE from stakeholders from Sandia National Laboratory, Rocky Flats, Idaho National Engineering Laboratory, and Los Alamos National Laboratory

  1. Effects of chloride, sulfate and natural organic matter (NOM) on the accumulation and release of trace-level inorganic contaminants from corroding iron.

    Science.gov (United States)

    Peng, Ching-Yu; Ferguson, John F; Korshin, Gregory V

    2013-09-15

    This study examined effects of varying levels of anions (chloride and sulfate) and natural organic matter (NOM) on iron release from and accumulation of inorganic contaminants in corrosion scales formed on iron coupons exposed to drinking water. Changes of concentrations of sulfate and chloride were observed to affect iron release and, in lesser extent, the retention of representative inorganic contaminants (vanadium, chromium, nickel, copper, zinc, arsenic, cadmium, lead and uranium); but, effects of NOM were more pronounced. DOC concentration of 1 mg/L caused iron release to increase, with average soluble and total iron concentrations being four and two times, respectively, higher than those in the absence of NOM. In the presence of NOM, the retention of inorganic contaminants by corrosion scales was reduced. This was especially prominent for lead, vanadium, chromium and copper whose retention by the scales decreased from >80% in the absence of NOM to chloride levels. Modeling indicated that the observed effects were associated with the formation of metal-NOM complexes and effects of NOM on the sorption of the inorganic contaminants on solid phases that are typical for iron corrosion in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Bacterial self-defense antibiotics release from organic-inorganic hybrid multilayer films for long-term anti-adhesion and biofilm inhibition properties.

    Science.gov (United States)

    Xu, Qingwen; Li, Xi; Jin, Yingying; Sun, Lin; Ding, Xiaoxu; Liang, Lin; Wang, Lei; Nan, Kaihui; Ji, Jian; Chen, Hao; Wang, Bailiang

    2017-12-14

    Implant-associated bacterial infections pose serious medical and financial issues due to the colonization and proliferation of pathogens on the surface of the implant. The as-prepared traditional antibacterial surfaces can neither resist bacterial adhesion nor inhibit the development of biofilm over the long term. Herein, novel (montmorillonite/poly-l-lysine-gentamicin sulfate) 8 ((MMT/PLL-GS) 8 ) organic-inorganic hybrid multilayer films were developed to combine enzymatic degradation PLL for on-demand self-defense antibiotics release. Small molecule GS was loaded into the multilayer films during self-assembly and the multilayer films showed pH-dependent and linear growth behavior. The chymotrypsin- (CMS) and bacterial infections-responsive film degradation led to the peeling of the films and GS release. Enzyme-responsive GS release exhibited CMS concentration dependence as measured by the size of the inhibition zone and SEM images. Notably, the obtained antibacterial films showed highly efficient bactericidal activity which killed more than 99.9% of S. aureus in 12 h. Even after 3 d of incubation in S. aureus, E. coli or S. epidermidis solutions, the multilayer films exhibited inhibition zones of more than 1.5 mm in size. Both in vitro and in vivo antibacterial tests indicated good cell compatibility, and anti-inflammatory, and long-term bacterial anti-adhesion and biofilm inhibition properties.

  3. Land management as a factor controlling dissolved organic carbon release from upland peat soils 1: spatial variation in DOC productivity.

    Science.gov (United States)

    Yallop, A R; Clutterbuck, B

    2009-06-01

    The importance of soil storage in global carbon cycling is well recognised and factors leading to increased losses from this pool may act as a positive feedback mechanism in global warming. Upland peat soils are usually assumed to serve as carbon sinks, there is however increasing evidence of carbon loss from upland peat soils, and DOC concentrations in UK rivers have increased markedly over the past three decades. A number of drivers for increasing DOC release from peat soils have been proposed although many of these would not explain fine-scale variations in DOC release observed in many catchments. We examined the effect of land use and management on DOC production in upland peat catchments at two spatial scales within the UK. DOC concentration was measured in streams draining 50 small-scale catchments (b3 km2) in three discrete regions of the south Pennines and one area in the North Yorkshire Moors. Annual mean DOC concentration was also derived from water colour data recorded at water treatment works for seven larger scale catchments (1.5-20 km2) in the south Pennines. Soil type and land use/management in all catchments were characterised from NSRI digital soil data and ortho-corrected colour aerial imagery. Of the factors assessed, representing all combinations of soil type and land use together with catchment slope and area, the proportion of exposed peat surface resulting from new heather burning was consistently identified as the most significant predictor of variation in DOC concentration. This relationship held across all blanket peat catchments and scales. We propose that management activities are driving changes in edaphic conditions in upland peat to those more favourable for aerobic microbial activity and thus enhance peat decomposition leading to increased losses of carbon from these environments.

  4. Consumption and release of dissolved organic carbon by marine bacteria in a pulsed-substrate environment: from experiments to modelling.

    NARCIS (Netherlands)

    Eichinger, M.; Kooijman, S.A.L.M.; Sempere, R.; Poggiale, J.C.

    2009-01-01

    To investigate the effects of episodic occurrence of dissolved organic carbon(DOC) in the natural environment, bacterial degradation of labile DOC was studied under laboratory-controlled conditions followed by modelling. A single labile DOC compound was periodically added to the experimental culture

  5. 75 FR 65151 - Marine Vapor Control Systems

    Science.gov (United States)

    2010-10-21

    ... Classification UFL Upper flammable limit USCG U.S. Coast Guard VCS Vapor control system VOC Volatile organic... transfer substance to new Subpart P, beginning with 33 CFR 154.2000, to facilitate the substantive changes... that guidance. Limit requirements for flame arresters or flame screens to the flammable, combustible...

  6. Prediction of vapor pressure and heats of vaporization of edible oil/fat compounds by group contribution

    DEFF Research Database (Denmark)

    Ceriani, Roberta; Gani, Rafiqul; Liu, Y.A.

    2013-01-01

    In the present work, a group contribution method is proposed for the estimation of vapor pressures and heats of vaporization of organic liquids found in edible fat/oil and biofuel industries as a function of temperature. The regression of group contribution parameters was based on an extensive...

  7. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST and 200 WEST TANK FARMS FROM CY2001 THRU CY2004

    International Nuclear Information System (INIS)

    FAUROTE, J.M.

    2004-01-01

    Investigation into the meteorological influences on vapor incidents in the tank farms to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems

  8. Development of transition metal oxide catalysts for treatment of off-gases released during pyrolysis of organic ion exchange resins

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2005-08-01

    The spent IX resin wastes arising from nuclear power plants have high radiation level due to fission product 137 Cesium and activation product 60 Cobalt. The pyrolysis and oxidative pyrolysis processes have potential to minimize final waste form volumes of these wastes. The major difficulty in deploying these processes for treatment of spent IX resins is release of off-gases containing large quantities of aromatic hydrocarbons, amines, sulphur dioxide, hydrogen sulphide, carbonyl sulphide etc. As an alternative to high temperature incineration of the pyrolysis off gases, feasibility of using catalytic combustion at moderate temperatures was investigated in the laboratory. Copper chromite, copper oxide-ceric oxide and vanadium pentaoxide catalysts supported on alumina were prepared and tested for oxidation of styrene monomer, toluene, ethyl benzene and trimethyl amine at 22500 hr -1 space velocity and temperature range of 300 to 500 degC. At temperatures over 475 degC, all three catatyst gave oxidation efficiency of over 97% for these compounds over concentration range of few tens of ppm to few thousands ppm. A composite catalyst bed of three catalysts comprising principally of copper chromite is proposed for treatment of IX resin pyrolysis off-gases. (author)

  9. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  10. Visible-light CO{sub 2} photocatalytic reduction performance of ball-flower-like Bi{sub 2}WO{sub 6} synthesized without organic precursor: Effect of post-calcination and water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhuxing; Yang, Zhenmei; Liu, Hongfeng [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler and Furnace Flue Gas Pollution Control, Hangzhou 311202 (China); Wang, Haiqiang, E-mail: wanghaiqiang2008@126.com [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler and Furnace Flue Gas Pollution Control, Hangzhou 311202 (China); Wu, Zhongbiao, E-mail: zbwu@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler and Furnace Flue Gas Pollution Control, Hangzhou 311202 (China)

    2014-10-01

    Graphical abstract: - Highlights: • Photocatalytic CO{sub 2} reduction on non-organic synthesized PB-Bi{sub 2}WO{sub 6} was investigated. • CO was detected as the major product. • Increased amount of CO was yielded in the condition with little water vapor. • Photocatalytic performance was enhanced with Bi{sub 2}WO{sub 6} after 550 °C post-annealing. • Renewing the catalysts used in CO{sub 2} photoreduction by water washing was achieved. - Abstract: Nanoplates-composed ball-flower-like Bi{sub 2}WO{sub 6} (PB-Bi{sub 2}WO{sub 6}) was synthesized by a hydrothermal method without any organic precursor and its performance in photocatalytic reduction of CO{sub 2} was investigated in a continuous-flow reaction system under visible light irradiation (420 nm < λ < 620 nm). CO was detected as the main product of this photocatalytic process and H{sub 2}O was found to suppress the conversion of CO{sub 2} to CO due to its competitive absorption with CO{sub 2} on the medium strength basic sites of Bi{sub 2}WO{sub 6}. PB-Bi{sub 2}WO{sub 6} annealed at 550 °C showed superior CO yield in the condition with little water vapor. It might be attributed to the enhanced crystallinity, significantly decreased recombination rate of photo-generated electrons and holes and more stable basic sites for strengthened CO{sub 2} adsorption, according to characterization results by XRD, SEM, UV–vis SRS, PL and CO{sub 2}-TPD. However, comparing with PB-Bi{sub 2}WO{sub 6}, the negative effect of H{sub 2}O was even more prominent on the annealed sample because of the reduced surface area. Yield decrease was observed during the irradiation time due to the adsorption of intermediates generated but fortunately washing with deionized water was found to be an effective way to renew the catalyst.

  11. Inhibition of filiform corrosion on organic-coated AA2024-T3 by smart-release cation and anion-exchange pigments

    International Nuclear Information System (INIS)

    Williams, G.; McMurray, H.N.

    2012-01-01

    Highlights: ► Filiform corrosion (FFC) inhibition by various smart-release pigments was evaluated by SKP. ► Rare earth cation-containing pigments were ineffective at halting FFC propagation. ► Metal oxo-anions and organic copper-specific agents were exchanged into hydrotalcite. ► Effective inhibition of FFC was demonstrated by anions which stopped copper re-plating. - Abstract: In-coating cation and anion exchange pigments are studied with respect to their ability to inhibit chloride-induced filiform corrosion (FFC) on organic-coated AA2024-T3 aluminium alloy substrates. In-situ scanning Kelvin probe potentiometry is used to quantify both underfilm potentials associated with populations of propagating corrosion filaments and the kinetics of coating disbondment. Smart-release bentonite pigments containing exchangeable cerium (III) and yttrium (III) cations are shown to be largely ineffective in reducing rates of FFC propagation. The reasons for this are discussed in terms of the chemistry of the electrolyte-filled corrosion filament head. In contrast, anion-exchange hydrotalcite (HT) based pigments are highly effective inhibitors of FFC. A comparison of the extent of FFC observed for various inorganic exchangeable anions is made with as-received HT comprising carbonate anions. Of the anions evaluated, exchangeable chromate unsurprisingly provides the highest FFC inhibition efficiency. It is also demonstrated that exchanging the native carbonate ions for certain organic species which act as complexing agents for copper ions, gives rise to an equivalent level of FFC inhibition. The implication of these findings with respect to the mechanism of FFC on copper containing aluminium alloys is considered.

  12. Fate of gaseous tritium and carbon-14 released from buried low-level radioactive waste

    International Nuclear Information System (INIS)

    Striegl, R.G.

    1988-01-01

    Microbial decomposition, chemical degradation, and volatilization of buried low-level radioactive waste results in the release of gases containing tritium ( 3 H) and carbon-14 ( 14 C) to the surrounding environment. Water vapor, carbon dioxide, and methane that contain 3 H or 14 C are primary products of microbial decomposition of the waste. Depending on the composition of the waste source, chemical degradation and volatilization of waste also may result in the production of a variety of radioactive gases and organic vapors. Movement of the gases in materials that surround waste trenches is affected by physical, geochemical, and biological mechanisms including sorption, gas-water-mineral reactions, isotopic dilution, microbial consumption, and bioaccumulation. These mechanisms either may transfer 3 H and 14 C to solids and infiltrating water or may result in the accumulation of the radionuclides in plant or animal tissue. Gaseous 3 H or 14 C that is not transferred to other forms is ultimately released to the atmosphere

  13. Metal-organic chemical vapor deposition of ultra-thin photovoltaic devices using a pyrite based p-i-n structure

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, A.J., E-mail: andy.clayton@optictechnium.com [CSER, Glyndwr University, OpTIC Technium, St Asaph, LL17 0JD (United Kingdom); Irvine, S.J.C.; Barrioz, V.; Brooks, W.S.M. [CSER, Glyndwr University, OpTIC Technium, St Asaph, LL17 0JD (United Kingdom); Zoppi, G.; Forbes, I. [NPAC, Northumbria University, Newcastle upon Tyne, NE1 8ST (United Kingdom); Rogers, K.D.; Lane, D.W.; Hutchings, K.; Roncallo, S. [Centre for Material Science and Engineering, Cranfield University, Swindon, SN6 8LA (United Kingdom)

    2011-08-31

    Ultra-thin photovoltaic (PV) devices were produced by atmospheric pressure metal organic chemical vapour deposition (AP-MOCVD) incorporating a highly absorbing intermediate sulphurised FeS{sub x} layer into a CdS/CdTe structure. X-ray diffraction (XRD) confirmed a transitional phase change to pyrite FeS{sub 2} after post growth sulphur (S) annealing of the FeS{sub x} layer between 400 deg. C and 500 deg. C. Devices using a superstrate configuration incorporating a sulphurised or non-sulphurised FeS{sub x} layer were compared to p-n devices with only a CdS/CdTe structure. Devices with sulphurised FeS{sub x} layers performed least efficiently, even though pyrite fractions were present. Rutherford back scattering (RBS) confirmed deterioration of the CdS/FeS{sub x} interface due to S inter-diffusion during the annealing process.

  14. Forcing of dissolved organic carbon release by phytoplankton by anticyclonic mesoscale eddies in the subtropical NE Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    S. Lasternas

    2013-03-01

    Full Text Available The organic carbon fluxes mediated by planktonic communities in two cyclonic eddies (CEs and two anticyclonic eddies (AEs at the Canary Eddy Corridor were studied and compared with the dynamics in two far-field (FF stations located outside the eddies. We observed favorable conditions and signs for upwelling at the center of CEs and for downwelling and mixing at the centers of AEs. CEs were characterized by a higher concentration of nutrients and the highest concentration of chlorophyll a (chl a, associated with the highest abundance of microphytoplankton and diatoms. AEs displayed concentrations of chl a values and nutrients similar to those at the FF stations, except for the highest ammonium concentration occurring at AE and a very low concentration of phosphorus at FF stations. AEs were transient systems characterized by an increasing abundance of picophytoplankton and heterotrophic bacteria. While primary production was similar between the systems, the production of dissolved organic carbon (PDOC was significantly higher in the AEs. Phytoplankton cell mortality was lowest in the CEs, and we found higher cell mortality rates at AE than at FF stations, despite similar chl a concentration. Environmental changes in the AEs have been significantly prejudicial to phytoplankton as indicated by higher phytoplankton cell mortality (60% of diatoms cells were dead and higher cell lysis rates. The adverse conditions for phytoplankton associated with the early-stage anticyclonic systems, mainly triggered by active downwelling, resulted in higher cell mortality, forcing photosynthesized carbon to fuel the dissolved pool.

  15. Temperature-dependent release of volatile organic compounds of eucalypts by direct analysis in real time (DART) mass spectrometry.

    Science.gov (United States)

    Maleknia, Simin D; Vail, Teresa M; Cody, Robert B; Sparkman, David O; Bell, Tina L; Adams, Mark A

    2009-08-01

    A method is described for the rapid identification of biogenic, volatile organic compounds (VOCs) emitted by plants, including the analysis of the temperature dependence of those emissions. Direct analysis in real time (DART) enabled ionization of VOCs from stem and leaf of several eucalyptus species including E. cinerea, E. citriodora, E. nicholii and E. sideroxylon. Plant tissues were placed directly in the gap between the DART ionization source skimmer and the capillary inlet of the time-of-flight (TOF) mass spectrometer. Temperature-dependent emission of VOCs was achieved by adjusting the temperature of the helium gas into the DART ionization source at 50, 100, 200 and 300 degrees C, which enabled direct evaporation of compounds, up to the onset of pyrolysis of plant fibres (i.e. cellulose and lignin). Accurate mass measurements facilitated by TOF mass spectrometry provided elemental compositions for the VOCs. A wide range of compounds was detected from simple organic compounds (i.e. methanol and acetone) to a series of monoterpenes (i.e. pinene, camphene, cymene, eucalyptol) common to many plant species, as well as several less abundant sesquiterpenes and flavonoids (i.e. naringenin, spathulenol, eucalyptin) with antioxidant and antimicrobial properties. The leaf and stem tissues for all four eucalypt species showed similar compounds. The relative abundances of methanol and ethanol were greater in stem wood than in leaf tissue suggesting that DART could be used to investigate the tissue-specific transport and emissions of VOCs. Copyright (c) 2009 John Wiley & Sons, Ltd.

  16. The fate of organic compounds in a cement-based repository: impact on the engineered barrier and the release of C-14 from the near field

    International Nuclear Information System (INIS)

    Wieland, E.; Rothardt, J.; Schlotterbeck, G.

    2015-01-01

    The degradation of organic materials is taken into account in the safety analysis for a L/ILW (Low- and intermediate-level radioactive waste) repository in Switzerland with the aim of assessing possible impacts on the cement barrier. The waste forms to be disposed of in the planned L/ILW repository will contain HMW polymers and LMW monomeric organic materials. It is anticipated that these organic materials have different degradation rates and therefore different life times in a repository. While the decomposition of LMW organics is expected to be fast and complete during the oxic and early anoxic states of a repository, i.e. before and shortly after repository closure, the decomposition of the HMW polymeric materials is expected to be very slow and, for some materials, to occur over the entire life time of the repository. The degradation of organic materials generates CO 2 which gives rise to carbonation of the cement barrier. The maximum acceptable loading of organics in the near field with no detrimental effect on radionuclide immobilization can be estimated on the assumption that at maximum 2/3 of the total portlandite inventory of hydrated cement is allowed to convert to CaCO 3 in the case of waste compartments for which the cementitious barrier should remain intact. The maximum loading is determined by the inventory of the organic material under consideration as well as the carbon content and the oxidation state of carbon of the material. Carbon-14 bound in organic compounds is considered to be an important contributor to the annual dose released from a L/ILW repository. While the 14 C inventory is well known, the chemical speciation of 14 C in the cementitious near field upon liberation in the course of the corrosion of activated steel is only poorly understood. Preliminary corrosion tests with non-activated steel powders show the formation of gaseous and dissolved organic carbon species, e.g. alkanes/alkenes, alcohols, aldehydes, and carboxylic acids

  17. Combined rankine and vapor compression cycles

    Science.gov (United States)

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  18. Detecting Organic Compounds Released from Iron Oxidizing Bacteria using Sample Analysis at Mars (SAM) Like Instrument Protocols

    Science.gov (United States)

    Glavin, D. P.; Popa, R.; Martin, M. G.; Freissinet, C.; Fisk, M. R.; Dworkin, J. P.; Mahaffy, P. R.

    2012-01-01

    Mars is a planet of great interest for Astrobiology since its past environmental conditions are thought to have been favourable for the emergence life. At present, the Red Planet is extremely cold and dry and the surface is exposed to intense UV and ionizing radiation, conditions generally considered to be incompatible with life as we know it on Earth. It was proposed that the shallow subsurface of Mars, where temperatures can be above freezing and liquid water can exist on rock surfaces, could harbor chemolithoautotrophic bacteria such as the iron oxidizing microorganism Pseudomonas sp. HerB. The Mars Science Laboratory (MSL) mission will provide the next opportunity to carry out in situ measurements for organic compounds of possible biological origin on Mars. One instrument onboard MSL, called the Sample Analysis at Mars (SAM) instrument suite, will carry out a broad and sensitive search for organic compounds in surface samples using either high temperature pyrolysis or chemical extraction followed by gas chromatography mass spectrometry. We present gas chromatograph mass spectrometer (GC/MS) data on crushed olivine rock powders that have been inoculated with Pseudomonas sp. HerB at different concentrations ranging from approx 10(exp 2) to 10(exp 7) cells per gram. The inoculated olivine samples were heated under helium carrier gas flow at 500 C and the pyrolysis products concentrated using a SAM-like hydrocarbon trap set at -20 C followed by trap heating and analysis by GC/Ms. In addition, the samples were also extracted using a low temperature "one-pot" chemical extraction technique using N-methyl, N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) as the silylating agent prior to GC/MS analysis. We identified several aldehydes, thiols, and alkene nitriles after pyrolysis GC/MS analysis of the bacteria that were not found in the olivine control samples that had not been inoculated with bacteria. The distribution of pyrolysis products extracted from the

  19. Laboratory measurements of nitric oxide release from forest soil with a thick organic layer under different understory types

    Directory of Open Access Journals (Sweden)

    A. Bargsten

    2010-05-01

    Full Text Available Nitric oxide (NO plays an important role in the photochemistry of the troposphere. NO from soil contributes up to 40% to the global budget of atmospheric NO. Soil NO emissions are primarily caused by biological activity (nitrification and denitrification, that occurs in the uppermost centimeter of the soil, a soil region often characterized by high contents of organic material. Most studies of NO emission potentials to date have investigated mineral soil layers. In our study we sampled soil organic matter under different understories (moss, grass, spruce and blueberries in a humid mountainous Norway spruce forest plantation in the Fichtelgebirge (Germany. We performed laboratory incubation and flushing experiments using a customized chamber technique to determine the response of net potential NO flux to physical and chemical soil conditions (water content and temperature, bulk density, particle density, pH, C/N ratio, organic C, soil ammonium, soil nitrate. Net potential NO fluxes (in terms of mass of N from soil samples taken under different understories ranged from 1.7–9.8 ng m−2 s−1 (soil sampled under grass and moss cover, 55.4–59.3 ng m−2 s−1 (soil sampled under spruce cover, and 43.7–114.6 ng m−2 s−1 (soil sampled under blueberry cover at optimum water content and a soil temperature of 10 °C. The water content for optimum net potential NO flux ranged between 0.76 and 0.8 gravimetric soil moisture for moss covered soils, between 1.0 and 1.1 for grass covered soils, 1.1 and 1.2 for spruce covered soils, and 1.3 and 1.9 for blueberry covered soils. Effects of soil physical and chemical characteristics on net potential NO flux were statistically significant (0.01 probability level only for NH4+. Therefore, as an alternative explanation for the differences in soil biogenic NO emission we consider more biological factors like understory

  20. Spatiotemporal dynamics of phosphorus release, oxygen consumption and greenhouse gas emissions after localised soil amendment with organic fertilisers

    Energy Technology Data Exchange (ETDEWEB)

    Christel, Wibke [Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Department of Commerce, Industry and Agriculture, Danish Environmental Protection Agency, 1401 Copenhagen C (Denmark); Zhu, Kun [Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Hoefer, Christoph [Rhizosphere Ecology and Biogeochemistry Group, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Kreuzeder, Andreas [Rhizosphere Ecology and Biogeochemistry Group, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Land Salzburg, Natur- und Umweltschutz, Gewerbe (Abteilung 5), Michael-Pacher-Straße 36, 5020 Salzburg (Austria); Santner, Jakob [Rhizosphere Ecology and Biogeochemistry Group, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Division of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Bruun, Sander; Magid, Jakob [Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Jensen, Lars Stoumann, E-mail: lsj@plen.ku.dk [Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark)

    2016-06-01

    Organic fertilisation inevitably leads to heterogeneous distribution of organic matter and nutrients in soil, i.e. due to uneven surface spreading or inhomogeneous incorporation. The resulting localised hotspots of nutrient application will induce various biotic and abiotic nutrient turnover processes and fixation in the residuesphere, giving rise to distinct differences in nutrient availability, soil oxygen content and greenhouse gas (GHG) production. In this study we investigated the spatiotemporal dynamics of the reaction of manure solids and manure solids char with soil, focusing on their phosphorus (P) availability, as current emphasis on improving societal P efficiency through recycling waste or bio-based fertilisers necessitates a sound understanding of their behaviour. Soil layers amended at a constant P application rate with either pig manure solids or char made from pig manure solids were incubated for three weeks between layers of non-amended, P-depleted soil. Spatial and temporal changes in and around the amendment layers were simultaneously investigated in this study using a sandwich sensor consisting of a planar oxygen optode and multi-element diffusive gradients in thin films (DGT) gels, combined with GHG emission measurements. After three weeks of incubation, the soil containing a layer amended with manure solids had a lower overall O{sub 2} content and had emitted significantly more CO{sub 2} than the non-amended control or the char-amended soil. The P availability from manure solids was initially higher than that from the char, but decreased over time, whereas from the char-amended layer P availability increased in the same period. In both treatments, increases in P availability were confined to the amended soil layer and did not greatly affect P availability in the directly adjacent soil layers during the three-week incubation. These results highlight the importance of placing organic P fertilisers close to where the plant roots will grow in

  1. Spatiotemporal dynamics of phosphorus release, oxygen consumption and greenhouse gas emissions after localised soil amendment with organic fertilisers

    International Nuclear Information System (INIS)

    Christel, Wibke; Zhu, Kun; Hoefer, Christoph; Kreuzeder, Andreas; Santner, Jakob; Bruun, Sander; Magid, Jakob; Jensen, Lars Stoumann

    2016-01-01

    Organic fertilisation inevitably leads to heterogeneous distribution of organic matter and nutrients in soil, i.e. due to uneven surface spreading or inhomogeneous incorporation. The resulting localised hotspots of nutrient application will induce various biotic and abiotic nutrient turnover processes and fixation in the residuesphere, giving rise to distinct differences in nutrient availability, soil oxygen content and greenhouse gas (GHG) production. In this study we investigated the spatiotemporal dynamics of the reaction of manure solids and manure solids char with soil, focusing on their phosphorus (P) availability, as current emphasis on improving societal P efficiency through recycling waste or bio-based fertilisers necessitates a sound understanding of their behaviour. Soil layers amended at a constant P application rate with either pig manure solids or char made from pig manure solids were incubated for three weeks between layers of non-amended, P-depleted soil. Spatial and temporal changes in and around the amendment layers were simultaneously investigated in this study using a sandwich sensor consisting of a planar oxygen optode and multi-element diffusive gradients in thin films (DGT) gels, combined with GHG emission measurements. After three weeks of incubation, the soil containing a layer amended with manure solids had a lower overall O_2 content and had emitted significantly more CO_2 than the non-amended control or the char-amended soil. The P availability from manure solids was initially higher than that from the char, but decreased over time, whereas from the char-amended layer P availability increased in the same period. In both treatments, increases in P availability were confined to the amended soil layer and did not greatly affect P availability in the directly adjacent soil layers during the three-week incubation. These results highlight the importance of placing organic P fertilisers close to where the plant roots will grow in order to

  2. Green Remediation Best Management Practices: Soil Vapor Extraction & Air Sparging

    Science.gov (United States)

    Historically, approximately one-quarter of Superfund source control projects have involved soil vapor extraction (SVE) to remove volatile organic compounds (VOCs) sorbed to soil in the unsaturated (vadose) zone.

  3. Waste Tank Vapor Characterization Project: Annual status report for FY 1995

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Fruchter, J.S.; Huckaby, J.L.; Birn, M.B.; McVeety, B.D.; Evans, J.C. Jr.; Pool, K.H.; Silvers, K.L.; Goheen, S.C.

    1995-11-01

    This report compiles information collected during the Fiscal Year 1995 pertaining to the waste tank vapor characterization project. Information covers the following topics: project management; organic sampling and analysis; inorganic sampling and analysis; waste tank vapor data reports; and the waste tanks vapor database

  4. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications.

    Science.gov (United States)

    Fu, Heyun; Wei, Chenhui; Qu, Xiaolei; Li, Hui; Zhu, Dongqiang

    2018-01-01

    Dissolved black carbon (DBC), the soluble fraction of black carbon (BC), is an important constituent of dissolved organic matter pool. However, little is known about the binding interactions between hydrophobic organic contaminants (HOCs) and DBC and their significance in the fate process. This study determined the binding ability of DBC released from rice-derived BC for a series of apolar HOCs, including four polycyclic aromatic hydrocarbons and four chlorinated benzenes, using batch sorption and solubility enhancement techniques. Bulk BC and a dissolved soil humic acid (DSHA) were included as benchmark sorbents. The organic carbon-normalized sorption coefficient of phenanthrene to DBC was slightly lower than bulk BC, but was over ten folds higher than DSHA. Consistently, DBC was more effective than DSHA in enhancing the apparent water solubility of the tested HOCs, and the enhancement positively correlated with solute n-octanol-water partition coefficient, indicating the predominance of hydrophobic partition. The much higher binding ability of DBC relative to DSHA was mainly attributed to its higher tendency to form pseudomicellar structures as supported by the fluorescence quenching and the pH-edge data. Our findings suggest that DBC might play a significant role in the environmental fate and transport of HOCs as both sorbent and carrier. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Comparative studies of some vitamin D and its analogs on 47Ca-release from mouse calvaria in an organ culture system

    International Nuclear Information System (INIS)

    Yamamoto, Itsuo; Fukunaga, Masao; Dokoh, Shigeharu; Konishi, Junji; Morita, Rikushi

    1978-01-01

    47 Ca-releasing activities of some vitamin D derivatives from prelabelled mouse calvaria were examined, using the organ-culture system established by Raisz and Reynold. D 2 and D 3 of 1 μg/ml caused significant release of 47 Ca from the bone, while DHT 2 and DHT 3 had no effect at this concentration. 25-OH-D 3 , 24R-OH-D 3 , and 24,25-(OH) 2 -D 3 were effective at 100 ng/ml, and 1α-OH-D 3 at 10 ng/ml, 1α,24-(OH) 2 -D 3 was slightly less active than 1α-OH-D 3 . 24S-OH-D 3 and 1α,24S-(OH) 2 -D 3 were about 10 times less active than 24R-OH-D 3 and 1α,24R-(OH) 2 -D 3 , respectively, i.e., S-form was less active than R-form. In this experimental system, 1α,25-(OH) 2 -D 3 , a natural vitamin D, was effective even at 50 pg/ml. Thus, this system may be used for the assay of 1α,15-(OH) 2 -D 3 in human serum. The effect of 1α,25-(OH) 2 -D 3 was inhibited by calcitonin but not by hydrocortisone, 25-OH-D 3 or 24,25-(OH) 2 -D 3 . (Kaihara, S.)

  6. Effect of growth conditions on the Al composition and optical properties of Al x Ga 1−x N layers grown by atmospheric-pressure metal organic vapor phase epitaxy

    KAUST Repository

    Soltani, S.

    2017-02-17

    The effect of growth conditions on the Al composition and optical properties of AlxGa1-xN layers grown by atmospheric-pressure metal organic vapor phase epitaxy is investigated. The Al content of the samples is varied between 3.0% and 9.3% by changing the gas flow rate of either trimethylaluminum (TMA) or trimethylgallium (TMG) while other growth parameters are kept constant. The optical properties of the AlxGa1-xN layers are studied by photoreflectance and time-resolved photoluminescence (TR-PL) spectroscopies. A degeneration in the material quality of the samples is revealed when the Al content is increased by increasing the TMA flow rate. When the TMG flow rate is decreased with a fixed TMA flow rate, the Al content of the AlxGa1-xN layers is increased and, furthermore, an improvement in the optical properties corresponding with an increase in the PL decay time is observed. (C) 2017 Elsevier B.V. All rights reserved.

  7. Characterization of RuO sub 2 electrodes for ferroelectric thin films prepared by metal-organic chemical-vapor deposition using Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3

    CERN Document Server

    Lee, J M; Shin, J C; Hwang, C S; Kim, H J; Suk, C G

    1999-01-01

    Pure and conducting RuO sub 2 thin films were deposited on Si substrates at 250 approx 450 .deg. C using Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3 as a precursor by low-pressure metal-organic chemical-vapor deposition (LP-MOCVD). At a lower deposition temperature,smoother and denser RuO sub 2 thin films were deposited. The RuO sub 2 thin films, which were crack free, adhered well onto the substrates and showed very low resistivities around 45 approx 60 mu OMEGA cm. RuO sub 2 thin films on (Ba, Sr)/TiO sub 3 /Pt/SiO sub 2 /Si showed good properties, indicating that MOCVD RuO sub 2 thin films from Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3 can be applied as electrodes of high-dielectric thin films for capacitors in ultra-large-scale DRAMs.

  8. Effect of growth conditions on the Al composition and optical properties of Al x Ga 1−x N layers grown by atmospheric-pressure metal organic vapor phase epitaxy

    KAUST Repository

    Soltani, S.; Bouzidi, M.; Chine, Z.; Toure, A.; Halidou, I.; El Jani, B.; Shakfa, M. K.

    2017-01-01

    The effect of growth conditions on the Al composition and optical properties of AlxGa1-xN layers grown by atmospheric-pressure metal organic vapor phase epitaxy is investigated. The Al content of the samples is varied between 3.0% and 9.3% by changing the gas flow rate of either trimethylaluminum (TMA) or trimethylgallium (TMG) while other growth parameters are kept constant. The optical properties of the AlxGa1-xN layers are studied by photoreflectance and time-resolved photoluminescence (TR-PL) spectroscopies. A degeneration in the material quality of the samples is revealed when the Al content is increased by increasing the TMA flow rate. When the TMG flow rate is decreased with a fixed TMA flow rate, the Al content of the AlxGa1-xN layers is increased and, furthermore, an improvement in the optical properties corresponding with an increase in the PL decay time is observed. (C) 2017 Elsevier B.V. All rights reserved.

  9. β-Ga2O3 versus ε-Ga2O3: Control of the crystal phase composition of gallium oxide thin film prepared by metal-organic chemical vapor deposition

    Science.gov (United States)

    Zhuo, Yi; Chen, Zimin; Tu, Wenbin; Ma, Xuejin; Pei, Yanli; Wang, Gang

    2017-10-01

    Gallium oxide thin films of β and ε phase were grown on c-plane sapphire using metal-organic chemical vapor deposition and the phase compositions were analyzed using X-ray diffraction. The epitaxial phase diagram was constructed as a function of the growth temperature and VI/III ratio. A low growth temperature and low VI/III ratio were beneficial for the formation of hexagonal-type ε-Ga2O3. Further structure analysis revealed that the epitaxial relationship between ε-Ga2O3 and c-plane sapphire is ε-Ga2O3 (0001) || Al2O3 (0001) and ε-Ga2O3 || Al2O3 . The structural evolution of the mixed-phase sample during film thickening was investigated. By reducing the growth rate, the film evolved from a mixed phase to the energetically favored ε phase. Based on these results, a Ga2O3 thin film with a phase-pure ε-Ga2O3 upper layer was successfully obtained.

  10. High-quality nonpolar a-plane GaN epitaxial films grown on r-plane sapphire substrates by the combination of pulsed laser deposition and metal–organic chemical vapor deposition

    Science.gov (United States)

    Yang, Weijia; Zhang, Zichen; Wang, Wenliang; Zheng, Yulin; Wang, Haiyan; Li, Guoqiang

    2018-05-01

    High-quality a-plane GaN epitaxial films have been grown on r-plane sapphire substrates by the combination of pulsed laser deposition (PLD) and metal–organic chemical vapor deposition (MOCVD). PLD is employed to epitaxial growth of a-plane GaN templates on r-plane sapphire substrates, and then MOCVD is used. The nonpolar a-plane GaN epitaxial films with relatively small thickness (2.9 µm) show high quality, with the full-width at half-maximum values of GaN(11\\bar{2}0) along [1\\bar{1}00] direction and GaN(10\\bar{1}1) of 0.11 and 0.30°, and a root-mean-square surface roughness of 1.7 nm. This result is equivalent to the quality of the films grown by MOCVD with a thickness of 10 µm. This work provides a new and effective approach for achieving high-quality nonpolar a-plane GaN epitaxial films on r-plane sapphire substrates.

  11. Control of residual carbon concentration in GaN high electron mobility transistor and realization of high-resistance GaN grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    He, X.G. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhao, D.G., E-mail: dgzhao@red.semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Jiang, D.S.; Liu, Z.S.; Chen, P.; Le, L.C.; Yang, J.; Li, X.J. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhang, S.M.; Zhu, J.J.; Wang, H.; Yang, H. [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2014-08-01

    GaN films were grown by metal-organic chemical vapor deposition (MOCVD) under various growth conditions. The influences of MOCVD growth parameters, i.e., growth pressure, ammonia (NH{sub 3}) flux, growth temperature, trimethyl-gallium flux and H{sub 2} flux, on residual carbon concentration ([C]) were systematically investigated. Secondary ion mass spectroscopy measurements show that [C] can be effectively modulated by growth conditions. Especially, it can increase by reducing growth pressure up to two orders of magnitude. High-resistance (HR) GaN epilayer with a resistivity over 1.0 × 10{sup 9} Ω·cm is achieved by reducing growth pressure. The mechanism of the formation of HR GaN epilayer is discussed. An Al{sub x}Ga{sub 1−x}N/GaN high electron mobility transistor structure with a HR GaN buffer layer and an additional low-carbon GaN channel layer is presented, exhibiting a high two dimensional electron gas mobility of 1815 cm{sup 2}/Vs. - Highlights: • Influence of MOCVD parameters on residual carbon concentration in GaN is studied. • GaN layer with a resistivity over 1 × 10{sup 9} Ω·cm is achieved by reducing growth pressure. • High electron mobility transistor (HEMT) structures were prepared. • Control of residual carbon content results in HEMT with high 2-D electron gas mobility.

  12. Pilot-scale electron cyclotron resonance-metal organic chemical vapor deposition system for the preparation of large-area fluorine-doped SnO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Bup Ju [Department of Energy and Environmental Engineering, Shinhan University, 233-1, Sangpae-dong, Dongducheon, Gyeonggi-do 483-777 (Korea, Republic of); Hudaya, Chairul [Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok 16424 (Indonesia); Center for Energy Convergence, Green City Research Institute, Korea Institute of Science and Technology, Hwarangno 14 gil 5, Seoul 136-791 (Korea, Republic of); Department of Energy and Environmental Engineering, Korea University of Science and Technology, 176 Gajungro Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Lee, Joong Kee, E-mail: leejk@kist.re.kr [Center for Energy Convergence, Green City Research Institute, Korea Institute of Science and Technology, Hwarangno 14 gil 5, Seoul 136-791 (Korea, Republic of); Department of Energy and Environmental Engineering, Korea University of Science and Technology, 176 Gajungro Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2016-05-15

    The authors report the surface morphology, optical, electrical, thermal and humidity impacts, and electromagnetic interference properties of fluorine-doped tin oxide (SnO{sub 2}:F or “FTO”) thin films on a flexible polyethylene terephthalate (PET) substrate fabricated by a pilot-scale electron cyclotron resonance–metal organic chemical vapor deposition (PS ECR-MOCVD). The characteristics of large area FTO thin films were compared with a commercially available transparent conductive electrode made of tin-doped indium oxide (ITO), prepared with an identical film and PET thickness of 125 nm and 188 μm, respectively. The results revealed that the as-prepared FTO thin films exhibited comparable performances with the incumbent ITO films, including a high optical transmittance of 97% (substrate-subtracted), low electrical resistivity of about 5 × 10{sup −3} Ω cm, improved electrical and optical performances due to the external thermal and humidity impact, and an excellent shielding effectiveness of electromagnetic interference of nearly 2.3 dB. These excellent performances of the FTO thin films were strongly attributed to the design of the PS ECR-MOCVD, which enabled a uniform plasma environment resulting from a proper mixture of electromagnetic profiles and microwave power.

  13. Effect of AlN growth temperature on trap densities of in-situ metal-organic chemical vapor deposition grown AlN/AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors

    Directory of Open Access Journals (Sweden)

    Joseph J. Freedsman

    2012-06-01

    Full Text Available The trapping properties of in-situ metal-organic chemical vapor deposition (MOCVD grown AlN/AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors (MIS-HFETs with AlN layers grown at 600 and 700 °C has been quantitatively analyzed by frequency dependent parallel conductance technique. Both the devices exhibited two kinds of traps densities, due to AlN (DT-AlN and AlGaN layers (DT-AlGaN respectively. The MIS-HFET grown at 600 °C showed a minimum DT-AlN and DT-AlGaN of 1.1 x 1011 and 1.2 x 1010 cm-2eV-1 at energy levels (ET -0.47 and -0.36 eV. Further, the gate-lag measurements on these devices revealed less degradation ∼ ≤ 5% in drain current density (Ids-max. Meanwhile, MIS-HFET grown at 700 °C had more degradation in Ids-max ∼26 %, due to high DT-AlN and DT-AlGaN of 3.4 x 1012 and 5 x 1011 cm-2eV-1 positioned around similar ET. The results shows MIS-HFET grown at 600 °C had better device characteristics with trap densities one order of magnitude lower than MIS-HFET grown at 700 °C.

  14. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  15. Vapor liquid fraction determination

    International Nuclear Information System (INIS)

    1980-01-01

    This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)

  16. Heat of vaporization spectrometer

    International Nuclear Information System (INIS)

    Edwards, D. Jr.

    1978-01-01

    Multilayer desorption measurements of various substances adsorbed on a stainless steel substrate are found to exhibit desorption profiles consistent with a zeroth order desorption model. The singleness of the desorption transients together with their narrow peak widths makes the technique ideally suited for a heat of vaporization spectrometer for either substance analysis or identification

  17. Limited recovery of soil microbial activity after transient exposure to gasoline vapors

    DEFF Research Database (Denmark)

    Modrzyński, Jakub J.; Christensen, Jan H.; Mayer, Philipp

    2016-01-01

    During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial...... functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial...... microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient...

  18. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  19. Cesium accumulation by aquatic organisms at different trophic levels following an experimental release into a small reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Pinder, J.E., E-mail: jepinder@uga.ed [Savannah River Ecology Laboratory, P. O. Drawer E, Aiken, SC 29802 (United States); Hinton, T.G., E-mail: thomas.hinton@irsn.f [Savannah River Ecology Laboratory, P. O. Drawer E, Aiken, SC 29802 (United States); Taylor, B.E., E-mail: TaylorB@dnr.sc.go [Savannah River Ecology Laboratory, P. O. Drawer E, Aiken, SC 29802 (United States); Whicker, F.W., E-mail: ward.whicker@colostate.ed [Department of Environmental and Radiological Health Sciences, Colorado, State University, Fort Collins, CO 80523-1618 (United States)

    2011-03-15

    The rates of accumulation and subsequent loss of stable cesium ({sup 133}Cs) by organisms at different trophic levels within plankton-based and periphyton-based food chains were measured following the addition of {sup 133}Cs into a small reservoir near Aiken, South Carolina, USA. An uptake parameter u (L kg{sup -1} d{sup -1} dry mass) and a loss rate parameter k (d{sup -1}) were estimated for each organism using time-series measurements of {sup 133}Cs concentrations in water and biota, and these parameters were used to estimate maximum concentrations, times to maximum concentrations, and concentration ratios (C{sub r}). The maximum {sup 133}Cs concentrations for plankton, periphyton, the insect larva Chaoborus punctipennis, which feeds on plankton, and the snail Helisoma trivolvis, which feeds on periphyton, occurred within the first 14 days following the addition, whereas the maximum concentrations for the fish species Lepomis macrochirus and Micropterus salmoides occurred after 170 days. The C{sub r} based on dry mass for plankton and C. punctipennis were 1220 L kg{sup -1} and 5570 L kg{sup -1}, respectively, and were less than the C{sub r} of 8630 L kg{sup -1} for periphyton and 47,700 L kg{sup -1} for H. trivolvis. Although the C{sub r} differed between plankton-based and periphyton-based food chains, they displayed similar levels of biomagnification. Biomagnification was also indicated for fish where the C{sub r} for the mostly nonpiscivorous L. macrochirus of 22,600 L kg{sup -1} was three times less than that for mostly piscivorous M. salmoides of 71,500 L kg{sup -1}. Although the C{sub r} for M. salmoides was greater than those for periphyton and H. trivolvis, the maximum {sup 133}Cs concentrations for periphyton and H. trivolvis were greater than that for M. salmoides. - Research highlights: {yields} A simple uptake and loss model described the Cs dynamics in all the various biota. {yields} Concentrations of Cs were greater in periphyton than in plankton

  20. Circadian rhythm in melatonin release as a mechanism to reinforce the temporal organization of the circadian system in crayfish.

    Science.gov (United States)

    Mendoza-Vargas, Leonor; Báez-Saldaña, Armida; Alvarado, Ramón; Fuentes-Pardo, Beatriz; Flores-Soto, Edgar; Solís-Chagoyán, Héctor

    2017-06-01

    Melatonin (MEL) is a conserved molecule with respect to its synthesis pathway and functions. In crayfish, MEL content in eyestalks (Ey) increases at night under the photoperiod, and this indoleamine synchronizes the circadian rhythm of electroretinogram amplitude, which is expressed by retinas and controlled by the cerebroid ganglion (CG). The aim of this study was to determine whether MEL content in eyestalks and CG or circulating MEL in hemolymph (He) follows a circadian rhythm under a free-running condition; in addition, it was tested whether MEL might directly influence the spontaneous electrical activity of the CG. Crayfish were maintained under constant darkness and temperature, a condition suitable for studying the intrinsic properties of circadian systems. MEL was quantified in samples obtained from He, Ey, and CG by means of an enzyme-linked immunosorbent assay, and the effect of exogenous MEL on CG spontaneous activity was evaluated by electrophysiological recording. Variation of MEL content in He, Ey, and CG followed a circadian rhythm that peaked at the same circadian time (CT). In addition, a single dose of MEL injected into the crayfish at different CTs reduced the level of spontaneous electrical activity in the CG. Results suggest that the circadian increase in MEL content directly affects the CG, reducing its spontaneous electrical activity, and that MEL might act as a periodical signal to reinforce the organization of the circadian system in crayfish.

  1. Model for screening-level assessment of near-field human exposure to neutral organic chemicals released indoors.

    Science.gov (United States)

    Zhang, Xianming; Arnot, Jon A; Wania, Frank

    2014-10-21

    Screening organic chemicals for hazard and risk to human health requires near-field human exposure models that can be readily parametrized with available data. The integration of a model of human exposure, uptake, and bioaccumulation into an indoor mass balance model provides a quantitative framework linking emissions in indoor environments with human intake rates (iRs), intake fractions (iFs) and steady-state concentrations in humans (C) through consideration of dermal permeation, inhalation, and nondietary ingestion exposure pathways. Parameterized based on representative indoor and adult human characteristics, the model is applied here to 40 chemicals of relevance in the context of human exposure assessment. Intake fractions and human concentrations (C(U)) calculated with the model based on a unit emission rate to air for these 40 chemicals span 2 and 5 orders of magnitude, respectively. Differences in priority ranking based on either iF or C(U) can be attributed to the absorption, biotransformation and elimination processes within the human body. The model is further applied to a large data set of hypothetical chemicals representative of many in-use chemicals to show how the dominant exposure pathways, iF and C(U) change as a function of chemical properties and to illustrate the capacity of the model for high-throughput screening. These simulations provide hypotheses for the combination of chemical properties that may result in high exposure and internal dose. The model is further exploited to highlight the role human contaminant uptake plays in the overall fate of certain chemicals indoors and consequently human exposure.

  2. Simulated climate change impact on summer dissolved organic carbon release from peat and surface vegetation: implications for drinking water treatment.

    Science.gov (United States)

    Ritson, Jonathan P; Bell, Michael; Graham, Nigel J D; Templeton, Michael R; Brazier, Richard E; Verhoef, Anne; Freeman, Chris; Clark, Joanna M

    2014-12-15

    Uncertainty regarding changes in dissolved organic carbon (DOC) quantity and quality has created interest in managing peatlands for their ecosystem services such as drinking water provision. The evidence base for such interventions is, however, sometimes contradictory. We performed a laboratory climate manipulation using a factorial design on two dominant peatland vegetation types (Calluna vulgaris and Sphagnum Spp.) and a peat soil collected from a drinking water catchment in Exmoor National Park, UK. Temperature and rainfall were set to represent baseline and future conditions under the UKCP09 2080s high emissions scenario for July and August. DOC leachate then underwent standard water treatment of coagulation/flocculation before chlorination. C. vulgaris leached more DOC than Sphagnum Spp. (7.17 versus 3.00 mg g(-1)) with higher specific ultraviolet (SUVA) values and a greater sensitivity to climate, leaching more DOC under simulated future conditions. The peat soil leached less DOC (0.37 mg g(-1)) than the vegetation and was less sensitive to climate. Differences in coagulation removal efficiency between the DOC sources appears to be driven by relative solubilisation of protein-like DOC, observed through the fluorescence peak C/T. Post-coagulation only differences between vegetation types were detected for the regulated disinfection by-products (DBPs), suggesting climate change influence at this scale can be removed via coagulation. Our results suggest current biodiversity restoration programmes to encourage Sphagnum Spp. will result in lower DOC concentrations and SUVA values, particularly with warmer and drier summers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Vapor pressure and enthalpy of vaporization of linear aliphatic alkanediamines

    International Nuclear Information System (INIS)

    Pozdeev, Vasiliy A.; Verevkin, Sergey P.

    2011-01-01

    Highlights: → We measured vapor pressure of diamines H 2 N-(CH 2 ) n -NH 2 with n = 3 to 12. → Vaporization enthalpies at 298 K were derived. → We examined consistency of new and available in the literature data. → Enthalpies of vaporization show linear dependence on numbers n. → Enthalpies of vaporization correlate linearly with Kovat's indices. - Abstract: Vapor pressures and the molar enthalpies of vaporization of the linear aliphatic alkanediamines H 2 N-(CH 2 ) n -NH 2 with n = (3 to 12) have been determined using the transpiration method. A linear correlation of enthalpies of vaporization (at T = 298.15 K) of the alkanediamines with the number n and with the Kovat's indices has been found, proving the internal consistency of the measured data.

  4. Organic Nano vesicular Cargoes for Sustained Drug Delivery: Synthesis, Vesicle Formation, Controlling “Pearling” States, and Terfenadine Loading/Release Studies

    International Nuclear Information System (INIS)

    Botcha, A.K.; Chandrasekar, R.; Dulla, B.; Reddy, E.R.; Rajadurai, M.S.; Chennubhotla, K.S.; Kulkarni, P.; Kulkarni, P.

    2014-01-01

    “Sustained drug delivery systems” which are designed to accomplish long-lasting therapeutic effect are one of the challenging topics in the area of nano medicine. We developed an innovative strategy to prepare nontoxic and polymer stabilized organic nano vesicles (diameter: 200 nm) from a novel bolaamphiphile, where two hydrogen bonding acetyl cytosine molecules connected to 4,4′′-positions of the 2,6-bispyrazolylpyridine through two flexible octyne chains. The nano vesicles behave like biological membrane by spontaneously self-assembling into “pearl-like” chains and subsequently forming long nano tubes (diameter: 150 nm), which further develop into various types of network-junctions through self-organization. For drug loading and delivery applications, the nano vesicles were externally protected with biocompatible poly(ethyleneglycol)-2000 to prevent them from fusion and ensuing tube formation. Nontoxic nature of the nano vesicles was demonstrated by zebra fish teratogenicity assay. Biocompatible nano vesicles were loaded with “terfenadine” drug and successfully utilized to transport and release drug in sustained manner (up to 72 h) in zebra fish larvae, which is recognized as an emerging in vivo model system Synthetic nano

  5. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  6. Secondhand Exposure to Vapors From Electronic Cigarettes

    Science.gov (United States)

    Czogala, Jan; Fidelus, Bartlomiej; Zielinska-Danch, Wioleta; Travers, Mark J.; Sobczak, Andrzej

    2014-01-01

    Introduction: Electronic cigarettes (e-cigarettes) are designed to generate inhalable nicotine aerosol (vapor). When an e-cigarette user takes a puff, the nicotine solution is heated and the vapor is taken into lungs. Although no sidestream vapor is generated between puffs, some of the mainstream vapor is exhaled by e-cigarette user. The aim of this study was to evaluate the secondhand exposure to nicotine and other tobacco-related toxicants from e-cigarettes. Materials and Methods: We measured selected airborne markers of secondhand exposure: nicotine, aerosol particles (PM2.5), carbon monoxide, and volatile organic compounds (VOCs) in an exposure chamber. We generated e-cigarette vapor from 3 various brands of e-cigarette using a smoking machine and controlled exposure conditions. We also compared secondhand exposure with e-cigarette vapor and tobacco smoke generated by 5 dual users. Results: The study showed that e-cigarettes are a source of secondhand exposure to nicotine but not to combustion toxicants. The air concentrations of nicotine emitted by various brands of e-cigarettes ranged from 0.82 to 6.23 µg/m3. The average concentration of nicotine resulting from smoking tobacco cigarettes was 10 times higher than from e-cigarettes (31.60±6.91 vs. 3.32±2.49 µg/m3, respectively; p = .0081). Conclusions: Using an e-cigarette in indoor environments may involuntarily expose nonusers to nicotine but not to toxic tobacco-specific combustion products. More research is needed to evaluate health consequences of secondhand exposure to nicotine, especially among vulnerable populations, including children, pregnant women, and people with cardiovascular conditions. PMID:24336346

  7. Performance of horizontal versus vertical vapor extraction wells

    International Nuclear Information System (INIS)

    Birdsell, K.H.; Roseberg, N.D.; Edlund, K.M.

    1994-06-01

    Vapor extraction wells used for site remediation of volatile organic chemicals in the vadose zone are typically vertical wells. Over the past few years, there has been an increased interest in horizontal wells for environmental remediation. Despite the interest and potential benefits of horizontal wells, there has been little study of the relative performance of horizontal and vertical vapor extraction wells. This study uses numerical simulations to investigate the relative performance of horizontal versus vertical vapor extraction wells under a variety of conditions. The most significant conclusion that can be drawn from this study is that in a homogeneous medium, a single, horizontal vapor extraction well outperforms a single, vertical vapor extraction well (with surface capping) only for long, linear plumes. Guidelines are presented regarding the use of horizontal wells

  8. Apparatus and method for removing mercury vapor from a gas stream

    Science.gov (United States)

    Ganesan, Kumar [Butte, MT

    2008-01-01

    A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

  9. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  10. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  11. Thyme and Savory Essential Oil Vapor Treatments Control Brown Rot and Improve the Storage Quality of Peaches and Nectarines, but Could Favor Gray Mold

    Science.gov (United States)

    Santoro, Karin; Maghenzani, Marco; Chiabrando, Valentina; Gullino, Maria Lodovica; Giacalone, Giovanna

    2018-01-01

    The effect of biofumigation, through slow-release diffusors, of thyme and savory essential oils (EO), was evaluated on the control of postharvest diseases and quality of peaches and nectarines. EO fumigation was effective in controlling postharvest rots. Naturally contaminated peaches and nectarines were exposed to EO vapors for 28 days at 0 °C in sealed storage cabinets and then exposed at 20 °C for five days during shelf-life in normal atmosphere, simulating retail conditions. Under low disease pressure, most treatments significantly reduced fruit rot incidence during shelf-life, while, under high disease pressure, only vapors of thyme essential oil at the highest concentration tested (10% v/v in the diffusor) significantly reduced the rots. The application of thyme or savory EO favored a reduction of brown rot incidence, caused by Monilinia fructicola, but increased gray mold, caused by Botrytis cinerea. In vitro tests confirmed that M. fructicola was more sensitive to EO vapors than B. cinerea. Essential oil volatile components were characterized in storage cabinets during postharvest. The antifungal components of the essential oils increased during storage, but they were a low fraction of the volatile organic compounds in storage chambers. EO vapors did not influence the overall quality of the fruit, but showed a positive effect in reducing weight loss and in maintaining ascorbic acid and carotenoid content. The application of thyme and savory essential oil vapors represents a promising tool for reducing postharvest losses and preserving the quality of peaches and nectarines. PMID:29303966

  12. Thyme and Savory Essential Oil Vapor Treatments Control Brown Rot and Improve the Storage Quality of Peaches and Nectarines, but Could Favor Gray Mold

    Directory of Open Access Journals (Sweden)

    Karin Santoro

    2018-01-01

    Full Text Available The effect of biofumigation, through slow-release diffusors, of thyme and savory essential oils (EO, was evaluated on the control of postharvest diseases and quality of peaches and nectarines. EO fumigation was effective in controlling postharvest rots. Naturally contaminated peaches and nectarines were exposed to EO vapors for 28 days at 0 °C in sealed storage cabinets and then exposed at 20 °C for five days during shelf-life in normal atmosphere, simulating retail conditions. Under low disease pressure, most treatments significantly reduced fruit rot incidence during shelf-life, while, under high disease pressure, only vapors of thyme essential oil at the highest concentration tested (10% v/v in the diffusor significantly reduced the rots. The application of thyme or savory EO favored a reduction of brown rot incidence, caused by Monilinia fructicola, but increased gray mold, caused by Botrytis cinerea. In vitro tests confirmed that M. fructicola was more sensitive to EO vapors than B. cinerea. Essential oil volatile components were characterized in storage cabinets during postharvest. The antifungal components of the essential oils increased during storage, but they were a low fraction of the volatile organic compounds in storage chambers. EO vapors did not influence the overall quality of the fruit, but showed a positive effect in reducing weight loss and in maintaining ascorbic acid and carotenoid content. The application of thyme and savory essential oil vapors represents a promising tool for reducing postharvest losses and preserving the quality of peaches and nectarines.

  13. Thyme and Savory Essential Oil Vapor Treatments Control Brown Rot and Improve the Storage Quality of Peaches and Nectarines, but Could Favor Gray Mold.

    Science.gov (United States)

    Santoro, Karin; Maghenzani, Marco; Chiabrando, Valentina; Bosio, Pietro; Gullino, Maria Lodovica; Spadaro, Davide; Giacalone, Giovanna

    2018-01-05

    The effect of biofumigation, through slow-release diffusors, of thyme and savory essential oils (EO), was evaluated on the control of postharvest diseases and quality of peaches and nectarines. EO fumigation was effective in controlling postharvest rots. Naturally contaminated peaches and nectarines were exposed to EO vapors for 28 days at 0 °C in sealed storage cabinets and then exposed at 20 °C for five days during shelf-life in normal atmosphere, simulating retail conditions. Under low disease pressure, most treatments significantly reduced fruit rot incidence during shelf-life, while, under high disease pressure, only vapors of thyme essential oil at the highest concentration tested (10% v / v in the diffusor) significantly reduced the rots. The application of thyme or savory EO favored a reduction of brown rot incidence, caused by Monilinia fructicola , but increased gray mold, caused by Botrytis cinerea . In vitro tests confirmed that M. fructicola was more sensitive to EO vapors than B. cinerea . Essential oil volatile components were characterized in storage cabinets during postharvest. The antifungal components of the essential oils increased during storage, but they were a low fraction of the volatile organic compounds in storage chambers. EO vapors did not influence the overall quality of the fruit, but showed a positive effect in reducing weight loss and in maintaining ascorbic acid and carotenoid content. The application of thyme and savory essential oil vapors represents a promising tool for reducing postharvest losses and preserving the quality of peaches and nectarines.

  14. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  15. Nozzle geometry for organic vapor jet printing

    Science.gov (United States)

    Forrest, Stephen R.; McGraw, Gregory

    2017-10-25

    A first device is provided. The device includes a print head. The print head further includes a first nozzle hermetically sealed to a first source of gas. The first nozzle has an aperture having a smallest dimension of 0.5 to 500 microns in a direction perpendicular to a flow direction of the first nozzle. At a distance from the aperture into the first nozzle that is 5 times the smallest dimension of the aperture of the first nozzle, the smallest dimension perpendicular to the flow direction is at least twice the smallest dimension of the aperture of the first nozzle.

  16. Electrical properties of GaAs metal–oxide–semiconductor structure comprising Al2O3 gate oxide and AlN passivation layer fabricated in situ using a metal–organic vapor deposition/atomic layer deposition hybrid system

    Directory of Open Access Journals (Sweden)

    Takeshi Aoki

    2015-08-01

    Full Text Available This paper presents a compressive study on the fabrication and optimization of GaAs metal–oxide–semiconductor (MOS structures comprising a Al2O3 gate oxide, deposited via atomic layer deposition (ALD, with an AlN interfacial passivation layer prepared in situ via metal–organic chemical vapor deposition (MOCVD. The established protocol afforded self-limiting growth of Al2O3 in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al2O3 layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance–voltage (C–V characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (Dit near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce Dit to below 2 × 1012 cm−2 eV−1. Using a (111A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.

  17. High-quality uniaxial In(x)Ga(1-x)N/GaN multiple quantum well (MQW) nanowires (NWs) on Si(111) grown by metal-organic chemical vapor deposition (MOCVD) and light-emitting diode (LED) fabrication.

    Science.gov (United States)

    Ra, Yong-Ho; Navamathavan, R; Park, Ji-Hyeon; Lee, Cheul-Ro

    2013-03-01

    This article describes the growth and device characteristics of vertically aligned high-quality uniaxial p-GaN/InxGa1-xN/GaN multiple quantum wells (MQW)/n-GaN nanowires (NWs) on Si(111) substrates grown by metal-organic chemical vapor deposition (MOCVD) technique. The resultant nanowires (NWs), with a diameter of 200-250 nm, have an average length of 2 μm. The feasibility of growing high-quality NWs with well-controlled indium composition MQW structure is demonstrated. These resultant NWs grown on Si(111) substrates were utilized for fabricating vertical-type light-emitting diodes (LEDs). The steep and intense photoluminescence (PL) and cathodoluminescence (CL) spectra are observed, based on the strain-free NWs on Si(111) substrates. High-resolution transmission electron microscopy (HR-TEM) analysis revealed that the MQW NWs are grown along the c-plane with uniform thickness. The current-voltage (I-V) characteristics of these NWs exhibited typical p-n junction LEDs and showed a sharp onset voltage at 2.75 V in the forward bias. The output power is linearly increased with increasing current. The result indicates that the pulsed MOCVD technique is an effective method to grow uniaxial p-GaN/InxGa1-xN/GaN MQW/n-GaN NWs on Si(111), which is more advantageous than other growth techniques, such as molecular beam epitaxy. These results suggest the uniaxial NWs are promising to allow flat-band quantum structures, which can enhance the efficiency of LEDs.

  18. Wafer-scale controlled exfoliation of metal organic vapor phase epitaxy grown InGaN/GaN multi quantum well structures using low-tack two-dimensional layered h-BN

    Energy Technology Data Exchange (ETDEWEB)

    Ayari, Taha; Li, Xin; Voss, Paul L.; Ougazzaden, Abdallah, E-mail: aougazza@georgiatech-metz.fr [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Sundaram, Suresh; El Gmili, Youssef [Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Salvestrini, Jean Paul [Georgia Tech Lorraine, UMI 2958, Georgia Tech-CNRS, 57070 Metz (France); Université de Lorraine, LMOPS, EA 4423, 57070 Metz (France)

    2016-04-25

    Recent advances in epitaxial growth have led to the growth of III-nitride devices on 2D layered h-BN. This advance has the potential for wafer-scale transfer to arbitrary substrates, which could improve the thermal management and would allow III-N devices to be used more flexibly in a broader range of applications. We report wafer scale exfoliation of a metal organic vapor phase epitaxy grown InGaN/GaN Multi Quantum Well (MQW) structure from a 5 nm thick h-BN layer that was grown on a 2-inch sapphire substrate. The weak van der Waals bonds between h-BN atomic layers break easily, allowing the MQW structure to be mechanically lifted off from the sapphire substrate using a commercial adhesive tape. This results in the surface roughness of only 1.14 nm on the separated surface. Structural characterizations performed before and after the lift-off confirm the conservation of structural properties after lift-off. Cathodoluminescence at 454 nm was present before lift-off and 458 nm was present after. Electroluminescence near 450 nm from the lifted-off structure has also been observed. These results show that the high crystalline quality ultrathin h-BN serves as an effective sacrificial layer—it maintains performance, while also reducing the GaN buffer thickness and temperature ramps as compared to a conventional two-step growth method. These results support the use of h-BN as a low-tack sacrificial underlying layer for GaN-based device structures and demonstrate the feasibility of large area lift-off and transfer to any template, which is important for industrial scale production.

  19. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001 Patterned Si Substrates by Metal Organic Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Ludovico Megalini

    2018-02-01

    Full Text Available We report on the use of InGaAsP strain-compensated superlattices (SC-SLs as a technique to reduce the defect density of Indium Phosphide (InP grown on silicon (InP-on-Si by Metal Organic Chemical Vapor Deposition (MOCVD. Initially, a 2 μm thick gallium arsenide (GaAs layer was grown with very high uniformity on exact oriented (001 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO2 stripes and oriented along the [110] direction. Undercut at the Si/SiO2 interface was used to reduce the propagation of defects into the III–V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD; atomic force microscopy (AFM; transmission electron microscopy (TEM; and electron channeling contrast imaging (ECCI; which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 108/cm2 and 1.2 nm; respectively and 7.8 × 107/cm2 and 10.8 nm for the GaAs-on-Si layer.

  20. Calculation of tritium release from reactor's stack

    International Nuclear Information System (INIS)

    Akhadi, M.

    1996-01-01

    Method for calculation of tritium release from nuclear to environment has been discussed. Part of gas effluent contain tritium in form of HTO vapor released from reactor's stack was sampled using silica-gel. The silica-gel was put in the water to withdraw HTO vapor absorbed by silica-gel. Tritium concentration in the water was measured by liquid scintillation counter of Aloka LSC-703. Tritium concentration in the gas effluent and total release of tritium from reactor's stack during certain interval time were calculated using simple mathematic formula. This method has examined for calculation of tritium release from JRR-3M's stack of JAERI, Japan. From the calculation it was obtained the value of tritium release as much as 4.63 x 10 11 Bq during one month. (author)

  1. Release of copper from sintered tungsten-bronze shot under different pH conditions and its potential toxicity to aquatic organisms

    International Nuclear Information System (INIS)

    Thomas, Vernon G.; Santore, Robert C.; McGill, Ian

    2007-01-01

    Sintered tungsten-bronze is a new substitute for lead shot, and is about to be deposited in and around the wetlands of North America. This material contains copper in the alloyed form of bronze. This in vitro study was performed according to U.S. Fish and Wildlife Service criteria to determine the dissolution rate of copper from the shot, and to assess the toxic risk that it may present to aquatic organisms. The dissolution of copper from tungsten-bronze shot, pure copper shot, and glass beads was measured in a buffered, moderately hard, synthetic water of pH 5.5, 6.6, and 7.8 over a 28-day period. The dissolution of copper from both the control copper shot and the tungsten-bronze shot was affected significantly by the pH of the water and the duration of dissolution (all p values < 0.000). The rate of copper release from tungsten bronze shot was 30 to 50 times lower than that from the copper shot, depending on pH (p < 0.0000). The observed expected environmental concentration of copper released from tungsten-bronze shot after 28 days was 0.02 μg/L at pH 7.8, and 0.4 μg/L at pH 5.6, using a loading and exposure scenario specific in a U.S. Fish and Wildlife Service protocol. Ratio Quotient values derived from the highest EEC observed in this study (0.4 μg/L), and the copper toxic effect levels for all aquatic species listed in the U.S. Environmental Protection Agency ambient water quality criteria database, were all far less than the 0.1 criterion value. Given the conditions stipulated by the U.S. Fish and Wildlife Service and the U.S. Environmental Protection Agency, heavy loading from discharged tungsten-bronze shot would not pose a toxic risk to potable water, or to soil. Consequently, it would appear that no toxic risks to aquatic organisms will attend the use of tungsten-bronze shot of the approved composition. Given the likelihood that sintered tungsten-bronze of the same formula will be used for fishing weights, bullets, and wheel balance weights, it is

  2. A numerical investigation of vapor intrusion--the dynamic response of contaminant vapors to rainfall events.

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2012-10-15

    the vapor intrusion risk. In addition, soil organic carbon retarded the transport process, and damped the contaminant concentration fluctuations. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Toxicity of vapor phase petroleum contaminants to microbial degrader communities

    International Nuclear Information System (INIS)

    Long, S.C.; Davey, C.A.

    1994-01-01

    Petroleum products constitute the largest quantity of synthetic organic chemical products produced in the US. They are comprised of mostly hydrocarbon constituents from many different chemical classes including alkenes, cycloalkanes, aromatic compounds, and polyaromatic hydrocarbons. Many petroleum constituents are classified as volatile organic compounds or VOCs. Petroleum products also constitute a major portion of environmental pollution. One emerging technology, with promise for applications to VOCs in subsurface soil environments, is bioventing coupled with soil vapor extraction. These technologies involve volatilization of contaminants into the soil gas phase by injection and withdrawal of air. This air movement causes enhancement of the aerobic microbial degradation of the mobilized vapors by the indigenous populations. This study investigated the effects of exposure of mixed, subsurface microbial communities to vapor phase petroleum constituents or vapors of petroleum mixtures. Soil slurries were prepared and plated onto mineral salts agar plates and exposed to vapor phase contaminants at equilibrium with pure product. Representative n-alkane, branched alkane, cycloalkane, and aromatic compounds were tested as well as petroleum product mixtures. Vapor exposure altered the numbers and morphologies of the colonies enumerated when compared to controls. However, even at high, equilibrium vapor concentrations, microbial degrader populations were not completely inhibited

  4. Comparison of the effects of stimulators and inhibitors of resorption on the release of lysosomal enzymes and radioactive calcium from fetal bone in organ culture

    International Nuclear Information System (INIS)

    Eilon, G.; Raisz, L.G.

    1978-01-01

    The release of lysosomal enzymes, collagenase, and previously incorporated 45 Ca from fetal rat long bones cultured in a chemically defined medium is compared. Parathyroid hormone (PTH) and prostaglandin E 2 increased the release of β-glucuronidase, acetylglucosaminidase, and cathepsin D, but showed little effect on collagenase activity in the medium at 48 h. The dose-response relations for β-glucuronidase and 45 Ca release were similar. However, the increase in lysosomal enzyme release was proportionally greater and occurred earlier than the increase in 45 Ca release. PTH also caused a significant increase in total β-glucuronidase activity in bone plus medium. Several agents which stimulate 45 Ca release at an optimal concentration, but not at a higher concentration, including dibutyryl cAMP, isobutylmethylxanthine, and the calcium ionophore, A23187, all increased lysosomal enzyme release at the concentration which increased 45 Ca release. Three inhibitors of bone resorption (calcitonin, cortisol, and colchicine) blocked lysosomal enzyme release at the same time that 45 Ca release decreased. When the bones escaped from calcitonin inhibition, both 45 Ca and lysosomalenzyme release increased. While colchicine blocked both lysosomal enzymes and 45 CA release, it actually increased the release of bone collagenase, and together with PTH or prostaglandin E 2 caused a large increase in free collagenase activity in the medium. These data indicate that lysosomal enzyme release is closely linked to bone resorption and suggest that lysosomal enzymes may have a primary role in initiating resorption, perhaps by acting on noncollagenous matrix or tissue components before mineral removal and collagen degradation

  5. In-well vapor stripping drilling and characterization work plan

    International Nuclear Information System (INIS)

    Koegler, K.J.

    1994-01-01

    This work plan provides the information necessary for drilling, sampling, and hydrologic testing of wells to be completed in support of a demonstration of the in-well vapor stripping system. The in-well vapor stripping system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase. Air-lift pumping is used to lift and aerate groundwater within the well. The volatiles escaping the aerated water are drawn off by a slight vacuum and treated at the surface while the water is allowed to infiltrate the vadose zone back to the watertable

  6. Expression and distribution of octopus gonadotropin-releasing hormone in the central nervous system and peripheral organs of the octopus (Octopus vulgaris) by in situ hybridization and immunohistochemistry.

    Science.gov (United States)

    Iwakoshi-Ukena, Eiko; Ukena, Kazuyoshi; Takuwa-Kuroda, Kyoko; Kanda, Atshuhiro; Tsutsui, Kazuyoshi; Minakata, Hiroyuki

    2004-09-20

    We recently purified a peptide with structural features similar to vertebrate gonadotropin-releasing hormone (GnRH) from the brain of Octopus vulgaris, cloned a cDNA encoding the precursor protein, and named it oct-GnRH. In the current study, we investigated the expression and distribution of oct-GnRH throughout the central nervous system (CNS) and peripheral organs of Octopus by in situ hybridization on the basis of the cDNA sequence and by immunohistochemistry using a specific antiserum against oct-GnRH. Oct-GnRH mRNA-expressing cell bodies were located in 10 of 19 lobes in the supraesophageal and subesophageal parts of the CNS. Several oct-GnRH-like immunoreactive fibers were seen in all the neuropils of the CNS lobes. The sites of oct-GnRH mRNA expression and the mature peptide distribution were consistent with each other as judged by in situ hybridization and immunohistochemistry. In addition, many immunoreactive fibers were distributed in peripheral organs such as the heart, the oviduct, and the oviducal gland. Modulatory effects of oct-GnRH on the contractions of the heart and the oviduct were demonstrated. The results suggested that, in the context of reproduction, oct-GnRH is a key peptide in the subpedunculate lobe and/or posterior olfactory lobe-optic gland-gonadal axis, an octopus analogue of the hypothalamo-hypophysial-gonadal axis. It may also act as a modulatory factor in controlling higher brain functions such as feeding, memory, movement, maturation, and autonomic functions

  7. Sol-gel-based SPME fiber as a reliable sampling technique for studying biogenic volatile organic compounds released from Clostridium tetani.

    Science.gov (United States)

    Ghader, Masoud; Shokoufi, Nader; Es-Haghi, Ali; Kargosha, Kazem

    2017-11-01

    A novel and efficient headspace solid-phase microextraction (HS-SPME) method, followed by gas chromatography mass spectrometry (GC-MS), was developed to study volatile organic compounds (VOCs) emerging from microorganisms. Two homemade SPME fibers, a semi-polar poly (dimethylsiloxane) (PDMS) fiber, and a polar polyethylene glycol (PEG) fiber, along with two commercial fibers (PDMS and PDMS/DVB) were used to collect VOCs emerging from Clostridium tetani which was cultured in different media. The adsorbed VOCs were desorbed and identified, in vitro, using GC-MS. The adsorption efficiency was improved by optimizing the time duration of adsorption and desorption. About 50 components were identified by the proposed method. The main detected compounds appeared to be sulfur containing compounds such as butanethioic acid S-methyl ester, dimethyl trisulfide, and dimethyl tetrasulfide. These volatile sulfur containing compounds are derived from amino acids containing the sulfur element, which probably coexist in the mentioned bacterium or are added to the culture media. The developed HS-SPME-GC-MS method allowed the determination of the chemical fingerprint of Clostridium tetani volatile constituents, and thus provides a new, simple, and reliable tool for studying the growth of microorganisms. Graphical abstract Investigation of biogenic VOCs released from Clostridium tetani using SPME-GC-MS.

  8. A novel biosensor based on boronic acid functionalized metal-organic frameworks for the determination of hydrogen peroxide released from living cells.

    Science.gov (United States)

    Dai, Hongxia; Lü, Wenjuan; Zuo, Xianwei; Zhu, Qian; Pan, Congjie; Niu, Xiaoying; Liu, Juanjuan; Chen, HongLi; Chen, Xingguo

    2017-09-15

    In this work, we report a durable and sensitive H 2 O 2 biosensor based on boronic acid functionalized metal-organic frameworks (denoted as MIL-100(Cr)-B) as an efficient immobilization matrix of horseradish peroxidase (HRP). MIL-100(Cr)-B features a hierarchical porous structure, extremely high surface area, and sufficient recognition sites, which can significantly increase HRP loading and prevent them from leakage and deactivation. The H 2 O 2 biosensor can be easily achieved without any complex processing. Meanwhile, the immobilized HRP exhibited enhanced stability and remarkable catalytic activity towards H 2 O 2 reduction. Under optimal conditions, the biosensor showed a fast response time (less than 4s) to H 2 O 2 in a wide linear range of 0.5-3000μM with a low detection limit of 0.1μM, as well as good anti-interference ability and long-term storage stability. These excellent performances substantially enable the proposed biosensor to be used for the real-time detection of H 2 O 2 released from living cells with satisfactory results, thus showing the potential application in the study of H 2 O 2 -involved dynamic pathological and physiological process. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  10. Nuclear system vaporization

    International Nuclear Information System (INIS)

    Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Nakagawa, T.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    A particular case of the hot nuclei de-excitation is the total nuclear dislocation into light particles (n, p, d, t, 3 He and α). Such events were first observed at bombarding energies lower than 100 MeV/nucleon due to high detection performances of the INDRA multidetector. The light system Ar + Ni was studied at several bombarding energies ranging from 32 to 95 MeV/nucleon. The events associated to a total vaporization of the system occur above the energy threshold of ∼ 50 MeV/nucleon. A study of the form of these events shows that we have essentially two sources. The excitation energy of these sources may be determined by means of the kinematic properties of their de-excitation products. A preliminary study results in excitation energy values of the order 10 - 14 MeV/nucleon. The theoretical calculation based on a statistical model modified to take into account high excitation energies and excited levels in the lightest nuclei predicts that the vaporization of the two partner nuclei in the Ar + Ni system takes place when the excitation energy exceeds 12 MeV/nucleon what is qualitatively in agreement with the values deduced from calorimetric analysis

  11. Serum blood metabolite response and evaluation of select organ weight, histology and cardiac morphology of beef heifers exposed to a dual corticotropin-releasing hormone and vasopressin challenge following supplementation of

    Science.gov (United States)

    The objective of this study was to: 1) determine if supplementation of Zilpaterol Hydrochloride (ZH) altered select organ weights, histology and cardiac anatomical features at harvest and 2) determine if administration of a corticotropin-releasing hormone (CRH) and vasopressin (VP) challenge followi...

  12. Decreased respiratory symptoms in cannabis users who vaporize

    Directory of Open Access Journals (Sweden)

    Barnwell Sara

    2007-04-01

    Full Text Available Abstract Cannabis smoking can create respiratory problems. Vaporizers heat cannabis to release active cannabinoids, but remain cool enough to avoid the smoke and toxins associated with combustion. Vaporized cannabis should create fewer respiratory symptoms than smoked cannabis. We examined self-reported respiratory symptoms in participants who ranged in cigarette and cannabis use. Data from a large Internet sample revealed that the use of a vaporizer predicted fewer respiratory symptoms even when age, sex, cigarette smoking, and amount of cannabis used were taken into account. Age, sex, cigarettes, and amount of cannabis also had significant effects. The number of cigarettes smoked and amount of cannabis used interacted to create worse respiratory problems. A significant interaction revealed that the impact of a vaporizer was larger as the amount of cannabis used increased. These data suggest that the safety of cannabis can increase with the use of a vaporizer. Regular users of joints, blunts, pipes, and water pipes might decrease respiratory symptoms by switching to a vaporizer

  13. Microstructural and superconducting properties of high current metal-organic chemical vapor deposition YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} coated conductor wires

    Energy Technology Data Exchange (ETDEWEB)

    Holesinger, T G; Maiorov, B; Ugurlu, O; Civale, L [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chen, Y; Xiong, X; Xie, Y; Selvamanickam, V [SuperPower, Inc., Schenectady, NY 12304 (United States)

    2009-04-15

    Metal-organic chemical vapor deposition (MOCVD) on flexible, ion beam assisted deposition MgO templates has been used to produce high critical current density (J{sub c}) (Y,Sm){sub 1}Ba{sub 2}Cu{sub 3}O{sub y} (REBCO) films suitable for use in producing practical high temperature superconducting (HTS) coated conductor wires. Thick films on tape were produced with sequential additions of 0.7 {mu}m of REBCO via a reel-to-reel progression through a custom-designed MOCVD reactor. Multi-pass processing for thick film deposition is critically dependent upon minimizing surface secondary phase formation. Critical currents (I{sub c}s) of up to 600 A/cm width (t = 2.8 {mu}m, J{sub c} = 2.6 MA cm{sup -2}, 77 K, self-field) were obtained in short lengths of HTS wires. These high performance MOCVD films are characterized by closely spaced (Y,Sm){sub 2}O{sub 3} nanoparticle layers that may be tilted relative to the film normal and REBCO orientation. Small shifts in the angular dependence of J{sub c} in low and intermediate applied magnetic fields can be associated with the tilted nanoparticle layers. Also present in these films were YCuO{sub 2} nanoplates aligned with the YBCO matrix (short dimension perpendicular to the film normal), threading dislocations, and oriented composite defects (OCDs). The latter structures consist of single or multiple a-axis oriented grains coated on each side with insulating (Y,Sm){sub 2}O{sub 3} or CuO. The OCDs formed a connected network of insulating phases by the end of the fourth pass. Subsequent attempts at adding additional layers did not increase I{sub c}. There is an inconsistency between the measured J{sub c} and the observed microstructural degradation that occurs with each additional layer, suggesting that previously deposited layers are improving with each repeated reactor pass. These dynamic changes suggest a role for post-processing to optimize superconducting properties of as-deposited films, addressing issues associated with

  14. The compositional, structural, and magnetic properties of a Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN spin injecting hetero-structure grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhonghua; Huang, Shimin [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Tang, Kun, E-mail: ktang@nju.edu.cn [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Gu, Shulin, E-mail: slgu@nju.edu.cn [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Zhu, Shunming [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Ye, Jiandong [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Nanjing University Institute of Optoelectronics at Yangzhou, Yangzhou 225009 (China); Xu, Mingxiang [Department of Physics, Southeast University, Nanjing 210096 (China); Wang, Wei; Zheng, Youdou [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China)

    2016-12-01

    Highlights: • The Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN hetero-structure has been fabricated by MOCVD successfully. • The formation mechanism of different layers in sample was revealed in details. • The properties of the hetero-structure have been presented and discussed extensively. • The effect of Ga diffusion on the magnetic properties of Fe{sub 3}O{sub 4} film has been shown. - Abstract: In this article, the authors have designed and fabricated a Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN spin injecting hetero-structure by metal-organic chemical vapor deposition. The compositional, structural, and magnetic properties of the hetero-structure have been characterized and discussed. From the characterizations, the hetero-structure has been successfully grown generally. However, due to the unintentional diffusion of Ga ions from Ga{sub 2}O{sub 3}/GaN layers, the most part of the nominal Fe{sub 3}O{sub 4} layer is actually in the form of Ga{sub x}Fe{sub 3−x}O{sub 4} with gradually decreased x values from the Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3} interface to the Fe{sub 3}O{sub 4} surface. Post-annealing process can further aggravate the diffusion. Due to the similar ionic radius of Ga and Fe, the structural configuration of the Ga{sub x}Fe{sub 3−x}O{sub 4} does not differ from that of pure Fe{sub 3}O{sub 4}. However, the ferromagnetism has been reduced with the incorporation of Ga into Fe{sub 3}O{sub 4}, which has been explained by the increased Yafet-Kittel angles in presence of considerable amount of Ga incorporation. A different behavior of the magnetoresistance has been found on the as-grown and annealed samples, which could be modelled and explained by the competition between the spin-dependent and spin-independent conduction channels. This work has provided detailed information on the interfacial properties of the Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN spin injecting hetero-structure, which is the solid basis for further improvement and application of

  15. Water vapor as a perspective coolant for fast reactors

    International Nuclear Information System (INIS)

    Kalafati, D.D.; Petrov, S.I.

    1978-01-01

    Based on analysis of foreign projects of nuclear power plants with steam-cooled fast reactors, it is shown that low breeding ratio and large doubling time were caused by using nickel alloys, high vapor pressure and small volume heat release. The possibility is shown of obtaining doubling time in the necessary limits of T 2 =10-12 years when the above reasons for steam-cooled reactors are eliminated. Favourable combination of thermophysical and thermodynamic properties of water vapor makes it perspective coolant for power fast reactors

  16. Cyanobacterium removal and control of algal organic matter (AOM) release by UV/H2O2 pre-oxidation enhanced Fe(II) coagulation.

    Science.gov (United States)

    Jia, Peili; Zhou, Yanping; Zhang, Xufeng; Zhang, Yi; Dai, Ruihua

    2017-12-11

    Harmful algal blooms in source water are a worldwide issue for drinking water production and safety. UV/H 2 O 2 , a pre-oxidation process, was firstly applied to enhance Fe(II) coagulation for the removal of Microcystis aeruginosa [M. aeruginosa, 2.0 (±0.5) × 10 6  cell/mL] in bench scale. It significantly improved both algae cells removal and algal organic matter (AOM) control, compared with UV irradiation alone (254 nm UVC, 5.4 mJ/cm 2 ). About 94.7% of algae cells were removed after 5 min UV/H 2 O 2 pre-treatment with H 2 O 2 dose 375 μmol/L, FeSO 4 coagulation (dose 125 μmol/L). It was also certified that low residue Fe level and AOM control was simultaneously achieved due to low dose of Fe(II) to settle down the cells as well as the AOM. The result of L 9 (3) 4 orthogonal experiment demonstrated that H 2 O 2 and FeSO 4 dose was significantly influenced the algae removal. UV/H 2 O 2 induced an increase of intracellular reactive oxidant species (ROS) and a decrease in zeta potential, which might contribute to the algae removal. The total microcystins (MCs) concentration was 1.5 μg/L after UV/H 2 O 2 pre-oxidation, however, it could be removed simultaneously with the algae cells and AOM. This study suggested a novel application of UV/H 2 O 2 -Fe(II) process to promote algae removal and simultaneously control AOM release in source waters, which is a green and promising technology without secondary pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Characterizing the release of different composition of dissolved organic matter in soil under acid rain leaching using three-dimensional excitation-emission matrix spectroscopy.

    Science.gov (United States)

    Liu, Li; Song, Cunyi; Yan, Zengguang; Li, Fasheng

    2009-09-01

    Although excitation-emission matrix spectroscopy (EEMS) has been widely used to characterize dissolved organic matter (DOM), there has no report that EEMS has been used to study the effects of acid rain on DOM and its composition in soil. In this work, we employed three-dimensional EEMS to characterize the compositions of DOM leached by simulated acid rain from red soil. The red soil was subjected to leaching of simulated acid rain of different acidity, and the leached DOM presented five main peaks in its EEMS: peak-A, related to humic acid-like (HA-like) material, at Ex/Em of 310-330/395-420nm; peak-B, related to UV fulvic acid-like (FA-like) material, at Ex/Em of 230-280/400-435nm; peak-C and peak-D, both related to microbial byproduct-like material, at Ex/Em of 250-280/335-355nm and 260-280/290-320nm, respectively; and peak-E, related to simple aromatic proteins, at Ex/Em of 210-240/290-340nm. EEMS analysis results indicated that most DOM could be lost from red soil in the early phase of acid rain leaching. In addition to the effects of the pH of acid rain, the loss of DOM also depended on the properties of its compositions and the solubility of their complexes with aluminum. HA-like and microbial byproduct-like materials could be more easily released from red soil by acid rain at both higher pH (4.5 and 5.6) and lower pH (2.5 and 3) than that at middle pH (3.5). On the contrary, FA-like material lost in a similar manner under the action of different acid rains with pH ranging from 2.5 to 5.6.

  18. Chemical vapor composites (CVC)

    International Nuclear Information System (INIS)

    Reagan, P.

    1993-01-01

    The Chemical Vapor Composite, CVC trademark , process fabricates composite material by simply mixing particles (powders and or fibers) with CVD reactants which are transported and co-deposited on a hot substrate. A key feature of the CVC process is the control provided by varing the density, geometry (aspect ratio) and composition of the entrained particles in the matrix material, during deposition. The process can fabricate composite components to net shape (± 0.013 mm) on a machined substrate in a single step. The microstructure of the deposit is described and several examples of different types of particles in the matrix are illustrated. Mechanical properties of SiC composite material fabricated with SiC powder and fiber will be presented. Several examples of low cost ceramic composite products will be shown. (orig.)

  19. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  20. Vapor-droplet flow equations

    International Nuclear Information System (INIS)

    Crowe, C.T.

    1975-01-01

    General features of a vapor-droplet flow are discussed and the equations expressing the conservation of mass, momentum, and energy for the vapor, liquid, and mixture using the control volume approach are derived. The phenomenological laws describing the exchange of mass, momentum, and energy between phases are also reviewed. The results have application to development of water-dominated geothermal resources

  1. Organics.

    Science.gov (United States)

    Chian, Edward S. K.; DeWalle, Foppe B.

    1978-01-01

    Presents water analysis literature for 1978. This review is concerned with organics, and it covers: (1) detergents and surfactants; (2) aliphatic and aromatic hydrocarbons; (3) pesticides and chlorinated hydrocarbons; and (4) naturally occurring organics. A list of 208 references is also presented. (HM)

  2. Organizers.

    Science.gov (United States)

    Callison, Daniel

    2000-01-01

    Focuses on "organizers," tools or techniques that provide identification and classification along with possible relationships or connections among ideas, concepts, and issues. Discusses David Ausubel's research and ideas concerning advance organizers; the implications of Ausubel's theory to curriculum and teaching; "webbing," a…

  3. An evaluation of vapor extraction of vadose zone contamination

    International Nuclear Information System (INIS)

    Crotwell, A.T.; Waehner, M.J.; MacInnis, J.M.; Travis, C.C.; Lyon, B.F.

    1992-05-01

    An in-depth analysis of vapor extraction for remediation of soils contaminated with volatile organic compounds (VOCS) was conducted at 13 sites. The effectiveness of vapor extraction systems (VES) was evaluated on the basis of soil concentrations of VOCs and soil-gas concentrations of VOC's. The range of effectiveness was found to be 64%--99% effective in removing organic contaminants from soil. At nine of the 13 sites studied in this report, vapor extraction was found to be effective in reducing VOC cooncentrations by at least 90%. At the remaining four sites studied, vapor extraction was found to reduce VOC concentrations by less than 90%. Vapor extraction is ongoing at two of these sites. At a third, the ineffectiveness of the vapor extraction is attributed to the presence of ''hot spots'' of contamination. At the fourth site, where performance was found to be relatively poor, the presence of geological tar deposits at the site is thought to be a major factor in the ineffectiveness

  4. Tank Vapor Characterization Project: Annual status report for FY 1996

    International Nuclear Information System (INIS)

    Silvers, K.L.; Fruchter, J.S.; Huckaby, J.L.; Almeida, T.L.; Evans, J.C. Jr.; Pool, K.H.; Simonen, C.A.; Thornton, B.M.

    1997-01-01

    In Fiscal Year 1996, staff at the Vapor Analytical Laboratory at Pacific Northwest National Laboratory performed work in support of characterizing the vapor composition of the headspaces of radioactive waste tanks at the Hanford Site. Work performed included support for technical issues and sampling methodologies, upgrades for analytical equipment, analytical method development, preparation of unexposed samples, analyses of tank headspaces samples, preparation of data reports, and operation of the tank vapor database. Progress made in FY 1996 included completion and issuance of 50 analytical data reports. A sampling system comparison study was initiated and completed during the fiscal year. The comparison study involved the vapor sampling system (VSS), a truck-based system, and the in situ vapor sampling system (ISVS), a cart-based system. Samples collected during the study were characterized for inorganic, permanent gases, total non-methane organic compounds and organic speciation by SUMMA trademark and TST methods. The study showed comparable sampling results between the systems resulting in the program switching from the VSS to the less expensive ISVS methodology in late May 1996. A temporal study was initiated in January 1996 in order to understand the influences seasonal temperatures changes have on the vapors in the headspace of Hanford waste tanks. A holding time study was initiated in the fourth quarter of FY 1996. Samples were collected from tank S-102 and rushed to the laboratory for time zero analysis. Additional samples will be analyzed at 1, 2, 4, 8, 16, and 32 weeks

  5. Vapor pressure and enthalpy of vaporization of aliphatic propanediamines

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Chernyak, Yury

    2012-01-01

    Highlights: ► We measured vapor pressure of four aliphatic 1,3-diamines. ► Vaporization enthalpies at 298 K were derived. ► We examined consistency of new and available data in the literature. ► A group-contribution method for prediction was developed. - Abstract: Vapor pressures of four aliphatic propanediamines including N-methyl-1,3-propanediamine (MPDA), N,N-dimethyl-1,3-propanediamine (DMPDA), N,N-diethyl-1,3-propanediamine (DEPDA) and N,N,N′,N′-tetramethyl-1,3-propanediamine (4MPDA) were measured using the transpiration method. The vapor pressures developed in this work and reported in the literature were used to derive molar enthalpy of vaporization values at the reference temperature 298.15 K. An internal consistency check of the enthalpy of vaporization was performed for the aliphatic propanediamines studied in this work. A group-contribution method was developed for the validation and prediction vaporization enthalpies of amines and diamines.

  6. A Citizen's Guide to Vapor Intrusion Mitigation

    Science.gov (United States)

    This guide describes how vapor intrusion is the movement of chemical vapors from contaminated soil and groundwater into nearby buildings.Vapors primarily enter through openings in the building foundation or basement walls.

  7. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  8. Solvent vapor annealing of an insoluble molecular semiconductor

    KAUST Repository

    Amassian, Aram

    2010-01-01

    Solvent vapor annealing has been proposed as a low-cost, highly versatile, and room-temperature alternative to thermal annealing of organic semiconductors and devices. In this article, we investigate the solvent vapor annealing process of a model insoluble molecular semiconductor thin film - pentacene on SiO 2 exposed to acetone vapor - using a combination of optical reflectance and two-dimensional grazing incidence X-ray diffraction measurements performed in situ, during processing. These measurements provide valuable and new insight into the solvent vapor annealing process; they demonstrate that solvent molecules interact mainly with the surface of the film to induce a solid-solid transition without noticeable swelling, dissolving or melting of the molecular material. © 2010 The Royal Society of Chemistry.

  9. Photography of a lithium vapor trail during the daytime.

    Science.gov (United States)

    Bedinger, J. F.

    1973-01-01

    Barium and lithium vapors were released from sounding rockets in the thermosphere and observed from aboard a jet aircraft at an altitude of 40,000 ft. The purpose of the releases was to demonstrate the feasibility of an all-weather technique for observing chemical releases and to evaluate methods of observing daytime releases. The selected flight plan of the aircraft allowed a series of observations of the trail from two different straight line paths. Data were recorded photographically. The reduction in sky brightness at the 40,000-ft altitude as compared to the ground allows the use of a filter with a 10-A bandwidth for trail photography in the daytime. These photographs verified the calculation of the usable angular field of the narrow-band filters. Photographs of a 45-min-old trail of lithium vapor were obtained up to 20 min after sunrise at the aircraft. It is concluded that now vapor trail observations may be made during the daytime without regard to weather and logistic restrictions.

  10. Organizations

    DEFF Research Database (Denmark)

    Hatch, Mary Jo

    and considers many more. Mary Jo Hatch introduces the concept of organizations by presenting definitions and ideas drawn from the a variety of subject areas including the physical sciences, economics, sociology, psychology, anthropology, literature, and the visual and performing arts. Drawing on examples from......Most of us recognize that organizations are everywhere. You meet them on every street corner in the form of families and shops, study in them, work for them, buy from them, pay taxes to them. But have you given much thought to where they came from, what they are today, and what they might become...... prehistory and everyday life, from the animal kingdom as well as from business, government, and other formal organizations, Hatch provides a lively and thought provoking introduction to the process of organization....

  11. COMPARISON OF TRICHLOROETHYLENE REDUCTIVE DEHALOGENATION BY MICROBIAL COMMUNITIES STIMULATED ON SILICON-BASED ORGANIC COMPOUNDS AS SLOW-RELEASE ANAEROBIC SUBSTRATES. (R828772C001)

    Science.gov (United States)

    Microcosm studies were conducted to demonstrate the effectiveness of tetrabutoxysilane (TBOS) as a slow-release anaerobic substrate to promote reductive dehalogenation of trichloroethylene (TCE). The abiotic hydrolysis of TBOS and tetrakis(2-ethylbutoxy)silane (TKEBS), and the...

  12. Removal of gasoline volatile organic compounds via air biofiltration

    International Nuclear Information System (INIS)

    Miller, R.S.; Saberiyan, A.G.; Esler, C.T.; DeSantis, P.; Andrilenas, J.S.

    1995-01-01

    Volatile organic compounds (VOCs) generated by vapor extraction and air-stripping systems can be biologically treated in an air biofiltration unit. An air biofilter consists of one or more beds of packing material inoculated with heterotrophic microorganisms capable of degrading the organic contaminant of concern. Waste gases and oxygen are passed through the inoculated packing material, where the microorganisms will degrade the contaminant and release CO 2 + H 2 O. Based on data obtained from a treatability study, a full-scale unit was designed and constructed to be used for treating gasoline vapors generated by a vapor-extraction and groundwater-treatment system at a site in California. The unit is composed of two cylindrical reactors with a total packing volume of 3 m 3 . Both reactors are packed with sphagnum moss and inoculated with hydrocarbon-degrading microorganisms of Pseudomonas and Arthrobacter spp. The two reactors are connected in series for air-flow passage. Parallel lines are used for injection of water, nutrients, and buffer to each reactor. Data collected during the startup program have demonstrated an air biofiltration unit with high organic-vapor-removal efficiency

  13. Passive vapor extraction feasibility study

    International Nuclear Information System (INIS)

    Rohay, V.J.

    1994-01-01

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft 3 /min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft 3 /min air flow rates, passive vapor extraction is more cost effective below 100 ppm

  14. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  15. A multistratum approach to soil vapor extraction

    International Nuclear Information System (INIS)

    Fuhr, J.M.; Giesler, R.S.

    1993-01-01

    An innovative soil remediation design was implemented to address petroleum hydrocarbon contamination in a gradationally stratified subsurface environment containing alternating layers of clay, sand and clayey sand, and perched water tables in north Florida. The soil vapor extraction (SVE) design enables remediation to focus on distinct subsurface intervals depending on changing site conditions such as constituent concentration levels and periodic water-table fluctuations. Contaminated soils were assessed from the land surface to the top of a two foot thick perched water table located at 13 feet below land surface (bls), and also were encountered below the perched water table downward to another perched water table at 45 feet bls. Use of an organic vapor analyzer equipped with a flame ionization detector revealed hydrocarbon vapor concentrations in soil samples ranging to greater than 1,000 parts per million (ppm). Nonaqueous phase liquids were encountered on both perched water tables. Based on the site assessment, a multistratum soil and ground-water remediation system was designed and constructed. A pilot test was conducted to aid in the design of an effective SVE system

  16. Dimers in nucleating vapors

    Science.gov (United States)

    Lushnikov, A. A.; Kulmala, M.

    1998-09-01

    The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersaturation of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the particle formation-growth process is studied starting with the definition of dimers as bound states of two associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor over all classical bound states, and the equilibrium population of dimers is found for two types of intermolecular forces: the Lennard-Jones (LJ) and rectangular well+hard core (RW) potentials. The principle of detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation-growth process is then investigated under the assumption that the trimers are stable with respect to evaporation and that the condensation rate is a power function of the particle mass. If the power exponent λ=n/(n+1) (n is a non-negative integer), the kinetics of the process is described by a finite set of moments of particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter than that of the condensational growth, n+2 universal functions of a nondimensional time define the kinetic process. These functions are calculated for λ=2/3 (gas-to-particle conversion in the free molecular regime) and λ=1/2 (formation of islands on surfaces).

  17. Growth and Characterization of (211)B Cadmium Telluride Buffer Layer Grown by Metal-organic Vapor Phase Epitaxy on Nanopatterned Silicon for Mercury Cadmium Telluride Based Infrared Detector Applications

    Science.gov (United States)

    Shintri, Shashidhar S.

    Mercury cadmium telluride (MCT or Hg1-xCdxTe) grown by molecular beam epitaxy (MBE) is presently the material of choice for fabricating infrared (IR) detectors used in night vision based military applications. The focus of MCT epitaxy has gradually shifted since the last decade to using Si as the starting substrate since it offers several advantages. But the ˜19 % lattice mismatch between MCT and Si generates lots of crystal defects some of which degrade the performance of MCT devices. Hence thick CdTe films are used as buffer layers on Si to accommodate the defects. However, growth of high quality single crystal CdTe on Si is challenging and to date, the best MBE CdTe/Si reportedly has defects in the mid-105 cm -2 range. There is a critical need to reduce the defect levels by at least another order of magnitude, which is the main motivation behind the present work. The use of alternate growth technique called metal-organic vapor phase epitaxy (MOVPE) offers some advantages over MBE and in this work MOVPE has been employed to grow the various epitaxial films. In the first part of this work, conditions for obtaining high quality (211)B CdTe epitaxy on (211)Si were achieved, which also involved studying the effect of having additional intermediate buffer layers such as Ge and ZnTe and incorporation of in-situ thermal cyclic annealing (TCA) to reduce the dislocation density. A critical problem of Si cross-contamination due to 'memory effect' of different reactant species was minimized by introducing tertiarybutylArsine (TBAs) which resulted in As-passivation of (211)Si. The best 8-10 µm thick CdTe films on blanket (non-patterned) Si had dislocations around 3×105 cm-2, which are the best reported by MOVPE till date and comparable to the highest quality films available by MBE. In the second part of the work, nanopatterned (211)Si was used to study the effect of patterning on the crystal quality of epitaxial CdTe. In one such study, patterning of ˜20 nm holes in SiO2

  18. Tank vapor characterization project - headspace vapor characterization of Hanford Waste Tank 241-C-107: Second comparison study results from samples collected on 3/26/96

    International Nuclear Information System (INIS)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. The results described in this report is the second in a series comparing vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H 2 O) and ammonia (NH 3 ), permanent gases, total non-methane organic compounds (TO-12), and individual organic analytes collected in SUMMA trademark canisters and on triple sorbent traps (TSTs). Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC

  19. Tank vapor characterization project. Headspace vapor characterization of Hanford waste tank 241-BY-108: Second comparison study results from samples collected on 3/28/96

    International Nuclear Information System (INIS)

    Thomas, B.L.; Pool, K.H.; Evans, J.C.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. The results described in this report is the second in a series comparing vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H 2 O) and ammonia (NH 3 ), permanent gases, total non-methane organic compounds (TO-12), and individual organic analytes collected in SUMMA trademark canisters and on triple sorbent traps (TSTs). Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC

  20. Tubing For Sampling Hydrazine Vapor

    Science.gov (United States)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  1. Vapor trap for liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T

    1968-05-22

    In a pipe system which transfers liquid metal, inert gas (cover gas) is packed above the surface of the liquid metal to prevent oxidization of the liquid. If the metal vapor is contained in such cover gas, the circulating system of the cover gas is blocked due to condensation of liquid metal inside the system. The present invention relates to an improvement in vapor trap to remove the metal vapor from the cover gas. The trap consists of a cylindrical outer body, an inlet nozzle which is deeply inserted inside the outer body and has a number of holes to inject the cove gas into the body, metal mesh or steel wool which covers the exterior of the nozzle and on which the condensation of the metal gas takes place, and a heater wire hich is wound around the nozzle to prevent condensation of the metal vapor at the inner peripheral side of the mesh.

  2. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST and 200 WEST TANK FARMS FROM CY1995 TO CY2004

    International Nuclear Information System (INIS)

    HOCKING, M.J.

    2005-01-01

    Revised for a more comprehensive overview of vapor incidents reported at the Hanford Tank Farms. Investigation into the meteorological influences on vapor incidents in the tank farm to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems. The purpose of this document is to gather and evaluate the meteorological and weather information for the Tank Farms Shift Log Vapor Incident entries and determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases such as propane. A part of the evaluation will be determining which of the incidents are related to actual ''intrusive'' work, and which are ''transient.'' Transient vapor incidents are herein defined as those vapors encountered during walkdowns, surveys, or other activities that did not require working directly with the tanks, pits, transfer lines, etc. Another part of the investigation will involve determining if there are barometric pressures or other weather related phenomena that might cause or contribute vapors being released when there are no ''intrusive'' activities. A final purpose is to evaluate whether there is any correlation between the 242-A Evaporator operations and Vapor Incidents entered on the Shift Log

  3. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST & 200 WEST TANK FARMS FROM CY1995 TO CY2004

    Energy Technology Data Exchange (ETDEWEB)

    HOCKING, M.J.

    2005-01-31

    Revised for a more comprehensive overview of vapor incidents reported at the Hanford Tank Farms. Investigation into the meteorological influences on vapor incidents in the tank farm to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems. The purpose of this document is to gather and evaluate the meteorological and weather information for the Tank Farms Shift Log Vapor Incident entries and determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases such as propane. A part of the evaluation will be determining which of the incidents are related to actual ''intrusive'' work, and which are ''transient.'' Transient vapor incidents are herein defined as those vapors encountered during walkdowns, surveys, or other activities that did not require working directly with the tanks, pits, transfer lines, etc. Another part of the investigation will involve determining if there are barometric pressures or other weather related phenomena that might cause or contribute vapors being released when there are no ''intrusive'' activities. A final purpose is to evaluate whether there is any correlation between the 242-A Evaporator operations and Vapor Incidents entered on the Shift Log.

  4. Medicinal Cannabis: In Vitro Validation of Vaporizers for the Smoke-Free Inhalation of Cannabis.

    Directory of Open Access Journals (Sweden)

    Christian Lanz

    Full Text Available Inhalation by vaporization is a promising application mode for cannabis in medicine. An in vitro validation of 5 commercial vaporizers was performed with THC-type and CBD-type cannabis. Gas chromatography/mass spectrometry was used to determine recoveries of total THC (THCtot and total CBD (CBDtot in the vapor. High-performance liquid chromatography with photodiode array detection was used for the quantitation of acidic cannabinoids in the residue and to calculate decarboxylation efficiencies. Recoveries of THCtot and CBDtot in the vapor of 4 electrically-driven vaporizers were 58.4 and 51.4%, 66.8 and 56.1%, 82.7 and 70.0% and 54.6 and 56.7% for Volcano Medic®, Plenty Vaporizer®, Arizer Solo® and DaVinci Vaporizer®, respectively. Decarboxylation efficiency was excellent for THC (≥ 97.3% and CBD (≥ 94.6%. The gas-powered Vape-or-Smoke™ showed recoveries of THCtot and CBDtot in the vapor of 55.9 and 45.9%, respectively, and a decarboxylation efficiency of ≥ 87.7 for both cannabinoids. However, combustion of cannabis was observed with this device. Temperature-controlled, electrically-driven vaporizers efficiently decarboxylate inactive acidic cannabinoids and reliably release their corresponding neutral, active cannabinoids. Thus, they offer a promising application mode for the safe and efficient administration of medicinal cannabis.

  5. Medicinal Cannabis: In Vitro Validation of Vaporizers for the Smoke-Free Inhalation of Cannabis.

    Science.gov (United States)

    Lanz, Christian; Mattsson, Johan; Soydaner, Umut; Brenneisen, Rudolf

    2016-01-01

    Inhalation by vaporization is a promising application mode for cannabis in medicine. An in vitro validation of 5 commercial vaporizers was performed with THC-type and CBD-type cannabis. Gas chromatography/mass spectrometry was used to determine recoveries of total THC (THCtot) and total CBD (CBDtot) in the vapor. High-performance liquid chromatography with photodiode array detection was used for the quantitation of acidic cannabinoids in the residue and to calculate decarboxylation efficiencies. Recoveries of THCtot and CBDtot in the vapor of 4 electrically-driven vaporizers were 58.4 and 51.4%, 66.8 and 56.1%, 82.7 and 70.0% and 54.6 and 56.7% for Volcano Medic®, Plenty Vaporizer®, Arizer Solo® and DaVinci Vaporizer®, respectively. Decarboxylation efficiency was excellent for THC (≥ 97.3%) and CBD (≥ 94.6%). The gas-powered Vape-or-Smoke™ showed recoveries of THCtot and CBDtot in the vapor of 55.9 and 45.9%, respectively, and a decarboxylation efficiency of ≥ 87.7 for both cannabinoids. However, combustion of cannabis was observed with this device. Temperature-controlled, electrically-driven vaporizers efficiently decarboxylate inactive acidic cannabinoids and reliably release their corresponding neutral, active cannabinoids. Thus, they offer a promising application mode for the safe and efficient administration of medicinal cannabis.

  6. The Yaws handbook of vapor pressure Antoine coefficients

    CERN Document Server

    Yaws, Carl L

    2015-01-01

    Increased to include over 25,000 organic and inorganic compounds, The Yaws Handbook of Vapor Pressure: Antoine Coefficients, 2nd Edition delivers the most comprehensive and practical database source for today's petrochemical. Understanding antoine coefficients for vapor pressure leads to numerous critical engineering applications such as pure components in storage vessels, pressure relief valve design, flammability limits at the refinery, as well as environmental emissions from exposed liquids, making data to efficiently calculate these daily challenges a fundamental need. Written by the world's leading authority on chemical and petrochemical data, The Yaws Handbook of Vapor Pressure simplifies the guesswork for the engineer and reinforces the credibility of the engineer's calculations with a single trust-worthy source. This data book is a must-have for the engineer's library bookshelf. Increase compound coverage from 8,200 to over 25,000 organic and inorganic compounds, including sulfur and hydrocarbons Sol...

  7. Enhanced bulk heterojunction devices prepared by thermal and solvent vapor annealing processes

    Science.gov (United States)

    Forrest, Stephen R.; Thompson, Mark E.; Wei, Guodan; Wang, Siyi

    2017-09-19

    A method of preparing a bulk heterojunction organic photovoltaic cell through combinations of thermal and solvent vapor annealing are described. Bulk heterojunction films may prepared by known methods such as spin coating, and then exposed to one or more vaporized solvents and thermally annealed in an effort to enhance the crystalline nature of the photoactive materials.

  8. Optical acetone vapor sensors based on chiral nematic liquid crystals and reactive chiral dopants

    NARCIS (Netherlands)

    Cachelin, P.; Green, J.P.; Peijs, T.; Heeney, M.; Bastiaansen, C.W.M.

    2016-01-01

    Accurate monitoring of exposure to organic vapors, such as acetone, is an important part of maintaining a safe working environment and adhering to long- and short-term exposure limits. Here, a novel acetone vapor detection system is described based on the use of a reactive chiral dopant in a nematic

  9. 40 CFR 52.246 - Control of dry cleaning solvent vapor losses.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control of dry cleaning solvent vapor... cleaning solvent vapor losses. (a) For the purpose of this section, “dry cleaning operation” means that process by which an organic solvent is used in the commercial cleaning of garments and other fabric...

  10. Molecular Cloning, Genomic Organization and Developmental Regulation of a Novel Receptor from Drosophila melanogaster Structurally Related to Gonadotropin-Releasing Hormone Receptors from Vertebrates

    DEFF Research Database (Denmark)

    Hauser, Frank; Søndergaard, Leif; Grimmelikhuijzen, Cornelis J.P.

    1998-01-01

    After screening the data base of the BerkeleyDrosophilaGenome Project with a sequence coding for the transmembrane region of a G protein-coupled receptor, we found thatDrosophilamight contain a gene coding for a receptor that is structurally related to the Gonadotropin-Releasing Hormone (GnRH) re...

  11. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-03-01

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development of these technologies, should DOE choose to support non-vapor-compression technology further.

  12. Melting temperature, vapor density, and vapor pressure of molybdenum pentafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jr, R F; Douglas, T B [National Bureau of Standards, Washington, D.C. (USA). Inst. for Materials Research

    1977-12-01

    A sample of MoF/sub 5/ was prepared by reaction of MoF/sub 6/(g) and Mo(c). Melting curves of temperature against time established the melting temperature at zero impurity to be 318.85 K, the enthalpy of fusion to be 6.1 kJ mol/sup -1/ (+ - 5 per cent), and the cryoscopic impurity of the sample to be 0.15 mole per cent. In the presence of MoF/sub 6/(g) which was added to suppress disproportionation, the vapor density of MoF/sub 5/ over the liquid was measured by the transpiration method at 343, 363, and 383 K, the total MoF/sub 5/ that evaporated being determined by permanganate titration. The total vapor pressure of MoF/sub 5/ oligomers over the liquid was measured by a simple static method at 373 and 392 K, while melting temperatures were taken alternately to monitor possible contamination of the sample. Although the vapor pressures were adjusted for disproportionation, solution of MoF/sub 6/ in MoF/sub 5/ (1), and wall adsorption of MoF/sub 6/ their percentage uncertainty is probably several times that of the vapor densities. A combination of the two properties indicates the average extent of association of the saturated vapor to be near 2, which is the value for the dimer species (MoF/sub 5/)/sub 2/.

  13. Hanford Site organic waste tanks: History, waste properties, and scientific issues

    International Nuclear Information System (INIS)

    Strachan, D.M.; Schulz, W.W.; Reynolds, D.A.

    1993-01-01

    Eight Hanford single-shell waste tanks are included on a safety watch list because they are thought to contain significant concentrations of various organic chemical. Potential dangers associated with the waste in these tanks include exothermic reaction, combustion, and release of hazardous vapors. In all eight tanks the measured waste temperatures are in the range 16 to 46 degree C, far below the 250 to 380 degree C temperatures necessary for onset of rapid exothermic reactions and initiation of deflagration. Investigation of the possibility of vapor release from Tank C-103 has been elevated to a top safety priority. There is a need to obtain an adequate number of truly representative vapor samples and for highly sensitive and capable methods and instruments to analyze these samples. Remaining scientific issues include: an understanding of the behavior and reaction of organic compounds in existing underground tank environments knowledge of the types and amounts of organic compounds in the tanks knowledge of selected physical and chemical properties of organic compounds source, composition, quality, and properties of the presently unidentified volatile organic compound(s) apparently evolving from Tank C-103

  14. GEWEX SRB Shortwave Release 4

    Science.gov (United States)

    Cox, S. J.; Stackhouse, P. W., Jr.; Mikovitz, J. C.; Zhang, T.

    2017-12-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The new Release 4 uses the newly processed ISCCP HXS product as its primary input for cloud and radiance data. The ninefold increase in pixel number compared to the previous ISCCP DX allows finer gradations in cloud fraction in each grid box. It will also allow higher spatial resolutions (0.5 degree) in future releases. In addition to the input data improvements, several important algorithm improvements have been made since Release 3. These include recalculated atmospheric transmissivities and reflectivities yielding a less transmissive atmosphere. The calculations also include variable aerosol composition, allowing for the use of a detailed aerosol history from the Max Planck Institut Aerosol Climatology (MAC). Ocean albedo and snow/ice albedo are also improved from Release 3. Total solar irradiance is now variable, averaging 1361 Wm-2. Water vapor is taken from ISCCP's nnHIRS product. Results from GSW Release 4 are presented and analyzed. Early comparison to surface measurements show improved agreement.

  15. Predicting the enthalpies of melting and vaporization for pure components

    Science.gov (United States)

    Esina, Z. N.; Korchuganova, M. R.

    2014-12-01

    A mathematical model of the melting and vaporization enthalpies of organic components based on the theory of thermodynamic similarity is proposed. In this empirical model, the phase transition enthalpy for the homological series of n-alkanes, carboxylic acids, n-alcohols, glycols, and glycol ethers is presented as a function of the molecular mass, the number of carbon atoms in a molecule, and the normal transition temperature. The model also uses a critical or triple point temperature. It is shown that the results from predicting the melting and vaporization enthalpies enable the calculation of binary phase diagrams.

  16. Methane release

    International Nuclear Information System (INIS)

    Seifert, M.

    1999-01-01

    The Swiss Gas Industry has carried out a systematic, technical estimate of methane release from the complete supply chain from production to consumption for the years 1992/1993. The result of this survey provided a conservative value, amounting to 0.9% of the Swiss domestic output. A continuation of the study taking into account new findings with regard to emission factors and the effect of the climate is now available, which provides a value of 0.8% for the target year of 1996. These results show that the renovation of the network has brought about lower losses in the local gas supplies, particularly for the grey cast iron pipelines. (author)

  17. Atmospheric Chemistry of Micrometeoritic Organic Compounds

    Science.gov (United States)

    Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.

    2011-01-01

    Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.

  18. Headspace vapor characterization of Hanford Waste Tank 241-S-112: Results from samples collected on July 11, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Clauss, T.W.; Pool, K.H.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage Tank 241-S-112 (Tank S-112) at the Hanford. Pacific Northwest National Laboratory (PNNL) is contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5044. Samples were collected by WHC on July 11, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  19. Headspace vapor characterization of Hanford Waste Tank SX-102: Results from samples collected on July 19, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    McVeety, B.D.; Evans, J.C.; Clauss, T.W.; Pool, K.H.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-102 (Tank SX-102) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed under the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5046. Samples were collected by WHC on July 19, 1995, using the vapor sampling system (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  20. Headspace vapor characterization of Hanford Waste Tank 241-T-110: Results from samples collected on August 31, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    McVeety, B.D.; Thomas, B.L.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-T-110 (Tank T-110) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5056. Samples were collected by WHC on August 31, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  1. Headspace vapor characterization of Hanford Waste Tank 241-TX-111: Results from samples collected on October 12, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.

    1996-06-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-TX-111 (Tank TX-111) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5069. Samples were collected by WHC on October 12, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  2. Headspace vapor characterization of Hanford Waste Tank AX-103: Results from samples collected on June 21, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Pool, K.H.; Clauss, T.W.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-AX-103 (Tank AX-103) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5029. Samples were collected by WHC on June 21, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  3. Headspace vapor characterization of Hanford Waste Tank AX-101: Results from samples collected on June 15, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.; McVeety, B.D.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-AX-101 (Tank AX-101) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) under the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5028. Samples were collected by WHC on June 15, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  4. Headspace vapor characterization of Hanford Waste Tank 241-SX-109: Results from samples collected on August 1, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-109 (Tank SX-109) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5048. Samples were collected by WHC on August 1, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  5. Headspace vapor characterization of Hanford Waste Tank 241-SX-104: Results from samples collected on July 25, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Thomas, B.L.; Clauss, T.W.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-104 (Tank SX-104) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5049. Samples were collected by WHC on July 25, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  6. Headspace vapor characterization of Hanford Waste Tank 241-SX-105: Results from samples collected on July 26, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-105 (Tank SX-105) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5047. Samples were collected by WHC on July 26, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  7. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  8. Liquid-phase exfoliation of chemical vapor deposition-grown single layer graphene and its application in solution-processed transparent electrodes for flexible organic light-emitting devices

    International Nuclear Information System (INIS)

    Wu, Chaoxing; Li, Fushan; Wu, Wei; Chen, Wei; Guo, Tailiang

    2014-01-01

    Efficient and low-cost methods for obtaining high performance flexible transparent electrodes based on chemical vapor deposition (CVD)-grown graphene are highly desirable. In this work, the graphene grown on copper foil was exfoliated into micron-size sheets through controllable ultrasonication. We developed a clean technique by blending the exfoliated single layer graphene sheets with conducting polymer to form graphene-based composite solution, which can be spin-coated on flexible substrate, forming flexible transparent conducting film with high conductivity (∼8 Ω/□), high transmittance (∼81% at 550 nm), and excellent mechanical robustness. In addition, CVD-grown-graphene-based polymer light emitting diodes with excellent bendable performances were demonstrated

  9. Waste Tank Vapor Project: Tank vapor database development

    International Nuclear Information System (INIS)

    Seesing, P.R.; Birn, M.B.; Manke, K.L.

    1994-09-01

    The objective of the Tank Vapor Database (TVD) Development task in FY 1994 was to create a database to store, retrieve, and analyze data collected from the vapor phase of Hanford waste tanks. The data needed to be accessible over the Hanford Local Area Network to users at both Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The data were restricted to results published in cleared reports from the laboratories analyzing vapor samples. Emphasis was placed on ease of access and flexibility of data formatting and reporting mechanisms. Because of time and budget constraints, a Rapid Application Development strategy was adopted by the database development team. An extensive data modeling exercise was conducted to determine the scope of information contained in the database. a A SUN Sparcstation 1000 was procured as the database file server. A multi-user relational database management system, Sybase reg-sign, was chosen to provide the basic data storage and retrieval capabilities. Two packages were chosen for the user interface to the database: DataPrism reg-sign and Business Objects trademark. A prototype database was constructed to provide the Waste Tank Vapor Project's Toxicology task with summarized and detailed information presented at Vapor Conference 4 by WHC, PNL, Oak Ridge National Laboratory, and Oregon Graduate Institute. The prototype was used to develop a list of reported compounds, and the range of values for compounds reported by the analytical laboratories using different sample containers and analysis methodologies. The prototype allowed a panel of toxicology experts to identify carcinogens and compounds whose concentrations were within the reach of regulatory limits. The database and user documentation was made available for general access in September 1994

  10. Use of Concomitant Stress Incontinence Surgery at Time of Pelvic Organ Prolapse Surgery Since Release of the 2011 Notification on Serious Complications Associated with Transvaginal Mesh.

    Science.gov (United States)

    Drain, Alice; Khan, Aqsa; Ohmann, Erin L; Brucker, Benjamin M; Smilen, Scott; Rosenblum, Nirit; Nitti, Victor W

    2017-04-01

    There is controversy regarding the performance of concomitant anti-incontinence procedures at the time of pelvic organ prolapse repair. Data support improvement in stress urinary incontinence with a concomitant sling but increased adverse events. We assessed trends in preoperative stress urinary incontinence evaluation, concomitant anti-incontinence procedure at pelvic organ prolapse surgery and postoperative anti-incontinence procedures at our institution before and after the 2011 FDA (U.S. Food and Drug Administration) Public Health Notification pertaining to vaginal mesh. We retrospectively reviewed the records of patients who underwent pelvic organ prolapse surgery from 2009 to 2015. Preoperative workup included assessment of subjective stress urinary incontinence and/or evaluation for leakage with reduction of pelvic organ prolapse on physical examination, urodynamics or a pessary trial. The percentages of concomitant and postoperative anti-incontinence procedures were compared before and after the 2011 FDA notification. A total of 775 women underwent pelvic organ prolapse repair. The percentage of anti-incontinence procedures at pelvic organ prolapse repair decreased from 54.8% to 38.0% after the FDA notification (p = 0.002) while the incidence of preoperative objective stress urinary incontinence on examination, urodynamics and pessary trials remained constant. The incidence of postoperative anti-incontinence procedures within 1 year of the index surgery remained low. We found a decrease in the incidence of concomitant anti-incontinence procedures at the time of pelvic organ prolapse repair following the 2011 FDA notification despite no significant decline in subjective stress urinary incontinence or demonstrable stress urinary incontinence on preoperative evaluation. Further analysis is warranted to assess the impact of the FDA notification on treatment patterns in women with pelvic organ prolapse and stress urinary incontinence. Copyright © 2017 American

  11. Release isentrope measurements with the LLNL electric gun

    Energy Technology Data Exchange (ETDEWEB)

    Gathers, G.R.; Osher, J.E.; Chau, H.H.; Weingart, R.C.; Lee, C.G.; Diaz, E.

    1987-06-01

    The liquid-vapor coexistence boundary is not well known for most metals because the extreme conditions near the critical point create severe experimental difficulties. The isentropes passing through the liquid-vapor region typically begin from rather large pressures on the Hugoniot. We are attempting to use the high velocities achievable with the Lawrence Livermore National Laboratory (LLNL) electric gun to obtain these extreme states in aluminum and measure the release isentropes by releasing into a series of calibrated standards with known Hugoniots. To achieve large pressure drops needed to explore the liquid-vapor region, we use argon gas for which Hugoniots have been calculated using the ACTEX code, as one of the release materials.

  12. Vapor generation methods for explosives detection research

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  13. Vapor generating unit blowdown arrangement

    International Nuclear Information System (INIS)

    McDonald, B.N.

    1978-01-01

    A vapor generating unit having a U-shaped tube bundle is provided with an orificed downcomer shroud and a fluid flow distribution plate between the lower hot and cold leg regions to promote fluid entrained sediment deposition in proximity to an apertured blowdown pipe

  14. Tank Vapor Characterization Project: Vapor space characterization of waste Tank A-101, Results from samples collected on June 8, 1995